1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/core/core.c 4 * 5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved. 6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. 7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. 8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. 9 */ 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/interrupt.h> 13 #include <linux/completion.h> 14 #include <linux/device.h> 15 #include <linux/delay.h> 16 #include <linux/pagemap.h> 17 #include <linux/err.h> 18 #include <linux/leds.h> 19 #include <linux/scatterlist.h> 20 #include <linux/log2.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/pm_wakeup.h> 23 #include <linux/suspend.h> 24 #include <linux/fault-inject.h> 25 #include <linux/random.h> 26 #include <linux/slab.h> 27 #include <linux/of.h> 28 29 #include <linux/mmc/card.h> 30 #include <linux/mmc/host.h> 31 #include <linux/mmc/mmc.h> 32 #include <linux/mmc/sd.h> 33 #include <linux/mmc/slot-gpio.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/mmc.h> 37 38 #include "core.h" 39 #include "card.h" 40 #include "crypto.h" 41 #include "bus.h" 42 #include "host.h" 43 #include "sdio_bus.h" 44 #include "pwrseq.h" 45 46 #include "mmc_ops.h" 47 #include "sd_ops.h" 48 #include "sdio_ops.h" 49 50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */ 51 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */ 52 #define SD_DISCARD_TIMEOUT_MS (250) 53 54 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; 55 56 /* 57 * Enabling software CRCs on the data blocks can be a significant (30%) 58 * performance cost, and for other reasons may not always be desired. 59 * So we allow it it to be disabled. 60 */ 61 bool use_spi_crc = 1; 62 module_param(use_spi_crc, bool, 0); 63 64 static int mmc_schedule_delayed_work(struct delayed_work *work, 65 unsigned long delay) 66 { 67 /* 68 * We use the system_freezable_wq, because of two reasons. 69 * First, it allows several works (not the same work item) to be 70 * executed simultaneously. Second, the queue becomes frozen when 71 * userspace becomes frozen during system PM. 72 */ 73 return queue_delayed_work(system_freezable_wq, work, delay); 74 } 75 76 #ifdef CONFIG_FAIL_MMC_REQUEST 77 78 /* 79 * Internal function. Inject random data errors. 80 * If mmc_data is NULL no errors are injected. 81 */ 82 static void mmc_should_fail_request(struct mmc_host *host, 83 struct mmc_request *mrq) 84 { 85 struct mmc_command *cmd = mrq->cmd; 86 struct mmc_data *data = mrq->data; 87 static const int data_errors[] = { 88 -ETIMEDOUT, 89 -EILSEQ, 90 -EIO, 91 }; 92 93 if (!data) 94 return; 95 96 if ((cmd && cmd->error) || data->error || 97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) 98 return; 99 100 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)]; 101 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9; 102 } 103 104 #else /* CONFIG_FAIL_MMC_REQUEST */ 105 106 static inline void mmc_should_fail_request(struct mmc_host *host, 107 struct mmc_request *mrq) 108 { 109 } 110 111 #endif /* CONFIG_FAIL_MMC_REQUEST */ 112 113 static inline void mmc_complete_cmd(struct mmc_request *mrq) 114 { 115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion)) 116 complete_all(&mrq->cmd_completion); 117 } 118 119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq) 120 { 121 if (!mrq->cap_cmd_during_tfr) 122 return; 123 124 mmc_complete_cmd(mrq); 125 126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n", 127 mmc_hostname(host), mrq->cmd->opcode); 128 } 129 EXPORT_SYMBOL(mmc_command_done); 130 131 /** 132 * mmc_request_done - finish processing an MMC request 133 * @host: MMC host which completed request 134 * @mrq: MMC request which request 135 * 136 * MMC drivers should call this function when they have completed 137 * their processing of a request. 138 */ 139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) 140 { 141 struct mmc_command *cmd = mrq->cmd; 142 int err = cmd->error; 143 144 /* Flag re-tuning needed on CRC errors */ 145 if (cmd->opcode != MMC_SEND_TUNING_BLOCK && 146 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 && 147 !host->retune_crc_disable && 148 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) || 149 (mrq->data && mrq->data->error == -EILSEQ) || 150 (mrq->stop && mrq->stop->error == -EILSEQ))) 151 mmc_retune_needed(host); 152 153 if (err && cmd->retries && mmc_host_is_spi(host)) { 154 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) 155 cmd->retries = 0; 156 } 157 158 if (host->ongoing_mrq == mrq) 159 host->ongoing_mrq = NULL; 160 161 mmc_complete_cmd(mrq); 162 163 trace_mmc_request_done(host, mrq); 164 165 /* 166 * We list various conditions for the command to be considered 167 * properly done: 168 * 169 * - There was no error, OK fine then 170 * - We are not doing some kind of retry 171 * - The card was removed (...so just complete everything no matter 172 * if there are errors or retries) 173 */ 174 if (!err || !cmd->retries || mmc_card_removed(host->card)) { 175 mmc_should_fail_request(host, mrq); 176 177 if (!host->ongoing_mrq) 178 led_trigger_event(host->led, LED_OFF); 179 180 if (mrq->sbc) { 181 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n", 182 mmc_hostname(host), mrq->sbc->opcode, 183 mrq->sbc->error, 184 mrq->sbc->resp[0], mrq->sbc->resp[1], 185 mrq->sbc->resp[2], mrq->sbc->resp[3]); 186 } 187 188 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", 189 mmc_hostname(host), cmd->opcode, err, 190 cmd->resp[0], cmd->resp[1], 191 cmd->resp[2], cmd->resp[3]); 192 193 if (mrq->data) { 194 pr_debug("%s: %d bytes transferred: %d\n", 195 mmc_hostname(host), 196 mrq->data->bytes_xfered, mrq->data->error); 197 } 198 199 if (mrq->stop) { 200 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", 201 mmc_hostname(host), mrq->stop->opcode, 202 mrq->stop->error, 203 mrq->stop->resp[0], mrq->stop->resp[1], 204 mrq->stop->resp[2], mrq->stop->resp[3]); 205 } 206 } 207 /* 208 * Request starter must handle retries - see 209 * mmc_wait_for_req_done(). 210 */ 211 if (mrq->done) 212 mrq->done(mrq); 213 } 214 215 EXPORT_SYMBOL(mmc_request_done); 216 217 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 218 { 219 int err; 220 221 /* Assumes host controller has been runtime resumed by mmc_claim_host */ 222 err = mmc_retune(host); 223 if (err) { 224 mrq->cmd->error = err; 225 mmc_request_done(host, mrq); 226 return; 227 } 228 229 /* 230 * For sdio rw commands we must wait for card busy otherwise some 231 * sdio devices won't work properly. 232 * And bypass I/O abort, reset and bus suspend operations. 233 */ 234 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) && 235 host->ops->card_busy) { 236 int tries = 500; /* Wait aprox 500ms at maximum */ 237 238 while (host->ops->card_busy(host) && --tries) 239 mmc_delay(1); 240 241 if (tries == 0) { 242 mrq->cmd->error = -EBUSY; 243 mmc_request_done(host, mrq); 244 return; 245 } 246 } 247 248 if (mrq->cap_cmd_during_tfr) { 249 host->ongoing_mrq = mrq; 250 /* 251 * Retry path could come through here without having waiting on 252 * cmd_completion, so ensure it is reinitialised. 