1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/suspend.h> 28 #include <linux/fault-inject.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/of.h> 32 33 #include <linux/mmc/card.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> 36 #include <linux/mmc/sd.h> 37 #include <linux/mmc/slot-gpio.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/mmc.h> 41 42 #include "core.h" 43 #include "card.h" 44 #include "bus.h" 45 #include "host.h" 46 #include "sdio_bus.h" 47 #include "pwrseq.h" 48 49 #include "mmc_ops.h" 50 #include "sd_ops.h" 51 #include "sdio_ops.h" 52 53 /* If the device is not responding */ 54 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 55 56 /* 57 * Background operations can take a long time, depending on the housekeeping 58 * operations the card has to perform. 59 */ 60 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */ 61 62 /* The max erase timeout, used when host->max_busy_timeout isn't specified */ 63 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ 64 65 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 66 67 /* 68 * Enabling software CRCs on the data blocks can be a significant (30%) 69 * performance cost, and for other reasons may not always be desired. 70 * So we allow it it to be disabled. 71 */ 72 bool use_spi_crc = 1; 73 module_param(use_spi_crc, bool, 0); 74 75 static int mmc_schedule_delayed_work(struct delayed_work *work, 76 unsigned long delay) 77 { 78 /* 79 * We use the system_freezable_wq, because of two reasons. 80 * First, it allows several works (not the same work item) to be 81 * executed simultaneously. Second, the queue becomes frozen when 82 * userspace becomes frozen during system PM. 83 */ 84 return queue_delayed_work(system_freezable_wq, work, delay); 85 } 86 87 #ifdef CONFIG_FAIL_MMC_REQUEST 88 89 /* 90 * Internal function. Inject random data errors. 91 * If mmc_data is NULL no errors are injected. 92 */ 93 static void mmc_should_fail_request(struct mmc_host *host, 94 struct mmc_request *mrq) 95 { 96 struct mmc_command *cmd = mrq->cmd; 97 struct mmc_data *data = mrq->data; 98 static const int data_errors[] = { 99 -ETIMEDOUT, 100 -EILSEQ, 101 -EIO, 102 }; 103 104 if (!data) 105 return; 106 107 if (cmd->error || data->error || 108 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 109 return; 110 111 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 112 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 113 } 114 115 #else /* CONFIG_FAIL_MMC_REQUEST */ 116 117 static inline void mmc_should_fail_request(struct mmc_host *host, 118 struct mmc_request *mrq) 119 { 120 } 121 122 #endif /* CONFIG_FAIL_MMC_REQUEST */ 123 124 static inline void mmc_complete_cmd(struct mmc_request *mrq) 125 { 126 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) 127 complete_all(&mrq->cmd_completion); 128 } 129 130 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) 131 { 132 if (!mrq->cap_cmd_during_tfr) 133 return; 134 135 mmc_complete_cmd(mrq); 136 137 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", 138 mmc_hostname(host), mrq->cmd->opcode); 139 } 140 EXPORT_SYMBOL(mmc_command_done); 141 142 /** 143 * mmc_request_done - finish processing an MMC request 144 * @host: MMC host which completed request 145 * @mrq: MMC request which request 146 * 147 * MMC drivers should call this function when they have completed 148 * their processing of a request. 149 */ 150 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 151 { 152 struct mmc_command *cmd = mrq->cmd; 153 int err = cmd->error; 154 155 /* Flag re-tuning needed on CRC errors */ 156 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK && 157 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) && 158 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 159 (mrq->data && mrq->data->error == -EILSEQ) || 160 (mrq->stop && mrq->stop->error == -EILSEQ))) 161 mmc_retune_needed(host); 162 163 if (err && cmd->retries && mmc_host_is_spi(host)) { 164 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 165 cmd->retries = 0; 166 } 167 168 if (host->ongoing_mrq == mrq) 169 host->ongoing_mrq = NULL; 170 171 mmc_complete_cmd(mrq); 172 173 trace_mmc_request_done(host, mrq); 174 175 if (err && cmd->retries && !mmc_card_removed(host->card)) { 176 /* 177 * Request starter must handle retries - see 178 * mmc_wait_for_req_done(). 179 */ 180 if (mrq->done) 181 mrq->done(mrq); 182 } else { 183 mmc_should_fail_request(host, mrq); 184 185 if (!host->ongoing_mrq) 186 led_trigger_event(host->led, LED_OFF); 187 188 if (mrq->sbc) { 189 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 190 mmc_hostname(host), mrq->sbc->opcode, 191 mrq->sbc->error, 192 mrq->sbc->resp[0], mrq->sbc->resp[1], 193 mrq->sbc->resp[2], mrq->sbc->resp[3]); 194 } 195 196 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 197 mmc_hostname(host), cmd->opcode, err, 198 cmd->resp[0], cmd->resp[1], 199 cmd->resp[2], cmd->resp[3]); 200 201 if (mrq->data) { 202 pr_debug("%s: %d bytes transferred: %d\n", 203 mmc_hostname(host), 204 mrq->data->bytes_xfered, mrq->data->error); 205 } 206 207 if (mrq->stop) { 208 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 209 mmc_hostname(host), mrq->stop->opcode, 210 mrq->stop->error, 211 mrq->stop->resp[0], mrq->stop->resp[1], 212 mrq->stop->resp[2], mrq->stop->resp[3]); 213 } 214 215 if (mrq->done) 216 mrq->done(mrq); 217 } 218 } 219 220 EXPORT_SYMBOL(mmc_request_done); 221 222 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 223 { 224 int err; 225 226 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 227 err = mmc_retune(host); 228 if (err) { 229 mrq->cmd->error = err; 230 mmc_request_done(host, mrq); 231 return; 232 } 233 234 /* 235 * For sdio rw commands we must wait for card busy otherwise some 236 * sdio devices won't work properly. 237 */ 238 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) { 239 int tries = 500; /* Wait aprox 500ms at maximum */ 240 241 while (host->ops->card_busy(host) && --tries) 242 mmc_delay(1); 243 244 if (tries == 0) { 245 mrq->cmd->error = -EBUSY; 246 mmc_request_done(host, mrq); 247 return; 248 } 249 } 250 251 if (mrq->cap_cmd_during_tfr) { 252 host->ongoing_mrq = mrq; 253 /* 254 * Retry path could come through here without having waiting on 255 * cmd_completion, so ensure it is reinitialised. 256 */ 257 reinit_completion(&mrq->cmd_completion); 258 } 259 260 trace_mmc_request_start(host, mrq); 261 262 host->ops->request(host, mrq); 263 } 264 265 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 266 { 267 #ifdef CONFIG_MMC_DEBUG 268 unsigned int i, sz; 269 struct scatterlist *sg; 270 #endif 271 mmc_retune_hold(host); 272 273 if (mmc_card_removed(host->card)) 274 return -ENOMEDIUM; 275 276 if (mrq->sbc) { 277 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 278 mmc_hostname(host), mrq->sbc->opcode, 279 mrq->sbc->arg, mrq->sbc->flags); 280 } 281 282 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 283 mmc_hostname(host), mrq->cmd->opcode, 284 mrq->cmd->arg, mrq->cmd->flags); 285 286 if (mrq->data) { 287 pr_debug("%s: blksz %d blocks %d flags %08x " 288 "tsac %d ms nsac %d\n", 289 mmc_hostname(host), mrq->data->blksz, 290 mrq->data->blocks, mrq->data->flags, 291 mrq->data->timeout_ns / 1000000, 292 mrq->data->timeout_clks); 293 } 294 295 if (mrq->stop) { 296 pr_debug("%s: CMD%u arg %08x flags %08x\n", 297 mmc_hostname(host), mrq->stop->opcode, 298 mrq->stop->arg, mrq->stop->flags); 299 } 300 301 WARN_ON(!host->claimed); 302 303 mrq->cmd->error = 0; 304 mrq->cmd->mrq = mrq; 305 if (mrq->sbc) { 306 mrq->sbc->error = 0; 307 mrq->sbc->mrq = mrq; 308 } 309 if (mrq->data) { 310 if (mrq->data->blksz > host->max_blk_size || 311 mrq->data->blocks > host->max_blk_count || 312 mrq->data->blocks * mrq->data->blksz > host->max_req_size) 313 return -EINVAL; 314 #ifdef CONFIG_MMC_DEBUG 315 sz = 0; 316 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 317 sz += sg->length; 318 if (sz != mrq->data->blocks * mrq->data->blksz) 319 return -EINVAL; 320 #endif 321 322 mrq->cmd->data = mrq->data; 323 mrq->data->error = 0; 324 mrq->data->mrq = mrq; 325 if (mrq->stop) { 326 mrq->data->stop = mrq->stop; 327 mrq->stop->error = 0; 328 mrq->stop->mrq = mrq; 329 } 330 } 331 led_trigger_event(host->led, LED_FULL); 332 __mmc_start_request(host, mrq); 333 334 return 0; 335 } 336 337 /** 338 * mmc_start_bkops - start BKOPS for supported cards 339 * @card: MMC card to start BKOPS 340 * @form_exception: A flag to indicate if this function was 341 * called due to an exception raised by the card 342 * 343 * Start background operations whenever requested. 344 * When the urgent BKOPS bit is set in a R1 command response 345 * then background operations should be started immediately. 346 */ 347 void mmc_start_bkops(struct mmc_card *card, bool from_exception) 348 { 349 int err; 350 int timeout; 351 bool use_busy_signal; 352 353 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card)) 354 return; 355 356 err = mmc_read_bkops_status(card); 357 if (err) { 358 pr_err("%s: Failed to read bkops status: %d\n", 359 mmc_hostname(card->host), err); 360 return; 361 } 362 363 if (!card->ext_csd.raw_bkops_status) 364 return; 365 366 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 && 367 from_exception) 368 return; 369 370 mmc_claim_host(card->host); 371 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) { 372 timeout = MMC_BKOPS_MAX_TIMEOUT; 373 use_busy_signal = true; 374 } else { 375 timeout = 0; 376 use_busy_signal = false; 377 } 378 379 mmc_retune_hold(card->host); 380 381 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 382 EXT_CSD_BKOPS_START, 1, timeout, 0, 383 use_busy_signal, true, false); 384 if (err) { 385 pr_warn("%s: Error %d starting bkops\n", 386 mmc_hostname(card->host), err); 387 mmc_retune_release(card->host); 388 goto out; 389 } 390 391 /* 392 * For urgent bkops status (LEVEL_2 and more) 393 * bkops executed synchronously, otherwise 394 * the operation is in progress 395 */ 396 if (!use_busy_signal) 397 mmc_card_set_doing_bkops(card); 398 else 399 mmc_retune_release(card->host); 400 out: 401 mmc_release_host(card->host); 402 } 403 EXPORT_SYMBOL(mmc_start_bkops); 404 405 /* 406 * mmc_wait_data_done() - done callback for data request 407 * @mrq: done data request 408 * 409 * Wakes up mmc context, passed as a callback to host controller driver 410 */ 411 static void mmc_wait_data_done(struct mmc_request *mrq) 412 { 413 struct mmc_context_info *context_info = &mrq->host->context_info; 414 415 context_info->is_done_rcv = true; 416 wake_up_interruptible(&context_info->wait); 417 } 418 419 static void mmc_wait_done(struct mmc_request *mrq) 420 { 421 complete(&mrq->completion); 422 } 423 424 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) 425 { 426 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); 427 428 /* 429 * If there is an ongoing transfer, wait for the command line to become 430 * available. 