1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/suspend.h> 28 #include <linux/fault-inject.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/of.h> 32 33 #include <linux/mmc/card.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> 36 #include <linux/mmc/sd.h> 37 #include <linux/mmc/slot-gpio.h> 38 39 #include "core.h" 40 #include "bus.h" 41 #include "host.h" 42 #include "sdio_bus.h" 43 44 #include "mmc_ops.h" 45 #include "sd_ops.h" 46 #include "sdio_ops.h" 47 48 /* If the device is not responding */ 49 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 50 51 /* 52 * Background operations can take a long time, depending on the housekeeping 53 * operations the card has to perform. 54 */ 55 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */ 56 57 static struct workqueue_struct *workqueue; 58 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 59 60 /* 61 * Enabling software CRCs on the data blocks can be a significant (30%) 62 * performance cost, and for other reasons may not always be desired. 63 * So we allow it it to be disabled. 64 */ 65 bool use_spi_crc = 1; 66 module_param(use_spi_crc, bool, 0); 67 68 /* 69 * Internal function. Schedule delayed work in the MMC work queue. 70 */ 71 static int mmc_schedule_delayed_work(struct delayed_work *work, 72 unsigned long delay) 73 { 74 return queue_delayed_work(workqueue, work, delay); 75 } 76 77 /* 78 * Internal function. Flush all scheduled work from the MMC work queue. 79 */ 80 static void mmc_flush_scheduled_work(void) 81 { 82 flush_workqueue(workqueue); 83 } 84 85 #ifdef CONFIG_FAIL_MMC_REQUEST 86 87 /* 88 * Internal function. Inject random data errors. 89 * If mmc_data is NULL no errors are injected. 90 */ 91 static void mmc_should_fail_request(struct mmc_host *host, 92 struct mmc_request *mrq) 93 { 94 struct mmc_command *cmd = mrq->cmd; 95 struct mmc_data *data = mrq->data; 96 static const int data_errors[] = { 97 -ETIMEDOUT, 98 -EILSEQ, 99 -EIO, 100 }; 101 102 if (!data) 103 return; 104 105 if (cmd->error || data->error || 106 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 107 return; 108 109 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 110 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 111 } 112 113 #else /* CONFIG_FAIL_MMC_REQUEST */ 114 115 static inline void mmc_should_fail_request(struct mmc_host *host, 116 struct mmc_request *mrq) 117 { 118 } 119 120 #endif /* CONFIG_FAIL_MMC_REQUEST */ 121 122 /** 123 * mmc_request_done - finish processing an MMC request 124 * @host: MMC host which completed request 125 * @mrq: MMC request which request 126 * 127 * MMC drivers should call this function when they have completed 128 * their processing of a request. 129 */ 130 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 131 { 132 struct mmc_command *cmd = mrq->cmd; 133 int err = cmd->error; 134 135 if (err && cmd->retries && mmc_host_is_spi(host)) { 136 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 137 cmd->retries = 0; 138 } 139 140 if (err && cmd->retries && !mmc_card_removed(host->card)) { 141 /* 142 * Request starter must handle retries - see 143 * mmc_wait_for_req_done(). 144 */ 145 if (mrq->done) 146 mrq->done(mrq); 147 } else { 148 mmc_should_fail_request(host, mrq); 149 150 led_trigger_event(host->led, LED_OFF); 151 152 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 153 mmc_hostname(host), cmd->opcode, err, 154 cmd->resp[0], cmd->resp[1], 155 cmd->resp[2], cmd->resp[3]); 156 157 if (mrq->data) { 158 pr_debug("%s: %d bytes transferred: %d\n", 159 mmc_hostname(host), 160 mrq->data->bytes_xfered, mrq->data->error); 161 } 162 163 if (mrq->stop) { 164 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 165 mmc_hostname(host), mrq->stop->opcode, 166 mrq->stop->error, 167 mrq->stop->resp[0], mrq->stop->resp[1], 168 mrq->stop->resp[2], mrq->stop->resp[3]); 169 } 170 171 if (mrq->done) 172 mrq->done(mrq); 173 174 mmc_host_clk_release(host); 175 } 176 } 177 178 EXPORT_SYMBOL(mmc_request_done); 179 180 static void 181 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 182 { 183 #ifdef CONFIG_MMC_DEBUG 184 unsigned int i, sz; 185 struct scatterlist *sg; 186 #endif 187 188 if (mrq->sbc) { 189 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 190 mmc_hostname(host), mrq->sbc->opcode, 191 mrq->sbc->arg, mrq->sbc->flags); 192 } 193 194 pr_debug("%s: starting CMD%u arg %08x flags %08x\n", 195 mmc_hostname(host), mrq->cmd->opcode, 196 mrq->cmd->arg, mrq->cmd->flags); 197 198 if (mrq->data) { 199 pr_debug("%s: blksz %d blocks %d flags %08x " 200 "tsac %d ms nsac %d\n", 201 mmc_hostname(host), mrq->data->blksz, 202 mrq->data->blocks, mrq->data->flags, 203 mrq->data->timeout_ns / 1000000, 204 mrq->data->timeout_clks); 205 } 206 207 if (mrq->stop) { 208 pr_debug("%s: CMD%u arg %08x flags %08x\n", 209 mmc_hostname(host), mrq->stop->opcode, 210 mrq->stop->arg, mrq->stop->flags); 211 } 212 213 WARN_ON(!host->claimed); 214 215 mrq->cmd->error = 0; 216 mrq->cmd->mrq = mrq; 217 if (mrq->data) { 218 BUG_ON(mrq->data->blksz > host->max_blk_size); 219 BUG_ON(mrq->data->blocks > host->max_blk_count); 220 BUG_ON(mrq->data->blocks * mrq->data->blksz > 221 host->max_req_size); 222 223 #ifdef CONFIG_MMC_DEBUG 224 sz = 0; 225 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 226 sz += sg->length; 227 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); 228 #endif 229 230 mrq->cmd->data = mrq->data; 231 mrq->data->error = 0; 232 mrq->data->mrq = mrq; 233 if (mrq->stop) { 234 mrq->data->stop = mrq->stop; 235 mrq->stop->error = 0; 236 mrq->stop->mrq = mrq; 237 } 238 } 239 mmc_host_clk_hold(host); 240 led_trigger_event(host->led, LED_FULL); 241 host->ops->request(host, mrq); 242 } 243 244 /** 245 * mmc_start_bkops - start BKOPS for supported cards 246 * @card: MMC card to start BKOPS 247 * @form_exception: A flag to indicate if this function was 248 * called due to an exception raised by the card 249 * 250 * Start background operations whenever requested. 251 * When the urgent BKOPS bit is set in a R1 command response 252 * then background operations should be started immediately. 253 */ 254 void mmc_start_bkops(struct mmc_card *card, bool from_exception) 255 { 256 int err; 257 int timeout; 258 bool use_busy_signal; 259 260 BUG_ON(!card); 261 262 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card)) 263 return; 264 265 err = mmc_read_bkops_status(card); 266 if (err) { 267 pr_err("%s: Failed to read bkops status: %d\n", 268 mmc_hostname(card->host), err); 269 return; 270 } 271 272 if (!card->ext_csd.raw_bkops_status) 273 return; 274 275 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 && 276 from_exception) 277 return; 278 279 mmc_claim_host(card->host); 280 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) { 281 timeout = MMC_BKOPS_MAX_TIMEOUT; 282 use_busy_signal = true; 283 } else { 284 timeout = 0; 285 use_busy_signal = false; 286 } 287 288 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 289 EXT_CSD_BKOPS_START, 1, timeout, 290 use_busy_signal, true, false); 291 if (err) { 292 pr_warn("%s: Error %d starting bkops\n", 293 mmc_hostname(card->host), err); 294 goto out; 295 } 296 297 /* 298 * For urgent bkops status (LEVEL_2 and more) 299 * bkops executed synchronously, otherwise 300 * the operation is in progress 301 */ 302 if (!use_busy_signal) 303 mmc_card_set_doing_bkops(card); 304 out: 305 mmc_release_host(card->host); 306 } 307 EXPORT_SYMBOL(mmc_start_bkops); 308 309 /* 310 * mmc_wait_data_done() - done callback for data request 311 * @mrq: done data request 312 * 313 * Wakes up mmc context, passed as a callback to host controller driver 314 */ 315 static void mmc_wait_data_done(struct mmc_request *mrq) 316 { 317 mrq->host->context_info.is_done_rcv = true; 318 wake_up_interruptible(&mrq->host->context_info.wait); 319 } 320 321 static void mmc_wait_done(struct mmc_request *mrq) 322 { 323 complete(&mrq->completion); 324 } 325 326 /* 327 *__mmc_start_data_req() - starts data request 328 * @host: MMC host to start the request 329 * @mrq: data request to start 330 * 331 * Sets the done callback to be called when request is completed by the card. 332 * Starts data mmc request execution 333 */ 334 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq) 335 { 336 mrq->done = mmc_wait_data_done; 337 mrq->host = host; 338 if (mmc_card_removed(host->card)) { 339 mrq->cmd->error = -ENOMEDIUM; 340 mmc_wait_data_done(mrq); 341 return -ENOMEDIUM; 342 } 343 mmc_start_request(host, mrq); 344 345 return 0; 346 } 347 348 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 349 { 350 init_completion(&mrq->completion); 351 mrq->done = mmc_wait_done; 352 if (mmc_card_removed(host->card)) { 353 mrq->cmd->error = -ENOMEDIUM; 354 complete(&mrq->completion); 355 return -ENOMEDIUM; 356 } 357 mmc_start_request(host, mrq); 358 return 0; 359 } 360 361 /* 362 * mmc_wait_for_data_req_done() - wait for request completed 363 * @host: MMC host to prepare the command. 364 * @mrq: MMC request to wait for 365 * 366 * Blocks MMC context till host controller will ack end of data request 367 * execution or new request notification arrives from the block layer. 368 * Handles command retries. 369 * 370 * Returns enum mmc_blk_status after checking errors. 