253 */ 254 reinit_completion(&mrq->cmd_completion); 255 } 256 257 trace_mmc_request_start(host, mrq); 258 259 if (host->cqe_on) 260 host->cqe_ops->cqe_off(host); 261 262 host->ops->request(host, mrq); 263 } 264 265 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq, 266 bool cqe) 267 { 268 if (mrq->sbc) { 269 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", 270 mmc_hostname(host), mrq->sbc->opcode, 271 mrq->sbc->arg, mrq->sbc->flags); 272 } 273 274 if (mrq->cmd) { 275 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n", 276 mmc_hostname(host), cqe ? "CQE direct " : "", 277 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags); 278 } else if (cqe) { 279 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n", 280 mmc_hostname(host), mrq->tag, mrq->data->blk_addr); 281 } 282 283 if (mrq->data) { 284 pr_debug("%s: blksz %d blocks %d flags %08x " 285 "tsac %d ms nsac %d\n", 286 mmc_hostname(host), mrq->data->blksz, 287 mrq->data->blocks, mrq->data->flags, 288 mrq->data->timeout_ns / 1000000, 289 mrq->data->timeout_clks); 290 } 291 292 if (mrq->stop) { 293 pr_debug("%s: CMD%u arg %08x flags %08x\n", 294 mmc_hostname(host), mrq->stop->opcode, 295 mrq->stop->arg, mrq->stop->flags); 296 } 297 } 298 299 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq) 300 { 301 unsigned int i, sz = 0; 302 struct scatterlist *sg; 303 304 if (mrq->cmd) { 305 mrq->cmd->error = 0; 306 mrq->cmd->mrq = mrq; 307 mrq->cmd->data = mrq->data; 308 } 309 if (mrq->sbc) { 310 mrq->sbc->error = 0; 311 mrq->sbc->mrq = mrq; 312 } 313 if (mrq->data) { 314 if (mrq->data->blksz > host->max_blk_size || 315 mrq->data->blocks > host->max_blk_count || 316 mrq->data->blocks * mrq->data->blksz > host->max_req_size) 317 return -EINVAL; 318 319 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) 320 sz += sg->length; 321 if (sz != mrq->data->blocks * mrq->data->blksz) 322 return -EINVAL; 323 324 mrq->data->error = 0; 325 mrq->data->mrq = mrq; 326 if (mrq->stop) { 327 mrq->data->stop = mrq->stop; 328 mrq->stop->error = 0; 329 mrq->stop->mrq = mrq; 330 } 331 } 332 333 return 0; 334 } 335 336 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) 337 { 338 int err; 339 340 init_completion(&mrq->cmd_completion); 341 342 mmc_retune_hold(host); 343 344 if (mmc_card_removed(host->card)) 345 return -ENOMEDIUM; 346 347 mmc_mrq_pr_debug(host, mrq, false); 348 349 WARN_ON(!host->claimed); 350 351 err = mmc_mrq_prep(host, mrq); 352 if (err) 353 return err; 354 355 led_trigger_event(host->led, LED_FULL); 356 __mmc_start_request(host, mrq); 357 358 return 0; 359 } 360 EXPORT_SYMBOL(mmc_start_request); 361 362 static void mmc_wait_done(struct mmc_request *mrq) 363 { 364 complete(&mrq->completion); 365 } 366 367 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host) 368 { 369 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq); 370 371 /* 372 * If there is an ongoing transfer, wait for the command line to become 373 * available. 374 */ 375 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion)) 376 wait_for_completion(&ongoing_mrq->cmd_completion); 377 } 378 379 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) 380 { 381 int err; 382 383 mmc_wait_ongoing_tfr_cmd(host); 384 385 init_completion(&mrq->completion); 386 mrq->done = mmc_wait_done; 387 388 err = mmc_start_request(host, mrq); 389 if (err) { 390 mrq->cmd->error = err; 391 mmc_complete_cmd(mrq); 392 complete(&mrq->completion); 393 } 394 395 return err; 396 } 397 398 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) 399 { 400 struct mmc_command *cmd; 401 402 while (1) { 403 wait_for_completion(&mrq->completion); 404 405 cmd = mrq->cmd; 406 407 if (!cmd->error || !cmd->retries || 408 mmc_card_removed(host->card)) 409 break; 410 411 mmc_retune_recheck(host); 412 413 pr_debug("%s: req failed (CMD%u): %d, retrying...\n", 414 mmc_hostname(host), cmd->opcode, cmd->error); 415 cmd->retries--; 416 cmd->error = 0; 417 __mmc_start_request(host, mrq); 418 } 419 420 mmc_retune_release(host); 421 } 422 EXPORT_SYMBOL(mmc_wait_for_req_done); 423 424 /* 425 * mmc_cqe_start_req - Start a CQE request. 426 * @host: MMC host to start the request 427 * @mrq: request to start 428 * 429 * Start the request, re-tuning if needed and it is possible. Returns an error 430 * code if the request fails to start or -EBUSY if CQE is busy. 431 */ 432 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 433 { 434 int err; 435 436 /* 437 * CQE cannot process re-tuning commands. Caller must hold retuning 438 * while CQE is in use. Re-tuning can happen here only when CQE has no 439 * active requests i.e. this is the first. Note, re-tuning will call 440 * ->cqe_off(). 441 */ 442 err = mmc_retune(host); 443 if (err) 444 goto out_err; 445 446 mrq->host = host; 447 448 mmc_mrq_pr_debug(host, mrq, true); 449 450 err = mmc_mrq_prep(host, mrq); 451 if (err) 452 goto out_err; 453 454 err = host->cqe_ops->cqe_request(host, mrq); 455 if (err) 456 goto out_err; 457 458 trace_mmc_request_start(host, mrq); 459 460 return 0; 461 462 out_err: 463 if (mrq->cmd) { 464 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n", 465 mmc_hostname(host), mrq->cmd->opcode, err); 466 } else { 467 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n", 468 mmc_hostname(host), mrq->tag, err); 469 } 470 return err; 471 } 472 EXPORT_SYMBOL(mmc_cqe_start_req); 473 474 /** 475 * mmc_cqe_request_done - CQE has finished processing an MMC request 476 * @host: MMC host which completed request 477 * @mrq: MMC request which completed 478 * 479 * CQE drivers should call this function when they have completed 480 * their processing of a request. 481 */ 482 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq) 483 { 484 mmc_should_fail_request(host, mrq); 485 486 /* Flag re-tuning needed on CRC errors */ 487 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) || 488 (mrq->data && mrq->data->error == -EILSEQ)) 489 mmc_retune_needed(host); 490 491 trace_mmc_request_done(host, mrq); 492 493 if (mrq->cmd) { 494 pr_debug("%s: CQE req done (direct CMD%u): %d\n", 495 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error); 496 } else { 497 pr_debug("%s: CQE transfer done tag %d\n", 498 mmc_hostname(host), mrq->tag); 499 } 500 501 if (mrq->data) { 502 pr_debug("%s: %d bytes transferred: %d\n", 503 mmc_hostname(host), 504 mrq->data->bytes_xfered, mrq->data->error); 505 } 506 507 mrq->done(mrq); 508 } 509 EXPORT_SYMBOL(mmc_cqe_request_done); 510 511 /** 512 * mmc_cqe_post_req - CQE post process of a completed MMC request 513 * @host: MMC host 514 * @mrq: MMC request to be processed 515 */ 516 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq) 517 { 518 if (host->cqe_ops->cqe_post_req) 519 host->cqe_ops->cqe_post_req(host, mrq); 520 } 521 EXPORT_SYMBOL(mmc_cqe_post_req); 522 523 /* Arbitrary 1 second timeout */ 524 #define MMC_CQE_RECOVERY_TIMEOUT 1000 525 526 /* 527 * mmc_cqe_recovery - Recover from CQE errors. 528 * @host: MMC host to recover 529 * 530 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in 531 * in eMMC, and discarding the queue in CQE. CQE must call 532 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC 533 * fails to discard its queue. 534 */ 535 int mmc_cqe_recovery(struct mmc_host *host) 536 { 537 struct mmc_command cmd; 538 int err; 539 540 mmc_retune_hold_now(host); 541 542 /* 543 * Recovery is expected seldom, if at all, but it reduces performance, 544 * so make sure it is not completely silent. 545 */ 546 pr_warn("%s: running CQE recovery\n", mmc_hostname(host)); 547 548 host->cqe_ops->cqe_recovery_start(host); 549 550 memset(&cmd, 0, sizeof(cmd)); 551 cmd.opcode = MMC_STOP_TRANSMISSION; 552 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 553 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ 554 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; 555 mmc_wait_for_cmd(host, &cmd, 0); 556 557 memset(&cmd, 0, sizeof(cmd)); 558 cmd.opcode = MMC_CMDQ_TASK_MGMT; 559 cmd.arg = 1; /* Discard entire queue */ 560 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; 561 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */ 562 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT; 563 err = mmc_wait_for_cmd(host, &cmd, 0); 564 565 host->cqe_ops->cqe_recovery_finish(host); 566 567 mmc_retune_release(host); 568 569 return err; 570 } 571 EXPORT_SYMBOL(mmc_cqe_recovery); 572 573 /** 574 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done 575 * @host: MMC host 576 * @mrq: MMC request 577 * 578 * mmc_is_req_done() is used with requests that have 579 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after 580 * starting a request and before waiting for it to complete. That is, 581 * either in between calls to mmc_start_req(), or after mmc_wait_for_req() 582 * and before mmc_wait_for_req_done(). If it is called at other times the 583 * result is not meaningful. 