xref: /openbmc/linux/drivers/mmc/core/core.c (revision 3ddc8b84)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/core/core.c
4  *
5  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9  */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37 
38 #include "core.h"
39 #include "card.h"
40 #include "crypto.h"
41 #include "bus.h"
42 #include "host.h"
43 #include "sdio_bus.h"
44 #include "pwrseq.h"
45 
46 #include "mmc_ops.h"
47 #include "sd_ops.h"
48 #include "sdio_ops.h"
49 
50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
52 #define SD_DISCARD_TIMEOUT_MS	(250)
53 
54 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55 
56 /*
57  * Enabling software CRCs on the data blocks can be a significant (30%)
58  * performance cost, and for other reasons may not always be desired.
59  * So we allow it to be disabled.
60  */
61 bool use_spi_crc = 1;
62 module_param(use_spi_crc, bool, 0);
63 
64 static int mmc_schedule_delayed_work(struct delayed_work *work,
65 				     unsigned long delay)
66 {
67 	/*
68 	 * We use the system_freezable_wq, because of two reasons.
69 	 * First, it allows several works (not the same work item) to be
70 	 * executed simultaneously. Second, the queue becomes frozen when
71 	 * userspace becomes frozen during system PM.
72 	 */
73 	return queue_delayed_work(system_freezable_wq, work, delay);
74 }
75 
76 #ifdef CONFIG_FAIL_MMC_REQUEST
77 
78 /*
79  * Internal function. Inject random data errors.
80  * If mmc_data is NULL no errors are injected.
81  */
82 static void mmc_should_fail_request(struct mmc_host *host,
83 				    struct mmc_request *mrq)
84 {
85 	struct mmc_command *cmd = mrq->cmd;
86 	struct mmc_data *data = mrq->data;
87 	static const int data_errors[] = {
88 		-ETIMEDOUT,
89 		-EILSEQ,
90 		-EIO,
91 	};
92 
93 	if (!data)
94 		return;
95 
96 	if ((cmd && cmd->error) || data->error ||
97 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 		return;
99 
100 	data->error = data_errors[get_random_u32_below(ARRAY_SIZE(data_errors))];
101 	data->bytes_xfered = get_random_u32_below(data->bytes_xfered >> 9) << 9;
102 }
103 
104 #else /* CONFIG_FAIL_MMC_REQUEST */
105 
106 static inline void mmc_should_fail_request(struct mmc_host *host,
107 					   struct mmc_request *mrq)
108 {
109 }
110 
111 #endif /* CONFIG_FAIL_MMC_REQUEST */
112 
113 static inline void mmc_complete_cmd(struct mmc_request *mrq)
114 {
115 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 		complete_all(&mrq->cmd_completion);
117 }
118 
119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120 {
121 	if (!mrq->cap_cmd_during_tfr)
122 		return;
123 
124 	mmc_complete_cmd(mrq);
125 
126 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 		 mmc_hostname(host), mrq->cmd->opcode);
128 }
129 EXPORT_SYMBOL(mmc_command_done);
130 
131 /**
132  *	mmc_request_done - finish processing an MMC request
133  *	@host: MMC host which completed request
134  *	@mrq: MMC request which request
135  *
136  *	MMC drivers should call this function when they have completed
137  *	their processing of a request.
138  */
139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140 {
141 	struct mmc_command *cmd = mrq->cmd;
142 	int err = cmd->error;
143 
144 	/* Flag re-tuning needed on CRC errors */
145 	if (!mmc_op_tuning(cmd->opcode) &&
146 	    !host->retune_crc_disable &&
147 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
148 	    (mrq->data && mrq->data->error == -EILSEQ) ||
149 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
150 		mmc_retune_needed(host);
151 
152 	if (err && cmd->retries && mmc_host_is_spi(host)) {
153 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
154 			cmd->retries = 0;
155 	}
156 
157 	if (host->ongoing_mrq == mrq)
158 		host->ongoing_mrq = NULL;
159 
160 	mmc_complete_cmd(mrq);
161 
162 	trace_mmc_request_done(host, mrq);
163 
164 	/*
165 	 * We list various conditions for the command to be considered
166 	 * properly done:
167 	 *
168 	 * - There was no error, OK fine then
169 	 * - We are not doing some kind of retry
170 	 * - The card was removed (...so just complete everything no matter
171 	 *   if there are errors or retries)
172 	 */
173 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
174 		mmc_should_fail_request(host, mrq);
175 
176 		if (!host->ongoing_mrq)
177 			led_trigger_event(host->led, LED_OFF);
178 
179 		if (mrq->sbc) {
180 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 				mmc_hostname(host), mrq->sbc->opcode,
182 				mrq->sbc->error,
183 				mrq->sbc->resp[0], mrq->sbc->resp[1],
184 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
185 		}
186 
187 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 			mmc_hostname(host), cmd->opcode, err,
189 			cmd->resp[0], cmd->resp[1],
190 			cmd->resp[2], cmd->resp[3]);
191 
192 		if (mrq->data) {
193 			pr_debug("%s:     %d bytes transferred: %d\n",
194 				mmc_hostname(host),
195 				mrq->data->bytes_xfered, mrq->data->error);
196 		}
197 
198 		if (mrq->stop) {
199 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
200 				mmc_hostname(host), mrq->stop->opcode,
201 				mrq->stop->error,
202 				mrq->stop->resp[0], mrq->stop->resp[1],
203 				mrq->stop->resp[2], mrq->stop->resp[3]);
204 		}
205 	}
206 	/*
207 	 * Request starter must handle retries - see
208 	 * mmc_wait_for_req_done().
209 	 */
210 	if (mrq->done)
211 		mrq->done(mrq);
212 }
213 
214 EXPORT_SYMBOL(mmc_request_done);
215 
216 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
217 {
218 	int err;
219 
220 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
221 	err = mmc_retune(host);
222 	if (err) {
223 		mrq->cmd->error = err;
224 		mmc_request_done(host, mrq);
225 		return;
226 	}
227 
228 	/*
229 	 * For sdio rw commands we must wait for card busy otherwise some
230 	 * sdio devices won't work properly.
231 	 * And bypass I/O abort, reset and bus suspend operations.
232 	 */
233 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
234 	    host->ops->card_busy) {
235 		int tries = 500; /* Wait aprox 500ms at maximum */
236 
237 		while (host->ops->card_busy(host) && --tries)
238 			mmc_delay(1);
239 
240 		if (tries == 0) {
241 			mrq->cmd->error = -EBUSY;
242 			mmc_request_done(host, mrq);
243 			return;
244 		}
245 	}
246 
247 	if (mrq->cap_cmd_during_tfr) {
248 		host->ongoing_mrq = mrq;
249 		/*
250 		 * Retry path could come through here without having waiting on
251 		 * cmd_completion, so ensure it is reinitialised.
252 		 */
253 		reinit_completion(&mrq->cmd_completion);
254 	}
255 
256 	trace_mmc_request_start(host, mrq);
257 
258 	if (host->cqe_on)
259 		host->cqe_ops->cqe_off(host);
260 
261 	host->ops->request(host, mrq);
262 }
263 
264 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
265 			     bool cqe)
266 {
267 	if (mrq->sbc) {
268 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 			 mmc_hostname(host), mrq->sbc->opcode,
270 			 mrq->sbc->arg, mrq->sbc->flags);
271 	}
272 
273 	if (mrq->cmd) {
274 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 			 mmc_hostname(host), cqe ? "CQE direct " : "",
276 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
277 	} else if (cqe) {
278 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
280 	}
281 
282 	if (mrq->data) {
283 		pr_debug("%s:     blksz %d blocks %d flags %08x "
284 			"tsac %d ms nsac %d\n",
285 			mmc_hostname(host), mrq->data->blksz,
286 			mrq->data->blocks, mrq->data->flags,
287 			mrq->data->timeout_ns / 1000000,
288 			mrq->data->timeout_clks);
289 	}
290 
291 	if (mrq->stop) {
292 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
293 			 mmc_hostname(host), mrq->stop->opcode,
294 			 mrq->stop->arg, mrq->stop->flags);
295 	}
296 }
297 
298 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
299 {
300 	unsigned int i, sz = 0;
301 	struct scatterlist *sg;
302 
303 	if (mrq->cmd) {
304 		mrq->cmd->error = 0;
305 		mrq->cmd->mrq = mrq;
306 		mrq->cmd->data = mrq->data;
307 	}
308 	if (mrq->sbc) {
309 		mrq->sbc->error = 0;
310 		mrq->sbc->mrq = mrq;
311 	}
312 	if (mrq->data) {
313 		if (mrq->data->blksz > host->max_blk_size ||
314 		    mrq->data->blocks > host->max_blk_count ||
315 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
316 			return -EINVAL;
317 
318 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
319 			sz += sg->length;
320 		if (sz != mrq->data->blocks * mrq->data->blksz)
321 			return -EINVAL;
322 
323 		mrq->data->error = 0;
324 		mrq->data->mrq = mrq;
325 		if (mrq->stop) {
326 			mrq->data->stop = mrq->stop;
327 			mrq->stop->error = 0;
328 			mrq->stop->mrq = mrq;
329 		}
330 	}
331 
332 	return 0;
333 }
334 
335 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
336 {
337 	int err;
338 
339 	init_completion(&mrq->cmd_completion);
340 
341 	mmc_retune_hold(host);
342 
343 	if (mmc_card_removed(host->card))
344 		return -ENOMEDIUM;
345 
346 	mmc_mrq_pr_debug(host, mrq, false);
347 
348 	WARN_ON(!host->claimed);
349 
350 	err = mmc_mrq_prep(host, mrq);
351 	if (err)
352 		return err;
353 
354 	led_trigger_event(host->led, LED_FULL);
355 	__mmc_start_request(host, mrq);
356 
357 	return 0;
358 }
359 EXPORT_SYMBOL(mmc_start_request);
360 
361 static void mmc_wait_done(struct mmc_request *mrq)
362 {
363 	complete(&mrq->completion);
364 }
365 
366 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
367 {
368 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
369 
370 	/*
371 	 * If there is an ongoing transfer, wait for the command line to become
372 	 * available.
