1 /* 2 * linux/drivers/mmc/core/core.c 3 * 4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/completion.h> 17 #include <linux/device.h> 18 #include <linux/delay.h> 19 #include <linux/pagemap.h> 20 #include <linux/err.h> 21 #include <linux/leds.h> 22 #include <linux/scatterlist.h> 23 #include <linux/log2.h> 24 #include <linux/regulator/consumer.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/suspend.h> 28 #include <linux/fault-inject.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/of.h> 32 33 #include <linux/mmc/card.h> 34 #include <linux/mmc/host.h> 35 #include <linux/mmc/mmc.h> 36 #include <linux/mmc/sd.h> 37 #include <linux/mmc/slot-gpio.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/mmc.h> 41 42 #include "core.h" 43 #include "card.h" 44 #include "bus.h" 45 #include "host.h" 46 #include "sdio_bus.h" 47 #include "pwrseq.h" 48 49 #include "mmc_ops.h" 50 #include "sd_ops.h" 51 #include "sdio_ops.h" 52 53 /* If the device is not responding */ 54 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 55 56 /* The max erase timeout, used when host->max_busy_timeout isn't specified */ 57 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ 58 59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 60 61 /* 62 * Enabling software CRCs on the data blocks can be a significant (30%) 63 * performance cost, and for other reasons may not always be desired. 64 * So we allow it it to be disabled. 65 */ 66 bool use_spi_crc = 1; 67 module_param(use_spi_crc, bool, 0); 68 69 static int mmc_schedule_delayed_work(struct delayed_work *work, 70 unsigned long delay) 71 { 72 /* 73 * We use the system_freezable_wq, because of two reasons. 74 * First, it allows several works (not the same work item) to be 75 * executed simultaneously. Second, the queue becomes frozen when 76 * userspace becomes frozen during system PM. 77 */ 78 return queue_delayed_work(system_freezable_wq, work, delay); 79 } 80 81 #ifdef CONFIG_FAIL_MMC_REQUEST 82 83 /* 84 * Internal function. Inject random data errors. 85 * If mmc_data is NULL no errors are injected. 86 */ 87 static void mmc_should_fail_request(struct mmc_host *host, 88 struct mmc_request *mrq) 89 { 90 struct mmc_command *cmd = mrq->cmd; 91 struct mmc_data *data = mrq->data; 92 static const int data_errors[] = { 93 -ETIMEDOUT, 94 -EILSEQ, 95 -EIO, 96 }; 97 98 if (!data) 99 return; 100 101 if (cmd->error || data->error || 102 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 103 return; 104 105 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 106 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 107 } 108 109 #else /* CONFIG_FAIL_MMC_REQUEST */ 110 111 static inline void mmc_should_fail_request(struct mmc_host *host, 112 struct mmc_request *mrq) 113 { 114 } 115 116 #endif /* CONFIG_FAIL_MMC_REQUEST */ 117 118 static inline void mmc_complete_cmd(struct mmc_request *mrq) 119 { 120 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) 121 complete_all(&mrq->cmd_completion); 122 } 123 124 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) 125 { 126 if (!mrq->cap_cmd_during_tfr) 127 return; 128 129 mmc_complete_cmd(mrq); 130 131 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", 132 mmc_hostname(host), mrq->cmd->opcode); 133 } 134 EXPORT_SYMBOL(mmc_command_done); 135 136 /** 137 * mmc_request_done - finish processing an MMC request 138 * @host: MMC host which completed request 139 * @mrq: MMC request which request 140 * 141 * MMC drivers should call this function when they have completed 142 * their processing of a request. 143 */ 144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 145 { 146 struct mmc_command *cmd = mrq->cmd; 147 int err = cmd->error; 148 149 /* Flag re-tuning needed on CRC errors */ 150 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK && 151 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) && 152 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 153 (mrq->data && mrq->data->error == -EILSEQ) || 154 (mrq->stop && mrq->stop->error == -EILSEQ))) 155 mmc_retune_needed(host); 156 157 if (err && cmd->retries && mmc_host_is_spi(host)) { 158 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 159 cmd->retries = 0; 160 } 161 162 if (host->ongoing_mrq == mrq) 163 host->ongoing_mrq = NULL; 164 165 mmc_complete_cmd(mrq); 166 167 trace_mmc_request_done(host, mrq); 168 169 /* 170 * We list various conditions for the command to be considered 171 * properly done: 172 * 173 * - There was no error, OK fine then 174 * - We are not doing some kind of retry 175 * - The card was removed (...so just complete everything no matter 176 * if there are errors or retries) 177 */ 178 if (!err || !cmd->retries || mmc_card_removed(host->card)) { 179 mmc_should_fail_request(host, mrq); 180 181 if (!host->ongoing_mrq) 182 led_trigger_event(host->led, LED_OFF); 183 184 if (mrq->sbc) { 185 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 186 mmc_hostname(host), mrq->sbc->opcode, 187 mrq->sbc->error, 188 mrq->sbc->resp[0], mrq->sbc->resp[1], 189 mrq->sbc->resp[2], mrq->sbc->resp[3]); 190 } 191 192 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 193 mmc_hostname(host), cmd->opcode, err, 194 cmd->resp[0], cmd->resp[1], 195 cmd->resp[2], cmd->resp[3]); 196 197 if (mrq->data) { 198 pr_debug("%s: %d bytes transferred: %d\n", 199 mmc_hostname(host), 200 mrq->data->bytes_xfered, mrq->data->error); 201 } 202 203 if (mrq->stop) { 204 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 205 mmc_hostname(host), mrq->stop->opcode, 206 mrq->stop->error, 207 mrq->stop->resp[0], mrq->stop->resp[1], 208 mrq->stop->resp[2], mrq->stop->resp[3]); 209 } 210 } 211 /* 212 * Request starter must handle retries - see 213 * mmc_wait_for_req_done(). 214 */ 215 if (mrq->done) 216 mrq->done(mrq); 217 } 218 219 EXPORT_SYMBOL(mmc_request_done); 220 221 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 222 { 223 int err; 224 225 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 226 err = mmc_retune(host); 227 if (err) { 228 mrq->cmd->error = err; 229 mmc_request_done(host, mrq); 230 return; 231 } 232 233 /* 234 * For sdio rw commands we must wait for card busy otherwise some 235 * sdio devices won't work properly. 236 * And bypass I/O abort, reset and bus suspend operations. 237 */ 238 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) && 239 host->ops->card_busy) { 240 int tries = 500; /* Wait aprox 500ms at maximum */ 241 242 while (host->ops->card_busy(host) && --tries) 243 mmc_delay(1); 244 245 if (tries == 0) { 246 mrq->cmd->error = -EBUSY; 247 mmc_request_done(host, mrq); 248 return; 249 } 250 } 251 252 if (mrq->cap_cmd_during_tfr) { 253 host->ongoing_mrq = mrq; 254 /* 255 * Retry path could come through here without having waiting on 256 * cmd_completion, so ensure it is reinitialised. 257 */ 258 reinit_completion(&mrq->cmd_completion); 259 } 260 261 trace_mmc_request_start(host, mrq); 262 263 if (host->cqe_on) 264 host->cqe_ops->cqe_off(host); 265 266 host->ops->request(host, mrq); 267 } 268 269 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq, 270 bool cqe) 271 { 272 if (mrq->sbc) { 273 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 274 mmc_hostname(host), mrq->sbc->opcode, 275 mrq->sbc->arg, mrq->sbc->flags); 276 } 277 278 if (mrq->cmd) { 279 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n", 280 mmc_hostname(host), cqe ? "CQE direct " : "", 281 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags); 282 } else if (cqe) { 283 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n", 284 mmc_hostname(host), mrq->tag, mrq->data->blk_addr); 285 } 286 287 if (mrq->data) { 288 pr_debug("%s: blksz %d blocks %d flags %08x " 289 "tsac %d ms nsac %d\n", 290 mmc_hostname(host), mrq->data->blksz, 291 mrq->data->blocks, mrq->data->flags, 292 mrq->data->timeout_ns / 1000000, 293 mrq->data->timeout_clks); 294 } 295 296 if (mrq->stop) { 297 pr_debug("%s: CMD%u arg %08x flags %08x\n", 298 mmc_hostname(host), mrq->stop->opcode, 299 mrq->stop->arg, mrq->stop->flags); 300 } 301 } 302 303 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq) 304 { 305 unsigned int i, sz = 0; 306 struct scatterlist *sg; 307 308 if (mrq->cmd) { 309 mrq->cmd->error = 0; 310 mrq->cmd->mrq = mrq; 311 mrq->cmd->data = mrq->data; 312 } 313 if (mrq->sbc) { 314 mrq->sbc->error = 0; 315 mrq->sbc->mrq = mrq; 316 } 317 if (mrq->data) { 318 if (mrq->data->blksz > host->max_blk_size || 319 mrq->data->blocks > host->max_blk_count || 320 mrq->data->blocks * mrq->data->blksz > host->max_req_size) 321 return -EINVAL; 322 323 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 324 sz += sg->length; 325 if (sz != mrq->data->blocks * mrq->data->blksz) 326 return -EINVAL; 327 328 mrq->data->error = 0; 329 mrq->data->mrq = mrq; 330 if (mrq->stop) { 331 mrq->data->stop = mrq->stop; 332 mrq->stop->error = 0; 333 mrq->stop->mrq = mrq; 334 } 335 } 336 337 return 0; 338 } 339 340 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 341 { 342 int err; 343 344 init_completion(&mrq->cmd_completion); 345 346 mmc_retune_hold(host); 347 348 if (mmc_card_removed(host->card)) 349 return -ENOMEDIUM; 350 351 mmc_mrq_pr_debug(host, mrq, false); 352 353 WARN_ON(!host->claimed); 354 355 err = mmc_mrq_prep(host, mrq); 356 if (err) 357 return err; 358 359 led_trigger_event(host->led, LED_FULL); 360 __mmc_start_request(host, mrq); 361 362 return 0; 363 } 364 EXPORT_SYMBOL(mmc_start_request); 365 366 static void mmc_wait_done(struct mmc_request *mrq) 367 { 368 complete(&mrq->completion); 369 } 370 371 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) 372 { 373 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); 374 375 /* 376 * If there is an ongoing transfer, wait for the command line to become 377 * available. 