371 */ 372 static int mmc_wait_for_data_req_done(struct mmc_host *host, 373 struct mmc_request *mrq, 374 struct mmc_async_req *next_req) 375 { 376 struct mmc_command *cmd; 377 struct mmc_context_info *context_info = &host->context_info; 378 int err; 379 unsigned long flags; 380 381 while (1) { 382 wait_event_interruptible(context_info->wait, 383 (context_info->is_done_rcv || 384 context_info->is_new_req)); 385 spin_lock_irqsave(&context_info->lock, flags); 386 context_info->is_waiting_last_req = false; 387 spin_unlock_irqrestore(&context_info->lock, flags); 388 if (context_info->is_done_rcv) { 389 context_info->is_done_rcv = false; 390 context_info->is_new_req = false; 391 cmd = mrq->cmd; 392 393 if (!cmd->error || !cmd->retries || 394 mmc_card_removed(host->card)) { 395 err = host->areq->err_check(host->card, 396 host->areq); 397 break; /* return err */ 398 } else { 399 pr_info("%s: req failed (CMD%u): %d, retrying...\n", 400 mmc_hostname(host), 401 cmd->opcode, cmd->error); 402 cmd->retries--; 403 cmd->error = 0; 404 host->ops->request(host, mrq); 405 continue; /* wait for done/new event again */ 406 } 407 } else if (context_info->is_new_req) { 408 context_info->is_new_req = false; 409 if (!next_req) { 410 err = MMC_BLK_NEW_REQUEST; 411 break; /* return err */ 412 } 413 } 414 } 415 return err; 416 } 417 418 static void mmc_wait_for_req_done(struct mmc_host *host, 419 struct mmc_request *mrq) 420 { 421 struct mmc_command *cmd; 422 423 while (1) { 424 wait_for_completion(&mrq->completion); 425 426 cmd = mrq->cmd; 427 428 /* 429 * If host has timed out waiting for the sanitize 430 * to complete, card might be still in programming state 431 * so let's try to bring the card out of programming 432 * state. 433 */ 434 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 435 if (!mmc_interrupt_hpi(host->card)) { 436 pr_warning("%s: %s: Interrupted sanitize\n", 437 mmc_hostname(host), __func__); 438 cmd->error = 0; 439 break; 440 } else { 441 pr_err("%s: %s: Failed to interrupt sanitize\n", 442 mmc_hostname(host), __func__); 443 } 444 } 445 if (!cmd->error || !cmd->retries || 446 mmc_card_removed(host->card)) 447 break; 448 449 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 450 mmc_hostname(host), cmd->opcode, cmd->error); 451 cmd->retries--; 452 cmd->error = 0; 453 host->ops->request(host, mrq); 454 } 455 } 456 457 /** 458 * mmc_pre_req - Prepare for a new request 459 * @host: MMC host to prepare command 460 * @mrq: MMC request to prepare for 461 * @is_first_req: true if there is no previous started request 462 * that may run in parellel to this call, otherwise false 463 * 464 * mmc_pre_req() is called in prior to mmc_start_req() to let 465 * host prepare for the new request. Preparation of a request may be 466 * performed while another request is running on the host. 467 */ 468 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, 469 bool is_first_req) 470 { 471 if (host->ops->pre_req) { 472 mmc_host_clk_hold(host); 473 host->ops->pre_req(host, mrq, is_first_req); 474 mmc_host_clk_release(host); 475 } 476 } 477 478 /** 479 * mmc_post_req - Post process a completed request 480 * @host: MMC host to post process command 481 * @mrq: MMC request to post process for 482 * @err: Error, if non zero, clean up any resources made in pre_req 483 * 484 * Let the host post process a completed request. Post processing of 485 * a request may be performed while another reuqest is running. 486 */ 487 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, 488 int err) 489 { 490 if (host->ops->post_req) { 491 mmc_host_clk_hold(host); 492 host->ops->post_req(host, mrq, err); 493 mmc_host_clk_release(host); 494 } 495 } 496 497 /** 498 * mmc_start_req - start a non-blocking request 499 * @host: MMC host to start command 500 * @areq: async request to start 501 * @error: out parameter returns 0 for success, otherwise non zero 502 * 503 * Start a new MMC custom command request for a host. 504 * If there is on ongoing async request wait for completion 505 * of that request and start the new one and return. 506 * Does not wait for the new request to complete. 507 * 508 * Returns the completed request, NULL in case of none completed. 509 * Wait for the an ongoing request (previoulsy started) to complete and 510 * return the completed request. If there is no ongoing request, NULL 511 * is returned without waiting. NULL is not an error condition. 512 */ 513 struct mmc_async_req *mmc_start_req(struct mmc_host *host, 514 struct mmc_async_req *areq, int *error) 515 { 516 int err = 0; 517 int start_err = 0; 518 struct mmc_async_req *data = host->areq; 519 520 /* Prepare a new request */ 521 if (areq) 522 mmc_pre_req(host, areq->mrq, !host->areq); 523 524 if (host->areq) { 525 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq); 526 if (err == MMC_BLK_NEW_REQUEST) { 527 if (error) 528 *error = err; 529 /* 530 * The previous request was not completed, 531 * nothing to return 532 */ 533 return NULL; 534 } 535 /* 536 * Check BKOPS urgency for each R1 response 537 */ 538 if (host->card && mmc_card_mmc(host->card) && 539 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) || 540 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) && 541 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) 542 mmc_start_bkops(host->card, true); 543 } 544 545 if (!err && areq) 546 start_err = __mmc_start_data_req(host, areq->mrq); 547 548 if (host->areq) 549 mmc_post_req(host, host->areq->mrq, 0); 550 551 /* Cancel a prepared request if it was not started. */ 552 if ((err || start_err) && areq) 553 mmc_post_req(host, areq->mrq, -EINVAL); 554 555 if (err) 556 host->areq = NULL; 557 else 558 host->areq = areq; 559 560 if (error) 561 *error = err; 562 return data; 563 } 564 EXPORT_SYMBOL(mmc_start_req); 565 566 /** 567 * mmc_wait_for_req - start a request and wait for completion 568 * @host: MMC host to start command 569 * @mrq: MMC request to start 570 * 571 * Start a new MMC custom command request for a host, and wait 572 * for the command to complete. Does not attempt to parse the 573 * response. 574 */ 575 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 576 { 577 __mmc_start_req(host, mrq); 578 mmc_wait_for_req_done(host, mrq); 579 } 580 EXPORT_SYMBOL(mmc_wait_for_req); 581 582 /** 583 * mmc_interrupt_hpi - Issue for High priority Interrupt 584 * @card: the MMC card associated with the HPI transfer 585 * 586 * Issued High Priority Interrupt, and check for card status 587 * until out-of prg-state. 588 */ 589 int mmc_interrupt_hpi(struct mmc_card *card) 590 { 591 int err; 592 u32 status; 593 unsigned long prg_wait; 594 595 BUG_ON(!card); 596 597 if (!card->ext_csd.hpi_en) { 598 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); 599 return 1; 600 } 601 602 mmc_claim_host(card->host); 603 err = mmc_send_status(card, &status); 604 if (err) { 605 pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); 606 goto out; 607 } 608 609 switch (R1_CURRENT_STATE(status)) { 610 case R1_STATE_IDLE: 611 case R1_STATE_READY: 612 case R1_STATE_STBY: 613 case R1_STATE_TRAN: 614 /* 615 * In idle and transfer states, HPI is not needed and the caller 616 * can issue the next intended command immediately 617 */ 618 goto out; 619 case R1_STATE_PRG: 620 break; 621 default: 622 /* In all other states, it's illegal to issue HPI */ 623 pr_debug("%s: HPI cannot be sent. Card state=%d\n", 624 mmc_hostname(card->host), R1_CURRENT_STATE(status)); 625 err = -EINVAL; 626 goto out; 627 } 628 629 err = mmc_send_hpi_cmd(card, &status); 630 if (err) 631 goto out; 632 633 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time); 634 do { 635 err = mmc_send_status(card, &status); 636 637 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN) 638 break; 639 if (time_after(jiffies, prg_wait)) 640 err = -ETIMEDOUT; 641 } while (!err); 642 643 out: 644 mmc_release_host(card->host); 645 return err; 646 } 647 EXPORT_SYMBOL(mmc_interrupt_hpi); 648 649 /** 650 * mmc_wait_for_cmd - start a command and wait for completion 651 * @host: MMC host to start command 652 * @cmd: MMC command to start 653 * @retries: maximum number of retries 654 * 655 * Start a new MMC command for a host, and wait for the command 656 * to complete. Return any error that occurred while the command 657 * was executing. Do not attempt to parse the response. 658 */ 659 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 660 { 661 struct mmc_request mrq = {NULL}; 662 663 WARN_ON(!host->claimed); 664 665 memset(cmd->resp, 0, sizeof(cmd->resp)); 666 cmd->retries = retries; 667 668 mrq.cmd = cmd; 669 cmd->data = NULL; 670 671 mmc_wait_for_req(host, &mrq); 672 673 return cmd->error; 674 } 675 676 EXPORT_SYMBOL(mmc_wait_for_cmd); 677 678 /** 679 * mmc_stop_bkops - stop ongoing BKOPS 680 * @card: MMC card to check BKOPS 681 * 682 * Send HPI command to stop ongoing background operations to 683 * allow rapid servicing of foreground operations, e.g. read/ 684 * writes. Wait until the card comes out of the programming state 685 * to avoid errors in servicing read/write requests. 686 */ 687 int mmc_stop_bkops(struct mmc_card *card) 688 { 689 int err = 0; 690 691 BUG_ON(!card); 692 err = mmc_interrupt_hpi(card); 693 694 /* 695 * If err is EINVAL, we can't issue an HPI. 696 * It should complete the BKOPS. 