xref: /openbmc/linux/drivers/mmc/core/core.c (revision 21278aea)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #include "core.h"
40 #include "bus.h"
41 #include "host.h"
42 #include "sdio_bus.h"
43 
44 #include "mmc_ops.h"
45 #include "sd_ops.h"
46 #include "sdio_ops.h"
47 
48 /* If the device is not responding */
49 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
50 
51 /*
52  * Background operations can take a long time, depending on the housekeeping
53  * operations the card has to perform.
54  */
55 #define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
56 
57 static struct workqueue_struct *workqueue;
58 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
59 
60 /*
61  * Enabling software CRCs on the data blocks can be a significant (30%)
62  * performance cost, and for other reasons may not always be desired.
63  * So we allow it it to be disabled.
64  */
65 bool use_spi_crc = 1;
66 module_param(use_spi_crc, bool, 0);
67 
68 /*
69  * Internal function. Schedule delayed work in the MMC work queue.
70  */
71 static int mmc_schedule_delayed_work(struct delayed_work *work,
72 				     unsigned long delay)
73 {
74 	return queue_delayed_work(workqueue, work, delay);
75 }
76 
77 /*
78  * Internal function. Flush all scheduled work from the MMC work queue.
79  */
80 static void mmc_flush_scheduled_work(void)
81 {
82 	flush_workqueue(workqueue);
83 }
84 
85 #ifdef CONFIG_FAIL_MMC_REQUEST
86 
87 /*
88  * Internal function. Inject random data errors.
89  * If mmc_data is NULL no errors are injected.
90  */
91 static void mmc_should_fail_request(struct mmc_host *host,
92 				    struct mmc_request *mrq)
93 {
94 	struct mmc_command *cmd = mrq->cmd;
95 	struct mmc_data *data = mrq->data;
96 	static const int data_errors[] = {
97 		-ETIMEDOUT,
98 		-EILSEQ,
99 		-EIO,
100 	};
101 
102 	if (!data)
103 		return;
104 
105 	if (cmd->error || data->error ||
106 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
107 		return;
108 
109 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
110 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
111 }
112 
113 #else /* CONFIG_FAIL_MMC_REQUEST */
114 
115 static inline void mmc_should_fail_request(struct mmc_host *host,
116 					   struct mmc_request *mrq)
117 {
118 }
119 
120 #endif /* CONFIG_FAIL_MMC_REQUEST */
121 
122 /**
123  *	mmc_request_done - finish processing an MMC request
124  *	@host: MMC host which completed request
125  *	@mrq: MMC request which request
126  *
127  *	MMC drivers should call this function when they have completed
128  *	their processing of a request.
129  */
130 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
131 {
132 	struct mmc_command *cmd = mrq->cmd;
133 	int err = cmd->error;
134 
135 	if (err && cmd->retries && mmc_host_is_spi(host)) {
136 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
137 			cmd->retries = 0;
138 	}
139 
140 	if (err && cmd->retries && !mmc_card_removed(host->card)) {
141 		/*
142 		 * Request starter must handle retries - see
143 		 * mmc_wait_for_req_done().
144 		 */
145 		if (mrq->done)
146 			mrq->done(mrq);
147 	} else {
148 		mmc_should_fail_request(host, mrq);
149 
150 		led_trigger_event(host->led, LED_OFF);
151 
152 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
153 			mmc_hostname(host), cmd->opcode, err,
154 			cmd->resp[0], cmd->resp[1],
155 			cmd->resp[2], cmd->resp[3]);
156 
157 		if (mrq->data) {
158 			pr_debug("%s:     %d bytes transferred: %d\n",
159 				mmc_hostname(host),
160 				mrq->data->bytes_xfered, mrq->data->error);
161 		}
162 
163 		if (mrq->stop) {
164 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
165 				mmc_hostname(host), mrq->stop->opcode,
166 				mrq->stop->error,
167 				mrq->stop->resp[0], mrq->stop->resp[1],
168 				mrq->stop->resp[2], mrq->stop->resp[3]);
169 		}
170 
171 		if (mrq->done)
172 			mrq->done(mrq);
173 
174 		mmc_host_clk_release(host);
175 	}
176 }
177 
178 EXPORT_SYMBOL(mmc_request_done);
179 
180 static void
181 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
182 {
183 #ifdef CONFIG_MMC_DEBUG
184 	unsigned int i, sz;
185 	struct scatterlist *sg;
186 #endif
187 
188 	if (mrq->sbc) {
189 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
190 			 mmc_hostname(host), mrq->sbc->opcode,
191 			 mrq->sbc->arg, mrq->sbc->flags);
192 	}
193 
194 	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
195 		 mmc_hostname(host), mrq->cmd->opcode,
196 		 mrq->cmd->arg, mrq->cmd->flags);
197 
198 	if (mrq->data) {
199 		pr_debug("%s:     blksz %d blocks %d flags %08x "
200 			"tsac %d ms nsac %d\n",
201 			mmc_hostname(host), mrq->data->blksz,
202 			mrq->data->blocks, mrq->data->flags,
203 			mrq->data->timeout_ns / 1000000,
204 			mrq->data->timeout_clks);
205 	}
206 
207 	if (mrq->stop) {
208 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
209 			 mmc_hostname(host), mrq->stop->opcode,
210 			 mrq->stop->arg, mrq->stop->flags);
211 	}
212 
213 	WARN_ON(!host->claimed);
214 
215 	mrq->cmd->error = 0;
216 	mrq->cmd->mrq = mrq;
217 	if (mrq->data) {
218 		BUG_ON(mrq->data->blksz > host->max_blk_size);
219 		BUG_ON(mrq->data->blocks > host->max_blk_count);
220 		BUG_ON(mrq->data->blocks * mrq->data->blksz >
221 			host->max_req_size);
222 
223 #ifdef CONFIG_MMC_DEBUG
224 		sz = 0;
225 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
226 			sz += sg->length;
227 		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
228 #endif
229 
230 		mrq->cmd->data = mrq->data;
231 		mrq->data->error = 0;
232 		mrq->data->mrq = mrq;
233 		if (mrq->stop) {
234 			mrq->data->stop = mrq->stop;
235 			mrq->stop->error = 0;
236 			mrq->stop->mrq = mrq;
237 		}
238 	}
239 	mmc_host_clk_hold(host);
240 	led_trigger_event(host->led, LED_FULL);
241 	host->ops->request(host, mrq);
242 }
243 
244 /**
245  *	mmc_start_bkops - start BKOPS for supported cards
246  *	@card: MMC card to start BKOPS
247  *	@form_exception: A flag to indicate if this function was
248  *			 called due to an exception raised by the card
249  *
250  *	Start background operations whenever requested.
251  *	When the urgent BKOPS bit is set in a R1 command response
252  *	then background operations should be started immediately.
253 */
254 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
255 {
256 	int err;
257 	int timeout;
258 	bool use_busy_signal;
259 
260 	BUG_ON(!card);
261 
262 	if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
263 		return;
264 
265 	err = mmc_read_bkops_status(card);
266 	if (err) {
267 		pr_err("%s: Failed to read bkops status: %d\n",
268 		       mmc_hostname(card->host), err);
269 		return;
270 	}
271 
272 	if (!card->ext_csd.raw_bkops_status)
273 		return;
274 
275 	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
276 	    from_exception)
277 		return;
278 
279 	mmc_claim_host(card->host);
280 	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
281 		timeout = MMC_BKOPS_MAX_TIMEOUT;
282 		use_busy_signal = true;
283 	} else {
284 		timeout = 0;
285 		use_busy_signal = false;
286 	}
287 
288 	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
289 			EXT_CSD_BKOPS_START, 1, timeout,
290 			use_busy_signal, true, false);
291 	if (err) {
292 		pr_warn("%s: Error %d starting bkops\n",
293 			mmc_hostname(card->host), err);
294 		goto out;
295 	}
296 
297 	/*
298 	 * For urgent bkops status (LEVEL_2 and more)
299 	 * bkops executed synchronously, otherwise
300 	 * the operation is in progress
301 	 */
302 	if (!use_busy_signal)
303 		mmc_card_set_doing_bkops(card);
304 out:
305 	mmc_release_host(card->host);
306 }
307 EXPORT_SYMBOL(mmc_start_bkops);
308 
309 /*
310  * mmc_wait_data_done() - done callback for data request
311  * @mrq: done data request
312  *
313  * Wakes up mmc context, passed as a callback to host controller driver
314  */
315 static void mmc_wait_data_done(struct mmc_request *mrq)
316 {
317 	mrq->host->context_info.is_done_rcv = true;
318 	wake_up_interruptible(&mrq->host->context_info.wait);
319 }
320 
321 static void mmc_wait_done(struct mmc_request *mrq)
322 {
323 	complete(&mrq->completion);
324 }
325 
326 /*
327  *__mmc_start_data_req() - starts data request
328  * @host: MMC host to start the request
329  * @mrq: data request to start
330  *
331  * Sets the done callback to be called when request is completed by the card.
332  * Starts data mmc request execution
333  */
334 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
335 {
336 	mrq->done = mmc_wait_data_done;
337 	mrq->host = host;
338 	if (mmc_card_removed(host->card)) {
339 		mrq->cmd->error = -ENOMEDIUM;
340 		mmc_wait_data_done(mrq);
341 		return -ENOMEDIUM;
342 	}
343 	mmc_start_request(host, mrq);
344 
345 	return 0;
346 }
347 
348 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
349 {
350 	init_completion(&mrq->completion);
351 	mrq->done = mmc_wait_done;
352 	if (mmc_card_removed(host->card)) {
353 		mrq->cmd->error = -ENOMEDIUM;
354 		complete(&mrq->completion);
355 		return -ENOMEDIUM;
356 	}
357 	mmc_start_request(host, mrq);
358 	return 0;
359 }
360 
361 /*
362  * mmc_wait_for_data_req_done() - wait for request completed
363  * @host: MMC host to prepare the command.
364  * @mrq: MMC request to wait for
365  *
366  * Blocks MMC context till host controller will ack end of data request
367  * execution or new request notification arrives from the block layer.
368  * Handles command retries.
369  *
370  * Returns enum mmc_blk_status after checking errors.