378 */ 379 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) 380 wait_for_completion(&ongoing_mrq->cmd_completion); 381 } 382 383 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 384 { 385 int err; 386 387 mmc_wait_ongoing_tfr_cmd(host); 388 389 init_completion(&mrq->completion); 390 mrq->done = mmc_wait_done; 391 392 err = mmc_start_request(host, mrq); 393 if (err) { 394 mrq->cmd->error = err; 395 mmc_complete_cmd(mrq); 396 complete(&mrq->completion); 397 } 398 399 return err; 400 } 401 402 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) 403 { 404 struct mmc_command *cmd; 405 406 while (1) { 407 wait_for_completion(&mrq->completion); 408 409 cmd = mrq->cmd; 410 411 /* 412 * If host has timed out waiting for the sanitize 413 * to complete, card might be still in programming state 414 * so let's try to bring the card out of programming 415 * state. 416 */ 417 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) { 418 if (!mmc_interrupt_hpi(host->card)) { 419 pr_warn("%s: %s: Interrupted sanitize\n", 420 mmc_hostname(host), __func__); 421 cmd->error = 0; 422 break; 423 } else { 424 pr_err("%s: %s: Failed to interrupt sanitize\n", 425 mmc_hostname(host), __func__); 426 } 427 } 428 if (!cmd->error || !cmd->retries || 429 mmc_card_removed(host->card)) 430 break; 431 432 mmc_retune_recheck(host); 433 434 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 435 mmc_hostname(host), cmd->opcode, cmd->error); 436 cmd->retries--; 437 cmd->error = 0; 438 __mmc_start_request(host, mrq); 439 } 440 441 mmc_retune_release(host); 442 } 443 EXPORT_SYMBOL(mmc_wait_for_req_done); 444 445 /* 446 * mmc_cqe_start_req - Start a CQE request. 447 * @host: MMC host to start the request 448 * @mrq: request to start 449 * 450 * Start the request, re-tuning if needed and it is possible. Returns an error 451 * code if the request fails to start or -EBUSY if CQE is busy. 452 */ 453 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 454 { 455 int err; 456 457 /* 458 * CQE cannot process re-tuning commands. Caller must hold retuning 459 * while CQE is in use. Re-tuning can happen here only when CQE has no 460 * active requests i.e. this is the first. Note, re-tuning will call 461 * ->cqe_off(). 462 */ 463 err = mmc_retune(host); 464 if (err) 465 goto out_err; 466 467 mrq->host = host; 468 469 mmc_mrq_pr_debug(host, mrq, true); 470 471 err = mmc_mrq_prep(host, mrq); 472 if (err) 473 goto out_err; 474 475 err = host->cqe_ops->cqe_request(host, mrq); 476 if (err) 477 goto out_err; 478 479 trace_mmc_request_start(host, mrq); 480 481 return 0; 482 483 out_err: 484 if (mrq->cmd) { 485 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n", 486 mmc_hostname(host), mrq->cmd->opcode, err); 487 } else { 488 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n", 489 mmc_hostname(host), mrq->tag, err); 490 } 491 return err; 492 } 493 EXPORT_SYMBOL(mmc_cqe_start_req); 494 495 /** 496 * mmc_cqe_request_done - CQE has finished processing an MMC request 497 * @host: MMC host which completed request 498 * @mrq: MMC request which completed 499 * 500 * CQE drivers should call this function when they have completed 501 * their processing of a request. 502 */ 503 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq) 504 { 505 mmc_should_fail_request(host, mrq); 506 507 /* Flag re-tuning needed on CRC errors */ 508 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) || 509 (mrq->data && mrq->data->error == -EILSEQ)) 510 mmc_retune_needed(host); 511 512 trace_mmc_request_done(host, mrq); 513 514 if (mrq->cmd) { 515 pr_debug("%s: CQE req done (direct CMD%u): %d\n", 516 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error); 517 } else { 518 pr_debug("%s: CQE transfer done tag %d\n", 519 mmc_hostname(host), mrq->tag); 520 } 521 522 if (mrq->data) { 523 pr_debug("%s: %d bytes transferred: %d\n", 524 mmc_hostname(host), 525 mrq->data->bytes_xfered, mrq->data->error); 526 } 527 528 mrq->done(mrq); 529 } 530 EXPORT_SYMBOL(mmc_cqe_request_done); 531 532 /** 533 * mmc_cqe_post_req - CQE post process of a completed MMC request 534 * @host: MMC host 535 * @mrq: MMC request to be processed 536 */ 537 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq) 538 { 539 if (host->cqe_ops->cqe_post_req) 540 host->cqe_ops->cqe_post_req(host, mrq); 541 } 542 EXPORT_SYMBOL(mmc_cqe_post_req); 543 544 /* Arbitrary 1 second timeout */ 545 #define MMC_CQE_RECOVERY_TIMEOUT 1000 546 547 /* 548 * mmc_cqe_recovery - Recover from CQE errors. 549 * @host: MMC host to recover 550 * 551 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in 552 * in eMMC, and discarding the queue in CQE. CQE must call 553 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC 554 * fails to discard its queue. 555 */ 556 int mmc_cqe_recovery(struct mmc_host *host) 557 { 558 struct mmc_command cmd; 559 int err; 560 561 mmc_retune_hold_now(host); 562 563 /* 564 * Recovery is expected seldom, if at all, but it reduces performance, 565 * so make sure it is not completely silent. 566 */ 567 pr_warn("%s: running CQE recovery\n", mmc_hostname(host)); 568 569 host->cqe_ops->cqe_recovery_start(host); 570 571 memset(&cmd, 0, sizeof(cmd)); 572 cmd.opcode = MMC_STOP_TRANSMISSION, 573 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC, 574 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ 575 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT, 576 mmc_wait_for_cmd(host, &cmd, 0); 577 578 memset(&cmd, 0, sizeof(cmd)); 579 cmd.opcode = MMC_CMDQ_TASK_MGMT; 580 cmd.arg = 1; /* Discard entire queue */ 581 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 582 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ 583 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT, 584 err = mmc_wait_for_cmd(host, &cmd, 0); 585 586 host->cqe_ops->cqe_recovery_finish(host); 587 588 mmc_retune_release(host); 589 590 return err; 591 } 592 EXPORT_SYMBOL(mmc_cqe_recovery); 593 594 /** 595 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done 596 * @host: MMC host 597 * @mrq: MMC request 598 * 599 * mmc_is_req_done() is used with requests that have 600 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after 601 * starting a request and before waiting for it to complete. That is, 602 * either in between calls to mmc_start_req(), or after mmc_wait_for_req() 603 * and before mmc_wait_for_req_done(). If it is called at other times the 604 * result is not meaningful. 605 */ 606 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) 607 { 608 return completion_done(&mrq->completion); 609 } 610 EXPORT_SYMBOL(mmc_is_req_done); 611 612 /** 613 * mmc_wait_for_req - start a request and wait for completion 614 * @host: MMC host to start command 615 * @mrq: MMC request to start 616 * 617 * Start a new MMC custom command request for a host, and wait 618 * for the command to complete. In the case of 'cap_cmd_during_tfr' 619 * requests, the transfer is ongoing and the caller can issue further 620 * commands that do not use the data lines, and then wait by calling 621 * mmc_wait_for_req_done(). 622 * Does not attempt to parse the response. 623 */ 624 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 625 { 626 __mmc_start_req(host, mrq); 627 628 if (!mrq->cap_cmd_during_tfr) 629 mmc_wait_for_req_done(host, mrq); 630 } 631 EXPORT_SYMBOL(mmc_wait_for_req); 632 633 /** 634 * mmc_wait_for_cmd - start a command and wait for completion 635 * @host: MMC host to start command 636 * @cmd: MMC command to start 637 * @retries: maximum number of retries 638 * 639 * Start a new MMC command for a host, and wait for the command 640 * to complete. Return any error that occurred while the command 641 * was executing. Do not attempt to parse the response. 642 */ 643 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 644 { 645 struct mmc_request mrq = {}; 646 647 WARN_ON(!host->claimed); 648 649 memset(cmd->resp, 0, sizeof(cmd->resp)); 650 cmd->retries = retries; 651 652 mrq.cmd = cmd; 653 cmd->data = NULL; 654 655 mmc_wait_for_req(host, &mrq); 656 657 return cmd->error; 658 } 659 660 EXPORT_SYMBOL(mmc_wait_for_cmd); 661 662 /** 663 * mmc_set_data_timeout - set the timeout for a data command 664 * @data: data phase for command 665 * @card: the MMC card associated with the data transfer 666 * 667 * Computes the data timeout parameters according to the 668 * correct algorithm given the card type. 669 */ 670 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 671 { 672 unsigned int mult; 673 674 /* 675 * SDIO cards only define an upper 1 s limit on access. 676 */ 677 if (mmc_card_sdio(card)) { 678 data->timeout_ns = 1000000000; 679 data->timeout_clks = 0; 680 return; 681 } 682 683 /* 684 * SD cards use a 100 multiplier rather than 10 685 */ 686 mult = mmc_card_sd(card) ? 100 : 10; 687 688 /* 689 * Scale up the multiplier (and therefore the timeout) by 690 * the r2w factor for writes. 691 */ 692 if (data->flags & MMC_DATA_WRITE) 693 mult <<= card->csd.r2w_factor; 694 695 data->timeout_ns = card->csd.taac_ns * mult; 696 data->timeout_clks = card->csd.taac_clks * mult; 697 698 /* 699 * SD cards also have an upper limit on the timeout. 700 */ 701 if (mmc_card_sd(card)) { 702 unsigned int timeout_us, limit_us; 703 704 timeout_us = data->timeout_ns / 1000; 705 if (card->host->ios.clock) 706 timeout_us += data->timeout_clks * 1000 / 707 (card->host->ios.clock / 1000); 708 709 if (data->flags & MMC_DATA_WRITE) 710 /* 711 * The MMC spec "It is strongly recommended 712 * for hosts to implement more than 500ms 713 * timeout value even if the card indicates 714 * the 250ms maximum busy length." Even the 715 * previous value of 300ms is known to be 716 * insufficient for some cards. 717 */ 718 limit_us = 3000000; 719 else 720 limit_us = 100000; 721 722 /* 723 * SDHC cards always use these fixed values. 724 */ 725 if (timeout_us > limit_us) { 726 data->timeout_ns = limit_us * 1000; 727 data->timeout_clks = 0; 728 } 729 730 /* assign limit value if invalid */ 731 if (timeout_us == 0) 732 data->timeout_ns = limit_us * 1000; 733 } 734 735 /* 736 * Some cards require longer data read timeout than indicated in CSD. 737 * Address this by setting the read timeout to a "reasonably high" 738 * value. For the cards tested, 600ms has proven enough. If necessary, 739 * this value can be increased if other problematic cards require this. 740 */ 741 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 742 data->timeout_ns = 600000000; 743 data->timeout_clks = 0; 744 } 745 746 /* 747 * Some cards need very high timeouts if driven in SPI mode. 748 * The worst observed timeout was 900ms after writing a 749 * continuous stream of data until the internal logic 750 * overflowed. 