584 */ 585 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq) 586 { 587 return completion_done(&mrq->completion); 588 } 589 EXPORT_SYMBOL(mmc_is_req_done); 590 591 /** 592 * mmc_wait_for_req - start a request and wait for completion 593 * @host: MMC host to start command 594 * @mrq: MMC request to start 595 * 596 * Start a new MMC custom command request for a host, and wait 597 * for the command to complete. In the case of 'cap_cmd_during_tfr' 598 * requests, the transfer is ongoing and the caller can issue further 599 * commands that do not use the data lines, and then wait by calling 600 * mmc_wait_for_req_done(). 601 * Does not attempt to parse the response. 602 */ 603 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) 604 { 605 __mmc_start_req(host, mrq); 606 607 if (!mrq->cap_cmd_during_tfr) 608 mmc_wait_for_req_done(host, mrq); 609 } 610 EXPORT_SYMBOL(mmc_wait_for_req); 611 612 /** 613 * mmc_wait_for_cmd - start a command and wait for completion 614 * @host: MMC host to start command 615 * @cmd: MMC command to start 616 * @retries: maximum number of retries 617 * 618 * Start a new MMC command for a host, and wait for the command 619 * to complete. Return any error that occurred while the command 620 * was executing. Do not attempt to parse the response. 621 */ 622 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) 623 { 624 struct mmc_request mrq = {}; 625 626 WARN_ON(!host->claimed); 627 628 memset(cmd->resp, 0, sizeof(cmd->resp)); 629 cmd->retries = retries; 630 631 mrq.cmd = cmd; 632 cmd->data = NULL; 633 634 mmc_wait_for_req(host, &mrq); 635 636 return cmd->error; 637 } 638 639 EXPORT_SYMBOL(mmc_wait_for_cmd); 640 641 /** 642 * mmc_set_data_timeout - set the timeout for a data command 643 * @data: data phase for command 644 * @card: the MMC card associated with the data transfer 645 * 646 * Computes the data timeout parameters according to the 647 * correct algorithm given the card type. 648 */ 649 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) 650 { 651 unsigned int mult; 652 653 /* 654 * SDIO cards only define an upper 1 s limit on access. 655 */ 656 if (mmc_card_sdio(card)) { 657 data->timeout_ns = 1000000000; 658 data->timeout_clks = 0; 659 return; 660 } 661 662 /* 663 * SD cards use a 100 multiplier rather than 10 664 */ 665 mult = mmc_card_sd(card) ? 100 : 10; 666 667 /* 668 * Scale up the multiplier (and therefore the timeout) by 669 * the r2w factor for writes. 670 */ 671 if (data->flags & MMC_DATA_WRITE) 672 mult <<= card->csd.r2w_factor; 673 674 data->timeout_ns = card->csd.taac_ns * mult; 675 data->timeout_clks = card->csd.taac_clks * mult; 676 677 /* 678 * SD cards also have an upper limit on the timeout. 679 */ 680 if (mmc_card_sd(card)) { 681 unsigned int timeout_us, limit_us; 682 683 timeout_us = data->timeout_ns / 1000; 684 if (card->host->ios.clock) 685 timeout_us += data->timeout_clks * 1000 / 686 (card->host->ios.clock / 1000); 687 688 if (data->flags & MMC_DATA_WRITE) 689 /* 690 * The MMC spec "It is strongly recommended 691 * for hosts to implement more than 500ms 692 * timeout value even if the card indicates 693 * the 250ms maximum busy length." Even the 694 * previous value of 300ms is known to be 695 * insufficient for some cards. 696 */ 697 limit_us = 3000000; 698 else 699 limit_us = 100000; 700 701 /* 702 * SDHC cards always use these fixed values. 703 */ 704 if (timeout_us > limit_us) { 705 data->timeout_ns = limit_us * 1000; 706 data->timeout_clks = 0; 707 } 708 709 /* assign limit value if invalid */ 710 if (timeout_us == 0) 711 data->timeout_ns = limit_us * 1000; 712 } 713 714 /* 715 * Some cards require longer data read timeout than indicated in CSD. 716 * Address this by setting the read timeout to a "reasonably high" 717 * value. For the cards tested, 600ms has proven enough. If necessary, 718 * this value can be increased if other problematic cards require this. 719 */ 720 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { 721 data->timeout_ns = 600000000; 722 data->timeout_clks = 0; 723 } 724 725 /* 726 * Some cards need very high timeouts if driven in SPI mode. 727 * The worst observed timeout was 900ms after writing a 728 * continuous stream of data until the internal logic 729 * overflowed. 730 */ 731 if (mmc_host_is_spi(card->host)) { 732 if (data->flags & MMC_DATA_WRITE) { 733 if (data->timeout_ns < 1000000000) 734 data->timeout_ns = 1000000000; /* 1s */ 735 } else { 736 if (data->timeout_ns < 100000000) 737 data->timeout_ns = 100000000; /* 100ms */ 738 } 739 } 740 } 741 EXPORT_SYMBOL(mmc_set_data_timeout); 742 743 /* 744 * Allow claiming an already claimed host if the context is the same or there is 745 * no context but the task is the same. 746 */ 747 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx, 748 struct task_struct *task) 749 { 750 return host->claimer == ctx || 751 (!ctx && task && host->claimer->task == task); 752 } 753 754 static inline void mmc_ctx_set_claimer(struct mmc_host *host, 755 struct mmc_ctx *ctx, 756 struct task_struct *task) 757 { 758 if (!host->claimer) { 759 if (ctx) 760 host->claimer = ctx; 761 else 762 host->claimer = &host->default_ctx; 763 } 764 if (task) 765 host->claimer->task = task; 766 } 767 768 /** 769 * __mmc_claim_host - exclusively claim a host 770 * @host: mmc host to claim 771 * @ctx: context that claims the host or NULL in which case the default 772 * context will be used 773 * @abort: whether or not the operation should be aborted 774 * 775 * Claim a host for a set of operations. If @abort is non null and 776 * dereference a non-zero value then this will return prematurely with 777 * that non-zero value without acquiring the lock. Returns zero 778 * with the lock held otherwise. 779 */ 780 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx, 781 atomic_t *abort) 782 { 783 struct task_struct *task = ctx ? NULL : current; 784 DECLARE_WAITQUEUE(wait, current); 785 unsigned long flags; 786 int stop; 787 bool pm = false; 788 789 might_sleep(); 790 791 add_wait_queue(&host->wq, &wait); 792 spin_lock_irqsave(&host->lock, flags); 793 while (1) { 794 set_current_state(TASK_UNINTERRUPTIBLE); 795 stop = abort ? atomic_read(abort) : 0; 796 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task)) 797 break; 798 spin_unlock_irqrestore(&host->lock, flags); 799 schedule(); 800 spin_lock_irqsave(&host->lock, flags); 801 } 802 set_current_state(TASK_RUNNING); 803 if (!stop) { 804 host->claimed = 1; 805 mmc_ctx_set_claimer(host, ctx, task); 806 host->claim_cnt += 1; 807 if (host->claim_cnt == 1) 808 pm = true; 809 } else 810 wake_up(&host->wq); 811 spin_unlock_irqrestore(&host->lock, flags); 812 remove_wait_queue(&host->wq, &wait); 813 814 if (pm) 815 pm_runtime_get_sync(mmc_dev(host)); 816 817 return stop; 818 } 819 EXPORT_SYMBOL(__mmc_claim_host); 820 821 /** 822 * mmc_release_host - release a host 823 * @host: mmc host to release 824 * 825 * Release a MMC host, allowing others to claim the host 826 * for their operations. 827 */ 828 void mmc_release_host(struct mmc_host *host) 829 { 830 unsigned long flags; 831 832 WARN_ON(!host->claimed); 833 834 spin_lock_irqsave(&host->lock, flags); 835 if (--host->claim_cnt) { 836 /* Release for nested claim */ 837 spin_unlock_irqrestore(&host->lock, flags); 838 } else { 839 host->claimed = 0; 840 host->claimer->task = NULL; 841 host->claimer = NULL; 842 spin_unlock_irqrestore(&host->lock, flags); 843 wake_up(&host->wq); 844 pm_runtime_mark_last_busy(mmc_dev(host)); 845 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM) 846 pm_runtime_put_sync_suspend(mmc_dev(host)); 847 else 848 pm_runtime_put_autosuspend(mmc_dev(host)); 849 } 850 } 851 EXPORT_SYMBOL(mmc_release_host); 852 853 /* 854 * This is a helper function, which fetches a runtime pm reference for the 855 * card device and also claims the host. 856 */ 857 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx) 858 { 859 pm_runtime_get_sync(&card->dev); 860 __mmc_claim_host(card->host, ctx, NULL); 861 } 862 EXPORT_SYMBOL(mmc_get_card); 863 864 /* 865 * This is a helper function, which releases the host and drops the runtime 866 * pm reference for the card device. 