373 	 */
374 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
375 		wait_for_completion(&ongoing_mrq->cmd_completion);
376 }
377 
378 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
379 {
380 	int err;
381 
382 	mmc_wait_ongoing_tfr_cmd(host);
383 
384 	init_completion(&mrq->completion);
385 	mrq->done = mmc_wait_done;
386 
387 	err = mmc_start_request(host, mrq);
388 	if (err) {
389 		mrq->cmd->error = err;
390 		mmc_complete_cmd(mrq);
391 		complete(&mrq->completion);
392 	}
393 
394 	return err;
395 }
396 
397 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
398 {
399 	struct mmc_command *cmd;
400 
401 	while (1) {
402 		wait_for_completion(&mrq->completion);
403 
404 		cmd = mrq->cmd;
405 
406 		if (!cmd->error || !cmd->retries ||
407 		    mmc_card_removed(host->card))
408 			break;
409 
410 		mmc_retune_recheck(host);
411 
412 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
413 			 mmc_hostname(host), cmd->opcode, cmd->error);
414 		cmd->retries--;
415 		cmd->error = 0;
416 		__mmc_start_request(host, mrq);
417 	}
418 
419 	mmc_retune_release(host);
420 }
421 EXPORT_SYMBOL(mmc_wait_for_req_done);
422 
423 /*
424  * mmc_cqe_start_req - Start a CQE request.
425  * @host: MMC host to start the request
426  * @mrq: request to start
427  *
428  * Start the request, re-tuning if needed and it is possible. Returns an error
429  * code if the request fails to start or -EBUSY if CQE is busy.
430  */
431 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
432 {
433 	int err;
434 
435 	/*
436 	 * CQE cannot process re-tuning commands. Caller must hold retuning
437 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
438 	 * active requests i.e. this is the first.  Note, re-tuning will call
439 	 * ->cqe_off().
440 	 */
441 	err = mmc_retune(host);
442 	if (err)
443 		goto out_err;
444 
445 	mrq->host = host;
446 
447 	mmc_mrq_pr_debug(host, mrq, true);
448 
449 	err = mmc_mrq_prep(host, mrq);
450 	if (err)
451 		goto out_err;
452 
453 	err = host->cqe_ops->cqe_request(host, mrq);
454 	if (err)
455 		goto out_err;
456 
457 	trace_mmc_request_start(host, mrq);
458 
459 	return 0;
460 
461 out_err:
462 	if (mrq->cmd) {
463 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
464 			 mmc_hostname(host), mrq->cmd->opcode, err);
465 	} else {
466 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
467 			 mmc_hostname(host), mrq->tag, err);
468 	}
469 	return err;
470 }
471 EXPORT_SYMBOL(mmc_cqe_start_req);
472 
473 /**
474  *	mmc_cqe_request_done - CQE has finished processing an MMC request
475  *	@host: MMC host which completed request
476  *	@mrq: MMC request which completed
477  *
478  *	CQE drivers should call this function when they have completed
479  *	their processing of a request.
480  */
481 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
482 {
483 	mmc_should_fail_request(host, mrq);
484 
485 	/* Flag re-tuning needed on CRC errors */
486 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
487 	    (mrq->data && mrq->data->error == -EILSEQ))
488 		mmc_retune_needed(host);
489 
490 	trace_mmc_request_done(host, mrq);
491 
492 	if (mrq->cmd) {
493 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
494 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
495 	} else {
496 		pr_debug("%s: CQE transfer done tag %d\n",
497 			 mmc_hostname(host), mrq->tag);
498 	}
499 
500 	if (mrq->data) {
501 		pr_debug("%s:     %d bytes transferred: %d\n",
502 			 mmc_hostname(host),
503 			 mrq->data->bytes_xfered, mrq->data->error);
504 	}
505 
506 	mrq->done(mrq);
507 }
508 EXPORT_SYMBOL(mmc_cqe_request_done);
509 
510 /**
511  *	mmc_cqe_post_req - CQE post process of a completed MMC request
512  *	@host: MMC host
513  *	@mrq: MMC request to be processed
514  */
515 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
516 {
517 	if (host->cqe_ops->cqe_post_req)
518 		host->cqe_ops->cqe_post_req(host, mrq);
519 }
520 EXPORT_SYMBOL(mmc_cqe_post_req);
521 
522 /* Arbitrary 1 second timeout */
523 #define MMC_CQE_RECOVERY_TIMEOUT	1000
524 
525 /*
526  * mmc_cqe_recovery - Recover from CQE errors.
527  * @host: MMC host to recover
528  *
529  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
530  * in eMMC, and discarding the queue in CQE. CQE must call
531  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
532  * fails to discard its queue.
533  */
534 int mmc_cqe_recovery(struct mmc_host *host)
535 {
536 	struct mmc_command cmd;
537 	int err;
538 
539 	mmc_retune_hold_now(host);
540 
541 	/*
542 	 * Recovery is expected seldom, if at all, but it reduces performance,
543 	 * so make sure it is not completely silent.
544 	 */
545 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
546 
547 	host->cqe_ops->cqe_recovery_start(host);
548 
549 	memset(&cmd, 0, sizeof(cmd));
550 	cmd.opcode       = MMC_STOP_TRANSMISSION;
551 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
552 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
553 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
554 	mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
555 
556 	mmc_poll_for_busy(host->card, MMC_CQE_RECOVERY_TIMEOUT, true, MMC_BUSY_IO);
557 
558 	memset(&cmd, 0, sizeof(cmd));
559 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
560 	cmd.arg          = 1; /* Discard entire queue */
561 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
562 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
563 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
564 	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
565 
566 	host->cqe_ops->cqe_recovery_finish(host);
567 
568 	if (err)
569 		err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
570 
571 	mmc_retune_release(host);
572 
573 	return err;
574 }
575 EXPORT_SYMBOL(mmc_cqe_recovery);
576 
577 /**
578  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
579  *	@host: MMC host
580  *	@mrq: MMC request
581  *
582  *	mmc_is_req_done() is used with requests that have
583  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
584  *	starting a request and before waiting for it to complete. That is,
585  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
586  *	and before mmc_wait_for_req_done(). If it is called at other times the
587  *	result is not meaningful.
588  */
589 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
590 {
591 	return completion_done(&mrq->completion);
592 }
593 EXPORT_SYMBOL(mmc_is_req_done);
594 
595 /**
596  *	mmc_wait_for_req - start a request and wait for completion
597  *	@host: MMC host to start command
598  *	@mrq: MMC request to start
599  *
600  *	Start a new MMC custom command request for a host, and wait
601  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
602  *	requests, the transfer is ongoing and the caller can issue further
603  *	commands that do not use the data lines, and then wait by calling
604  *	mmc_wait_for_req_done().
605  *	Does not attempt to parse the response.
606  */
607 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
608 {
609 	__mmc_start_req(host, mrq);
610 
611 	if (!mrq->cap_cmd_during_tfr)
612 		mmc_wait_for_req_done(host, mrq);
613 }
614 EXPORT_SYMBOL(mmc_wait_for_req);
615 
616 /**
617  *	mmc_wait_for_cmd - start a command and wait for completion
618  *	@host: MMC host to start command
619  *	@cmd: MMC command to start
620  *	@retries: maximum number of retries
621  *
622  *	Start a new MMC command for a host, and wait for the command
623  *	to complete.  Return any error that occurred while the command
624  *	was executing.  Do not attempt to parse the response.
625  */
626 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
627 {
628 	struct mmc_request mrq = {};
629 
630 	WARN_ON(!host->claimed);
631 
632 	memset(cmd->resp, 0, sizeof(cmd->resp));
633 	cmd->retries = retries;
634 
635 	mrq.cmd = cmd;
636 	cmd->data = NULL;
637 
638 	mmc_wait_for_req(host, &mrq);
639 
640 	return cmd->error;
641 }
642 
643 EXPORT_SYMBOL(mmc_wait_for_cmd);
644 
645 /**
646  *	mmc_set_data_timeout - set the timeout for a data command
647  *	@data: data phase for command
648  *	@card: the MMC card associated with the data transfer
649  *
650  *	Computes the data timeout parameters according to the
651  *	correct algorithm given the card type.
