xref: /openbmc/linux/drivers/mmc/core/block.c (revision f87deada)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41 
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47 
48 #include <linux/uaccess.h>
49 
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
59 
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
65 
66 /*
67  * Set a 10 second timeout for polling write request busy state. Note, mmc core
68  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69  * second software timer to timeout the whole request, so 10 seconds should be
70  * ample.
71  */
72 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
73 #define MMC_SANITIZE_REQ_TIMEOUT 240000
74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
75 
76 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
77 				  (rq_data_dir(req) == WRITE))
78 static DEFINE_MUTEX(block_mutex);
79 
80 /*
81  * The defaults come from config options but can be overriden by module
82  * or bootarg options.
83  */
84 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
85 
86 /*
87  * We've only got one major, so number of mmcblk devices is
88  * limited to (1 << 20) / number of minors per device.  It is also
89  * limited by the MAX_DEVICES below.
90  */
91 static int max_devices;
92 
93 #define MAX_DEVICES 256
94 
95 static DEFINE_IDA(mmc_blk_ida);
96 static DEFINE_IDA(mmc_rpmb_ida);
97 
98 /*
99  * There is one mmc_blk_data per slot.
100  */
101 struct mmc_blk_data {
102 	spinlock_t	lock;
103 	struct device	*parent;
104 	struct gendisk	*disk;
105 	struct mmc_queue queue;
106 	struct list_head part;
107 	struct list_head rpmbs;
108 
109 	unsigned int	flags;
110 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
111 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
112 
113 	unsigned int	usage;
114 	unsigned int	read_only;
115 	unsigned int	part_type;
116 	unsigned int	reset_done;
117 #define MMC_BLK_READ		BIT(0)
118 #define MMC_BLK_WRITE		BIT(1)
119 #define MMC_BLK_DISCARD		BIT(2)
120 #define MMC_BLK_SECDISCARD	BIT(3)
121 #define MMC_BLK_CQE_RECOVERY	BIT(4)
122 
123 	/*
124 	 * Only set in main mmc_blk_data associated
125 	 * with mmc_card with dev_set_drvdata, and keeps
126 	 * track of the current selected device partition.
127 	 */
128 	unsigned int	part_curr;
129 	struct device_attribute force_ro;
130 	struct device_attribute power_ro_lock;
131 	int	area_type;
132 
133 	/* debugfs files (only in main mmc_blk_data) */
134 	struct dentry *status_dentry;
135 	struct dentry *ext_csd_dentry;
136 };
137 
138 /* Device type for RPMB character devices */
139 static dev_t mmc_rpmb_devt;
140 
141 /* Bus type for RPMB character devices */
142 static struct bus_type mmc_rpmb_bus_type = {
143 	.name = "mmc_rpmb",
144 };
145 
146 /**
147  * struct mmc_rpmb_data - special RPMB device type for these areas
148  * @dev: the device for the RPMB area
149  * @chrdev: character device for the RPMB area
150  * @id: unique device ID number
151  * @part_index: partition index (0 on first)
152  * @md: parent MMC block device
153  * @node: list item, so we can put this device on a list
154  */
155 struct mmc_rpmb_data {
156 	struct device dev;
157 	struct cdev chrdev;
158 	int id;
159 	unsigned int part_index;
160 	struct mmc_blk_data *md;
161 	struct list_head node;
162 };
163 
164 static DEFINE_MUTEX(open_lock);
165 
166 module_param(perdev_minors, int, 0444);
167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
168 
169 static inline int mmc_blk_part_switch(struct mmc_card *card,
170 				      unsigned int part_type);
171 
172 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
173 {
174 	struct mmc_blk_data *md;
175 
176 	mutex_lock(&open_lock);
177 	md = disk->private_data;
178 	if (md && md->usage == 0)
179 		md = NULL;
180 	if (md)
181 		md->usage++;
182 	mutex_unlock(&open_lock);
183 
184 	return md;
185 }
186 
187 static inline int mmc_get_devidx(struct gendisk *disk)
188 {
189 	int devidx = disk->first_minor / perdev_minors;
190 	return devidx;
191 }
192 
193 static void mmc_blk_put(struct mmc_blk_data *md)
194 {
195 	mutex_lock(&open_lock);
196 	md->usage--;
197 	if (md->usage == 0) {
198 		int devidx = mmc_get_devidx(md->disk);
199 		blk_put_queue(md->queue.queue);
200 		ida_simple_remove(&mmc_blk_ida, devidx);
201 		put_disk(md->disk);
202 		kfree(md);
203 	}
204 	mutex_unlock(&open_lock);
205 }
206 
207 static ssize_t power_ro_lock_show(struct device *dev,
208 		struct device_attribute *attr, char *buf)
209 {
210 	int ret;
211 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
212 	struct mmc_card *card = md->queue.card;
213 	int locked = 0;
214 
215 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
216 		locked = 2;
217 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
218 		locked = 1;
219 
220 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
221 
222 	mmc_blk_put(md);
223 
224 	return ret;
225 }
226 
227 static ssize_t power_ro_lock_store(struct device *dev,
228 		struct device_attribute *attr, const char *buf, size_t count)
229 {
230 	int ret;
231 	struct mmc_blk_data *md, *part_md;
232 	struct mmc_queue *mq;
233 	struct request *req;
234 	unsigned long set;
235 
236 	if (kstrtoul(buf, 0, &set))
237 		return -EINVAL;
238 
239 	if (set != 1)
240 		return count;
241 
242 	md = mmc_blk_get(dev_to_disk(dev));
243 	mq = &md->queue;
244 
245 	/* Dispatch locking to the block layer */
246 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM);
247 	if (IS_ERR(req)) {
248 		count = PTR_ERR(req);
249 		goto out_put;
250 	}
251 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
252 	blk_execute_rq(mq->queue, NULL, req, 0);
253 	ret = req_to_mmc_queue_req(req)->drv_op_result;
254 	blk_put_request(req);
255 
256 	if (!ret) {
257 		pr_info("%s: Locking boot partition ro until next power on\n",
258 			md->disk->disk_name);
259 		set_disk_ro(md->disk, 1);
260 
261 		list_for_each_entry(part_md, &md->part, part)
262 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
263 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
264 				set_disk_ro(part_md->disk, 1);
265 			}
266 	}
267 out_put:
268 	mmc_blk_put(md);
269 	return count;
270 }
271 
272 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
273 			     char *buf)
274 {
275 	int ret;
276 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
277 
278 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
279 		       get_disk_ro(dev_to_disk(dev)) ^
280 		       md->read_only);
281 	mmc_blk_put(md);
282 	return ret;
283 }
284 
285 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
286 			      const char *buf, size_t count)
287 {
288 	int ret;
289 	char *end;
290 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
291 	unsigned long set = simple_strtoul(buf, &end, 0);
292 	if (end == buf) {
293 		ret = -EINVAL;
294 		goto out;
295 	}
296 
297 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
298 	ret = count;
299 out:
300 	mmc_blk_put(md);
301 	return ret;
302 }
303 
304 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
305 {
306 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
307 	int ret = -ENXIO;
308 
309 	mutex_lock(&block_mutex);
310 	if (md) {
311 		if (md->usage == 2)
312 			check_disk_change(bdev);
313 		ret = 0;
314 
315 		if ((mode & FMODE_WRITE) && md->read_only) {