431 */ 432 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) 433 wait_for_completion(&ongoing_mrq->cmd_completion); 434 } 435 436 /* 437 *__mmc_start_data_req() - starts data request 438 * @host: MMC host to start the request 439 * @mrq: data request to start 440 * 441 * Sets the done callback to be called when request is completed by the card. 442 * Starts data mmc request execution 443 * If an ongoing transfer is already in progress, wait for the command line 444 * to become available before sending another command. 445 */ 446 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) 447 { 448 int err; 449 450 mmc_wait_ongoing_tfr_cmd(host); 451 452 mrq->done = mmc_wait_data_done; 453 mrq->host = host; 454 455 init_completion(&mrq->cmd_completion); 456 457 err = mmc_start_request(host, mrq); 458 if (err) { 459 mrq->cmd->error = err; 460 mmc_complete_cmd(mrq); 461 mmc_wait_data_done(mrq); 462 } 463 464 return err; 465 } 466 467 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 468 { 469 int err; 470 471 mmc_wait_ongoing_tfr_cmd(host); 472 473 init_completion(&mrq->completion); 474 mrq->done = mmc_wait_done; 475 476 init_completion(&mrq->cmd_completion); 477 478 err = mmc_start_request(host, mrq); 479 if (err) { 480 mrq->cmd->error = err; 481 mmc_complete_cmd(mrq); 482 complete(&mrq->completion); 483 } 484 485 return err; 486 } 487 488 /* 489 * mmc_wait_for_data_req_done() - wait for request completed 490 * @host: MMC host to prepare the command. 491 * @mrq: MMC request to wait for 492 * 493 * Blocks MMC context till host controller will ack end of data request 494 * execution or new request notification arrives from the block layer. 495 * Handles command retries. 496 * 497 * Returns enum mmc_blk_status after checking errors. 498 */ 499 static enum mmc_blk_status mmc_wait_for_data_req_done(struct mmc_host *host, 500 struct mmc_request *mrq) 501 { 502 struct mmc_command *cmd; 503 struct mmc_context_info *context_info = &host->context_info; 504 enum mmc_blk_status status; 505 506 while (1) { 507 wait_event_interruptible(context_info->wait, 508 (context_info->is_done_rcv || 509 context_info->is_new_req)); 510 511 if (context_info->is_done_rcv) { 512 context_info->is_done_rcv = false; 513 cmd = mrq->cmd; 514 515 if (!cmd->error || !cmd->retries || 516 mmc_card_removed(host->card)) { 517 status = host->areq->err_check(host->card, 518 host->areq); 519 break; /* return status */ 520 } else { 521 mmc_retune_recheck(host); 522 pr_info("%s: req failed (CMD%u): %d, retrying...\n", 523 mmc_hostname(host), 524 cmd->opcode, cmd->error); 525 cmd->retries--; 526 cmd->error = 0; 527 __mmc_start_request(host, mrq); 528 continue; /* wait for done/new event again */ 529 } 530 } 531 532 return MMC_BLK_NEW_REQUEST; 533 } 534 mmc_retune_release(host); 535 return status; 536 } 537 538 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) 539 { 540 struct mmc_command *cmd; 541 542 while (1) { 543 wait_for_completion(&mrq->completion); 544 545 cmd = mrq->cmd; 546 547 /* 548 * If host has timed out waiting for the sanitize 549 * to complete, card might be still in programming state 550 * so let's try to bring the card out of programming 551 * state. 552 */ 553 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 554 if (!mmc_interrupt_hpi(host->card)) { 555 pr_warn("%s: %s: Interrupted sanitize\n", 556 mmc_hostname(host), __func__); 557 cmd->error = 0; 558 break; 559 } else { 560 pr_err("%s: %s: Failed to interrupt sanitize\n", 561 mmc_hostname(host), __func__); 562 } 563 } 564 if (!cmd->error || !cmd->retries || 565 mmc_card_removed(host->card)) 566 break; 567 568 mmc_retune_recheck(host); 569 570 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 571 mmc_hostname(host), cmd->opcode, cmd->error); 572 cmd->retries--; 573 cmd->error = 0; 574 __mmc_start_request(host, mrq); 575 } 576 577 mmc_retune_release(host); 578 } 579 EXPORT_SYMBOL(mmc_wait_for_req_done); 580 581 /** 582 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done 583 * @host: MMC host 584 * @mrq: MMC request 585 * 586 * mmc_is_req_done() is used with requests that have 587 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after 588 * starting a request and before waiting for it to complete. That is, 589 * either in between calls to mmc_start_req(), or after mmc_wait_for_req() 590 * and before mmc_wait_for_req_done(). If it is called at other times the 591 * result is not meaningful. 592 */ 593 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) 594 { 595 if (host->areq) 596 return host->context_info.is_done_rcv; 597 else 598 return completion_done(&mrq->completion); 599 } 600 EXPORT_SYMBOL(mmc_is_req_done); 601 602 /** 603 * mmc_pre_req - Prepare for a new request 604 * @host: MMC host to prepare command 605 * @mrq: MMC request to prepare for 606 * 607 * mmc_pre_req() is called in prior to mmc_start_req() to let 608 * host prepare for the new request. Preparation of a request may be 609 * performed while another request is running on the host. 610 */ 611 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq) 612 { 613 if (host->ops->pre_req) 614 host->ops->pre_req(host, mrq); 615 } 616 617 /** 618 * mmc_post_req - Post process a completed request 619 * @host: MMC host to post process command 620 * @mrq: MMC request to post process for 621 * @err: Error, if non zero, clean up any resources made in pre_req 622 * 623 * Let the host post process a completed request. Post processing of 624 * a request may be performed while another reuqest is running. 625 */ 626 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 627 int err) 628 { 629 if (host->ops->post_req) 630 host->ops->post_req(host, mrq, err); 631 } 632 633 /** 634 * mmc_finalize_areq() - finalize an asynchronous request 635 * @host: MMC host to finalize any ongoing request on 636 * 637 * Returns the status of the ongoing asynchronous request, but 638 * MMC_BLK_SUCCESS if no request was going on. 639 */ 640 static enum mmc_blk_status mmc_finalize_areq(struct mmc_host *host) 641 { 642 enum mmc_blk_status status; 643 644 if (!host->areq) 645 return MMC_BLK_SUCCESS; 646 647 status = mmc_wait_for_data_req_done(host, host->areq->mrq); 648 if (status == MMC_BLK_NEW_REQUEST) 649 return status; 650 651 /* 652 * Check BKOPS urgency for each R1 response 653 */ 654 if (host->card && mmc_card_mmc(host->card) && 655 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || 656 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && 657 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) { 658 mmc_start_bkops(host->card, true); 659 } 660 661 return status; 662 } 663 664 /** 665 * mmc_start_areq - start an asynchronous request 666 * @host: MMC host to start command 667 * @areq: asynchronous request to start 668 * @ret_stat: out parameter for status 669 * 670 * Start a new MMC custom command request for a host. 671 * If there is on ongoing async request wait for completion 672 * of that request and start the new one and return. 673 * Does not wait for the new request to complete. 674 * 675 * Returns the completed request, NULL in case of none completed. 676 * Wait for the an ongoing request (previoulsy started) to complete and 677 * return the completed request. If there is no ongoing request, NULL 678 * is returned without waiting. NULL is not an error condition. 679 */ 680 struct mmc_async_req *mmc_start_areq(struct mmc_host *host, 681 struct mmc_async_req *areq, 682 enum mmc_blk_status *ret_stat) 683 { 684 enum mmc_blk_status status; 685 int start_err = 0; 686 struct mmc_async_req *data = host->areq; 687 688 /* Prepare a new request */ 689 if (areq) 690 mmc_pre_req(host, areq->mrq); 691 692 /* Finalize previous request */ 693 status = mmc_finalize_areq(host); 694 695 /* The previous request is still going on... */ 696 if (status == MMC_BLK_NEW_REQUEST) { 697 if (ret_stat) 698 *ret_stat = status; 699 return NULL; 700 } 701 702 /* Fine so far, start the new request! */ 703 if (status == MMC_BLK_SUCCESS && areq) 704 start_err = __mmc_start_data_req(host, areq->mrq); 705 706 /* Postprocess the old request at this point */ 707 if (host->areq) 708 mmc_post_req(host, host->areq->mrq, 0); 709 710 /* Cancel a prepared request if it was not started. */ 711 if ((status != MMC_BLK_SUCCESS || start_err) && areq) 712 mmc_post_req(host, areq->mrq, -EINVAL); 713 714 if (status != MMC_BLK_SUCCESS) 715 host->areq = NULL; 716 else 717 host->areq = areq; 718 719 if (ret_stat) 720 *ret_stat = status; 721 return data; 722 } 723 EXPORT_SYMBOL(mmc_start_areq); 724 725 /** 726 * mmc_wait_for_req - start a request and wait for completion 727 * @host: MMC host to start command 728 * @mrq: MMC request to start 729 * 730 * Start a new MMC custom command request for a host, and wait 731 * for the command to complete. In the case of 'cap_cmd_during_tfr' 732 * requests, the transfer is ongoing and the caller can issue further 733 * commands that do not use the data lines, and then wait by calling 734 * mmc_wait_for_req_done(). 735 * Does not attempt to parse the response. 736 */ 737 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 738 { 739 __mmc_start_req(host, mrq); 740 741 if (!mrq->cap_cmd_during_tfr) 742 mmc_wait_for_req_done(host, mrq); 743 } 744 EXPORT_SYMBOL(mmc_wait_for_req); 745 746 /** 747 * mmc_interrupt_hpi - Issue for High priority Interrupt 748 * @card: the MMC card associated with the HPI transfer 749 * 750 * Issued High Priority Interrupt, and check for card status 751 * until out-of prg-state. 752 */ 753 int mmc_interrupt_hpi(struct mmc_card *card) 754 { 755 int err; 756 u32 status; 757 unsigned long prg_wait; 758 759 if (!card->ext_csd.hpi_en) { 760 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 761 return 1; 762 } 763 764 mmc_claim_host(card->host); 765 err = mmc_send_status(card, &status); 766 if (err) { 767 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 768 goto out; 769 } 770 771 switch (R1_CURRENT_STATE(status)) { 772 case R1_STATE_IDLE: 773 case R1_STATE_READY: 774 case R1_STATE_STBY: 775 case R1_STATE_TRAN: 776 /* 777 * In idle and transfer states, HPI is not needed and the caller 778 * can issue the next intended command immediately 779 */ 780 goto out; 781 case R1_STATE_PRG: 782 break; 783 default: 784 /* In all other states, it's illegal to issue HPI */ 785 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 786 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 787 err = -EINVAL; 788 goto out; 789 } 790 791 err = mmc_send_hpi_cmd(card, &status); 792 if (err) 793 goto out; 794 795 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); 796 do { 797 err = mmc_send_status(card, &status); 798 799 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) 800 break; 801 if (time_after(jiffies, prg_wait)) 802 err = -ETIMEDOUT; 803 } while (!err); 804 805 out: 806 mmc_release_host(card->host); 807 return err; 808 } 809 EXPORT_SYMBOL(mmc_interrupt_hpi); 810 811 /** 812 * mmc_wait_for_cmd - start a command and wait for completion 813 * @host: MMC host to start command 814 * @cmd: MMC command to start 815 * @retries: maximum number of retries 816 * 817 * Start a new MMC command for a host, and wait for the command 818 * to complete. Return any error that occurred while the command 819 * was executing. Do not attempt to parse the response. 