697 */ 698 if (!err || (err == -EINVAL)) { 699 mmc_card_clr_doing_bkops(card); 700 err = 0; 701 } 702 703 return err; 704 } 705 EXPORT_SYMBOL(mmc_stop_bkops); 706 707 int mmc_read_bkops_status(struct mmc_card *card) 708 { 709 int err; 710 u8 *ext_csd; 711 712 /* 713 * In future work, we should consider storing the entire ext_csd. 714 */ 715 ext_csd = kmalloc(512, GFP_KERNEL); 716 if (!ext_csd) { 717 pr_err("%s: could not allocate buffer to receive the ext_csd.\n", 718 mmc_hostname(card->host)); 719 return -ENOMEM; 720 } 721 722 mmc_claim_host(card->host); 723 err = mmc_send_ext_csd(card, ext_csd); 724 mmc_release_host(card->host); 725 if (err) 726 goto out; 727 728 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS]; 729 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS]; 730 out: 731 kfree(ext_csd); 732 return err; 733 } 734 EXPORT_SYMBOL(mmc_read_bkops_status); 735 736 /** 737 * mmc_set_data_timeout - set the timeout for a data command 738 * @data: data phase for command 739 * @card: the MMC card associated with the data transfer 740 * 741 * Computes the data timeout parameters according to the 742 * correct algorithm given the card type. 743 */ 744 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 745 { 746 unsigned int mult; 747 748 /* 749 * SDIO cards only define an upper 1 s limit on access. 750 */ 751 if (mmc_card_sdio(card)) { 752 data->timeout_ns = 1000000000; 753 data->timeout_clks = 0; 754 return; 755 } 756 757 /* 758 * SD cards use a 100 multiplier rather than 10 759 */ 760 mult = mmc_card_sd(card) ? 100 : 10; 761 762 /* 763 * Scale up the multiplier (and therefore the timeout) by 764 * the r2w factor for writes. 765 */ 766 if (data->flags & MMC_DATA_WRITE) 767 mult <<= card->csd.r2w_factor; 768 769 data->timeout_ns = card->csd.tacc_ns * mult; 770 data->timeout_clks = card->csd.tacc_clks * mult; 771 772 /* 773 * SD cards also have an upper limit on the timeout. 774 */ 775 if (mmc_card_sd(card)) { 776 unsigned int timeout_us, limit_us; 777 778 timeout_us = data->timeout_ns / 1000; 779 if (mmc_host_clk_rate(card->host)) 780 timeout_us += data->timeout_clks * 1000 / 781 (mmc_host_clk_rate(card->host) / 1000); 782 783 if (data->flags & MMC_DATA_WRITE) 784 /* 785 * The MMC spec "It is strongly recommended 786 * for hosts to implement more than 500ms 787 * timeout value even if the card indicates 788 * the 250ms maximum busy length." Even the 789 * previous value of 300ms is known to be 790 * insufficient for some cards. 791 */ 792 limit_us = 3000000; 793 else 794 limit_us = 100000; 795 796 /* 797 * SDHC cards always use these fixed values. 798 */ 799 if (timeout_us > limit_us || mmc_card_blockaddr(card)) { 800 data->timeout_ns = limit_us * 1000; 801 data->timeout_clks = 0; 802 } 803 } 804 805 /* 806 * Some cards require longer data read timeout than indicated in CSD. 807 * Address this by setting the read timeout to a "reasonably high" 808 * value. For the cards tested, 300ms has proven enough. If necessary, 809 * this value can be increased if other problematic cards require this. 810 */ 811 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 812 data->timeout_ns = 300000000; 813 data->timeout_clks = 0; 814 } 815 816 /* 817 * Some cards need very high timeouts if driven in SPI mode. 818 * The worst observed timeout was 900ms after writing a 819 * continuous stream of data until the internal logic 820 * overflowed. 821 */ 822 if (mmc_host_is_spi(card->host)) { 823 if (data->flags & MMC_DATA_WRITE) { 824 if (data->timeout_ns < 1000000000) 825 data->timeout_ns = 1000000000; /* 1s */ 826 } else { 827 if (data->timeout_ns < 100000000) 828 data->timeout_ns = 100000000; /* 100ms */ 829 } 830 } 831 } 832 EXPORT_SYMBOL(mmc_set_data_timeout); 833 834 /** 835 * mmc_align_data_size - pads a transfer size to a more optimal value 836 * @card: the MMC card associated with the data transfer 837 * @sz: original transfer size 838 * 839 * Pads the original data size with a number of extra bytes in 840 * order to avoid controller bugs and/or performance hits 841 * (e.g. some controllers revert to PIO for certain sizes). 842 * 843 * Returns the improved size, which might be unmodified. 844 * 845 * Note that this function is only relevant when issuing a 846 * single scatter gather entry. 847 */ 848 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 849 { 850 /* 851 * FIXME: We don't have a system for the controller to tell 852 * the core about its problems yet, so for now we just 32-bit 853 * align the size. 854 */ 855 sz = ((sz + 3) / 4) * 4; 856 857 return sz; 858 } 859 EXPORT_SYMBOL(mmc_align_data_size); 860 861 /** 862 * __mmc_claim_host - exclusively claim a host 863 * @host: mmc host to claim 864 * @abort: whether or not the operation should be aborted 865 * 866 * Claim a host for a set of operations. If @abort is non null and 867 * dereference a non-zero value then this will return prematurely with 868 * that non-zero value without acquiring the lock. Returns zero 869 * with the lock held otherwise. 870 */ 871 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) 872 { 873 DECLARE_WAITQUEUE(wait, current); 874 unsigned long flags; 875 int stop; 876 877 might_sleep(); 878 879 add_wait_queue(&host->wq, &wait); 880 spin_lock_irqsave(&host->lock, flags); 881 while (1) { 882 set_current_state(TASK_UNINTERRUPTIBLE); 883 stop = abort ? atomic_read(abort) : 0; 884 if (stop || !host->claimed || host->claimer == current) 885 break; 886 spin_unlock_irqrestore(&host->lock, flags); 887 schedule(); 888 spin_lock_irqsave(&host->lock, flags); 889 } 890 set_current_state(TASK_RUNNING); 891 if (!stop) { 892 host->claimed = 1; 893 host->claimer = current; 894 host->claim_cnt += 1; 895 } else 896 wake_up(&host->wq); 897 spin_unlock_irqrestore(&host->lock, flags); 898 remove_wait_queue(&host->wq, &wait); 899 if (host->ops->enable && !stop && host->claim_cnt == 1) 900 host->ops->enable(host); 901 return stop; 902 } 903 904 EXPORT_SYMBOL(__mmc_claim_host); 905 906 /** 907 * mmc_release_host - release a host 908 * @host: mmc host to release 909 * 910 * Release a MMC host, allowing others to claim the host 911 * for their operations. 912 */ 913 void mmc_release_host(struct mmc_host *host) 914 { 915 unsigned long flags; 916 917 WARN_ON(!host->claimed); 918 919 if (host->ops->disable && host->claim_cnt == 1) 920 host->ops->disable(host); 921 922 spin_lock_irqsave(&host->lock, flags); 923 if (--host->claim_cnt) { 924 /* Release for nested claim */ 925 spin_unlock_irqrestore(&host->lock, flags); 926 } else { 927 host->claimed = 0; 928 host->claimer = NULL; 929 spin_unlock_irqrestore(&host->lock, flags); 930 wake_up(&host->wq); 931 } 932 } 933 EXPORT_SYMBOL(mmc_release_host); 934 935 /* 936 * This is a helper function, which fetches a runtime pm reference for the 937 * card device and also claims the host. 938 */ 939 void mmc_get_card(struct mmc_card *card) 940 { 941 pm_runtime_get_sync(&card->dev); 942 mmc_claim_host(card->host); 943 } 944 EXPORT_SYMBOL(mmc_get_card); 945 946 /* 947 * This is a helper function, which releases the host and drops the runtime 948 * pm reference for the card device. 949 */ 950 void mmc_put_card(struct mmc_card *card) 951 { 952 mmc_release_host(card->host); 953 pm_runtime_mark_last_busy(&card->dev); 954 pm_runtime_put_autosuspend(&card->dev); 955 } 956 EXPORT_SYMBOL(mmc_put_card); 957 958 /* 959 * Internal function that does the actual ios call to the host driver, 960 * optionally printing some debug output. 961 */ 962 static inline void mmc_set_ios(struct mmc_host *host) 963 { 964 struct mmc_ios *ios = &host->ios; 965 966 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 967 "width %u timing %u\n", 968 mmc_hostname(host), ios->clock, ios->bus_mode, 969 ios->power_mode, ios->chip_select, ios->vdd, 970 ios->bus_width, ios->timing); 971 972 if (ios->clock > 0) 973 mmc_set_ungated(host); 974 host->ops->set_ios(host, ios); 975 } 976 977 /* 978 * Control chip select pin on a host. 979 */ 980 void mmc_set_chip_select(struct mmc_host *host, int mode) 981 { 982 mmc_host_clk_hold(host); 983 host->ios.chip_select = mode; 984 mmc_set_ios(host); 985 mmc_host_clk_release(host); 986 } 987 988 /* 989 * Sets the host clock to the highest possible frequency that 990 * is below "hz". 991 */ 992 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz) 993 { 994 WARN_ON(hz < host->f_min); 995 996 if (hz > host->f_max) 997 hz = host->f_max; 998 999 host->ios.clock = hz; 1000 mmc_set_ios(host); 1001 } 1002 1003 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 1004 { 1005 mmc_host_clk_hold(host); 1006 __mmc_set_clock(host, hz); 1007 mmc_host_clk_release(host); 1008 } 1009 1010 #ifdef CONFIG_MMC_CLKGATE 1011 /* 1012 * This gates the clock by setting it to 0 Hz. 1013 */ 1014 void mmc_gate_clock(struct mmc_host *host) 1015 { 1016 unsigned long flags; 1017 1018 spin_lock_irqsave(&host->clk_lock, flags); 1019 host->clk_old = host->ios.clock; 1020 host->ios.clock = 0; 1021 host->clk_gated = true; 1022 spin_unlock_irqrestore(&host->clk_lock, flags); 1023 mmc_set_ios(host); 1024 } 1025 1026 /* 1027 * This restores the clock from gating by using the cached 1028 * clock value. 