371  */
372 static int mmc_wait_for_data_req_done(struct mmc_host *host,
373 				      struct mmc_request *mrq,
374 				      struct mmc_async_req *next_req)
375 {
376 	struct mmc_command *cmd;
377 	struct mmc_context_info *context_info = &host->context_info;
378 	int err;
379 	unsigned long flags;
380 
381 	while (1) {
382 		wait_event_interruptible(context_info->wait,
383 				(context_info->is_done_rcv ||
384 				 context_info->is_new_req));
385 		spin_lock_irqsave(&context_info->lock, flags);
386 		context_info->is_waiting_last_req = false;
387 		spin_unlock_irqrestore(&context_info->lock, flags);
388 		if (context_info->is_done_rcv) {
389 			context_info->is_done_rcv = false;
390 			context_info->is_new_req = false;
391 			cmd = mrq->cmd;
392 
393 			if (!cmd->error || !cmd->retries ||
394 			    mmc_card_removed(host->card)) {
395 				err = host->areq->err_check(host->card,
396 							    host->areq);
397 				break; /* return err */
398 			} else {
399 				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
400 					mmc_hostname(host),
401 					cmd->opcode, cmd->error);
402 				cmd->retries--;
403 				cmd->error = 0;
404 				host->ops->request(host, mrq);
405 				continue; /* wait for done/new event again */
406 			}
407 		} else if (context_info->is_new_req) {
408 			context_info->is_new_req = false;
409 			if (!next_req) {
410 				err = MMC_BLK_NEW_REQUEST;
411 				break; /* return err */
412 			}
413 		}
414 	}
415 	return err;
416 }
417 
418 static void mmc_wait_for_req_done(struct mmc_host *host,
419 				  struct mmc_request *mrq)
420 {
421 	struct mmc_command *cmd;
422 
423 	while (1) {
424 		wait_for_completion(&mrq->completion);
425 
426 		cmd = mrq->cmd;
427 
428 		/*
429 		 * If host has timed out waiting for the sanitize
430 		 * to complete, card might be still in programming state
431 		 * so let's try to bring the card out of programming
432 		 * state.
433 		 */
434 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
435 			if (!mmc_interrupt_hpi(host->card)) {
436 				pr_warning("%s: %s: Interrupted sanitize\n",
437 					   mmc_hostname(host), __func__);
438 				cmd->error = 0;
439 				break;
440 			} else {
441 				pr_err("%s: %s: Failed to interrupt sanitize\n",
442 				       mmc_hostname(host), __func__);
443 			}
444 		}
445 		if (!cmd->error || !cmd->retries ||
446 		    mmc_card_removed(host->card))
447 			break;
448 
449 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
450 			 mmc_hostname(host), cmd->opcode, cmd->error);
451 		cmd->retries--;
452 		cmd->error = 0;
453 		host->ops->request(host, mrq);
454 	}
455 }
456 
457 /**
458  *	mmc_pre_req - Prepare for a new request
459  *	@host: MMC host to prepare command
460  *	@mrq: MMC request to prepare for
461  *	@is_first_req: true if there is no previous started request
462  *                     that may run in parellel to this call, otherwise false
463  *
464  *	mmc_pre_req() is called in prior to mmc_start_req() to let
465  *	host prepare for the new request. Preparation of a request may be
466  *	performed while another request is running on the host.
467  */
468 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
469 		 bool is_first_req)
470 {
471 	if (host->ops->pre_req) {
472 		mmc_host_clk_hold(host);
473 		host->ops->pre_req(host, mrq, is_first_req);
474 		mmc_host_clk_release(host);
475 	}
476 }
477 
478 /**
479  *	mmc_post_req - Post process a completed request
480  *	@host: MMC host to post process command
481  *	@mrq: MMC request to post process for
482  *	@err: Error, if non zero, clean up any resources made in pre_req
483  *
484  *	Let the host post process a completed request. Post processing of
485  *	a request may be performed while another reuqest is running.
486  */
487 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
488 			 int err)
489 {
490 	if (host->ops->post_req) {
491 		mmc_host_clk_hold(host);
492 		host->ops->post_req(host, mrq, err);
493 		mmc_host_clk_release(host);
494 	}
495 }
496 
497 /**
498  *	mmc_start_req - start a non-blocking request
499  *	@host: MMC host to start command
500  *	@areq: async request to start
501  *	@error: out parameter returns 0 for success, otherwise non zero
502  *
503  *	Start a new MMC custom command request for a host.
504  *	If there is on ongoing async request wait for completion
505  *	of that request and start the new one and return.
506  *	Does not wait for the new request to complete.
507  *
508  *      Returns the completed request, NULL in case of none completed.
509  *	Wait for the an ongoing request (previoulsy started) to complete and
510  *	return the completed request. If there is no ongoing request, NULL
511  *	is returned without waiting. NULL is not an error condition.
512  */
513 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
514 				    struct mmc_async_req *areq, int *error)
515 {
516 	int err = 0;
517 	int start_err = 0;
518 	struct mmc_async_req *data = host->areq;
519 
520 	/* Prepare a new request */
521 	if (areq)
522 		mmc_pre_req(host, areq->mrq, !host->areq);
523 
524 	if (host->areq) {
525 		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
526 		if (err == MMC_BLK_NEW_REQUEST) {
527 			if (error)
528 				*error = err;
529 			/*
530 			 * The previous request was not completed,
531 			 * nothing to return
532 			 */
533 			return NULL;
534 		}
535 		/*
536 		 * Check BKOPS urgency for each R1 response
537 		 */
538 		if (host->card && mmc_card_mmc(host->card) &&
539 		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
540 		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
541 		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
542 			mmc_start_bkops(host->card, true);
543 	}
544 
545 	if (!err && areq)
546 		start_err = __mmc_start_data_req(host, areq->mrq);
547 
548 	if (host->areq)
549 		mmc_post_req(host, host->areq->mrq, 0);
550 
551 	 /* Cancel a prepared request if it was not started. */
552 	if ((err || start_err) && areq)
553 		mmc_post_req(host, areq->mrq, -EINVAL);
554 
555 	if (err)
556 		host->areq = NULL;
557 	else
558 		host->areq = areq;
559 
560 	if (error)
561 		*error = err;
562 	return data;
563 }
564 EXPORT_SYMBOL(mmc_start_req);
565 
566 /**
567  *	mmc_wait_for_req - start a request and wait for completion
568  *	@host: MMC host to start command
569  *	@mrq: MMC request to start
570  *
571  *	Start a new MMC custom command request for a host, and wait
572  *	for the command to complete. Does not attempt to parse the
573  *	response.
574  */
575 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
576 {
577 	__mmc_start_req(host, mrq);
578 	mmc_wait_for_req_done(host, mrq);
579 }
580 EXPORT_SYMBOL(mmc_wait_for_req);
581 
582 /**
583  *	mmc_interrupt_hpi - Issue for High priority Interrupt
584  *	@card: the MMC card associated with the HPI transfer
585  *
586  *	Issued High Priority Interrupt, and check for card status
587  *	until out-of prg-state.
588  */
589 int mmc_interrupt_hpi(struct mmc_card *card)
590 {
591 	int err;
592 	u32 status;
593 	unsigned long prg_wait;
594 
595 	BUG_ON(!card);
596 
597 	if (!card->ext_csd.hpi_en) {
598 		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
599 		return 1;
600 	}
601 
602 	mmc_claim_host(card->host);
603 	err = mmc_send_status(card, &status);
604 	if (err) {
605 		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
606 		goto out;
607 	}
608 
609 	switch (R1_CURRENT_STATE(status)) {
610 	case R1_STATE_IDLE:
611 	case R1_STATE_READY:
612 	case R1_STATE_STBY:
613 	case R1_STATE_TRAN:
614 		/*
615 		 * In idle and transfer states, HPI is not needed and the caller
616 		 * can issue the next intended command immediately
617 		 */
618 		goto out;
619 	case R1_STATE_PRG:
620 		break;
621 	default:
622 		/* In all other states, it's illegal to issue HPI */
623 		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
624 			mmc_hostname(card->host), R1_CURRENT_STATE(status));
625 		err = -EINVAL;
626 		goto out;
627 	}
628 
629 	err = mmc_send_hpi_cmd(card, &status);
630 	if (err)
631 		goto out;
632 
633 	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
634 	do {
635 		err = mmc_send_status(card, &status);
636 
637 		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
638 			break;
639 		if (time_after(jiffies, prg_wait))
640 			err = -ETIMEDOUT;
641 	} while (!err);
642 
643 out:
644 	mmc_release_host(card->host);
645 	return err;
646 }
647 EXPORT_SYMBOL(mmc_interrupt_hpi);
648 
649 /**
650  *	mmc_wait_for_cmd - start a command and wait for completion
651  *	@host: MMC host to start command
652  *	@cmd: MMC command to start
653  *	@retries: maximum number of retries
654  *
655  *	Start a new MMC command for a host, and wait for the command
656  *	to complete.  Return any error that occurred while the command
657  *	was executing.  Do not attempt to parse the response.
658  */
659 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
660 {
661 	struct mmc_request mrq = {NULL};
662 
663 	WARN_ON(!host->claimed);
664 
665 	memset(cmd->resp, 0, sizeof(cmd->resp));
666 	cmd->retries = retries;
667 
668 	mrq.cmd = cmd;
669 	cmd->data = NULL;
670 
671 	mmc_wait_for_req(host, &mrq);
672 
673 	return cmd->error;
674 }
675 
676 EXPORT_SYMBOL(mmc_wait_for_cmd);
677 
678 /**
679  *	mmc_stop_bkops - stop ongoing BKOPS
680  *	@card: MMC card to check BKOPS
681  *
682  *	Send HPI command to stop ongoing background operations to
683  *	allow rapid servicing of foreground operations, e.g. read/
684  *	writes. Wait until the card comes out of the programming state
685  *	to avoid errors in servicing read/write requests.
686  */
687 int mmc_stop_bkops(struct mmc_card *card)
688 {
689 	int err = 0;
690 
691 	BUG_ON(!card);
692 	err = mmc_interrupt_hpi(card);
693 
694 	/*
695 	 * If err is EINVAL, we can't issue an HPI.
696 	 * It should complete the BKOPS.
697 	 */
698 	if (!err || (err == -EINVAL)) {
699 		mmc_card_clr_doing_bkops(card);
700 		err = 0;
701 	}
702 
703 	return err;
704 }
705 EXPORT_SYMBOL(mmc_stop_bkops);
706 
707 int mmc_read_bkops_status(struct mmc_card *card)
708 {
709 	int err;
710 	u8 *ext_csd;
711 
712 	/*
713 	 * In future work, we should consider storing the entire ext_csd.