652  */
653 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
654 {
655 	unsigned int mult;
656 
657 	/*
658 	 * SDIO cards only define an upper 1 s limit on access.
659 	 */
660 	if (mmc_card_sdio(card)) {
661 		data->timeout_ns = 1000000000;
662 		data->timeout_clks = 0;
663 		return;
664 	}
665 
666 	/*
667 	 * SD cards use a 100 multiplier rather than 10
668 	 */
669 	mult = mmc_card_sd(card) ? 100 : 10;
670 
671 	/*
672 	 * Scale up the multiplier (and therefore the timeout) by
673 	 * the r2w factor for writes.
674 	 */
675 	if (data->flags & MMC_DATA_WRITE)
676 		mult <<= card->csd.r2w_factor;
677 
678 	data->timeout_ns = card->csd.taac_ns * mult;
679 	data->timeout_clks = card->csd.taac_clks * mult;
680 
681 	/*
682 	 * SD cards also have an upper limit on the timeout.
683 	 */
684 	if (mmc_card_sd(card)) {
685 		unsigned int timeout_us, limit_us;
686 
687 		timeout_us = data->timeout_ns / 1000;
688 		if (card->host->ios.clock)
689 			timeout_us += data->timeout_clks * 1000 /
690 				(card->host->ios.clock / 1000);
691 
692 		if (data->flags & MMC_DATA_WRITE)
693 			/*
694 			 * The MMC spec "It is strongly recommended
695 			 * for hosts to implement more than 500ms
696 			 * timeout value even if the card indicates
697 			 * the 250ms maximum busy length."  Even the
698 			 * previous value of 300ms is known to be
699 			 * insufficient for some cards.
700 			 */
701 			limit_us = 3000000;
702 		else
703 			limit_us = 100000;
704 
705 		/*
706 		 * SDHC cards always use these fixed values.
707 		 */
708 		if (timeout_us > limit_us) {
709 			data->timeout_ns = limit_us * 1000;
710 			data->timeout_clks = 0;
711 		}
712 
713 		/* assign limit value if invalid */
714 		if (timeout_us == 0)
715 			data->timeout_ns = limit_us * 1000;
716 	}
717 
718 	/*
719 	 * Some cards require longer data read timeout than indicated in CSD.
720 	 * Address this by setting the read timeout to a "reasonably high"
721 	 * value. For the cards tested, 600ms has proven enough. If necessary,
722 	 * this value can be increased if other problematic cards require this.
723 	 */
724 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
725 		data->timeout_ns = 600000000;
726 		data->timeout_clks = 0;
727 	}
728 
729 	/*
730 	 * Some cards need very high timeouts if driven in SPI mode.
731 	 * The worst observed timeout was 900ms after writing a
732 	 * continuous stream of data until the internal logic
733 	 * overflowed.
734 	 */
735 	if (mmc_host_is_spi(card->host)) {
736 		if (data->flags & MMC_DATA_WRITE) {
737 			if (data->timeout_ns < 1000000000)
738 				data->timeout_ns = 1000000000;	/* 1s */
739 		} else {
740 			if (data->timeout_ns < 100000000)
741 				data->timeout_ns =  100000000;	/* 100ms */
742 		}
743 	}
744 }
745 EXPORT_SYMBOL(mmc_set_data_timeout);
746 
747 /*
748  * Allow claiming an already claimed host if the context is the same or there is
749  * no context but the task is the same.
750  */
751 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
752 				   struct task_struct *task)
753 {
754 	return host->claimer == ctx ||
755 	       (!ctx && task && host->claimer->task == task);
756 }
757 
758 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
759 				       struct mmc_ctx *ctx,
760 				       struct task_struct *task)
761 {
762 	if (!host->claimer) {
763 		if (ctx)
764 			host->claimer = ctx;
765 		else
766 			host->claimer = &host->default_ctx;
767 	}
768 	if (task)
769 		host->claimer->task = task;
770 }
771 
772 /**
773  *	__mmc_claim_host - exclusively claim a host
774  *	@host: mmc host to claim
775  *	@ctx: context that claims the host or NULL in which case the default
776  *	context will be used
777  *	@abort: whether or not the operation should be aborted
778  *
779  *	Claim a host for a set of operations.  If @abort is non null and
780  *	dereference a non-zero value then this will return prematurely with
781  *	that non-zero value without acquiring the lock.  Returns zero
782  *	with the lock held otherwise.
783  */
784 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
785 		     atomic_t *abort)
786 {
787 	struct task_struct *task = ctx ? NULL : current;
788 	DECLARE_WAITQUEUE(wait, current);
789 	unsigned long flags;
790 	int stop;
791 	bool pm = false;
792 
793 	might_sleep();
794 
795 	add_wait_queue(&host->wq, &wait);
796 	spin_lock_irqsave(&host->lock, flags);
797 	while (1) {
798 		set_current_state(TASK_UNINTERRUPTIBLE);
799 		stop = abort ? atomic_read(abort) : 0;
800 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
801 			break;
802 		spin_unlock_irqrestore(&host->lock, flags);
803 		schedule();
804 		spin_lock_irqsave(&host->lock, flags);
805 	}
806 	set_current_state(TASK_RUNNING);
807 	if (!stop) {
808 		host->claimed = 1;
809 		mmc_ctx_set_claimer(host, ctx, task);
810 		host->claim_cnt += 1;
811 		if (host->claim_cnt == 1)
812 			pm = true;
813 	} else
814 		wake_up(&host->wq);
815 	spin_unlock_irqrestore(&host->lock, flags);
816 	remove_wait_queue(&host->wq, &wait);
817 
818 	if (pm)
819 		pm_runtime_get_sync(mmc_dev(host));
820 
821 	return stop;
822 }
823 EXPORT_SYMBOL(__mmc_claim_host);
824 
825 /**
826  *	mmc_release_host - release a host
827  *	@host: mmc host to release
828  *
829  *	Release a MMC host, allowing others to claim the host
830  *	for their operations.
831  */
832 void mmc_release_host(struct mmc_host *host)
833 {
834 	unsigned long flags;
835 
836 	WARN_ON(!host->claimed);
837 
838 	spin_lock_irqsave(&host->lock, flags);
839 	if (--host->claim_cnt) {
840 		/* Release for nested claim */
841 		spin_unlock_irqrestore(&host->lock, flags);
842 	} else {
843 		host->claimed = 0;
844 		host->claimer->task = NULL;
845 		host->claimer = NULL;
846 		spin_unlock_irqrestore(&host->lock, flags);
847 		wake_up(&host->wq);
848 		pm_runtime_mark_last_busy(mmc_dev(host));
849 		if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
850 			pm_runtime_put_sync_suspend(mmc_dev(host));
851 		else
852 			pm_runtime_put_autosuspend(mmc_dev(host));
853 	}
854 }
855 EXPORT_SYMBOL(mmc_release_host);
856 
857 /*
858  * This is a helper function, which fetches a runtime pm reference for the
859  * card device and also claims the host.
860  */
861 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
862 {
863 	pm_runtime_get_sync(&card->dev);
864 	__mmc_claim_host(card->host, ctx, NULL);
865 }
866 EXPORT_SYMBOL(mmc_get_card);
867 
868 /*
869  * This is a helper function, which releases the host and drops the runtime
870  * pm reference for the card device.
871  */
872 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
873 {
874 	struct mmc_host *host = card->host;
875 
876 	WARN_ON(ctx && host->claimer != ctx);
877 
878 	mmc_release_host(host);
879 	pm_runtime_mark_last_busy(&card->dev);
880 	pm_runtime_put_autosuspend(&card->dev);
881 }
882 EXPORT_SYMBOL(mmc_put_card);
883 
884 /*
885  * Internal function that does the actual ios call to the host driver,
886  * optionally printing some debug output.
887  */
888 static inline void mmc_set_ios(struct mmc_host *host)
889 {
890 	struct mmc_ios *ios = &host->ios;
891 
892 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
893 		"width %u timing %u\n",
894 		 mmc_hostname(host), ios->clock, ios->bus_mode,
895 		 ios->power_mode, ios->chip_select, ios->vdd,
896 		 1 << ios->bus_width, ios->timing);
897 
898 	host->ops->set_ios(host, ios);
899 }
900 
901 /*
902  * Control chip select pin on a host.
903  */
904 void mmc_set_chip_select(struct mmc_host *host, int mode)
905 {
906 	host->ios.chip_select = mode;
907 	mmc_set_ios(host);
908 }
909 
910 /*
911  * Sets the host clock to the highest possible frequency that
912  * is below "hz".