1029 */ 1030 void mmc_ungate_clock(struct mmc_host *host) 1031 { 1032 /* 1033 * We should previously have gated the clock, so the clock shall 1034 * be 0 here! The clock may however be 0 during initialization, 1035 * when some request operations are performed before setting 1036 * the frequency. When ungate is requested in that situation 1037 * we just ignore the call. 1038 */ 1039 if (host->clk_old) { 1040 BUG_ON(host->ios.clock); 1041 /* This call will also set host->clk_gated to false */ 1042 __mmc_set_clock(host, host->clk_old); 1043 } 1044 } 1045 1046 void mmc_set_ungated(struct mmc_host *host) 1047 { 1048 unsigned long flags; 1049 1050 /* 1051 * We've been given a new frequency while the clock is gated, 1052 * so make sure we regard this as ungating it. 1053 */ 1054 spin_lock_irqsave(&host->clk_lock, flags); 1055 host->clk_gated = false; 1056 spin_unlock_irqrestore(&host->clk_lock, flags); 1057 } 1058 1059 #else 1060 void mmc_set_ungated(struct mmc_host *host) 1061 { 1062 } 1063 #endif 1064 1065 /* 1066 * Change the bus mode (open drain/push-pull) of a host. 1067 */ 1068 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 1069 { 1070 mmc_host_clk_hold(host); 1071 host->ios.bus_mode = mode; 1072 mmc_set_ios(host); 1073 mmc_host_clk_release(host); 1074 } 1075 1076 /* 1077 * Change data bus width of a host. 1078 */ 1079 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1080 { 1081 mmc_host_clk_hold(host); 1082 host->ios.bus_width = width; 1083 mmc_set_ios(host); 1084 mmc_host_clk_release(host); 1085 } 1086 1087 /** 1088 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1089 * @vdd: voltage (mV) 1090 * @low_bits: prefer low bits in boundary cases 1091 * 1092 * This function returns the OCR bit number according to the provided @vdd 1093 * value. If conversion is not possible a negative errno value returned. 1094 * 1095 * Depending on the @low_bits flag the function prefers low or high OCR bits 1096 * on boundary voltages. For example, 1097 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1098 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1099 * 1100 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1101 */ 1102 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1103 { 1104 const int max_bit = ilog2(MMC_VDD_35_36); 1105 int bit; 1106 1107 if (vdd < 1650 || vdd > 3600) 1108 return -EINVAL; 1109 1110 if (vdd >= 1650 && vdd <= 1950) 1111 return ilog2(MMC_VDD_165_195); 1112 1113 if (low_bits) 1114 vdd -= 1; 1115 1116 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1117 bit = (vdd - 2000) / 100 + 8; 1118 if (bit > max_bit) 1119 return max_bit; 1120 return bit; 1121 } 1122 1123 /** 1124 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1125 * @vdd_min: minimum voltage value (mV) 1126 * @vdd_max: maximum voltage value (mV) 1127 * 1128 * This function returns the OCR mask bits according to the provided @vdd_min 1129 * and @vdd_max values. If conversion is not possible the function returns 0. 1130 * 1131 * Notes wrt boundary cases: 1132 * This function sets the OCR bits for all boundary voltages, for example 1133 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1134 * MMC_VDD_34_35 mask. 1135 */ 1136 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1137 { 1138 u32 mask = 0; 1139 1140 if (vdd_max < vdd_min) 1141 return 0; 1142 1143 /* Prefer high bits for the boundary vdd_max values. */ 1144 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1145 if (vdd_max < 0) 1146 return 0; 1147 1148 /* Prefer low bits for the boundary vdd_min values. */ 1149 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1150 if (vdd_min < 0) 1151 return 0; 1152 1153 /* Fill the mask, from max bit to min bit. */ 1154 while (vdd_max >= vdd_min) 1155 mask |= 1 << vdd_max--; 1156 1157 return mask; 1158 } 1159 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1160 1161 #ifdef CONFIG_OF 1162 1163 /** 1164 * mmc_of_parse_voltage - return mask of supported voltages 1165 * @np: The device node need to be parsed. 1166 * @mask: mask of voltages available for MMC/SD/SDIO 1167 * 1168 * 1. Return zero on success. 1169 * 2. Return negative errno: voltage-range is invalid. 1170 */ 1171 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1172 { 1173 const u32 *voltage_ranges; 1174 int num_ranges, i; 1175 1176 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1177 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1178 if (!voltage_ranges || !num_ranges) { 1179 pr_info("%s: voltage-ranges unspecified\n", np->full_name); 1180 return -EINVAL; 1181 } 1182 1183 for (i = 0; i < num_ranges; i++) { 1184 const int j = i * 2; 1185 u32 ocr_mask; 1186 1187 ocr_mask = mmc_vddrange_to_ocrmask( 1188 be32_to_cpu(voltage_ranges[j]), 1189 be32_to_cpu(voltage_ranges[j + 1])); 1190 if (!ocr_mask) { 1191 pr_err("%s: voltage-range #%d is invalid\n", 1192 np->full_name, i); 1193 return -EINVAL; 1194 } 1195 *mask |= ocr_mask; 1196 } 1197 1198 return 0; 1199 } 1200 EXPORT_SYMBOL(mmc_of_parse_voltage); 1201 1202 #endif /* CONFIG_OF */ 1203 1204 #ifdef CONFIG_REGULATOR 1205 1206 /** 1207 * mmc_regulator_get_ocrmask - return mask of supported voltages 1208 * @supply: regulator to use 1209 * 1210 * This returns either a negative errno, or a mask of voltages that 1211 * can be provided to MMC/SD/SDIO devices using the specified voltage 1212 * regulator. This would normally be called before registering the 1213 * MMC host adapter. 1214 */ 1215 int mmc_regulator_get_ocrmask(struct regulator *supply) 1216 { 1217 int result = 0; 1218 int count; 1219 int i; 1220 1221 count = regulator_count_voltages(supply); 1222 if (count < 0) 1223 return count; 1224 1225 for (i = 0; i < count; i++) { 1226 int vdd_uV; 1227 int vdd_mV; 1228 1229 vdd_uV = regulator_list_voltage(supply, i); 1230 if (vdd_uV <= 0) 1231 continue; 1232 1233 vdd_mV = vdd_uV / 1000; 1234 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1235 } 1236 1237 return result; 1238 } 1239 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1240 1241 /** 1242 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1243 * @mmc: the host to regulate 1244 * @supply: regulator to use 1245 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1246 * 1247 * Returns zero on success, else negative errno. 1248 * 1249 * MMC host drivers may use this to enable or disable a regulator using 1250 * a particular supply voltage. This would normally be called from the 1251 * set_ios() method. 1252 */ 1253 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1254 struct regulator *supply, 1255 unsigned short vdd_bit) 1256 { 1257 int result = 0; 1258 int min_uV, max_uV; 1259 1260 if (vdd_bit) { 1261 int tmp; 1262 int voltage; 1263 1264 /* 1265 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1266 * bits this regulator doesn't quite support ... don't 1267 * be too picky, most cards and regulators are OK with 1268 * a 0.1V range goof (it's a small error percentage). 1269 */ 1270 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1271 if (tmp == 0) { 1272 min_uV = 1650 * 1000; 1273 max_uV = 1950 * 1000; 1274 } else { 1275 min_uV = 1900 * 1000 + tmp * 100 * 1000; 1276 max_uV = min_uV + 100 * 1000; 1277 } 1278 1279 /* 1280 * If we're using a fixed/static regulator, don't call 1281 * regulator_set_voltage; it would fail. 1282 */ 1283 voltage = regulator_get_voltage(supply); 1284 1285 if (!regulator_can_change_voltage(supply)) 1286 min_uV = max_uV = voltage; 1287 1288 if (voltage < 0) 1289 result = voltage; 1290 else if (voltage < min_uV || voltage > max_uV) 1291 result = regulator_set_voltage(supply, min_uV, max_uV); 1292 else 1293 result = 0; 1294 1295 if (result == 0 && !mmc->regulator_enabled) { 1296 result = regulator_enable(supply); 1297 if (!result) 1298 mmc->regulator_enabled = true; 1299 } 1300 } else if (mmc->regulator_enabled) { 1301 result = regulator_disable(supply); 1302 if (result == 0) 1303 mmc->regulator_enabled = false; 1304 } 1305 1306 if (result) 1307 dev_err(mmc_dev(mmc), 1308 "could not set regulator OCR (%d)\n", result); 1309 return result; 1310 } 1311 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1312 1313 int mmc_regulator_get_supply(struct mmc_host *mmc) 1314 { 1315 struct device *dev = mmc_dev(mmc); 1316 struct regulator *supply; 1317 int ret; 1318 1319 supply = devm_regulator_get(dev, "vmmc"); 1320 mmc->supply.vmmc = supply; 1321 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1322 1323 if (IS_ERR(supply)) 1324 return PTR_ERR(supply); 1325 1326 ret = mmc_regulator_get_ocrmask(supply); 1327 if (ret > 0) 1328 mmc->ocr_avail = ret; 1329 else 1330 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret); 1331 1332 return 0; 1333 } 1334 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1335 1336 #endif /* CONFIG_REGULATOR */ 1337 1338 /* 1339 * Mask off any voltages we don't support and select 1340 * the lowest voltage 1341 */ 1342 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1343 { 1344 int bit; 1345 1346 /* 1347 * Sanity check the voltages that the card claims to 1348 * support. 