867 */ 868 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx) 869 { 870 struct mmc_host *host = card->host; 871 872 WARN_ON(ctx && host->claimer != ctx); 873 874 mmc_release_host(host); 875 pm_runtime_mark_last_busy(&card->dev); 876 pm_runtime_put_autosuspend(&card->dev); 877 } 878 EXPORT_SYMBOL(mmc_put_card); 879 880 /* 881 * Internal function that does the actual ios call to the host driver, 882 * optionally printing some debug output. 883 */ 884 static inline void mmc_set_ios(struct mmc_host *host) 885 { 886 struct mmc_ios *ios = &host->ios; 887 888 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " 889 "width %u timing %u\n", 890 mmc_hostname(host), ios->clock, ios->bus_mode, 891 ios->power_mode, ios->chip_select, ios->vdd, 892 1 << ios->bus_width, ios->timing); 893 894 host->ops->set_ios(host, ios); 895 } 896 897 /* 898 * Control chip select pin on a host. 899 */ 900 void mmc_set_chip_select(struct mmc_host *host, int mode) 901 { 902 host->ios.chip_select = mode; 903 mmc_set_ios(host); 904 } 905 906 /* 907 * Sets the host clock to the highest possible frequency that 908 * is below "hz". 909 */ 910 void mmc_set_clock(struct mmc_host *host, unsigned int hz) 911 { 912 WARN_ON(hz && hz < host->f_min); 913 914 if (hz > host->f_max) 915 hz = host->f_max; 916 917 host->ios.clock = hz; 918 mmc_set_ios(host); 919 } 920 921 int mmc_execute_tuning(struct mmc_card *card) 922 { 923 struct mmc_host *host = card->host; 924 u32 opcode; 925 int err; 926 927 if (!host->ops->execute_tuning) 928 return 0; 929 930 if (host->cqe_on) 931 host->cqe_ops->cqe_off(host); 932 933 if (mmc_card_mmc(card)) 934 opcode = MMC_SEND_TUNING_BLOCK_HS200; 935 else 936 opcode = MMC_SEND_TUNING_BLOCK; 937 938 err = host->ops->execute_tuning(host, opcode); 939 940 if (err) { 941 pr_err("%s: tuning execution failed: %d\n", 942 mmc_hostname(host), err); 943 } else { 944 host->retune_now = 0; 945 host->need_retune = 0; 946 mmc_retune_enable(host); 947 } 948 949 return err; 950 } 951 952 /* 953 * Change the bus mode (open drain/push-pull) of a host. 954 */ 955 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) 956 { 957 host->ios.bus_mode = mode; 958 mmc_set_ios(host); 959 } 960 961 /* 962 * Change data bus width of a host. 963 */ 964 void mmc_set_bus_width(struct mmc_host *host, unsigned int width) 965 { 966 host->ios.bus_width = width; 967 mmc_set_ios(host); 968 } 969 970 /* 971 * Set initial state after a power cycle or a hw_reset. 972 */ 973 void mmc_set_initial_state(struct mmc_host *host) 974 { 975 if (host->cqe_on) 976 host->cqe_ops->cqe_off(host); 977 978 mmc_retune_disable(host); 979 980 if (mmc_host_is_spi(host)) 981 host->ios.chip_select = MMC_CS_HIGH; 982 else 983 host->ios.chip_select = MMC_CS_DONTCARE; 984 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; 985 host->ios.bus_width = MMC_BUS_WIDTH_1; 986 host->ios.timing = MMC_TIMING_LEGACY; 987 host->ios.drv_type = 0; 988 host->ios.enhanced_strobe = false; 989 990 /* 991 * Make sure we are in non-enhanced strobe mode before we 992 * actually enable it in ext_csd. 993 */ 994 if ((host->caps2 & MMC_CAP2_HS400_ES) && 995 host->ops->hs400_enhanced_strobe) 996 host->ops->hs400_enhanced_strobe(host, &host->ios); 997 998 mmc_set_ios(host); 999 1000 mmc_crypto_set_initial_state(host); 1001 } 1002 1003 /** 1004 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number 1005 * @vdd: voltage (mV) 1006 * @low_bits: prefer low bits in boundary cases 1007 * 1008 * This function returns the OCR bit number according to the provided @vdd 1009 * value. If conversion is not possible a negative errno value returned. 1010 * 1011 * Depending on the @low_bits flag the function prefers low or high OCR bits 1012 * on boundary voltages. For example, 1013 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); 1014 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); 1015 * 1016 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). 1017 */ 1018 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) 1019 { 1020 const int max_bit = ilog2(MMC_VDD_35_36); 1021 int bit; 1022 1023 if (vdd < 1650 || vdd > 3600) 1024 return -EINVAL; 1025 1026 if (vdd >= 1650 && vdd <= 1950) 1027 return ilog2(MMC_VDD_165_195); 1028 1029 if (low_bits) 1030 vdd -= 1; 1031 1032 /* Base 2000 mV, step 100 mV, bit's base 8. */ 1033 bit = (vdd - 2000) / 100 + 8; 1034 if (bit > max_bit) 1035 return max_bit; 1036 return bit; 1037 } 1038 1039 /** 1040 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask 1041 * @vdd_min: minimum voltage value (mV) 1042 * @vdd_max: maximum voltage value (mV) 1043 * 1044 * This function returns the OCR mask bits according to the provided @vdd_min 1045 * and @vdd_max values. If conversion is not possible the function returns 0. 1046 * 1047 * Notes wrt boundary cases: 1048 * This function sets the OCR bits for all boundary voltages, for example 1049 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | 1050 * MMC_VDD_34_35 mask. 1051 */ 1052 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) 1053 { 1054 u32 mask = 0; 1055 1056 if (vdd_max < vdd_min) 1057 return 0; 1058 1059 /* Prefer high bits for the boundary vdd_max values. */ 1060 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); 1061 if (vdd_max < 0) 1062 return 0; 1063 1064 /* Prefer low bits for the boundary vdd_min values. */ 1065 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); 1066 if (vdd_min < 0) 1067 return 0; 1068 1069 /* Fill the mask, from max bit to min bit. */ 1070 while (vdd_max >= vdd_min) 1071 mask |= 1 << vdd_max--; 1072 1073 return mask; 1074 } 1075 1076 static int mmc_of_get_func_num(struct device_node *node) 1077 { 1078 u32 reg; 1079 int ret; 1080 1081 ret = of_property_read_u32(node, "reg", ®); 1082 if (ret < 0) 1083 return ret; 1084 1085 return reg; 1086 } 1087 1088 struct device_node *mmc_of_find_child_device(struct mmc_host *host, 1089 unsigned func_num) 1090 { 1091 struct device_node *node; 1092 1093 if (!host->parent || !host->parent->of_node) 1094 return NULL; 1095 1096 for_each_child_of_node(host->parent->of_node, node) { 1097 if (mmc_of_get_func_num(node) == func_num) 1098 return node; 1099 } 1100 1101 return NULL; 1102 } 1103 1104 /* 1105 * Mask off any voltages we don't support and select 1106 * the lowest voltage 1107 */ 1108 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) 1109 { 1110 int bit; 1111 1112 /* 1113 * Sanity check the voltages that the card claims to 1114 * support. 1115 */ 1116 if (ocr & 0x7F) { 1117 dev_warn(mmc_dev(host), 1118 "card claims to support voltages below defined range\n"); 1119 ocr &= ~0x7F; 1120 } 1121 1122 ocr &= host->ocr_avail; 1123 if (!ocr) { 1124 dev_warn(mmc_dev(host), "no support for card's volts\n"); 1125 return 0; 1126 } 1127 1128 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) { 1129 bit = ffs(ocr) - 1; 1130 ocr &= 3 << bit; 1131 mmc_power_cycle(host, ocr); 1132 } else { 1133 bit = fls(ocr) - 1; 1134 ocr &= 3 << bit; 1135 if (bit != host->ios.vdd) 1136 dev_warn(mmc_dev(host), "exceeding card's volts\n"); 1137 } 1138 1139 return ocr; 1140 } 1141 1142 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage) 1143 { 1144 int err = 0; 1145 int old_signal_voltage = host->ios.signal_voltage; 1146 1147 host->ios.signal_voltage = signal_voltage; 1148 if (host->ops->start_signal_voltage_switch) 1149 err = host->ops->start_signal_voltage_switch(host, &host->ios); 1150 1151 if (err) 1152 host->ios.signal_voltage = old_signal_voltage; 1153 1154 return err; 1155 1156 } 1157 1158 void mmc_set_initial_signal_voltage(struct mmc_host *host) 1159 { 1160 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */ 1161 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330)) 1162 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n"); 1163 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1164 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n"); 1165 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120)) 1166 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n"); 1167 } 1168 1169 int mmc_host_set_uhs_voltage(struct mmc_host *host) 1170 { 1171 u32 clock; 1172 1173 /* 1174 * During a signal voltage level switch, the clock must be gated 1175 * for 5 ms according to