820 */ 821 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 822 { 823 struct mmc_request mrq = {}; 824 825 WARN_ON(!host->claimed); 826 827 memset(cmd->resp, 0, sizeof(cmd->resp)); 828 cmd->retries = retries; 829 830 mrq.cmd = cmd; 831 cmd->data = NULL; 832 833 mmc_wait_for_req(host, &mrq); 834 835 return cmd->error; 836 } 837 838 EXPORT_SYMBOL(mmc_wait_for_cmd); 839 840 /** 841 * mmc_stop_bkops - stop ongoing BKOPS 842 * @card: MMC card to check BKOPS 843 * 844 * Send HPI command to stop ongoing background operations to 845 * allow rapid servicing of foreground operations, e.g. read/ 846 * writes. Wait until the card comes out of the programming state 847 * to avoid errors in servicing read/write requests. 848 */ 849 int mmc_stop_bkops(struct mmc_card *card) 850 { 851 int err = 0; 852 853 err = mmc_interrupt_hpi(card); 854 855 /* 856 * If err is EINVAL, we can't issue an HPI. 857 * It should complete the BKOPS. 858 */ 859 if (!err || (err == -EINVAL)) { 860 mmc_card_clr_doing_bkops(card); 861 mmc_retune_release(card->host); 862 err = 0; 863 } 864 865 return err; 866 } 867 EXPORT_SYMBOL(mmc_stop_bkops); 868 869 int mmc_read_bkops_status(struct mmc_card *card) 870 { 871 int err; 872 u8 *ext_csd; 873 874 mmc_claim_host(card->host); 875 err = mmc_get_ext_csd(card, &ext_csd); 876 mmc_release_host(card->host); 877 if (err) 878 return err; 879 880 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 881 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 882 kfree(ext_csd); 883 return 0; 884 } 885 EXPORT_SYMBOL(mmc_read_bkops_status); 886 887 /** 888 * mmc_set_data_timeout - set the timeout for a data command 889 * @data: data phase for command 890 * @card: the MMC card associated with the data transfer 891 * 892 * Computes the data timeout parameters according to the 893 * correct algorithm given the card type. 894 */ 895 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 896 { 897 unsigned int mult; 898 899 /* 900 * SDIO cards only define an upper 1 s limit on access. 901 */ 902 if (mmc_card_sdio(card)) { 903 data->timeout_ns = 1000000000; 904 data->timeout_clks = 0; 905 return; 906 } 907 908 /* 909 * SD cards use a 100 multiplier rather than 10 910 */ 911 mult = mmc_card_sd(card) ? 100 : 10; 912 913 /* 914 * Scale up the multiplier (and therefore the timeout) by 915 * the r2w factor for writes. 916 */ 917 if (data->flags & MMC_DATA_WRITE) 918 mult <<= card->csd.r2w_factor; 919 920 data->timeout_ns = card->csd.tacc_ns * mult; 921 data->timeout_clks = card->csd.tacc_clks * mult; 922 923 /* 924 * SD cards also have an upper limit on the timeout. 925 */ 926 if (mmc_card_sd(card)) { 927 unsigned int timeout_us, limit_us; 928 929 timeout_us = data->timeout_ns / 1000; 930 if (card->host->ios.clock) 931 timeout_us += data->timeout_clks * 1000 / 932 (card->host->ios.clock / 1000); 933 934 if (data->flags & MMC_DATA_WRITE) 935 /* 936 * The MMC spec "It is strongly recommended 937 * for hosts to implement more than 500ms 938 * timeout value even if the card indicates 939 * the 250ms maximum busy length." Even the 940 * previous value of 300ms is known to be 941 * insufficient for some cards. 942 */ 943 limit_us = 3000000; 944 else 945 limit_us = 100000; 946 947 /* 948 * SDHC cards always use these fixed values. 949 */ 950 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 951 data->timeout_ns = limit_us * 1000; 952 data->timeout_clks = 0; 953 } 954 955 /* assign limit value if invalid */ 956 if (timeout_us == 0) 957 data->timeout_ns = limit_us * 1000; 958 } 959 960 /* 961 * Some cards require longer data read timeout than indicated in CSD. 962 * Address this by setting the read timeout to a "reasonably high" 963 * value. For the cards tested, 600ms has proven enough. If necessary, 964 * this value can be increased if other problematic cards require this. 965 */ 966 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 967 data->timeout_ns = 600000000; 968 data->timeout_clks = 0; 969 } 970 971 /* 972 * Some cards need very high timeouts if driven in SPI mode. 973 * The worst observed timeout was 900ms after writing a 974 * continuous stream of data until the internal logic 975 * overflowed. 976 */ 977 if (mmc_host_is_spi(card->host)) { 978 if (data->flags & MMC_DATA_WRITE) { 979 if (data->timeout_ns < 1000000000) 980 data->timeout_ns = 1000000000; /* 1s */ 981 } else { 982 if (data->timeout_ns < 100000000) 983 data->timeout_ns = 100000000; /* 100ms */ 984 } 985 } 986 } 987 EXPORT_SYMBOL(mmc_set_data_timeout); 988 989 /** 990 * mmc_align_data_size - pads a transfer size to a more optimal value 991 * @card: the MMC card associated with the data transfer 992 * @sz: original transfer size 993 * 994 * Pads the original data size with a number of extra bytes in 995 * order to avoid controller bugs and/or performance hits 996 * (e.g. some controllers revert to PIO for certain sizes). 997 * 998 * Returns the improved size, which might be unmodified. 999 * 1000 * Note that this function is only relevant when issuing a 1001 * single scatter gather entry. 1002 */ 1003 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 1004 { 1005 /* 1006 * FIXME: We don't have a system for the controller to tell 1007 * the core about its problems yet, so for now we just 32-bit 1008 * align the size. 1009 */ 1010 sz = ((sz + 3) / 4) * 4; 1011 1012 return sz; 1013 } 1014 EXPORT_SYMBOL(mmc_align_data_size); 1015 1016 /** 1017 * __mmc_claim_host - exclusively claim a host 1018 * @host: mmc host to claim 1019 * @abort: whether or not the operation should be aborted 1020 * 1021 * Claim a host for a set of operations. If @abort is non null and 1022 * dereference a non-zero value then this will return prematurely with 1023 * that non-zero value without acquiring the lock. Returns zero 1024 * with the lock held otherwise. 1025 */ 1026 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 1027 { 1028 DECLARE_WAITQUEUE(wait, current); 1029 unsigned long flags; 1030 int stop; 1031 bool pm = false; 1032 1033 might_sleep(); 1034 1035 add_wait_queue(&host->wq, &wait); 1036 spin_lock_irqsave(&host->lock, flags); 1037 while (1) { 1038 set_current_state(TASK_UNINTERRUPTIBLE); 1039 stop = abort ? atomic_read(abort) : 0; 1040 if (stop || !host->claimed || host->claimer == current) 1041 break; 1042 spin_unlock_irqrestore(&host->lock, flags); 1043 schedule(); 1044 spin_lock_irqsave(&host->lock, flags); 1045 } 1046 set_current_state(TASK_RUNNING); 1047 if (!stop) { 1048 host->claimed = 1; 1049 host->claimer = current; 1050 host->claim_cnt += 1; 1051 if (host->claim_cnt == 1) 1052 pm = true; 1053 } else 1054 wake_up(&host->wq); 1055 spin_unlock_irqrestore(&host->lock, flags); 1056 remove_wait_queue(&host->wq, &wait); 1057 1058 if (pm) 1059 pm_runtime_get_sync(mmc_dev(host)); 1060 1061 return stop; 1062 } 1063 EXPORT_SYMBOL(__mmc_claim_host); 1064 1065 /** 1066 * mmc_release_host - release a host 1067 * @host: mmc host to release 1068 * 1069 * Release a MMC host, allowing others to claim the host 1070 * for their operations. 1071 */ 1072 void mmc_release_host(struct mmc_host *host) 1073 { 1074 unsigned long flags; 1075 1076 WARN_ON(!host->claimed); 1077 1078 spin_lock_irqsave(&host->lock, flags); 1079 if (--host->claim_cnt) { 1080 /* Release for nested claim */ 1081 spin_unlock_irqrestore(&host->lock, flags); 1082 } else { 1083 host->claimed = 0; 1084 host->claimer = NULL; 1085 spin_unlock_irqrestore(&host->lock, flags); 1086 wake_up(&host->wq); 1087 pm_runtime_mark_last_busy(mmc_dev(host)); 1088 pm_runtime_put_autosuspend(mmc_dev(host)); 1089 } 1090 } 1091 EXPORT_SYMBOL(mmc_release_host); 1092 1093 /* 1094 * This is a helper function, which fetches a runtime pm reference for the 1095 * card device and also claims the host. 1096 */ 1097 void mmc_get_card(struct mmc_card *card) 1098 { 1099 pm_runtime_get_sync(&card->dev); 1100 mmc_claim_host(card->host); 1101 } 1102 EXPORT_SYMBOL(mmc_get_card); 1103 1104 /* 1105 * This is a helper function, which releases the host and drops the runtime 1106 * pm reference for the card device. 1107 */ 1108 void mmc_put_card(struct mmc_card *card) 1109 { 1110 mmc_release_host(card->host); 1111 pm_runtime_mark_last_busy(&card->dev); 1112 pm_runtime_put_autosuspend(&card->dev); 1113 } 1114 EXPORT_SYMBOL(mmc_put_card); 1115 1116 /* 1117 * Internal function that does the actual ios call to the host driver, 1118 * optionally printing some debug output. 1119 */ 1120 static inline void mmc_set_ios(struct mmc_host *host) 1121 { 1122 struct mmc_ios *ios = &host->ios; 1123 1124 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 1125 "width %u timing %u\n", 1126 mmc_hostname(host), ios->clock, ios->bus_mode, 1127 ios->power_mode, ios->chip_select, ios->vdd, 1128 1 << ios->bus_width, ios->timing); 1129 1130 host->ops->set_ios(host, ios); 1131 } 1132 1133 /* 1134 * Control chip select pin on a host. 1135 */ 1136 void mmc_set_chip_select(struct mmc_host *host, int mode) 1137 { 1138 host->ios.chip_select = mode; 1139 mmc_set_ios(host); 1140 } 1141 1142 /* 1143 * Sets the host clock to the highest possible frequency that 1144 * is below "hz". 1145 */ 1146 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 1147 { 1148 WARN_ON(hz && hz < host->f_min); 1149 1150 if (hz > host->f_max) 1151 hz = host->f_max; 1152 1153 host->ios.clock = hz; 1154 mmc_set_ios(host); 1155 } 1156 1157 int mmc_execute_tuning(struct mmc_card *card) 1158 { 1159 struct mmc_host *host = card->host; 1160 u32 opcode; 1161 int err; 1162 1163 if (!host->ops->execute_tuning) 1164 return 0; 1165 1166 if (mmc_card_mmc(card)) 1167 opcode = MMC_SEND_TUNING_BLOCK_HS200; 1168 else 1169 opcode = MMC_SEND_TUNING_BLOCK; 1170 1171 err = host->ops->execute_tuning(host, opcode); 1172 1173 if (err) 1174 pr_err("%s: tuning execution failed: %d\n", 1175 mmc_hostname(host), err); 1176 else 1177 mmc_retune_enable(host); 1178 1179 return err; 1180 } 1181 1182 /* 1183 * Change the bus mode (open drain/push-pull) of a host. 1184 */ 1185 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 1186 { 1187 host->ios.bus_mode = mode; 1188 mmc_set_ios(host); 1189 } 1190 1191 /* 1192 * Change data bus width of a host. 1193 */ 1194 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1195 { 1196 host->ios.bus_width = width; 1197 mmc_set_ios(host); 1198 } 1199 1200 /* 1201 * Set initial state after a power cycle or a hw_reset. 