913  */
914 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
915 {
916 	WARN_ON(hz && hz < host->f_min);
917 
918 	if (hz > host->f_max)
919 		hz = host->f_max;
920 
921 	host->ios.clock = hz;
922 	mmc_set_ios(host);
923 }
924 
925 int mmc_execute_tuning(struct mmc_card *card)
926 {
927 	struct mmc_host *host = card->host;
928 	u32 opcode;
929 	int err;
930 
931 	if (!host->ops->execute_tuning)
932 		return 0;
933 
934 	if (host->cqe_on)
935 		host->cqe_ops->cqe_off(host);
936 
937 	if (mmc_card_mmc(card))
938 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
939 	else
940 		opcode = MMC_SEND_TUNING_BLOCK;
941 
942 	err = host->ops->execute_tuning(host, opcode);
943 	if (!err) {
944 		mmc_retune_clear(host);
945 		mmc_retune_enable(host);
946 		return 0;
947 	}
948 
949 	/* Only print error when we don't check for card removal */
950 	if (!host->detect_change) {
951 		pr_err("%s: tuning execution failed: %d\n",
952 			mmc_hostname(host), err);
953 		mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
954 	}
955 
956 	return err;
957 }
958 
959 /*
960  * Change the bus mode (open drain/push-pull) of a host.
961  */
962 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
963 {
964 	host->ios.bus_mode = mode;
965 	mmc_set_ios(host);
966 }
967 
968 /*
969  * Change data bus width of a host.
970  */
971 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
972 {
973 	host->ios.bus_width = width;
974 	mmc_set_ios(host);
975 }
976 
977 /*
978  * Set initial state after a power cycle or a hw_reset.
979  */
980 void mmc_set_initial_state(struct mmc_host *host)
981 {
982 	if (host->cqe_on)
983 		host->cqe_ops->cqe_off(host);
984 
985 	mmc_retune_disable(host);
986 
987 	if (mmc_host_is_spi(host))
988 		host->ios.chip_select = MMC_CS_HIGH;
989 	else
990 		host->ios.chip_select = MMC_CS_DONTCARE;
991 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
992 	host->ios.bus_width = MMC_BUS_WIDTH_1;
993 	host->ios.timing = MMC_TIMING_LEGACY;
994 	host->ios.drv_type = 0;
995 	host->ios.enhanced_strobe = false;
996 
997 	/*
998 	 * Make sure we are in non-enhanced strobe mode before we
999 	 * actually enable it in ext_csd.
1000 	 */
1001 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1002 	     host->ops->hs400_enhanced_strobe)
1003 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1004 
1005 	mmc_set_ios(host);
1006 
1007 	mmc_crypto_set_initial_state(host);
1008 }
1009 
1010 /**
1011  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1012  * @vdd:	voltage (mV)
1013  * @low_bits:	prefer low bits in boundary cases
1014  *
1015  * This function returns the OCR bit number according to the provided @vdd
1016  * value. If conversion is not possible a negative errno value returned.
1017  *
1018  * Depending on the @low_bits flag the function prefers low or high OCR bits
1019  * on boundary voltages. For example,
1020  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1021  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1022  *
1023  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1024  */
1025 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1026 {
1027 	const int max_bit = ilog2(MMC_VDD_35_36);
1028 	int bit;
1029 
1030 	if (vdd < 1650 || vdd > 3600)
1031 		return -EINVAL;
1032 
1033 	if (vdd >= 1650 && vdd <= 1950)
1034 		return ilog2(MMC_VDD_165_195);
1035 
1036 	if (low_bits)
1037 		vdd -= 1;
1038 
1039 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1040 	bit = (vdd - 2000) / 100 + 8;
1041 	if (bit > max_bit)
1042 		return max_bit;
1043 	return bit;
1044 }
1045 
1046 /**
1047  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1048  * @vdd_min:	minimum voltage value (mV)
1049  * @vdd_max:	maximum voltage value (mV)
1050  *
1051  * This function returns the OCR mask bits according to the provided @vdd_min
1052  * and @vdd_max values. If conversion is not possible the function returns 0.
1053  *
1054  * Notes wrt boundary cases:
1055  * This function sets the OCR bits for all boundary voltages, for example
1056  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1057  * MMC_VDD_34_35 mask.
1058  */
1059 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1060 {
1061 	u32 mask = 0;
1062 
1063 	if (vdd_max < vdd_min)
1064 		return 0;
1065 
1066 	/* Prefer high bits for the boundary vdd_max values. */
1067 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1068 	if (vdd_max < 0)
1069 		return 0;
1070 
1071 	/* Prefer low bits for the boundary vdd_min values. */
1072 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1073 	if (vdd_min < 0)
1074 		return 0;
1075 
1076 	/* Fill the mask, from max bit to min bit. */
1077 	while (vdd_max >= vdd_min)
1078 		mask |= 1 << vdd_max--;
1079 
1080 	return mask;
1081 }
1082 
1083 static int mmc_of_get_func_num(struct device_node *node)
1084 {
1085 	u32 reg;
1086 	int ret;
1087 
1088 	ret = of_property_read_u32(node, "reg", &reg);
1089 	if (ret < 0)
1090 		return ret;
1091 
1092 	return reg;
1093 }
1094 
1095 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1096 		unsigned func_num)
1097 {
1098 	struct device_node *node;
1099 
1100 	if (!host->parent || !host->parent->of_node)
1101 		return NULL;
1102 
1103 	for_each_child_of_node(host->parent->of_node, node) {
1104 		if (mmc_of_get_func_num(node) == func_num)
1105 			return node;
1106 	}
1107 
1108 	return NULL;
1109 }
1110 
1111 /*
1112  * Mask off any voltages we don't support and select
1113  * the lowest voltage
1114  */
1115 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1116 {
1117 	int bit;
1118 
1119 	/*
1120 	 * Sanity check the voltages that the card claims to
1121 	 * support.
1122 	 */
1123 	if (ocr & 0x7F) {
1124 		dev_warn(mmc_dev(host),
1125 		"card claims to support voltages below defined range\n");
1126 		ocr &= ~0x7F;
1127 	}
1128 
1129 	ocr &= host->ocr_avail;
1130 	if (!ocr) {
1131 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1132 		return 0;
1133 	}
1134 
1135 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1136 		bit = ffs(ocr) - 1;
1137 		ocr &= 3 << bit;
1138 		mmc_power_cycle(host, ocr);
1139 	} else {
1140 		bit = fls(ocr) - 1;
1141 		/*
1142 		 * The bit variable represents the highest voltage bit set in
1143 		 * the OCR register.
1144 		 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1145 		 * we must shift the mask '3' with (bit - 1).
1146 		 */
1147 		ocr &= 3 << (bit - 1);
1148 		if (bit != host->ios.vdd)
1149 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1150 	}
1151 
1152 	return ocr;
1153 }
1154 
1155 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1156 {
1157 	int err = 0;
1158 	int old_signal_voltage = host->ios.signal_voltage;
1159 
1160 	host->ios.signal_voltage = signal_voltage;
1161 	if (host->ops->start_signal_voltage_switch)
1162 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1163 
1164 	if (err)
1165 		host->ios.signal_voltage = old_signal_voltage;
1166 
1167 	return err;
1168 
1169 }
1170 
1171 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1172 {
1173 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1174 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1175 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1176 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1177 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1178 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1179 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1180 }
1181 
1182 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1183 {
1184 	u32 clock;
1185 
1186 	/*
1187 	 * During a signal voltage level switch, the clock must be gated
1188 	 * for 5 ms according to the SD spec
1189 	 */
1190 	clock = host->ios.clock;
1191 	host->ios.clock = 0;
1192 	mmc_set_ios(host);
1193 
1194 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1195 		return -EAGAIN;
1196 
1197 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1198 	mmc_delay(10);
1199 	host->ios.clock = clock;
1200 	mmc_set_ios(host);
1201 
1202 	return 0;
1203 }
1204 
1205 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1206 {
1207 	struct mmc_command cmd = {};
1208 	int err = 0;
1209 
1210 	/*
1211 	 * If we cannot switch voltages, return failure so the caller
1212 	 * can continue without UHS mode
1213 	 */
1214 	if (!host->ops->start_signal_voltage_switch)
1215 		return -EPERM;
1216 	if (!host->ops->card_busy)
1217 		pr_warn("%s: cannot verify signal voltage switch\n",
1218 			mmc_hostname(host));
1219 
1220 	cmd.opcode = SD_SWITCH_VOLTAGE;
1221 	cmd.arg = 0;
1222 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1223 
1224 	err = mmc_wait_for_cmd(host, &cmd, 0);
1225 	if (err)
1226 		goto power_cycle;
1227 
1228 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1229 		return -EIO;
1230 
1231 	/*
1232 	 * The card should drive cmd and dat[0:3] low immediately
1233 	 * after the response of cmd11, but wait 1 ms to be sure
1234 	 */
1235 	mmc_delay(1);
1236 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1237 		err = -EAGAIN;
1238 		goto power_cycle;
1239 	}
1240 
1241 	if (mmc_host_set_uhs_voltage(host)) {
1242 		/*
1243 		 * Voltages may not have been switched, but we've already
1244 		 * sent CMD11, so a power cycle is required anyway
1245 		 */
1246 		err = -EAGAIN;
1247 		goto power_cycle;
1248 	}
1249 
1250 	/* Wait for at least 1 ms according to spec */
1251 	mmc_delay(1);
1252 
1253 	/*
1254 	 * Failure to switch is indicated by the card holding
1255 	 * dat[0:3] low
1256 	 */
1257 	if (host->ops->card_busy && host->ops->card_busy(host))
1258 		err = -EAGAIN;
1259 
1260 power_cycle:
1261 	if (err) {
1262 		pr_debug("%s: Signal voltage switch failed, "
1263 			"power cycling card\n", mmc_hostname(host));
1264 		mmc_power_cycle(host, ocr);
1265 	}
1266 
1267 	return err;
1268 }
1269 
1270 /*
1271  * Select timing parameters for host.