714 	 */
715 	ext_csd = kmalloc(512, GFP_KERNEL);
716 	if (!ext_csd) {
717 		pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
718 		       mmc_hostname(card->host));
719 		return -ENOMEM;
720 	}
721 
722 	mmc_claim_host(card->host);
723 	err = mmc_send_ext_csd(card, ext_csd);
724 	mmc_release_host(card->host);
725 	if (err)
726 		goto out;
727 
728 	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
729 	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
730 out:
731 	kfree(ext_csd);
732 	return err;
733 }
734 EXPORT_SYMBOL(mmc_read_bkops_status);
735 
736 /**
737  *	mmc_set_data_timeout - set the timeout for a data command
738  *	@data: data phase for command
739  *	@card: the MMC card associated with the data transfer
740  *
741  *	Computes the data timeout parameters according to the
742  *	correct algorithm given the card type.
743  */
744 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
745 {
746 	unsigned int mult;
747 
748 	/*
749 	 * SDIO cards only define an upper 1 s limit on access.
750 	 */
751 	if (mmc_card_sdio(card)) {
752 		data->timeout_ns = 1000000000;
753 		data->timeout_clks = 0;
754 		return;
755 	}
756 
757 	/*
758 	 * SD cards use a 100 multiplier rather than 10
759 	 */
760 	mult = mmc_card_sd(card) ? 100 : 10;
761 
762 	/*
763 	 * Scale up the multiplier (and therefore the timeout) by
764 	 * the r2w factor for writes.
765 	 */
766 	if (data->flags & MMC_DATA_WRITE)
767 		mult <<= card->csd.r2w_factor;
768 
769 	data->timeout_ns = card->csd.tacc_ns * mult;
770 	data->timeout_clks = card->csd.tacc_clks * mult;
771 
772 	/*
773 	 * SD cards also have an upper limit on the timeout.
774 	 */
775 	if (mmc_card_sd(card)) {
776 		unsigned int timeout_us, limit_us;
777 
778 		timeout_us = data->timeout_ns / 1000;
779 		if (mmc_host_clk_rate(card->host))
780 			timeout_us += data->timeout_clks * 1000 /
781 				(mmc_host_clk_rate(card->host) / 1000);
782 
783 		if (data->flags & MMC_DATA_WRITE)
784 			/*
785 			 * The MMC spec "It is strongly recommended
786 			 * for hosts to implement more than 500ms
787 			 * timeout value even if the card indicates
788 			 * the 250ms maximum busy length."  Even the
789 			 * previous value of 300ms is known to be
790 			 * insufficient for some cards.
791 			 */
792 			limit_us = 3000000;
793 		else
794 			limit_us = 100000;
795 
796 		/*
797 		 * SDHC cards always use these fixed values.
798 		 */
799 		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
800 			data->timeout_ns = limit_us * 1000;
801 			data->timeout_clks = 0;
802 		}
803 
804 		/* assign limit value if invalid */
805 		if (timeout_us == 0)
806 			data->timeout_ns = limit_us * 1000;
807 	}
808 
809 	/*
810 	 * Some cards require longer data read timeout than indicated in CSD.
811 	 * Address this by setting the read timeout to a "reasonably high"
812 	 * value. For the cards tested, 300ms has proven enough. If necessary,
813 	 * this value can be increased if other problematic cards require this.
814 	 */
815 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
816 		data->timeout_ns = 300000000;
817 		data->timeout_clks = 0;
818 	}
819 
820 	/*
821 	 * Some cards need very high timeouts if driven in SPI mode.
822 	 * The worst observed timeout was 900ms after writing a
823 	 * continuous stream of data until the internal logic
824 	 * overflowed.
825 	 */
826 	if (mmc_host_is_spi(card->host)) {
827 		if (data->flags & MMC_DATA_WRITE) {
828 			if (data->timeout_ns < 1000000000)
829 				data->timeout_ns = 1000000000;	/* 1s */
830 		} else {
831 			if (data->timeout_ns < 100000000)
832 				data->timeout_ns =  100000000;	/* 100ms */
833 		}
834 	}
835 }
836 EXPORT_SYMBOL(mmc_set_data_timeout);
837 
838 /**
839  *	mmc_align_data_size - pads a transfer size to a more optimal value
840  *	@card: the MMC card associated with the data transfer
841  *	@sz: original transfer size
842  *
843  *	Pads the original data size with a number of extra bytes in
844  *	order to avoid controller bugs and/or performance hits
845  *	(e.g. some controllers revert to PIO for certain sizes).
846  *
847  *	Returns the improved size, which might be unmodified.
848  *
849  *	Note that this function is only relevant when issuing a
850  *	single scatter gather entry.
851  */
852 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
853 {
854 	/*
855 	 * FIXME: We don't have a system for the controller to tell
856 	 * the core about its problems yet, so for now we just 32-bit
857 	 * align the size.
858 	 */
859 	sz = ((sz + 3) / 4) * 4;
860 
861 	return sz;
862 }
863 EXPORT_SYMBOL(mmc_align_data_size);
864 
865 /**
866  *	__mmc_claim_host - exclusively claim a host
867  *	@host: mmc host to claim
868  *	@abort: whether or not the operation should be aborted
869  *
870  *	Claim a host for a set of operations.  If @abort is non null and
871  *	dereference a non-zero value then this will return prematurely with
872  *	that non-zero value without acquiring the lock.  Returns zero
873  *	with the lock held otherwise.
874  */
875 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
876 {
877 	DECLARE_WAITQUEUE(wait, current);
878 	unsigned long flags;
879 	int stop;
880 
881 	might_sleep();
882 
883 	add_wait_queue(&host->wq, &wait);
884 	spin_lock_irqsave(&host->lock, flags);
885 	while (1) {
886 		set_current_state(TASK_UNINTERRUPTIBLE);
887 		stop = abort ? atomic_read(abort) : 0;
888 		if (stop || !host->claimed || host->claimer == current)
889 			break;
890 		spin_unlock_irqrestore(&host->lock, flags);
891 		schedule();
892 		spin_lock_irqsave(&host->lock, flags);
893 	}
894 	set_current_state(TASK_RUNNING);
895 	if (!stop) {
896 		host->claimed = 1;
897 		host->claimer = current;
898 		host->claim_cnt += 1;
899 	} else
900 		wake_up(&host->wq);
901 	spin_unlock_irqrestore(&host->lock, flags);
902 	remove_wait_queue(&host->wq, &wait);
903 	if (host->ops->enable && !stop && host->claim_cnt == 1)
904 		host->ops->enable(host);
905 	return stop;
906 }
907 
908 EXPORT_SYMBOL(__mmc_claim_host);
909 
910 /**
911  *	mmc_release_host - release a host
912  *	@host: mmc host to release
913  *
914  *	Release a MMC host, allowing others to claim the host
915  *	for their operations.
916  */
917 void mmc_release_host(struct mmc_host *host)
918 {
919 	unsigned long flags;
920 
921 	WARN_ON(!host->claimed);
922 
923 	if (host->ops->disable && host->claim_cnt == 1)
924 		host->ops->disable(host);
925 
926 	spin_lock_irqsave(&host->lock, flags);
927 	if (--host->claim_cnt) {
928 		/* Release for nested claim */
929 		spin_unlock_irqrestore(&host->lock, flags);
930 	} else {
931 		host->claimed = 0;
932 		host->claimer = NULL;
933 		spin_unlock_irqrestore(&host->lock, flags);
934 		wake_up(&host->wq);
935 	}
936 }
937 EXPORT_SYMBOL(mmc_release_host);
938 
939 /*
940  * This is a helper function, which fetches a runtime pm reference for the
941  * card device and also claims the host.
942  */
943 void mmc_get_card(struct mmc_card *card)
944 {
945 	pm_runtime_get_sync(&card->dev);
946 	mmc_claim_host(card->host);
947 }
948 EXPORT_SYMBOL(mmc_get_card);
949 
950 /*
951  * This is a helper function, which releases the host and drops the runtime
952  * pm reference for the card device.
953  */
954 void mmc_put_card(struct mmc_card *card)
955 {
956 	mmc_release_host(card->host);
957 	pm_runtime_mark_last_busy(&card->dev);
958 	pm_runtime_put_autosuspend(&card->dev);
959 }
960 EXPORT_SYMBOL(mmc_put_card);
961 
962 /*
963  * Internal function that does the actual ios call to the host driver,
964  * optionally printing some debug output.
965  */
966 static inline void mmc_set_ios(struct mmc_host *host)
967 {
968 	struct mmc_ios *ios = &host->ios;
969 
970 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
971 		"width %u timing %u\n",
972 		 mmc_hostname(host), ios->clock, ios->bus_mode,
973 		 ios->power_mode, ios->chip_select, ios->vdd,
974 		 ios->bus_width, ios->timing);
975 
976 	if (ios->clock > 0)
977 		mmc_set_ungated(host);
978 	host->ops->set_ios(host, ios);
979 }
980 
981 /*
982  * Control chip select pin on a host.
983  */
984 void mmc_set_chip_select(struct mmc_host *host, int mode)
985 {
986 	mmc_host_clk_hold(host);
987 	host->ios.chip_select = mode;
988 	mmc_set_ios(host);
989 	mmc_host_clk_release(host);
990 }
991 
992 /*
993  * Sets the host clock to the highest possible frequency that
994  * is below "hz".
995  */
996 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
997 {
998 	WARN_ON(hz < host->f_min);
999 
1000 	if (hz > host->f_max)
1001 		hz = host->f_max;
1002 
1003 	host->ios.clock = hz;
1004 	mmc_set_ios(host);
1005 }
1006 
1007 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1008 {
1009 	mmc_host_clk_hold(host);
1010 	__mmc_set_clock(host, hz);
1011 	mmc_host_clk_release(host);
1012 }
1013 
1014 #ifdef CONFIG_MMC_CLKGATE
1015 /*
1016  * This gates the clock by setting it to 0 Hz.
1017  */
1018 void mmc_gate_clock(struct mmc_host *host)
1019 {
1020 	unsigned long flags;
1021 
1022 	spin_lock_irqsave(&host->clk_lock, flags);
1023 	host->clk_old = host->ios.clock;
1024 	host->ios.clock = 0;
1025 	host->clk_gated = true;
1026 	spin_unlock_irqrestore(&host->clk_lock, flags);
1027 	mmc_set_ios(host);
1028 }
1029 
1030 /*
1031  * This restores the clock from gating by using the cached
1032  * clock value.
1033  */
1034 void mmc_ungate_clock(struct mmc_host *host)
1035 {
1036 	/*
1037 	 * We should previously have gated the clock, so the clock shall
1038 	 * be 0 here! The clock may however be 0 during initialization,
1039 	 * when some request operations are performed before setting
1040 	 * the frequency. When ungate is requested in that situation
1041 	 * we just ignore the call.