751 */ 752 if (mmc_host_is_spi(card->host)) { 753 if (data->flags & MMC_DATA_WRITE) { 754 if (data->timeout_ns < 1000000000) 755 data->timeout_ns = 1000000000; /* 1s */ 756 } else { 757 if (data->timeout_ns < 100000000) 758 data->timeout_ns = 100000000; /* 100ms */ 759 } 760 } 761 } 762 EXPORT_SYMBOL(mmc_set_data_timeout); 763 764 /** 765 * mmc_align_data_size - pads a transfer size to a more optimal value 766 * @card: the MMC card associated with the data transfer 767 * @sz: original transfer size 768 * 769 * Pads the original data size with a number of extra bytes in 770 * order to avoid controller bugs and/or performance hits 771 * (e.g. some controllers revert to PIO for certain sizes). 772 * 773 * Returns the improved size, which might be unmodified. 774 * 775 * Note that this function is only relevant when issuing a 776 * single scatter gather entry. 777 */ 778 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) 779 { 780 /* 781 * FIXME: We don't have a system for the controller to tell 782 * the core about its problems yet, so for now we just 32-bit 783 * align the size. 784 */ 785 sz = ((sz + 3) / 4) * 4; 786 787 return sz; 788 } 789 EXPORT_SYMBOL(mmc_align_data_size); 790 791 /* 792 * Allow claiming an already claimed host if the context is the same or there is 793 * no context but the task is the same. 794 */ 795 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx, 796 struct task_struct *task) 797 { 798 return host->claimer == ctx || 799 (!ctx && task && host->claimer->task == task); 800 } 801 802 static inline void mmc_ctx_set_claimer(struct mmc_host *host, 803 struct mmc_ctx *ctx, 804 struct task_struct *task) 805 { 806 if (!host->claimer) { 807 if (ctx) 808 host->claimer = ctx; 809 else 810 host->claimer = &host->default_ctx; 811 } 812 if (task) 813 host->claimer->task = task; 814 } 815 816 /** 817 * __mmc_claim_host - exclusively claim a host 818 * @host: mmc host to claim 819 * @ctx: context that claims the host or NULL in which case the default 820 * context will be used 821 * @abort: whether or not the operation should be aborted 822 * 823 * Claim a host for a set of operations. If @abort is non null and 824 * dereference a non-zero value then this will return prematurely with 825 * that non-zero value without acquiring the lock. Returns zero 826 * with the lock held otherwise. 827 */ 828 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx, 829 atomic_t *abort) 830 { 831 struct task_struct *task = ctx ? NULL : current; 832 DECLARE_WAITQUEUE(wait, current); 833 unsigned long flags; 834 int stop; 835 bool pm = false; 836 837 might_sleep(); 838 839 add_wait_queue(&host->wq, &wait); 840 spin_lock_irqsave(&host->lock, flags); 841 while (1) { 842 set_current_state(TASK_UNINTERRUPTIBLE); 843 stop = abort ? atomic_read(abort) : 0; 844 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task)) 845 break; 846 spin_unlock_irqrestore(&host->lock, flags); 847 schedule(); 848 spin_lock_irqsave(&host->lock, flags); 849 } 850 set_current_state(TASK_RUNNING); 851 if (!stop) { 852 host->claimed = 1; 853 mmc_ctx_set_claimer(host, ctx, task); 854 host->claim_cnt += 1; 855 if (host->claim_cnt == 1) 856 pm = true; 857 } else 858 wake_up(&host->wq); 859 spin_unlock_irqrestore(&host->lock, flags); 860 remove_wait_queue(&host->wq, &wait); 861 862 if (pm) 863 pm_runtime_get_sync(mmc_dev(host)); 864 865 return stop; 866 } 867 EXPORT_SYMBOL(__mmc_claim_host); 868 869 /** 870 * mmc_release_host - release a host 871 * @host: mmc host to release 872 * 873 * Release a MMC host, allowing others to claim the host 874 * for their operations. 875 */ 876 void mmc_release_host(struct mmc_host *host) 877 { 878 unsigned long flags; 879 880 WARN_ON(!host->claimed); 881 882 spin_lock_irqsave(&host->lock, flags); 883 if (--host->claim_cnt) { 884 /* Release for nested claim */ 885 spin_unlock_irqrestore(&host->lock, flags); 886 } else { 887 host->claimed = 0; 888 host->claimer->task = NULL; 889 host->claimer = NULL; 890 spin_unlock_irqrestore(&host->lock, flags); 891 wake_up(&host->wq); 892 pm_runtime_mark_last_busy(mmc_dev(host)); 893 pm_runtime_put_autosuspend(mmc_dev(host)); 894 } 895 } 896 EXPORT_SYMBOL(mmc_release_host); 897 898 /* 899 * This is a helper function, which fetches a runtime pm reference for the 900 * card device and also claims the host. 901 */ 902 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx) 903 { 904 pm_runtime_get_sync(&card->dev); 905 __mmc_claim_host(card->host, ctx, NULL); 906 } 907 EXPORT_SYMBOL(mmc_get_card); 908 909 /* 910 * This is a helper function, which releases the host and drops the runtime 911 * pm reference for the card device. 912 */ 913 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx) 914 { 915 struct mmc_host *host = card->host; 916 917 WARN_ON(ctx && host->claimer != ctx); 918 919 mmc_release_host(host); 920 pm_runtime_mark_last_busy(&card->dev); 921 pm_runtime_put_autosuspend(&card->dev); 922 } 923 EXPORT_SYMBOL(mmc_put_card); 924 925 /* 926 * Internal function that does the actual ios call to the host driver, 927 * optionally printing some debug output. 928 */ 929 static inline void mmc_set_ios(struct mmc_host *host) 930 { 931 struct mmc_ios *ios = &host->ios; 932 933 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 934 "width %u timing %u\n", 935 mmc_hostname(host), ios->clock, ios->bus_mode, 936 ios->power_mode, ios->chip_select, ios->vdd, 937 1 << ios->bus_width, ios->timing); 938 939 host->ops->set_ios(host, ios); 940 } 941 942 /* 943 * Control chip select pin on a host. 944 */ 945 void mmc_set_chip_select(struct mmc_host *host, int mode) 946 { 947 host->ios.chip_select = mode; 948 mmc_set_ios(host); 949 } 950 951 /* 952 * Sets the host clock to the highest possible frequency that 953 * is below "hz". 954 */ 955 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 956 { 957 WARN_ON(hz && hz < host->f_min); 958 959 if (hz > host->f_max) 960 hz = host->f_max; 961 962 host->ios.clock = hz; 963 mmc_set_ios(host); 964 } 965 966 int mmc_execute_tuning(struct mmc_card *card) 967 { 968 struct mmc_host *host = card->host; 969 u32 opcode; 970 int err; 971 972 if (!host->ops->execute_tuning) 973 return 0; 974 975 if (host->cqe_on) 976 host->cqe_ops->cqe_off(host); 977 978 if (mmc_card_mmc(card)) 979 opcode = MMC_SEND_TUNING_BLOCK_HS200; 980 else 981 opcode = MMC_SEND_TUNING_BLOCK; 982 983 err = host->ops->execute_tuning(host, opcode); 984 985 if (err) 986 pr_err("%s: tuning execution failed: %d\n", 987 mmc_hostname(host), err); 988 else 989 mmc_retune_enable(host); 990 991 return err; 992 } 993 994 /* 995 * Change the bus mode (open drain/push-pull) of a host. 996 */ 997 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 998 { 999 host->ios.bus_mode = mode; 1000 mmc_set_ios(host); 1001 } 1002 1003 /* 1004 * Change data bus width of a host. 1005 */ 1006 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 1007 { 1008 host->ios.bus_width = width; 1009 mmc_set_ios(host); 1010 } 1011 1012 /* 1013 * Set initial state after a power cycle or a hw_reset. 1014 */ 1015 void mmc_set_initial_state(struct mmc_host *host) 1016 { 1017 if (host->cqe_on) 1018 host->cqe_ops->cqe_off(host); 1019 1020 mmc_retune_disable(host); 1021 1022 if (mmc_host_is_spi(host)) 1023 host->ios.chip_select = MMC_CS_HIGH; 1024 else 1025 host->ios.chip_select = MMC_CS_DONTCARE; 1026 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 1027 host->ios.bus_width = MMC_BUS_WIDTH_1; 1028 host->ios.timing = MMC_TIMING_LEGACY; 1029 host->ios.drv_type = 0; 1030 host->ios.enhanced_strobe = false; 1031 1032 /* 1033 * Make sure we are in non-enhanced strobe mode before we 1034 * actually enable it in ext_csd. 1035 */ 1036 if ((host->caps2 & MMC_CAP2_HS400_ES) && 1037 host->ops->hs400_enhanced_strobe) 1038 host->ops->hs400_enhanced_strobe(host, &host->ios); 1039 1040 mmc_set_ios(host); 1041 } 1042 1043 /** 1044 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1045 * @vdd: voltage (mV) 1046 * @low_bits: prefer low bits in boundary cases 1047 * 1048 * This function returns the OCR bit number according to the provided @vdd 1049 * value. If conversion is not possible a negative errno value returned. 1050 * 1051 * Depending on the @low_bits flag the function prefers low or high OCR bits 1052 * on boundary voltages. For example, 1053 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1054 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1055 * 1056 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1057 */ 1058 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1059 { 1060 const int max_bit = ilog2(MMC_VDD_35_36); 1061 int bit; 1062 1063 if (vdd < 1650 || vdd > 3600) 1064 return -EINVAL; 1065 1066 if (vdd >= 1650 && vdd <= 1950) 1067 return ilog2(MMC_VDD_165_195); 1068 1069 if (low_bits) 1070 vdd -= 1; 1071 1072 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1073 bit = (vdd - 2000) / 100 + 8; 1074 if (bit > max_bit) 1075 return max_bit; 1076 return bit; 1077 } 1078 1079 /** 1080 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1081 * @vdd_min: minimum voltage value (mV) 1082 * @vdd_max: maximum voltage value (mV) 1083 * 1084 * This function returns the OCR mask bits according to the provided @vdd_min 1085 * and @vdd_max values. If conversion is not possible the function returns 0. 