the SD spec 1176 */ 1177 clock = host->ios.clock; 1178 host->ios.clock = 0; 1179 mmc_set_ios(host); 1180 1181 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) 1182 return -EAGAIN; 1183 1184 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ 1185 mmc_delay(10); 1186 host->ios.clock = clock; 1187 mmc_set_ios(host); 1188 1189 return 0; 1190 } 1191 1192 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr) 1193 { 1194 struct mmc_command cmd = {}; 1195 int err = 0; 1196 1197 /* 1198 * If we cannot switch voltages, return failure so the caller 1199 * can continue without UHS mode 1200 */ 1201 if (!host->ops->start_signal_voltage_switch) 1202 return -EPERM; 1203 if (!host->ops->card_busy) 1204 pr_warn("%s: cannot verify signal voltage switch\n", 1205 mmc_hostname(host)); 1206 1207 cmd.opcode = SD_SWITCH_VOLTAGE; 1208 cmd.arg = 0; 1209 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; 1210 1211 err = mmc_wait_for_cmd(host, &cmd, 0); 1212 if (err) 1213 goto power_cycle; 1214 1215 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) 1216 return -EIO; 1217 1218 /* 1219 * The card should drive cmd and dat[0:3] low immediately 1220 * after the response of cmd11, but wait 1 ms to be sure 1221 */ 1222 mmc_delay(1); 1223 if (host->ops->card_busy && !host->ops->card_busy(host)) { 1224 err = -EAGAIN; 1225 goto power_cycle; 1226 } 1227 1228 if (mmc_host_set_uhs_voltage(host)) { 1229 /* 1230 * Voltages may not have been switched, but we've already 1231 * sent CMD11, so a power cycle is required anyway 1232 */ 1233 err = -EAGAIN; 1234 goto power_cycle; 1235 } 1236 1237 /* Wait for at least 1 ms according to spec */ 1238 mmc_delay(1); 1239 1240 /* 1241 * Failure to switch is indicated by the card holding 1242 * dat[0:3] low 1243 */ 1244 if (host->ops->card_busy && host->ops->card_busy(host)) 1245 err = -EAGAIN; 1246 1247 power_cycle: 1248 if (err) { 1249 pr_debug("%s: Signal voltage switch failed, " 1250 "power cycling card\n", mmc_hostname(host)); 1251 mmc_power_cycle(host, ocr); 1252 } 1253 1254 return err; 1255 } 1256 1257 /* 1258 * Select timing parameters for host. 1259 */ 1260 void mmc_set_timing(struct mmc_host *host, unsigned int timing) 1261 { 1262 host->ios.timing = timing; 1263 mmc_set_ios(host); 1264 } 1265 1266 /* 1267 * Select appropriate driver type for host. 1268 */ 1269 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) 1270 { 1271 host->ios.drv_type = drv_type; 1272 mmc_set_ios(host); 1273 } 1274 1275 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr, 1276 int card_drv_type, int *drv_type) 1277 { 1278 struct mmc_host *host = card->host; 1279 int host_drv_type = SD_DRIVER_TYPE_B; 1280 1281 *drv_type = 0; 1282 1283 if (!host->ops->select_drive_strength) 1284 return 0; 1285 1286 /* Use SD definition of driver strength for hosts */ 1287 if (host->caps & MMC_CAP_DRIVER_TYPE_A) 1288 host_drv_type |= SD_DRIVER_TYPE_A; 1289 1290 if (host->caps & MMC_CAP_DRIVER_TYPE_C) 1291 host_drv_type |= SD_DRIVER_TYPE_C; 1292 1293 if (host->caps & MMC_CAP_DRIVER_TYPE_D) 1294 host_drv_type |= SD_DRIVER_TYPE_D; 1295 1296 /* 1297 * The drive strength that the hardware can support 1298 * depends on the board design. Pass the appropriate 1299 * information and let the hardware specific code 1300 * return what is possible given the options 1301 */ 1302 return host->ops->select_drive_strength(card, max_dtr, 1303 host_drv_type, 1304 card_drv_type, 1305 drv_type); 1306 } 1307 1308 /* 1309 * Apply power to the MMC stack. This is a two-stage process. 1310 * First, we enable power to the card without the clock running. 1311 * We then wait a bit for the power to stabilise. Finally, 1312 * enable the bus drivers and clock to the card. 1313 * 1314 * We must _NOT_ enable the clock prior to power stablising. 1315 * 1316 * If a host does all the power sequencing itself, ignore the 1317 * initial MMC_POWER_UP stage. 1318 */ 1319 void mmc_power_up(struct mmc_host *host, u32 ocr) 1320 { 1321 if (host->ios.power_mode == MMC_POWER_ON) 1322 return; 1323 1324 mmc_pwrseq_pre_power_on(host); 1325 1326 host->ios.vdd = fls(ocr) - 1; 1327 host->ios.power_mode = MMC_POWER_UP; 1328 /* Set initial state and call mmc_set_ios */ 1329 mmc_set_initial_state(host); 1330 1331 mmc_set_initial_signal_voltage(host); 1332 1333 /* 1334 * This delay should be sufficient to allow the power supply 1335 * to reach the minimum voltage. 1336 */ 1337 mmc_delay(host->ios.power_delay_ms); 1338 1339 mmc_pwrseq_post_power_on(host); 1340 1341 host->ios.clock = host->f_init; 1342 1343 host->ios.power_mode = MMC_POWER_ON; 1344 mmc_set_ios(host); 1345 1346 /* 1347 * This delay must be at least 74 clock sizes, or 1 ms, or the 1348 * time required to reach a stable voltage. 1349 */ 1350 mmc_delay(host->ios.power_delay_ms); 1351 } 1352 1353 void mmc_power_off(struct mmc_host *host) 1354 { 1355 if (host->ios.power_mode == MMC_POWER_OFF) 1356 return; 1357 1358 mmc_pwrseq_power_off(host); 1359 1360 host->ios.clock = 0; 1361 host->ios.vdd = 0; 1362 1363 host->ios.power_mode = MMC_POWER_OFF; 1364 /* Set initial state and call mmc_set_ios */ 1365 mmc_set_initial_state(host); 1366 1367 /* 1368 * Some configurations, such as the 802.11 SDIO card in the OLPC 1369 * XO-1.5, require a short delay after poweroff before the card 1370 * can be successfully turned on again. 1371 */ 1372 mmc_delay(1); 1373 } 1374 1375 void mmc_power_cycle(struct mmc_host *host, u32 ocr) 1376 { 1377 mmc_power_off(host); 1378 /* Wait at least 1 ms according to SD spec */ 1379 mmc_delay(1); 1380 mmc_power_up(host, ocr); 1381 } 1382 1383 /* 1384 * Assign a mmc bus handler to a host. Only one bus handler may control a 1385 * host at any given time. 1386 */ 1387 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) 1388 { 1389 host->bus_ops = ops; 1390 } 1391 1392 /* 1393 * Remove the current bus handler from a host. 1394 */ 1395 void mmc_detach_bus(struct mmc_host *host) 1396 { 1397 host->bus_ops = NULL; 1398 } 1399 1400 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq) 1401 { 1402 /* 1403 * Prevent system sleep for 5s to allow user space to consume the 1404 * corresponding uevent. This is especially useful, when CD irq is used 1405 * as a system wakeup, but doesn't hurt in other cases. 1406 */ 1407 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL)) 1408 __pm_wakeup_event(host->ws, 5000); 1409 1410 host->detect_change = 1; 1411 mmc_schedule_delayed_work(&host->detect, delay); 1412 } 1413 1414 /** 1415 * mmc_detect_change - process change of state on a MMC socket 1416 * @host: host which changed state. 1417 * @delay: optional delay to wait before detection (jiffies) 1418 * 1419 * MMC drivers should call this when they detect a card has been 1420 * inserted or removed. The MMC layer will confirm that any 1421 * present card is still functional, and initialize any newly 1422 * inserted. 1423 */ 1424 void mmc_detect_change(struct mmc_host *host, unsigned long delay) 1425 { 1426 _mmc_detect_change(host, delay, true); 1427 } 1428 EXPORT_SYMBOL(mmc_detect_change); 1429 1430 void mmc_init_erase(struct mmc_card *card) 1431 { 1432 unsigned int sz; 1433 1434 if (is_power_of_2(card->erase_size)) 1435 card->erase_shift = ffs(card->erase_size) - 1; 1436 else 1437 card->erase_shift = 0; 1438 1439 /* 1440 * It is possible to erase an arbitrarily large area of an SD or MMC 1441 * card. That is not desirable because it can take a long time 1442 * (minutes) potentially delaying more important I/O, and also the 1443 * timeout calculations become increasingly hugely over-estimated. 1444 * Consequently, 'pref_erase' is defined as a guide to limit erases 1445 * to that size and alignment. 1446 * 1447 * For SD cards that define Allocation Unit size, limit erases to one 1448 * Allocation Unit at a time. 1449 * For MMC, have a stab at ai good value and for modern cards it will 1450 * end up being 4MiB. Note that if the value is too small, it can end 1451 * up taking longer to erase. Also note, erase_size is already set to 1452 * High Capacity Erase Size if available when this function is called. 