1042 	 */
1043 	if (host->clk_old) {
1044 		BUG_ON(host->ios.clock);
1045 		/* This call will also set host->clk_gated to false */
1046 		__mmc_set_clock(host, host->clk_old);
1047 	}
1048 }
1049 
1050 void mmc_set_ungated(struct mmc_host *host)
1051 {
1052 	unsigned long flags;
1053 
1054 	/*
1055 	 * We've been given a new frequency while the clock is gated,
1056 	 * so make sure we regard this as ungating it.
1057 	 */
1058 	spin_lock_irqsave(&host->clk_lock, flags);
1059 	host->clk_gated = false;
1060 	spin_unlock_irqrestore(&host->clk_lock, flags);
1061 }
1062 
1063 #else
1064 void mmc_set_ungated(struct mmc_host *host)
1065 {
1066 }
1067 #endif
1068 
1069 /*
1070  * Change the bus mode (open drain/push-pull) of a host.
1071  */
1072 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1073 {
1074 	mmc_host_clk_hold(host);
1075 	host->ios.bus_mode = mode;
1076 	mmc_set_ios(host);
1077 	mmc_host_clk_release(host);
1078 }
1079 
1080 /*
1081  * Change data bus width of a host.
1082  */
1083 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1084 {
1085 	mmc_host_clk_hold(host);
1086 	host->ios.bus_width = width;
1087 	mmc_set_ios(host);
1088 	mmc_host_clk_release(host);
1089 }
1090 
1091 /**
1092  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1093  * @vdd:	voltage (mV)
1094  * @low_bits:	prefer low bits in boundary cases
1095  *
1096  * This function returns the OCR bit number according to the provided @vdd
1097  * value. If conversion is not possible a negative errno value returned.
1098  *
1099  * Depending on the @low_bits flag the function prefers low or high OCR bits
1100  * on boundary voltages. For example,
1101  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1102  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1103  *
1104  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1105  */
1106 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1107 {
1108 	const int max_bit = ilog2(MMC_VDD_35_36);
1109 	int bit;
1110 
1111 	if (vdd < 1650 || vdd > 3600)
1112 		return -EINVAL;
1113 
1114 	if (vdd >= 1650 && vdd <= 1950)
1115 		return ilog2(MMC_VDD_165_195);
1116 
1117 	if (low_bits)
1118 		vdd -= 1;
1119 
1120 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1121 	bit = (vdd - 2000) / 100 + 8;
1122 	if (bit > max_bit)
1123 		return max_bit;
1124 	return bit;
1125 }
1126 
1127 /**
1128  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1129  * @vdd_min:	minimum voltage value (mV)
1130  * @vdd_max:	maximum voltage value (mV)
1131  *
1132  * This function returns the OCR mask bits according to the provided @vdd_min
1133  * and @vdd_max values. If conversion is not possible the function returns 0.
1134  *
1135  * Notes wrt boundary cases:
1136  * This function sets the OCR bits for all boundary voltages, for example
1137  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1138  * MMC_VDD_34_35 mask.
1139  */
1140 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1141 {
1142 	u32 mask = 0;
1143 
1144 	if (vdd_max < vdd_min)
1145 		return 0;
1146 
1147 	/* Prefer high bits for the boundary vdd_max values. */
1148 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1149 	if (vdd_max < 0)
1150 		return 0;
1151 
1152 	/* Prefer low bits for the boundary vdd_min values. */
1153 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1154 	if (vdd_min < 0)
1155 		return 0;
1156 
1157 	/* Fill the mask, from max bit to min bit. */
1158 	while (vdd_max >= vdd_min)
1159 		mask |= 1 << vdd_max--;
1160 
1161 	return mask;
1162 }
1163 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1164 
1165 #ifdef CONFIG_OF
1166 
1167 /**
1168  * mmc_of_parse_voltage - return mask of supported voltages
1169  * @np: The device node need to be parsed.
1170  * @mask: mask of voltages available for MMC/SD/SDIO
1171  *
1172  * 1. Return zero on success.
1173  * 2. Return negative errno: voltage-range is invalid.
1174  */
1175 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1176 {
1177 	const u32 *voltage_ranges;
1178 	int num_ranges, i;
1179 
1180 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1181 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1182 	if (!voltage_ranges || !num_ranges) {
1183 		pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1184 		return -EINVAL;
1185 	}
1186 
1187 	for (i = 0; i < num_ranges; i++) {
1188 		const int j = i * 2;
1189 		u32 ocr_mask;
1190 
1191 		ocr_mask = mmc_vddrange_to_ocrmask(
1192 				be32_to_cpu(voltage_ranges[j]),
1193 				be32_to_cpu(voltage_ranges[j + 1]));
1194 		if (!ocr_mask) {
1195 			pr_err("%s: voltage-range #%d is invalid\n",
1196 				np->full_name, i);
1197 			return -EINVAL;
1198 		}
1199 		*mask |= ocr_mask;
1200 	}
1201 
1202 	return 0;
1203 }
1204 EXPORT_SYMBOL(mmc_of_parse_voltage);
1205 
1206 #endif /* CONFIG_OF */
1207 
1208 #ifdef CONFIG_REGULATOR
1209 
1210 /**
1211  * mmc_regulator_get_ocrmask - return mask of supported voltages
1212  * @supply: regulator to use
1213  *
1214  * This returns either a negative errno, or a mask of voltages that
1215  * can be provided to MMC/SD/SDIO devices using the specified voltage
1216  * regulator.  This would normally be called before registering the
1217  * MMC host adapter.
1218  */
1219 int mmc_regulator_get_ocrmask(struct regulator *supply)
1220 {
1221 	int			result = 0;
1222 	int			count;
1223 	int			i;
1224 
1225 	count = regulator_count_voltages(supply);
1226 	if (count < 0)
1227 		return count;
1228 
1229 	for (i = 0; i < count; i++) {
1230 		int		vdd_uV;
1231 		int		vdd_mV;
1232 
1233 		vdd_uV = regulator_list_voltage(supply, i);
1234 		if (vdd_uV <= 0)
1235 			continue;
1236 
1237 		vdd_mV = vdd_uV / 1000;
1238 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1239 	}
1240 
1241 	return result;
1242 }
1243 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1244 
1245 /**
1246  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1247  * @mmc: the host to regulate
1248  * @supply: regulator to use
1249  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1250  *
1251  * Returns zero on success, else negative errno.
1252  *
1253  * MMC host drivers may use this to enable or disable a regulator using
1254  * a particular supply voltage.  This would normally be called from the
1255  * set_ios() method.
1256  */
1257 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1258 			struct regulator *supply,
1259 			unsigned short vdd_bit)
1260 {
1261 	int			result = 0;
1262 	int			min_uV, max_uV;
1263 
1264 	if (vdd_bit) {
1265 		int		tmp;
1266 		int		voltage;
1267 
1268 		/*
1269 		 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1270 		 * bits this regulator doesn't quite support ... don't
1271 		 * be too picky, most cards and regulators are OK with
1272 		 * a 0.1V range goof (it's a small error percentage).
1273 		 */
1274 		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1275 		if (tmp == 0) {
1276 			min_uV = 1650 * 1000;
1277 			max_uV = 1950 * 1000;
1278 		} else {
1279 			min_uV = 1900 * 1000 + tmp * 100 * 1000;
1280 			max_uV = min_uV + 100 * 1000;
1281 		}
1282 
1283 		/*
1284 		 * If we're using a fixed/static regulator, don't call
1285 		 * regulator_set_voltage; it would fail.
1286 		 */
1287 		voltage = regulator_get_voltage(supply);
1288 
1289 		if (!regulator_can_change_voltage(supply))
1290 			min_uV = max_uV = voltage;
1291 
1292 		if (voltage < 0)
1293 			result = voltage;
1294 		else if (voltage < min_uV || voltage > max_uV)
1295 			result = regulator_set_voltage(supply, min_uV, max_uV);
1296 		else
1297 			result = 0;
1298 
1299 		if (result == 0 && !mmc->regulator_enabled) {
1300 			result = regulator_enable(supply);
1301 			if (!result)
1302 				mmc->regulator_enabled = true;
1303 		}
1304 	} else if (mmc->regulator_enabled) {
1305 		result = regulator_disable(supply);
1306 		if (result == 0)
1307 			mmc->regulator_enabled = false;
1308 	}
1309 
1310 	if (result)
1311 		dev_err(mmc_dev(mmc),
1312 			"could not set regulator OCR (%d)\n", result);
1313 	return result;
1314 }
1315 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1316 
1317 #endif /* CONFIG_REGULATOR */
1318 
1319 int mmc_regulator_get_supply(struct mmc_host *mmc)
1320 {
1321 	struct device *dev = mmc_dev(mmc);
1322 	int ret;
1323 
1324 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1325 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1326 
1327 	if (IS_ERR(mmc->supply.vmmc)) {
1328 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1329 			return -EPROBE_DEFER;
1330 		dev_info(dev, "No vmmc regulator found\n");
1331 	} else {
1332 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1333 		if (ret > 0)
1334 			mmc->ocr_avail = ret;
1335 		else
1336 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1337 	}
1338 
1339 	if (IS_ERR(mmc->supply.vqmmc)) {
1340 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1341 			return -EPROBE_DEFER;
1342 		dev_info(dev, "No vqmmc regulator found\n");
1343 	}
1344 
1345 	return 0;
1346 }
1347 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1348 
1349 /*
1350  * Mask off any voltages we don't support and select
1351  * the lowest voltage
1352  */
1353 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1354 {
1355 	int bit;
1356 
1357 	/*
1358 	 * Sanity check the voltages that the card claims to
1359 	 * support.
1360 	 */
1361 	if (ocr & 0x7F) {
1362 		dev_warn(mmc_dev(host),
1363 		"card claims to support voltages below defined range\n");
1364 		ocr &= ~0x7F;
1365 	}
1366 
1367 	ocr &= host->ocr_avail;
1368 	if (!ocr) {
1369 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1370 		return 0;
1371 	}
1372 
1373 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1374 		bit = ffs(ocr) - 1;
1375 		ocr &= 3 << bit;
1376 		mmc_power_cycle(host, ocr);
1377 	} else {
1378 		bit = fls(ocr) - 1;
1379 		ocr &= 3 << bit;
1380 		if (bit != host->ios.vdd)
1381 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1382 	}
1383 
1384 	return ocr;
1385 }
1386 
1387 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1388 {
1389 	int err = 0;
1390 	int old_signal_voltage = host->ios.signal_voltage;
1391 
1392 	host->ios.signal_voltage = signal_voltage;
1393 	if (host->ops->start_signal_voltage_switch) {
1394 		mmc_host_clk_hold(host);
1395 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1396 		mmc_host_clk_release(host);
1397 	}
1398 
1399 	if (err)
1400 		host->ios.signal_voltage = old_signal_voltage;
1401 
1402 	return err;
1403 
1404 }
1405 
1406 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1407 {
1408 	struct mmc_command cmd = {0};
1409 	int err = 0;
1410 	u32 clock;
1411 
1412 	BUG_ON(!host);
1413 
1414 	/*
1415 	 * Send CMD11 only if the request is to switch the card to
1416 	 * 1.8V signalling.