1086 * 1087 * Notes wrt boundary cases: 1088 * This function sets the OCR bits for all boundary voltages, for example 1089 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1090 * MMC_VDD_34_35 mask. 1091 */ 1092 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1093 { 1094 u32 mask = 0; 1095 1096 if (vdd_max < vdd_min) 1097 return 0; 1098 1099 /* Prefer high bits for the boundary vdd_max values. */ 1100 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1101 if (vdd_max < 0) 1102 return 0; 1103 1104 /* Prefer low bits for the boundary vdd_min values. */ 1105 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1106 if (vdd_min < 0) 1107 return 0; 1108 1109 /* Fill the mask, from max bit to min bit. */ 1110 while (vdd_max >= vdd_min) 1111 mask |= 1 << vdd_max--; 1112 1113 return mask; 1114 } 1115 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); 1116 1117 #ifdef CONFIG_OF 1118 1119 /** 1120 * mmc_of_parse_voltage - return mask of supported voltages 1121 * @np: The device node need to be parsed. 1122 * @mask: mask of voltages available for MMC/SD/SDIO 1123 * 1124 * Parse the "voltage-ranges" DT property, returning zero if it is not 1125 * found, negative errno if the voltage-range specification is invalid, 1126 * or one if the voltage-range is specified and successfully parsed. 1127 */ 1128 int mmc_of_parse_voltage(struct device_node *np, u32 *mask) 1129 { 1130 const u32 *voltage_ranges; 1131 int num_ranges, i; 1132 1133 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges); 1134 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2; 1135 if (!voltage_ranges) { 1136 pr_debug("%pOF: voltage-ranges unspecified\n", np); 1137 return 0; 1138 } 1139 if (!num_ranges) { 1140 pr_err("%pOF: voltage-ranges empty\n", np); 1141 return -EINVAL; 1142 } 1143 1144 for (i = 0; i < num_ranges; i++) { 1145 const int j = i * 2; 1146 u32 ocr_mask; 1147 1148 ocr_mask = mmc_vddrange_to_ocrmask( 1149 be32_to_cpu(voltage_ranges[j]), 1150 be32_to_cpu(voltage_ranges[j + 1])); 1151 if (!ocr_mask) { 1152 pr_err("%pOF: voltage-range #%d is invalid\n", 1153 np, i); 1154 return -EINVAL; 1155 } 1156 *mask |= ocr_mask; 1157 } 1158 1159 return 1; 1160 } 1161 EXPORT_SYMBOL(mmc_of_parse_voltage); 1162 1163 #endif /* CONFIG_OF */ 1164 1165 static int mmc_of_get_func_num(struct device_node *node) 1166 { 1167 u32 reg; 1168 int ret; 1169 1170 ret = of_property_read_u32(node, "reg", ®); 1171 if (ret < 0) 1172 return ret; 1173 1174 return reg; 1175 } 1176 1177 struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1178 unsigned func_num) 1179 { 1180 struct device_node *node; 1181 1182 if (!host->parent || !host->parent->of_node) 1183 return NULL; 1184 1185 for_each_child_of_node(host->parent->of_node, node) { 1186 if (mmc_of_get_func_num(node) == func_num) 1187 return node; 1188 } 1189 1190 return NULL; 1191 } 1192 1193 #ifdef CONFIG_REGULATOR 1194 1195 /** 1196 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage 1197 * @vdd_bit: OCR bit number 1198 * @min_uV: minimum voltage value (mV) 1199 * @max_uV: maximum voltage value (mV) 1200 * 1201 * This function returns the voltage range according to the provided OCR 1202 * bit number. If conversion is not possible a negative errno value returned. 1203 */ 1204 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV) 1205 { 1206 int tmp; 1207 1208 if (!vdd_bit) 1209 return -EINVAL; 1210 1211 /* 1212 * REVISIT mmc_vddrange_to_ocrmask() may have set some 1213 * bits this regulator doesn't quite support ... don't 1214 * be too picky, most cards and regulators are OK with 1215 * a 0.1V range goof (it's a small error percentage). 1216 */ 1217 tmp = vdd_bit - ilog2(MMC_VDD_165_195); 1218 if (tmp == 0) { 1219 *min_uV = 1650 * 1000; 1220 *max_uV = 1950 * 1000; 1221 } else { 1222 *min_uV = 1900 * 1000 + tmp * 100 * 1000; 1223 *max_uV = *min_uV + 100 * 1000; 1224 } 1225 1226 return 0; 1227 } 1228 1229 /** 1230 * mmc_regulator_get_ocrmask - return mask of supported voltages 1231 * @supply: regulator to use 1232 * 1233 * This returns either a negative errno, or a mask of voltages that 1234 * can be provided to MMC/SD/SDIO devices using the specified voltage 1235 * regulator. This would normally be called before registering the 1236 * MMC host adapter. 1237 */ 1238 int mmc_regulator_get_ocrmask(struct regulator *supply) 1239 { 1240 int result = 0; 1241 int count; 1242 int i; 1243 int vdd_uV; 1244 int vdd_mV; 1245 1246 count = regulator_count_voltages(supply); 1247 if (count < 0) 1248 return count; 1249 1250 for (i = 0; i < count; i++) { 1251 vdd_uV = regulator_list_voltage(supply, i); 1252 if (vdd_uV <= 0) 1253 continue; 1254 1255 vdd_mV = vdd_uV / 1000; 1256 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1257 } 1258 1259 if (!result) { 1260 vdd_uV = regulator_get_voltage(supply); 1261 if (vdd_uV <= 0) 1262 return vdd_uV; 1263 1264 vdd_mV = vdd_uV / 1000; 1265 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); 1266 } 1267 1268 return result; 1269 } 1270 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask); 1271 1272 /** 1273 * mmc_regulator_set_ocr - set regulator to match host->ios voltage 1274 * @mmc: the host to regulate 1275 * @supply: regulator to use 1276 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) 1277 * 1278 * Returns zero on success, else negative errno. 1279 * 1280 * MMC host drivers may use this to enable or disable a regulator using 1281 * a particular supply voltage. This would normally be called from the 1282 * set_ios() method. 1283 */ 1284 int mmc_regulator_set_ocr(struct mmc_host *mmc, 1285 struct regulator *supply, 1286 unsigned short vdd_bit) 1287 { 1288 int result = 0; 1289 int min_uV, max_uV; 1290 1291 if (vdd_bit) { 1292 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV); 1293 1294 result = regulator_set_voltage(supply, min_uV, max_uV); 1295 if (result == 0 && !mmc->regulator_enabled) { 1296 result = regulator_enable(supply); 1297 if (!result) 1298 mmc->regulator_enabled = true; 1299 } 1300 } else if (mmc->regulator_enabled) { 1301 result = regulator_disable(supply); 1302 if (result == 0) 1303 mmc->regulator_enabled = false; 1304 } 1305 1306 if (result) 1307 dev_err(mmc_dev(mmc), 1308 "could not set regulator OCR (%d)\n", result); 1309 return result; 1310 } 1311 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr); 1312 1313 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator, 1314 int min_uV, int target_uV, 1315 int max_uV) 1316 { 1317 /* 1318 * Check if supported first to avoid errors since we may try several 1319 * signal levels during power up and don't want to show errors. 1320 */ 1321 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV)) 1322 return -EINVAL; 1323 1324 return regulator_set_voltage_triplet(regulator, min_uV, target_uV, 1325 max_uV); 1326 } 1327 1328 /** 1329 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios 1330 * 1331 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible. 1332 * That will match the behavior of old boards where VQMMC and VMMC were supplied 1333 * by the same supply. The Bus Operating conditions for 3.3V signaling in the 1334 * SD card spec also define VQMMC in terms of VMMC. 1335 * If this is not possible we'll try the full 2.7-3.6V of the spec. 1336 * 1337 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the 1338 * requested voltage. This is definitely a good idea for UHS where there's a 1339 * separate regulator on the card that's trying to make 1.8V and it's best if 1340 * we match. 1341 * 1342 * This function is expected to be used by a controller's 1343 * start_signal_voltage_switch() function. 1344 */ 1345 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios) 1346 { 1347 struct device *dev = mmc_dev(mmc); 1348 int ret, volt, min_uV, max_uV; 1349 1350 /* If no vqmmc supply then we can't change the voltage */ 1351 if (IS_ERR(mmc->supply.vqmmc)) 1352 return -EINVAL; 1353 1354 switch (ios->signal_voltage) { 1355 case MMC_SIGNAL_VOLTAGE_120: 1356 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1357 1100000, 1200000, 1300000); 1358 case MMC_SIGNAL_VOLTAGE_180: 1359 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1360 1700000, 1800000, 1950000); 1361 case MMC_SIGNAL_VOLTAGE_330: 1362 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV); 1363 if (ret < 0) 1364 return ret; 1365 1366 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n", 1367 __func__, volt, max_uV); 1368 1369 min_uV = max(volt - 300000, 2700000); 1370 max_uV = min(max_uV + 200000, 3600000); 1371 1372 /* 1373 * Due to a limitation in the current implementation of 1374 * regulator_set_voltage_triplet() which is taking the lowest 1375 * voltage possible if below the target, search for a suitable 1376 * voltage in two steps and try to stay close to vmmc 1377 * with a 0.3V tolerance at first. 1378 */ 1379 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1380 min_uV, volt, max_uV)) 1381 return 0; 1382 1383 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc, 1384 2700000, volt, 3600000); 1385 default: 1386 return -EINVAL; 1387 } 1388 } 1389 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc); 1390 1391 #endif /* CONFIG_REGULATOR */ 1392 1393 /** 1394 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host 1395 * @mmc: the host to regulate 1396 * 1397 * Returns 0 or errno. errno should be handled, it is either a critical error 1398 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all 1399 * regulators have been found because they all are optional. If you require 1400 * certain regulators, you need to check separately in your driver if they got 1401 * populated after calling this function. 1402 */ 1403 int mmc_regulator_get_supply(struct mmc_host *mmc) 1404 { 1405 struct device *dev = mmc_dev(mmc); 1406 int ret; 1407 1408 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc"); 1409 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc"); 1410 1411 if (IS_ERR(mmc->supply.vmmc)) { 1412 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER) 1413 return -EPROBE_DEFER; 1414 dev_dbg(dev, "No vmmc regulator found\n"); 1415 } else { 1416 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc); 1417 if (ret > 0) 1418 mmc->ocr_avail = ret; 1419 else 1420 dev_warn(dev, "Failed getting OCR mask: %d\n", ret); 1421 } 1422 1423 if (IS_ERR(mmc->supply.vqmmc)) { 1424 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER) 1425 return -EPROBE_DEFER; 1426 dev_dbg(dev, "No vqmmc regulator found\n"); 1427 } 1428 1429 return 0; 1430 } 1431 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply); 1432 1433 /* 1434 * Mask off any voltages we don't support and select 1435 * the lowest voltage 1436 */ 1437 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1438 { 1439 int bit; 1440 1441 /* 1442 * Sanity check the voltages that the card claims to 1443 * support. 