1202 */ 1203 void mmc_set_initial_state(struct mmc_host *host) 1204 { 1205 mmc_retune_disable(host); 1206 1207 if (mmc_host_is_spi(host)) 1208 host->ios.chip_select = MMC_CS_HIGH; 1209 else 1210 host->ios.chip_select = MMC_CS_DONTCARE; 1211 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1212 host->ios.bus_width = MMC_BUS_WIDTH_1; 1213 host->ios.timing = MMC_TIMING_LEGACY; 1214 host->ios.drv_type = 0; 1215 host->ios.enhanced_strobe = false; 1216 1217 /* 1218 * Make sure we are in non-enhanced strobe mode before we 1219 * actually enable it in ext_csd. 1220 */ 1221 if ((host->caps2 & MMC_CAP2_HS400_ES) && 1222 host->ops->hs400_enhanced_strobe) 1223 host->ops->hs400_enhanced_strobe(host, &host->ios); 1224 1225 mmc_set_ios(host); 1226 } 1227 1228 /** 1229 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1230 * @vdd: voltage (mV) 1231 * @low_bits: prefer low bits in boundary cases 1232 * 1233 * This function returns the OCR bit number according to the provided @vdd 1234 * value. If conversion is not possible a negative errno value returned. 1235 * 1236 * Depending on the @low_bits flag the function prefers low or high OCR bits 1237 * on boundary voltages. For example, 1238 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1239 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1240 * 1241 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1242 */ 1243 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1244 { 1245 const int max_bit = ilog2(MMC_VDD_35_36); 1246 int bit; 1247 1248 if (vdd < 1650 || vdd > 3600) 1249 return -EINVAL; 1250 1251 if (vdd >= 1650 && vdd <= 1950) 1252 return ilog2(MMC_VDD_165_195); 1253 1254 if (low_bits) 1255 vdd -= 1; 1256 1257 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1258 bit = (vdd - 2000) / 100 + 8; 1259 if (bit > max_bit) 1260 return max_bit; 1261 return bit; 1262 } 1263 1264 /** 1265 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1266 * @vdd_min: minimum voltage value (mV) 1267 * @vdd_max: maximum voltage value (mV) 1268 * 1269 * This function returns the OCR mask bits according to the provided @vdd_min 1270 * and @vdd_max values. If conversion is not possible the function returns 0. 1271 * 1272 * Notes wrt boundary cases: 1273 * This function sets the OCR bits for all boundary voltages, for example 1274 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1275 * MMC_VDD_34_35 mask. 1276 */ 1277 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1278 { 1279 u32 mask = 0; 1280 1281 if (vdd_max < vdd_min) 1282 return 0; 1283 1284 /* Prefer high bits for the boundary vdd_max values. */ 1285 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1286 if (vdd_max < 0) 1287 return 0; 1288 1289 /* Prefer low bits for the boundary vdd_min values. */ 1290 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1291 if (vdd_min < 0) 1292 return 0; 1293 1294 /* Fill the mask, from max bit to min bit. */ 1295 while (vdd_max >= vdd_min) 1296 mask |= 1 << vdd_max--; 1297 1298 return mask; 1299 } 1300 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1301 1302 #ifdef CONFIG_OF 1303 1304 /** 1305 * mmc_of_parse_voltage - return mask of supported voltages 1306 * @np: The device node need to be parsed. 1307 * @mask: mask of voltages available for MMC/SD/SDIO 1308 * 1309 * Parse the "voltage-ranges" DT property, returning zero if it is not 1310 * found, negative errno if the voltage-range specification is invalid, 1311 * or one if the voltage-range is specified and successfully parsed. 1312 */ 1313 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1314 { 1315 const u32 *voltage_ranges; 1316 int num_ranges, i; 1317 1318 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1319 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1320 if (!voltage_ranges) { 1321 pr_debug("%s: voltage-ranges unspecified\n", np->full_name); 1322 return 0; 1323 } 1324 if (!num_ranges) { 1325 pr_err("%s: voltage-ranges empty\n", np->full_name); 1326 return -EINVAL; 1327 } 1328 1329 for (i = 0; i < num_ranges; i++) { 1330 const int j = i * 2; 1331 u32 ocr_mask; 1332 1333 ocr_mask = mmc_vddrange_to_ocrmask( 1334 be32_to_cpu(voltage_ranges[j]), 1335 be32_to_cpu(voltage_ranges[j + 1])); 1336 if (!ocr_mask) { 1337 pr_err("%s: voltage-range #%d is invalid\n", 1338 np->full_name, i); 1339 return -EINVAL; 1340 } 1341 *mask |= ocr_mask; 1342 } 1343 1344 return 1; 1345 } 1346 EXPORT_SYMBOL(mmc_of_parse_voltage); 1347 1348 #endif /* CONFIG_OF */ 1349 1350 static int mmc_of_get_func_num(struct device_node *node) 1351 { 1352 u32 reg; 1353 int ret; 1354 1355 ret = of_property_read_u32(node, "reg", ®); 1356 if (ret < 0) 1357 return ret; 1358 1359 return reg; 1360 } 1361 1362 struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1363 unsigned func_num) 1364 { 1365 struct device_node *node; 1366 1367 if (!host->parent || !host->parent->of_node) 1368 return NULL; 1369 1370 for_each_child_of_node(host->parent->of_node, node) { 1371 if (mmc_of_get_func_num(node) == func_num) 1372 return node; 1373 } 1374 1375 return NULL; 1376 } 1377 1378 #ifdef CONFIG_REGULATOR 1379 1380 /** 1381 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage 1382 * @vdd_bit: OCR bit number 1383 * @min_uV: minimum voltage value (mV) 1384 * @max_uV: maximum voltage value (mV) 1385 * 1386 * This function returns the voltage range according to the provided OCR 1387 * bit number. If conversion is not possible a negative errno value returned. 1388 */ 1389 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV) 1390 { 1391 int tmp; 1392 1393 if (!vdd_bit) 1394 return -EINVAL; 1395 1396 /* 1397 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1398 * bits this regulator doesn't quite support ... don't 1399 * be too picky, most cards and regulators are OK with 1400 * a 0.1V range goof (it's a small error percentage). 1401 */ 1402 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1403 if (tmp == 0) { 1404 *min_uV = 1650 * 1000; 1405 *max_uV = 1950 * 1000; 1406 } else { 1407 *min_uV = 1900 * 1000 + tmp * 100 * 1000; 1408 *max_uV = *min_uV + 100 * 1000; 1409 } 1410 1411 return 0; 1412 } 1413 1414 /** 1415 * mmc_regulator_get_ocrmask - return mask of supported voltages 1416 * @supply: regulator to use 1417 * 1418 * This returns either a negative errno, or a mask of voltages that 1419 * can be provided to MMC/SD/SDIO devices using the specified voltage 1420 * regulator. This would normally be called before registering the 1421 * MMC host adapter. 1422 */ 1423 int mmc_regulator_get_ocrmask(struct regulator *supply) 1424 { 1425 int result = 0; 1426 int count; 1427 int i; 1428 int vdd_uV; 1429 int vdd_mV; 1430 1431 count = regulator_count_voltages(supply); 1432 if (count < 0) 1433 return count; 1434 1435 for (i = 0; i < count; i++) { 1436 vdd_uV = regulator_list_voltage(supply, i); 1437 if (vdd_uV <= 0) 1438 continue; 1439 1440 vdd_mV = vdd_uV / 1000; 1441 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1442 } 1443 1444 if (!result) { 1445 vdd_uV = regulator_get_voltage(supply); 1446 if (vdd_uV <= 0) 1447 return vdd_uV; 1448 1449 vdd_mV = vdd_uV / 1000; 1450 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1451 } 1452 1453 return result; 1454 } 1455 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1456 1457 /** 1458 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1459 * @mmc: the host to regulate 1460 * @supply: regulator to use 1461 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1462 * 1463 * Returns zero on success, else negative errno. 1464 * 1465 * MMC host drivers may use this to enable or disable a regulator using 1466 * a particular supply voltage. This would normally be called from the 1467 * set_ios() method. 1468 */ 1469 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1470 struct regulator *supply, 1471 unsigned short vdd_bit) 1472 { 1473 int result = 0; 1474 int min_uV, max_uV; 1475 1476 if (vdd_bit) { 1477 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV); 1478 1479 result = regulator_set_voltage(supply, min_uV, max_uV); 1480 if (result == 0 && !mmc->regulator_enabled) { 1481 result = regulator_enable(supply); 1482 if (!result) 1483 mmc->regulator_enabled = true; 1484 } 1485 } else if (mmc->regulator_enabled) { 1486 result = regulator_disable(supply); 1487 if (result == 0) 1488 mmc->regulator_enabled = false; 1489 } 1490 1491 if (result) 1492 dev_err(mmc_dev(mmc), 1493 "could not set regulator OCR (%d)\n", result); 1494 return result; 1495 } 1496 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1497 1498 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator, 1499 int min_uV, int target_uV, 1500 int max_uV) 1501 { 1502 /* 1503 * Check if supported first to avoid errors since we may try several 1504 * signal levels during power up and don't want to show errors. 1505 */ 1506 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV)) 1507 return -EINVAL; 1508 1509 return regulator_set_voltage_triplet(regulator, min_uV, target_uV, 1510 max_uV); 1511 } 1512 1513 /** 1514 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios 1515 * 1516 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible. 1517 * That will match the behavior of old boards where VQMMC and VMMC were supplied 1518 * by the same supply. The Bus Operating conditions for 3.3V signaling in the 1519 * SD card spec also define VQMMC in terms of VMMC. 1520 * If this is not possible we'll try the full 2.7-3.6V of the spec. 1521 * 1522 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the 1523 * requested voltage. This is definitely a good idea for UHS where there's a 1524 * separate regulator on the card that's trying to make 1.8V and it's best if 1525 * we match. 1526 * 1527 * This function is expected to be used by a controller's 1528 * start_signal_voltage_switch() function. 