1417 	 */
1418 	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1419 		return __mmc_set_signal_voltage(host, signal_voltage);
1420 
1421 	/*
1422 	 * If we cannot switch voltages, return failure so the caller
1423 	 * can continue without UHS mode
1424 	 */
1425 	if (!host->ops->start_signal_voltage_switch)
1426 		return -EPERM;
1427 	if (!host->ops->card_busy)
1428 		pr_warning("%s: cannot verify signal voltage switch\n",
1429 				mmc_hostname(host));
1430 
1431 	cmd.opcode = SD_SWITCH_VOLTAGE;
1432 	cmd.arg = 0;
1433 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1434 
1435 	err = mmc_wait_for_cmd(host, &cmd, 0);
1436 	if (err)
1437 		return err;
1438 
1439 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1440 		return -EIO;
1441 
1442 	mmc_host_clk_hold(host);
1443 	/*
1444 	 * The card should drive cmd and dat[0:3] low immediately
1445 	 * after the response of cmd11, but wait 1 ms to be sure
1446 	 */
1447 	mmc_delay(1);
1448 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1449 		err = -EAGAIN;
1450 		goto power_cycle;
1451 	}
1452 	/*
1453 	 * During a signal voltage level switch, the clock must be gated
1454 	 * for 5 ms according to the SD spec
1455 	 */
1456 	clock = host->ios.clock;
1457 	host->ios.clock = 0;
1458 	mmc_set_ios(host);
1459 
1460 	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1461 		/*
1462 		 * Voltages may not have been switched, but we've already
1463 		 * sent CMD11, so a power cycle is required anyway
1464 		 */
1465 		err = -EAGAIN;
1466 		goto power_cycle;
1467 	}
1468 
1469 	/* Keep clock gated for at least 5 ms */
1470 	mmc_delay(5);
1471 	host->ios.clock = clock;
1472 	mmc_set_ios(host);
1473 
1474 	/* Wait for at least 1 ms according to spec */
1475 	mmc_delay(1);
1476 
1477 	/*
1478 	 * Failure to switch is indicated by the card holding
1479 	 * dat[0:3] low
1480 	 */
1481 	if (host->ops->card_busy && host->ops->card_busy(host))
1482 		err = -EAGAIN;
1483 
1484 power_cycle:
1485 	if (err) {
1486 		pr_debug("%s: Signal voltage switch failed, "
1487 			"power cycling card\n", mmc_hostname(host));
1488 		mmc_power_cycle(host, ocr);
1489 	}
1490 
1491 	mmc_host_clk_release(host);
1492 
1493 	return err;
1494 }
1495 
1496 /*
1497  * Select timing parameters for host.
1498  */
1499 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1500 {
1501 	mmc_host_clk_hold(host);
1502 	host->ios.timing = timing;
1503 	mmc_set_ios(host);
1504 	mmc_host_clk_release(host);
1505 }
1506 
1507 /*
1508  * Select appropriate driver type for host.
1509  */
1510 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1511 {
1512 	mmc_host_clk_hold(host);
1513 	host->ios.drv_type = drv_type;
1514 	mmc_set_ios(host);
1515 	mmc_host_clk_release(host);
1516 }
1517 
1518 /*
1519  * Apply power to the MMC stack.  This is a two-stage process.
1520  * First, we enable power to the card without the clock running.
1521  * We then wait a bit for the power to stabilise.  Finally,
1522  * enable the bus drivers and clock to the card.
1523  *
1524  * We must _NOT_ enable the clock prior to power stablising.
1525  *
1526  * If a host does all the power sequencing itself, ignore the
1527  * initial MMC_POWER_UP stage.
1528  */
1529 void mmc_power_up(struct mmc_host *host, u32 ocr)
1530 {
1531 	if (host->ios.power_mode == MMC_POWER_ON)
1532 		return;
1533 
1534 	mmc_host_clk_hold(host);
1535 
1536 	host->ios.vdd = fls(ocr) - 1;
1537 	if (mmc_host_is_spi(host))
1538 		host->ios.chip_select = MMC_CS_HIGH;
1539 	else
1540 		host->ios.chip_select = MMC_CS_DONTCARE;
1541 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1542 	host->ios.power_mode = MMC_POWER_UP;
1543 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1544 	host->ios.timing = MMC_TIMING_LEGACY;
1545 	mmc_set_ios(host);
1546 
1547 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1548 	if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1549 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1550 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1551 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1552 	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1553 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1554 
1555 	/*
1556 	 * This delay should be sufficient to allow the power supply
1557 	 * to reach the minimum voltage.
1558 	 */
1559 	mmc_delay(10);
1560 
1561 	host->ios.clock = host->f_init;
1562 
1563 	host->ios.power_mode = MMC_POWER_ON;
1564 	mmc_set_ios(host);
1565 
1566 	/*
1567 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1568 	 * time required to reach a stable voltage.
1569 	 */
1570 	mmc_delay(10);
1571 
1572 	mmc_host_clk_release(host);
1573 }
1574 
1575 void mmc_power_off(struct mmc_host *host)
1576 {
1577 	if (host->ios.power_mode == MMC_POWER_OFF)
1578 		return;
1579 
1580 	mmc_host_clk_hold(host);
1581 
1582 	host->ios.clock = 0;
1583 	host->ios.vdd = 0;
1584 
1585 	if (!mmc_host_is_spi(host)) {
1586 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1587 		host->ios.chip_select = MMC_CS_DONTCARE;
1588 	}
1589 	host->ios.power_mode = MMC_POWER_OFF;
1590 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1591 	host->ios.timing = MMC_TIMING_LEGACY;
1592 	mmc_set_ios(host);
1593 
1594 	/*
1595 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1596 	 * XO-1.5, require a short delay after poweroff before the card
1597 	 * can be successfully turned on again.
1598 	 */
1599 	mmc_delay(1);
1600 
1601 	mmc_host_clk_release(host);
1602 }
1603 
1604 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1605 {
1606 	mmc_power_off(host);
1607 	/* Wait at least 1 ms according to SD spec */
1608 	mmc_delay(1);
1609 	mmc_power_up(host, ocr);
1610 }
1611 
1612 /*
1613  * Cleanup when the last reference to the bus operator is dropped.
1614  */
1615 static void __mmc_release_bus(struct mmc_host *host)
1616 {
1617 	BUG_ON(!host);
1618 	BUG_ON(host->bus_refs);
1619 	BUG_ON(!host->bus_dead);
1620 
1621 	host->bus_ops = NULL;
1622 }
1623 
1624 /*
1625  * Increase reference count of bus operator
1626  */
1627 static inline void mmc_bus_get(struct mmc_host *host)
1628 {
1629 	unsigned long flags;
1630 
1631 	spin_lock_irqsave(&host->lock, flags);
1632 	host->bus_refs++;
1633 	spin_unlock_irqrestore(&host->lock, flags);
1634 }
1635 
1636 /*
1637  * Decrease reference count of bus operator and free it if
1638  * it is the last reference.
1639  */
1640 static inline void mmc_bus_put(struct mmc_host *host)
1641 {
1642 	unsigned long flags;
1643 
1644 	spin_lock_irqsave(&host->lock, flags);
1645 	host->bus_refs--;
1646 	if ((host->bus_refs == 0) && host->bus_ops)
1647 		__mmc_release_bus(host);
1648 	spin_unlock_irqrestore(&host->lock, flags);
1649 }
1650 
1651 /*
1652  * Assign a mmc bus handler to a host. Only one bus handler may control a
1653  * host at any given time.
1654  */
1655 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1656 {
1657 	unsigned long flags;
1658 
1659 	BUG_ON(!host);
1660 	BUG_ON(!ops);
1661 
1662 	WARN_ON(!host->claimed);
1663 
1664 	spin_lock_irqsave(&host->lock, flags);
1665 
1666 	BUG_ON(host->bus_ops);
1667 	BUG_ON(host->bus_refs);
1668 
1669 	host->bus_ops = ops;
1670 	host->bus_refs = 1;
1671 	host->bus_dead = 0;
1672 
1673 	spin_unlock_irqrestore(&host->lock, flags);
1674 }
1675 
1676 /*
1677  * Remove the current bus handler from a host.
1678  */
1679 void mmc_detach_bus(struct mmc_host *host)
1680 {
1681 	unsigned long flags;
1682 
1683 	BUG_ON(!host);
1684 
1685 	WARN_ON(!host->claimed);
1686 	WARN_ON(!host->bus_ops);
1687 
1688 	spin_lock_irqsave(&host->lock, flags);
1689 
1690 	host->bus_dead = 1;
1691 
1692 	spin_unlock_irqrestore(&host->lock, flags);
1693 
1694 	mmc_bus_put(host);
1695 }
1696 
1697 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1698 				bool cd_irq)
1699 {
1700 #ifdef CONFIG_MMC_DEBUG
1701 	unsigned long flags;
1702 	spin_lock_irqsave(&host->lock, flags);
1703 	WARN_ON(host->removed);
1704 	spin_unlock_irqrestore(&host->lock, flags);
1705 #endif
1706 
1707 	/*
1708 	 * If the device is configured as wakeup, we prevent a new sleep for
1709 	 * 5 s to give provision for user space to consume the event.
1710 	 */
1711 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1712 		device_can_wakeup(mmc_dev(host)))
1713 		pm_wakeup_event(mmc_dev(host), 5000);
1714 
1715 	host->detect_change = 1;
1716 	mmc_schedule_delayed_work(&host->detect, delay);
1717 }
1718 
1719 /**
1720  *	mmc_detect_change - process change of state on a MMC socket
1721  *	@host: host which changed state.
1722  *	@delay: optional delay to wait before detection (jiffies)
1723  *
1724  *	MMC drivers should call this when they detect a card has been
1725  *	inserted or removed. The MMC layer will confirm that any
1726  *	present card is still functional, and initialize any newly
1727  *	inserted.