1349 */ 1350 if (ocr & 0x7F) { 1351 dev_warn(mmc_dev(host), 1352 "card claims to support voltages below defined range\n"); 1353 ocr &= ~0x7F; 1354 } 1355 1356 ocr &= host->ocr_avail; 1357 if (!ocr) { 1358 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1359 return 0; 1360 } 1361 1362 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1363 bit = ffs(ocr) - 1; 1364 ocr &= 3 << bit; 1365 mmc_power_cycle(host, ocr); 1366 } else { 1367 bit = fls(ocr) - 1; 1368 ocr &= 3 << bit; 1369 if (bit != host->ios.vdd) 1370 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1371 } 1372 1373 return ocr; 1374 } 1375 1376 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1377 { 1378 int err = 0; 1379 int old_signal_voltage = host->ios.signal_voltage; 1380 1381 host->ios.signal_voltage = signal_voltage; 1382 if (host->ops->start_signal_voltage_switch) { 1383 mmc_host_clk_hold(host); 1384 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1385 mmc_host_clk_release(host); 1386 } 1387 1388 if (err) 1389 host->ios.signal_voltage = old_signal_voltage; 1390 1391 return err; 1392 1393 } 1394 1395 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr) 1396 { 1397 struct mmc_command cmd = {0}; 1398 int err = 0; 1399 u32 clock; 1400 1401 BUG_ON(!host); 1402 1403 /* 1404 * Send CMD11 only if the request is to switch the card to 1405 * 1.8V signalling. 1406 */ 1407 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1408 return __mmc_set_signal_voltage(host, signal_voltage); 1409 1410 /* 1411 * If we cannot switch voltages, return failure so the caller 1412 * can continue without UHS mode 1413 */ 1414 if (!host->ops->start_signal_voltage_switch) 1415 return -EPERM; 1416 if (!host->ops->card_busy) 1417 pr_warning("%s: cannot verify signal voltage switch\n", 1418 mmc_hostname(host)); 1419 1420 cmd.opcode = SD_SWITCH_VOLTAGE; 1421 cmd.arg = 0; 1422 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1423 1424 err = mmc_wait_for_cmd(host, &cmd, 0); 1425 if (err) 1426 return err; 1427 1428 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1429 return -EIO; 1430 1431 mmc_host_clk_hold(host); 1432 /* 1433 * The card should drive cmd and dat[0:3] low immediately 1434 * after the response of cmd11, but wait 1 ms to be sure 1435 */ 1436 mmc_delay(1); 1437 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1438 err = -EAGAIN; 1439 goto power_cycle; 1440 } 1441 /* 1442 * During a signal voltage level switch, the clock must be gated 1443 * for 5 ms according to the SD spec 1444 */ 1445 clock = host->ios.clock; 1446 host->ios.clock = 0; 1447 mmc_set_ios(host); 1448 1449 if (__mmc_set_signal_voltage(host, signal_voltage)) { 1450 /* 1451 * Voltages may not have been switched, but we've already 1452 * sent CMD11, so a power cycle is required anyway 1453 */ 1454 err = -EAGAIN; 1455 goto power_cycle; 1456 } 1457 1458 /* Keep clock gated for at least 5 ms */ 1459 mmc_delay(5); 1460 host->ios.clock = clock; 1461 mmc_set_ios(host); 1462 1463 /* Wait for at least 1 ms according to spec */ 1464 mmc_delay(1); 1465 1466 /* 1467 * Failure to switch is indicated by the card holding 1468 * dat[0:3] low 1469 */ 1470 if (host->ops->card_busy && host->ops->card_busy(host)) 1471 err = -EAGAIN; 1472 1473 power_cycle: 1474 if (err) { 1475 pr_debug("%s: Signal voltage switch failed, " 1476 "power cycling card\n", mmc_hostname(host)); 1477 mmc_power_cycle(host, ocr); 1478 } 1479 1480 mmc_host_clk_release(host); 1481 1482 return err; 1483 } 1484 1485 /* 1486 * Select timing parameters for host. 1487 */ 1488 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1489 { 1490 mmc_host_clk_hold(host); 1491 host->ios.timing = timing; 1492 mmc_set_ios(host); 1493 mmc_host_clk_release(host); 1494 } 1495 1496 /* 1497 * Select appropriate driver type for host. 1498 */ 1499 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1500 { 1501 mmc_host_clk_hold(host); 1502 host->ios.drv_type = drv_type; 1503 mmc_set_ios(host); 1504 mmc_host_clk_release(host); 1505 } 1506 1507 /* 1508 * Apply power to the MMC stack. This is a two-stage process. 1509 * First, we enable power to the card without the clock running. 1510 * We then wait a bit for the power to stabilise. Finally, 1511 * enable the bus drivers and clock to the card. 1512 * 1513 * We must _NOT_ enable the clock prior to power stablising. 1514 * 1515 * If a host does all the power sequencing itself, ignore the 1516 * initial MMC_POWER_UP stage. 1517 */ 1518 void mmc_power_up(struct mmc_host *host, u32 ocr) 1519 { 1520 if (host->ios.power_mode == MMC_POWER_ON) 1521 return; 1522 1523 mmc_host_clk_hold(host); 1524 1525 host->ios.vdd = fls(ocr) - 1; 1526 if (mmc_host_is_spi(host)) 1527 host->ios.chip_select = MMC_CS_HIGH; 1528 else 1529 host->ios.chip_select = MMC_CS_DONTCARE; 1530 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1531 host->ios.power_mode = MMC_POWER_UP; 1532 host->ios.bus_width = MMC_BUS_WIDTH_1; 1533 host->ios.timing = MMC_TIMING_LEGACY; 1534 mmc_set_ios(host); 1535 1536 /* Set signal voltage to 3.3V */ 1537 __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330); 1538 1539 /* 1540 * This delay should be sufficient to allow the power supply 1541 * to reach the minimum voltage. 1542 */ 1543 mmc_delay(10); 1544 1545 host->ios.clock = host->f_init; 1546 1547 host->ios.power_mode = MMC_POWER_ON; 1548 mmc_set_ios(host); 1549 1550 /* 1551 * This delay must be at least 74 clock sizes, or 1 ms, or the 1552 * time required to reach a stable voltage. 1553 */ 1554 mmc_delay(10); 1555 1556 mmc_host_clk_release(host); 1557 } 1558 1559 void mmc_power_off(struct mmc_host *host) 1560 { 1561 if (host->ios.power_mode == MMC_POWER_OFF) 1562 return; 1563 1564 mmc_host_clk_hold(host); 1565 1566 host->ios.clock = 0; 1567 host->ios.vdd = 0; 1568 1569 if (!mmc_host_is_spi(host)) { 1570 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 1571 host->ios.chip_select = MMC_CS_DONTCARE; 1572 } 1573 host->ios.power_mode = MMC_POWER_OFF; 1574 host->ios.bus_width = MMC_BUS_WIDTH_1; 1575 host->ios.timing = MMC_TIMING_LEGACY; 1576 mmc_set_ios(host); 1577 1578 /* 1579 * Some configurations, such as the 802.11 SDIO card in the OLPC 1580 * XO-1.5, require a short delay after poweroff before the card 1581 * can be successfully turned on again. 1582 */ 1583 mmc_delay(1); 1584 1585 mmc_host_clk_release(host); 1586 } 1587 1588 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1589 { 1590 mmc_power_off(host); 1591 /* Wait at least 1 ms according to SD spec */ 1592 mmc_delay(1); 1593 mmc_power_up(host, ocr); 1594 } 1595 1596 /* 1597 * Cleanup when the last reference to the bus operator is dropped. 1598 */ 1599 static void __mmc_release_bus(struct mmc_host *host) 1600 { 1601 BUG_ON(!host); 1602 BUG_ON(host->bus_refs); 1603 BUG_ON(!host->bus_dead); 1604 1605 host->bus_ops = NULL; 1606 } 1607 1608 /* 1609 * Increase reference count of bus operator 1610 */ 1611 static inline void mmc_bus_get(struct mmc_host *host) 1612 { 1613 unsigned long flags; 1614 1615 spin_lock_irqsave(&host->lock, flags); 1616 host->bus_refs++; 1617 spin_unlock_irqrestore(&host->lock, flags); 1618 } 1619 1620 /* 1621 * Decrease reference count of bus operator and free it if 1622 * it is the last reference. 1623 */ 1624 static inline void mmc_bus_put(struct mmc_host *host) 1625 { 1626 unsigned long flags; 1627 1628 spin_lock_irqsave(&host->lock, flags); 1629 host->bus_refs--; 1630 if ((host->bus_refs == 0) && host->bus_ops) 1631 __mmc_release_bus(host); 1632 spin_unlock_irqrestore(&host->lock, flags); 1633 } 1634 1635 /* 1636 * Assign a mmc bus handler to a host. Only one bus handler may control a 1637 * host at any given time. 1638 */ 1639 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1640 { 1641 unsigned long flags; 1642 1643 BUG_ON(!host); 1644 BUG_ON(!ops); 1645 1646 WARN_ON(!host->claimed); 1647 1648 spin_lock_irqsave(&host->lock, flags); 1649 1650 BUG_ON(host->bus_ops); 1651 BUG_ON(host->bus_refs); 1652 1653 host->bus_ops = ops; 1654 host->bus_refs = 1; 1655 host->bus_dead = 0; 1656 1657 spin_unlock_irqrestore(&host->lock, flags); 1658 } 1659 1660 /* 1661 * Remove the current bus handler from a host. 1662 */ 1663 void mmc_detach_bus(struct mmc_host *host) 1664 { 1665 unsigned long flags; 1666 1667 BUG_ON(!host); 1668 1669 WARN_ON(!host->claimed); 1670 WARN_ON(!host->bus_ops); 1671 1672 spin_lock_irqsave(&host->lock, flags); 1673 1674 host->bus_dead = 1; 1675 1676 spin_unlock_irqrestore(&host->lock, flags); 1677 1678 mmc_bus_put(host); 1679 } 1680 1681 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, 1682 bool cd_irq) 1683 { 1684 #ifdef CONFIG_MMC_DEBUG 1685 unsigned long flags; 1686 spin_lock_irqsave(&host->lock, flags); 1687 WARN_ON(host->removed); 1688 spin_unlock_irqrestore(&host->lock, flags); 1689 #endif 1690 1691 /* 1692 * If the device is configured as wakeup, we prevent a new sleep for 1693 * 5 s to give provision for user space to consume the event. 1694 */ 1695 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && 1696 device_can_wakeup(mmc_dev(host))) 1697 pm_wakeup_event(mmc_dev(host), 5000); 1698 1699 host->detect_change = 1; 1700 mmc_schedule_delayed_work(&host->detect, delay); 1701 } 1702 1703 /** 1704 * mmc_detect_change - process change of state on a MMC socket 1705 * @host: host which changed state. 