xref: /openbmc/linux/drivers/mmc/core/core.c (revision 0ed2dd03)
1 /*
2  *  linux/drivers/mmc/core/core.c
3  *
4  *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5  *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6  *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7  *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32 
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41 
42 #include "core.h"
43 #include "card.h"
44 #include "bus.h"
45 #include "host.h"
46 #include "sdio_bus.h"
47 #include "pwrseq.h"
48 
49 #include "mmc_ops.h"
50 #include "sd_ops.h"
51 #include "sdio_ops.h"
52 
53 /* If the device is not responding */
54 #define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
55 
56 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
57 #define MMC_ERASE_TIMEOUT_MS	(60 * 1000) /* 60 s */
58 
59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
60 
61 /*
62  * Enabling software CRCs on the data blocks can be a significant (30%)
63  * performance cost, and for other reasons may not always be desired.
64  * So we allow it it to be disabled.
65  */
66 bool use_spi_crc = 1;
67 module_param(use_spi_crc, bool, 0);
68 
69 static int mmc_schedule_delayed_work(struct delayed_work *work,
70 				     unsigned long delay)
71 {
72 	/*
73 	 * We use the system_freezable_wq, because of two reasons.
74 	 * First, it allows several works (not the same work item) to be
75 	 * executed simultaneously. Second, the queue becomes frozen when
76 	 * userspace becomes frozen during system PM.
77 	 */
78 	return queue_delayed_work(system_freezable_wq, work, delay);
79 }
80 
81 #ifdef CONFIG_FAIL_MMC_REQUEST
82 
83 /*
84  * Internal function. Inject random data errors.
85  * If mmc_data is NULL no errors are injected.
86  */
87 static void mmc_should_fail_request(struct mmc_host *host,
88 				    struct mmc_request *mrq)
89 {
90 	struct mmc_command *cmd = mrq->cmd;
91 	struct mmc_data *data = mrq->data;
92 	static const int data_errors[] = {
93 		-ETIMEDOUT,
94 		-EILSEQ,
95 		-EIO,
96 	};
97 
98 	if (!data)
99 		return;
100 
101 	if (cmd->error || data->error ||
102 	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
103 		return;
104 
105 	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
106 	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
107 }
108 
109 #else /* CONFIG_FAIL_MMC_REQUEST */
110 
111 static inline void mmc_should_fail_request(struct mmc_host *host,
112 					   struct mmc_request *mrq)
113 {
114 }
115 
116 #endif /* CONFIG_FAIL_MMC_REQUEST */
117 
118 static inline void mmc_complete_cmd(struct mmc_request *mrq)
119 {
120 	if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
121 		complete_all(&mrq->cmd_completion);
122 }
123 
124 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
125 {
126 	if (!mrq->cap_cmd_during_tfr)
127 		return;
128 
129 	mmc_complete_cmd(mrq);
130 
131 	pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
132 		 mmc_hostname(host), mrq->cmd->opcode);
133 }
134 EXPORT_SYMBOL(mmc_command_done);
135 
136 /**
137  *	mmc_request_done - finish processing an MMC request
138  *	@host: MMC host which completed request
139  *	@mrq: MMC request which request
140  *
141  *	MMC drivers should call this function when they have completed
142  *	their processing of a request.
143  */
144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
145 {
146 	struct mmc_command *cmd = mrq->cmd;
147 	int err = cmd->error;
148 
149 	/* Flag re-tuning needed on CRC errors */
150 	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
151 	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
152 	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
153 	    (mrq->data && mrq->data->error == -EILSEQ) ||
154 	    (mrq->stop && mrq->stop->error == -EILSEQ)))
155 		mmc_retune_needed(host);
156 
157 	if (err && cmd->retries && mmc_host_is_spi(host)) {
158 		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
159 			cmd->retries = 0;
160 	}
161 
162 	if (host->ongoing_mrq == mrq)
163 		host->ongoing_mrq = NULL;
164 
165 	mmc_complete_cmd(mrq);
166 
167 	trace_mmc_request_done(host, mrq);
168 
169 	/*
170 	 * We list various conditions for the command to be considered
171 	 * properly done:
172 	 *
173 	 * - There was no error, OK fine then
174 	 * - We are not doing some kind of retry
175 	 * - The card was removed (...so just complete everything no matter
176 	 *   if there are errors or retries)
177 	 */
178 	if (!err || !cmd->retries || mmc_card_removed(host->card)) {
179 		mmc_should_fail_request(host, mrq);
180 
181 		if (!host->ongoing_mrq)
182 			led_trigger_event(host->led, LED_OFF);
183 
184 		if (mrq->sbc) {
185 			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
186 				mmc_hostname(host), mrq->sbc->opcode,
187 				mrq->sbc->error,
188 				mrq->sbc->resp[0], mrq->sbc->resp[1],
189 				mrq->sbc->resp[2], mrq->sbc->resp[3]);
190 		}
191 
192 		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
193 			mmc_hostname(host), cmd->opcode, err,
194 			cmd->resp[0], cmd->resp[1],
195 			cmd->resp[2], cmd->resp[3]);
196 
197 		if (mrq->data) {
198 			pr_debug("%s:     %d bytes transferred: %d\n",
199 				mmc_hostname(host),
200 				mrq->data->bytes_xfered, mrq->data->error);
201 		}
202 
203 		if (mrq->stop) {
204 			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
205 				mmc_hostname(host), mrq->stop->opcode,
206 				mrq->stop->error,
207 				mrq->stop->resp[0], mrq->stop->resp[1],
208 				mrq->stop->resp[2], mrq->stop->resp[3]);
209 		}
210 	}
211 	/*
212 	 * Request starter must handle retries - see
213 	 * mmc_wait_for_req_done().
214 	 */
215 	if (mrq->done)
216 		mrq->done(mrq);
217 }
218 
219 EXPORT_SYMBOL(mmc_request_done);
220 
221 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
222 {
223 	int err;
224 
225 	/* Assumes host controller has been runtime resumed by mmc_claim_host */
226 	err = mmc_retune(host);
227 	if (err) {
228 		mrq->cmd->error = err;
229 		mmc_request_done(host, mrq);
230 		return;
231 	}
232 
233 	/*
234 	 * For sdio rw commands we must wait for card busy otherwise some
235 	 * sdio devices won't work properly.
236 	 * And bypass I/O abort, reset and bus suspend operations.
237 	 */
238 	if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
239 	    host->ops->card_busy) {
240 		int tries = 500; /* Wait aprox 500ms at maximum */
241 
242 		while (host->ops->card_busy(host) && --tries)
243 			mmc_delay(1);
244 
245 		if (tries == 0) {
246 			mrq->cmd->error = -EBUSY;
247 			mmc_request_done(host, mrq);
248 			return;
249 		}
250 	}
251 
252 	if (mrq->cap_cmd_during_tfr) {
253 		host->ongoing_mrq = mrq;
254 		/*
255 		 * Retry path could come through here without having waiting on
256 		 * cmd_completion, so ensure it is reinitialised.
257 		 */
258 		reinit_completion(&mrq->cmd_completion);
259 	}
260 
261 	trace_mmc_request_start(host, mrq);
262 
263 	if (host->cqe_on)
264 		host->cqe_ops->cqe_off(host);
265 
266 	host->ops->request(host, mrq);
267 }
268 
269 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
270 			     bool cqe)
271 {
272 	if (mrq->sbc) {
273 		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
274 			 mmc_hostname(host), mrq->sbc->opcode,
275 			 mrq->sbc->arg, mrq->sbc->flags);
276 	}
277 
278 	if (mrq->cmd) {
279 		pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
280 			 mmc_hostname(host), cqe ? "CQE direct " : "",
281 			 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
282 	} else if (cqe) {
283 		pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
284 			 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
285 	}
286 
287 	if (mrq->data) {
288 		pr_debug("%s:     blksz %d blocks %d flags %08x "
289 			"tsac %d ms nsac %d\n",
290 			mmc_hostname(host), mrq->data->blksz,
291 			mrq->data->blocks, mrq->data->flags,
292 			mrq->data->timeout_ns / 1000000,
293 			mrq->data->timeout_clks);
294 	}
295 
296 	if (mrq->stop) {
297 		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
298 			 mmc_hostname(host), mrq->stop->opcode,
299 			 mrq->stop->arg, mrq->stop->flags);
300 	}
301 }
302 
303 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
304 {
305 	unsigned int i, sz = 0;
306 	struct scatterlist *sg;
307 
308 	if (mrq->cmd) {
309 		mrq->cmd->error = 0;
310 		mrq->cmd->mrq = mrq;
311 		mrq->cmd->data = mrq->data;
312 	}
313 	if (mrq->sbc) {
314 		mrq->sbc->error = 0;
315 		mrq->sbc->mrq = mrq;
316 	}
317 	if (mrq->data) {
318 		if (mrq->data->blksz > host->max_blk_size ||
319 		    mrq->data->blocks > host->max_blk_count ||
320 		    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
321 			return -EINVAL;
322 
323 		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
324 			sz += sg->length;
325 		if (sz != mrq->data->blocks * mrq->data->blksz)
326 			return -EINVAL;
327 
328 		mrq->data->error = 0;
329 		mrq->data->mrq = mrq;
330 		if (mrq->stop) {
331 			mrq->data->stop = mrq->stop;
332 			mrq->stop->error = 0;
333 			mrq->stop->mrq = mrq;
334 		}
335 	}
336 
337 	return 0;
338 }
339 
340 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
341 {
342 	int err;
343 
344 	init_completion(&mrq->cmd_completion);
345 
346 	mmc_retune_hold(host);
347 
348 	if (mmc_card_removed(host->card))
349 		return -ENOMEDIUM;
350 
351 	mmc_mrq_pr_debug(host, mrq, false);
352 
353 	WARN_ON(!host->claimed);
354 
355 	err = mmc_mrq_prep(host, mrq);
356 	if (err)
357 		return err;
358 
359 	led_trigger_event(host->led, LED_FULL);
360 	__mmc_start_request(host, mrq);
361 
362 	return 0;
363 }
364 EXPORT_SYMBOL(mmc_start_request);
365 
366 static void mmc_wait_done(struct mmc_request *mrq)
367 {
368 	complete(&mrq->completion);
369 }
370 
371 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
372 {
373 	struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
374 
375 	/*
376 	 * If there is an ongoing transfer, wait for the command line to become
377 	 * available.
378 	 */
379 	if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
380 		wait_for_completion(&ongoing_mrq->cmd_completion);
381 }
382 
383 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
384 {
385 	int err;
386 
387 	mmc_wait_ongoing_tfr_cmd(host);
388 
389 	init_completion(&mrq->completion);
390 	mrq->done = mmc_wait_done;
391 
392 	err = mmc_start_request(host, mrq);
393 	if (err) {
394 		mrq->cmd->error = err;
395 		mmc_complete_cmd(mrq);
396 		complete(&mrq->completion);
397 	}
398 
399 	return err;
400 }
401 
402 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
403 {
404 	struct mmc_command *cmd;
405 
406 	while (1) {
407 		wait_for_completion(&mrq->completion);
408 
409 		cmd = mrq->cmd;
410 
411 		/*
412 		 * If host has timed out waiting for the sanitize
413 		 * to complete, card might be still in programming state
414 		 * so let's try to bring the card out of programming
415 		 * state.