1728  */
1729 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1730 {
1731 	_mmc_detect_change(host, delay, true);
1732 }
1733 EXPORT_SYMBOL(mmc_detect_change);
1734 
1735 void mmc_init_erase(struct mmc_card *card)
1736 {
1737 	unsigned int sz;
1738 
1739 	if (is_power_of_2(card->erase_size))
1740 		card->erase_shift = ffs(card->erase_size) - 1;
1741 	else
1742 		card->erase_shift = 0;
1743 
1744 	/*
1745 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1746 	 * card.  That is not desirable because it can take a long time
1747 	 * (minutes) potentially delaying more important I/O, and also the
1748 	 * timeout calculations become increasingly hugely over-estimated.
1749 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1750 	 * to that size and alignment.
1751 	 *
1752 	 * For SD cards that define Allocation Unit size, limit erases to one
1753 	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1754 	 * Erase Size, whether it is switched on or not, limit to that size.
1755 	 * Otherwise just have a stab at a good value.  For modern cards it
1756 	 * will end up being 4MiB.  Note that if the value is too small, it
1757 	 * can end up taking longer to erase.
1758 	 */
1759 	if (mmc_card_sd(card) && card->ssr.au) {
1760 		card->pref_erase = card->ssr.au;
1761 		card->erase_shift = ffs(card->ssr.au) - 1;
1762 	} else if (card->ext_csd.hc_erase_size) {
1763 		card->pref_erase = card->ext_csd.hc_erase_size;
1764 	} else {
1765 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1766 		if (sz < 128)
1767 			card->pref_erase = 512 * 1024 / 512;
1768 		else if (sz < 512)
1769 			card->pref_erase = 1024 * 1024 / 512;
1770 		else if (sz < 1024)
1771 			card->pref_erase = 2 * 1024 * 1024 / 512;
1772 		else
1773 			card->pref_erase = 4 * 1024 * 1024 / 512;
1774 		if (card->pref_erase < card->erase_size)
1775 			card->pref_erase = card->erase_size;
1776 		else {
1777 			sz = card->pref_erase % card->erase_size;
1778 			if (sz)
1779 				card->pref_erase += card->erase_size - sz;
1780 		}
1781 	}
1782 }
1783 
1784 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1785 				          unsigned int arg, unsigned int qty)
1786 {
1787 	unsigned int erase_timeout;
1788 
1789 	if (arg == MMC_DISCARD_ARG ||
1790 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1791 		erase_timeout = card->ext_csd.trim_timeout;
1792 	} else if (card->ext_csd.erase_group_def & 1) {
1793 		/* High Capacity Erase Group Size uses HC timeouts */
1794 		if (arg == MMC_TRIM_ARG)
1795 			erase_timeout = card->ext_csd.trim_timeout;
1796 		else
1797 			erase_timeout = card->ext_csd.hc_erase_timeout;
1798 	} else {
1799 		/* CSD Erase Group Size uses write timeout */
1800 		unsigned int mult = (10 << card->csd.r2w_factor);
1801 		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1802 		unsigned int timeout_us;
1803 
1804 		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1805 		if (card->csd.tacc_ns < 1000000)
1806 			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1807 		else
1808 			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1809 
1810 		/*
1811 		 * ios.clock is only a target.  The real clock rate might be
1812 		 * less but not that much less, so fudge it by multiplying by 2.
1813 		 */
1814 		timeout_clks <<= 1;
1815 		timeout_us += (timeout_clks * 1000) /
1816 			      (mmc_host_clk_rate(card->host) / 1000);
1817 
1818 		erase_timeout = timeout_us / 1000;
1819 
1820 		/*
1821 		 * Theoretically, the calculation could underflow so round up
1822 		 * to 1ms in that case.
1823 		 */
1824 		if (!erase_timeout)
1825 			erase_timeout = 1;
1826 	}
1827 
1828 	/* Multiplier for secure operations */
1829 	if (arg & MMC_SECURE_ARGS) {
1830 		if (arg == MMC_SECURE_ERASE_ARG)
1831 			erase_timeout *= card->ext_csd.sec_erase_mult;
1832 		else
1833 			erase_timeout *= card->ext_csd.sec_trim_mult;
1834 	}
1835 
1836 	erase_timeout *= qty;
1837 
1838 	/*
1839 	 * Ensure at least a 1 second timeout for SPI as per
1840 	 * 'mmc_set_data_timeout()'
1841 	 */
1842 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1843 		erase_timeout = 1000;
1844 
1845 	return erase_timeout;
1846 }
1847 
1848 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1849 					 unsigned int arg,
1850 					 unsigned int qty)
1851 {
1852 	unsigned int erase_timeout;
1853 
1854 	if (card->ssr.erase_timeout) {
1855 		/* Erase timeout specified in SD Status Register (SSR) */
1856 		erase_timeout = card->ssr.erase_timeout * qty +
1857 				card->ssr.erase_offset;
1858 	} else {
1859 		/*
1860 		 * Erase timeout not specified in SD Status Register (SSR) so
1861 		 * use 250ms per write block.
1862 		 */
1863 		erase_timeout = 250 * qty;
1864 	}
1865 
1866 	/* Must not be less than 1 second */
1867 	if (erase_timeout < 1000)
1868 		erase_timeout = 1000;
1869 
1870 	return erase_timeout;
1871 }
1872 
1873 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1874 				      unsigned int arg,
1875 				      unsigned int qty)
1876 {
1877 	if (mmc_card_sd(card))
1878 		return mmc_sd_erase_timeout(card, arg, qty);
1879 	else
1880 		return mmc_mmc_erase_timeout(card, arg, qty);
1881 }
1882 
1883 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1884 			unsigned int to, unsigned int arg)
1885 {
1886 	struct mmc_command cmd = {0};
1887 	unsigned int qty = 0;
1888 	unsigned long timeout;
1889 	int err;
1890 
1891 	/*
1892 	 * qty is used to calculate the erase timeout which depends on how many
1893 	 * erase groups (or allocation units in SD terminology) are affected.
1894 	 * We count erasing part of an erase group as one erase group.
1895 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1896 	 * erase group size is almost certainly also power of 2, but it does not
1897 	 * seem to insist on that in the JEDEC standard, so we fall back to
1898 	 * division in that case.  SD may not specify an allocation unit size,
1899 	 * in which case the timeout is based on the number of write blocks.
1900 	 *
1901 	 * Note that the timeout for secure trim 2 will only be correct if the
1902 	 * number of erase groups specified is the same as the total of all
1903 	 * preceding secure trim 1 commands.  Since the power may have been
1904 	 * lost since the secure trim 1 commands occurred, it is generally
1905 	 * impossible to calculate the secure trim 2 timeout correctly.
1906 	 */
1907 	if (card->erase_shift)
1908 		qty += ((to >> card->erase_shift) -
1909 			(from >> card->erase_shift)) + 1;
1910 	else if (mmc_card_sd(card))
1911 		qty += to - from + 1;
1912 	else
1913 		qty += ((to / card->erase_size) -
1914 			(from / card->erase_size)) + 1;
1915 
1916 	if (!mmc_card_blockaddr(card)) {
1917 		from <<= 9;
1918 		to <<= 9;
1919 	}
1920 
1921 	if (mmc_card_sd(card))
1922 		cmd.opcode = SD_ERASE_WR_BLK_START;
1923 	else
1924 		cmd.opcode = MMC_ERASE_GROUP_START;
1925 	cmd.arg = from;
1926 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1927 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1928 	if (err) {
1929 		pr_err("mmc_erase: group start error %d, "
1930 		       "status %#x\n", err, cmd.resp[0]);
1931 		err = -EIO;
1932 		goto out;
1933 	}
1934 
1935 	memset(&cmd, 0, sizeof(struct mmc_command));
1936 	if (mmc_card_sd(card))
1937 		cmd.opcode = SD_ERASE_WR_BLK_END;
1938 	else
1939 		cmd.opcode = MMC_ERASE_GROUP_END;
1940 	cmd.arg = to;
1941 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1942 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1943 	if (err) {
1944 		pr_err("mmc_erase: group end error %d, status %#x\n",
1945 		       err, cmd.resp[0]);
1946 		err = -EIO;
1947 		goto out;
1948 	}
1949 
1950 	memset(&cmd, 0, sizeof(struct mmc_command));
1951 	cmd.opcode = MMC_ERASE;
1952 	cmd.arg = arg;
1953 	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1954 	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
1955 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1956 	if (err) {
1957 		pr_err("mmc_erase: erase error %d, status %#x\n",
1958 		       err, cmd.resp[0]);
1959 		err = -EIO;
1960 		goto out;
1961 	}
1962 
1963 	if (mmc_host_is_spi(card->host))
1964 		goto out;
1965 
1966 	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1967 	do {
1968 		memset(&cmd, 0, sizeof(struct mmc_command));
1969 		cmd.opcode = MMC_SEND_STATUS;
1970 		cmd.arg = card->rca << 16;
1971 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1972 		/* Do not retry else we can't see errors */
1973 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1974 		if (err || (cmd.resp[0] & 0xFDF92000)) {
1975 			pr_err("error %d requesting status %#x\n",
1976 				err, cmd.resp[0]);
1977 			err = -EIO;
1978 			goto out;
1979 		}
1980 
1981 		/* Timeout if the device never becomes ready for data and
1982 		 * never leaves the program state.
1983 		 */
1984 		if (time_after(jiffies, timeout)) {
1985 			pr_err("%s: Card stuck in programming state! %s\n",
1986 				mmc_hostname(card->host), __func__);
1987 			err =  -EIO;
1988 			goto out;
1989 		}
1990 
1991 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1992 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1993 out:
1994 	return err;
1995 }
1996 
1997 /**
1998  * mmc_erase - erase sectors.
1999  * @card: card to erase
2000  * @from: first sector to erase
2001  * @nr: number of sectors to erase
2002  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2003  *
2004  * Caller must claim host before calling this function.