1444 */ 1445 if (ocr & 0x7F) { 1446 dev_warn(mmc_dev(host), 1447 "card claims to support voltages below defined range\n"); 1448 ocr &= ~0x7F; 1449 } 1450 1451 ocr &= host->ocr_avail; 1452 if (!ocr) { 1453 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1454 return 0; 1455 } 1456 1457 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1458 bit = ffs(ocr) - 1; 1459 ocr &= 3 << bit; 1460 mmc_power_cycle(host, ocr); 1461 } else { 1462 bit = fls(ocr) - 1; 1463 ocr &= 3 << bit; 1464 if (bit != host->ios.vdd) 1465 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1466 } 1467 1468 return ocr; 1469 } 1470 1471 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1472 { 1473 int err = 0; 1474 int old_signal_voltage = host->ios.signal_voltage; 1475 1476 host->ios.signal_voltage = signal_voltage; 1477 if (host->ops->start_signal_voltage_switch) 1478 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1479 1480 if (err) 1481 host->ios.signal_voltage = old_signal_voltage; 1482 1483 return err; 1484 1485 } 1486 1487 int mmc_host_set_uhs_voltage(struct mmc_host *host) 1488 { 1489 u32 clock; 1490 1491 /* 1492 * During a signal voltage level switch, the clock must be gated 1493 * for 5 ms according to the SD spec 1494 */ 1495 clock = host->ios.clock; 1496 host->ios.clock = 0; 1497 mmc_set_ios(host); 1498 1499 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1500 return -EAGAIN; 1501 1502 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1503 mmc_delay(10); 1504 host->ios.clock = clock; 1505 mmc_set_ios(host); 1506 1507 return 0; 1508 } 1509 1510 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr) 1511 { 1512 struct mmc_command cmd = {}; 1513 int err = 0; 1514 1515 /* 1516 * If we cannot switch voltages, return failure so the caller 1517 * can continue without UHS mode 1518 */ 1519 if (!host->ops->start_signal_voltage_switch) 1520 return -EPERM; 1521 if (!host->ops->card_busy) 1522 pr_warn("%s: cannot verify signal voltage switch\n", 1523 mmc_hostname(host)); 1524 1525 cmd.opcode = SD_SWITCH_VOLTAGE; 1526 cmd.arg = 0; 1527 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1528 1529 err = mmc_wait_for_cmd(host, &cmd, 0); 1530 if (err) 1531 return err; 1532 1533 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1534 return -EIO; 1535 1536 /* 1537 * The card should drive cmd and dat[0:3] low immediately 1538 * after the response of cmd11, but wait 1 ms to be sure 1539 */ 1540 mmc_delay(1); 1541 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1542 err = -EAGAIN; 1543 goto power_cycle; 1544 } 1545 1546 if (mmc_host_set_uhs_voltage(host)) { 1547 /* 1548 * Voltages may not have been switched, but we've already 1549 * sent CMD11, so a power cycle is required anyway 1550 */ 1551 err = -EAGAIN; 1552 goto power_cycle; 1553 } 1554 1555 /* Wait for at least 1 ms according to spec */ 1556 mmc_delay(1); 1557 1558 /* 1559 * Failure to switch is indicated by the card holding 1560 * dat[0:3] low 1561 */ 1562 if (host->ops->card_busy && host->ops->card_busy(host)) 1563 err = -EAGAIN; 1564 1565 power_cycle: 1566 if (err) { 1567 pr_debug("%s: Signal voltage switch failed, " 1568 "power cycling card\n", mmc_hostname(host)); 1569 mmc_power_cycle(host, ocr); 1570 } 1571 1572 return err; 1573 } 1574 1575 /* 1576 * Select timing parameters for host. 1577 */ 1578 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1579 { 1580 host->ios.timing = timing; 1581 mmc_set_ios(host); 1582 } 1583 1584 /* 1585 * Select appropriate driver type for host. 1586 */ 1587 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1588 { 1589 host->ios.drv_type = drv_type; 1590 mmc_set_ios(host); 1591 } 1592 1593 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1594 int card_drv_type, int *drv_type) 1595 { 1596 struct mmc_host *host = card->host; 1597 int host_drv_type = SD_DRIVER_TYPE_B; 1598 1599 *drv_type = 0; 1600 1601 if (!host->ops->select_drive_strength) 1602 return 0; 1603 1604 /* Use SD definition of driver strength for hosts */ 1605 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1606 host_drv_type |= SD_DRIVER_TYPE_A; 1607 1608 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1609 host_drv_type |= SD_DRIVER_TYPE_C; 1610 1611 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1612 host_drv_type |= SD_DRIVER_TYPE_D; 1613 1614 /* 1615 * The drive strength that the hardware can support 1616 * depends on the board design. Pass the appropriate 1617 * information and let the hardware specific code 1618 * return what is possible given the options 1619 */ 1620 return host->ops->select_drive_strength(card, max_dtr, 1621 host_drv_type, 1622 card_drv_type, 1623 drv_type); 1624 } 1625 1626 /* 1627 * Apply power to the MMC stack. This is a two-stage process. 1628 * First, we enable power to the card without the clock running. 1629 * We then wait a bit for the power to stabilise. Finally, 1630 * enable the bus drivers and clock to the card. 1631 * 1632 * We must _NOT_ enable the clock prior to power stablising. 1633 * 1634 * If a host does all the power sequencing itself, ignore the 1635 * initial MMC_POWER_UP stage. 1636 */ 1637 void mmc_power_up(struct mmc_host *host, u32 ocr) 1638 { 1639 if (host->ios.power_mode == MMC_POWER_ON) 1640 return; 1641 1642 mmc_pwrseq_pre_power_on(host); 1643 1644 host->ios.vdd = fls(ocr) - 1; 1645 host->ios.power_mode = MMC_POWER_UP; 1646 /* Set initial state and call mmc_set_ios */ 1647 mmc_set_initial_state(host); 1648 1649 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1650 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330)) 1651 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1652 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1653 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1654 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120)) 1655 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1656 1657 /* 1658 * This delay should be sufficient to allow the power supply 1659 * to reach the minimum voltage. 1660 */ 1661 mmc_delay(10); 1662 1663 mmc_pwrseq_post_power_on(host); 1664 1665 host->ios.clock = host->f_init; 1666 1667 host->ios.power_mode = MMC_POWER_ON; 1668 mmc_set_ios(host); 1669 1670 /* 1671 * This delay must be at least 74 clock sizes, or 1 ms, or the 1672 * time required to reach a stable voltage. 1673 */ 1674 mmc_delay(10); 1675 } 1676 1677 void mmc_power_off(struct mmc_host *host) 1678 { 1679 if (host->ios.power_mode == MMC_POWER_OFF) 1680 return; 1681 1682 mmc_pwrseq_power_off(host); 1683 1684 host->ios.clock = 0; 1685 host->ios.vdd = 0; 1686 1687 host->ios.power_mode = MMC_POWER_OFF; 1688 /* Set initial state and call mmc_set_ios */ 1689 mmc_set_initial_state(host); 1690 1691 /* 1692 * Some configurations, such as the 802.11 SDIO card in the OLPC 1693 * XO-1.5, require a short delay after poweroff before the card 1694 * can be successfully turned on again. 1695 */ 1696 mmc_delay(1); 1697 } 1698 1699 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1700 { 1701 mmc_power_off(host); 1702 /* Wait at least 1 ms according to SD spec */ 1703 mmc_delay(1); 1704 mmc_power_up(host, ocr); 1705 } 1706 1707 /* 1708 * Cleanup when the last reference to the bus operator is dropped. 1709 */ 1710 static void __mmc_release_bus(struct mmc_host *host) 1711 { 1712 WARN_ON(!host->bus_dead); 1713 1714 host->bus_ops = NULL; 1715 } 1716 1717 /* 1718 * Increase reference count of bus operator 1719 */ 1720 static inline void mmc_bus_get(struct mmc_host *host) 1721 { 1722 unsigned long flags; 1723 1724 spin_lock_irqsave(&host->lock, flags); 1725 host->bus_refs++; 1726 spin_unlock_irqrestore(&host->lock, flags); 1727 } 1728 1729 /* 1730 * Decrease reference count of bus operator and free it if 1731 * it is the last reference. 1732 */ 1733 static inline void mmc_bus_put(struct mmc_host *host) 1734 { 1735 unsigned long flags; 1736 1737 spin_lock_irqsave(&host->lock, flags); 1738 host->bus_refs--; 1739 if ((host->bus_refs == 0) && host->bus_ops) 1740 __mmc_release_bus(host); 1741 spin_unlock_irqrestore(&host->lock, flags); 1742 } 1743 1744 /* 1745 * Assign a mmc bus handler to a host. Only one bus handler may control a 1746 * host at any given time. 1747 */ 1748 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1749 { 1750 unsigned long flags; 1751 1752 WARN_ON(!host->claimed); 1753 1754 spin_lock_irqsave(&host->lock, flags); 1755 1756 WARN_ON(host->bus_ops); 1757 WARN_ON(host->bus_refs); 1758 1759 host->bus_ops = ops; 1760 host->bus_refs = 1; 1761 host->bus_dead = 0; 1762 1763 spin_unlock_irqrestore(&host->lock, flags); 1764 } 1765 1766 /* 1767 * Remove the current bus handler from a host. 1768 */ 1769 void mmc_detach_bus(struct mmc_host *host) 1770 { 1771 unsigned long flags; 1772 1773 WARN_ON(!host->claimed); 1774 WARN_ON(!host->bus_ops); 1775 1776 spin_lock_irqsave(&host->lock, flags); 1777 1778 host->bus_dead = 1; 1779 1780 spin_unlock_irqrestore(&host->lock, flags); 1781 1782 mmc_bus_put(host); 1783 } 1784 1785 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay, 1786 bool cd_irq) 1787 { 1788 /* 1789 * If the device is configured as wakeup, we prevent a new sleep for 1790 * 5 s to give provision for user space to consume the event. 1791 */ 1792 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) && 1793 device_can_wakeup(mmc_dev(host))) 1794 pm_wakeup_event(mmc_dev(host), 5000); 1795 1796 host->detect_change = 1; 1797 mmc_schedule_delayed_work(&host->detect, delay); 1798 } 1799 1800 /** 1801 * mmc_detect_change - process change of state on a MMC socket 1802 * @host: host which changed state. 