416 		 */
417 		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
418 			if (!mmc_interrupt_hpi(host->card)) {
419 				pr_warn("%s: %s: Interrupted sanitize\n",
420 					mmc_hostname(host), __func__);
421 				cmd->error = 0;
422 				break;
423 			} else {
424 				pr_err("%s: %s: Failed to interrupt sanitize\n",
425 				       mmc_hostname(host), __func__);
426 			}
427 		}
428 		if (!cmd->error || !cmd->retries ||
429 		    mmc_card_removed(host->card))
430 			break;
431 
432 		mmc_retune_recheck(host);
433 
434 		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
435 			 mmc_hostname(host), cmd->opcode, cmd->error);
436 		cmd->retries--;
437 		cmd->error = 0;
438 		__mmc_start_request(host, mrq);
439 	}
440 
441 	mmc_retune_release(host);
442 }
443 EXPORT_SYMBOL(mmc_wait_for_req_done);
444 
445 /*
446  * mmc_cqe_start_req - Start a CQE request.
447  * @host: MMC host to start the request
448  * @mrq: request to start
449  *
450  * Start the request, re-tuning if needed and it is possible. Returns an error
451  * code if the request fails to start or -EBUSY if CQE is busy.
452  */
453 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
454 {
455 	int err;
456 
457 	/*
458 	 * CQE cannot process re-tuning commands. Caller must hold retuning
459 	 * while CQE is in use.  Re-tuning can happen here only when CQE has no
460 	 * active requests i.e. this is the first.  Note, re-tuning will call
461 	 * ->cqe_off().
462 	 */
463 	err = mmc_retune(host);
464 	if (err)
465 		goto out_err;
466 
467 	mrq->host = host;
468 
469 	mmc_mrq_pr_debug(host, mrq, true);
470 
471 	err = mmc_mrq_prep(host, mrq);
472 	if (err)
473 		goto out_err;
474 
475 	err = host->cqe_ops->cqe_request(host, mrq);
476 	if (err)
477 		goto out_err;
478 
479 	trace_mmc_request_start(host, mrq);
480 
481 	return 0;
482 
483 out_err:
484 	if (mrq->cmd) {
485 		pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
486 			 mmc_hostname(host), mrq->cmd->opcode, err);
487 	} else {
488 		pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
489 			 mmc_hostname(host), mrq->tag, err);
490 	}
491 	return err;
492 }
493 EXPORT_SYMBOL(mmc_cqe_start_req);
494 
495 /**
496  *	mmc_cqe_request_done - CQE has finished processing an MMC request
497  *	@host: MMC host which completed request
498  *	@mrq: MMC request which completed
499  *
500  *	CQE drivers should call this function when they have completed
501  *	their processing of a request.
502  */
503 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
504 {
505 	mmc_should_fail_request(host, mrq);
506 
507 	/* Flag re-tuning needed on CRC errors */
508 	if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
509 	    (mrq->data && mrq->data->error == -EILSEQ))
510 		mmc_retune_needed(host);
511 
512 	trace_mmc_request_done(host, mrq);
513 
514 	if (mrq->cmd) {
515 		pr_debug("%s: CQE req done (direct CMD%u): %d\n",
516 			 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
517 	} else {
518 		pr_debug("%s: CQE transfer done tag %d\n",
519 			 mmc_hostname(host), mrq->tag);
520 	}
521 
522 	if (mrq->data) {
523 		pr_debug("%s:     %d bytes transferred: %d\n",
524 			 mmc_hostname(host),
525 			 mrq->data->bytes_xfered, mrq->data->error);
526 	}
527 
528 	mrq->done(mrq);
529 }
530 EXPORT_SYMBOL(mmc_cqe_request_done);
531 
532 /**
533  *	mmc_cqe_post_req - CQE post process of a completed MMC request
534  *	@host: MMC host
535  *	@mrq: MMC request to be processed
536  */
537 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
538 {
539 	if (host->cqe_ops->cqe_post_req)
540 		host->cqe_ops->cqe_post_req(host, mrq);
541 }
542 EXPORT_SYMBOL(mmc_cqe_post_req);
543 
544 /* Arbitrary 1 second timeout */
545 #define MMC_CQE_RECOVERY_TIMEOUT	1000
546 
547 /*
548  * mmc_cqe_recovery - Recover from CQE errors.
549  * @host: MMC host to recover
550  *
551  * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
552  * in eMMC, and discarding the queue in CQE. CQE must call
553  * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
554  * fails to discard its queue.
555  */
556 int mmc_cqe_recovery(struct mmc_host *host)
557 {
558 	struct mmc_command cmd;
559 	int err;
560 
561 	mmc_retune_hold_now(host);
562 
563 	/*
564 	 * Recovery is expected seldom, if at all, but it reduces performance,
565 	 * so make sure it is not completely silent.
566 	 */
567 	pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
568 
569 	host->cqe_ops->cqe_recovery_start(host);
570 
571 	memset(&cmd, 0, sizeof(cmd));
572 	cmd.opcode       = MMC_STOP_TRANSMISSION,
573 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC,
574 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
575 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
576 	mmc_wait_for_cmd(host, &cmd, 0);
577 
578 	memset(&cmd, 0, sizeof(cmd));
579 	cmd.opcode       = MMC_CMDQ_TASK_MGMT;
580 	cmd.arg          = 1; /* Discard entire queue */
581 	cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
582 	cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
583 	cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
584 	err = mmc_wait_for_cmd(host, &cmd, 0);
585 
586 	host->cqe_ops->cqe_recovery_finish(host);
587 
588 	mmc_retune_release(host);
589 
590 	return err;
591 }
592 EXPORT_SYMBOL(mmc_cqe_recovery);
593 
594 /**
595  *	mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
596  *	@host: MMC host
597  *	@mrq: MMC request
598  *
599  *	mmc_is_req_done() is used with requests that have
600  *	mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
601  *	starting a request and before waiting for it to complete. That is,
602  *	either in between calls to mmc_start_req(), or after mmc_wait_for_req()
603  *	and before mmc_wait_for_req_done(). If it is called at other times the
604  *	result is not meaningful.
605  */
606 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
607 {
608 	return completion_done(&mrq->completion);
609 }
610 EXPORT_SYMBOL(mmc_is_req_done);
611 
612 /**
613  *	mmc_wait_for_req - start a request and wait for completion
614  *	@host: MMC host to start command
615  *	@mrq: MMC request to start
616  *
617  *	Start a new MMC custom command request for a host, and wait
618  *	for the command to complete. In the case of 'cap_cmd_during_tfr'
619  *	requests, the transfer is ongoing and the caller can issue further
620  *	commands that do not use the data lines, and then wait by calling
621  *	mmc_wait_for_req_done().
622  *	Does not attempt to parse the response.
623  */
624 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
625 {
626 	__mmc_start_req(host, mrq);
627 
628 	if (!mrq->cap_cmd_during_tfr)
629 		mmc_wait_for_req_done(host, mrq);
630 }
631 EXPORT_SYMBOL(mmc_wait_for_req);
632 
633 /**
634  *	mmc_wait_for_cmd - start a command and wait for completion
635  *	@host: MMC host to start command
636  *	@cmd: MMC command to start
637  *	@retries: maximum number of retries
638  *
639  *	Start a new MMC command for a host, and wait for the command
640  *	to complete.  Return any error that occurred while the command
641  *	was executing.  Do not attempt to parse the response.
642  */
643 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
644 {
645 	struct mmc_request mrq = {};
646 
647 	WARN_ON(!host->claimed);
648 
649 	memset(cmd->resp, 0, sizeof(cmd->resp));
650 	cmd->retries = retries;
651 
652 	mrq.cmd = cmd;
653 	cmd->data = NULL;
654 
655 	mmc_wait_for_req(host, &mrq);
656 
657 	return cmd->error;
658 }
659 
660 EXPORT_SYMBOL(mmc_wait_for_cmd);
661 
662 /**
663  *	mmc_set_data_timeout - set the timeout for a data command
664  *	@data: data phase for command
665  *	@card: the MMC card associated with the data transfer
666  *
667  *	Computes the data timeout parameters according to the
668  *	correct algorithm given the card type.
669  */
670 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
671 {
672 	unsigned int mult;
673 
674 	/*
675 	 * SDIO cards only define an upper 1 s limit on access.
676 	 */
677 	if (mmc_card_sdio(card)) {
678 		data->timeout_ns = 1000000000;
679 		data->timeout_clks = 0;
680 		return;
681 	}
682 
683 	/*
684 	 * SD cards use a 100 multiplier rather than 10
685 	 */
686 	mult = mmc_card_sd(card) ? 100 : 10;
687 
688 	/*
689 	 * Scale up the multiplier (and therefore the timeout) by
690 	 * the r2w factor for writes.
691 	 */
692 	if (data->flags & MMC_DATA_WRITE)
693 		mult <<= card->csd.r2w_factor;
694 
695 	data->timeout_ns = card->csd.taac_ns * mult;
696 	data->timeout_clks = card->csd.taac_clks * mult;
697 
698 	/*
699 	 * SD cards also have an upper limit on the timeout.
700 	 */
701 	if (mmc_card_sd(card)) {
702 		unsigned int timeout_us, limit_us;
703 
704 		timeout_us = data->timeout_ns / 1000;
705 		if (card->host->ios.clock)
706 			timeout_us += data->timeout_clks * 1000 /
707 				(card->host->ios.clock / 1000);
708 
709 		if (data->flags & MMC_DATA_WRITE)
710 			/*
711 			 * The MMC spec "It is strongly recommended
712 			 * for hosts to implement more than 500ms
713 			 * timeout value even if the card indicates
714 			 * the 250ms maximum busy length."  Even the
715 			 * previous value of 300ms is known to be
716 			 * insufficient for some cards.
717 			 */
718 			limit_us = 3000000;
719 		else
720 			limit_us = 100000;
721 
722 		/*
723 		 * SDHC cards always use these fixed values.
724 		 */
725 		if (timeout_us > limit_us) {
726 			data->timeout_ns = limit_us * 1000;
727 			data->timeout_clks = 0;
728 		}
729 
730 		/* assign limit value if invalid */
731 		if (timeout_us == 0)
732 			data->timeout_ns = limit_us * 1000;
733 	}
734 
735 	/*
736 	 * Some cards require longer data read timeout than indicated in CSD.
737 	 * Address this by setting the read timeout to a "reasonably high"
738 	 * value. For the cards tested, 600ms has proven enough. If necessary,
739 	 * this value can be increased if other problematic cards require this.
740 	 */
741 	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
742 		data->timeout_ns = 600000000;
743 		data->timeout_clks = 0;
744 	}
745 
746 	/*
747 	 * Some cards need very high timeouts if driven in SPI mode.
748 	 * The worst observed timeout was 900ms after writing a
749 	 * continuous stream of data until the internal logic
750 	 * overflowed.