1529 */ 1530 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios) 1531 { 1532 struct device *dev = mmc_dev(mmc); 1533 int ret, volt, min_uV, max_uV; 1534 1535 /* If no vqmmc supply then we can't change the voltage */ 1536 if (IS_ERR(mmc->supply.vqmmc)) 1537 return -EINVAL; 1538 1539 switch (ios->signal_voltage) { 1540 case MMC_SIGNAL_VOLTAGE_120: 1541 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1542 1100000, 1200000, 1300000); 1543 case MMC_SIGNAL_VOLTAGE_180: 1544 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1545 1700000, 1800000, 1950000); 1546 case MMC_SIGNAL_VOLTAGE_330: 1547 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV); 1548 if (ret < 0) 1549 return ret; 1550 1551 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n", 1552 __func__, volt, max_uV); 1553 1554 min_uV = max(volt - 300000, 2700000); 1555 max_uV = min(max_uV + 200000, 3600000); 1556 1557 /* 1558 * Due to a limitation in the current implementation of 1559 * regulator_set_voltage_triplet() which is taking the lowest 1560 * voltage possible if below the target, search for a suitable 1561 * voltage in two steps and try to stay close to vmmc 1562 * with a 0.3V tolerance at first. 1563 */ 1564 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1565 min_uV, volt, max_uV)) 1566 return 0; 1567 1568 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1569 2700000, volt, 3600000); 1570 default: 1571 return -EINVAL; 1572 } 1573 } 1574 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc); 1575 1576 #endif /* CONFIG_REGULATOR */ 1577 1578 int mmc_regulator_get_supply(struct mmc_host *mmc) 1579 { 1580 struct device *dev = mmc_dev(mmc); 1581 int ret; 1582 1583 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); 1584 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1585 1586 if (IS_ERR(mmc->supply.vmmc)) { 1587 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) 1588 return -EPROBE_DEFER; 1589 dev_dbg(dev, "No vmmc regulator found\n"); 1590 } else { 1591 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); 1592 if (ret > 0) 1593 mmc->ocr_avail = ret; 1594 else 1595 dev_warn(dev, "Failed getting OCR mask: %d\n", ret); 1596 } 1597 1598 if (IS_ERR(mmc->supply.vqmmc)) { 1599 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) 1600 return -EPROBE_DEFER; 1601 dev_dbg(dev, "No vqmmc regulator found\n"); 1602 } 1603 1604 return 0; 1605 } 1606 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1607 1608 /* 1609 * Mask off any voltages we don't support and select 1610 * the lowest voltage 1611 */ 1612 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1613 { 1614 int bit; 1615 1616 /* 1617 * Sanity check the voltages that the card claims to 1618 * support. 1619 */ 1620 if (ocr & 0x7F) { 1621 dev_warn(mmc_dev(host), 1622 "card claims to support voltages below defined range\n"); 1623 ocr &= ~0x7F; 1624 } 1625 1626 ocr &= host->ocr_avail; 1627 if (!ocr) { 1628 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1629 return 0; 1630 } 1631 1632 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1633 bit = ffs(ocr) - 1; 1634 ocr &= 3 << bit; 1635 mmc_power_cycle(host, ocr); 1636 } else { 1637 bit = fls(ocr) - 1; 1638 ocr &= 3 << bit; 1639 if (bit != host->ios.vdd) 1640 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1641 } 1642 1643 return ocr; 1644 } 1645 1646 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1647 { 1648 int err = 0; 1649 int old_signal_voltage = host->ios.signal_voltage; 1650 1651 host->ios.signal_voltage = signal_voltage; 1652 if (host->ops->start_signal_voltage_switch) 1653 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1654 1655 if (err) 1656 host->ios.signal_voltage = old_signal_voltage; 1657 1658 return err; 1659 1660 } 1661 1662 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr) 1663 { 1664 struct mmc_command cmd = {}; 1665 int err = 0; 1666 u32 clock; 1667 1668 /* 1669 * If we cannot switch voltages, return failure so the caller 1670 * can continue without UHS mode 1671 */ 1672 if (!host->ops->start_signal_voltage_switch) 1673 return -EPERM; 1674 if (!host->ops->card_busy) 1675 pr_warn("%s: cannot verify signal voltage switch\n", 1676 mmc_hostname(host)); 1677 1678 cmd.opcode = SD_SWITCH_VOLTAGE; 1679 cmd.arg = 0; 1680 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1681 1682 err = mmc_wait_for_cmd(host, &cmd, 0); 1683 if (err) 1684 return err; 1685 1686 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1687 return -EIO; 1688 1689 /* 1690 * The card should drive cmd and dat[0:3] low immediately 1691 * after the response of cmd11, but wait 1 ms to be sure 1692 */ 1693 mmc_delay(1); 1694 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1695 err = -EAGAIN; 1696 goto power_cycle; 1697 } 1698 /* 1699 * During a signal voltage level switch, the clock must be gated 1700 * for 5 ms according to the SD spec 1701 */ 1702 clock = host->ios.clock; 1703 host->ios.clock = 0; 1704 mmc_set_ios(host); 1705 1706 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) { 1707 /* 1708 * Voltages may not have been switched, but we've already 1709 * sent CMD11, so a power cycle is required anyway 1710 */ 1711 err = -EAGAIN; 1712 goto power_cycle; 1713 } 1714 1715 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1716 mmc_delay(10); 1717 host->ios.clock = clock; 1718 mmc_set_ios(host); 1719 1720 /* Wait for at least 1 ms according to spec */ 1721 mmc_delay(1); 1722 1723 /* 1724 * Failure to switch is indicated by the card holding 1725 * dat[0:3] low 1726 */ 1727 if (host->ops->card_busy && host->ops->card_busy(host)) 1728 err = -EAGAIN; 1729 1730 power_cycle: 1731 if (err) { 1732 pr_debug("%s: Signal voltage switch failed, " 1733 "power cycling card\n", mmc_hostname(host)); 1734 mmc_power_cycle(host, ocr); 1735 } 1736 1737 return err; 1738 } 1739 1740 /* 1741 * Select timing parameters for host. 1742 */ 1743 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1744 { 1745 host->ios.timing = timing; 1746 mmc_set_ios(host); 1747 } 1748 1749 /* 1750 * Select appropriate driver type for host. 1751 */ 1752 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1753 { 1754 host->ios.drv_type = drv_type; 1755 mmc_set_ios(host); 1756 } 1757 1758 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1759 int card_drv_type, int *drv_type) 1760 { 1761 struct mmc_host *host = card->host; 1762 int host_drv_type = SD_DRIVER_TYPE_B; 1763 1764 *drv_type = 0; 1765 1766 if (!host->ops->select_drive_strength) 1767 return 0; 1768 1769 /* Use SD definition of driver strength for hosts */ 1770 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1771 host_drv_type |= SD_DRIVER_TYPE_A; 1772 1773 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1774 host_drv_type |= SD_DRIVER_TYPE_C; 1775 1776 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1777 host_drv_type |= SD_DRIVER_TYPE_D; 1778 1779 /* 1780 * The drive strength that the hardware can support 1781 * depends on the board design. Pass the appropriate 1782 * information and let the hardware specific code 1783 * return what is possible given the options 1784 */ 1785 return host->ops->select_drive_strength(card, max_dtr, 1786 host_drv_type, 1787 card_drv_type, 1788 drv_type); 1789 } 1790 1791 /* 1792 * Apply power to the MMC stack. This is a two-stage process. 1793 * First, we enable power to the card without the clock running. 1794 * We then wait a bit for the power to stabilise. Finally, 1795 * enable the bus drivers and clock to the card. 1796 * 1797 * We must _NOT_ enable the clock prior to power stablising. 1798 * 1799 * If a host does all the power sequencing itself, ignore the 1800 * initial MMC_POWER_UP stage. 1801 */ 1802 void mmc_power_up(struct mmc_host *host, u32 ocr) 1803 { 1804 if (host->ios.power_mode == MMC_POWER_ON) 1805 return; 1806 1807 mmc_pwrseq_pre_power_on(host); 1808 1809 host->ios.vdd = fls(ocr) - 1; 1810 host->ios.power_mode = MMC_POWER_UP; 1811 /* Set initial state and call mmc_set_ios */ 1812 mmc_set_initial_state(host); 1813 1814 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1815 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330)) 1816 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1817 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1818 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1819 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120)) 1820 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1821 1822 /* 1823 * This delay should be sufficient to allow the power supply 1824 * to reach the minimum voltage. 1825 */ 1826 mmc_delay(10); 1827 1828 mmc_pwrseq_post_power_on(host); 1829 1830 host->ios.clock = host->f_init; 1831 1832 host->ios.power_mode = MMC_POWER_ON; 1833 mmc_set_ios(host); 1834 1835 /* 1836 * This delay must be at least 74 clock sizes, or 1 ms, or the 1837 * time required to reach a stable voltage. 1838 */ 1839 mmc_delay(10); 1840 } 1841 1842 void mmc_power_off(struct mmc_host *host) 1843 { 1844 if (host->ios.power_mode == MMC_POWER_OFF) 1845 return; 1846 1847 mmc_pwrseq_power_off(host); 1848 1849 host->ios.clock = 0; 1850 host->ios.vdd = 0; 1851 1852 host->ios.power_mode = MMC_POWER_OFF; 1853 /* Set initial state and call mmc_set_ios */ 1854 mmc_set_initial_state(host); 1855 1856 /* 1857 * Some configurations, such as the 802.11 SDIO card in the OLPC 1858 * XO-1.5, require a short delay after poweroff before the card 1859 * can be successfully turned on again. 1860 */ 1861 mmc_delay(1); 1862 } 1863 1864 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1865 { 1866 mmc_power_off(host); 1867 /* Wait at least 1 ms according to SD spec */ 1868 mmc_delay(1); 1869 mmc_power_up(host, ocr); 1870 } 1871 1872 /* 1873 * Cleanup when the last reference to the bus operator is dropped. 1874 */ 1875 static void __mmc_release_bus(struct mmc_host *host) 1876 { 1877 WARN_ON(!host->bus_dead); 1878 1879 host->bus_ops = NULL; 1880 } 1881 1882 /* 1883 * Increase reference count of bus operator 1884 */ 1885 static inline void mmc_bus_get(struct mmc_host *host) 1886 { 1887 unsigned long flags; 1888 1889 spin_lock_irqsave(&host->lock, flags); 1890 host->bus_refs++; 1891 spin_unlock_irqrestore(&host->lock, flags); 1892 } 1893 1894 /* 1895 * Decrease reference count of bus operator and free it if 1896 * it is the last reference. 