1803 * @delay: optional delay to wait before detection (jiffies) 1804 * 1805 * MMC drivers should call this when they detect a card has been 1806 * inserted or removed. The MMC layer will confirm that any 1807 * present card is still functional, and initialize any newly 1808 * inserted. 1809 */ 1810 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1811 { 1812 _mmc_detect_change(host, delay, true); 1813 } 1814 EXPORT_SYMBOL(mmc_detect_change); 1815 1816 void mmc_init_erase(struct mmc_card *card) 1817 { 1818 unsigned int sz; 1819 1820 if (is_power_of_2(card->erase_size)) 1821 card->erase_shift = ffs(card->erase_size) - 1; 1822 else 1823 card->erase_shift = 0; 1824 1825 /* 1826 * It is possible to erase an arbitrarily large area of an SD or MMC 1827 * card. That is not desirable because it can take a long time 1828 * (minutes) potentially delaying more important I/O, and also the 1829 * timeout calculations become increasingly hugely over-estimated. 1830 * Consequently, 'pref_erase' is defined as a guide to limit erases 1831 * to that size and alignment. 1832 * 1833 * For SD cards that define Allocation Unit size, limit erases to one 1834 * Allocation Unit at a time. 1835 * For MMC, have a stab at ai good value and for modern cards it will 1836 * end up being 4MiB. Note that if the value is too small, it can end 1837 * up taking longer to erase. Also note, erase_size is already set to 1838 * High Capacity Erase Size if available when this function is called. 1839 */ 1840 if (mmc_card_sd(card) && card->ssr.au) { 1841 card->pref_erase = card->ssr.au; 1842 card->erase_shift = ffs(card->ssr.au) - 1; 1843 } else if (card->erase_size) { 1844 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1845 if (sz < 128) 1846 card->pref_erase = 512 * 1024 / 512; 1847 else if (sz < 512) 1848 card->pref_erase = 1024 * 1024 / 512; 1849 else if (sz < 1024) 1850 card->pref_erase = 2 * 1024 * 1024 / 512; 1851 else 1852 card->pref_erase = 4 * 1024 * 1024 / 512; 1853 if (card->pref_erase < card->erase_size) 1854 card->pref_erase = card->erase_size; 1855 else { 1856 sz = card->pref_erase % card->erase_size; 1857 if (sz) 1858 card->pref_erase += card->erase_size - sz; 1859 } 1860 } else 1861 card->pref_erase = 0; 1862 } 1863 1864 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1865 unsigned int arg, unsigned int qty) 1866 { 1867 unsigned int erase_timeout; 1868 1869 if (arg == MMC_DISCARD_ARG || 1870 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1871 erase_timeout = card->ext_csd.trim_timeout; 1872 } else if (card->ext_csd.erase_group_def & 1) { 1873 /* High Capacity Erase Group Size uses HC timeouts */ 1874 if (arg == MMC_TRIM_ARG) 1875 erase_timeout = card->ext_csd.trim_timeout; 1876 else 1877 erase_timeout = card->ext_csd.hc_erase_timeout; 1878 } else { 1879 /* CSD Erase Group Size uses write timeout */ 1880 unsigned int mult = (10 << card->csd.r2w_factor); 1881 unsigned int timeout_clks = card->csd.taac_clks * mult; 1882 unsigned int timeout_us; 1883 1884 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */ 1885 if (card->csd.taac_ns < 1000000) 1886 timeout_us = (card->csd.taac_ns * mult) / 1000; 1887 else 1888 timeout_us = (card->csd.taac_ns / 1000) * mult; 1889 1890 /* 1891 * ios.clock is only a target. The real clock rate might be 1892 * less but not that much less, so fudge it by multiplying by 2. 1893 */ 1894 timeout_clks <<= 1; 1895 timeout_us += (timeout_clks * 1000) / 1896 (card->host->ios.clock / 1000); 1897 1898 erase_timeout = timeout_us / 1000; 1899 1900 /* 1901 * Theoretically, the calculation could underflow so round up 1902 * to 1ms in that case. 1903 */ 1904 if (!erase_timeout) 1905 erase_timeout = 1; 1906 } 1907 1908 /* Multiplier for secure operations */ 1909 if (arg & MMC_SECURE_ARGS) { 1910 if (arg == MMC_SECURE_ERASE_ARG) 1911 erase_timeout *= card->ext_csd.sec_erase_mult; 1912 else 1913 erase_timeout *= card->ext_csd.sec_trim_mult; 1914 } 1915 1916 erase_timeout *= qty; 1917 1918 /* 1919 * Ensure at least a 1 second timeout for SPI as per 1920 * 'mmc_set_data_timeout()' 1921 */ 1922 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1923 erase_timeout = 1000; 1924 1925 return erase_timeout; 1926 } 1927 1928 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1929 unsigned int arg, 1930 unsigned int qty) 1931 { 1932 unsigned int erase_timeout; 1933 1934 if (card->ssr.erase_timeout) { 1935 /* Erase timeout specified in SD Status Register (SSR) */ 1936 erase_timeout = card->ssr.erase_timeout * qty + 1937 card->ssr.erase_offset; 1938 } else { 1939 /* 1940 * Erase timeout not specified in SD Status Register (SSR) so 1941 * use 250ms per write block. 1942 */ 1943 erase_timeout = 250 * qty; 1944 } 1945 1946 /* Must not be less than 1 second */ 1947 if (erase_timeout < 1000) 1948 erase_timeout = 1000; 1949 1950 return erase_timeout; 1951 } 1952 1953 static unsigned int mmc_erase_timeout(struct mmc_card *card, 1954 unsigned int arg, 1955 unsigned int qty) 1956 { 1957 if (mmc_card_sd(card)) 1958 return mmc_sd_erase_timeout(card, arg, qty); 1959 else 1960 return mmc_mmc_erase_timeout(card, arg, qty); 1961 } 1962 1963 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1964 unsigned int to, unsigned int arg) 1965 { 1966 struct mmc_command cmd = {}; 1967 unsigned int qty = 0, busy_timeout = 0; 1968 bool use_r1b_resp = false; 1969 unsigned long timeout; 1970 int err; 1971 1972 mmc_retune_hold(card->host); 1973 1974 /* 1975 * qty is used to calculate the erase timeout which depends on how many 1976 * erase groups (or allocation units in SD terminology) are affected. 1977 * We count erasing part of an erase group as one erase group. 1978 * For SD, the allocation units are always a power of 2. For MMC, the 1979 * erase group size is almost certainly also power of 2, but it does not 1980 * seem to insist on that in the JEDEC standard, so we fall back to 1981 * division in that case. SD may not specify an allocation unit size, 1982 * in which case the timeout is based on the number of write blocks. 1983 * 1984 * Note that the timeout for secure trim 2 will only be correct if the 1985 * number of erase groups specified is the same as the total of all 1986 * preceding secure trim 1 commands. Since the power may have been 1987 * lost since the secure trim 1 commands occurred, it is generally 1988 * impossible to calculate the secure trim 2 timeout correctly. 1989 */ 1990 if (card->erase_shift) 1991 qty += ((to >> card->erase_shift) - 1992 (from >> card->erase_shift)) + 1; 1993 else if (mmc_card_sd(card)) 1994 qty += to - from + 1; 1995 else 1996 qty += ((to / card->erase_size) - 1997 (from / card->erase_size)) + 1; 1998 1999 if (!mmc_card_blockaddr(card)) { 2000 from <<= 9; 2001 to <<= 9; 2002 } 2003 2004 if (mmc_card_sd(card)) 2005 cmd.opcode = SD_ERASE_WR_BLK_START; 2006 else 2007 cmd.opcode = MMC_ERASE_GROUP_START; 2008 cmd.arg = from; 2009 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2010 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2011 if (err) { 2012 pr_err("mmc_erase: group start error %d, " 2013 "status %#x\n", err, cmd.resp[0]); 2014 err = -EIO; 2015 goto out; 2016 } 2017 2018 memset(&cmd, 0, sizeof(struct mmc_command)); 2019 if (mmc_card_sd(card)) 2020 cmd.opcode = SD_ERASE_WR_BLK_END; 2021 else 2022 cmd.opcode = MMC_ERASE_GROUP_END; 2023 cmd.arg = to; 2024 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2025 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2026 if (err) { 2027 pr_err("mmc_erase: group end error %d, status %#x\n", 2028 err, cmd.resp[0]); 2029 err = -EIO; 2030 goto out; 2031 } 2032 2033 memset(&cmd, 0, sizeof(struct mmc_command)); 2034 cmd.opcode = MMC_ERASE; 2035 cmd.arg = arg; 2036 busy_timeout = mmc_erase_timeout(card, arg, qty); 2037 /* 2038 * If the host controller supports busy signalling and the timeout for 2039 * the erase operation does not exceed the max_busy_timeout, we should 2040 * use R1B response. Or we need to prevent the host from doing hw busy 2041 * detection, which is done by converting to a R1 response instead. 2042 */ 2043 if (card->host->max_busy_timeout && 2044 busy_timeout > card->host->max_busy_timeout) { 2045 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2046 } else { 2047 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 2048 cmd.busy_timeout = busy_timeout; 2049 use_r1b_resp = true; 2050 } 2051 2052 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2053 if (err) { 2054 pr_err("mmc_erase: erase error %d, status %#x\n", 2055 err, cmd.resp[0]); 2056 err = -EIO; 2057 goto out; 2058 } 2059 2060 if (mmc_host_is_spi(card->host)) 2061 goto out; 2062 2063 /* 2064 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling 2065 * shall be avoided. 2066 */ 2067 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 2068 goto out; 2069 2070 timeout = jiffies + msecs_to_jiffies(busy_timeout); 2071 do { 2072 memset(&cmd, 0, sizeof(struct mmc_command)); 2073 cmd.opcode = MMC_SEND_STATUS; 2074 cmd.arg = card->rca << 16; 2075 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 2076 /* Do not retry else we can't see errors */ 2077 err = mmc_wait_for_cmd(card->host, &cmd, 0); 2078 if (err || (cmd.resp[0] & 0xFDF92000)) { 2079 pr_err("error %d requesting status %#x\n", 2080 err, cmd.resp[0]); 2081 err = -EIO; 2082 goto out; 2083 } 2084 2085 /* Timeout if the device never becomes ready for data and 2086 * never leaves the program state. 2087 */ 2088 if (time_after(jiffies, timeout)) { 2089 pr_err("%s: Card stuck in programming state! %s\n", 2090 mmc_hostname(card->host), __func__); 2091 err = -EIO; 2092 goto out; 2093 } 2094 2095 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || 2096 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG)); 2097 out: 2098 mmc_retune_release(card->host); 2099 return err; 2100 } 2101 2102 static unsigned int mmc_align_erase_size(struct mmc_card *card, 2103 unsigned int *from, 2104 unsigned int *to, 2105 unsigned int nr) 2106 { 2107 unsigned int from_new = *from, nr_new = nr, rem; 2108 2109 /* 2110 * When the 'card->erase_size' is power of 2, we can use round_up/down() 2111 * to align the erase size efficiently. 