751 	 */
752 	if (mmc_host_is_spi(card->host)) {
753 		if (data->flags & MMC_DATA_WRITE) {
754 			if (data->timeout_ns < 1000000000)
755 				data->timeout_ns = 1000000000;	/* 1s */
756 		} else {
757 			if (data->timeout_ns < 100000000)
758 				data->timeout_ns =  100000000;	/* 100ms */
759 		}
760 	}
761 }
762 EXPORT_SYMBOL(mmc_set_data_timeout);
763 
764 /**
765  *	mmc_align_data_size - pads a transfer size to a more optimal value
766  *	@card: the MMC card associated with the data transfer
767  *	@sz: original transfer size
768  *
769  *	Pads the original data size with a number of extra bytes in
770  *	order to avoid controller bugs and/or performance hits
771  *	(e.g. some controllers revert to PIO for certain sizes).
772  *
773  *	Returns the improved size, which might be unmodified.
774  *
775  *	Note that this function is only relevant when issuing a
776  *	single scatter gather entry.
777  */
778 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
779 {
780 	/*
781 	 * FIXME: We don't have a system for the controller to tell
782 	 * the core about its problems yet, so for now we just 32-bit
783 	 * align the size.
784 	 */
785 	sz = ((sz + 3) / 4) * 4;
786 
787 	return sz;
788 }
789 EXPORT_SYMBOL(mmc_align_data_size);
790 
791 /*
792  * Allow claiming an already claimed host if the context is the same or there is
793  * no context but the task is the same.
794  */
795 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
796 				   struct task_struct *task)
797 {
798 	return host->claimer == ctx ||
799 	       (!ctx && task && host->claimer->task == task);
800 }
801 
802 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
803 				       struct mmc_ctx *ctx,
804 				       struct task_struct *task)
805 {
806 	if (!host->claimer) {
807 		if (ctx)
808 			host->claimer = ctx;
809 		else
810 			host->claimer = &host->default_ctx;
811 	}
812 	if (task)
813 		host->claimer->task = task;
814 }
815 
816 /**
817  *	__mmc_claim_host - exclusively claim a host
818  *	@host: mmc host to claim
819  *	@ctx: context that claims the host or NULL in which case the default
820  *	context will be used
821  *	@abort: whether or not the operation should be aborted
822  *
823  *	Claim a host for a set of operations.  If @abort is non null and
824  *	dereference a non-zero value then this will return prematurely with
825  *	that non-zero value without acquiring the lock.  Returns zero
826  *	with the lock held otherwise.
827  */
828 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
829 		     atomic_t *abort)
830 {
831 	struct task_struct *task = ctx ? NULL : current;
832 	DECLARE_WAITQUEUE(wait, current);
833 	unsigned long flags;
834 	int stop;
835 	bool pm = false;
836 
837 	might_sleep();
838 
839 	add_wait_queue(&host->wq, &wait);
840 	spin_lock_irqsave(&host->lock, flags);
841 	while (1) {
842 		set_current_state(TASK_UNINTERRUPTIBLE);
843 		stop = abort ? atomic_read(abort) : 0;
844 		if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
845 			break;
846 		spin_unlock_irqrestore(&host->lock, flags);
847 		schedule();
848 		spin_lock_irqsave(&host->lock, flags);
849 	}
850 	set_current_state(TASK_RUNNING);
851 	if (!stop) {
852 		host->claimed = 1;
853 		mmc_ctx_set_claimer(host, ctx, task);
854 		host->claim_cnt += 1;
855 		if (host->claim_cnt == 1)
856 			pm = true;
857 	} else
858 		wake_up(&host->wq);
859 	spin_unlock_irqrestore(&host->lock, flags);
860 	remove_wait_queue(&host->wq, &wait);
861 
862 	if (pm)
863 		pm_runtime_get_sync(mmc_dev(host));
864 
865 	return stop;
866 }
867 EXPORT_SYMBOL(__mmc_claim_host);
868 
869 /**
870  *	mmc_release_host - release a host
871  *	@host: mmc host to release
872  *
873  *	Release a MMC host, allowing others to claim the host
874  *	for their operations.
875  */
876 void mmc_release_host(struct mmc_host *host)
877 {
878 	unsigned long flags;
879 
880 	WARN_ON(!host->claimed);
881 
882 	spin_lock_irqsave(&host->lock, flags);
883 	if (--host->claim_cnt) {
884 		/* Release for nested claim */
885 		spin_unlock_irqrestore(&host->lock, flags);
886 	} else {
887 		host->claimed = 0;
888 		host->claimer->task = NULL;
889 		host->claimer = NULL;
890 		spin_unlock_irqrestore(&host->lock, flags);
891 		wake_up(&host->wq);
892 		pm_runtime_mark_last_busy(mmc_dev(host));
893 		pm_runtime_put_autosuspend(mmc_dev(host));
894 	}
895 }
896 EXPORT_SYMBOL(mmc_release_host);
897 
898 /*
899  * This is a helper function, which fetches a runtime pm reference for the
900  * card device and also claims the host.
901  */
902 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
903 {
904 	pm_runtime_get_sync(&card->dev);
905 	__mmc_claim_host(card->host, ctx, NULL);
906 }
907 EXPORT_SYMBOL(mmc_get_card);
908 
909 /*
910  * This is a helper function, which releases the host and drops the runtime
911  * pm reference for the card device.
912  */
913 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
914 {
915 	struct mmc_host *host = card->host;
916 
917 	WARN_ON(ctx && host->claimer != ctx);
918 
919 	mmc_release_host(host);
920 	pm_runtime_mark_last_busy(&card->dev);
921 	pm_runtime_put_autosuspend(&card->dev);
922 }
923 EXPORT_SYMBOL(mmc_put_card);
924 
925 /*
926  * Internal function that does the actual ios call to the host driver,
927  * optionally printing some debug output.
928  */
929 static inline void mmc_set_ios(struct mmc_host *host)
930 {
931 	struct mmc_ios *ios = &host->ios;
932 
933 	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
934 		"width %u timing %u\n",
935 		 mmc_hostname(host), ios->clock, ios->bus_mode,
936 		 ios->power_mode, ios->chip_select, ios->vdd,
937 		 1 << ios->bus_width, ios->timing);
938 
939 	host->ops->set_ios(host, ios);
940 }
941 
942 /*
943  * Control chip select pin on a host.
944  */
945 void mmc_set_chip_select(struct mmc_host *host, int mode)
946 {
947 	host->ios.chip_select = mode;
948 	mmc_set_ios(host);
949 }
950 
951 /*
952  * Sets the host clock to the highest possible frequency that
953  * is below "hz".
954  */
955 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
956 {
957 	WARN_ON(hz && hz < host->f_min);
958 
959 	if (hz > host->f_max)
960 		hz = host->f_max;
961 
962 	host->ios.clock = hz;
963 	mmc_set_ios(host);
964 }
965 
966 int mmc_execute_tuning(struct mmc_card *card)
967 {
968 	struct mmc_host *host = card->host;
969 	u32 opcode;
970 	int err;
971 
972 	if (!host->ops->execute_tuning)
973 		return 0;
974 
975 	if (host->cqe_on)
976 		host->cqe_ops->cqe_off(host);
977 
978 	if (mmc_card_mmc(card))
979 		opcode = MMC_SEND_TUNING_BLOCK_HS200;
980 	else
981 		opcode = MMC_SEND_TUNING_BLOCK;
982 
983 	err = host->ops->execute_tuning(host, opcode);
984 
985 	if (err)
986 		pr_err("%s: tuning execution failed: %d\n",
987 			mmc_hostname(host), err);
988 	else
989 		mmc_retune_enable(host);
990 
991 	return err;
992 }
993 
994 /*
995  * Change the bus mode (open drain/push-pull) of a host.
996  */
997 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
998 {
999 	host->ios.bus_mode = mode;
1000 	mmc_set_ios(host);
1001 }
1002 
1003 /*
1004  * Change data bus width of a host.
1005  */
1006 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1007 {
1008 	host->ios.bus_width = width;
1009 	mmc_set_ios(host);
1010 }
1011 
1012 /*
1013  * Set initial state after a power cycle or a hw_reset.
1014  */
1015 void mmc_set_initial_state(struct mmc_host *host)
1016 {
1017 	if (host->cqe_on)
1018 		host->cqe_ops->cqe_off(host);
1019 
1020 	mmc_retune_disable(host);
1021 
1022 	if (mmc_host_is_spi(host))
1023 		host->ios.chip_select = MMC_CS_HIGH;
1024 	else
1025 		host->ios.chip_select = MMC_CS_DONTCARE;
1026 	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1027 	host->ios.bus_width = MMC_BUS_WIDTH_1;
1028 	host->ios.timing = MMC_TIMING_LEGACY;
1029 	host->ios.drv_type = 0;
1030 	host->ios.enhanced_strobe = false;
1031 
1032 	/*
1033 	 * Make sure we are in non-enhanced strobe mode before we
1034 	 * actually enable it in ext_csd.
1035 	 */
1036 	if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1037 	     host->ops->hs400_enhanced_strobe)
1038 		host->ops->hs400_enhanced_strobe(host, &host->ios);
1039 
1040 	mmc_set_ios(host);
1041 }
1042 
1043 /**
1044  * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1045  * @vdd:	voltage (mV)
1046  * @low_bits:	prefer low bits in boundary cases
1047  *
1048  * This function returns the OCR bit number according to the provided @vdd
1049  * value. If conversion is not possible a negative errno value returned.
1050  *
1051  * Depending on the @low_bits flag the function prefers low or high OCR bits
1052  * on boundary voltages. For example,
1053  * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1054  * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1055  *
1056  * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1057  */
1058 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1059 {
1060 	const int max_bit = ilog2(MMC_VDD_35_36);
1061 	int bit;
1062 
1063 	if (vdd < 1650 || vdd > 3600)
1064 		return -EINVAL;
1065 
1066 	if (vdd >= 1650 && vdd <= 1950)
1067 		return ilog2(MMC_VDD_165_195);
1068 
1069 	if (low_bits)
1070 		vdd -= 1;
1071 
1072 	/* Base 2000 mV, step 100 mV, bit's base 8. */
1073 	bit = (vdd - 2000) / 100 + 8;
1074 	if (bit > max_bit)
1075 		return max_bit;
1076 	return bit;
1077 }
1078 
1079 /**
1080  * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1081  * @vdd_min:	minimum voltage value (mV)
1082  * @vdd_max:	maximum voltage value (mV)
1083  *
1084  * This function returns the OCR mask bits according to the provided @vdd_min
1085  * and @vdd_max values. If conversion is not possible the function returns 0.
1086  *
1087  * Notes wrt boundary cases:
1088  * This function sets the OCR bits for all boundary voltages, for example
1089  * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1090  * MMC_VDD_34_35 mask.
1091  */
1092 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1093 {
1094 	u32 mask = 0;
1095 
1096 	if (vdd_max < vdd_min)
1097 		return 0;
1098 
1099 	/* Prefer high bits for the boundary vdd_max values. */
1100 	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1101 	if (vdd_max < 0)
1102 		return 0;
1103 
1104 	/* Prefer low bits for the boundary vdd_min values. */
1105 	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1106 	if (vdd_min < 0)
1107 		return 0;
1108 
1109 	/* Fill the mask, from max bit to min bit. */
1110 	while (vdd_max >= vdd_min)
1111 		mask |= 1 << vdd_max--;
1112 
1113 	return mask;
1114 }
1115 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1116 
1117 #ifdef CONFIG_OF
1118 
1119 /**
1120  * mmc_of_parse_voltage - return mask of supported voltages
1121  * @np: The device node need to be parsed.