1897 */ 1898 static inline void mmc_bus_put(struct mmc_host *host) 1899 { 1900 unsigned long flags; 1901 1902 spin_lock_irqsave(&host->lock, flags); 1903 host->bus_refs--; 1904 if ((host->bus_refs == 0) && host->bus_ops) 1905 __mmc_release_bus(host); 1906 spin_unlock_irqrestore(&host->lock, flags); 1907 } 1908 1909 /* 1910 * Assign a mmc bus handler to a host. Only one bus handler may control a 1911 * host at any given time. 1912 */ 1913 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1914 { 1915 unsigned long flags; 1916 1917 WARN_ON(!host->claimed); 1918 1919 spin_lock_irqsave(&host->lock, flags); 1920 1921 WARN_ON(host->bus_ops); 1922 WARN_ON(host->bus_refs); 1923 1924 host->bus_ops = ops; 1925 host->bus_refs = 1; 1926 host->bus_dead = 0; 1927 1928 spin_unlock_irqrestore(&host->lock, flags); 1929 } 1930 1931 /* 1932 * Remove the current bus handler from a host. 1933 */ 1934 void mmc_detach_bus(struct mmc_host *host) 1935 { 1936 unsigned long flags; 1937 1938 WARN_ON(!host->claimed); 1939 WARN_ON(!host->bus_ops); 1940 1941 spin_lock_irqsave(&host->lock, flags); 1942 1943 host->bus_dead = 1; 1944 1945 spin_unlock_irqrestore(&host->lock, flags); 1946 1947 mmc_bus_put(host); 1948 } 1949 1950 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, 1951 bool cd_irq) 1952 { 1953 #ifdef CONFIG_MMC_DEBUG 1954 unsigned long flags; 1955 spin_lock_irqsave(&host->lock, flags); 1956 WARN_ON(host->removed); 1957 spin_unlock_irqrestore(&host->lock, flags); 1958 #endif 1959 1960 /* 1961 * If the device is configured as wakeup, we prevent a new sleep for 1962 * 5 s to give provision for user space to consume the event. 1963 */ 1964 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && 1965 device_can_wakeup(mmc_dev(host))) 1966 pm_wakeup_event(mmc_dev(host), 5000); 1967 1968 host->detect_change = 1; 1969 mmc_schedule_delayed_work(&host->detect, delay); 1970 } 1971 1972 /** 1973 * mmc_detect_change - process change of state on a MMC socket 1974 * @host: host which changed state. 1975 * @delay: optional delay to wait before detection (jiffies) 1976 * 1977 * MMC drivers should call this when they detect a card has been 1978 * inserted or removed. The MMC layer will confirm that any 1979 * present card is still functional, and initialize any newly 1980 * inserted. 1981 */ 1982 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1983 { 1984 _mmc_detect_change(host, delay, true); 1985 } 1986 EXPORT_SYMBOL(mmc_detect_change); 1987 1988 void mmc_init_erase(struct mmc_card *card) 1989 { 1990 unsigned int sz; 1991 1992 if (is_power_of_2(card->erase_size)) 1993 card->erase_shift = ffs(card->erase_size) - 1; 1994 else 1995 card->erase_shift = 0; 1996 1997 /* 1998 * It is possible to erase an arbitrarily large area of an SD or MMC 1999 * card. That is not desirable because it can take a long time 2000 * (minutes) potentially delaying more important I/O, and also the 2001 * timeout calculations become increasingly hugely over-estimated. 2002 * Consequently, 'pref_erase' is defined as a guide to limit erases 2003 * to that size and alignment. 2004 * 2005 * For SD cards that define Allocation Unit size, limit erases to one 2006 * Allocation Unit at a time. 2007 * For MMC, have a stab at ai good value and for modern cards it will 2008 * end up being 4MiB. Note that if the value is too small, it can end 2009 * up taking longer to erase. Also note, erase_size is already set to 2010 * High Capacity Erase Size if available when this function is called. 2011 */ 2012 if (mmc_card_sd(card) && card->ssr.au) { 2013 card->pref_erase = card->ssr.au; 2014 card->erase_shift = ffs(card->ssr.au) - 1; 2015 } else if (card->erase_size) { 2016 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 2017 if (sz < 128) 2018 card->pref_erase = 512 * 1024 / 512; 2019 else if (sz < 512) 2020 card->pref_erase = 1024 * 1024 / 512; 2021 else if (sz < 1024) 2022 card->pref_erase = 2 * 1024 * 1024 / 512; 2023 else 2024 card->pref_erase = 4 * 1024 * 1024 / 512; 2025 if (card->pref_erase < card->erase_size) 2026 card->pref_erase = card->erase_size; 2027 else { 2028 sz = card->pref_erase % card->erase_size; 2029 if (sz) 2030 card->pref_erase += card->erase_size - sz; 2031 } 2032 } else 2033 card->pref_erase = 0; 2034 } 2035 2036 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 2037 unsigned int arg, unsigned int qty) 2038 { 2039 unsigned int erase_timeout; 2040 2041 if (arg == MMC_DISCARD_ARG || 2042 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 2043 erase_timeout = card->ext_csd.trim_timeout; 2044 } else if (card->ext_csd.erase_group_def & 1) { 2045 /* High Capacity Erase Group Size uses HC timeouts */ 2046 if (arg == MMC_TRIM_ARG) 2047 erase_timeout = card->ext_csd.trim_timeout; 2048 else 2049 erase_timeout = card->ext_csd.hc_erase_timeout; 2050 } else { 2051 /* CSD Erase Group Size uses write timeout */ 2052 unsigned int mult = (10 << card->csd.r2w_factor); 2053 unsigned int timeout_clks = card->csd.tacc_clks * mult; 2054 unsigned int timeout_us; 2055 2056 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 2057 if (card->csd.tacc_ns < 1000000) 2058 timeout_us = (card->csd.tacc_ns * mult) / 1000; 2059 else 2060 timeout_us = (card->csd.tacc_ns / 1000) * mult; 2061 2062 /* 2063 * ios.clock is only a target. The real clock rate might be 2064 * less but not that much less, so fudge it by multiplying by 2. 2065 */ 2066 timeout_clks <<= 1; 2067 timeout_us += (timeout_clks * 1000) / 2068 (card->host->ios.clock / 1000); 2069 2070 erase_timeout = timeout_us / 1000; 2071 2072 /* 2073 * Theoretically, the calculation could underflow so round up 2074 * to 1ms in that case. 2075 */ 2076 if (!erase_timeout) 2077 erase_timeout = 1; 2078 } 2079 2080 /* Multiplier for secure operations */ 2081 if (arg & MMC_SECURE_ARGS) { 2082 if (arg == MMC_SECURE_ERASE_ARG) 2083 erase_timeout *= card->ext_csd.sec_erase_mult; 2084 else 2085 erase_timeout *= card->ext_csd.sec_trim_mult; 2086 } 2087 2088 erase_timeout *= qty; 2089 2090 /* 2091 * Ensure at least a 1 second timeout for SPI as per 2092 * 'mmc_set_data_timeout()' 2093 */ 2094 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 2095 erase_timeout = 1000; 2096 2097 return erase_timeout; 2098 } 2099 2100 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 2101 unsigned int arg, 2102 unsigned int qty) 2103 { 2104 unsigned int erase_timeout; 2105 2106 if (card->ssr.erase_timeout) { 2107 /* Erase timeout specified in SD Status Register (SSR) */ 2108 erase_timeout = card->ssr.erase_timeout * qty + 2109 card->ssr.erase_offset; 2110 } else { 2111 /* 2112 * Erase timeout not specified in SD Status Register (SSR) so 2113 * use 250ms per write block. 2114 */ 2115 erase_timeout = 250 * qty; 2116 } 2117 2118 /* Must not be less than 1 second */ 2119 if (erase_timeout < 1000) 2120 erase_timeout = 1000; 2121 2122 return erase_timeout; 2123 } 2124 2125 static unsigned int mmc_erase_timeout(struct mmc_card *card, 2126 unsigned int arg, 2127 unsigned int qty) 2128 { 2129 if (mmc_card_sd(card)) 2130 return mmc_sd_erase_timeout(card, arg, qty); 2131 else 2132 return mmc_mmc_erase_timeout(card, arg, qty); 2133 } 2134 2135 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 2136 unsigned int to, unsigned int arg) 2137 { 2138 struct mmc_command cmd = {}; 2139 unsigned int qty = 0, busy_timeout = 0; 2140 bool use_r1b_resp = false; 2141 unsigned long timeout; 2142 int err; 2143 2144 mmc_retune_hold(card->host); 2145 2146 /* 2147 * qty is used to calculate the erase timeout which depends on how many 2148 * erase groups (or allocation units in SD terminology) are affected. 2149 * We count erasing part of an erase group as one erase group. 2150 * For SD, the allocation units are always a power of 2. For MMC, the 2151 * erase group size is almost certainly also power of 2, but it does not 2152 * seem to insist on that in the JEDEC standard, so we fall back to 2153 * division in that case. SD may not specify an allocation unit size, 2154 * in which case the timeout is based on the number of write blocks. 2155 * 2156 * Note that the timeout for secure trim 2 will only be correct if the 2157 * number of erase groups specified is the same as the total of all 2158 * preceding secure trim 1 commands. Since the power may have been 2159 * lost since the secure trim 1 commands occurred, it is generally 2160 * impossible to calculate the secure trim 2 timeout correctly. 2161 */ 2162 if (card->erase_shift) 2163 qty += ((to >> card->erase_shift) - 2164 (from >> card->erase_shift)) + 1; 2165 else if (mmc_card_sd(card)) 2166 qty += to - from + 1; 2167 else 2168 qty += ((to / card->erase_size) - 2169 (from / card->erase_size)) + 1; 2170 2171 if (!mmc_card_blockaddr(card)) { 2172 from <<= 9; 2173 to <<= 9; 2174 } 2175 2176 if (mmc_card_sd(card)) 2177 cmd.opcode = SD_ERASE_WR_BLK_START; 2178 else 2179 cmd.opcode = MMC_ERASE_GROUP_START; 2180 cmd.arg = from; 2181 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2182 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2183 if (err) { 2184 pr_err("mmc_erase: group start error %d, " 2185 "status %#x\n", err, cmd.resp[0]); 2186 err = -EIO; 2187 goto out; 2188 } 2189 2190 memset(&cmd, 0, sizeof(struct mmc_command)); 2191 if (mmc_card_sd(card)) 2192 cmd.opcode = SD_ERASE_WR_BLK_END; 2193 else 2194 cmd.opcode = MMC_ERASE_GROUP_END; 2195 cmd.arg = to; 2196 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2197 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2198 if (err) { 2199 pr_err("mmc_erase: group end error %d, status %#x\n", 2200 err, cmd.resp[0]); 2201 err = -EIO; 2202 goto out; 2203 } 2204 2205 memset(&cmd, 0, sizeof(struct mmc_command)); 2206 cmd.opcode = MMC_ERASE; 2207 cmd.arg = arg; 2208 busy_timeout = mmc_erase_timeout(card, arg, qty); 2209 /* 2210 * If the host controller supports busy signalling and the timeout for 2211 * the erase operation does not exceed the max_busy_timeout, we should 2212 * use R1B response. Or we need to prevent the host from doing hw busy 2213 * detection, which is done by converting to a R1 response instead. 2214 */ 2215 if (card->host->max_busy_timeout && 2216 busy_timeout > card->host->max_busy_timeout) { 2217 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2218 } else { 2219 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 2220 cmd.busy_timeout = busy_timeout; 2221 use_r1b_resp = true; 2222 } 2223 2224 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2225 if (err) { 2226 pr_err("mmc_erase: erase error %d, status %#x\n", 2227 err, cmd.resp[0]); 2228 err = -EIO; 2229 goto out; 2230 } 2231 2232 if (mmc_host_is_spi(card->host)) 2233 goto out; 2234 2235 /* 2236 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling 2237 * shall be avoided. 2238 */ 2239 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 2240 goto out; 2241 2242 timeout = jiffies + msecs_to_jiffies(busy_timeout); 2243 do { 2244 memset(&cmd, 0, sizeof(struct mmc_command)); 2245 cmd.opcode = MMC_SEND_STATUS; 2246 cmd.arg = card->rca << 16; 2247 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 2248 /* Do not retry else we can't see errors */ 2249 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2250 if (err || (cmd.resp[0] & 0xFDF92000)) { 2251 pr_err("error %d requesting status %#x\n", 2252 err, cmd.resp[0]); 2253 err = -EIO; 2254 goto out; 2255 } 2256 2257 /* Timeout if the device never becomes ready for data and 2258 * never leaves the program state. 