2112 */ 2113 if (is_power_of_2(card->erase_size)) { 2114 unsigned int temp = from_new; 2115 2116 from_new = round_up(temp, card->erase_size); 2117 rem = from_new - temp; 2118 2119 if (nr_new > rem) 2120 nr_new -= rem; 2121 else 2122 return 0; 2123 2124 nr_new = round_down(nr_new, card->erase_size); 2125 } else { 2126 rem = from_new % card->erase_size; 2127 if (rem) { 2128 rem = card->erase_size - rem; 2129 from_new += rem; 2130 if (nr_new > rem) 2131 nr_new -= rem; 2132 else 2133 return 0; 2134 } 2135 2136 rem = nr_new % card->erase_size; 2137 if (rem) 2138 nr_new -= rem; 2139 } 2140 2141 if (nr_new == 0) 2142 return 0; 2143 2144 *to = from_new + nr_new; 2145 *from = from_new; 2146 2147 return nr_new; 2148 } 2149 2150 /** 2151 * mmc_erase - erase sectors. 2152 * @card: card to erase 2153 * @from: first sector to erase 2154 * @nr: number of sectors to erase 2155 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) 2156 * 2157 * Caller must claim host before calling this function. 2158 */ 2159 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 2160 unsigned int arg) 2161 { 2162 unsigned int rem, to = from + nr; 2163 int err; 2164 2165 if (!(card->host->caps & MMC_CAP_ERASE) || 2166 !(card->csd.cmdclass & CCC_ERASE)) 2167 return -EOPNOTSUPP; 2168 2169 if (!card->erase_size) 2170 return -EOPNOTSUPP; 2171 2172 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) 2173 return -EOPNOTSUPP; 2174 2175 if ((arg & MMC_SECURE_ARGS) && 2176 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 2177 return -EOPNOTSUPP; 2178 2179 if ((arg & MMC_TRIM_ARGS) && 2180 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 2181 return -EOPNOTSUPP; 2182 2183 if (arg == MMC_SECURE_ERASE_ARG) { 2184 if (from % card->erase_size || nr % card->erase_size) 2185 return -EINVAL; 2186 } 2187 2188 if (arg == MMC_ERASE_ARG) 2189 nr = mmc_align_erase_size(card, &from, &to, nr); 2190 2191 if (nr == 0) 2192 return 0; 2193 2194 if (to <= from) 2195 return -EINVAL; 2196 2197 /* 'from' and 'to' are inclusive */ 2198 to -= 1; 2199 2200 /* 2201 * Special case where only one erase-group fits in the timeout budget: 2202 * If the region crosses an erase-group boundary on this particular 2203 * case, we will be trimming more than one erase-group which, does not 2204 * fit in the timeout budget of the controller, so we need to split it 2205 * and call mmc_do_erase() twice if necessary. This special case is 2206 * identified by the card->eg_boundary flag. 2207 */ 2208 rem = card->erase_size - (from % card->erase_size); 2209 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { 2210 err = mmc_do_erase(card, from, from + rem - 1, arg); 2211 from += rem; 2212 if ((err) || (to <= from)) 2213 return err; 2214 } 2215 2216 return mmc_do_erase(card, from, to, arg); 2217 } 2218 EXPORT_SYMBOL(mmc_erase); 2219 2220 int mmc_can_erase(struct mmc_card *card) 2221 { 2222 if ((card->host->caps & MMC_CAP_ERASE) && 2223 (card->csd.cmdclass & CCC_ERASE) && card->erase_size) 2224 return 1; 2225 return 0; 2226 } 2227 EXPORT_SYMBOL(mmc_can_erase); 2228 2229 int mmc_can_trim(struct mmc_card *card) 2230 { 2231 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 2232 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 2233 return 1; 2234 return 0; 2235 } 2236 EXPORT_SYMBOL(mmc_can_trim); 2237 2238 int mmc_can_discard(struct mmc_card *card) 2239 { 2240 /* 2241 * As there's no way to detect the discard support bit at v4.5 2242 * use the s/w feature support filed. 2243 */ 2244 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 2245 return 1; 2246 return 0; 2247 } 2248 EXPORT_SYMBOL(mmc_can_discard); 2249 2250 int mmc_can_sanitize(struct mmc_card *card) 2251 { 2252 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 2253 return 0; 2254 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 2255 return 1; 2256 return 0; 2257 } 2258 EXPORT_SYMBOL(mmc_can_sanitize); 2259 2260 int mmc_can_secure_erase_trim(struct mmc_card *card) 2261 { 2262 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 2263 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 2264 return 1; 2265 return 0; 2266 } 2267 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 2268 2269 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 2270 unsigned int nr) 2271 { 2272 if (!card->erase_size) 2273 return 0; 2274 if (from % card->erase_size || nr % card->erase_size) 2275 return 0; 2276 return 1; 2277 } 2278 EXPORT_SYMBOL(mmc_erase_group_aligned); 2279 2280 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 2281 unsigned int arg) 2282 { 2283 struct mmc_host *host = card->host; 2284 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; 2285 unsigned int last_timeout = 0; 2286 unsigned int max_busy_timeout = host->max_busy_timeout ? 2287 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; 2288 2289 if (card->erase_shift) { 2290 max_qty = UINT_MAX >> card->erase_shift; 2291 min_qty = card->pref_erase >> card->erase_shift; 2292 } else if (mmc_card_sd(card)) { 2293 max_qty = UINT_MAX; 2294 min_qty = card->pref_erase; 2295 } else { 2296 max_qty = UINT_MAX / card->erase_size; 2297 min_qty = card->pref_erase / card->erase_size; 2298 } 2299 2300 /* 2301 * We should not only use 'host->max_busy_timeout' as the limitation 2302 * when deciding the max discard sectors. We should set a balance value 2303 * to improve the erase speed, and it can not get too long timeout at 2304 * the same time. 2305 * 2306 * Here we set 'card->pref_erase' as the minimal discard sectors no 2307 * matter what size of 'host->max_busy_timeout', but if the 2308 * 'host->max_busy_timeout' is large enough for more discard sectors, 2309 * then we can continue to increase the max discard sectors until we 2310 * get a balance value. In cases when the 'host->max_busy_timeout' 2311 * isn't specified, use the default max erase timeout. 2312 */ 2313 do { 2314 y = 0; 2315 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 2316 timeout = mmc_erase_timeout(card, arg, qty + x); 2317 2318 if (qty + x > min_qty && timeout > max_busy_timeout) 2319 break; 2320 2321 if (timeout < last_timeout) 2322 break; 2323 last_timeout = timeout; 2324 y = x; 2325 } 2326 qty += y; 2327 } while (y); 2328 2329 if (!qty) 2330 return 0; 2331 2332 /* 2333 * When specifying a sector range to trim, chances are we might cross 2334 * an erase-group boundary even if the amount of sectors is less than 2335 * one erase-group. 2336 * If we can only fit one erase-group in the controller timeout budget, 2337 * we have to care that erase-group boundaries are not crossed by a 2338 * single trim operation. We flag that special case with "eg_boundary". 2339 * In all other cases we can just decrement qty and pretend that we 2340 * always touch (qty + 1) erase-groups as a simple optimization. 2341 */ 2342 if (qty == 1) 2343 card->eg_boundary = 1; 2344 else 2345 qty--; 2346 2347 /* Convert qty to sectors */ 2348 if (card->erase_shift) 2349 max_discard = qty << card->erase_shift; 2350 else if (mmc_card_sd(card)) 2351 max_discard = qty + 1; 2352 else 2353 max_discard = qty * card->erase_size; 2354 2355 return max_discard; 2356 } 2357 2358 unsigned int mmc_calc_max_discard(struct mmc_card *card) 2359 { 2360 struct mmc_host *host = card->host; 2361 unsigned int max_discard, max_trim; 2362 2363 /* 2364 * Without erase_group_def set, MMC erase timeout depends on clock 2365 * frequence which can change. In that case, the best choice is 2366 * just the preferred erase size. 2367 */ 2368 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 2369 return card->pref_erase; 2370 2371 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 2372 if (max_discard && mmc_can_trim(card)) { 2373 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 2374 if (max_trim < max_discard) 2375 max_discard = max_trim; 2376 } else if (max_discard < card->erase_size) { 2377 max_discard = 0; 2378 } 2379 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 2380 mmc_hostname(host), max_discard, host->max_busy_timeout ? 2381 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); 2382 return max_discard; 2383 } 2384 EXPORT_SYMBOL(mmc_calc_max_discard); 2385 2386 bool mmc_card_is_blockaddr(struct mmc_card *card) 2387 { 2388 return card ? mmc_card_blockaddr(card) : false; 2389 } 2390 EXPORT_SYMBOL(mmc_card_is_blockaddr); 2391 2392 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 2393 { 2394 struct mmc_command cmd = {}; 2395 2396 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || 2397 mmc_card_hs400(card) || mmc_card_hs400es(card)) 2398 return 0; 2399 2400 cmd.opcode = MMC_SET_BLOCKLEN; 2401 cmd.arg = blocklen; 2402 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2403 return mmc_wait_for_cmd(card->host, &cmd, 5); 2404 } 2405 EXPORT_SYMBOL(mmc_set_blocklen); 2406 2407 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount, 2408 bool is_rel_write) 2409 { 2410 struct mmc_command cmd = {}; 2411 2412 cmd.opcode = MMC_SET_BLOCK_COUNT; 2413 cmd.arg = blockcount & 0x0000FFFF; 2414 if (is_rel_write) 2415 cmd.arg |= 1 << 31; 2416 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 2417 return mmc_wait_for_cmd(card->host, &cmd, 5); 2418 } 2419 EXPORT_SYMBOL(mmc_set_blockcount); 2420 2421 static void mmc_hw_reset_for_init(struct mmc_host *host) 2422 { 2423 mmc_pwrseq_reset(host); 2424 2425 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 2426 return; 2427 host->ops->hw_reset(host); 2428 } 2429 2430 int mmc_hw_reset(struct mmc_host *host) 2431 { 2432 int ret; 2433 2434 if (!host->card) 2435 return -EINVAL; 2436 2437 mmc_bus_get(host); 2438 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) { 2439 mmc_bus_put(host); 2440 return -EOPNOTSUPP; 2441 } 2442 2443 ret = host->bus_ops->reset(host); 2444 mmc_bus_put(host); 2445 2446 if (ret) 2447 pr_warn("%s: tried to reset card, got error %d\n", 2448 mmc_hostname(host), ret); 2449 2450 return ret; 2451 } 2452 EXPORT_SYMBOL(mmc_hw_reset); 2453 2454 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2455 { 2456 host->f_init = freq; 2457 2458 pr_debug("%s: %s: trying to init card at %u Hz\n", 2459 mmc_hostname(host), __func__, host->f_init); 2460 2461 mmc_power_up(host, host->ocr_avail); 2462 2463 /* 2464 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2465 * do a hardware reset if possible. 