1272  */
1273 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1274 {
1275 	host->ios.timing = timing;
1276 	mmc_set_ios(host);
1277 }
1278 
1279 /*
1280  * Select appropriate driver type for host.
1281  */
1282 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1283 {
1284 	host->ios.drv_type = drv_type;
1285 	mmc_set_ios(host);
1286 }
1287 
1288 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1289 			      int card_drv_type, int *drv_type)
1290 {
1291 	struct mmc_host *host = card->host;
1292 	int host_drv_type = SD_DRIVER_TYPE_B;
1293 
1294 	*drv_type = 0;
1295 
1296 	if (!host->ops->select_drive_strength)
1297 		return 0;
1298 
1299 	/* Use SD definition of driver strength for hosts */
1300 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1301 		host_drv_type |= SD_DRIVER_TYPE_A;
1302 
1303 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1304 		host_drv_type |= SD_DRIVER_TYPE_C;
1305 
1306 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1307 		host_drv_type |= SD_DRIVER_TYPE_D;
1308 
1309 	/*
1310 	 * The drive strength that the hardware can support
1311 	 * depends on the board design.  Pass the appropriate
1312 	 * information and let the hardware specific code
1313 	 * return what is possible given the options
1314 	 */
1315 	return host->ops->select_drive_strength(card, max_dtr,
1316 						host_drv_type,
1317 						card_drv_type,
1318 						drv_type);
1319 }
1320 
1321 /*
1322  * Apply power to the MMC stack.  This is a two-stage process.
1323  * First, we enable power to the card without the clock running.
1324  * We then wait a bit for the power to stabilise.  Finally,
1325  * enable the bus drivers and clock to the card.
1326  *
1327  * We must _NOT_ enable the clock prior to power stablising.
1328  *
1329  * If a host does all the power sequencing itself, ignore the
1330  * initial MMC_POWER_UP stage.
1331  */
1332 void mmc_power_up(struct mmc_host *host, u32 ocr)
1333 {
1334 	if (host->ios.power_mode == MMC_POWER_ON)
1335 		return;
1336 
1337 	mmc_pwrseq_pre_power_on(host);
1338 
1339 	host->ios.vdd = fls(ocr) - 1;
1340 	host->ios.power_mode = MMC_POWER_UP;
1341 	/* Set initial state and call mmc_set_ios */
1342 	mmc_set_initial_state(host);
1343 
1344 	mmc_set_initial_signal_voltage(host);
1345 
1346 	/*
1347 	 * This delay should be sufficient to allow the power supply
1348 	 * to reach the minimum voltage.
1349 	 */
1350 	mmc_delay(host->ios.power_delay_ms);
1351 
1352 	mmc_pwrseq_post_power_on(host);
1353 
1354 	host->ios.clock = host->f_init;
1355 
1356 	host->ios.power_mode = MMC_POWER_ON;
1357 	mmc_set_ios(host);
1358 
1359 	/*
1360 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1361 	 * time required to reach a stable voltage.
1362 	 */
1363 	mmc_delay(host->ios.power_delay_ms);
1364 }
1365 
1366 void mmc_power_off(struct mmc_host *host)
1367 {
1368 	if (host->ios.power_mode == MMC_POWER_OFF)
1369 		return;
1370 
1371 	mmc_pwrseq_power_off(host);
1372 
1373 	host->ios.clock = 0;
1374 	host->ios.vdd = 0;
1375 
1376 	host->ios.power_mode = MMC_POWER_OFF;
1377 	/* Set initial state and call mmc_set_ios */
1378 	mmc_set_initial_state(host);
1379 
1380 	/*
1381 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1382 	 * XO-1.5, require a short delay after poweroff before the card
1383 	 * can be successfully turned on again.
1384 	 */
1385 	mmc_delay(1);
1386 }
1387 
1388 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1389 {
1390 	mmc_power_off(host);
1391 	/* Wait at least 1 ms according to SD spec */
1392 	mmc_delay(1);
1393 	mmc_power_up(host, ocr);
1394 }
1395 
1396 /*
1397  * Assign a mmc bus handler to a host. Only one bus handler may control a
1398  * host at any given time.
1399  */
1400 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1401 {
1402 	host->bus_ops = ops;
1403 }
1404 
1405 /*
1406  * Remove the current bus handler from a host.
1407  */
1408 void mmc_detach_bus(struct mmc_host *host)
1409 {
1410 	host->bus_ops = NULL;
1411 }
1412 
1413 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1414 {
1415 	/*
1416 	 * Prevent system sleep for 5s to allow user space to consume the
1417 	 * corresponding uevent. This is especially useful, when CD irq is used
1418 	 * as a system wakeup, but doesn't hurt in other cases.
1419 	 */
1420 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1421 		__pm_wakeup_event(host->ws, 5000);
1422 
1423 	host->detect_change = 1;
1424 	mmc_schedule_delayed_work(&host->detect, delay);
1425 }
1426 
1427 /**
1428  *	mmc_detect_change - process change of state on a MMC socket
1429  *	@host: host which changed state.
1430  *	@delay: optional delay to wait before detection (jiffies)
1431  *
1432  *	MMC drivers should call this when they detect a card has been
1433  *	inserted or removed. The MMC layer will confirm that any
1434  *	present card is still functional, and initialize any newly
1435  *	inserted.
1436  */
1437 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1438 {
1439 	_mmc_detect_change(host, delay, true);
1440 }
1441 EXPORT_SYMBOL(mmc_detect_change);
1442 
1443 void mmc_init_erase(struct mmc_card *card)
1444 {
1445 	unsigned int sz;
1446 
1447 	if (is_power_of_2(card->erase_size))
1448 		card->erase_shift = ffs(card->erase_size) - 1;
1449 	else
1450 		card->erase_shift = 0;
1451 
1452 	/*
1453 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1454 	 * card.  That is not desirable because it can take a long time
1455 	 * (minutes) potentially delaying more important I/O, and also the
1456 	 * timeout calculations become increasingly hugely over-estimated.
1457 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1458 	 * to that size and alignment.
1459 	 *
1460 	 * For SD cards that define Allocation Unit size, limit erases to one
1461 	 * Allocation Unit at a time.
1462 	 * For MMC, have a stab at ai good value and for modern cards it will
1463 	 * end up being 4MiB. Note that if the value is too small, it can end
1464 	 * up taking longer to erase. Also note, erase_size is already set to
1465 	 * High Capacity Erase Size if available when this function is called.
1466 	 */
1467 	if (mmc_card_sd(card) && card->ssr.au) {
1468 		card->pref_erase = card->ssr.au;
1469 		card->erase_shift = ffs(card->ssr.au) - 1;
1470 	} else if (card->erase_size) {
1471 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1472 		if (sz < 128)
1473 			card->pref_erase = 512 * 1024 / 512;
1474 		else if (sz < 512)
1475 			card->pref_erase = 1024 * 1024 / 512;
1476 		else if (sz < 1024)
1477 			card->pref_erase = 2 * 1024 * 1024 / 512;
1478 		else
1479 			card->pref_erase = 4 * 1024 * 1024 / 512;
1480 		if (card->pref_erase < card->erase_size)
1481 			card->pref_erase = card->erase_size;
1482 		else {
1483 			sz = card->pref_erase % card->erase_size;
1484 			if (sz)
1485 				card->pref_erase += card->erase_size - sz;
1486 		}
1487 	} else
1488 		card->pref_erase = 0;
1489 }
1490 
1491 static bool is_trim_arg(unsigned int arg)
1492 {
1493 	return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1494 }
1495 
1496 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1497 				          unsigned int arg, unsigned int qty)
1498 {
1499 	unsigned int erase_timeout;
1500 
1501 	if (arg == MMC_DISCARD_ARG ||
1502 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1503 		erase_timeout = card->ext_csd.trim_timeout;
1504 	} else if (card->ext_csd.erase_group_def & 1) {
1505 		/* High Capacity Erase Group Size uses HC timeouts */
1506 		if (arg == MMC_TRIM_ARG)
1507 			erase_timeout = card->ext_csd.trim_timeout;
1508 		else
1509 			erase_timeout = card->ext_csd.hc_erase_timeout;
1510 	} else {
1511 		/* CSD Erase Group Size uses write timeout */
1512 		unsigned int mult = (10 << card->csd.r2w_factor);
1513 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1514 		unsigned int timeout_us;
1515 
1516 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1517 		if (card->csd.taac_ns < 1000000)
1518 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1519 		else
1520 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1521 
1522 		/*
1523 		 * ios.clock is only a target.  The real clock rate might be
1524 		 * less but not that much less, so fudge it by multiplying by 2.