1122  * @mask: mask of voltages available for MMC/SD/SDIO
1123  *
1124  * Parse the "voltage-ranges" DT property, returning zero if it is not
1125  * found, negative errno if the voltage-range specification is invalid,
1126  * or one if the voltage-range is specified and successfully parsed.
1127  */
1128 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1129 {
1130 	const u32 *voltage_ranges;
1131 	int num_ranges, i;
1132 
1133 	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1134 	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1135 	if (!voltage_ranges) {
1136 		pr_debug("%pOF: voltage-ranges unspecified\n", np);
1137 		return 0;
1138 	}
1139 	if (!num_ranges) {
1140 		pr_err("%pOF: voltage-ranges empty\n", np);
1141 		return -EINVAL;
1142 	}
1143 
1144 	for (i = 0; i < num_ranges; i++) {
1145 		const int j = i * 2;
1146 		u32 ocr_mask;
1147 
1148 		ocr_mask = mmc_vddrange_to_ocrmask(
1149 				be32_to_cpu(voltage_ranges[j]),
1150 				be32_to_cpu(voltage_ranges[j + 1]));
1151 		if (!ocr_mask) {
1152 			pr_err("%pOF: voltage-range #%d is invalid\n",
1153 				np, i);
1154 			return -EINVAL;
1155 		}
1156 		*mask |= ocr_mask;
1157 	}
1158 
1159 	return 1;
1160 }
1161 EXPORT_SYMBOL(mmc_of_parse_voltage);
1162 
1163 #endif /* CONFIG_OF */
1164 
1165 static int mmc_of_get_func_num(struct device_node *node)
1166 {
1167 	u32 reg;
1168 	int ret;
1169 
1170 	ret = of_property_read_u32(node, "reg", &reg);
1171 	if (ret < 0)
1172 		return ret;
1173 
1174 	return reg;
1175 }
1176 
1177 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1178 		unsigned func_num)
1179 {
1180 	struct device_node *node;
1181 
1182 	if (!host->parent || !host->parent->of_node)
1183 		return NULL;
1184 
1185 	for_each_child_of_node(host->parent->of_node, node) {
1186 		if (mmc_of_get_func_num(node) == func_num)
1187 			return node;
1188 	}
1189 
1190 	return NULL;
1191 }
1192 
1193 #ifdef CONFIG_REGULATOR
1194 
1195 /**
1196  * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1197  * @vdd_bit:	OCR bit number
1198  * @min_uV:	minimum voltage value (mV)
1199  * @max_uV:	maximum voltage value (mV)
1200  *
1201  * This function returns the voltage range according to the provided OCR
1202  * bit number. If conversion is not possible a negative errno value returned.
1203  */
1204 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1205 {
1206 	int		tmp;
1207 
1208 	if (!vdd_bit)
1209 		return -EINVAL;
1210 
1211 	/*
1212 	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1213 	 * bits this regulator doesn't quite support ... don't
1214 	 * be too picky, most cards and regulators are OK with
1215 	 * a 0.1V range goof (it's a small error percentage).
1216 	 */
1217 	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1218 	if (tmp == 0) {
1219 		*min_uV = 1650 * 1000;
1220 		*max_uV = 1950 * 1000;
1221 	} else {
1222 		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1223 		*max_uV = *min_uV + 100 * 1000;
1224 	}
1225 
1226 	return 0;
1227 }
1228 
1229 /**
1230  * mmc_regulator_get_ocrmask - return mask of supported voltages
1231  * @supply: regulator to use
1232  *
1233  * This returns either a negative errno, or a mask of voltages that
1234  * can be provided to MMC/SD/SDIO devices using the specified voltage
1235  * regulator.  This would normally be called before registering the
1236  * MMC host adapter.
1237  */
1238 int mmc_regulator_get_ocrmask(struct regulator *supply)
1239 {
1240 	int			result = 0;
1241 	int			count;
1242 	int			i;
1243 	int			vdd_uV;
1244 	int			vdd_mV;
1245 
1246 	count = regulator_count_voltages(supply);
1247 	if (count < 0)
1248 		return count;
1249 
1250 	for (i = 0; i < count; i++) {
1251 		vdd_uV = regulator_list_voltage(supply, i);
1252 		if (vdd_uV <= 0)
1253 			continue;
1254 
1255 		vdd_mV = vdd_uV / 1000;
1256 		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1257 	}
1258 
1259 	if (!result) {
1260 		vdd_uV = regulator_get_voltage(supply);
1261 		if (vdd_uV <= 0)
1262 			return vdd_uV;
1263 
1264 		vdd_mV = vdd_uV / 1000;
1265 		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1266 	}
1267 
1268 	return result;
1269 }
1270 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1271 
1272 /**
1273  * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1274  * @mmc: the host to regulate
1275  * @supply: regulator to use
1276  * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1277  *
1278  * Returns zero on success, else negative errno.
1279  *
1280  * MMC host drivers may use this to enable or disable a regulator using
1281  * a particular supply voltage.  This would normally be called from the
1282  * set_ios() method.
1283  */
1284 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1285 			struct regulator *supply,
1286 			unsigned short vdd_bit)
1287 {
1288 	int			result = 0;
1289 	int			min_uV, max_uV;
1290 
1291 	if (vdd_bit) {
1292 		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1293 
1294 		result = regulator_set_voltage(supply, min_uV, max_uV);
1295 		if (result == 0 && !mmc->regulator_enabled) {
1296 			result = regulator_enable(supply);
1297 			if (!result)
1298 				mmc->regulator_enabled = true;
1299 		}
1300 	} else if (mmc->regulator_enabled) {
1301 		result = regulator_disable(supply);
1302 		if (result == 0)
1303 			mmc->regulator_enabled = false;
1304 	}
1305 
1306 	if (result)
1307 		dev_err(mmc_dev(mmc),
1308 			"could not set regulator OCR (%d)\n", result);
1309 	return result;
1310 }
1311 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1312 
1313 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1314 						  int min_uV, int target_uV,
1315 						  int max_uV)
1316 {
1317 	/*
1318 	 * Check if supported first to avoid errors since we may try several
1319 	 * signal levels during power up and don't want to show errors.
1320 	 */
1321 	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1322 		return -EINVAL;
1323 
1324 	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1325 					     max_uV);
1326 }
1327 
1328 /**
1329  * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1330  *
1331  * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1332  * That will match the behavior of old boards where VQMMC and VMMC were supplied
1333  * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1334  * SD card spec also define VQMMC in terms of VMMC.
1335  * If this is not possible we'll try the full 2.7-3.6V of the spec.
1336  *
1337  * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1338  * requested voltage.  This is definitely a good idea for UHS where there's a
1339  * separate regulator on the card that's trying to make 1.8V and it's best if
1340  * we match.
1341  *
1342  * This function is expected to be used by a controller's
1343  * start_signal_voltage_switch() function.
1344  */
1345 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1346 {
1347 	struct device *dev = mmc_dev(mmc);
1348 	int ret, volt, min_uV, max_uV;
1349 
1350 	/* If no vqmmc supply then we can't change the voltage */
1351 	if (IS_ERR(mmc->supply.vqmmc))
1352 		return -EINVAL;
1353 
1354 	switch (ios->signal_voltage) {
1355 	case MMC_SIGNAL_VOLTAGE_120:
1356 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1357 						1100000, 1200000, 1300000);
1358 	case MMC_SIGNAL_VOLTAGE_180:
1359 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1360 						1700000, 1800000, 1950000);
1361 	case MMC_SIGNAL_VOLTAGE_330:
1362 		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1363 		if (ret < 0)
1364 			return ret;
1365 
1366 		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1367 			__func__, volt, max_uV);
1368 
1369 		min_uV = max(volt - 300000, 2700000);
1370 		max_uV = min(max_uV + 200000, 3600000);
1371 
1372 		/*
1373 		 * Due to a limitation in the current implementation of
1374 		 * regulator_set_voltage_triplet() which is taking the lowest
1375 		 * voltage possible if below the target, search for a suitable
1376 		 * voltage in two steps and try to stay close to vmmc
1377 		 * with a 0.3V tolerance at first.
1378 		 */
1379 		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1380 						min_uV, volt, max_uV))
1381 			return 0;
1382 
1383 		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1384 						2700000, volt, 3600000);
1385 	default:
1386 		return -EINVAL;
1387 	}
1388 }
1389 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1390 
1391 #endif /* CONFIG_REGULATOR */
1392 
1393 /**
1394  * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1395  * @mmc: the host to regulate
1396  *
1397  * Returns 0 or errno. errno should be handled, it is either a critical error
1398  * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1399  * regulators have been found because they all are optional. If you require
1400  * certain regulators, you need to check separately in your driver if they got
1401  * populated after calling this function.
1402  */
1403 int mmc_regulator_get_supply(struct mmc_host *mmc)
1404 {
1405 	struct device *dev = mmc_dev(mmc);
1406 	int ret;
1407 
1408 	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1409 	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1410 
1411 	if (IS_ERR(mmc->supply.vmmc)) {
1412 		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1413 			return -EPROBE_DEFER;
1414 		dev_dbg(dev, "No vmmc regulator found\n");
1415 	} else {
1416 		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1417 		if (ret > 0)
1418 			mmc->ocr_avail = ret;
1419 		else
1420 			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1421 	}
1422 
1423 	if (IS_ERR(mmc->supply.vqmmc)) {
1424 		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1425 			return -EPROBE_DEFER;
1426 		dev_dbg(dev, "No vqmmc regulator found\n");
1427 	}
1428 
1429 	return 0;
1430 }
1431 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1432 
1433 /*
1434  * Mask off any voltages we don't support and select
1435  * the lowest voltage
1436  */
1437 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1438 {
1439 	int bit;
1440 
1441 	/*
1442 	 * Sanity check the voltages that the card claims to
1443 	 * support.