316 			mmc_blk_put(md);
317 			ret = -EROFS;
318 		}
319 	}
320 	mutex_unlock(&block_mutex);
321 
322 	return ret;
323 }
324 
325 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
326 {
327 	struct mmc_blk_data *md = disk->private_data;
328 
329 	mutex_lock(&block_mutex);
330 	mmc_blk_put(md);
331 	mutex_unlock(&block_mutex);
332 }
333 
334 static int
335 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
336 {
337 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
338 	geo->heads = 4;
339 	geo->sectors = 16;
340 	return 0;
341 }
342 
343 struct mmc_blk_ioc_data {
344 	struct mmc_ioc_cmd ic;
345 	unsigned char *buf;
346 	u64 buf_bytes;
347 	struct mmc_rpmb_data *rpmb;
348 };
349 
350 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
351 	struct mmc_ioc_cmd __user *user)
352 {
353 	struct mmc_blk_ioc_data *idata;
354 	int err;
355 
356 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
357 	if (!idata) {
358 		err = -ENOMEM;
359 		goto out;
360 	}
361 
362 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
363 		err = -EFAULT;
364 		goto idata_err;
365 	}
366 
367 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
368 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
369 		err = -EOVERFLOW;
370 		goto idata_err;
371 	}
372 
373 	if (!idata->buf_bytes) {
374 		idata->buf = NULL;
375 		return idata;
376 	}
377 
378 	idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
379 	if (!idata->buf) {
380 		err = -ENOMEM;
381 		goto idata_err;
382 	}
383 
384 	if (copy_from_user(idata->buf, (void __user *)(unsigned long)
385 					idata->ic.data_ptr, idata->buf_bytes)) {
386 		err = -EFAULT;
387 		goto copy_err;
388 	}
389 
390 	return idata;
391 
392 copy_err:
393 	kfree(idata->buf);
394 idata_err:
395 	kfree(idata);
396 out:
397 	return ERR_PTR(err);
398 }
399 
400 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
401 				      struct mmc_blk_ioc_data *idata)
402 {
403 	struct mmc_ioc_cmd *ic = &idata->ic;
404 
405 	if (copy_to_user(&(ic_ptr->response), ic->response,
406 			 sizeof(ic->response)))
407 		return -EFAULT;
408 
409 	if (!idata->ic.write_flag) {
410 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
411 				 idata->buf, idata->buf_bytes))
412 			return -EFAULT;
413 	}
414 
415 	return 0;
416 }
417 
418 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
419 				       u32 retries_max)
420 {
421 	int err;
422 	u32 retry_count = 0;
423 
424 	if (!status || !retries_max)
425 		return -EINVAL;
426 
427 	do {
428 		err = __mmc_send_status(card, status, 5);
429 		if (err)
430 			break;
431 
432 		if (!R1_STATUS(*status) &&
433 				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
434 			break; /* RPMB programming operation complete */
435 
436 		/*
437 		 * Rechedule to give the MMC device a chance to continue
438 		 * processing the previous command without being polled too
439 		 * frequently.
440 		 */
441 		usleep_range(1000, 5000);
442 	} while (++retry_count < retries_max);
443 
444 	if (retry_count == retries_max)
445 		err = -EPERM;
446 
447 	return err;
448 }
449 
450 static int ioctl_do_sanitize(struct mmc_card *card)
451 {
452 	int err;
453 
454 	if (!mmc_can_sanitize(card)) {
455 			pr_warn("%s: %s - SANITIZE is not supported\n",
456 				mmc_hostname(card->host), __func__);
457 			err = -EOPNOTSUPP;
458 			goto out;
459 	}
460 
461 	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
462 		mmc_hostname(card->host), __func__);
463 
464 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
465 					EXT_CSD_SANITIZE_START, 1,
466 					MMC_SANITIZE_REQ_TIMEOUT);
467 
468 	if (err)
469 		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
470 		       mmc_hostname(card->host), __func__, err);
471 
472 	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
473 					     __func__);
474 out:
475 	return err;
476 }
477 
478 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
479 			       struct mmc_blk_ioc_data *idata)
480 {
481 	struct mmc_command cmd = {};
482 	struct mmc_data data = {};
483 	struct mmc_request mrq = {};
484 	struct scatterlist sg;
485 	int err;
486 	unsigned int target_part;
487 	u32 status = 0;
488 
489 	if (!card || !md || !idata)
490 		return -EINVAL;
491 
492 	/*
493 	 * The RPMB accesses comes in from the character device, so we
494 	 * need to target these explicitly. Else we just target the
495 	 * partition type for the block device the ioctl() was issued
496 	 * on.
497 	 */
498 	if (idata->rpmb) {
499 		/* Support multiple RPMB partitions */
500 		target_part = idata->rpmb->part_index;
501 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
502 	} else {
503 		target_part = md->part_type;
504 	}
505 
506 	cmd.opcode = idata->ic.opcode;
507 	cmd.arg = idata->ic.arg;
508 	cmd.flags = idata->ic.flags;
509 
510 	if (idata->buf_bytes) {
511 		data.sg = &sg;
512 		data.sg_len = 1;
513 		data.blksz = idata->ic.blksz;
514 		data.blocks = idata->ic.blocks;
515 
516 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
517 
518 		if (idata->ic.write_flag)
519 			data.flags = MMC_DATA_WRITE;
520 		else
521 			data.flags = MMC_DATA_READ;
522 
523 		/* data.flags must already be set before doing this. */
524 		mmc_set_data_timeout(&data, card);
525 
526 		/* Allow overriding the timeout_ns for empirical tuning. */
527 		if (idata->ic.data_timeout_ns)
528 			data.timeout_ns = idata->ic.data_timeout_ns;
529 
530 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
531 			/*
532 			 * Pretend this is a data transfer and rely on the
533 			 * host driver to compute timeout.  When all host
534 			 * drivers support cmd.cmd_timeout for R1B, this
535 			 * can be changed to:
536 			 *
537 			 *     mrq.data = NULL;
538 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
539 			 */
540 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
541 		}
542 
543 		mrq.data = &data;
544 	}
545 
546 	mrq.cmd = &cmd;
547 
548 	err = mmc_blk_part_switch(card, target_part);
549 	if (err)
550 		return err;
551 
552 	if (idata->ic.is_acmd) {
553 		err = mmc_app_cmd(card->host, card);
554 		if (err)
555 			return err;
556 	}
557 
558 	if (idata->rpmb) {
559 		err = mmc_set_blockcount(card, data.blocks,
560 			idata->ic.write_flag & (1 << 31));
561 		if (err)
562 			return err;
563 	}
564 
565 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
566 	    (cmd.opcode == MMC_SWITCH)) {
567 		err = ioctl_do_sanitize(card);
568 
569 		if (err)
570 			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
571 			       __func__, err);
572 
573 		return err;
574 	}
575 
576 	mmc_wait_for_req(card->host, &mrq);
577 
578 	if (cmd.error) {
579 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
580 						__func__, cmd.error);
581 		return cmd.error;
582 	}
583 	if (data.error) {
584 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
585 						__func__, data.error);
586 		return data.error;
587 	}
588 
589 	/*
590 	 * According to the SD specs, some commands require a delay after
591 	 * issuing the command.
592 	 */
593 	if (idata->ic.postsleep_min_us)
594 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
595 
596 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
597 
598 	if (idata->rpmb) {
599 		/*
600 		 * Ensure RPMB command has completed by polling CMD13
601 		 * "Send Status".