1525 		 */
1526 		timeout_clks <<= 1;
1527 		timeout_us += (timeout_clks * 1000) /
1528 			      (card->host->ios.clock / 1000);
1529 
1530 		erase_timeout = timeout_us / 1000;
1531 
1532 		/*
1533 		 * Theoretically, the calculation could underflow so round up
1534 		 * to 1ms in that case.
1535 		 */
1536 		if (!erase_timeout)
1537 			erase_timeout = 1;
1538 	}
1539 
1540 	/* Multiplier for secure operations */
1541 	if (arg & MMC_SECURE_ARGS) {
1542 		if (arg == MMC_SECURE_ERASE_ARG)
1543 			erase_timeout *= card->ext_csd.sec_erase_mult;
1544 		else
1545 			erase_timeout *= card->ext_csd.sec_trim_mult;
1546 	}
1547 
1548 	erase_timeout *= qty;
1549 
1550 	/*
1551 	 * Ensure at least a 1 second timeout for SPI as per
1552 	 * 'mmc_set_data_timeout()'
1553 	 */
1554 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1555 		erase_timeout = 1000;
1556 
1557 	return erase_timeout;
1558 }
1559 
1560 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1561 					 unsigned int arg,
1562 					 unsigned int qty)
1563 {
1564 	unsigned int erase_timeout;
1565 
1566 	/* for DISCARD none of the below calculation applies.
1567 	 * the busy timeout is 250msec per discard command.
1568 	 */
1569 	if (arg == SD_DISCARD_ARG)
1570 		return SD_DISCARD_TIMEOUT_MS;
1571 
1572 	if (card->ssr.erase_timeout) {
1573 		/* Erase timeout specified in SD Status Register (SSR) */
1574 		erase_timeout = card->ssr.erase_timeout * qty +
1575 				card->ssr.erase_offset;
1576 	} else {
1577 		/*
1578 		 * Erase timeout not specified in SD Status Register (SSR) so
1579 		 * use 250ms per write block.
1580 		 */
1581 		erase_timeout = 250 * qty;
1582 	}
1583 
1584 	/* Must not be less than 1 second */
1585 	if (erase_timeout < 1000)
1586 		erase_timeout = 1000;
1587 
1588 	return erase_timeout;
1589 }
1590 
1591 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1592 				      unsigned int arg,
1593 				      unsigned int qty)
1594 {
1595 	if (mmc_card_sd(card))
1596 		return mmc_sd_erase_timeout(card, arg, qty);
1597 	else
1598 		return mmc_mmc_erase_timeout(card, arg, qty);
1599 }
1600 
1601 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1602 			unsigned int to, unsigned int arg)
1603 {
1604 	struct mmc_command cmd = {};
1605 	unsigned int qty = 0, busy_timeout = 0;
1606 	bool use_r1b_resp;
1607 	int err;
1608 
1609 	mmc_retune_hold(card->host);
1610 
1611 	/*
1612 	 * qty is used to calculate the erase timeout which depends on how many
1613 	 * erase groups (or allocation units in SD terminology) are affected.
1614 	 * We count erasing part of an erase group as one erase group.
1615 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1616 	 * erase group size is almost certainly also power of 2, but it does not
1617 	 * seem to insist on that in the JEDEC standard, so we fall back to
1618 	 * division in that case.  SD may not specify an allocation unit size,
1619 	 * in which case the timeout is based on the number of write blocks.
1620 	 *
1621 	 * Note that the timeout for secure trim 2 will only be correct if the
1622 	 * number of erase groups specified is the same as the total of all
1623 	 * preceding secure trim 1 commands.  Since the power may have been
1624 	 * lost since the secure trim 1 commands occurred, it is generally
1625 	 * impossible to calculate the secure trim 2 timeout correctly.
1626 	 */
1627 	if (card->erase_shift)
1628 		qty += ((to >> card->erase_shift) -
1629 			(from >> card->erase_shift)) + 1;
1630 	else if (mmc_card_sd(card))
1631 		qty += to - from + 1;
1632 	else
1633 		qty += ((to / card->erase_size) -
1634 			(from / card->erase_size)) + 1;
1635 
1636 	if (!mmc_card_blockaddr(card)) {
1637 		from <<= 9;
1638 		to <<= 9;
1639 	}
1640 
1641 	if (mmc_card_sd(card))
1642 		cmd.opcode = SD_ERASE_WR_BLK_START;
1643 	else
1644 		cmd.opcode = MMC_ERASE_GROUP_START;
1645 	cmd.arg = from;
1646 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1647 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1648 	if (err) {
1649 		pr_err("mmc_erase: group start error %d, "
1650 		       "status %#x\n", err, cmd.resp[0]);
1651 		err = -EIO;
1652 		goto out;
1653 	}
1654 
1655 	memset(&cmd, 0, sizeof(struct mmc_command));
1656 	if (mmc_card_sd(card))
1657 		cmd.opcode = SD_ERASE_WR_BLK_END;
1658 	else
1659 		cmd.opcode = MMC_ERASE_GROUP_END;
1660 	cmd.arg = to;
1661 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1662 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1663 	if (err) {
1664 		pr_err("mmc_erase: group end error %d, status %#x\n",
1665 		       err, cmd.resp[0]);
1666 		err = -EIO;
1667 		goto out;
1668 	}
1669 
1670 	memset(&cmd, 0, sizeof(struct mmc_command));
1671 	cmd.opcode = MMC_ERASE;
1672 	cmd.arg = arg;
1673 	busy_timeout = mmc_erase_timeout(card, arg, qty);
1674 	use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1675 
1676 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1677 	if (err) {
1678 		pr_err("mmc_erase: erase error %d, status %#x\n",
1679 		       err, cmd.resp[0]);
1680 		err = -EIO;
1681 		goto out;
1682 	}
1683 
1684 	if (mmc_host_is_spi(card->host))
1685 		goto out;
1686 
1687 	/*
1688 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1689 	 * shall be avoided.
1690 	 */
1691 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1692 		goto out;
1693 
1694 	/* Let's poll to find out when the erase operation completes. */
1695 	err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1696 
1697 out:
1698 	mmc_retune_release(card->host);
1699 	return err;
1700 }
1701 
1702 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1703 					 unsigned int *from,
1704 					 unsigned int *to,
1705 					 unsigned int nr)
1706 {
1707 	unsigned int from_new = *from, nr_new = nr, rem;
1708 
1709 	/*
1710 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1711 	 * to align the erase size efficiently.
1712 	 */
1713 	if (is_power_of_2(card->erase_size)) {
1714 		unsigned int temp = from_new;
1715 
1716 		from_new = round_up(temp, card->erase_size);
1717 		rem = from_new - temp;
1718 
1719 		if (nr_new > rem)
1720 			nr_new -= rem;
1721 		else
1722 			return 0;
1723 
1724 		nr_new = round_down(nr_new, card->erase_size);
1725 	} else {
1726 		rem = from_new % card->erase_size;
1727 		if (rem) {
1728 			rem = card->erase_size - rem;
1729 			from_new += rem;
1730 			if (nr_new > rem)
1731 				nr_new -= rem;
1732 			else
1733 				return 0;
1734 		}
1735 
1736 		rem = nr_new % card->erase_size;
1737 		if (rem)
1738 			nr_new -= rem;
1739 	}
1740 
1741 	if (nr_new == 0)
1742 		return 0;
1743 
1744 	*to = from_new + nr_new;
1745 	*from = from_new;
1746 
1747 	return nr_new;
1748 }
1749 
1750 /**
1751  * mmc_erase - erase sectors.
1752  * @card: card to erase
1753  * @from: first sector to erase
1754  * @nr: number of sectors to erase
1755  * @arg: erase command argument
1756  *
1757  * Caller must claim host before calling this function.