1444 	 */
1445 	if (ocr & 0x7F) {
1446 		dev_warn(mmc_dev(host),
1447 		"card claims to support voltages below defined range\n");
1448 		ocr &= ~0x7F;
1449 	}
1450 
1451 	ocr &= host->ocr_avail;
1452 	if (!ocr) {
1453 		dev_warn(mmc_dev(host), "no support for card's volts\n");
1454 		return 0;
1455 	}
1456 
1457 	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1458 		bit = ffs(ocr) - 1;
1459 		ocr &= 3 << bit;
1460 		mmc_power_cycle(host, ocr);
1461 	} else {
1462 		bit = fls(ocr) - 1;
1463 		ocr &= 3 << bit;
1464 		if (bit != host->ios.vdd)
1465 			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1466 	}
1467 
1468 	return ocr;
1469 }
1470 
1471 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1472 {
1473 	int err = 0;
1474 	int old_signal_voltage = host->ios.signal_voltage;
1475 
1476 	host->ios.signal_voltage = signal_voltage;
1477 	if (host->ops->start_signal_voltage_switch)
1478 		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1479 
1480 	if (err)
1481 		host->ios.signal_voltage = old_signal_voltage;
1482 
1483 	return err;
1484 
1485 }
1486 
1487 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1488 {
1489 	u32 clock;
1490 
1491 	/*
1492 	 * During a signal voltage level switch, the clock must be gated
1493 	 * for 5 ms according to the SD spec
1494 	 */
1495 	clock = host->ios.clock;
1496 	host->ios.clock = 0;
1497 	mmc_set_ios(host);
1498 
1499 	if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1500 		return -EAGAIN;
1501 
1502 	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1503 	mmc_delay(10);
1504 	host->ios.clock = clock;
1505 	mmc_set_ios(host);
1506 
1507 	return 0;
1508 }
1509 
1510 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1511 {
1512 	struct mmc_command cmd = {};
1513 	int err = 0;
1514 
1515 	/*
1516 	 * If we cannot switch voltages, return failure so the caller
1517 	 * can continue without UHS mode
1518 	 */
1519 	if (!host->ops->start_signal_voltage_switch)
1520 		return -EPERM;
1521 	if (!host->ops->card_busy)
1522 		pr_warn("%s: cannot verify signal voltage switch\n",
1523 			mmc_hostname(host));
1524 
1525 	cmd.opcode = SD_SWITCH_VOLTAGE;
1526 	cmd.arg = 0;
1527 	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1528 
1529 	err = mmc_wait_for_cmd(host, &cmd, 0);
1530 	if (err)
1531 		return err;
1532 
1533 	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1534 		return -EIO;
1535 
1536 	/*
1537 	 * The card should drive cmd and dat[0:3] low immediately
1538 	 * after the response of cmd11, but wait 1 ms to be sure
1539 	 */
1540 	mmc_delay(1);
1541 	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1542 		err = -EAGAIN;
1543 		goto power_cycle;
1544 	}
1545 
1546 	if (mmc_host_set_uhs_voltage(host)) {
1547 		/*
1548 		 * Voltages may not have been switched, but we've already
1549 		 * sent CMD11, so a power cycle is required anyway
1550 		 */
1551 		err = -EAGAIN;
1552 		goto power_cycle;
1553 	}
1554 
1555 	/* Wait for at least 1 ms according to spec */
1556 	mmc_delay(1);
1557 
1558 	/*
1559 	 * Failure to switch is indicated by the card holding
1560 	 * dat[0:3] low
1561 	 */
1562 	if (host->ops->card_busy && host->ops->card_busy(host))
1563 		err = -EAGAIN;
1564 
1565 power_cycle:
1566 	if (err) {
1567 		pr_debug("%s: Signal voltage switch failed, "
1568 			"power cycling card\n", mmc_hostname(host));
1569 		mmc_power_cycle(host, ocr);
1570 	}
1571 
1572 	return err;
1573 }
1574 
1575 /*
1576  * Select timing parameters for host.
1577  */
1578 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1579 {
1580 	host->ios.timing = timing;
1581 	mmc_set_ios(host);
1582 }
1583 
1584 /*
1585  * Select appropriate driver type for host.
1586  */
1587 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1588 {
1589 	host->ios.drv_type = drv_type;
1590 	mmc_set_ios(host);
1591 }
1592 
1593 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1594 			      int card_drv_type, int *drv_type)
1595 {
1596 	struct mmc_host *host = card->host;
1597 	int host_drv_type = SD_DRIVER_TYPE_B;
1598 
1599 	*drv_type = 0;
1600 
1601 	if (!host->ops->select_drive_strength)
1602 		return 0;
1603 
1604 	/* Use SD definition of driver strength for hosts */
1605 	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1606 		host_drv_type |= SD_DRIVER_TYPE_A;
1607 
1608 	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1609 		host_drv_type |= SD_DRIVER_TYPE_C;
1610 
1611 	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1612 		host_drv_type |= SD_DRIVER_TYPE_D;
1613 
1614 	/*
1615 	 * The drive strength that the hardware can support
1616 	 * depends on the board design.  Pass the appropriate
1617 	 * information and let the hardware specific code
1618 	 * return what is possible given the options
1619 	 */
1620 	return host->ops->select_drive_strength(card, max_dtr,
1621 						host_drv_type,
1622 						card_drv_type,
1623 						drv_type);
1624 }
1625 
1626 /*
1627  * Apply power to the MMC stack.  This is a two-stage process.
1628  * First, we enable power to the card without the clock running.
1629  * We then wait a bit for the power to stabilise.  Finally,
1630  * enable the bus drivers and clock to the card.
1631  *
1632  * We must _NOT_ enable the clock prior to power stablising.
1633  *
1634  * If a host does all the power sequencing itself, ignore the
1635  * initial MMC_POWER_UP stage.
1636  */
1637 void mmc_power_up(struct mmc_host *host, u32 ocr)
1638 {
1639 	if (host->ios.power_mode == MMC_POWER_ON)
1640 		return;
1641 
1642 	mmc_pwrseq_pre_power_on(host);
1643 
1644 	host->ios.vdd = fls(ocr) - 1;
1645 	host->ios.power_mode = MMC_POWER_UP;
1646 	/* Set initial state and call mmc_set_ios */
1647 	mmc_set_initial_state(host);
1648 
1649 	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1650 	if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1651 		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1652 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1653 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1654 	else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1655 		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1656 
1657 	/*
1658 	 * This delay should be sufficient to allow the power supply
1659 	 * to reach the minimum voltage.
1660 	 */
1661 	mmc_delay(10);
1662 
1663 	mmc_pwrseq_post_power_on(host);
1664 
1665 	host->ios.clock = host->f_init;
1666 
1667 	host->ios.power_mode = MMC_POWER_ON;
1668 	mmc_set_ios(host);
1669 
1670 	/*
1671 	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1672 	 * time required to reach a stable voltage.
1673 	 */
1674 	mmc_delay(10);
1675 }
1676 
1677 void mmc_power_off(struct mmc_host *host)
1678 {
1679 	if (host->ios.power_mode == MMC_POWER_OFF)
1680 		return;
1681 
1682 	mmc_pwrseq_power_off(host);
1683 
1684 	host->ios.clock = 0;
1685 	host->ios.vdd = 0;
1686 
1687 	host->ios.power_mode = MMC_POWER_OFF;
1688 	/* Set initial state and call mmc_set_ios */
1689 	mmc_set_initial_state(host);
1690 
1691 	/*
1692 	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1693 	 * XO-1.5, require a short delay after poweroff before the card
1694 	 * can be successfully turned on again.
1695 	 */
1696 	mmc_delay(1);
1697 }
1698 
1699 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1700 {
1701 	mmc_power_off(host);
1702 	/* Wait at least 1 ms according to SD spec */
1703 	mmc_delay(1);
1704 	mmc_power_up(host, ocr);
1705 }
1706 
1707 /*
1708  * Cleanup when the last reference to the bus operator is dropped.
1709  */
1710 static void __mmc_release_bus(struct mmc_host *host)
1711 {
1712 	WARN_ON(!host->bus_dead);
1713 
1714 	host->bus_ops = NULL;
1715 }
1716 
1717 /*
1718  * Increase reference count of bus operator
1719  */
1720 static inline void mmc_bus_get(struct mmc_host *host)
1721 {
1722 	unsigned long flags;
1723 
1724 	spin_lock_irqsave(&host->lock, flags);
1725 	host->bus_refs++;
1726 	spin_unlock_irqrestore(&host->lock, flags);
1727 }
1728 
1729 /*
1730  * Decrease reference count of bus operator and free it if
1731  * it is the last reference.
1732  */
1733 static inline void mmc_bus_put(struct mmc_host *host)
1734 {
1735 	unsigned long flags;
1736 
1737 	spin_lock_irqsave(&host->lock, flags);
1738 	host->bus_refs--;
1739 	if ((host->bus_refs == 0) && host->bus_ops)
1740 		__mmc_release_bus(host);
1741 	spin_unlock_irqrestore(&host->lock, flags);
1742 }
1743 
1744 /*
1745  * Assign a mmc bus handler to a host. Only one bus handler may control a
1746  * host at any given time.
1747  */
1748 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1749 {
1750 	unsigned long flags;
1751 
1752 	WARN_ON(!host->claimed);
1753 
1754 	spin_lock_irqsave(&host->lock, flags);
1755 
1756 	WARN_ON(host->bus_ops);
1757 	WARN_ON(host->bus_refs);
1758 
1759 	host->bus_ops = ops;
1760 	host->bus_refs = 1;
1761 	host->bus_dead = 0;
1762 
1763 	spin_unlock_irqrestore(&host->lock, flags);
1764 }
1765 
1766 /*
1767  * Remove the current bus handler from a host.
1768  */
1769 void mmc_detach_bus(struct mmc_host *host)
1770 {
1771 	unsigned long flags;
1772 
1773 	WARN_ON(!host->claimed);
1774 	WARN_ON(!host->bus_ops);
1775 
1776 	spin_lock_irqsave(&host->lock, flags);
1777 
1778 	host->bus_dead = 1;
1779 
1780 	spin_unlock_irqrestore(&host->lock, flags);
1781 
1782 	mmc_bus_put(host);
1783 }
1784 
1785 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1786 				bool cd_irq)
1787 {
1788 	/*
1789 	 * If the device is configured as wakeup, we prevent a new sleep for
1790 	 * 5 s to give provision for user space to consume the event.
1791 	 */
1792 	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1793 		device_can_wakeup(mmc_dev(host)))
1794 		pm_wakeup_event(mmc_dev(host), 5000);
1795 
1796 	host->detect_change = 1;
1797 	mmc_schedule_delayed_work(&host->detect, delay);
1798 }
1799 
1800 /**
1801  *	mmc_detect_change - process change of state on a MMC socket
1802  *	@host: host which changed state.
1803  *	@delay: optional delay to wait before detection (jiffies)
1804  *
1805  *	MMC drivers should call this when they detect a card has been
1806  *	inserted or removed. The MMC layer will confirm that any
1807  *	present card is still functional, and initialize any newly
1808  *	inserted.
1809  */
1810 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1811 {
1812 	_mmc_detect_change(host, delay, true);
1813 }
1814 EXPORT_SYMBOL(mmc_detect_change);
1815 
1816 void mmc_init_erase(struct mmc_card *card)
1817 {
1818 	unsigned int sz;
1819 
1820 	if (is_power_of_2(card->erase_size))
1821 		card->erase_shift = ffs(card->erase_size) - 1;
1822 	else
1823 		card->erase_shift = 0;
1824 
1825 	/*
1826 	 * It is possible to erase an arbitrarily large area of an SD or MMC
1827 	 * card.  That is not desirable because it can take a long time
1828 	 * (minutes) potentially delaying more important I/O, and also the
1829 	 * timeout calculations become increasingly hugely over-estimated.
1830 	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1831 	 * to that size and alignment.
1832 	 *
1833 	 * For SD cards that define Allocation Unit size, limit erases to one
1834 	 * Allocation Unit at a time.