2259 */ 2260 if (time_after(jiffies, timeout)) { 2261 pr_err("%s: Card stuck in programming state! %s\n", 2262 mmc_hostname(card->host), __func__); 2263 err = -EIO; 2264 goto out; 2265 } 2266 2267 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 2268 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); 2269 out: 2270 mmc_retune_release(card->host); 2271 return err; 2272 } 2273 2274 static unsigned int mmc_align_erase_size(struct mmc_card *card, 2275 unsigned int *from, 2276 unsigned int *to, 2277 unsigned int nr) 2278 { 2279 unsigned int from_new = *from, nr_new = nr, rem; 2280 2281 /* 2282 * When the 'card->erase_size' is power of 2, we can use round_up/down() 2283 * to align the erase size efficiently. 2284 */ 2285 if (is_power_of_2(card->erase_size)) { 2286 unsigned int temp = from_new; 2287 2288 from_new = round_up(temp, card->erase_size); 2289 rem = from_new - temp; 2290 2291 if (nr_new > rem) 2292 nr_new -= rem; 2293 else 2294 return 0; 2295 2296 nr_new = round_down(nr_new, card->erase_size); 2297 } else { 2298 rem = from_new % card->erase_size; 2299 if (rem) { 2300 rem = card->erase_size - rem; 2301 from_new += rem; 2302 if (nr_new > rem) 2303 nr_new -= rem; 2304 else 2305 return 0; 2306 } 2307 2308 rem = nr_new % card->erase_size; 2309 if (rem) 2310 nr_new -= rem; 2311 } 2312 2313 if (nr_new == 0) 2314 return 0; 2315 2316 *to = from_new + nr_new; 2317 *from = from_new; 2318 2319 return nr_new; 2320 } 2321 2322 /** 2323 * mmc_erase - erase sectors. 2324 * @card: card to erase 2325 * @from: first sector to erase 2326 * @nr: number of sectors to erase 2327 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 2328 * 2329 * Caller must claim host before calling this function. 2330 */ 2331 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 2332 unsigned int arg) 2333 { 2334 unsigned int rem, to = from + nr; 2335 int err; 2336 2337 if (!(card->host->caps & MMC_CAP_ERASE) || 2338 !(card->csd.cmdclass & CCC_ERASE)) 2339 return -EOPNOTSUPP; 2340 2341 if (!card->erase_size) 2342 return -EOPNOTSUPP; 2343 2344 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2345 return -EOPNOTSUPP; 2346 2347 if ((arg & MMC_SECURE_ARGS) && 2348 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2349 return -EOPNOTSUPP; 2350 2351 if ((arg & MMC_TRIM_ARGS) && 2352 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2353 return -EOPNOTSUPP; 2354 2355 if (arg == MMC_SECURE_ERASE_ARG) { 2356 if (from % card->erase_size || nr % card->erase_size) 2357 return -EINVAL; 2358 } 2359 2360 if (arg == MMC_ERASE_ARG) 2361 nr = mmc_align_erase_size(card, &from, &to, nr); 2362 2363 if (nr == 0) 2364 return 0; 2365 2366 if (to <= from) 2367 return -EINVAL; 2368 2369 /* 'from' and 'to' are inclusive */ 2370 to -= 1; 2371 2372 /* 2373 * Special case where only one erase-group fits in the timeout budget: 2374 * If the region crosses an erase-group boundary on this particular 2375 * case, we will be trimming more than one erase-group which, does not 2376 * fit in the timeout budget of the controller, so we need to split it 2377 * and call mmc_do_erase() twice if necessary. This special case is 2378 * identified by the card->eg_boundary flag. 2379 */ 2380 rem = card->erase_size - (from % card->erase_size); 2381 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { 2382 err = mmc_do_erase(card, from, from + rem - 1, arg); 2383 from += rem; 2384 if ((err) || (to <= from)) 2385 return err; 2386 } 2387 2388 return mmc_do_erase(card, from, to, arg); 2389 } 2390 EXPORT_SYMBOL(mmc_erase); 2391 2392 int mmc_can_erase(struct mmc_card *card) 2393 { 2394 if ((card->host->caps & MMC_CAP_ERASE) && 2395 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2396 return 1; 2397 return 0; 2398 } 2399 EXPORT_SYMBOL(mmc_can_erase); 2400 2401 int mmc_can_trim(struct mmc_card *card) 2402 { 2403 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 2404 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 2405 return 1; 2406 return 0; 2407 } 2408 EXPORT_SYMBOL(mmc_can_trim); 2409 2410 int mmc_can_discard(struct mmc_card *card) 2411 { 2412 /* 2413 * As there's no way to detect the discard support bit at v4.5 2414 * use the s/w feature support filed. 2415 */ 2416 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2417 return 1; 2418 return 0; 2419 } 2420 EXPORT_SYMBOL(mmc_can_discard); 2421 2422 int mmc_can_sanitize(struct mmc_card *card) 2423 { 2424 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2425 return 0; 2426 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2427 return 1; 2428 return 0; 2429 } 2430 EXPORT_SYMBOL(mmc_can_sanitize); 2431 2432 int mmc_can_secure_erase_trim(struct mmc_card *card) 2433 { 2434 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 2435 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 2436 return 1; 2437 return 0; 2438 } 2439 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2440 2441 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2442 unsigned int nr) 2443 { 2444 if (!card->erase_size) 2445 return 0; 2446 if (from % card->erase_size || nr % card->erase_size) 2447 return 0; 2448 return 1; 2449 } 2450 EXPORT_SYMBOL(mmc_erase_group_aligned); 2451 2452 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2453 unsigned int arg) 2454 { 2455 struct mmc_host *host = card->host; 2456 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; 2457 unsigned int last_timeout = 0; 2458 unsigned int max_busy_timeout = host->max_busy_timeout ? 2459 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; 2460 2461 if (card->erase_shift) { 2462 max_qty = UINT_MAX >> card->erase_shift; 2463 min_qty = card->pref_erase >> card->erase_shift; 2464 } else if (mmc_card_sd(card)) { 2465 max_qty = UINT_MAX; 2466 min_qty = card->pref_erase; 2467 } else { 2468 max_qty = UINT_MAX / card->erase_size; 2469 min_qty = card->pref_erase / card->erase_size; 2470 } 2471 2472 /* 2473 * We should not only use 'host->max_busy_timeout' as the limitation 2474 * when deciding the max discard sectors. We should set a balance value 2475 * to improve the erase speed, and it can not get too long timeout at 2476 * the same time. 2477 * 2478 * Here we set 'card->pref_erase' as the minimal discard sectors no 2479 * matter what size of 'host->max_busy_timeout', but if the 2480 * 'host->max_busy_timeout' is large enough for more discard sectors, 2481 * then we can continue to increase the max discard sectors until we 2482 * get a balance value. In cases when the 'host->max_busy_timeout' 2483 * isn't specified, use the default max erase timeout. 2484 */ 2485 do { 2486 y = 0; 2487 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2488 timeout = mmc_erase_timeout(card, arg, qty + x); 2489 2490 if (qty + x > min_qty && timeout > max_busy_timeout) 2491 break; 2492 2493 if (timeout < last_timeout) 2494 break; 2495 last_timeout = timeout; 2496 y = x; 2497 } 2498 qty += y; 2499 } while (y); 2500 2501 if (!qty) 2502 return 0; 2503 2504 /* 2505 * When specifying a sector range to trim, chances are we might cross 2506 * an erase-group boundary even if the amount of sectors is less than 2507 * one erase-group. 2508 * If we can only fit one erase-group in the controller timeout budget, 2509 * we have to care that erase-group boundaries are not crossed by a 2510 * single trim operation. We flag that special case with "eg_boundary". 2511 * In all other cases we can just decrement qty and pretend that we 2512 * always touch (qty + 1) erase-groups as a simple optimization. 2513 */ 2514 if (qty == 1) 2515 card->eg_boundary = 1; 2516 else 2517 qty--; 2518 2519 /* Convert qty to sectors */ 2520 if (card->erase_shift) 2521 max_discard = qty << card->erase_shift; 2522 else if (mmc_card_sd(card)) 2523 max_discard = qty + 1; 2524 else 2525 max_discard = qty * card->erase_size; 2526 2527 return max_discard; 2528 } 2529 2530 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2531 { 2532 struct mmc_host *host = card->host; 2533 unsigned int max_discard, max_trim; 2534 2535 /* 2536 * Without erase_group_def set, MMC erase timeout depends on clock 2537 * frequence which can change. In that case, the best choice is 2538 * just the preferred erase size. 2539 */ 2540 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2541 return card->pref_erase; 2542 2543 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2544 if (mmc_can_trim(card)) { 2545 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2546 if (max_trim < max_discard) 2547 max_discard = max_trim; 2548 } else if (max_discard < card->erase_size) { 2549 max_discard = 0; 2550 } 2551 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2552 mmc_hostname(host), max_discard, host->max_busy_timeout ? 2553 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); 2554 return max_discard; 2555 } 2556 EXPORT_SYMBOL(mmc_calc_max_discard); 2557 2558 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2559 { 2560 struct mmc_command cmd = {}; 2561 2562 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || 2563 mmc_card_hs400(card) || mmc_card_hs400es(card)) 2564 return 0; 2565 2566 cmd.opcode = MMC_SET_BLOCKLEN; 2567 cmd.arg = blocklen; 2568 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2569 return mmc_wait_for_cmd(card->host, &cmd, 5); 2570 } 2571 EXPORT_SYMBOL(mmc_set_blocklen); 2572 2573 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, 2574 bool is_rel_write) 2575 { 2576 struct mmc_command cmd = {}; 2577 2578 cmd.opcode = MMC_SET_BLOCK_COUNT; 2579 cmd.arg = blockcount & 0x0000FFFF; 2580 if (is_rel_write) 2581 cmd.arg |= 1 << 31; 2582 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2583 return mmc_wait_for_cmd(card->host, &cmd, 5); 2584 } 2585 EXPORT_SYMBOL(mmc_set_blockcount); 2586 2587 static void mmc_hw_reset_for_init(struct mmc_host *host) 2588 { 2589 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2590 return; 2591 host->ops->hw_reset(host); 2592 } 2593 2594 int mmc_hw_reset(struct mmc_host *host) 2595 { 2596 int ret; 2597 2598 if (!host->card) 2599 return -EINVAL; 2600 2601 mmc_bus_get(host); 2602 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) { 2603 mmc_bus_put(host); 2604 return -EOPNOTSUPP; 2605 } 2606 2607 ret = host->bus_ops->reset(host); 2608 mmc_bus_put(host); 2609 2610 if (ret) 2611 pr_warn("%s: tried to reset card, got error %d\n", 2612 mmc_hostname(host), ret); 2613 2614 return ret; 2615 } 2616 EXPORT_SYMBOL(mmc_hw_reset); 2617 2618 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2619 { 2620 host->f_init = freq; 2621 2622 #ifdef CONFIG_MMC_DEBUG 2623 pr_info("%s: %s: trying to init card at %u Hz\n", 2624 mmc_hostname(host), __func__, host->f_init); 2625 #endif 2626 mmc_power_up(host, host->ocr_avail); 2627 2628 /* 2629 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2630 * do a hardware reset if possible. 