2466 */ 2467 mmc_hw_reset_for_init(host); 2468 2469 /* 2470 * sdio_reset sends CMD52 to reset card. Since we do not know 2471 * if the card is being re-initialized, just send it. CMD52 2472 * should be ignored by SD/eMMC cards. 2473 * Skip it if we already know that we do not support SDIO commands 2474 */ 2475 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2476 sdio_reset(host); 2477 2478 mmc_go_idle(host); 2479 2480 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2481 mmc_send_if_cond(host, host->ocr_avail); 2482 2483 /* Order's important: probe SDIO, then SD, then MMC */ 2484 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2485 if (!mmc_attach_sdio(host)) 2486 return 0; 2487 2488 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2489 if (!mmc_attach_sd(host)) 2490 return 0; 2491 2492 if (!(host->caps2 & MMC_CAP2_NO_MMC)) 2493 if (!mmc_attach_mmc(host)) 2494 return 0; 2495 2496 mmc_power_off(host); 2497 return -EIO; 2498 } 2499 2500 int _mmc_detect_card_removed(struct mmc_host *host) 2501 { 2502 int ret; 2503 2504 if (!host->card || mmc_card_removed(host->card)) 2505 return 1; 2506 2507 ret = host->bus_ops->alive(host); 2508 2509 /* 2510 * Card detect status and alive check may be out of sync if card is 2511 * removed slowly, when card detect switch changes while card/slot 2512 * pads are still contacted in hardware (refer to "SD Card Mechanical 2513 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2514 * detect work 200ms later for this case. 2515 */ 2516 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2517 mmc_detect_change(host, msecs_to_jiffies(200)); 2518 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2519 } 2520 2521 if (ret) { 2522 mmc_card_set_removed(host->card); 2523 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2524 } 2525 2526 return ret; 2527 } 2528 2529 int mmc_detect_card_removed(struct mmc_host *host) 2530 { 2531 struct mmc_card *card = host->card; 2532 int ret; 2533 2534 WARN_ON(!host->claimed); 2535 2536 if (!card) 2537 return 1; 2538 2539 if (!mmc_card_is_removable(host)) 2540 return 0; 2541 2542 ret = mmc_card_removed(card); 2543 /* 2544 * The card will be considered unchanged unless we have been asked to 2545 * detect a change or host requires polling to provide card detection. 2546 */ 2547 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2548 return ret; 2549 2550 host->detect_change = 0; 2551 if (!ret) { 2552 ret = _mmc_detect_card_removed(host); 2553 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2554 /* 2555 * Schedule a detect work as soon as possible to let a 2556 * rescan handle the card removal. 2557 */ 2558 cancel_delayed_work(&host->detect); 2559 _mmc_detect_change(host, 0, false); 2560 } 2561 } 2562 2563 return ret; 2564 } 2565 EXPORT_SYMBOL(mmc_detect_card_removed); 2566 2567 void mmc_rescan(struct work_struct *work) 2568 { 2569 struct mmc_host *host = 2570 container_of(work, struct mmc_host, detect.work); 2571 int i; 2572 2573 if (host->rescan_disable) 2574 return; 2575 2576 /* If there is a non-removable card registered, only scan once */ 2577 if (!mmc_card_is_removable(host) && host->rescan_entered) 2578 return; 2579 host->rescan_entered = 1; 2580 2581 if (host->trigger_card_event && host->ops->card_event) { 2582 mmc_claim_host(host); 2583 host->ops->card_event(host); 2584 mmc_release_host(host); 2585 host->trigger_card_event = false; 2586 } 2587 2588 mmc_bus_get(host); 2589 2590 /* 2591 * if there is a _removable_ card registered, check whether it is 2592 * still present 2593 */ 2594 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host)) 2595 host->bus_ops->detect(host); 2596 2597 host->detect_change = 0; 2598 2599 /* 2600 * Let mmc_bus_put() free the bus/bus_ops if we've found that 2601 * the card is no longer present. 2602 */ 2603 mmc_bus_put(host); 2604 mmc_bus_get(host); 2605 2606 /* if there still is a card present, stop here */ 2607 if (host->bus_ops != NULL) { 2608 mmc_bus_put(host); 2609 goto out; 2610 } 2611 2612 /* 2613 * Only we can add a new handler, so it's safe to 2614 * release the lock here. 2615 */ 2616 mmc_bus_put(host); 2617 2618 mmc_claim_host(host); 2619 if (mmc_card_is_removable(host) && host->ops->get_cd && 2620 host->ops->get_cd(host) == 0) { 2621 mmc_power_off(host); 2622 mmc_release_host(host); 2623 goto out; 2624 } 2625 2626 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2627 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) 2628 break; 2629 if (freqs[i] <= host->f_min) 2630 break; 2631 } 2632 mmc_release_host(host); 2633 2634 out: 2635 if (host->caps & MMC_CAP_NEEDS_POLL) 2636 mmc_schedule_delayed_work(&host->detect, HZ); 2637 } 2638 2639 void mmc_start_host(struct mmc_host *host) 2640 { 2641 host->f_init = max(freqs[0], host->f_min); 2642 host->rescan_disable = 0; 2643 host->ios.power_mode = MMC_POWER_UNDEFINED; 2644 2645 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) { 2646 mmc_claim_host(host); 2647 mmc_power_up(host, host->ocr_avail); 2648 mmc_release_host(host); 2649 } 2650 2651 mmc_gpiod_request_cd_irq(host); 2652 _mmc_detect_change(host, 0, false); 2653 } 2654 2655 void mmc_stop_host(struct mmc_host *host) 2656 { 2657 if (host->slot.cd_irq >= 0) { 2658 mmc_gpio_set_cd_wake(host, false); 2659 disable_irq(host->slot.cd_irq); 2660 } 2661 2662 host->rescan_disable = 1; 2663 cancel_delayed_work_sync(&host->detect); 2664 2665 /* clear pm flags now and let card drivers set them as needed */ 2666 host->pm_flags = 0; 2667 2668 mmc_bus_get(host); 2669 if (host->bus_ops && !host->bus_dead) { 2670 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2671 host->bus_ops->remove(host); 2672 mmc_claim_host(host); 2673 mmc_detach_bus(host); 2674 mmc_power_off(host); 2675 mmc_release_host(host); 2676 mmc_bus_put(host); 2677 return; 2678 } 2679 mmc_bus_put(host); 2680 2681 mmc_claim_host(host); 2682 mmc_power_off(host); 2683 mmc_release_host(host); 2684 } 2685 2686 int mmc_power_save_host(struct mmc_host *host) 2687 { 2688 int ret = 0; 2689 2690 pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__); 2691 2692 mmc_bus_get(host); 2693 2694 if (!host->bus_ops || host->bus_dead) { 2695 mmc_bus_put(host); 2696 return -EINVAL; 2697 } 2698 2699 if (host->bus_ops->power_save) 2700 ret = host->bus_ops->power_save(host); 2701 2702 mmc_bus_put(host); 2703 2704 mmc_power_off(host); 2705 2706 return ret; 2707 } 2708 EXPORT_SYMBOL(mmc_power_save_host); 2709 2710 int mmc_power_restore_host(struct mmc_host *host) 2711 { 2712 int ret; 2713 2714 pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__); 2715 2716 mmc_bus_get(host); 2717 2718 if (!host->bus_ops || host->bus_dead) { 2719 mmc_bus_put(host); 2720 return -EINVAL; 2721 } 2722 2723 mmc_power_up(host, host->card->ocr); 2724 ret = host->bus_ops->power_restore(host); 2725 2726 mmc_bus_put(host); 2727 2728 return ret; 2729 } 2730 EXPORT_SYMBOL(mmc_power_restore_host); 2731 2732 #ifdef CONFIG_PM_SLEEP 2733 /* Do the card removal on suspend if card is assumed removeable 2734 * Do that in pm notifier while userspace isn't yet frozen, so we will be able 2735 to sync the card. 2736 */ 2737 static int mmc_pm_notify(struct notifier_block *notify_block, 2738 unsigned long mode, void *unused) 2739 { 2740 struct mmc_host *host = container_of( 2741 notify_block, struct mmc_host, pm_notify); 2742 unsigned long flags; 2743 int err = 0; 2744 2745 switch (mode) { 2746 case PM_HIBERNATION_PREPARE: 2747 case PM_SUSPEND_PREPARE: 2748 case PM_RESTORE_PREPARE: 2749 spin_lock_irqsave(&host->lock, flags); 2750 host->rescan_disable = 1; 2751 spin_unlock_irqrestore(&host->lock, flags); 2752 cancel_delayed_work_sync(&host->detect); 2753 2754 if (!host->bus_ops) 2755 break; 2756 2757 /* Validate prerequisites for suspend */ 2758 if (host->bus_ops->pre_suspend) 2759 err = host->bus_ops->pre_suspend(host); 2760 if (!err) 2761 break; 2762 2763 if (!mmc_card_is_removable(host)) { 2764 dev_warn(mmc_dev(host), 2765 "pre_suspend failed for non-removable host: " 2766 "%d\n", err); 2767 /* Avoid removing non-removable hosts */ 2768 break; 2769 } 2770 2771 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2772 host->bus_ops->remove(host); 2773 mmc_claim_host(host); 2774 mmc_detach_bus(host); 2775 mmc_power_off(host); 2776 mmc_release_host(host); 2777 host->pm_flags = 0; 2778 break; 2779 2780 case PM_POST_SUSPEND: 2781 case PM_POST_HIBERNATION: 2782 case PM_POST_RESTORE: 2783 2784 spin_lock_irqsave(&host->lock, flags); 2785 host->rescan_disable = 0; 2786 spin_unlock_irqrestore(&host->lock, flags); 2787 _mmc_detect_change(host, 0, false); 2788 2789 } 2790 2791 return 0; 2792 } 2793 2794 void mmc_register_pm_notifier(struct mmc_host *host) 2795 { 2796 host->pm_notify.notifier_call = mmc_pm_notify; 2797 register_pm_notifier(&host->pm_notify); 2798 } 2799 2800 void mmc_unregister_pm_notifier(struct mmc_host *host) 2801 { 2802 unregister_pm_notifier(&host->pm_notify); 2803 } 2804 #endif 2805 2806 static int __init mmc_init(void) 2807 { 2808 int ret; 2809 2810 ret = mmc_register_bus(); 2811 if (ret) 2812 return ret; 2813 2814 ret = mmc_register_host_class(); 2815 if (ret) 2816 goto unregister_bus; 2817 2818 ret = sdio_register_bus(); 2819 if (ret) 2820 goto unregister_host_class; 2821 2822 return 0; 2823 2824 unregister_host_class: 2825 mmc_unregister_host_class(); 2826 unregister_bus: 2827 mmc_unregister_bus(); 2828 return ret; 2829 } 2830 2831 static void __exit mmc_exit(void) 2832 { 2833 sdio_unregister_bus(); 2834 mmc_unregister_host_class(); 2835 mmc_unregister_bus(); 2836 } 2837 2838 subsys_initcall(mmc_init); 2839 module_exit(mmc_exit); 2840 2841 MODULE_LICENSE("GPL"); 2842