602 		 */
603 		err = ioctl_rpmb_card_status_poll(card, &status, 5);
604 		if (err)
605 			dev_err(mmc_dev(card->host),
606 					"%s: Card Status=0x%08X, error %d\n",
607 					__func__, status, err);
608 	}
609 
610 	return err;
611 }
612 
613 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
614 			     struct mmc_ioc_cmd __user *ic_ptr,
615 			     struct mmc_rpmb_data *rpmb)
616 {
617 	struct mmc_blk_ioc_data *idata;
618 	struct mmc_blk_ioc_data *idatas[1];
619 	struct mmc_queue *mq;
620 	struct mmc_card *card;
621 	int err = 0, ioc_err = 0;
622 	struct request *req;
623 
624 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
625 	if (IS_ERR(idata))
626 		return PTR_ERR(idata);
627 	/* This will be NULL on non-RPMB ioctl():s */
628 	idata->rpmb = rpmb;
629 
630 	card = md->queue.card;
631 	if (IS_ERR(card)) {
632 		err = PTR_ERR(card);
633 		goto cmd_done;
634 	}
635 
636 	/*
637 	 * Dispatch the ioctl() into the block request queue.
638 	 */
639 	mq = &md->queue;
640 	req = blk_get_request(mq->queue,
641 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
642 		__GFP_RECLAIM);
643 	if (IS_ERR(req)) {
644 		err = PTR_ERR(req);
645 		goto cmd_done;
646 	}
647 	idatas[0] = idata;
648 	req_to_mmc_queue_req(req)->drv_op =
649 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
650 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
651 	req_to_mmc_queue_req(req)->ioc_count = 1;
652 	blk_execute_rq(mq->queue, NULL, req, 0);
653 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
654 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
655 	blk_put_request(req);
656 
657 cmd_done:
658 	kfree(idata->buf);
659 	kfree(idata);
660 	return ioc_err ? ioc_err : err;
661 }
662 
663 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
664 				   struct mmc_ioc_multi_cmd __user *user,
665 				   struct mmc_rpmb_data *rpmb)
666 {
667 	struct mmc_blk_ioc_data **idata = NULL;
668 	struct mmc_ioc_cmd __user *cmds = user->cmds;
669 	struct mmc_card *card;
670 	struct mmc_queue *mq;
671 	int i, err = 0, ioc_err = 0;
672 	__u64 num_of_cmds;
673 	struct request *req;
674 
675 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
676 			   sizeof(num_of_cmds)))
677 		return -EFAULT;
678 
679 	if (!num_of_cmds)
680 		return 0;
681 
682 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
683 		return -EINVAL;
684 
685 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
686 	if (!idata)
687 		return -ENOMEM;
688 
689 	for (i = 0; i < num_of_cmds; i++) {
690 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
691 		if (IS_ERR(idata[i])) {
692 			err = PTR_ERR(idata[i]);
693 			num_of_cmds = i;
694 			goto cmd_err;
695 		}
696 		/* This will be NULL on non-RPMB ioctl():s */
697 		idata[i]->rpmb = rpmb;
698 	}
699 
700 	card = md->queue.card;
701 	if (IS_ERR(card)) {
702 		err = PTR_ERR(card);
703 		goto cmd_err;
704 	}
705 
706 
707 	/*
708 	 * Dispatch the ioctl()s into the block request queue.
709 	 */
710 	mq = &md->queue;
711 	req = blk_get_request(mq->queue,
712 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
713 		__GFP_RECLAIM);
714 	if (IS_ERR(req)) {
715 		err = PTR_ERR(req);
716 		goto cmd_err;
717 	}
718 	req_to_mmc_queue_req(req)->drv_op =
719 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
720 	req_to_mmc_queue_req(req)->drv_op_data = idata;
721 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
722 	blk_execute_rq(mq->queue, NULL, req, 0);
723 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
724 
725 	/* copy to user if data and response */
726 	for (i = 0; i < num_of_cmds && !err; i++)
727 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
728 
729 	blk_put_request(req);
730 
731 cmd_err:
732 	for (i = 0; i < num_of_cmds; i++) {
733 		kfree(idata[i]->buf);
734 		kfree(idata[i]);
735 	}
736 	kfree(idata);
737 	return ioc_err ? ioc_err : err;
738 }
739 
740 static int mmc_blk_check_blkdev(struct block_device *bdev)
741 {
742 	/*
743 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
744 	 * whole block device, not on a partition.  This prevents overspray
745 	 * between sibling partitions.
746 	 */
747 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
748 		return -EPERM;
749 	return 0;
750 }
751 
752 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
753 	unsigned int cmd, unsigned long arg)
754 {
755 	struct mmc_blk_data *md;
756 	int ret;
757 
758 	switch (cmd) {
759 	case MMC_IOC_CMD:
760 		ret = mmc_blk_check_blkdev(bdev);
761 		if (ret)
762 			return ret;
763 		md = mmc_blk_get(bdev->bd_disk);
764 		if (!md)
765 			return -EINVAL;
766 		ret = mmc_blk_ioctl_cmd(md,
767 					(struct mmc_ioc_cmd __user *)arg,
768 					NULL);
769 		mmc_blk_put(md);
770 		return ret;
771 	case MMC_IOC_MULTI_CMD:
772 		ret = mmc_blk_check_blkdev(bdev);
773 		if (ret)
774 			return ret;
775 		md = mmc_blk_get(bdev->bd_disk);
776 		if (!md)
777 			return -EINVAL;
778 		ret = mmc_blk_ioctl_multi_cmd(md,
779 					(struct mmc_ioc_multi_cmd __user *)arg,
780 					NULL);
781 		mmc_blk_put(md);
782 		return ret;
783 	default:
784 		return -EINVAL;
785 	}
786 }
787 
788 #ifdef CONFIG_COMPAT
789 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
790 	unsigned int cmd, unsigned long arg)
791 {
792 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
793 }
794 #endif
795 
796 static const struct block_device_operations mmc_bdops = {
797 	.open			= mmc_blk_open,
798 	.release		= mmc_blk_release,
799 	.getgeo			= mmc_blk_getgeo,
800 	.owner			= THIS_MODULE,
801 	.ioctl			= mmc_blk_ioctl,
802 #ifdef CONFIG_COMPAT
803 	.compat_ioctl		= mmc_blk_compat_ioctl,
804 #endif
805 };
806 
807 static int mmc_blk_part_switch_pre(struct mmc_card *card,
808 				   unsigned int part_type)
809 {
810 	int ret = 0;
811 
812 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
813 		if (card->ext_csd.cmdq_en) {
814 			ret = mmc_cmdq_disable(card);
815 			if (ret)
816 				return ret;
817 		}
818 		mmc_retune_pause(card->host);
819 	}
820 
821 	return ret;
822 }
823 
824 static int mmc_blk_part_switch_post(struct mmc_card *card,
825 				    unsigned int part_type)
826 {
827 	int ret = 0;
828 
829 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
830 		mmc_retune_unpause(card->host);
831 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
832 			ret = mmc_cmdq_enable(card);
833 	}
834 
835 	return ret;
836 }
837 
838 static inline int mmc_blk_part_switch(struct mmc_card *card,
839 				      unsigned int part_type)
840 {
841 	int ret = 0;
842 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
843 
844 	if (main_md->part_curr == part_type)
845 		return 0;
846 
847 	if (mmc_card_mmc(card)) {
848 		u8 part_config = card->ext_csd.part_config;
849 
850 		ret = mmc_blk_part_switch_pre(card, part_type);
851 		if (ret)
852 			return ret;
853 
854 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
855 		part_config |= part_type;
856 
857 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
858 				 EXT_CSD_PART_CONFIG, part_config,
859 				 card->ext_csd.part_time);
860 		if (ret) {
861 			mmc_blk_part_switch_post(card, part_type);
862 			return ret;
863 		}
864 
865 		card->ext_csd.part_config = part_config;
866 
867 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
868 	}
869 
870 	main_md->part_curr = part_type;
871 	return ret;
872 }
873 
874 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
875 {
876 	int err;
877 	u32 result;
878 	__be32 *blocks;
879 
880 	struct mmc_request mrq = {};
881 	struct mmc_command cmd = {};
882 	struct mmc_data data = {};
883 
884 	struct scatterlist sg;
885 
886 	cmd.opcode = MMC_APP_CMD;
887 	cmd.arg = card->rca << 16;
888 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
889 
890 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
891 	if (err)
892 		return err;
893 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
894 		return -EIO;
895 
896 	memset(&cmd, 0, sizeof(struct mmc_command));
897 
898 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
899 	cmd.arg = 0;
900 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
901 
902 	data.blksz = 4;
903 	data.blocks = 1;
904 	data.flags = MMC_DATA_READ;
905 	data.sg = &sg;
906 	data.sg_len = 1;
907 	mmc_set_data_timeout(&data, card);
908 
909 	mrq.cmd = &cmd;
910 	mrq.data = &data;
911 
912 	blocks = kmalloc(4, GFP_KERNEL);
913 	if (!blocks)
914 		return -ENOMEM;
915 
916 	sg_init_one(&sg, blocks, 4);
917 
918 	mmc_wait_for_req(card->host, &mrq);
919 
920 	result = ntohl(*blocks);
921 	kfree(blocks);
922 
923 	if (cmd.error || data.error)
924 		return -EIO;
925 
926 	*written_blocks = result;
927 
928 	return 0;
929 }
930 
931 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
932 {
933 	if (host->actual_clock)
934 		return host->actual_clock / 1000;
935 
936 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
937 	if (host->ios.clock)
938 		return host->ios.clock / 2000;
939 
940 	/* How can there be no clock */
941 	WARN_ON_ONCE(1);
942 	return 100; /* 100 kHz is minimum possible value */
943 }
944 
945 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
946 					    struct mmc_data *data)
947 {
948 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
949 	unsigned int khz;
950 
951 	if (data->timeout_clks) {
952 		khz = mmc_blk_clock_khz(host);
953 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
954 	}
955 
956 	return ms;
957 }
958 
959 static inline bool mmc_blk_in_tran_state(u32 status)
960 {
961 	/*
962 	 * Some cards mishandle the status bits, so make sure to check both the
963 	 * busy indication and the card state.