1453 */ 1454 if (mmc_card_sd(card) && card->ssr.au) { 1455 card->pref_erase = card->ssr.au; 1456 card->erase_shift = ffs(card->ssr.au) - 1; 1457 } else if (card->erase_size) { 1458 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; 1459 if (sz < 128) 1460 card->pref_erase = 512 * 1024 / 512; 1461 else if (sz < 512) 1462 card->pref_erase = 1024 * 1024 / 512; 1463 else if (sz < 1024) 1464 card->pref_erase = 2 * 1024 * 1024 / 512; 1465 else 1466 card->pref_erase = 4 * 1024 * 1024 / 512; 1467 if (card->pref_erase < card->erase_size) 1468 card->pref_erase = card->erase_size; 1469 else { 1470 sz = card->pref_erase % card->erase_size; 1471 if (sz) 1472 card->pref_erase += card->erase_size - sz; 1473 } 1474 } else 1475 card->pref_erase = 0; 1476 } 1477 1478 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, 1479 unsigned int arg, unsigned int qty) 1480 { 1481 unsigned int erase_timeout; 1482 1483 if (arg == MMC_DISCARD_ARG || 1484 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { 1485 erase_timeout = card->ext_csd.trim_timeout; 1486 } else if (card->ext_csd.erase_group_def & 1) { 1487 /* High Capacity Erase Group Size uses HC timeouts */ 1488 if (arg == MMC_TRIM_ARG) 1489 erase_timeout = card->ext_csd.trim_timeout; 1490 else 1491 erase_timeout = card->ext_csd.hc_erase_timeout; 1492 } else { 1493 /* CSD Erase Group Size uses write timeout */ 1494 unsigned int mult = (10 << card->csd.r2w_factor); 1495 unsigned int timeout_clks = card->csd.taac_clks * mult; 1496 unsigned int timeout_us; 1497 1498 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */ 1499 if (card->csd.taac_ns < 1000000) 1500 timeout_us = (card->csd.taac_ns * mult) / 1000; 1501 else 1502 timeout_us = (card->csd.taac_ns / 1000) * mult; 1503 1504 /* 1505 * ios.clock is only a target. The real clock rate might be 1506 * less but not that much less, so fudge it by multiplying by 2. 1507 */ 1508 timeout_clks <<= 1; 1509 timeout_us += (timeout_clks * 1000) / 1510 (card->host->ios.clock / 1000); 1511 1512 erase_timeout = timeout_us / 1000; 1513 1514 /* 1515 * Theoretically, the calculation could underflow so round up 1516 * to 1ms in that case. 1517 */ 1518 if (!erase_timeout) 1519 erase_timeout = 1; 1520 } 1521 1522 /* Multiplier for secure operations */ 1523 if (arg & MMC_SECURE_ARGS) { 1524 if (arg == MMC_SECURE_ERASE_ARG) 1525 erase_timeout *= card->ext_csd.sec_erase_mult; 1526 else 1527 erase_timeout *= card->ext_csd.sec_trim_mult; 1528 } 1529 1530 erase_timeout *= qty; 1531 1532 /* 1533 * Ensure at least a 1 second timeout for SPI as per 1534 * 'mmc_set_data_timeout()' 1535 */ 1536 if (mmc_host_is_spi(card->host) && erase_timeout < 1000) 1537 erase_timeout = 1000; 1538 1539 return erase_timeout; 1540 } 1541 1542 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, 1543 unsigned int arg, 1544 unsigned int qty) 1545 { 1546 unsigned int erase_timeout; 1547 1548 /* for DISCARD none of the below calculation applies. 1549 * the busy timeout is 250msec per discard command. 1550 */ 1551 if (arg == SD_DISCARD_ARG) 1552 return SD_DISCARD_TIMEOUT_MS; 1553 1554 if (card->ssr.erase_timeout) { 1555 /* Erase timeout specified in SD Status Register (SSR) */ 1556 erase_timeout = card->ssr.erase_timeout * qty + 1557 card->ssr.erase_offset; 1558 } else { 1559 /* 1560 * Erase timeout not specified in SD Status Register (SSR) so 1561 * use 250ms per write block. 1562 */ 1563 erase_timeout = 250 * qty; 1564 } 1565 1566 /* Must not be less than 1 second */ 1567 if (erase_timeout < 1000) 1568 erase_timeout = 1000; 1569 1570 return erase_timeout; 1571 } 1572 1573 static unsigned int mmc_erase_timeout(struct mmc_card *card, 1574 unsigned int arg, 1575 unsigned int qty) 1576 { 1577 if (mmc_card_sd(card)) 1578 return mmc_sd_erase_timeout(card, arg, qty); 1579 else 1580 return mmc_mmc_erase_timeout(card, arg, qty); 1581 } 1582 1583 static int mmc_do_erase(struct mmc_card *card, unsigned int from, 1584 unsigned int to, unsigned int arg) 1585 { 1586 struct mmc_command cmd = {}; 1587 unsigned int qty = 0, busy_timeout = 0; 1588 bool use_r1b_resp; 1589 int err; 1590 1591 mmc_retune_hold(card->host); 1592 1593 /* 1594 * qty is used to calculate the erase timeout which depends on how many 1595 * erase groups (or allocation units in SD terminology) are affected. 1596 * We count erasing part of an erase group as one erase group. 1597 * For SD, the allocation units are always a power of 2. For MMC, the 1598 * erase group size is almost certainly also power of 2, but it does not 1599 * seem to insist on that in the JEDEC standard, so we fall back to 1600 * division in that case. SD may not specify an allocation unit size, 1601 * in which case the timeout is based on the number of write blocks. 1602 * 1603 * Note that the timeout for secure trim 2 will only be correct if the 1604 * number of erase groups specified is the same as the total of all 1605 * preceding secure trim 1 commands. Since the power may have been 1606 * lost since the secure trim 1 commands occurred, it is generally 1607 * impossible to calculate the secure trim 2 timeout correctly. 1608 */ 1609 if (card->erase_shift) 1610 qty += ((to >> card->erase_shift) - 1611 (from >> card->erase_shift)) + 1; 1612 else if (mmc_card_sd(card)) 1613 qty += to - from + 1; 1614 else 1615 qty += ((to / card->erase_size) - 1616 (from / card->erase_size)) + 1; 1617 1618 if (!mmc_card_blockaddr(card)) { 1619 from <<= 9; 1620 to <<= 9; 1621 } 1622 1623 if (mmc_card_sd(card)) 1624 cmd.opcode = SD_ERASE_WR_BLK_START; 1625 else 1626 cmd.opcode = MMC_ERASE_GROUP_START; 1627 cmd.arg = from; 1628 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1629 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1630 if (err) { 1631 pr_err("mmc_erase: group start error %d, " 1632 "status %#x\n", err, cmd.resp[0]); 1633 err = -EIO; 1634 goto out; 1635 } 1636 1637 memset(&cmd, 0, sizeof(struct mmc_command)); 1638 if (mmc_card_sd(card)) 1639 cmd.opcode = SD_ERASE_WR_BLK_END; 1640 else 1641 cmd.opcode = MMC_ERASE_GROUP_END; 1642 cmd.arg = to; 1643 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1644 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1645 if (err) { 1646 pr_err("mmc_erase: group end error %d, status %#x\n", 1647 err, cmd.resp[0]); 1648 err = -EIO; 1649 goto out; 1650 } 1651 1652 memset(&cmd, 0, sizeof(struct mmc_command)); 1653 cmd.opcode = MMC_ERASE; 1654 cmd.arg = arg; 1655 busy_timeout = mmc_erase_timeout(card, arg, qty); 1656 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout); 1657 1658 err = mmc_wait_for_cmd(card->host, &cmd, 0); 1659 if (err) { 1660 pr_err("mmc_erase: erase error %d, status %#x\n", 1661 err, cmd.resp[0]); 1662 err = -EIO; 1663 goto out; 1664 } 1665 1666 if (mmc_host_is_spi(card->host)) 1667 goto out; 1668 1669 /* 1670 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling 1671 * shall be avoided. 1672 */ 1673 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 1674 goto out; 1675 1676 /* Let's poll to find out when the erase operation completes. */ 1677 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE); 1678 1679 out: 1680 mmc_retune_release(card->host); 1681 return err; 1682 } 1683 1684 static unsigned int mmc_align_erase_size(struct mmc_card *card, 1685 unsigned int *from, 1686 unsigned int *to, 1687 unsigned int nr) 1688 { 1689 unsigned int from_new = *from, nr_new = nr, rem; 1690 1691 /* 1692 * When the 'card->erase_size' is power of 2, we can use round_up/down() 1693 * to align the erase size efficiently. 1694 */ 1695 if (is_power_of_2(card->erase_size)) { 1696 unsigned int temp = from_new; 1697 1698 from_new = round_up(temp, card->erase_size); 1699 rem = from_new - temp; 1700 1701 if (nr_new > rem) 1702 nr_new -= rem; 1703 else 1704 return 0; 1705 1706 nr_new = round_down(nr_new, card->erase_size); 1707 } else { 1708 rem = from_new % card->erase_size; 1709 if (rem) { 1710 rem = card->erase_size - rem; 1711 from_new += rem; 1712 if (nr_new > rem) 1713 nr_new -= rem; 1714 else 1715 return 0; 1716 } 1717 1718 rem = nr_new % card->erase_size; 1719 if (rem) 1720 nr_new -= rem; 1721 } 1722 1723 if (nr_new == 0) 1724 return 0; 1725 1726 *to = from_new + nr_new; 1727 *from = from_new; 1728 1729 return nr_new; 1730 } 1731 1732 /** 1733 * mmc_erase - erase sectors. 