1758  */
1759 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1760 	      unsigned int arg)
1761 {
1762 	unsigned int rem, to = from + nr;
1763 	int err;
1764 
1765 	if (!(card->csd.cmdclass & CCC_ERASE))
1766 		return -EOPNOTSUPP;
1767 
1768 	if (!card->erase_size)
1769 		return -EOPNOTSUPP;
1770 
1771 	if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1772 		return -EOPNOTSUPP;
1773 
1774 	if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1775 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1776 		return -EOPNOTSUPP;
1777 
1778 	if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1779 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1780 		return -EOPNOTSUPP;
1781 
1782 	if (arg == MMC_SECURE_ERASE_ARG) {
1783 		if (from % card->erase_size || nr % card->erase_size)
1784 			return -EINVAL;
1785 	}
1786 
1787 	if (arg == MMC_ERASE_ARG)
1788 		nr = mmc_align_erase_size(card, &from, &to, nr);
1789 
1790 	if (nr == 0)
1791 		return 0;
1792 
1793 	if (to <= from)
1794 		return -EINVAL;
1795 
1796 	/* 'from' and 'to' are inclusive */
1797 	to -= 1;
1798 
1799 	/*
1800 	 * Special case where only one erase-group fits in the timeout budget:
1801 	 * If the region crosses an erase-group boundary on this particular
1802 	 * case, we will be trimming more than one erase-group which, does not
1803 	 * fit in the timeout budget of the controller, so we need to split it
1804 	 * and call mmc_do_erase() twice if necessary. This special case is
1805 	 * identified by the card->eg_boundary flag.
1806 	 */
1807 	rem = card->erase_size - (from % card->erase_size);
1808 	if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1809 		err = mmc_do_erase(card, from, from + rem - 1, arg);
1810 		from += rem;
1811 		if ((err) || (to <= from))
1812 			return err;
1813 	}
1814 
1815 	return mmc_do_erase(card, from, to, arg);
1816 }
1817 EXPORT_SYMBOL(mmc_erase);
1818 
1819 int mmc_can_erase(struct mmc_card *card)
1820 {
1821 	if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1822 		return 1;
1823 	return 0;
1824 }
1825 EXPORT_SYMBOL(mmc_can_erase);
1826 
1827 int mmc_can_trim(struct mmc_card *card)
1828 {
1829 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1830 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1831 		return 1;
1832 	return 0;
1833 }
1834 EXPORT_SYMBOL(mmc_can_trim);
1835 
1836 int mmc_can_discard(struct mmc_card *card)
1837 {
1838 	/*
1839 	 * As there's no way to detect the discard support bit at v4.5
1840 	 * use the s/w feature support filed.
1841 	 */
1842 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1843 		return 1;
1844 	return 0;
1845 }
1846 EXPORT_SYMBOL(mmc_can_discard);
1847 
1848 int mmc_can_sanitize(struct mmc_card *card)
1849 {
1850 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1851 		return 0;
1852 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1853 		return 1;
1854 	return 0;
1855 }
1856 
1857 int mmc_can_secure_erase_trim(struct mmc_card *card)
1858 {
1859 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1860 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1861 		return 1;
1862 	return 0;
1863 }
1864 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1865 
1866 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1867 			    unsigned int nr)
1868 {
1869 	if (!card->erase_size)
1870 		return 0;
1871 	if (from % card->erase_size || nr % card->erase_size)
1872 		return 0;
1873 	return 1;
1874 }
1875 EXPORT_SYMBOL(mmc_erase_group_aligned);
1876 
1877 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1878 					    unsigned int arg)
1879 {
1880 	struct mmc_host *host = card->host;
1881 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1882 	unsigned int last_timeout = 0;
1883 	unsigned int max_busy_timeout = host->max_busy_timeout ?
1884 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1885 
1886 	if (card->erase_shift) {
1887 		max_qty = UINT_MAX >> card->erase_shift;
1888 		min_qty = card->pref_erase >> card->erase_shift;
1889 	} else if (mmc_card_sd(card)) {
1890 		max_qty = UINT_MAX;
1891 		min_qty = card->pref_erase;
1892 	} else {
1893 		max_qty = UINT_MAX / card->erase_size;
1894 		min_qty = card->pref_erase / card->erase_size;
1895 	}
1896 
1897 	/*
1898 	 * We should not only use 'host->max_busy_timeout' as the limitation
1899 	 * when deciding the max discard sectors. We should set a balance value
1900 	 * to improve the erase speed, and it can not get too long timeout at
1901 	 * the same time.
1902 	 *
1903 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
1904 	 * matter what size of 'host->max_busy_timeout', but if the
1905 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
1906 	 * then we can continue to increase the max discard sectors until we
1907 	 * get a balance value. In cases when the 'host->max_busy_timeout'
1908 	 * isn't specified, use the default max erase timeout.
1909 	 */
1910 	do {
1911 		y = 0;
1912 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1913 			timeout = mmc_erase_timeout(card, arg, qty + x);
1914 
1915 			if (qty + x > min_qty && timeout > max_busy_timeout)
1916 				break;
1917 
1918 			if (timeout < last_timeout)
1919 				break;
1920 			last_timeout = timeout;
1921 			y = x;
1922 		}
1923 		qty += y;
1924 	} while (y);
1925 
1926 	if (!qty)
1927 		return 0;
1928 
1929 	/*
1930 	 * When specifying a sector range to trim, chances are we might cross
1931 	 * an erase-group boundary even if the amount of sectors is less than
1932 	 * one erase-group.
1933 	 * If we can only fit one erase-group in the controller timeout budget,
1934 	 * we have to care that erase-group boundaries are not crossed by a
1935 	 * single trim operation. We flag that special case with "eg_boundary".
1936 	 * In all other cases we can just decrement qty and pretend that we
1937 	 * always touch (qty + 1) erase-groups as a simple optimization.
1938 	 */
1939 	if (qty == 1)
1940 		card->eg_boundary = 1;
1941 	else
1942 		qty--;
1943 
1944 	/* Convert qty to sectors */
1945 	if (card->erase_shift)
1946 		max_discard = qty << card->erase_shift;
1947 	else if (mmc_card_sd(card))
1948 		max_discard = qty + 1;
1949 	else
1950 		max_discard = qty * card->erase_size;
1951 
1952 	return max_discard;
1953 }
1954 
1955 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1956 {
1957 	struct mmc_host *host = card->host;
1958 	unsigned int max_discard, max_trim;
1959 
1960 	/*
1961 	 * Without erase_group_def set, MMC erase timeout depends on clock
1962 	 * frequence which can change.  In that case, the best choice is
1963 	 * just the preferred erase size.
1964 	 */
1965 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1966 		return card->pref_erase;
1967 
1968 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1969 	if (mmc_can_trim(card)) {
1970 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1971 		if (max_trim < max_discard || max_discard == 0)
1972 			max_discard = max_trim;
1973 	} else if (max_discard < card->erase_size) {
1974 		max_discard = 0;
1975 	}
1976 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1977 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
1978 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1979 	return max_discard;
1980 }
1981 EXPORT_SYMBOL(mmc_calc_max_discard);
1982 
1983 bool mmc_card_is_blockaddr(struct mmc_card *card)
1984 {
1985 	return card ? mmc_card_blockaddr(card) : false;
1986 }
1987 EXPORT_SYMBOL(mmc_card_is_blockaddr);
1988 
1989 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1990 {
1991 	struct mmc_command cmd = {};
1992 
1993 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1994 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
1995 		return 0;
1996 
1997 	cmd.opcode = MMC_SET_BLOCKLEN;
1998 	cmd.arg = blocklen;
1999 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2000 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2001 }
2002 EXPORT_SYMBOL(mmc_set_blocklen);
2003 
2004 static void mmc_hw_reset_for_init(struct mmc_host *host)
2005 {
2006 	mmc_pwrseq_reset(host);
2007 
2008 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2009 		return;
2010 	host->ops->card_hw_reset(host);
2011 }
2012 
2013 /**
2014  * mmc_hw_reset - reset the card in hardware
2015  * @card: card to be reset
2016  *
2017  * Hard reset the card. This function is only for upper layers, like the
2018  * block layer or card drivers. You cannot use it in host drivers (struct
2019  * mmc_card might be gone then).
2020  *
2021  * Return: 0 on success, -errno on failure
2022  */
2023 int mmc_hw_reset(struct mmc_card *card)
2024 {
2025 	struct mmc_host *host = card->host;
2026 	int ret;
2027 
2028 	ret = host->bus_ops->hw_reset(host);
2029 	if (ret < 0)
2030 		pr_warn("%s: tried to HW reset card, got error %d\n",
2031 			mmc_hostname(host), ret);
2032 
2033 	return ret;
2034 }
2035 EXPORT_SYMBOL(mmc_hw_reset);
2036 
2037 int mmc_sw_reset(struct mmc_card *card)
2038 {
2039 	struct mmc_host *host = card->host;
2040 	int ret;
2041 
2042 	if (!host->bus_ops->sw_reset)
2043 		return -EOPNOTSUPP;
2044 
2045 	ret = host->bus_ops->sw_reset(host);
2046 	if (ret)
2047 		pr_warn("%s: tried to SW reset card, got error %d\n",
2048 			mmc_hostname(host), ret);
2049 
2050 	return ret;
2051 }
2052 EXPORT_SYMBOL(mmc_sw_reset);
2053 
2054 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2055 {
2056 	host->f_init = freq;
2057 
2058 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2059 		mmc_hostname(host), __func__, host->f_init);
2060 
2061 	mmc_power_up(host, host->ocr_avail);
2062 
2063 	/*
2064 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2065 	 * do a hardware reset if possible.