964 	 */
965 	return status & R1_READY_FOR_DATA &&
966 	       (R1_CURRENT_STATE(status) == R1_STATE_TRAN);
967 }
968 
969 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
970 			    struct request *req, u32 *resp_errs)
971 {
972 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
973 	int err = 0;
974 	u32 status;
975 
976 	do {
977 		bool done = time_after(jiffies, timeout);
978 
979 		err = __mmc_send_status(card, &status, 5);
980 		if (err) {
981 			pr_err("%s: error %d requesting status\n",
982 			       req->rq_disk->disk_name, err);
983 			return err;
984 		}
985 
986 		/* Accumulate any response error bits seen */
987 		if (resp_errs)
988 			*resp_errs |= status;
989 
990 		/*
991 		 * Timeout if the device never becomes ready for data and never
992 		 * leaves the program state.
993 		 */
994 		if (done) {
995 			pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n",
996 				mmc_hostname(card->host),
997 				req->rq_disk->disk_name, __func__, status);
998 			return -ETIMEDOUT;
999 		}
1000 
1001 		/*
1002 		 * Some cards mishandle the status bits,
1003 		 * so make sure to check both the busy
1004 		 * indication and the card state.
1005 		 */
1006 	} while (!mmc_blk_in_tran_state(status));
1007 
1008 	return err;
1009 }
1010 
1011 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1012 			 int type)
1013 {
1014 	int err;
1015 
1016 	if (md->reset_done & type)
1017 		return -EEXIST;
1018 
1019 	md->reset_done |= type;
1020 	err = mmc_hw_reset(host);
1021 	/* Ensure we switch back to the correct partition */
1022 	if (err != -EOPNOTSUPP) {
1023 		struct mmc_blk_data *main_md =
1024 			dev_get_drvdata(&host->card->dev);
1025 		int part_err;
1026 
1027 		main_md->part_curr = main_md->part_type;
1028 		part_err = mmc_blk_part_switch(host->card, md->part_type);
1029 		if (part_err) {
1030 			/*
1031 			 * We have failed to get back into the correct
1032 			 * partition, so we need to abort the whole request.
1033 			 */
1034 			return -ENODEV;
1035 		}
1036 	}
1037 	return err;
1038 }
1039 
1040 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1041 {
1042 	md->reset_done &= ~type;
1043 }
1044 
1045 /*
1046  * The non-block commands come back from the block layer after it queued it and
1047  * processed it with all other requests and then they get issued in this
1048  * function.
1049  */
1050 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1051 {
1052 	struct mmc_queue_req *mq_rq;
1053 	struct mmc_card *card = mq->card;
1054 	struct mmc_blk_data *md = mq->blkdata;
1055 	struct mmc_blk_ioc_data **idata;
1056 	bool rpmb_ioctl;
1057 	u8 **ext_csd;
1058 	u32 status;
1059 	int ret;
1060 	int i;
1061 
1062 	mq_rq = req_to_mmc_queue_req(req);
1063 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1064 
1065 	switch (mq_rq->drv_op) {
1066 	case MMC_DRV_OP_IOCTL:
1067 	case MMC_DRV_OP_IOCTL_RPMB:
1068 		idata = mq_rq->drv_op_data;
1069 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1070 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1071 			if (ret)
1072 				break;
1073 		}
1074 		/* Always switch back to main area after RPMB access */
1075 		if (rpmb_ioctl)
1076 			mmc_blk_part_switch(card, 0);
1077 		break;
1078 	case MMC_DRV_OP_BOOT_WP:
1079 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1080 				 card->ext_csd.boot_ro_lock |
1081 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1082 				 card->ext_csd.part_time);
1083 		if (ret)
1084 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1085 			       md->disk->disk_name, ret);
1086 		else
1087 			card->ext_csd.boot_ro_lock |=
1088 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1089 		break;
1090 	case MMC_DRV_OP_GET_CARD_STATUS:
1091 		ret = mmc_send_status(card, &status);
1092 		if (!ret)
1093 			ret = status;
1094 		break;
1095 	case MMC_DRV_OP_GET_EXT_CSD:
1096 		ext_csd = mq_rq->drv_op_data;
1097 		ret = mmc_get_ext_csd(card, ext_csd);
1098 		break;
1099 	default:
1100 		pr_err("%s: unknown driver specific operation\n",
1101 		       md->disk->disk_name);
1102 		ret = -EINVAL;
1103 		break;
1104 	}
1105 	mq_rq->drv_op_result = ret;
1106 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1107 }
1108 
1109 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1110 {
1111 	struct mmc_blk_data *md = mq->blkdata;
1112 	struct mmc_card *card = md->queue.card;
1113 	unsigned int from, nr, arg;
1114 	int err = 0, type = MMC_BLK_DISCARD;
1115 	blk_status_t status = BLK_STS_OK;
1116 
1117 	if (!mmc_can_erase(card)) {
1118 		status = BLK_STS_NOTSUPP;
1119 		goto fail;
1120 	}
1121 
1122 	from = blk_rq_pos(req);
1123 	nr = blk_rq_sectors(req);
1124 
1125 	if (mmc_can_discard(card))
1126 		arg = MMC_DISCARD_ARG;
1127 	else if (mmc_can_trim(card))
1128 		arg = MMC_TRIM_ARG;
1129 	else
1130 		arg = MMC_ERASE_ARG;
1131 	do {
1132 		err = 0;
1133 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1134 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1135 					 INAND_CMD38_ARG_EXT_CSD,
1136 					 arg == MMC_TRIM_ARG ?