1734 * @card: card to erase 1735 * @from: first sector to erase 1736 * @nr: number of sectors to erase 1737 * @arg: erase command argument 1738 * 1739 * Caller must claim host before calling this function. 1740 */ 1741 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, 1742 unsigned int arg) 1743 { 1744 unsigned int rem, to = from + nr; 1745 int err; 1746 1747 if (!(card->csd.cmdclass & CCC_ERASE)) 1748 return -EOPNOTSUPP; 1749 1750 if (!card->erase_size) 1751 return -EOPNOTSUPP; 1752 1753 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG) 1754 return -EOPNOTSUPP; 1755 1756 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) && 1757 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) 1758 return -EOPNOTSUPP; 1759 1760 if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) && 1761 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) 1762 return -EOPNOTSUPP; 1763 1764 if (arg == MMC_SECURE_ERASE_ARG) { 1765 if (from % card->erase_size || nr % card->erase_size) 1766 return -EINVAL; 1767 } 1768 1769 if (arg == MMC_ERASE_ARG) 1770 nr = mmc_align_erase_size(card, &from, &to, nr); 1771 1772 if (nr == 0) 1773 return 0; 1774 1775 if (to <= from) 1776 return -EINVAL; 1777 1778 /* 'from' and 'to' are inclusive */ 1779 to -= 1; 1780 1781 /* 1782 * Special case where only one erase-group fits in the timeout budget: 1783 * If the region crosses an erase-group boundary on this particular 1784 * case, we will be trimming more than one erase-group which, does not 1785 * fit in the timeout budget of the controller, so we need to split it 1786 * and call mmc_do_erase() twice if necessary. This special case is 1787 * identified by the card->eg_boundary flag. 1788 */ 1789 rem = card->erase_size - (from % card->erase_size); 1790 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) { 1791 err = mmc_do_erase(card, from, from + rem - 1, arg); 1792 from += rem; 1793 if ((err) || (to <= from)) 1794 return err; 1795 } 1796 1797 return mmc_do_erase(card, from, to, arg); 1798 } 1799 EXPORT_SYMBOL(mmc_erase); 1800 1801 int mmc_can_erase(struct mmc_card *card) 1802 { 1803 if (card->csd.cmdclass & CCC_ERASE && card->erase_size) 1804 return 1; 1805 return 0; 1806 } 1807 EXPORT_SYMBOL(mmc_can_erase); 1808 1809 int mmc_can_trim(struct mmc_card *card) 1810 { 1811 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) && 1812 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN))) 1813 return 1; 1814 return 0; 1815 } 1816 EXPORT_SYMBOL(mmc_can_trim); 1817 1818 int mmc_can_discard(struct mmc_card *card) 1819 { 1820 /* 1821 * As there's no way to detect the discard support bit at v4.5 1822 * use the s/w feature support filed. 1823 */ 1824 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) 1825 return 1; 1826 return 0; 1827 } 1828 EXPORT_SYMBOL(mmc_can_discard); 1829 1830 int mmc_can_sanitize(struct mmc_card *card) 1831 { 1832 if (!mmc_can_trim(card) && !mmc_can_erase(card)) 1833 return 0; 1834 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) 1835 return 1; 1836 return 0; 1837 } 1838 1839 int mmc_can_secure_erase_trim(struct mmc_card *card) 1840 { 1841 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) && 1842 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) 1843 return 1; 1844 return 0; 1845 } 1846 EXPORT_SYMBOL(mmc_can_secure_erase_trim); 1847 1848 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, 1849 unsigned int nr) 1850 { 1851 if (!card->erase_size) 1852 return 0; 1853 if (from % card->erase_size || nr % card->erase_size) 1854 return 0; 1855 return 1; 1856 } 1857 EXPORT_SYMBOL(mmc_erase_group_aligned); 1858 1859 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, 1860 unsigned int arg) 1861 { 1862 struct mmc_host *host = card->host; 1863 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout; 1864 unsigned int last_timeout = 0; 1865 unsigned int max_busy_timeout = host->max_busy_timeout ? 1866 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS; 1867 1868 if (card->erase_shift) { 1869 max_qty = UINT_MAX >> card->erase_shift; 1870 min_qty = card->pref_erase >> card->erase_shift; 1871 } else if (mmc_card_sd(card)) { 1872 max_qty = UINT_MAX; 1873 min_qty = card->pref_erase; 1874 } else { 1875 max_qty = UINT_MAX / card->erase_size; 1876 min_qty = card->pref_erase / card->erase_size; 1877 } 1878 1879 /* 1880 * We should not only use 'host->max_busy_timeout' as the limitation 1881 * when deciding the max discard sectors. We should set a balance value 1882 * to improve the erase speed, and it can not get too long timeout at 1883 * the same time. 1884 * 1885 * Here we set 'card->pref_erase' as the minimal discard sectors no 1886 * matter what size of 'host->max_busy_timeout', but if the 1887 * 'host->max_busy_timeout' is large enough for more discard sectors, 1888 * then we can continue to increase the max discard sectors until we 1889 * get a balance value. In cases when the 'host->max_busy_timeout' 1890 * isn't specified, use the default max erase timeout. 1891 */ 1892 do { 1893 y = 0; 1894 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { 1895 timeout = mmc_erase_timeout(card, arg, qty + x); 1896 1897 if (qty + x > min_qty && timeout > max_busy_timeout) 1898 break; 1899 1900 if (timeout < last_timeout) 1901 break; 1902 last_timeout = timeout; 1903 y = x; 1904 } 1905 qty += y; 1906 } while (y); 1907 1908 if (!qty) 1909 return 0; 1910 1911 /* 1912 * When specifying a sector range to trim, chances are we might cross 1913 * an erase-group boundary even if the amount of sectors is less than 1914 * one erase-group. 1915 * If we can only fit one erase-group in the controller timeout budget, 1916 * we have to care that erase-group boundaries are not crossed by a 1917 * single trim operation. We flag that special case with "eg_boundary". 1918 * In all other cases we can just decrement qty and pretend that we 1919 * always touch (qty + 1) erase-groups as a simple optimization. 1920 */ 1921 if (qty == 1) 1922 card->eg_boundary = 1; 1923 else 1924 qty--; 1925 1926 /* Convert qty to sectors */ 1927 if (card->erase_shift) 1928 max_discard = qty << card->erase_shift; 1929 else if (mmc_card_sd(card)) 1930 max_discard = qty + 1; 1931 else 1932 max_discard = qty * card->erase_size; 1933 1934 return max_discard; 1935 } 1936 1937 unsigned int mmc_calc_max_discard(struct mmc_card *card) 1938 { 1939 struct mmc_host *host = card->host; 1940 unsigned int max_discard, max_trim; 1941 1942 /* 1943 * Without erase_group_def set, MMC erase timeout depends on clock 1944 * frequence which can change. In that case, the best choice is 1945 * just the preferred erase size. 1946 */ 1947 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) 1948 return card->pref_erase; 1949 1950 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); 1951 if (mmc_can_trim(card)) { 1952 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); 1953 if (max_trim < max_discard || max_discard == 0) 1954 max_discard = max_trim; 1955 } else if (max_discard < card->erase_size) { 1956 max_discard = 0; 1957 } 1958 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", 1959 mmc_hostname(host), max_discard, host->max_busy_timeout ? 1960 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS); 1961 return max_discard; 1962 } 1963 EXPORT_SYMBOL(mmc_calc_max_discard); 1964 1965 bool mmc_card_is_blockaddr(struct mmc_card *card) 1966 { 1967 return card ? mmc_card_blockaddr(card) : false; 1968 } 1969 EXPORT_SYMBOL(mmc_card_is_blockaddr); 1970 1971 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) 1972 { 1973 struct mmc_command cmd = {}; 1974 1975 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) || 1976 mmc_card_hs400(card) || mmc_card_hs400es(card)) 1977 return 0; 1978 1979 cmd.opcode = MMC_SET_BLOCKLEN; 1980 cmd.arg = blocklen; 1981 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1982 return mmc_wait_for_cmd(card->host, &cmd, 5); 1983 } 1984 EXPORT_SYMBOL(mmc_set_blocklen); 1985 1986 static void mmc_hw_reset_for_init(struct mmc_host *host) 1987 { 1988 mmc_pwrseq_reset(host); 1989 1990 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) 1991 return; 1992 host->ops->hw_reset(host); 1993 } 1994 1995 /** 1996 * mmc_hw_reset - reset the card in hardware 1997 * @host: MMC host to which the card is attached 1998 * 1999 * Hard reset the card. This function is only for upper layers, like the 2000 * block layer or card drivers. You cannot use it in host drivers (struct 2001 * mmc_card might be gone then). 