1835 	 * For MMC, have a stab at ai good value and for modern cards it will
1836 	 * end up being 4MiB. Note that if the value is too small, it can end
1837 	 * up taking longer to erase. Also note, erase_size is already set to
1838 	 * High Capacity Erase Size if available when this function is called.
1839 	 */
1840 	if (mmc_card_sd(card) && card->ssr.au) {
1841 		card->pref_erase = card->ssr.au;
1842 		card->erase_shift = ffs(card->ssr.au) - 1;
1843 	} else if (card->erase_size) {
1844 		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1845 		if (sz < 128)
1846 			card->pref_erase = 512 * 1024 / 512;
1847 		else if (sz < 512)
1848 			card->pref_erase = 1024 * 1024 / 512;
1849 		else if (sz < 1024)
1850 			card->pref_erase = 2 * 1024 * 1024 / 512;
1851 		else
1852 			card->pref_erase = 4 * 1024 * 1024 / 512;
1853 		if (card->pref_erase < card->erase_size)
1854 			card->pref_erase = card->erase_size;
1855 		else {
1856 			sz = card->pref_erase % card->erase_size;
1857 			if (sz)
1858 				card->pref_erase += card->erase_size - sz;
1859 		}
1860 	} else
1861 		card->pref_erase = 0;
1862 }
1863 
1864 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1865 				          unsigned int arg, unsigned int qty)
1866 {
1867 	unsigned int erase_timeout;
1868 
1869 	if (arg == MMC_DISCARD_ARG ||
1870 	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1871 		erase_timeout = card->ext_csd.trim_timeout;
1872 	} else if (card->ext_csd.erase_group_def & 1) {
1873 		/* High Capacity Erase Group Size uses HC timeouts */
1874 		if (arg == MMC_TRIM_ARG)
1875 			erase_timeout = card->ext_csd.trim_timeout;
1876 		else
1877 			erase_timeout = card->ext_csd.hc_erase_timeout;
1878 	} else {
1879 		/* CSD Erase Group Size uses write timeout */
1880 		unsigned int mult = (10 << card->csd.r2w_factor);
1881 		unsigned int timeout_clks = card->csd.taac_clks * mult;
1882 		unsigned int timeout_us;
1883 
1884 		/* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1885 		if (card->csd.taac_ns < 1000000)
1886 			timeout_us = (card->csd.taac_ns * mult) / 1000;
1887 		else
1888 			timeout_us = (card->csd.taac_ns / 1000) * mult;
1889 
1890 		/*
1891 		 * ios.clock is only a target.  The real clock rate might be
1892 		 * less but not that much less, so fudge it by multiplying by 2.
1893 		 */
1894 		timeout_clks <<= 1;
1895 		timeout_us += (timeout_clks * 1000) /
1896 			      (card->host->ios.clock / 1000);
1897 
1898 		erase_timeout = timeout_us / 1000;
1899 
1900 		/*
1901 		 * Theoretically, the calculation could underflow so round up
1902 		 * to 1ms in that case.
1903 		 */
1904 		if (!erase_timeout)
1905 			erase_timeout = 1;
1906 	}
1907 
1908 	/* Multiplier for secure operations */
1909 	if (arg & MMC_SECURE_ARGS) {
1910 		if (arg == MMC_SECURE_ERASE_ARG)
1911 			erase_timeout *= card->ext_csd.sec_erase_mult;
1912 		else
1913 			erase_timeout *= card->ext_csd.sec_trim_mult;
1914 	}
1915 
1916 	erase_timeout *= qty;
1917 
1918 	/*
1919 	 * Ensure at least a 1 second timeout for SPI as per
1920 	 * 'mmc_set_data_timeout()'
1921 	 */
1922 	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1923 		erase_timeout = 1000;
1924 
1925 	return erase_timeout;
1926 }
1927 
1928 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1929 					 unsigned int arg,
1930 					 unsigned int qty)
1931 {
1932 	unsigned int erase_timeout;
1933 
1934 	if (card->ssr.erase_timeout) {
1935 		/* Erase timeout specified in SD Status Register (SSR) */
1936 		erase_timeout = card->ssr.erase_timeout * qty +
1937 				card->ssr.erase_offset;
1938 	} else {
1939 		/*
1940 		 * Erase timeout not specified in SD Status Register (SSR) so
1941 		 * use 250ms per write block.
1942 		 */
1943 		erase_timeout = 250 * qty;
1944 	}
1945 
1946 	/* Must not be less than 1 second */
1947 	if (erase_timeout < 1000)
1948 		erase_timeout = 1000;
1949 
1950 	return erase_timeout;
1951 }
1952 
1953 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1954 				      unsigned int arg,
1955 				      unsigned int qty)
1956 {
1957 	if (mmc_card_sd(card))
1958 		return mmc_sd_erase_timeout(card, arg, qty);
1959 	else
1960 		return mmc_mmc_erase_timeout(card, arg, qty);
1961 }
1962 
1963 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1964 			unsigned int to, unsigned int arg)
1965 {
1966 	struct mmc_command cmd = {};
1967 	unsigned int qty = 0, busy_timeout = 0;
1968 	bool use_r1b_resp = false;
1969 	unsigned long timeout;
1970 	int err;
1971 
1972 	mmc_retune_hold(card->host);
1973 
1974 	/*
1975 	 * qty is used to calculate the erase timeout which depends on how many
1976 	 * erase groups (or allocation units in SD terminology) are affected.
1977 	 * We count erasing part of an erase group as one erase group.
1978 	 * For SD, the allocation units are always a power of 2.  For MMC, the
1979 	 * erase group size is almost certainly also power of 2, but it does not
1980 	 * seem to insist on that in the JEDEC standard, so we fall back to
1981 	 * division in that case.  SD may not specify an allocation unit size,
1982 	 * in which case the timeout is based on the number of write blocks.
1983 	 *
1984 	 * Note that the timeout for secure trim 2 will only be correct if the
1985 	 * number of erase groups specified is the same as the total of all
1986 	 * preceding secure trim 1 commands.  Since the power may have been
1987 	 * lost since the secure trim 1 commands occurred, it is generally
1988 	 * impossible to calculate the secure trim 2 timeout correctly.
1989 	 */
1990 	if (card->erase_shift)
1991 		qty += ((to >> card->erase_shift) -
1992 			(from >> card->erase_shift)) + 1;
1993 	else if (mmc_card_sd(card))
1994 		qty += to - from + 1;
1995 	else
1996 		qty += ((to / card->erase_size) -
1997 			(from / card->erase_size)) + 1;
1998 
1999 	if (!mmc_card_blockaddr(card)) {
2000 		from <<= 9;
2001 		to <<= 9;
2002 	}
2003 
2004 	if (mmc_card_sd(card))
2005 		cmd.opcode = SD_ERASE_WR_BLK_START;
2006 	else
2007 		cmd.opcode = MMC_ERASE_GROUP_START;
2008 	cmd.arg = from;
2009 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2010 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2011 	if (err) {
2012 		pr_err("mmc_erase: group start error %d, "
2013 		       "status %#x\n", err, cmd.resp[0]);
2014 		err = -EIO;
2015 		goto out;
2016 	}
2017 
2018 	memset(&cmd, 0, sizeof(struct mmc_command));
2019 	if (mmc_card_sd(card))
2020 		cmd.opcode = SD_ERASE_WR_BLK_END;
2021 	else
2022 		cmd.opcode = MMC_ERASE_GROUP_END;
2023 	cmd.arg = to;
2024 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2025 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2026 	if (err) {
2027 		pr_err("mmc_erase: group end error %d, status %#x\n",
2028 		       err, cmd.resp[0]);
2029 		err = -EIO;
2030 		goto out;
2031 	}
2032 
2033 	memset(&cmd, 0, sizeof(struct mmc_command));
2034 	cmd.opcode = MMC_ERASE;
2035 	cmd.arg = arg;
2036 	busy_timeout = mmc_erase_timeout(card, arg, qty);
2037 	/*
2038 	 * If the host controller supports busy signalling and the timeout for
2039 	 * the erase operation does not exceed the max_busy_timeout, we should
2040 	 * use R1B response. Or we need to prevent the host from doing hw busy
2041 	 * detection, which is done by converting to a R1 response instead.
2042 	 */
2043 	if (card->host->max_busy_timeout &&
2044 	    busy_timeout > card->host->max_busy_timeout) {
2045 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2046 	} else {
2047 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2048 		cmd.busy_timeout = busy_timeout;
2049 		use_r1b_resp = true;
2050 	}
2051 
2052 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2053 	if (err) {
2054 		pr_err("mmc_erase: erase error %d, status %#x\n",
2055 		       err, cmd.resp[0]);
2056 		err = -EIO;
2057 		goto out;
2058 	}
2059 
2060 	if (mmc_host_is_spi(card->host))
2061 		goto out;
2062 
2063 	/*
2064 	 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2065 	 * shall be avoided.
2066 	 */
2067 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2068 		goto out;
2069 
2070 	timeout = jiffies + msecs_to_jiffies(busy_timeout);
2071 	do {
2072 		memset(&cmd, 0, sizeof(struct mmc_command));
2073 		cmd.opcode = MMC_SEND_STATUS;
2074 		cmd.arg = card->rca << 16;
2075 		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2076 		/* Do not retry else we can't see errors */
2077 		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2078 		if (err || (cmd.resp[0] & 0xFDF92000)) {
2079 			pr_err("error %d requesting status %#x\n",
2080 				err, cmd.resp[0]);
2081 			err = -EIO;
2082 			goto out;
2083 		}
2084 
2085 		/* Timeout if the device never becomes ready for data and
2086 		 * never leaves the program state.
2087 		 */
2088 		if (time_after(jiffies, timeout)) {
2089 			pr_err("%s: Card stuck in programming state! %s\n",
2090 				mmc_hostname(card->host), __func__);
2091 			err =  -EIO;
2092 			goto out;
2093 		}
2094 
2095 	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2096 		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2097 out:
2098 	mmc_retune_release(card->host);
2099 	return err;
2100 }
2101 
2102 static unsigned int mmc_align_erase_size(struct mmc_card *card,
2103 					 unsigned int *from,
2104 					 unsigned int *to,
2105 					 unsigned int nr)
2106 {
2107 	unsigned int from_new = *from, nr_new = nr, rem;
2108 
2109 	/*
2110 	 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2111 	 * to align the erase size efficiently.
2112 	 */
2113 	if (is_power_of_2(card->erase_size)) {
2114 		unsigned int temp = from_new;
2115 
2116 		from_new = round_up(temp, card->erase_size);
2117 		rem = from_new - temp;
2118 
2119 		if (nr_new > rem)
2120 			nr_new -= rem;
2121 		else
2122 			return 0;
2123 
2124 		nr_new = round_down(nr_new, card->erase_size);
2125 	} else {
2126 		rem = from_new % card->erase_size;
2127 		if (rem) {
2128 			rem = card->erase_size - rem;
2129 			from_new += rem;
2130 			if (nr_new > rem)
2131 				nr_new -= rem;
2132 			else
2133 				return 0;
2134 		}
2135 
2136 		rem = nr_new % card->erase_size;
2137 		if (rem)
2138 			nr_new -= rem;
2139 	}
2140 
2141 	if (nr_new == 0)
2142 		return 0;
2143 
2144 	*to = from_new + nr_new;
2145 	*from = from_new;
2146 
2147 	return nr_new;
2148 }
2149 
2150 /**
2151  * mmc_erase - erase sectors.