1137 					 INAND_CMD38_ARG_TRIM :
1138 					 INAND_CMD38_ARG_ERASE,
1139 					 0);
1140 		}
1141 		if (!err)
1142 			err = mmc_erase(card, from, nr, arg);
1143 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1144 	if (err)
1145 		status = BLK_STS_IOERR;
1146 	else
1147 		mmc_blk_reset_success(md, type);
1148 fail:
1149 	blk_mq_end_request(req, status);
1150 }
1151 
1152 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1153 				       struct request *req)
1154 {
1155 	struct mmc_blk_data *md = mq->blkdata;
1156 	struct mmc_card *card = md->queue.card;
1157 	unsigned int from, nr, arg;
1158 	int err = 0, type = MMC_BLK_SECDISCARD;
1159 	blk_status_t status = BLK_STS_OK;
1160 
1161 	if (!(mmc_can_secure_erase_trim(card))) {
1162 		status = BLK_STS_NOTSUPP;
1163 		goto out;
1164 	}
1165 
1166 	from = blk_rq_pos(req);
1167 	nr = blk_rq_sectors(req);
1168 
1169 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1170 		arg = MMC_SECURE_TRIM1_ARG;
1171 	else
1172 		arg = MMC_SECURE_ERASE_ARG;
1173 
1174 retry:
1175 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1176 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1177 				 INAND_CMD38_ARG_EXT_CSD,
1178 				 arg == MMC_SECURE_TRIM1_ARG ?
1179 				 INAND_CMD38_ARG_SECTRIM1 :
1180 				 INAND_CMD38_ARG_SECERASE,
1181 				 0);
1182 		if (err)
1183 			goto out_retry;
1184 	}
1185 
1186 	err = mmc_erase(card, from, nr, arg);
1187 	if (err == -EIO)
1188 		goto out_retry;
1189 	if (err) {
1190 		status = BLK_STS_IOERR;
1191 		goto out;
1192 	}
1193 
1194 	if (arg == MMC_SECURE_TRIM1_ARG) {
1195 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1196 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1197 					 INAND_CMD38_ARG_EXT_CSD,
1198 					 INAND_CMD38_ARG_SECTRIM2,
1199 					 0);
1200 			if (err)
1201 				goto out_retry;
1202 		}
1203 
1204 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1205 		if (err == -EIO)
1206 			goto out_retry;
1207 		if (err) {
1208 			status = BLK_STS_IOERR;
1209 			goto out;
1210 		}
1211 	}
1212 
1213 out_retry:
1214 	if (err && !mmc_blk_reset(md, card->host, type))
1215 		goto retry;
1216 	if (!err)
1217 		mmc_blk_reset_success(md, type);
1218 out:
1219 	blk_mq_end_request(req, status);
1220 }
1221 
1222 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1223 {
1224 	struct mmc_blk_data *md = mq->blkdata;
1225 	struct mmc_card *card = md->queue.card;
1226 	int ret = 0;
1227 
1228 	ret = mmc_flush_cache(card);
1229 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1230 }
1231 
1232 /*
1233  * Reformat current write as a reliable write, supporting
1234  * both legacy and the enhanced reliable write MMC cards.
1235  * In each transfer we'll handle only as much as a single
1236  * reliable write can handle, thus finish the request in
1237  * partial completions.
1238  */
1239 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1240 				    struct mmc_card *card,
1241 				    struct request *req)
1242 {
1243 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1244 		/* Legacy mode imposes restrictions on transfers. */
1245 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1246 			brq->data.blocks = 1;
1247 
1248 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1249 			brq->data.blocks = card->ext_csd.rel_sectors;
1250 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1251 			brq->data.blocks = 1;
1252 	}
1253 }
1254 
1255 #define CMD_ERRORS_EXCL_OOR						\
1256 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1257 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1258 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1259 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1260 	 R1_CC_ERROR |		/* Card controller error */		\
1261 	 R1_ERROR)		/* General/unknown error */
1262 
1263 #define CMD_ERRORS							\
1264 	(CMD_ERRORS_EXCL_OOR |						\
1265 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1266 
1267 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1268 {
1269 	u32 val;
1270 
1271 	/*
1272 	 * Per the SD specification(physical layer version 4.10)[1],
1273 	 * section 4.3.3, it explicitly states that "When the last
1274 	 * block of user area is read using CMD18, the host should
1275 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1276 	 * is correct". And JESD84-B51 for eMMC also has a similar
1277 	 * statement on section 6.8.3.
1278 	 *
1279 	 * Multiple block read/write could be done by either predefined
1280 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1281 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1282 	 *
1283 	 * However the spec[1] doesn't tell us whether we should also
1284 	 * ignore that for predefined method. But per the spec[1], section
1285 	 * 4.15 Set Block Count Command, it says"If illegal block count
1286 	 * is set, out of range error will be indicated during read/write
1287 	 * operation (For example, data transfer is stopped at user area
1288 	 * boundary)." In another word, we could expect a out of range error
1289 	 * in the response for the following CMD18/25. And if argument of
1290 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1291 	 * we could also expect to get a -ETIMEDOUT or any error number from
1292 	 * the host drivers due to missing data response(for write)/data(for
1293 	 * read), as the cards will stop the data transfer by itself per the
1294 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1295 	 */
1296 
1297 	if (!brq->stop.error) {
1298 		bool oor_with_open_end;
1299 		/* If there is no error yet, check R1 response */
1300 
1301 		val = brq->stop.resp[0] & CMD_ERRORS;
1302 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1303 
1304 		if (val && !oor_with_open_end)
1305 			brq->stop.error = -EIO;
1306 	}
1307 }
1308 
1309 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1310 			      int disable_multi, bool *do_rel_wr_p,
1311 			      bool *do_data_tag_p)
1312 {
1313 	struct mmc_blk_data *md = mq->blkdata;
1314 	struct mmc_card *card = md->queue.card;
1315 	struct mmc_blk_request *brq = &mqrq->brq;
1316 	struct request *req = mmc_queue_req_to_req(mqrq);
1317 	bool do_rel_wr, do_data_tag;
1318 
1319 	/*
1320 	 * Reliable writes are used to implement Forced Unit Access and
1321 	 * are supported only on MMCs.
1322 	 */
1323 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1324 		    rq_data_dir(req) == WRITE &&
1325 		    (md->flags & MMC_BLK_REL_WR);
1326 
1327 	memset(brq, 0, sizeof(struct mmc_blk_request));
1328 
1329 	brq->mrq.data = &brq->data;
1330 	brq->mrq.tag = req->tag;
1331 
1332 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1333 	brq->stop.arg = 0;
1334 
1335 	if (rq_data_dir(req) == READ) {
1336 		brq->data.flags = MMC_DATA_READ;
1337 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1338 	} else {
1339 		brq->data.flags = MMC_DATA_WRITE;
1340 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1341 	}
1342 
1343 	brq->data.blksz = 512;
1344 	brq->data.blocks = blk_rq_sectors(req);
1345 	brq->data.blk_addr = blk_rq_pos(req);
1346 
1347 	/*
1348 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1349 	 * The eMMC will give "high" priority tasks priority over "simple"
1350 	 * priority tasks. Here we always set "simple" priority by not setting
1351 	 * MMC_DATA_PRIO.
1352 	 */
1353 
1354 	/*
1355 	 * The block layer doesn't support all sector count
1356 	 * restrictions, so we need to be prepared for too big
1357 	 * requests.