1706 * @delay: optional delay to wait before detection (jiffies) 1707 * 1708 * MMC drivers should call this when they detect a card has been 1709 * inserted or removed. The MMC layer will confirm that any 1710 * present card is still functional, and initialize any newly 1711 * inserted. 1712 */ 1713 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1714 { 1715 _mmc_detect_change(host, delay, true); 1716 } 1717 EXPORT_SYMBOL(mmc_detect_change); 1718 1719 void mmc_init_erase(struct mmc_card *card) 1720 { 1721 unsigned int sz; 1722 1723 if (is_power_of_2(card->erase_size)) 1724 card->erase_shift = ffs(card->erase_size) - 1; 1725 else 1726 card->erase_shift = 0; 1727 1728 /* 1729 * It is possible to erase an arbitrarily large area of an SD or MMC 1730 * card. That is not desirable because it can take a long time 1731 * (minutes) potentially delaying more important I/O, and also the 1732 * timeout calculations become increasingly hugely over-estimated. 1733 * Consequently, 'pref_erase' is defined as a guide to limit erases 1734 * to that size and alignment. 1735 * 1736 * For SD cards that define Allocation Unit size, limit erases to one 1737 * Allocation Unit at a time. For MMC cards that define High Capacity 1738 * Erase Size, whether it is switched on or not, limit to that size. 1739 * Otherwise just have a stab at a good value. For modern cards it 1740 * will end up being 4MiB. Note that if the value is too small, it 1741 * can end up taking longer to erase. 1742 */ 1743 if (mmc_card_sd(card) && card->ssr.au) { 1744 card->pref_erase = card->ssr.au; 1745 card->erase_shift = ffs(card->ssr.au) - 1; 1746 } else if (card->ext_csd.hc_erase_size) { 1747 card->pref_erase = card->ext_csd.hc_erase_size; 1748 } else { 1749 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1750 if (sz < 128) 1751 card->pref_erase = 512 * 1024 / 512; 1752 else if (sz < 512) 1753 card->pref_erase = 1024 * 1024 / 512; 1754 else if (sz < 1024) 1755 card->pref_erase = 2 * 1024 * 1024 / 512; 1756 else 1757 card->pref_erase = 4 * 1024 * 1024 / 512; 1758 if (card->pref_erase < card->erase_size) 1759 card->pref_erase = card->erase_size; 1760 else { 1761 sz = card->pref_erase % card->erase_size; 1762 if (sz) 1763 card->pref_erase += card->erase_size - sz; 1764 } 1765 } 1766 } 1767 1768 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1769 unsigned int arg, unsigned int qty) 1770 { 1771 unsigned int erase_timeout; 1772 1773 if (arg == MMC_DISCARD_ARG || 1774 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1775 erase_timeout = card->ext_csd.trim_timeout; 1776 } else if (card->ext_csd.erase_group_def & 1) { 1777 /* High Capacity Erase Group Size uses HC timeouts */ 1778 if (arg == MMC_TRIM_ARG) 1779 erase_timeout = card->ext_csd.trim_timeout; 1780 else 1781 erase_timeout = card->ext_csd.hc_erase_timeout; 1782 } else { 1783 /* CSD Erase Group Size uses write timeout */ 1784 unsigned int mult = (10 << card->csd.r2w_factor); 1785 unsigned int timeout_clks = card->csd.tacc_clks * mult; 1786 unsigned int timeout_us; 1787 1788 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ 1789 if (card->csd.tacc_ns < 1000000) 1790 timeout_us = (card->csd.tacc_ns * mult) / 1000; 1791 else 1792 timeout_us = (card->csd.tacc_ns / 1000) * mult; 1793 1794 /* 1795 * ios.clock is only a target. The real clock rate might be 1796 * less but not that much less, so fudge it by multiplying by 2. 1797 */ 1798 timeout_clks <<= 1; 1799 timeout_us += (timeout_clks * 1000) / 1800 (mmc_host_clk_rate(card->host) / 1000); 1801 1802 erase_timeout = timeout_us / 1000; 1803 1804 /* 1805 * Theoretically, the calculation could underflow so round up 1806 * to 1ms in that case. 1807 */ 1808 if (!erase_timeout) 1809 erase_timeout = 1; 1810 } 1811 1812 /* Multiplier for secure operations */ 1813 if (arg & MMC_SECURE_ARGS) { 1814 if (arg == MMC_SECURE_ERASE_ARG) 1815 erase_timeout *= card->ext_csd.sec_erase_mult; 1816 else 1817 erase_timeout *= card->ext_csd.sec_trim_mult; 1818 } 1819 1820 erase_timeout *= qty; 1821 1822 /* 1823 * Ensure at least a 1 second timeout for SPI as per 1824 * 'mmc_set_data_timeout()' 1825 */ 1826 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1827 erase_timeout = 1000; 1828 1829 return erase_timeout; 1830 } 1831 1832 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1833 unsigned int arg, 1834 unsigned int qty) 1835 { 1836 unsigned int erase_timeout; 1837 1838 if (card->ssr.erase_timeout) { 1839 /* Erase timeout specified in SD Status Register (SSR) */ 1840 erase_timeout = card->ssr.erase_timeout * qty + 1841 card->ssr.erase_offset; 1842 } else { 1843 /* 1844 * Erase timeout not specified in SD Status Register (SSR) so 1845 * use 250ms per write block. 1846 */ 1847 erase_timeout = 250 * qty; 1848 } 1849 1850 /* Must not be less than 1 second */ 1851 if (erase_timeout < 1000) 1852 erase_timeout = 1000; 1853 1854 return erase_timeout; 1855 } 1856 1857 static unsigned int mmc_erase_timeout(struct mmc_card *card, 1858 unsigned int arg, 1859 unsigned int qty) 1860 { 1861 if (mmc_card_sd(card)) 1862 return mmc_sd_erase_timeout(card, arg, qty); 1863 else 1864 return mmc_mmc_erase_timeout(card, arg, qty); 1865 } 1866 1867 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1868 unsigned int to, unsigned int arg) 1869 { 1870 struct mmc_command cmd = {0}; 1871 unsigned int qty = 0; 1872 unsigned long timeout; 1873 int err; 1874 1875 /* 1876 * qty is used to calculate the erase timeout which depends on how many 1877 * erase groups (or allocation units in SD terminology) are affected. 1878 * We count erasing part of an erase group as one erase group. 1879 * For SD, the allocation units are always a power of 2. For MMC, the 1880 * erase group size is almost certainly also power of 2, but it does not 1881 * seem to insist on that in the JEDEC standard, so we fall back to 1882 * division in that case. SD may not specify an allocation unit size, 1883 * in which case the timeout is based on the number of write blocks. 1884 * 1885 * Note that the timeout for secure trim 2 will only be correct if the 1886 * number of erase groups specified is the same as the total of all 1887 * preceding secure trim 1 commands. Since the power may have been 1888 * lost since the secure trim 1 commands occurred, it is generally 1889 * impossible to calculate the secure trim 2 timeout correctly. 1890 */ 1891 if (card->erase_shift) 1892 qty += ((to >> card->erase_shift) - 1893 (from >> card->erase_shift)) + 1; 1894 else if (mmc_card_sd(card)) 1895 qty += to - from + 1; 1896 else 1897 qty += ((to / card->erase_size) - 1898 (from / card->erase_size)) + 1; 1899 1900 if (!mmc_card_blockaddr(card)) { 1901 from <<= 9; 1902 to <<= 9; 1903 } 1904 1905 if (mmc_card_sd(card)) 1906 cmd.opcode = SD_ERASE_WR_BLK_START; 1907 else 1908 cmd.opcode = MMC_ERASE_GROUP_START; 1909 cmd.arg = from; 1910 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1911 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1912 if (err) { 1913 pr_err("mmc_erase: group start error %d, " 1914 "status %#x\n", err, cmd.resp[0]); 1915 err = -EIO; 1916 goto out; 1917 } 1918 1919 memset(&cmd, 0, sizeof(struct mmc_command)); 1920 if (mmc_card_sd(card)) 1921 cmd.opcode = SD_ERASE_WR_BLK_END; 1922 else 1923 cmd.opcode = MMC_ERASE_GROUP_END; 1924 cmd.arg = to; 1925 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1926 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1927 if (err) { 1928 pr_err("mmc_erase: group end error %d, status %#x\n", 1929 err, cmd.resp[0]); 1930 err = -EIO; 1931 goto out; 1932 } 1933 1934 memset(&cmd, 0, sizeof(struct mmc_command)); 1935 cmd.opcode = MMC_ERASE; 1936 cmd.arg = arg; 1937 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1938 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty); 1939 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1940 if (err) { 1941 pr_err("mmc_erase: erase error %d, status %#x\n", 1942 err, cmd.resp[0]); 1943 err = -EIO; 1944 goto out; 1945 } 1946 1947 if (mmc_host_is_spi(card->host)) 1948 goto out; 1949 1950 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS); 1951 do { 1952 memset(&cmd, 0, sizeof(struct mmc_command)); 1953 cmd.opcode = MMC_SEND_STATUS; 1954 cmd.arg = card->rca << 16; 1955 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1956 /* Do not retry else we can't see errors */ 1957 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1958 if (err || (cmd.resp[0] & 0xFDF92000)) { 1959 pr_err("error %d requesting status %#x\n", 1960 err, cmd.resp[0]); 1961 err = -EIO; 1962 goto out; 1963 } 1964 1965 /* Timeout if the device never becomes ready for data and 1966 * never leaves the program state. 1967 */ 1968 if (time_after(jiffies, timeout)) { 1969 pr_err("%s: Card stuck in programming state! %s\n", 1970 mmc_hostname(card->host), __func__); 1971 err = -EIO; 1972 goto out; 1973 } 1974 1975 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 1976 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); 1977 out: 1978 return err; 1979 } 1980 1981 /** 1982 * mmc_erase - erase sectors. 1983 * @card: card to erase 1984 * @from: first sector to erase 1985 * @nr: number of sectors to erase 1986 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 1987 * 1988 * Caller must claim host before calling this function. 