2152  * @card: card to erase
2153  * @from: first sector to erase
2154  * @nr: number of sectors to erase
2155  * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2156  *
2157  * Caller must claim host before calling this function.
2158  */
2159 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2160 	      unsigned int arg)
2161 {
2162 	unsigned int rem, to = from + nr;
2163 	int err;
2164 
2165 	if (!(card->host->caps & MMC_CAP_ERASE) ||
2166 	    !(card->csd.cmdclass & CCC_ERASE))
2167 		return -EOPNOTSUPP;
2168 
2169 	if (!card->erase_size)
2170 		return -EOPNOTSUPP;
2171 
2172 	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2173 		return -EOPNOTSUPP;
2174 
2175 	if ((arg & MMC_SECURE_ARGS) &&
2176 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2177 		return -EOPNOTSUPP;
2178 
2179 	if ((arg & MMC_TRIM_ARGS) &&
2180 	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2181 		return -EOPNOTSUPP;
2182 
2183 	if (arg == MMC_SECURE_ERASE_ARG) {
2184 		if (from % card->erase_size || nr % card->erase_size)
2185 			return -EINVAL;
2186 	}
2187 
2188 	if (arg == MMC_ERASE_ARG)
2189 		nr = mmc_align_erase_size(card, &from, &to, nr);
2190 
2191 	if (nr == 0)
2192 		return 0;
2193 
2194 	if (to <= from)
2195 		return -EINVAL;
2196 
2197 	/* 'from' and 'to' are inclusive */
2198 	to -= 1;
2199 
2200 	/*
2201 	 * Special case where only one erase-group fits in the timeout budget:
2202 	 * If the region crosses an erase-group boundary on this particular
2203 	 * case, we will be trimming more than one erase-group which, does not
2204 	 * fit in the timeout budget of the controller, so we need to split it
2205 	 * and call mmc_do_erase() twice if necessary. This special case is
2206 	 * identified by the card->eg_boundary flag.
2207 	 */
2208 	rem = card->erase_size - (from % card->erase_size);
2209 	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2210 		err = mmc_do_erase(card, from, from + rem - 1, arg);
2211 		from += rem;
2212 		if ((err) || (to <= from))
2213 			return err;
2214 	}
2215 
2216 	return mmc_do_erase(card, from, to, arg);
2217 }
2218 EXPORT_SYMBOL(mmc_erase);
2219 
2220 int mmc_can_erase(struct mmc_card *card)
2221 {
2222 	if ((card->host->caps & MMC_CAP_ERASE) &&
2223 	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2224 		return 1;
2225 	return 0;
2226 }
2227 EXPORT_SYMBOL(mmc_can_erase);
2228 
2229 int mmc_can_trim(struct mmc_card *card)
2230 {
2231 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2232 	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2233 		return 1;
2234 	return 0;
2235 }
2236 EXPORT_SYMBOL(mmc_can_trim);
2237 
2238 int mmc_can_discard(struct mmc_card *card)
2239 {
2240 	/*
2241 	 * As there's no way to detect the discard support bit at v4.5
2242 	 * use the s/w feature support filed.
2243 	 */
2244 	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2245 		return 1;
2246 	return 0;
2247 }
2248 EXPORT_SYMBOL(mmc_can_discard);
2249 
2250 int mmc_can_sanitize(struct mmc_card *card)
2251 {
2252 	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2253 		return 0;
2254 	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2255 		return 1;
2256 	return 0;
2257 }
2258 EXPORT_SYMBOL(mmc_can_sanitize);
2259 
2260 int mmc_can_secure_erase_trim(struct mmc_card *card)
2261 {
2262 	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2263 	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2264 		return 1;
2265 	return 0;
2266 }
2267 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2268 
2269 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2270 			    unsigned int nr)
2271 {
2272 	if (!card->erase_size)
2273 		return 0;
2274 	if (from % card->erase_size || nr % card->erase_size)
2275 		return 0;
2276 	return 1;
2277 }
2278 EXPORT_SYMBOL(mmc_erase_group_aligned);
2279 
2280 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2281 					    unsigned int arg)
2282 {
2283 	struct mmc_host *host = card->host;
2284 	unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2285 	unsigned int last_timeout = 0;
2286 	unsigned int max_busy_timeout = host->max_busy_timeout ?
2287 			host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2288 
2289 	if (card->erase_shift) {
2290 		max_qty = UINT_MAX >> card->erase_shift;
2291 		min_qty = card->pref_erase >> card->erase_shift;
2292 	} else if (mmc_card_sd(card)) {
2293 		max_qty = UINT_MAX;
2294 		min_qty = card->pref_erase;
2295 	} else {
2296 		max_qty = UINT_MAX / card->erase_size;
2297 		min_qty = card->pref_erase / card->erase_size;
2298 	}
2299 
2300 	/*
2301 	 * We should not only use 'host->max_busy_timeout' as the limitation
2302 	 * when deciding the max discard sectors. We should set a balance value
2303 	 * to improve the erase speed, and it can not get too long timeout at
2304 	 * the same time.
2305 	 *
2306 	 * Here we set 'card->pref_erase' as the minimal discard sectors no
2307 	 * matter what size of 'host->max_busy_timeout', but if the
2308 	 * 'host->max_busy_timeout' is large enough for more discard sectors,
2309 	 * then we can continue to increase the max discard sectors until we
2310 	 * get a balance value. In cases when the 'host->max_busy_timeout'
2311 	 * isn't specified, use the default max erase timeout.
2312 	 */
2313 	do {
2314 		y = 0;
2315 		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2316 			timeout = mmc_erase_timeout(card, arg, qty + x);
2317 
2318 			if (qty + x > min_qty && timeout > max_busy_timeout)
2319 				break;
2320 
2321 			if (timeout < last_timeout)
2322 				break;
2323 			last_timeout = timeout;
2324 			y = x;
2325 		}
2326 		qty += y;
2327 	} while (y);
2328 
2329 	if (!qty)
2330 		return 0;
2331 
2332 	/*
2333 	 * When specifying a sector range to trim, chances are we might cross
2334 	 * an erase-group boundary even if the amount of sectors is less than
2335 	 * one erase-group.
2336 	 * If we can only fit one erase-group in the controller timeout budget,
2337 	 * we have to care that erase-group boundaries are not crossed by a
2338 	 * single trim operation. We flag that special case with "eg_boundary".
2339 	 * In all other cases we can just decrement qty and pretend that we
2340 	 * always touch (qty + 1) erase-groups as a simple optimization.
2341 	 */
2342 	if (qty == 1)
2343 		card->eg_boundary = 1;
2344 	else
2345 		qty--;
2346 
2347 	/* Convert qty to sectors */
2348 	if (card->erase_shift)
2349 		max_discard = qty << card->erase_shift;
2350 	else if (mmc_card_sd(card))
2351 		max_discard = qty + 1;
2352 	else
2353 		max_discard = qty * card->erase_size;
2354 
2355 	return max_discard;
2356 }
2357 
2358 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2359 {
2360 	struct mmc_host *host = card->host;
2361 	unsigned int max_discard, max_trim;
2362 
2363 	/*
2364 	 * Without erase_group_def set, MMC erase timeout depends on clock
2365 	 * frequence which can change.  In that case, the best choice is
2366 	 * just the preferred erase size.
2367 	 */
2368 	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2369 		return card->pref_erase;
2370 
2371 	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2372 	if (max_discard && mmc_can_trim(card)) {
2373 		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2374 		if (max_trim < max_discard)
2375 			max_discard = max_trim;
2376 	} else if (max_discard < card->erase_size) {
2377 		max_discard = 0;
2378 	}
2379 	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2380 		mmc_hostname(host), max_discard, host->max_busy_timeout ?
2381 		host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2382 	return max_discard;
2383 }
2384 EXPORT_SYMBOL(mmc_calc_max_discard);
2385 
2386 bool mmc_card_is_blockaddr(struct mmc_card *card)
2387 {
2388 	return card ? mmc_card_blockaddr(card) : false;
2389 }
2390 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2391 
2392 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2393 {
2394 	struct mmc_command cmd = {};
2395 
2396 	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2397 	    mmc_card_hs400(card) || mmc_card_hs400es(card))
2398 		return 0;
2399 
2400 	cmd.opcode = MMC_SET_BLOCKLEN;
2401 	cmd.arg = blocklen;
2402 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2403 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2404 }
2405 EXPORT_SYMBOL(mmc_set_blocklen);
2406 
2407 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2408 			bool is_rel_write)
2409 {
2410 	struct mmc_command cmd = {};
2411 
2412 	cmd.opcode = MMC_SET_BLOCK_COUNT;
2413 	cmd.arg = blockcount & 0x0000FFFF;
2414 	if (is_rel_write)
2415 		cmd.arg |= 1 << 31;
2416 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2417 	return mmc_wait_for_cmd(card->host, &cmd, 5);
2418 }
2419 EXPORT_SYMBOL(mmc_set_blockcount);
2420 
2421 static void mmc_hw_reset_for_init(struct mmc_host *host)
2422 {
2423 	mmc_pwrseq_reset(host);
2424 
2425 	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2426 		return;
2427 	host->ops->hw_reset(host);
2428 }
2429 
2430 int mmc_hw_reset(struct mmc_host *host)
2431 {
2432 	int ret;
2433 
2434 	if (!host->card)
2435 		return -EINVAL;
2436 
2437 	mmc_bus_get(host);
2438 	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2439 		mmc_bus_put(host);
2440 		return -EOPNOTSUPP;
2441 	}
2442 
2443 	ret = host->bus_ops->reset(host);
2444 	mmc_bus_put(host);
2445 
2446 	if (ret)
2447 		pr_warn("%s: tried to reset card, got error %d\n",
2448 			mmc_hostname(host), ret);
2449 
2450 	return ret;
2451 }
2452 EXPORT_SYMBOL(mmc_hw_reset);
2453 
2454 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2455 {
2456 	host->f_init = freq;
2457 
2458 	pr_debug("%s: %s: trying to init card at %u Hz\n",
2459 		mmc_hostname(host), __func__, host->f_init);
2460 
2461 	mmc_power_up(host, host->ocr_avail);
2462 
2463 	/*
2464 	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2465 	 * do a hardware reset if possible.
2466 	 */
2467 	mmc_hw_reset_for_init(host);
2468 
2469 	/*
2470 	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2471 	 * if the card is being re-initialized, just send it.  CMD52
2472 	 * should be ignored by SD/eMMC cards.