1358 	 */
1359 	if (brq->data.blocks > card->host->max_blk_count)
1360 		brq->data.blocks = card->host->max_blk_count;
1361 
1362 	if (brq->data.blocks > 1) {
1363 		/*
1364 		 * After a read error, we redo the request one sector
1365 		 * at a time in order to accurately determine which
1366 		 * sectors can be read successfully.
1367 		 */
1368 		if (disable_multi)
1369 			brq->data.blocks = 1;
1370 
1371 		/*
1372 		 * Some controllers have HW issues while operating
1373 		 * in multiple I/O mode
1374 		 */
1375 		if (card->host->ops->multi_io_quirk)
1376 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1377 						(rq_data_dir(req) == READ) ?
1378 						MMC_DATA_READ : MMC_DATA_WRITE,
1379 						brq->data.blocks);
1380 	}
1381 
1382 	if (do_rel_wr) {
1383 		mmc_apply_rel_rw(brq, card, req);
1384 		brq->data.flags |= MMC_DATA_REL_WR;
1385 	}
1386 
1387 	/*
1388 	 * Data tag is used only during writing meta data to speed
1389 	 * up write and any subsequent read of this meta data
1390 	 */
1391 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1392 		      (req->cmd_flags & REQ_META) &&
1393 		      (rq_data_dir(req) == WRITE) &&
1394 		      ((brq->data.blocks * brq->data.blksz) >=
1395 		       card->ext_csd.data_tag_unit_size);
1396 
1397 	if (do_data_tag)
1398 		brq->data.flags |= MMC_DATA_DAT_TAG;
1399 
1400 	mmc_set_data_timeout(&brq->data, card);
1401 
1402 	brq->data.sg = mqrq->sg;
1403 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1404 
1405 	/*
1406 	 * Adjust the sg list so it is the same size as the
1407 	 * request.
1408 	 */
1409 	if (brq->data.blocks != blk_rq_sectors(req)) {
1410 		int i, data_size = brq->data.blocks << 9;
1411 		struct scatterlist *sg;
1412 
1413 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1414 			data_size -= sg->length;
1415 			if (data_size <= 0) {
1416 				sg->length += data_size;
1417 				i++;
1418 				break;
1419 			}
1420 		}
1421 		brq->data.sg_len = i;
1422 	}
1423 
1424 	if (do_rel_wr_p)
1425 		*do_rel_wr_p = do_rel_wr;
1426 
1427 	if (do_data_tag_p)
1428 		*do_data_tag_p = do_data_tag;
1429 }
1430 
1431 #define MMC_CQE_RETRIES 2
1432 
1433 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1434 {
1435 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1436 	struct mmc_request *mrq = &mqrq->brq.mrq;
1437 	struct request_queue *q = req->q;
1438 	struct mmc_host *host = mq->card->host;
1439 	unsigned long flags;
1440 	bool put_card;
1441 	int err;
1442 
1443 	mmc_cqe_post_req(host, mrq);
1444 
1445 	if (mrq->cmd && mrq->cmd->error)
1446 		err = mrq->cmd->error;
1447 	else if (mrq->data && mrq->data->error)
1448 		err = mrq->data->error;
1449 	else
1450 		err = 0;
1451 
1452 	if (err) {
1453 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1454 			blk_mq_requeue_request(req, true);
1455 		else
1456 			blk_mq_end_request(req, BLK_STS_IOERR);
1457 	} else if (mrq->data) {
1458 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1459 			blk_mq_requeue_request(req, true);
1460 		else
1461 			__blk_mq_end_request(req, BLK_STS_OK);
1462 	} else {
1463 		blk_mq_end_request(req, BLK_STS_OK);
1464 	}
1465 
1466 	spin_lock_irqsave(q->queue_lock, flags);
1467 
1468 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1469 
1470 	put_card = (mmc_tot_in_flight(mq) == 0);
1471 
1472 	mmc_cqe_check_busy(mq);
1473 
1474 	spin_unlock_irqrestore(q->queue_lock, flags);
1475 
1476 	if (!mq->cqe_busy)
1477 		blk_mq_run_hw_queues(q, true);
1478 
1479 	if (put_card)
1480 		mmc_put_card(mq->card, &mq->ctx);
1481 }
1482 
1483 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1484 {
1485 	struct mmc_card *card = mq->card;
1486 	struct mmc_host *host = card->host;
1487 	int err;
1488 
1489 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1490 
1491 	err = mmc_cqe_recovery(host);
1492 	if (err)
1493 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1494 	else
1495 		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1496 
1497 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1498 }
1499 
1500 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1501 {
1502 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1503 						  brq.mrq);
1504 	struct request *req = mmc_queue_req_to_req(mqrq);
1505 	struct request_queue *q = req->q;
1506 	struct mmc_queue *mq = q->queuedata;
1507 
1508 	/*
1509 	 * Block layer timeouts race with completions which means the normal
1510 	 * completion path cannot be used during recovery.
1511 	 */
1512 	if (mq->in_recovery)
1513 		mmc_blk_cqe_complete_rq(mq, req);
1514 	else
1515 		blk_mq_complete_request(req);
1516 }
1517 
1518 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1519 {
1520 	mrq->done		= mmc_blk_cqe_req_done;
1521 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1522 
1523 	return mmc_cqe_start_req(host, mrq);
1524 }
1525 
1526 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1527 						 struct request *req)
1528 {
1529 	struct mmc_blk_request *brq = &mqrq->brq;
1530 
1531 	memset(brq, 0, sizeof(*brq));
1532 
1533 	brq->mrq.cmd = &brq->cmd;
1534 	brq->mrq.tag = req->tag;
1535 
1536 	return &brq->mrq;
1537 }
1538 
1539 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1540 {
1541 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1542 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1543 
1544 	mrq->cmd->opcode = MMC_SWITCH;
1545 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1546 			(EXT_CSD_FLUSH_CACHE << 16) |
1547 			(1 << 8) |
1548 			EXT_CSD_CMD_SET_NORMAL;
1549 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1550 
1551 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1552 }
1553 
1554 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1555 {
1556 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1557 
1558 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1559 
1560 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1561 }
1562 
1563 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1564 			       struct mmc_card *card,
1565 			       int disable_multi,
1566 			       struct mmc_queue *mq)
1567 {
1568 	u32 readcmd, writecmd;
1569 	struct mmc_blk_request *brq = &mqrq->brq;
1570 	struct request *req = mmc_queue_req_to_req(mqrq);
1571 	struct mmc_blk_data *md = mq->blkdata;
1572 	bool do_rel_wr, do_data_tag;
1573 
1574 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1575 
1576 	brq->mrq.cmd = &brq->cmd;
1577 
1578 	brq->cmd.arg = blk_rq_pos(req);
1579 	if (!mmc_card_blockaddr(card))
1580 		brq->cmd.arg <<= 9;
1581 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1582 
1583 	if (brq->data.blocks > 1 || do_rel_wr) {
1584 		/* SPI multiblock writes terminate using a special
1585 		 * token, not a STOP_TRANSMISSION request.
1586 		 */
1587 		if (!mmc_host_is_spi(card->host) ||
1588 		    rq_data_dir(req) == READ)
1589 			brq->mrq.stop = &brq->stop;
1590 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1591 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1592 	} else {
1593 		brq->mrq.stop = NULL;
1594 		readcmd = MMC_READ_SINGLE_BLOCK;
1595 		writecmd = MMC_WRITE_BLOCK;
1596 	}
1597 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1598 
1599 	/*
1600 	 * Pre-defined multi-block transfers are preferable to
1601 	 * open ended-ones (and necessary for reliable writes).