2631 */ 2632 mmc_hw_reset_for_init(host); 2633 2634 /* 2635 * sdio_reset sends CMD52 to reset card. Since we do not know 2636 * if the card is being re-initialized, just send it. CMD52 2637 * should be ignored by SD/eMMC cards. 2638 * Skip it if we already know that we do not support SDIO commands 2639 */ 2640 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2641 sdio_reset(host); 2642 2643 mmc_go_idle(host); 2644 2645 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2646 mmc_send_if_cond(host, host->ocr_avail); 2647 2648 /* Order's important: probe SDIO, then SD, then MMC */ 2649 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2650 if (!mmc_attach_sdio(host)) 2651 return 0; 2652 2653 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2654 if (!mmc_attach_sd(host)) 2655 return 0; 2656 2657 if (!(host->caps2 & MMC_CAP2_NO_MMC)) 2658 if (!mmc_attach_mmc(host)) 2659 return 0; 2660 2661 mmc_power_off(host); 2662 return -EIO; 2663 } 2664 2665 int _mmc_detect_card_removed(struct mmc_host *host) 2666 { 2667 int ret; 2668 2669 if (!host->card || mmc_card_removed(host->card)) 2670 return 1; 2671 2672 ret = host->bus_ops->alive(host); 2673 2674 /* 2675 * Card detect status and alive check may be out of sync if card is 2676 * removed slowly, when card detect switch changes while card/slot 2677 * pads are still contacted in hardware (refer to "SD Card Mechanical 2678 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2679 * detect work 200ms later for this case. 2680 */ 2681 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2682 mmc_detect_change(host, msecs_to_jiffies(200)); 2683 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2684 } 2685 2686 if (ret) { 2687 mmc_card_set_removed(host->card); 2688 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2689 } 2690 2691 return ret; 2692 } 2693 2694 int mmc_detect_card_removed(struct mmc_host *host) 2695 { 2696 struct mmc_card *card = host->card; 2697 int ret; 2698 2699 WARN_ON(!host->claimed); 2700 2701 if (!card) 2702 return 1; 2703 2704 if (!mmc_card_is_removable(host)) 2705 return 0; 2706 2707 ret = mmc_card_removed(card); 2708 /* 2709 * The card will be considered unchanged unless we have been asked to 2710 * detect a change or host requires polling to provide card detection. 2711 */ 2712 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2713 return ret; 2714 2715 host->detect_change = 0; 2716 if (!ret) { 2717 ret = _mmc_detect_card_removed(host); 2718 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2719 /* 2720 * Schedule a detect work as soon as possible to let a 2721 * rescan handle the card removal. 2722 */ 2723 cancel_delayed_work(&host->detect); 2724 _mmc_detect_change(host, 0, false); 2725 } 2726 } 2727 2728 return ret; 2729 } 2730 EXPORT_SYMBOL(mmc_detect_card_removed); 2731 2732 void mmc_rescan(struct work_struct *work) 2733 { 2734 struct mmc_host *host = 2735 container_of(work, struct mmc_host, detect.work); 2736 int i; 2737 2738 if (host->rescan_disable) 2739 return; 2740 2741 /* If there is a non-removable card registered, only scan once */ 2742 if (!mmc_card_is_removable(host) && host->rescan_entered) 2743 return; 2744 host->rescan_entered = 1; 2745 2746 if (host->trigger_card_event && host->ops->card_event) { 2747 mmc_claim_host(host); 2748 host->ops->card_event(host); 2749 mmc_release_host(host); 2750 host->trigger_card_event = false; 2751 } 2752 2753 mmc_bus_get(host); 2754 2755 /* 2756 * if there is a _removable_ card registered, check whether it is 2757 * still present 2758 */ 2759 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host)) 2760 host->bus_ops->detect(host); 2761 2762 host->detect_change = 0; 2763 2764 /* 2765 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2766 * the card is no longer present. 2767 */ 2768 mmc_bus_put(host); 2769 mmc_bus_get(host); 2770 2771 /* if there still is a card present, stop here */ 2772 if (host->bus_ops != NULL) { 2773 mmc_bus_put(host); 2774 goto out; 2775 } 2776 2777 /* 2778 * Only we can add a new handler, so it's safe to 2779 * release the lock here. 2780 */ 2781 mmc_bus_put(host); 2782 2783 mmc_claim_host(host); 2784 if (mmc_card_is_removable(host) && host->ops->get_cd && 2785 host->ops->get_cd(host) == 0) { 2786 mmc_power_off(host); 2787 mmc_release_host(host); 2788 goto out; 2789 } 2790 2791 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2792 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2793 break; 2794 if (freqs[i] <= host->f_min) 2795 break; 2796 } 2797 mmc_release_host(host); 2798 2799 out: 2800 if (host->caps & MMC_CAP_NEEDS_POLL) 2801 mmc_schedule_delayed_work(&host->detect, HZ); 2802 } 2803 2804 void mmc_start_host(struct mmc_host *host) 2805 { 2806 host->f_init = max(freqs[0], host->f_min); 2807 host->rescan_disable = 0; 2808 host->ios.power_mode = MMC_POWER_UNDEFINED; 2809 2810 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) { 2811 mmc_claim_host(host); 2812 mmc_power_up(host, host->ocr_avail); 2813 mmc_release_host(host); 2814 } 2815 2816 mmc_gpiod_request_cd_irq(host); 2817 _mmc_detect_change(host, 0, false); 2818 } 2819 2820 void mmc_stop_host(struct mmc_host *host) 2821 { 2822 #ifdef CONFIG_MMC_DEBUG 2823 unsigned long flags; 2824 spin_lock_irqsave(&host->lock, flags); 2825 host->removed = 1; 2826 spin_unlock_irqrestore(&host->lock, flags); 2827 #endif 2828 if (host->slot.cd_irq >= 0) 2829 disable_irq(host->slot.cd_irq); 2830 2831 host->rescan_disable = 1; 2832 cancel_delayed_work_sync(&host->detect); 2833 2834 /* clear pm flags now and let card drivers set them as needed */ 2835 host->pm_flags = 0; 2836 2837 mmc_bus_get(host); 2838 if (host->bus_ops && !host->bus_dead) { 2839 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2840 host->bus_ops->remove(host); 2841 mmc_claim_host(host); 2842 mmc_detach_bus(host); 2843 mmc_power_off(host); 2844 mmc_release_host(host); 2845 mmc_bus_put(host); 2846 return; 2847 } 2848 mmc_bus_put(host); 2849 2850 mmc_claim_host(host); 2851 mmc_power_off(host); 2852 mmc_release_host(host); 2853 } 2854 2855 int mmc_power_save_host(struct mmc_host *host) 2856 { 2857 int ret = 0; 2858 2859 #ifdef CONFIG_MMC_DEBUG 2860 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2861 #endif 2862 2863 mmc_bus_get(host); 2864 2865 if (!host->bus_ops || host->bus_dead) { 2866 mmc_bus_put(host); 2867 return -EINVAL; 2868 } 2869 2870 if (host->bus_ops->power_save) 2871 ret = host->bus_ops->power_save(host); 2872 2873 mmc_bus_put(host); 2874 2875 mmc_power_off(host); 2876 2877 return ret; 2878 } 2879 EXPORT_SYMBOL(mmc_power_save_host); 2880 2881 int mmc_power_restore_host(struct mmc_host *host) 2882 { 2883 int ret; 2884 2885 #ifdef CONFIG_MMC_DEBUG 2886 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2887 #endif 2888 2889 mmc_bus_get(host); 2890 2891 if (!host->bus_ops || host->bus_dead) { 2892 mmc_bus_put(host); 2893 return -EINVAL; 2894 } 2895 2896 mmc_power_up(host, host->card->ocr); 2897 ret = host->bus_ops->power_restore(host); 2898 2899 mmc_bus_put(host); 2900 2901 return ret; 2902 } 2903 EXPORT_SYMBOL(mmc_power_restore_host); 2904 2905 /* 2906 * Flush the cache to the non-volatile storage. 2907 */ 2908 int mmc_flush_cache(struct mmc_card *card) 2909 { 2910 int err = 0; 2911 2912 if (mmc_card_mmc(card) && 2913 (card->ext_csd.cache_size > 0) && 2914 (card->ext_csd.cache_ctrl & 1)) { 2915 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2916 EXT_CSD_FLUSH_CACHE, 1, 0); 2917 if (err) 2918 pr_err("%s: cache flush error %d\n", 2919 mmc_hostname(card->host), err); 2920 } 2921 2922 return err; 2923 } 2924 EXPORT_SYMBOL(mmc_flush_cache); 2925 2926 #ifdef CONFIG_PM_SLEEP 2927 /* Do the card removal on suspend if card is assumed removeable 2928 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2929 to sync the card. 2930 */ 2931 static int mmc_pm_notify(struct notifier_block *notify_block, 2932 unsigned long mode, void *unused) 2933 { 2934 struct mmc_host *host = container_of( 2935 notify_block, struct mmc_host, pm_notify); 2936 unsigned long flags; 2937 int err = 0; 2938 2939 switch (mode) { 2940 case PM_HIBERNATION_PREPARE: 2941 case PM_SUSPEND_PREPARE: 2942 case PM_RESTORE_PREPARE: 2943 spin_lock_irqsave(&host->lock, flags); 2944 host->rescan_disable = 1; 2945 spin_unlock_irqrestore(&host->lock, flags); 2946 cancel_delayed_work_sync(&host->detect); 2947 2948 if (!host->bus_ops) 2949 break; 2950 2951 /* Validate prerequisites for suspend */ 2952 if (host->bus_ops->pre_suspend) 2953 err = host->bus_ops->pre_suspend(host); 2954 if (!err) 2955 break; 2956 2957 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2958 host->bus_ops->remove(host); 2959 mmc_claim_host(host); 2960 mmc_detach_bus(host); 2961 mmc_power_off(host); 2962 mmc_release_host(host); 2963 host->pm_flags = 0; 2964 break; 2965 2966 case PM_POST_SUSPEND: 2967 case PM_POST_HIBERNATION: 2968 case PM_POST_RESTORE: 2969 2970 spin_lock_irqsave(&host->lock, flags); 2971 host->rescan_disable = 0; 2972 spin_unlock_irqrestore(&host->lock, flags); 2973 _mmc_detect_change(host, 0, false); 2974 2975 } 2976 2977 return 0; 2978 } 2979 2980 void mmc_register_pm_notifier(struct mmc_host *host) 2981 { 2982 host->pm_notify.notifier_call = mmc_pm_notify; 2983 register_pm_notifier(&host->pm_notify); 2984 } 2985 2986 void mmc_unregister_pm_notifier(struct mmc_host *host) 2987 { 2988 unregister_pm_notifier(&host->pm_notify); 2989 } 2990 #endif 2991 2992 /** 2993 * mmc_init_context_info() - init synchronization context 2994 * @host: mmc host 2995 * 2996 * Init struct context_info needed to implement asynchronous 2997 * request mechanism, used by mmc core, host driver and mmc requests 2998 * supplier. 2999 */ 3000 void mmc_init_context_info(struct mmc_host *host) 3001 { 3002 host->context_info.is_new_req = false; 3003 host->context_info.is_done_rcv = false; 3004 host->context_info.is_waiting_last_req = false; 3005 init_waitqueue_head(&host->context_info.wait); 3006 } 3007 3008 static int __init mmc_init(void) 3009 { 3010 int ret; 3011 3012 ret = mmc_register_bus(); 3013 if (ret) 3014 return ret; 3015 3016 ret = mmc_register_host_class(); 3017 if (ret) 3018 goto unregister_bus; 3019 3020 ret = sdio_register_bus(); 3021 if (ret) 3022 goto unregister_host_class; 3023 3024 return 0; 3025 3026 unregister_host_class: 3027 mmc_unregister_host_class(); 3028 unregister_bus: 3029 mmc_unregister_bus(); 3030 return ret; 3031 } 3032 3033 static void __exit mmc_exit(void) 3034 { 3035 sdio_unregister_bus(); 3036 mmc_unregister_host_class(); 3037 mmc_unregister_bus(); 3038 } 3039 3040 subsys_initcall(mmc_init); 3041 module_exit(mmc_exit); 3042 3043 MODULE_LICENSE("GPL"); 3044