2473 	 * Skip it if we already know that we do not support SDIO commands
2474 	 */
2475 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2476 		sdio_reset(host);
2477 
2478 	mmc_go_idle(host);
2479 
2480 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2481 		mmc_send_if_cond(host, host->ocr_avail);
2482 
2483 	/* Order's important: probe SDIO, then SD, then MMC */
2484 	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2485 		if (!mmc_attach_sdio(host))
2486 			return 0;
2487 
2488 	if (!(host->caps2 & MMC_CAP2_NO_SD))
2489 		if (!mmc_attach_sd(host))
2490 			return 0;
2491 
2492 	if (!(host->caps2 & MMC_CAP2_NO_MMC))
2493 		if (!mmc_attach_mmc(host))
2494 			return 0;
2495 
2496 	mmc_power_off(host);
2497 	return -EIO;
2498 }
2499 
2500 int _mmc_detect_card_removed(struct mmc_host *host)
2501 {
2502 	int ret;
2503 
2504 	if (!host->card || mmc_card_removed(host->card))
2505 		return 1;
2506 
2507 	ret = host->bus_ops->alive(host);
2508 
2509 	/*
2510 	 * Card detect status and alive check may be out of sync if card is
2511 	 * removed slowly, when card detect switch changes while card/slot
2512 	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2513 	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2514 	 * detect work 200ms later for this case.
2515 	 */
2516 	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2517 		mmc_detect_change(host, msecs_to_jiffies(200));
2518 		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2519 	}
2520 
2521 	if (ret) {
2522 		mmc_card_set_removed(host->card);
2523 		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2524 	}
2525 
2526 	return ret;
2527 }
2528 
2529 int mmc_detect_card_removed(struct mmc_host *host)
2530 {
2531 	struct mmc_card *card = host->card;
2532 	int ret;
2533 
2534 	WARN_ON(!host->claimed);
2535 
2536 	if (!card)
2537 		return 1;
2538 
2539 	if (!mmc_card_is_removable(host))
2540 		return 0;
2541 
2542 	ret = mmc_card_removed(card);
2543 	/*
2544 	 * The card will be considered unchanged unless we have been asked to
2545 	 * detect a change or host requires polling to provide card detection.
2546 	 */
2547 	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2548 		return ret;
2549 
2550 	host->detect_change = 0;
2551 	if (!ret) {
2552 		ret = _mmc_detect_card_removed(host);
2553 		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2554 			/*
2555 			 * Schedule a detect work as soon as possible to let a
2556 			 * rescan handle the card removal.
2557 			 */
2558 			cancel_delayed_work(&host->detect);
2559 			_mmc_detect_change(host, 0, false);
2560 		}
2561 	}
2562 
2563 	return ret;
2564 }
2565 EXPORT_SYMBOL(mmc_detect_card_removed);
2566 
2567 void mmc_rescan(struct work_struct *work)
2568 {
2569 	struct mmc_host *host =
2570 		container_of(work, struct mmc_host, detect.work);
2571 	int i;
2572 
2573 	if (host->rescan_disable)
2574 		return;
2575 
2576 	/* If there is a non-removable card registered, only scan once */
2577 	if (!mmc_card_is_removable(host) && host->rescan_entered)
2578 		return;
2579 	host->rescan_entered = 1;
2580 
2581 	if (host->trigger_card_event && host->ops->card_event) {
2582 		mmc_claim_host(host);
2583 		host->ops->card_event(host);
2584 		mmc_release_host(host);
2585 		host->trigger_card_event = false;
2586 	}
2587 
2588 	mmc_bus_get(host);
2589 
2590 	/*
2591 	 * if there is a _removable_ card registered, check whether it is
2592 	 * still present
2593 	 */
2594 	if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2595 		host->bus_ops->detect(host);
2596 
2597 	host->detect_change = 0;
2598 
2599 	/*
2600 	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2601 	 * the card is no longer present.
2602 	 */
2603 	mmc_bus_put(host);
2604 	mmc_bus_get(host);
2605 
2606 	/* if there still is a card present, stop here */
2607 	if (host->bus_ops != NULL) {
2608 		mmc_bus_put(host);
2609 		goto out;
2610 	}
2611 
2612 	/*
2613 	 * Only we can add a new handler, so it's safe to
2614 	 * release the lock here.
2615 	 */
2616 	mmc_bus_put(host);
2617 
2618 	mmc_claim_host(host);
2619 	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2620 			host->ops->get_cd(host) == 0) {
2621 		mmc_power_off(host);
2622 		mmc_release_host(host);
2623 		goto out;
2624 	}
2625 
2626 	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2627 		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2628 			break;
2629 		if (freqs[i] <= host->f_min)
2630 			break;
2631 	}
2632 	mmc_release_host(host);
2633 
2634  out:
2635 	if (host->caps & MMC_CAP_NEEDS_POLL)
2636 		mmc_schedule_delayed_work(&host->detect, HZ);
2637 }
2638 
2639 void mmc_start_host(struct mmc_host *host)
2640 {
2641 	host->f_init = max(freqs[0], host->f_min);
2642 	host->rescan_disable = 0;
2643 	host->ios.power_mode = MMC_POWER_UNDEFINED;
2644 
2645 	if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2646 		mmc_claim_host(host);
2647 		mmc_power_up(host, host->ocr_avail);
2648 		mmc_release_host(host);
2649 	}
2650 
2651 	mmc_gpiod_request_cd_irq(host);
2652 	_mmc_detect_change(host, 0, false);
2653 }
2654 
2655 void mmc_stop_host(struct mmc_host *host)
2656 {
2657 	if (host->slot.cd_irq >= 0) {
2658 		mmc_gpio_set_cd_wake(host, false);
2659 		disable_irq(host->slot.cd_irq);
2660 	}
2661 
2662 	host->rescan_disable = 1;
2663 	cancel_delayed_work_sync(&host->detect);
2664 
2665 	/* clear pm flags now and let card drivers set them as needed */
2666 	host->pm_flags = 0;
2667 
2668 	mmc_bus_get(host);
2669 	if (host->bus_ops && !host->bus_dead) {
2670 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2671 		host->bus_ops->remove(host);
2672 		mmc_claim_host(host);
2673 		mmc_detach_bus(host);
2674 		mmc_power_off(host);
2675 		mmc_release_host(host);
2676 		mmc_bus_put(host);
2677 		return;
2678 	}
2679 	mmc_bus_put(host);
2680 
2681 	mmc_claim_host(host);
2682 	mmc_power_off(host);
2683 	mmc_release_host(host);
2684 }
2685 
2686 int mmc_power_save_host(struct mmc_host *host)
2687 {
2688 	int ret = 0;
2689 
2690 	pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__);
2691 
2692 	mmc_bus_get(host);
2693 
2694 	if (!host->bus_ops || host->bus_dead) {
2695 		mmc_bus_put(host);
2696 		return -EINVAL;
2697 	}
2698 
2699 	if (host->bus_ops->power_save)
2700 		ret = host->bus_ops->power_save(host);
2701 
2702 	mmc_bus_put(host);
2703 
2704 	mmc_power_off(host);
2705 
2706 	return ret;
2707 }
2708 EXPORT_SYMBOL(mmc_power_save_host);
2709 
2710 int mmc_power_restore_host(struct mmc_host *host)
2711 {
2712 	int ret;
2713 
2714 	pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__);
2715 
2716 	mmc_bus_get(host);
2717 
2718 	if (!host->bus_ops || host->bus_dead) {
2719 		mmc_bus_put(host);
2720 		return -EINVAL;
2721 	}
2722 
2723 	mmc_power_up(host, host->card->ocr);
2724 	ret = host->bus_ops->power_restore(host);
2725 
2726 	mmc_bus_put(host);
2727 
2728 	return ret;
2729 }
2730 EXPORT_SYMBOL(mmc_power_restore_host);
2731 
2732 #ifdef CONFIG_PM_SLEEP
2733 /* Do the card removal on suspend if card is assumed removeable
2734  * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2735    to sync the card.
2736 */
2737 static int mmc_pm_notify(struct notifier_block *notify_block,
2738 			unsigned long mode, void *unused)
2739 {
2740 	struct mmc_host *host = container_of(
2741 		notify_block, struct mmc_host, pm_notify);
2742 	unsigned long flags;
2743 	int err = 0;
2744 
2745 	switch (mode) {
2746 	case PM_HIBERNATION_PREPARE:
2747 	case PM_SUSPEND_PREPARE:
2748 	case PM_RESTORE_PREPARE:
2749 		spin_lock_irqsave(&host->lock, flags);
2750 		host->rescan_disable = 1;
2751 		spin_unlock_irqrestore(&host->lock, flags);
2752 		cancel_delayed_work_sync(&host->detect);
2753 
2754 		if (!host->bus_ops)
2755 			break;
2756 
2757 		/* Validate prerequisites for suspend */
2758 		if (host->bus_ops->pre_suspend)
2759 			err = host->bus_ops->pre_suspend(host);
2760 		if (!err)
2761 			break;
2762 
2763 		if (!mmc_card_is_removable(host)) {
2764 			dev_warn(mmc_dev(host),
2765 				 "pre_suspend failed for non-removable host: "
2766 				 "%d\n", err);
2767 			/* Avoid removing non-removable hosts */
2768 			break;
2769 		}
2770 
2771 		/* Calling bus_ops->remove() with a claimed host can deadlock */
2772 		host->bus_ops->remove(host);
2773 		mmc_claim_host(host);
2774 		mmc_detach_bus(host);
2775 		mmc_power_off(host);
2776 		mmc_release_host(host);
2777 		host->pm_flags = 0;
2778 		break;
2779 
2780 	case PM_POST_SUSPEND:
2781 	case PM_POST_HIBERNATION:
2782 	case PM_POST_RESTORE:
2783 
2784 		spin_lock_irqsave(&host->lock, flags);
2785 		host->rescan_disable = 0;
2786 		spin_unlock_irqrestore(&host->lock, flags);
2787 		_mmc_detect_change(host, 0, false);
2788 
2789 	}
2790 
2791 	return 0;
2792 }
2793 
2794 void mmc_register_pm_notifier(struct mmc_host *host)
2795 {
2796 	host->pm_notify.notifier_call = mmc_pm_notify;
2797 	register_pm_notifier(&host->pm_notify);
2798 }
2799 
2800 void mmc_unregister_pm_notifier(struct mmc_host *host)
2801 {
2802 	unregister_pm_notifier(&host->pm_notify);
2803 }
2804 #endif
2805 
2806 static int __init mmc_init(void)
2807 {
2808 	int ret;
2809 
2810 	ret = mmc_register_bus();
2811 	if (ret)
2812 		return ret;
2813 
2814 	ret = mmc_register_host_class();
2815 	if (ret)
2816 		goto unregister_bus;
2817 
2818 	ret = sdio_register_bus();
2819 	if (ret)
2820 		goto unregister_host_class;
2821 
2822 	return 0;
2823 
2824 unregister_host_class:
2825 	mmc_unregister_host_class();
2826 unregister_bus:
2827 	mmc_unregister_bus();
2828 	return ret;
2829 }
2830 
2831 static void __exit mmc_exit(void)
2832 {
2833 	sdio_unregister_bus();
2834 	mmc_unregister_host_class();
2835 	mmc_unregister_bus();
2836 }
2837 
2838 subsys_initcall(mmc_init);
2839 module_exit(mmc_exit);
2840 
2841 MODULE_LICENSE("GPL");
2842