2005  */
2006 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2007 	      unsigned int arg)
2008 {
2009 	unsigned int rem, to = from + nr;
2010 
2011 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2012 	    !(card->csd.cmdclass & CCC_ERASE))
2013 		return -EOPNOTSUPP;
2014 
2015 	if (!card->erase_size)
2016 		return -EOPNOTSUPP;
2017 
2018 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2019 		return -EOPNOTSUPP;
2020 
2021 	if ((arg & MMC_SECURE_ARGS) &&
2022 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2023 		return -EOPNOTSUPP;
2024 
2025 	if ((arg & MMC_TRIM_ARGS) &&
2026 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2027 		return -EOPNOTSUPP;
2028 
2029 	if (arg == MMC_SECURE_ERASE_ARG) {
2030 		if (from % card->erase_size || nr % card->erase_size)
2031 			return -EINVAL;
2032 	}
2033 
2034 	if (arg == MMC_ERASE_ARG) {
2035 		rem = from % card->erase_size;
2036 		if (rem) {
2037 			rem = card->erase_size - rem;
2038 			from += rem;
2039 			if (nr > rem)
2040 				nr -= rem;
2041 			else
2042 				return 0;
2043 		}
2044 		rem = nr % card->erase_size;
2045 		if (rem)
2046 			nr -= rem;
2047 	}
2048 
2049 	if (nr == 0)
2050 		return 0;
2051 
2052 	to = from + nr;
2053 
2054 	if (to <= from)
2055 		return -EINVAL;
2056 
2057 	/* 'from' and 'to' are inclusive */
2058 	to -= 1;
2059 
2060 	return mmc_do_erase(card, from, to, arg);
2061 }
2062 EXPORT_SYMBOL(mmc_erase);
2063 
2064 int mmc_can_erase(struct mmc_card *card)
2065 {
2066 	if ((card->host->caps & MMC_CAP_ERASE) &&
2067 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2068 		return 1;
2069 	return 0;
2070 }
2071 EXPORT_SYMBOL(mmc_can_erase);
2072 
2073 int mmc_can_trim(struct mmc_card *card)
2074 {
2075 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2076 		return 1;
2077 	return 0;
2078 }
2079 EXPORT_SYMBOL(mmc_can_trim);
2080 
2081 int mmc_can_discard(struct mmc_card *card)
2082 {
2083 	/*
2084 	 * As there's no way to detect the discard support bit at v4.5
2085 	 * use the s/w feature support filed.
2086 	 */
2087 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2088 		return 1;
2089 	return 0;
2090 }
2091 EXPORT_SYMBOL(mmc_can_discard);
2092 
2093 int mmc_can_sanitize(struct mmc_card *card)
2094 {
2095 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2096 		return 0;
2097 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2098 		return 1;
2099 	return 0;
2100 }
2101 EXPORT_SYMBOL(mmc_can_sanitize);
2102 
2103 int mmc_can_secure_erase_trim(struct mmc_card *card)
2104 {
2105 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2106 		return 1;
2107 	return 0;
2108 }
2109 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2110 
2111 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2112 			    unsigned int nr)
2113 {
2114 	if (!card->erase_size)
2115 		return 0;
2116 	if (from % card->erase_size || nr % card->erase_size)
2117 		return 0;
2118 	return 1;
2119 }
2120 EXPORT_SYMBOL(mmc_erase_group_aligned);
2121 
2122 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2123 					    unsigned int arg)
2124 {
2125 	struct mmc_host *host = card->host;
2126 	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2127 	unsigned int last_timeout = 0;
2128 
2129 	if (card->erase_shift)
2130 		max_qty = UINT_MAX >> card->erase_shift;
2131 	else if (mmc_card_sd(card))
2132 		max_qty = UINT_MAX;
2133 	else
2134 		max_qty = UINT_MAX / card->erase_size;
2135 
2136 	/* Find the largest qty with an OK timeout */
2137 	do {
2138 		y = 0;
2139 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2140 			timeout = mmc_erase_timeout(card, arg, qty + x);
2141 			if (timeout > host->max_busy_timeout)
2142 				break;
2143 			if (timeout < last_timeout)
2144 				break;
2145 			last_timeout = timeout;
2146 			y = x;
2147 		}
2148 		qty += y;
2149 	} while (y);
2150 
2151 	if (!qty)
2152 		return 0;
2153 
2154 	if (qty == 1)
2155 		return 1;
2156 
2157 	/* Convert qty to sectors */
2158 	if (card->erase_shift)
2159 		max_discard = --qty << card->erase_shift;
2160 	else if (mmc_card_sd(card))
2161 		max_discard = qty;
2162 	else
2163 		max_discard = --qty * card->erase_size;
2164 
2165 	return max_discard;
2166 }
2167 
2168 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2169 {
2170 	struct mmc_host *host = card->host;
2171 	unsigned int max_discard, max_trim;
2172 
2173 	if (!host->max_busy_timeout)
2174 		return UINT_MAX;
2175 
2176 	/*
2177 	 * Without erase_group_def set, MMC erase timeout depends on clock
2178 	 * frequence which can change.  In that case, the best choice is
2179 	 * just the preferred erase size.
2180 	 */
2181 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2182 		return card->pref_erase;
2183 
2184 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2185 	if (mmc_can_trim(card)) {
2186 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2187 		if (max_trim < max_discard)
2188 			max_discard = max_trim;
2189 	} else if (max_discard < card->erase_size) {
2190 		max_discard = 0;
2191 	}
2192 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2193 		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2194 	return max_discard;
2195 }
2196 EXPORT_SYMBOL(mmc_calc_max_discard);
2197 
2198 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2199 {
2200 	struct mmc_command cmd = {0};
2201 
2202 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2203 		return 0;
2204 
2205 	cmd.opcode = MMC_SET_BLOCKLEN;
2206 	cmd.arg = blocklen;
2207 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2208 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2209 }
2210 EXPORT_SYMBOL(mmc_set_blocklen);
2211 
2212 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2213 			bool is_rel_write)
2214 {
2215 	struct mmc_command cmd = {0};
2216 
2217 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2218 	cmd.arg = blockcount & 0x0000FFFF;
2219 	if (is_rel_write)
2220 		cmd.arg |= 1 << 31;
2221 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2222 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2223 }
2224 EXPORT_SYMBOL(mmc_set_blockcount);
2225 
2226 static void mmc_hw_reset_for_init(struct mmc_host *host)
2227 {
2228 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2229 		return;
2230 	mmc_host_clk_hold(host);
2231 	host->ops->hw_reset(host);
2232 	mmc_host_clk_release(host);
2233 }
2234 
2235 int mmc_can_reset(struct mmc_card *card)
2236 {
2237 	u8 rst_n_function;
2238 
2239 	if (!mmc_card_mmc(card))
2240 		return 0;
2241 	rst_n_function = card->ext_csd.rst_n_function;
2242 	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2243 		return 0;
2244 	return 1;
2245 }
2246 EXPORT_SYMBOL(mmc_can_reset);
2247 
2248 static int mmc_do_hw_reset(struct mmc_host *host, int check)
2249 {
2250 	struct mmc_card *card = host->card;
2251 
2252 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2253 		return -EOPNOTSUPP;
2254 
2255 	if (!card)
2256 		return -EINVAL;
2257 
2258 	if (!mmc_can_reset(card))
2259 		return -EOPNOTSUPP;
2260 
2261 	mmc_host_clk_hold(host);
2262 	mmc_set_clock(host, host->f_init);
2263 
2264 	host->ops->hw_reset(host);
2265 
2266 	/* If the reset has happened, then a status command will fail */
2267 	if (check) {
2268 		struct mmc_command cmd = {0};
2269 		int err;
2270 
2271 		cmd.opcode = MMC_SEND_STATUS;
2272 		if (!mmc_host_is_spi(card->host))
2273 			cmd.arg = card->rca << 16;
2274 		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2275 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2276 		if (!err) {
2277 			mmc_host_clk_release(host);
2278 			return -ENOSYS;
2279 		}
2280 	}
2281 
2282 	if (mmc_host_is_spi(host)) {
2283 		host->ios.chip_select = MMC_CS_HIGH;
2284 		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2285 	} else {
2286 		host->ios.chip_select = MMC_CS_DONTCARE;
2287 		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2288 	}
2289 	host->ios.bus_width = MMC_BUS_WIDTH_1;
2290 	host->ios.timing = MMC_TIMING_LEGACY;
2291 	mmc_set_ios(host);
2292 
2293 	mmc_host_clk_release(host);
2294 
2295 	return host->bus_ops->power_restore(host);
2296 }
2297 
2298 int mmc_hw_reset(struct mmc_host *host)
2299 {
2300 	return mmc_do_hw_reset(host, 0);
2301 }
2302 EXPORT_SYMBOL(mmc_hw_reset);
2303 
2304 int mmc_hw_reset_check(struct mmc_host *host)
2305 {
2306 	return mmc_do_hw_reset(host, 1);
2307 }
2308 EXPORT_SYMBOL(mmc_hw_reset_check);
2309 
2310 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2311 {
2312 	host->f_init = freq;
2313 
2314 #ifdef CONFIG_MMC_DEBUG
2315 	pr_info("%s: %s: trying to init card at %u Hz\n",
2316 		mmc_hostname(host), __func__, host->f_init);
2317 #endif
2318 	mmc_power_up(host, host->ocr_avail);
2319 
2320 	/*
2321 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2322 	 * do a hardware reset if possible.
2323 	 */
2324 	mmc_hw_reset_for_init(host);
2325 
2326 	/*
2327 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2328 	 * if the card is being re-initialized, just send it.  CMD52
2329 	 * should be ignored by SD/eMMC cards.
2330 	 */
2331 	sdio_reset(host);
2332 	mmc_go_idle(host);
2333 
2334 	mmc_send_if_cond(host, host->ocr_avail);
2335 
2336 	/* Order's important: probe SDIO, then SD, then MMC */
2337 	if (!mmc_attach_sdio(host))
2338 		return 0;
2339 	if (!mmc_attach_sd(host))
2340 		return 0;
2341 	if (!mmc_attach_mmc(host))
2342 		return 0;
2343 
2344 	mmc_power_off(host);
2345 	return -EIO;
2346 }
2347 
2348 int _mmc_detect_card_removed(struct mmc_host *host)
2349 {
2350 	int ret;
2351 
2352 	if (host->caps & MMC_CAP_NONREMOVABLE)
2353 		return 0;
2354 
2355 	if (!host->card || mmc_card_removed(host->card))
2356 		return 1;
2357 
2358 	ret = host->bus_ops->alive(host);
2359 
2360 	/*
2361 	 * Card detect status and alive check may be out of sync if card is
2362 	 * removed slowly, when card detect switch changes while card/slot
2363 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2364 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2365 	 * detect work 200ms later for this case.
2366 	 */
2367 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2368 		mmc_detect_change(host, msecs_to_jiffies(200));
2369 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2370 	}
2371 
2372 	if (ret) {
2373 		mmc_card_set_removed(host->card);
2374 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2375 	}
2376 
2377 	return ret;
2378 }
2379 
2380 int mmc_detect_card_removed(struct mmc_host *host)
2381 {
2382 	struct mmc_card *card = host->card;
2383 	int ret;
2384 
2385 	WARN_ON(!host->claimed);
2386 
2387 	if (!card)
2388 		return 1;
2389 
2390 	ret = mmc_card_removed(card);
2391 	/*
2392 	 * The card will be considered unchanged unless we have been asked to
2393 	 * detect a change or host requires polling to provide card detection.