1602 	 * However, it is not sufficient to just send CMD23,
1603 	 * and avoid the final CMD12, as on an error condition
1604 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1605 	 * with Auto-CMD23 enhancements provided by some
1606 	 * hosts, means that the complexity of dealing
1607 	 * with this is best left to the host. If CMD23 is
1608 	 * supported by card and host, we'll fill sbc in and let
1609 	 * the host deal with handling it correctly. This means
1610 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1611 	 * change of behavior will be observed.
1612 	 *
1613 	 * N.B: Some MMC cards experience perf degradation.
1614 	 * We'll avoid using CMD23-bounded multiblock writes for
1615 	 * these, while retaining features like reliable writes.
1616 	 */
1617 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1618 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1619 	     do_data_tag)) {
1620 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1621 		brq->sbc.arg = brq->data.blocks |
1622 			(do_rel_wr ? (1 << 31) : 0) |
1623 			(do_data_tag ? (1 << 29) : 0);
1624 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1625 		brq->mrq.sbc = &brq->sbc;
1626 	}
1627 }
1628 
1629 #define MMC_MAX_RETRIES		5
1630 #define MMC_DATA_RETRIES	2
1631 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1632 
1633 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1634 {
1635 	struct mmc_command cmd = {
1636 		.opcode = MMC_STOP_TRANSMISSION,
1637 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1638 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1639 		.busy_timeout = timeout,
1640 	};
1641 
1642 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1643 }
1644 
1645 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1646 {
1647 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1648 	struct mmc_blk_request *brq = &mqrq->brq;
1649 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1650 	int err;
1651 
1652 	mmc_retune_hold_now(card->host);
1653 
1654 	mmc_blk_send_stop(card, timeout);
1655 
1656 	err = card_busy_detect(card, timeout, req, NULL);
1657 
1658 	mmc_retune_release(card->host);
1659 
1660 	return err;
1661 }
1662 
1663 #define MMC_READ_SINGLE_RETRIES	2
1664 
1665 /* Single sector read during recovery */
1666 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1667 {
1668 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1669 	struct mmc_request *mrq = &mqrq->brq.mrq;
1670 	struct mmc_card *card = mq->card;
1671 	struct mmc_host *host = card->host;
1672 	blk_status_t error = BLK_STS_OK;
1673 	int retries = 0;
1674 
1675 	do {
1676 		u32 status;
1677 		int err;
1678 
1679 		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1680 
1681 		mmc_wait_for_req(host, mrq);
1682 
1683 		err = mmc_send_status(card, &status);
1684 		if (err)
1685 			goto error_exit;
1686 
1687 		if (!mmc_host_is_spi(host) &&
1688 		    !mmc_blk_in_tran_state(status)) {
1689 			err = mmc_blk_fix_state(card, req);
1690 			if (err)
1691 				goto error_exit;
1692 		}
1693 
1694 		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1695 			continue;
1696 
1697 		retries = 0;
1698 
1699 		if (mrq->cmd->error ||
1700 		    mrq->data->error ||
1701 		    (!mmc_host_is_spi(host) &&
1702 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1703 			error = BLK_STS_IOERR;
1704 		else
1705 			error = BLK_STS_OK;
1706 
1707 	} while (blk_update_request(req, error, 512));
1708 
1709 	return;
1710 
1711 error_exit:
1712 	mrq->data->bytes_xfered = 0;
1713 	blk_update_request(req, BLK_STS_IOERR, 512);
1714 	/* Let it try the remaining request again */
1715 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1716 		mqrq->retries = MMC_MAX_RETRIES - 1;
1717 }
1718 
1719 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1720 {
1721 	return !!brq->mrq.sbc;
1722 }
1723 
1724 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1725 {
1726 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1727 }
1728 
1729 /*
1730  * Check for errors the host controller driver might not have seen such as
1731  * response mode errors or invalid card state.
1732  */
1733 static bool mmc_blk_status_error(struct request *req, u32 status)
1734 {
1735 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1736 	struct mmc_blk_request *brq = &mqrq->brq;
1737 	struct mmc_queue *mq = req->q->queuedata;
1738 	u32 stop_err_bits;
1739 
1740 	if (mmc_host_is_spi(mq->card->host))
1741 		return false;
1742 
1743 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1744 
1745 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1746 	       brq->stop.resp[0] & stop_err_bits ||
1747 	       status            & stop_err_bits ||
1748 	       (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status));
1749 }
1750 
1751 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1752 {
1753 	return !brq->sbc.error && !brq->cmd.error &&
1754 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1755 }
1756 
1757 /*
1758  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1759  * policy:
1760  * 1. A request that has transferred at least some data is considered
1761  * successful and will be requeued if there is remaining data to
1762  * transfer.
1763  * 2. Otherwise the number of retries is incremented and the request
1764  * will be requeued if there are remaining retries.
1765  * 3. Otherwise the request will be errored out.
1766  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1767  * mqrq->retries. So there are only 4 possible actions here:
1768  *	1. do not accept the bytes_xfered value i.e. set it to zero
1769  *	2. change mqrq->retries to determine the number of retries
1770  *	3. try to reset the card
1771  *	4. read one sector at a time
1772  */
1773 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1774 {
1775 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1776 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1777 	struct mmc_blk_request *brq = &mqrq->brq;
1778 	struct mmc_blk_data *md = mq->blkdata;
1779 	struct mmc_card *card = mq->card;
1780 	u32 status;
1781 	u32 blocks;
1782 	int err;
1783 
1784 	/*
1785 	 * Some errors the host driver might not have seen. Set the number of
1786 	 * bytes transferred to zero in that case.
1787 	 */
1788 	err = __mmc_send_status(card, &status, 0);
1789 	if (err || mmc_blk_status_error(req, status))
1790 		brq->data.bytes_xfered = 0;
1791 
1792 	mmc_retune_release(card->host);
1793 
1794 	/*
1795 	 * Try again to get the status. This also provides an opportunity for
1796 	 * re-tuning.
1797 	 */
1798 	if (err)
1799 		err = __mmc_send_status(card, &status, 0);
1800 
1801 	/*
1802 	 * Nothing more to do after the number of bytes transferred has been
1803 	 * updated and there is no card.
1804 	 */
1805 	if (err && mmc_detect_card_removed(card->host))
1806 		return;
1807 
1808 	/* Try to get back to "tran" state */
1809 	if (!mmc_host_is_spi(mq->card->host) &&
1810 	    (err || !mmc_blk_in_tran_state(status)))
1811 		err = mmc_blk_fix_state(mq->card, req);
1812 
1813 	/*
1814 	 * Special case for SD cards where the card might record the number of
1815 	 * blocks written.
1816 	 */
1817 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1818 	    rq_data_dir(req) == WRITE) {
1819 		if (mmc_sd_num_wr_blocks(card, &blocks))
1820 			brq->data.bytes_xfered = 0;
1821 		else
1822 			brq->data.bytes_xfered = blocks << 9;
1823 	}
1824 
1825 	/* Reset if the card is in a bad state */
1826 	if (!mmc_host_is_spi(mq->card->host) &&
1827 	    err && mmc_blk_reset(md, card->host, type)) {
1828 		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1829 		mqrq->retries = MMC_NO_RETRIES;
1830 		return;
1831 	}
1832 
1833 	/*
1834 	 * If anything was done, just return and if there is anything remaining
1835 	 * on the request it will get requeued.