1989 */ 1990 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 1991 unsigned int arg) 1992 { 1993 unsigned int rem, to = from + nr; 1994 1995 if (!(card->host->caps & MMC_CAP_ERASE) || 1996 !(card->csd.cmdclass & CCC_ERASE)) 1997 return -EOPNOTSUPP; 1998 1999 if (!card->erase_size) 2000 return -EOPNOTSUPP; 2001 2002 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2003 return -EOPNOTSUPP; 2004 2005 if ((arg & MMC_SECURE_ARGS) && 2006 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2007 return -EOPNOTSUPP; 2008 2009 if ((arg & MMC_TRIM_ARGS) && 2010 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2011 return -EOPNOTSUPP; 2012 2013 if (arg == MMC_SECURE_ERASE_ARG) { 2014 if (from % card->erase_size || nr % card->erase_size) 2015 return -EINVAL; 2016 } 2017 2018 if (arg == MMC_ERASE_ARG) { 2019 rem = from % card->erase_size; 2020 if (rem) { 2021 rem = card->erase_size - rem; 2022 from += rem; 2023 if (nr > rem) 2024 nr -= rem; 2025 else 2026 return 0; 2027 } 2028 rem = nr % card->erase_size; 2029 if (rem) 2030 nr -= rem; 2031 } 2032 2033 if (nr == 0) 2034 return 0; 2035 2036 to = from + nr; 2037 2038 if (to <= from) 2039 return -EINVAL; 2040 2041 /* 'from' and 'to' are inclusive */ 2042 to -= 1; 2043 2044 return mmc_do_erase(card, from, to, arg); 2045 } 2046 EXPORT_SYMBOL(mmc_erase); 2047 2048 int mmc_can_erase(struct mmc_card *card) 2049 { 2050 if ((card->host->caps & MMC_CAP_ERASE) && 2051 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2052 return 1; 2053 return 0; 2054 } 2055 EXPORT_SYMBOL(mmc_can_erase); 2056 2057 int mmc_can_trim(struct mmc_card *card) 2058 { 2059 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) 2060 return 1; 2061 return 0; 2062 } 2063 EXPORT_SYMBOL(mmc_can_trim); 2064 2065 int mmc_can_discard(struct mmc_card *card) 2066 { 2067 /* 2068 * As there's no way to detect the discard support bit at v4.5 2069 * use the s/w feature support filed. 2070 */ 2071 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2072 return 1; 2073 return 0; 2074 } 2075 EXPORT_SYMBOL(mmc_can_discard); 2076 2077 int mmc_can_sanitize(struct mmc_card *card) 2078 { 2079 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2080 return 0; 2081 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2082 return 1; 2083 return 0; 2084 } 2085 EXPORT_SYMBOL(mmc_can_sanitize); 2086 2087 int mmc_can_secure_erase_trim(struct mmc_card *card) 2088 { 2089 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) 2090 return 1; 2091 return 0; 2092 } 2093 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2094 2095 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2096 unsigned int nr) 2097 { 2098 if (!card->erase_size) 2099 return 0; 2100 if (from % card->erase_size || nr % card->erase_size) 2101 return 0; 2102 return 1; 2103 } 2104 EXPORT_SYMBOL(mmc_erase_group_aligned); 2105 2106 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2107 unsigned int arg) 2108 { 2109 struct mmc_host *host = card->host; 2110 unsigned int max_discard, x, y, qty = 0, max_qty, timeout; 2111 unsigned int last_timeout = 0; 2112 2113 if (card->erase_shift) 2114 max_qty = UINT_MAX >> card->erase_shift; 2115 else if (mmc_card_sd(card)) 2116 max_qty = UINT_MAX; 2117 else 2118 max_qty = UINT_MAX / card->erase_size; 2119 2120 /* Find the largest qty with an OK timeout */ 2121 do { 2122 y = 0; 2123 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2124 timeout = mmc_erase_timeout(card, arg, qty + x); 2125 if (timeout > host->max_busy_timeout) 2126 break; 2127 if (timeout < last_timeout) 2128 break; 2129 last_timeout = timeout; 2130 y = x; 2131 } 2132 qty += y; 2133 } while (y); 2134 2135 if (!qty) 2136 return 0; 2137 2138 if (qty == 1) 2139 return 1; 2140 2141 /* Convert qty to sectors */ 2142 if (card->erase_shift) 2143 max_discard = --qty << card->erase_shift; 2144 else if (mmc_card_sd(card)) 2145 max_discard = qty; 2146 else 2147 max_discard = --qty * card->erase_size; 2148 2149 return max_discard; 2150 } 2151 2152 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2153 { 2154 struct mmc_host *host = card->host; 2155 unsigned int max_discard, max_trim; 2156 2157 if (!host->max_busy_timeout) 2158 return UINT_MAX; 2159 2160 /* 2161 * Without erase_group_def set, MMC erase timeout depends on clock 2162 * frequence which can change. In that case, the best choice is 2163 * just the preferred erase size. 2164 */ 2165 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2166 return card->pref_erase; 2167 2168 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2169 if (mmc_can_trim(card)) { 2170 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2171 if (max_trim < max_discard) 2172 max_discard = max_trim; 2173 } else if (max_discard < card->erase_size) { 2174 max_discard = 0; 2175 } 2176 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2177 mmc_hostname(host), max_discard, host->max_busy_timeout); 2178 return max_discard; 2179 } 2180 EXPORT_SYMBOL(mmc_calc_max_discard); 2181 2182 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2183 { 2184 struct mmc_command cmd = {0}; 2185 2186 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card)) 2187 return 0; 2188 2189 cmd.opcode = MMC_SET_BLOCKLEN; 2190 cmd.arg = blocklen; 2191 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2192 return mmc_wait_for_cmd(card->host, &cmd, 5); 2193 } 2194 EXPORT_SYMBOL(mmc_set_blocklen); 2195 2196 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, 2197 bool is_rel_write) 2198 { 2199 struct mmc_command cmd = {0}; 2200 2201 cmd.opcode = MMC_SET_BLOCK_COUNT; 2202 cmd.arg = blockcount & 0x0000FFFF; 2203 if (is_rel_write) 2204 cmd.arg |= 1 << 31; 2205 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2206 return mmc_wait_for_cmd(card->host, &cmd, 5); 2207 } 2208 EXPORT_SYMBOL(mmc_set_blockcount); 2209 2210 static void mmc_hw_reset_for_init(struct mmc_host *host) 2211 { 2212 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2213 return; 2214 mmc_host_clk_hold(host); 2215 host->ops->hw_reset(host); 2216 mmc_host_clk_release(host); 2217 } 2218 2219 int mmc_can_reset(struct mmc_card *card) 2220 { 2221 u8 rst_n_function; 2222 2223 if (!mmc_card_mmc(card)) 2224 return 0; 2225 rst_n_function = card->ext_csd.rst_n_function; 2226 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) 2227 return 0; 2228 return 1; 2229 } 2230 EXPORT_SYMBOL(mmc_can_reset); 2231 2232 static int mmc_do_hw_reset(struct mmc_host *host, int check) 2233 { 2234 struct mmc_card *card = host->card; 2235 2236 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2237 return -EOPNOTSUPP; 2238 2239 if (!card) 2240 return -EINVAL; 2241 2242 if (!mmc_can_reset(card)) 2243 return -EOPNOTSUPP; 2244 2245 mmc_host_clk_hold(host); 2246 mmc_set_clock(host, host->f_init); 2247 2248 host->ops->hw_reset(host); 2249 2250 /* If the reset has happened, then a status command will fail */ 2251 if (check) { 2252 struct mmc_command cmd = {0}; 2253 int err; 2254 2255 cmd.opcode = MMC_SEND_STATUS; 2256 if (!mmc_host_is_spi(card->host)) 2257 cmd.arg = card->rca << 16; 2258 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; 2259 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2260 if (!err) { 2261 mmc_host_clk_release(host); 2262 return -ENOSYS; 2263 } 2264 } 2265 2266 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR); 2267 if (mmc_host_is_spi(host)) { 2268 host->ios.chip_select = MMC_CS_HIGH; 2269 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 2270 } else { 2271 host->ios.chip_select = MMC_CS_DONTCARE; 2272 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; 2273 } 2274 host->ios.bus_width = MMC_BUS_WIDTH_1; 2275 host->ios.timing = MMC_TIMING_LEGACY; 2276 mmc_set_ios(host); 2277 2278 mmc_host_clk_release(host); 2279 2280 return host->bus_ops->power_restore(host); 2281 } 2282 2283 int mmc_hw_reset(struct mmc_host *host) 2284 { 2285 return mmc_do_hw_reset(host, 0); 2286 } 2287 EXPORT_SYMBOL(mmc_hw_reset); 2288 2289 int mmc_hw_reset_check(struct mmc_host *host) 2290 { 2291 return mmc_do_hw_reset(host, 1); 2292 } 2293 EXPORT_SYMBOL(mmc_hw_reset_check); 2294 2295 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2296 { 2297 host->f_init = freq; 2298 2299 #ifdef CONFIG_MMC_DEBUG 2300 pr_info("%s: %s: trying to init card at %u Hz\n", 2301 mmc_hostname(host), __func__, host->f_init); 2302 #endif 2303 mmc_power_up(host, host->ocr_avail); 2304 2305 /* 2306 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2307 * do a hardware reset if possible. 2308 */ 2309 mmc_hw_reset_for_init(host); 2310 2311 /* 2312 * sdio_reset sends CMD52 to reset card. Since we do not know 2313 * if the card is being re-initialized, just send it. CMD52 2314 * should be ignored by SD/eMMC cards. 