2394 	 */
2395 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2396 		return ret;
2397 
2398 	host->detect_change = 0;
2399 	if (!ret) {
2400 		ret = _mmc_detect_card_removed(host);
2401 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2402 			/*
2403 			 * Schedule a detect work as soon as possible to let a
2404 			 * rescan handle the card removal.
2405 			 */
2406 			cancel_delayed_work(&host->detect);
2407 			_mmc_detect_change(host, 0, false);
2408 		}
2409 	}
2410 
2411 	return ret;
2412 }
2413 EXPORT_SYMBOL(mmc_detect_card_removed);
2414 
2415 void mmc_rescan(struct work_struct *work)
2416 {
2417 	struct mmc_host *host =
2418 		container_of(work, struct mmc_host, detect.work);
2419 	int i;
2420 
2421 	if (host->trigger_card_event && host->ops->card_event) {
2422 		host->ops->card_event(host);
2423 		host->trigger_card_event = false;
2424 	}
2425 
2426 	if (host->rescan_disable)
2427 		return;
2428 
2429 	/* If there is a non-removable card registered, only scan once */
2430 	if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2431 		return;
2432 	host->rescan_entered = 1;
2433 
2434 	mmc_bus_get(host);
2435 
2436 	/*
2437 	 * if there is a _removable_ card registered, check whether it is
2438 	 * still present
2439 	 */
2440 	if (host->bus_ops && !host->bus_dead
2441 	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2442 		host->bus_ops->detect(host);
2443 
2444 	host->detect_change = 0;
2445 
2446 	/*
2447 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2448 	 * the card is no longer present.
2449 	 */
2450 	mmc_bus_put(host);
2451 	mmc_bus_get(host);
2452 
2453 	/* if there still is a card present, stop here */
2454 	if (host->bus_ops != NULL) {
2455 		mmc_bus_put(host);
2456 		goto out;
2457 	}
2458 
2459 	/*
2460 	 * Only we can add a new handler, so it's safe to
2461 	 * release the lock here.
2462 	 */
2463 	mmc_bus_put(host);
2464 
2465 	if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2466 			host->ops->get_cd(host) == 0) {
2467 		mmc_claim_host(host);
2468 		mmc_power_off(host);
2469 		mmc_release_host(host);
2470 		goto out;
2471 	}
2472 
2473 	mmc_claim_host(host);
2474 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2475 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2476 			break;
2477 		if (freqs[i] <= host->f_min)
2478 			break;
2479 	}
2480 	mmc_release_host(host);
2481 
2482  out:
2483 	if (host->caps & MMC_CAP_NEEDS_POLL)
2484 		mmc_schedule_delayed_work(&host->detect, HZ);
2485 }
2486 
2487 void mmc_start_host(struct mmc_host *host)
2488 {
2489 	host->f_init = max(freqs[0], host->f_min);
2490 	host->rescan_disable = 0;
2491 	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2492 		mmc_power_off(host);
2493 	else
2494 		mmc_power_up(host, host->ocr_avail);
2495 	mmc_gpiod_request_cd_irq(host);
2496 	_mmc_detect_change(host, 0, false);
2497 }
2498 
2499 void mmc_stop_host(struct mmc_host *host)
2500 {
2501 #ifdef CONFIG_MMC_DEBUG
2502 	unsigned long flags;
2503 	spin_lock_irqsave(&host->lock, flags);
2504 	host->removed = 1;
2505 	spin_unlock_irqrestore(&host->lock, flags);
2506 #endif
2507 	if (host->slot.cd_irq >= 0)
2508 		disable_irq(host->slot.cd_irq);
2509 
2510 	host->rescan_disable = 1;
2511 	cancel_delayed_work_sync(&host->detect);
2512 	mmc_flush_scheduled_work();
2513 
2514 	/* clear pm flags now and let card drivers set them as needed */
2515 	host->pm_flags = 0;
2516 
2517 	mmc_bus_get(host);
2518 	if (host->bus_ops && !host->bus_dead) {
2519 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2520 		host->bus_ops->remove(host);
2521 		mmc_claim_host(host);
2522 		mmc_detach_bus(host);
2523 		mmc_power_off(host);
2524 		mmc_release_host(host);
2525 		mmc_bus_put(host);
2526 		return;
2527 	}
2528 	mmc_bus_put(host);
2529 
2530 	BUG_ON(host->card);
2531 
2532 	mmc_power_off(host);
2533 }
2534 
2535 int mmc_power_save_host(struct mmc_host *host)
2536 {
2537 	int ret = 0;
2538 
2539 #ifdef CONFIG_MMC_DEBUG
2540 	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2541 #endif
2542 
2543 	mmc_bus_get(host);
2544 
2545 	if (!host->bus_ops || host->bus_dead) {
2546 		mmc_bus_put(host);
2547 		return -EINVAL;
2548 	}
2549 
2550 	if (host->bus_ops->power_save)
2551 		ret = host->bus_ops->power_save(host);
2552 
2553 	mmc_bus_put(host);
2554 
2555 	mmc_power_off(host);
2556 
2557 	return ret;
2558 }
2559 EXPORT_SYMBOL(mmc_power_save_host);
2560 
2561 int mmc_power_restore_host(struct mmc_host *host)
2562 {
2563 	int ret;
2564 
2565 #ifdef CONFIG_MMC_DEBUG
2566 	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2567 #endif
2568 
2569 	mmc_bus_get(host);
2570 
2571 	if (!host->bus_ops || host->bus_dead) {
2572 		mmc_bus_put(host);
2573 		return -EINVAL;
2574 	}
2575 
2576 	mmc_power_up(host, host->card->ocr);
2577 	ret = host->bus_ops->power_restore(host);
2578 
2579 	mmc_bus_put(host);
2580 
2581 	return ret;
2582 }
2583 EXPORT_SYMBOL(mmc_power_restore_host);
2584 
2585 /*
2586  * Flush the cache to the non-volatile storage.
2587  */
2588 int mmc_flush_cache(struct mmc_card *card)
2589 {
2590 	int err = 0;
2591 
2592 	if (mmc_card_mmc(card) &&
2593 			(card->ext_csd.cache_size > 0) &&
2594 			(card->ext_csd.cache_ctrl & 1)) {
2595 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2596 				EXT_CSD_FLUSH_CACHE, 1, 0);
2597 		if (err)
2598 			pr_err("%s: cache flush error %d\n",
2599 					mmc_hostname(card->host), err);
2600 	}
2601 
2602 	return err;
2603 }
2604 EXPORT_SYMBOL(mmc_flush_cache);
2605 
2606 #ifdef CONFIG_PM
2607 
2608 /* Do the card removal on suspend if card is assumed removeable
2609  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2610    to sync the card.
2611 */
2612 int mmc_pm_notify(struct notifier_block *notify_block,
2613 					unsigned long mode, void *unused)
2614 {
2615 	struct mmc_host *host = container_of(
2616 		notify_block, struct mmc_host, pm_notify);
2617 	unsigned long flags;
2618 	int err = 0;
2619 
2620 	switch (mode) {
2621 	case PM_HIBERNATION_PREPARE:
2622 	case PM_SUSPEND_PREPARE:
2623 		spin_lock_irqsave(&host->lock, flags);
2624 		host->rescan_disable = 1;
2625 		spin_unlock_irqrestore(&host->lock, flags);
2626 		cancel_delayed_work_sync(&host->detect);
2627 
2628 		if (!host->bus_ops)
2629 			break;
2630 
2631 		/* Validate prerequisites for suspend */
2632 		if (host->bus_ops->pre_suspend)
2633 			err = host->bus_ops->pre_suspend(host);
2634 		if (!err)
2635 			break;
2636 
2637 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2638 		host->bus_ops->remove(host);
2639 		mmc_claim_host(host);
2640 		mmc_detach_bus(host);
2641 		mmc_power_off(host);
2642 		mmc_release_host(host);
2643 		host->pm_flags = 0;
2644 		break;
2645 
2646 	case PM_POST_SUSPEND:
2647 	case PM_POST_HIBERNATION:
2648 	case PM_POST_RESTORE:
2649 
2650 		spin_lock_irqsave(&host->lock, flags);
2651 		host->rescan_disable = 0;
2652 		spin_unlock_irqrestore(&host->lock, flags);
2653 		_mmc_detect_change(host, 0, false);
2654 
2655 	}
2656 
2657 	return 0;
2658 }
2659 #endif
2660 
2661 /**
2662  * mmc_init_context_info() - init synchronization context
2663  * @host: mmc host
2664  *
2665  * Init struct context_info needed to implement asynchronous
2666  * request mechanism, used by mmc core, host driver and mmc requests
2667  * supplier.
2668  */
2669 void mmc_init_context_info(struct mmc_host *host)
2670 {
2671 	spin_lock_init(&host->context_info.lock);
2672 	host->context_info.is_new_req = false;
2673 	host->context_info.is_done_rcv = false;
2674 	host->context_info.is_waiting_last_req = false;
2675 	init_waitqueue_head(&host->context_info.wait);
2676 }
2677 
2678 static int __init mmc_init(void)
2679 {
2680 	int ret;
2681 
2682 	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2683 	if (!workqueue)
2684 		return -ENOMEM;
2685 
2686 	ret = mmc_register_bus();
2687 	if (ret)
2688 		goto destroy_workqueue;
2689 
2690 	ret = mmc_register_host_class();
2691 	if (ret)
2692 		goto unregister_bus;
2693 
2694 	ret = sdio_register_bus();
2695 	if (ret)
2696 		goto unregister_host_class;
2697 
2698 	return 0;
2699 
2700 unregister_host_class:
2701 	mmc_unregister_host_class();
2702 unregister_bus:
2703 	mmc_unregister_bus();
2704 destroy_workqueue:
2705 	destroy_workqueue(workqueue);
2706 
2707 	return ret;
2708 }
2709 
2710 static void __exit mmc_exit(void)
2711 {
2712 	sdio_unregister_bus();
2713 	mmc_unregister_host_class();
2714 	mmc_unregister_bus();
2715 	destroy_workqueue(workqueue);
2716 }
2717 
2718 subsys_initcall(mmc_init);
2719 module_exit(mmc_exit);
2720 
2721 MODULE_LICENSE("GPL");
2722