2066 	 */
2067 	mmc_hw_reset_for_init(host);
2068 
2069 	/*
2070 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2071 	 * if the card is being re-initialized, just send it.  CMD52
2072 	 * should be ignored by SD/eMMC cards.
2073 	 * Skip it if we already know that we do not support SDIO commands
2074 	 */
2075 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2076 		sdio_reset(host);
2077 
2078 	mmc_go_idle(host);
2079 
2080 	if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2081 		if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2082 			goto out;
2083 		if (mmc_card_sd_express(host))
2084 			return 0;
2085 	}
2086 
2087 	/* Order's important: probe SDIO, then SD, then MMC */
2088 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2089 		if (!mmc_attach_sdio(host))
2090 			return 0;
2091 
2092 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2093 		if (!mmc_attach_sd(host))
2094 			return 0;
2095 
2096 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2097 		if (!mmc_attach_mmc(host))
2098 			return 0;
2099 
2100 out:
2101 	mmc_power_off(host);
2102 	return -EIO;
2103 }
2104 
2105 int _mmc_detect_card_removed(struct mmc_host *host)
2106 {
2107 	int ret;
2108 
2109 	if (!host->card || mmc_card_removed(host->card))
2110 		return 1;
2111 
2112 	ret = host->bus_ops->alive(host);
2113 
2114 	/*
2115 	 * Card detect status and alive check may be out of sync if card is
2116 	 * removed slowly, when card detect switch changes while card/slot
2117 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2118 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2119 	 * detect work 200ms later for this case.
2120 	 */
2121 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2122 		mmc_detect_change(host, msecs_to_jiffies(200));
2123 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2124 	}
2125 
2126 	if (ret) {
2127 		mmc_card_set_removed(host->card);
2128 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2129 	}
2130 
2131 	return ret;
2132 }
2133 
2134 int mmc_detect_card_removed(struct mmc_host *host)
2135 {
2136 	struct mmc_card *card = host->card;
2137 	int ret;
2138 
2139 	WARN_ON(!host->claimed);
2140 
2141 	if (!card)
2142 		return 1;
2143 
2144 	if (!mmc_card_is_removable(host))
2145 		return 0;
2146 
2147 	ret = mmc_card_removed(card);
2148 	/*
2149 	 * The card will be considered unchanged unless we have been asked to
2150 	 * detect a change or host requires polling to provide card detection.
2151 	 */
2152 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2153 		return ret;
2154 
2155 	host->detect_change = 0;
2156 	if (!ret) {
2157 		ret = _mmc_detect_card_removed(host);
2158 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2159 			/*
2160 			 * Schedule a detect work as soon as possible to let a
2161 			 * rescan handle the card removal.
2162 			 */
2163 			cancel_delayed_work(&host->detect);
2164 			_mmc_detect_change(host, 0, false);
2165 		}
2166 	}
2167 
2168 	return ret;
2169 }
2170 EXPORT_SYMBOL(mmc_detect_card_removed);
2171 
2172 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2173 {
2174 	unsigned int boot_sectors_num;
2175 
2176 	if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2177 		return -EOPNOTSUPP;
2178 
2179 	/* filter out unrelated cards */
2180 	if (card->ext_csd.rev < 3 ||
2181 	    !mmc_card_mmc(card) ||
2182 	    !mmc_card_is_blockaddr(card) ||
2183 	     mmc_card_is_removable(card->host))
2184 		return -ENOENT;
2185 
2186 	/*
2187 	 * eMMC storage has two special boot partitions in addition to the
2188 	 * main one.  NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2189 	 * accesses, this means that the partition table addresses are shifted
2190 	 * by the size of boot partitions.  In accordance with the eMMC
2191 	 * specification, the boot partition size is calculated as follows:
2192 	 *
2193 	 *	boot partition size = 128K byte x BOOT_SIZE_MULT
2194 	 *
2195 	 * Calculate number of sectors occupied by the both boot partitions.
2196 	 */
2197 	boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2198 			   SZ_512 * MMC_NUM_BOOT_PARTITION;
2199 
2200 	/* Defined by NVIDIA and used by Android devices. */
2201 	*gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2202 
2203 	return 0;
2204 }
2205 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2206 
2207 void mmc_rescan(struct work_struct *work)
2208 {
2209 	struct mmc_host *host =
2210 		container_of(work, struct mmc_host, detect.work);
2211 	int i;
2212 
2213 	if (host->rescan_disable)
2214 		return;
2215 
2216 	/* If there is a non-removable card registered, only scan once */
2217 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2218 		return;
2219 	host->rescan_entered = 1;
2220 
2221 	if (host->trigger_card_event && host->ops->card_event) {
2222 		mmc_claim_host(host);
2223 		host->ops->card_event(host);
2224 		mmc_release_host(host);
2225 		host->trigger_card_event = false;
2226 	}
2227 
2228 	/* Verify a registered card to be functional, else remove it. */
2229 	if (host->bus_ops)
2230 		host->bus_ops->detect(host);
2231 
2232 	host->detect_change = 0;
2233 
2234 	/* if there still is a card present, stop here */
2235 	if (host->bus_ops != NULL)
2236 		goto out;
2237 
2238 	mmc_claim_host(host);
2239 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2240 			host->ops->get_cd(host) == 0) {
2241 		mmc_power_off(host);
2242 		mmc_release_host(host);
2243 		goto out;
2244 	}
2245 
2246 	/* If an SD express card is present, then leave it as is. */
2247 	if (mmc_card_sd_express(host)) {
2248 		mmc_release_host(host);
2249 		goto out;
2250 	}
2251 
2252 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2253 		unsigned int freq = freqs[i];
2254 		if (freq > host->f_max) {
2255 			if (i + 1 < ARRAY_SIZE(freqs))
2256 				continue;
2257 			freq = host->f_max;
2258 		}
2259 		if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2260 			break;
2261 		if (freqs[i] <= host->f_min)
2262 			break;
2263 	}
2264 
2265 	/* A non-removable card should have been detected by now. */
2266 	if (!mmc_card_is_removable(host) && !host->bus_ops)
2267 		pr_info("%s: Failed to initialize a non-removable card",
2268 			mmc_hostname(host));
2269 
2270 	/*
2271 	 * Ignore the command timeout errors observed during
2272 	 * the card init as those are excepted.
2273 	 */
2274 	host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2275 	mmc_release_host(host);
2276 
2277  out:
2278 	if (host->caps & MMC_CAP_NEEDS_POLL)
2279 		mmc_schedule_delayed_work(&host->detect, HZ);
2280 }
2281 
2282 void mmc_start_host(struct mmc_host *host)
2283 {
2284 	host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2285 	host->rescan_disable = 0;
2286 
2287 	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2288 		mmc_claim_host(host);
2289 		mmc_power_up(host, host->ocr_avail);
2290 		mmc_release_host(host);
2291 	}
2292 
2293 	mmc_gpiod_request_cd_irq(host);
2294 	_mmc_detect_change(host, 0, false);
2295 }
2296 
2297 void __mmc_stop_host(struct mmc_host *host)
2298 {
2299 	if (host->slot.cd_irq >= 0) {
2300 		mmc_gpio_set_cd_wake(host, false);
2301 		disable_irq(host->slot.cd_irq);
2302 	}
2303 
2304 	host->rescan_disable = 1;
2305 	cancel_delayed_work_sync(&host->detect);
2306 }
2307 
2308 void mmc_stop_host(struct mmc_host *host)
2309 {
2310 	__mmc_stop_host(host);
2311 
2312 	/* clear pm flags now and let card drivers set them as needed */
2313 	host->pm_flags = 0;
2314 
2315 	if (host->bus_ops) {
2316 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2317 		host->bus_ops->remove(host);
2318 		mmc_claim_host(host);
2319 		mmc_detach_bus(host);
2320 		mmc_power_off(host);
2321 		mmc_release_host(host);
2322 		return;
2323 	}
2324 
2325 	mmc_claim_host(host);
2326 	mmc_power_off(host);
2327 	mmc_release_host(host);
2328 }
2329 
2330 static int __init mmc_init(void)
2331 {
2332 	int ret;
2333 
2334 	ret = mmc_register_bus();
2335 	if (ret)
2336 		return ret;
2337 
2338 	ret = mmc_register_host_class();
2339 	if (ret)
2340 		goto unregister_bus;
2341 
2342 	ret = sdio_register_bus();
2343 	if (ret)
2344 		goto unregister_host_class;
2345 
2346 	return 0;
2347 
2348 unregister_host_class:
2349 	mmc_unregister_host_class();
2350 unregister_bus:
2351 	mmc_unregister_bus();
2352 	return ret;
2353 }
2354 
2355 static void __exit mmc_exit(void)
2356 {
2357 	sdio_unregister_bus();
2358 	mmc_unregister_host_class();
2359 	mmc_unregister_bus();
2360 }
2361 
2362 subsys_initcall(mmc_init);
2363 module_exit(mmc_exit);
2364 
2365 MODULE_LICENSE("GPL");
2366