2315 */ 2316 sdio_reset(host); 2317 mmc_go_idle(host); 2318 2319 mmc_send_if_cond(host, host->ocr_avail); 2320 2321 /* Order's important: probe SDIO, then SD, then MMC */ 2322 if (!mmc_attach_sdio(host)) 2323 return 0; 2324 if (!mmc_attach_sd(host)) 2325 return 0; 2326 if (!mmc_attach_mmc(host)) 2327 return 0; 2328 2329 mmc_power_off(host); 2330 return -EIO; 2331 } 2332 2333 int _mmc_detect_card_removed(struct mmc_host *host) 2334 { 2335 int ret; 2336 2337 if (host->caps & MMC_CAP_NONREMOVABLE) 2338 return 0; 2339 2340 if (!host->card || mmc_card_removed(host->card)) 2341 return 1; 2342 2343 ret = host->bus_ops->alive(host); 2344 2345 /* 2346 * Card detect status and alive check may be out of sync if card is 2347 * removed slowly, when card detect switch changes while card/slot 2348 * pads are still contacted in hardware (refer to "SD Card Mechanical 2349 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2350 * detect work 200ms later for this case. 2351 */ 2352 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2353 mmc_detect_change(host, msecs_to_jiffies(200)); 2354 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2355 } 2356 2357 if (ret) { 2358 mmc_card_set_removed(host->card); 2359 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2360 } 2361 2362 return ret; 2363 } 2364 2365 int mmc_detect_card_removed(struct mmc_host *host) 2366 { 2367 struct mmc_card *card = host->card; 2368 int ret; 2369 2370 WARN_ON(!host->claimed); 2371 2372 if (!card) 2373 return 1; 2374 2375 ret = mmc_card_removed(card); 2376 /* 2377 * The card will be considered unchanged unless we have been asked to 2378 * detect a change or host requires polling to provide card detection. 2379 */ 2380 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2381 return ret; 2382 2383 host->detect_change = 0; 2384 if (!ret) { 2385 ret = _mmc_detect_card_removed(host); 2386 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2387 /* 2388 * Schedule a detect work as soon as possible to let a 2389 * rescan handle the card removal. 2390 */ 2391 cancel_delayed_work(&host->detect); 2392 _mmc_detect_change(host, 0, false); 2393 } 2394 } 2395 2396 return ret; 2397 } 2398 EXPORT_SYMBOL(mmc_detect_card_removed); 2399 2400 void mmc_rescan(struct work_struct *work) 2401 { 2402 struct mmc_host *host = 2403 container_of(work, struct mmc_host, detect.work); 2404 int i; 2405 2406 if (host->rescan_disable) 2407 return; 2408 2409 /* If there is a non-removable card registered, only scan once */ 2410 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered) 2411 return; 2412 host->rescan_entered = 1; 2413 2414 mmc_bus_get(host); 2415 2416 /* 2417 * if there is a _removable_ card registered, check whether it is 2418 * still present 2419 */ 2420 if (host->bus_ops && !host->bus_dead 2421 && !(host->caps & MMC_CAP_NONREMOVABLE)) 2422 host->bus_ops->detect(host); 2423 2424 host->detect_change = 0; 2425 2426 /* 2427 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2428 * the card is no longer present. 2429 */ 2430 mmc_bus_put(host); 2431 mmc_bus_get(host); 2432 2433 /* if there still is a card present, stop here */ 2434 if (host->bus_ops != NULL) { 2435 mmc_bus_put(host); 2436 goto out; 2437 } 2438 2439 /* 2440 * Only we can add a new handler, so it's safe to 2441 * release the lock here. 2442 */ 2443 mmc_bus_put(host); 2444 2445 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd && 2446 host->ops->get_cd(host) == 0) { 2447 mmc_claim_host(host); 2448 mmc_power_off(host); 2449 mmc_release_host(host); 2450 goto out; 2451 } 2452 2453 mmc_claim_host(host); 2454 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2455 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2456 break; 2457 if (freqs[i] <= host->f_min) 2458 break; 2459 } 2460 mmc_release_host(host); 2461 2462 out: 2463 if (host->caps & MMC_CAP_NEEDS_POLL) 2464 mmc_schedule_delayed_work(&host->detect, HZ); 2465 } 2466 2467 void mmc_start_host(struct mmc_host *host) 2468 { 2469 host->f_init = max(freqs[0], host->f_min); 2470 host->rescan_disable = 0; 2471 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP) 2472 mmc_power_off(host); 2473 else 2474 mmc_power_up(host, host->ocr_avail); 2475 mmc_gpiod_request_cd_irq(host); 2476 _mmc_detect_change(host, 0, false); 2477 } 2478 2479 void mmc_stop_host(struct mmc_host *host) 2480 { 2481 #ifdef CONFIG_MMC_DEBUG 2482 unsigned long flags; 2483 spin_lock_irqsave(&host->lock, flags); 2484 host->removed = 1; 2485 spin_unlock_irqrestore(&host->lock, flags); 2486 #endif 2487 if (host->slot.cd_irq >= 0) 2488 disable_irq(host->slot.cd_irq); 2489 2490 host->rescan_disable = 1; 2491 cancel_delayed_work_sync(&host->detect); 2492 mmc_flush_scheduled_work(); 2493 2494 /* clear pm flags now and let card drivers set them as needed */ 2495 host->pm_flags = 0; 2496 2497 mmc_bus_get(host); 2498 if (host->bus_ops && !host->bus_dead) { 2499 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2500 host->bus_ops->remove(host); 2501 mmc_claim_host(host); 2502 mmc_detach_bus(host); 2503 mmc_power_off(host); 2504 mmc_release_host(host); 2505 mmc_bus_put(host); 2506 return; 2507 } 2508 mmc_bus_put(host); 2509 2510 BUG_ON(host->card); 2511 2512 mmc_power_off(host); 2513 } 2514 2515 int mmc_power_save_host(struct mmc_host *host) 2516 { 2517 int ret = 0; 2518 2519 #ifdef CONFIG_MMC_DEBUG 2520 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); 2521 #endif 2522 2523 mmc_bus_get(host); 2524 2525 if (!host->bus_ops || host->bus_dead) { 2526 mmc_bus_put(host); 2527 return -EINVAL; 2528 } 2529 2530 if (host->bus_ops->power_save) 2531 ret = host->bus_ops->power_save(host); 2532 2533 mmc_bus_put(host); 2534 2535 mmc_power_off(host); 2536 2537 return ret; 2538 } 2539 EXPORT_SYMBOL(mmc_power_save_host); 2540 2541 int mmc_power_restore_host(struct mmc_host *host) 2542 { 2543 int ret; 2544 2545 #ifdef CONFIG_MMC_DEBUG 2546 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); 2547 #endif 2548 2549 mmc_bus_get(host); 2550 2551 if (!host->bus_ops || host->bus_dead) { 2552 mmc_bus_put(host); 2553 return -EINVAL; 2554 } 2555 2556 mmc_power_up(host, host->card->ocr); 2557 ret = host->bus_ops->power_restore(host); 2558 2559 mmc_bus_put(host); 2560 2561 return ret; 2562 } 2563 EXPORT_SYMBOL(mmc_power_restore_host); 2564 2565 /* 2566 * Flush the cache to the non-volatile storage. 2567 */ 2568 int mmc_flush_cache(struct mmc_card *card) 2569 { 2570 int err = 0; 2571 2572 if (mmc_card_mmc(card) && 2573 (card->ext_csd.cache_size > 0) && 2574 (card->ext_csd.cache_ctrl & 1)) { 2575 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 2576 EXT_CSD_FLUSH_CACHE, 1, 0); 2577 if (err) 2578 pr_err("%s: cache flush error %d\n", 2579 mmc_hostname(card->host), err); 2580 } 2581 2582 return err; 2583 } 2584 EXPORT_SYMBOL(mmc_flush_cache); 2585 2586 #ifdef CONFIG_PM 2587 2588 /* Do the card removal on suspend if card is assumed removeable 2589 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2590 to sync the card. 2591 */ 2592 int mmc_pm_notify(struct notifier_block *notify_block, 2593 unsigned long mode, void *unused) 2594 { 2595 struct mmc_host *host = container_of( 2596 notify_block, struct mmc_host, pm_notify); 2597 unsigned long flags; 2598 int err = 0; 2599 2600 switch (mode) { 2601 case PM_HIBERNATION_PREPARE: 2602 case PM_SUSPEND_PREPARE: 2603 spin_lock_irqsave(&host->lock, flags); 2604 host->rescan_disable = 1; 2605 spin_unlock_irqrestore(&host->lock, flags); 2606 cancel_delayed_work_sync(&host->detect); 2607 2608 if (!host->bus_ops) 2609 break; 2610 2611 /* Validate prerequisites for suspend */ 2612 if (host->bus_ops->pre_suspend) 2613 err = host->bus_ops->pre_suspend(host); 2614 if (!err) 2615 break; 2616 2617 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2618 host->bus_ops->remove(host); 2619 mmc_claim_host(host); 2620 mmc_detach_bus(host); 2621 mmc_power_off(host); 2622 mmc_release_host(host); 2623 host->pm_flags = 0; 2624 break; 2625 2626 case PM_POST_SUSPEND: 2627 case PM_POST_HIBERNATION: 2628 case PM_POST_RESTORE: 2629 2630 spin_lock_irqsave(&host->lock, flags); 2631 host->rescan_disable = 0; 2632 spin_unlock_irqrestore(&host->lock, flags); 2633 _mmc_detect_change(host, 0, false); 2634 2635 } 2636 2637 return 0; 2638 } 2639 #endif 2640 2641 /** 2642 * mmc_init_context_info() - init synchronization context 2643 * @host: mmc host 2644 * 2645 * Init struct context_info needed to implement asynchronous 2646 * request mechanism, used by mmc core, host driver and mmc requests 2647 * supplier. 2648 */ 2649 void mmc_init_context_info(struct mmc_host *host) 2650 { 2651 spin_lock_init(&host->context_info.lock); 2652 host->context_info.is_new_req = false; 2653 host->context_info.is_done_rcv = false; 2654 host->context_info.is_waiting_last_req = false; 2655 init_waitqueue_head(&host->context_info.wait); 2656 } 2657 2658 static int __init mmc_init(void) 2659 { 2660 int ret; 2661 2662 workqueue = alloc_ordered_workqueue("kmmcd", 0); 2663 if (!workqueue) 2664 return -ENOMEM; 2665 2666 ret = mmc_register_bus(); 2667 if (ret) 2668 goto destroy_workqueue; 2669 2670 ret = mmc_register_host_class(); 2671 if (ret) 2672 goto unregister_bus; 2673 2674 ret = sdio_register_bus(); 2675 if (ret) 2676 goto unregister_host_class; 2677 2678 return 0; 2679 2680 unregister_host_class: 2681 mmc_unregister_host_class(); 2682 unregister_bus: 2683 mmc_unregister_bus(); 2684 destroy_workqueue: 2685 destroy_workqueue(workqueue); 2686 2687 return ret; 2688 } 2689 2690 static void __exit mmc_exit(void) 2691 { 2692 sdio_unregister_bus(); 2693 mmc_unregister_host_class(); 2694 mmc_unregister_bus(); 2695 destroy_workqueue(workqueue); 2696 } 2697 2698 subsys_initcall(mmc_init); 2699 module_exit(mmc_exit); 2700 2701 MODULE_LICENSE("GPL"); 2702