2002 * 2003 * Return: 0 on success, -errno on failure 2004 */ 2005 int mmc_hw_reset(struct mmc_host *host) 2006 { 2007 int ret; 2008 2009 ret = host->bus_ops->hw_reset(host); 2010 if (ret < 0) 2011 pr_warn("%s: tried to HW reset card, got error %d\n", 2012 mmc_hostname(host), ret); 2013 2014 return ret; 2015 } 2016 EXPORT_SYMBOL(mmc_hw_reset); 2017 2018 int mmc_sw_reset(struct mmc_host *host) 2019 { 2020 int ret; 2021 2022 if (!host->bus_ops->sw_reset) 2023 return -EOPNOTSUPP; 2024 2025 ret = host->bus_ops->sw_reset(host); 2026 if (ret) 2027 pr_warn("%s: tried to SW reset card, got error %d\n", 2028 mmc_hostname(host), ret); 2029 2030 return ret; 2031 } 2032 EXPORT_SYMBOL(mmc_sw_reset); 2033 2034 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) 2035 { 2036 host->f_init = freq; 2037 2038 pr_debug("%s: %s: trying to init card at %u Hz\n", 2039 mmc_hostname(host), __func__, host->f_init); 2040 2041 mmc_power_up(host, host->ocr_avail); 2042 2043 /* 2044 * Some eMMCs (with VCCQ always on) may not be reset after power up, so 2045 * do a hardware reset if possible. 2046 */ 2047 mmc_hw_reset_for_init(host); 2048 2049 /* 2050 * sdio_reset sends CMD52 to reset card. Since we do not know 2051 * if the card is being re-initialized, just send it. CMD52 2052 * should be ignored by SD/eMMC cards. 2053 * Skip it if we already know that we do not support SDIO commands 2054 */ 2055 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2056 sdio_reset(host); 2057 2058 mmc_go_idle(host); 2059 2060 if (!(host->caps2 & MMC_CAP2_NO_SD)) { 2061 if (mmc_send_if_cond_pcie(host, host->ocr_avail)) 2062 goto out; 2063 if (mmc_card_sd_express(host)) 2064 return 0; 2065 } 2066 2067 /* Order's important: probe SDIO, then SD, then MMC */ 2068 if (!(host->caps2 & MMC_CAP2_NO_SDIO)) 2069 if (!mmc_attach_sdio(host)) 2070 return 0; 2071 2072 if (!(host->caps2 & MMC_CAP2_NO_SD)) 2073 if (!mmc_attach_sd(host)) 2074 return 0; 2075 2076 if (!(host->caps2 & MMC_CAP2_NO_MMC)) 2077 if (!mmc_attach_mmc(host)) 2078 return 0; 2079 2080 out: 2081 mmc_power_off(host); 2082 return -EIO; 2083 } 2084 2085 int _mmc_detect_card_removed(struct mmc_host *host) 2086 { 2087 int ret; 2088 2089 if (!host->card || mmc_card_removed(host->card)) 2090 return 1; 2091 2092 ret = host->bus_ops->alive(host); 2093 2094 /* 2095 * Card detect status and alive check may be out of sync if card is 2096 * removed slowly, when card detect switch changes while card/slot 2097 * pads are still contacted in hardware (refer to "SD Card Mechanical 2098 * Addendum, Appendix C: Card Detection Switch"). So reschedule a 2099 * detect work 200ms later for this case. 2100 */ 2101 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) { 2102 mmc_detect_change(host, msecs_to_jiffies(200)); 2103 pr_debug("%s: card removed too slowly\n", mmc_hostname(host)); 2104 } 2105 2106 if (ret) { 2107 mmc_card_set_removed(host->card); 2108 pr_debug("%s: card remove detected\n", mmc_hostname(host)); 2109 } 2110 2111 return ret; 2112 } 2113 2114 int mmc_detect_card_removed(struct mmc_host *host) 2115 { 2116 struct mmc_card *card = host->card; 2117 int ret; 2118 2119 WARN_ON(!host->claimed); 2120 2121 if (!card) 2122 return 1; 2123 2124 if (!mmc_card_is_removable(host)) 2125 return 0; 2126 2127 ret = mmc_card_removed(card); 2128 /* 2129 * The card will be considered unchanged unless we have been asked to 2130 * detect a change or host requires polling to provide card detection. 2131 */ 2132 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL)) 2133 return ret; 2134 2135 host->detect_change = 0; 2136 if (!ret) { 2137 ret = _mmc_detect_card_removed(host); 2138 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) { 2139 /* 2140 * Schedule a detect work as soon as possible to let a 2141 * rescan handle the card removal. 2142 */ 2143 cancel_delayed_work(&host->detect); 2144 _mmc_detect_change(host, 0, false); 2145 } 2146 } 2147 2148 return ret; 2149 } 2150 EXPORT_SYMBOL(mmc_detect_card_removed); 2151 2152 void mmc_rescan(struct work_struct *work) 2153 { 2154 struct mmc_host *host = 2155 container_of(work, struct mmc_host, detect.work); 2156 int i; 2157 2158 if (host->rescan_disable) 2159 return; 2160 2161 /* If there is a non-removable card registered, only scan once */ 2162 if (!mmc_card_is_removable(host) && host->rescan_entered) 2163 return; 2164 host->rescan_entered = 1; 2165 2166 if (host->trigger_card_event && host->ops->card_event) { 2167 mmc_claim_host(host); 2168 host->ops->card_event(host); 2169 mmc_release_host(host); 2170 host->trigger_card_event = false; 2171 } 2172 2173 /* Verify a registered card to be functional, else remove it. */ 2174 if (host->bus_ops) 2175 host->bus_ops->detect(host); 2176 2177 host->detect_change = 0; 2178 2179 /* if there still is a card present, stop here */ 2180 if (host->bus_ops != NULL) 2181 goto out; 2182 2183 mmc_claim_host(host); 2184 if (mmc_card_is_removable(host) && host->ops->get_cd && 2185 host->ops->get_cd(host) == 0) { 2186 mmc_power_off(host); 2187 mmc_release_host(host); 2188 goto out; 2189 } 2190 2191 /* If an SD express card is present, then leave it as is. */ 2192 if (mmc_card_sd_express(host)) { 2193 mmc_release_host(host); 2194 goto out; 2195 } 2196 2197 for (i = 0; i < ARRAY_SIZE(freqs); i++) { 2198 unsigned int freq = freqs[i]; 2199 if (freq > host->f_max) { 2200 if (i + 1 < ARRAY_SIZE(freqs)) 2201 continue; 2202 freq = host->f_max; 2203 } 2204 if (!mmc_rescan_try_freq(host, max(freq, host->f_min))) 2205 break; 2206 if (freqs[i] <= host->f_min) 2207 break; 2208 } 2209 mmc_release_host(host); 2210 2211 out: 2212 if (host->caps & MMC_CAP_NEEDS_POLL) 2213 mmc_schedule_delayed_work(&host->detect, HZ); 2214 } 2215 2216 void mmc_start_host(struct mmc_host *host) 2217 { 2218 host->f_init = max(min(freqs[0], host->f_max), host->f_min); 2219 host->rescan_disable = 0; 2220 2221 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) { 2222 mmc_claim_host(host); 2223 mmc_power_up(host, host->ocr_avail); 2224 mmc_release_host(host); 2225 } 2226 2227 mmc_gpiod_request_cd_irq(host); 2228 _mmc_detect_change(host, 0, false); 2229 } 2230 2231 void mmc_stop_host(struct mmc_host *host) 2232 { 2233 if (host->slot.cd_irq >= 0) { 2234 mmc_gpio_set_cd_wake(host, false); 2235 disable_irq(host->slot.cd_irq); 2236 } 2237 2238 host->rescan_disable = 1; 2239 cancel_delayed_work_sync(&host->detect); 2240 2241 /* clear pm flags now and let card drivers set them as needed */ 2242 host->pm_flags = 0; 2243 2244 if (host->bus_ops) { 2245 /* Calling bus_ops->remove() with a claimed host can deadlock */ 2246 host->bus_ops->remove(host); 2247 mmc_claim_host(host); 2248 mmc_detach_bus(host); 2249 mmc_power_off(host); 2250 mmc_release_host(host); 2251 return; 2252 } 2253 2254 mmc_claim_host(host); 2255 mmc_power_off(host); 2256 mmc_release_host(host); 2257 } 2258 2259 static int __init mmc_init(void) 2260 { 2261 int ret; 2262 2263 ret = mmc_register_bus(); 2264 if (ret) 2265 return ret; 2266 2267 ret = mmc_register_host_class(); 2268 if (ret) 2269 goto unregister_bus; 2270 2271 ret = sdio_register_bus(); 2272 if (ret) 2273 goto unregister_host_class; 2274 2275 return 0; 2276 2277 unregister_host_class: 2278 mmc_unregister_host_class(); 2279 unregister_bus: 2280 mmc_unregister_bus(); 2281 return ret; 2282 } 2283 2284 static void __exit mmc_exit(void) 2285 { 2286 sdio_unregister_bus(); 2287 mmc_unregister_host_class(); 2288 mmc_unregister_bus(); 2289 } 2290 2291 subsys_initcall(mmc_init); 2292 module_exit(mmc_exit); 2293 2294 MODULE_LICENSE("GPL"); 2295