1836 	 */
1837 	if (brq->data.bytes_xfered)
1838 		return;
1839 
1840 	/* Reset before last retry */
1841 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1842 		mmc_blk_reset(md, card->host, type);
1843 
1844 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1845 	if (brq->sbc.error || brq->cmd.error)
1846 		return;
1847 
1848 	/* Reduce the remaining retries for data errors */
1849 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1850 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1851 		return;
1852 	}
1853 
1854 	/* FIXME: Missing single sector read for large sector size */
1855 	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1856 	    brq->data.blocks > 1) {
1857 		/* Read one sector at a time */
1858 		mmc_blk_read_single(mq, req);
1859 		return;
1860 	}
1861 }
1862 
1863 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1864 {
1865 	mmc_blk_eval_resp_error(brq);
1866 
1867 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1868 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1869 }
1870 
1871 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1872 {
1873 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1874 	u32 status = 0;
1875 	int err;
1876 
1877 	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1878 		return 0;
1879 
1880 	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status);
1881 
1882 	/*
1883 	 * Do not assume data transferred correctly if there are any error bits
1884 	 * set.
1885 	 */
1886 	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1887 		mqrq->brq.data.bytes_xfered = 0;
1888 		err = err ? err : -EIO;
1889 	}
1890 
1891 	/* Copy the exception bit so it will be seen later on */
1892 	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1893 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1894 
1895 	return err;
1896 }
1897 
1898 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1899 					    struct request *req)
1900 {
1901 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1902 
1903 	mmc_blk_reset_success(mq->blkdata, type);
1904 }
1905 
1906 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1907 {
1908 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1909 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1910 
1911 	if (nr_bytes) {
1912 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1913 			blk_mq_requeue_request(req, true);
1914 		else
1915 			__blk_mq_end_request(req, BLK_STS_OK);
1916 	} else if (!blk_rq_bytes(req)) {
1917 		__blk_mq_end_request(req, BLK_STS_IOERR);
1918 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1919 		blk_mq_requeue_request(req, true);
1920 	} else {
1921 		if (mmc_card_removed(mq->card))
1922 			req->rq_flags |= RQF_QUIET;
1923 		blk_mq_end_request(req, BLK_STS_IOERR);
1924 	}
1925 }
1926 
1927 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1928 					struct mmc_queue_req *mqrq)
1929 {
1930 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1931 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1932 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1933 }
1934 
1935 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1936 				 struct mmc_queue_req *mqrq)
1937 {
1938 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1939 		mmc_start_bkops(mq->card, true);
1940 }
1941 
1942 void mmc_blk_mq_complete(struct request *req)
1943 {
1944 	struct mmc_queue *mq = req->q->queuedata;
1945 
1946 	if (mq->use_cqe)
1947 		mmc_blk_cqe_complete_rq(mq, req);
1948 	else
1949 		mmc_blk_mq_complete_rq(mq, req);
1950 }
1951 
1952 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1953 				       struct request *req)
1954 {
1955 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1956 	struct mmc_host *host = mq->card->host;
1957 
1958 	if (mmc_blk_rq_error(&mqrq->brq) ||
1959 	    mmc_blk_card_busy(mq->card, req)) {
1960 		mmc_blk_mq_rw_recovery(mq, req);
1961 	} else {
1962 		mmc_blk_rw_reset_success(mq, req);
1963 		mmc_retune_release(host);
1964 	}
1965 
1966 	mmc_blk_urgent_bkops(mq, mqrq);
1967 }
1968 
1969 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1970 {
1971 	struct request_queue *q = req->q;
1972 	unsigned long flags;
1973 	bool put_card;
1974 
1975 	spin_lock_irqsave(q->queue_lock, flags);
1976 
1977 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1978 
1979 	put_card = (mmc_tot_in_flight(mq) == 0);
1980 
1981 	spin_unlock_irqrestore(q->queue_lock, flags);
1982 
1983 	if (put_card)
1984 		mmc_put_card(mq->card, &mq->ctx);
1985 }
1986 
1987 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1988 {
1989 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1990 	struct mmc_request *mrq = &mqrq->brq.mrq;
1991 	struct mmc_host *host = mq->card->host;
1992 
1993 	mmc_post_req(host, mrq, 0);
1994 
1995 	/*
1996 	 * Block layer timeouts race with completions which means the normal
1997 	 * completion path cannot be used during recovery.
1998 	 */
1999 	if (mq->in_recovery)
2000 		mmc_blk_mq_complete_rq(mq, req);
2001 	else
2002 		blk_mq_complete_request(req);
2003 
2004 	mmc_blk_mq_dec_in_flight(mq, req);
2005 }
2006 
2007 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2008 {
2009 	struct request *req = mq->recovery_req;
2010 	struct mmc_host *host = mq->card->host;
2011 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2012 
2013 	mq->recovery_req = NULL;
2014 	mq->rw_wait = false;
2015 
2016 	if (mmc_blk_rq_error(&mqrq->brq)) {
2017 		mmc_retune_hold_now(host);
2018 		mmc_blk_mq_rw_recovery(mq, req);
2019 	}
2020 
2021 	mmc_blk_urgent_bkops(mq, mqrq);
2022 
2023 	mmc_blk_mq_post_req(mq, req);
2024 }
2025 
2026 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2027 					 struct request **prev_req)
2028 {
2029 	if (mmc_host_done_complete(mq->card->host))
2030 		return;
2031 
2032 	mutex_lock(&mq->complete_lock);
2033 
2034 	if (!mq->complete_req)
2035 		goto out_unlock;
2036 
2037 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2038 
2039 	if (prev_req)
2040 		*prev_req = mq->complete_req;
2041 	else
2042 		mmc_blk_mq_post_req(mq, mq->complete_req);
2043 
2044 	mq->complete_req = NULL;
2045 
2046 out_unlock:
2047 	mutex_unlock(&mq->complete_lock);
2048 }
2049 
2050 void mmc_blk_mq_complete_work(struct work_struct *work)
2051 {
2052 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2053 					    complete_work);
2054 
2055 	mmc_blk_mq_complete_prev_req(mq, NULL);
2056 }
2057 
2058 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2059 {
2060 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2061 						  brq.mrq);
2062 	struct request *req = mmc_queue_req_to_req(mqrq);
2063 	struct request_queue *q = req->q;
2064 	struct mmc_queue *mq = q->queuedata;
2065 	struct mmc_host *host = mq->card->host;
2066 	unsigned long flags;
2067 
2068 	if (!mmc_host_done_complete(host)) {
2069 		bool waiting;
2070 
2071 		/*
2072 		 * We cannot complete the request in this context, so record
2073 		 * that there is a request to complete, and that a following
2074 		 * request does not need to wait (although it does need to
2075 		 * complete complete_req first).
2076 		 */
2077 		spin_lock_irqsave(q->queue_lock, flags);
2078 		mq->complete_req = req;
2079 		mq->rw_wait = false;
2080 		waiting = mq->waiting;
2081 		spin_unlock_irqrestore(q->queue_lock, flags);
2082 
2083 		/*
2084 		 * If 'waiting' then the waiting task will complete this
2085 		 * request, otherwise queue a work to do it. Note that
2086 		 * complete_work may still race with the dispatch of a following
2087 		 * request.
2088 		 */
2089 		if (waiting)
2090 			wake_up(&mq->wait);
2091 		else
2092 			kblockd_schedule_work(&mq->complete_work);
2093 
2094 		return;
2095 	}
2096 
2097 	/* Take the recovery path for errors or urgent background operations */
2098 	if (mmc_blk_rq_error(&mqrq->brq) ||
2099 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2100 		spin_lock_irqsave(q->queue_lock, flags);
2101 		mq->recovery_needed = true;
2102 		mq->recovery_req = req;
2103 		spin_unlock_irqrestore(q->queue_lock, flags);
2104 		wake_up(&mq->wait);
2105 		schedule_work(&mq->recovery_work);
2106 		return;
2107 	}
2108 
2109 	mmc_blk_rw_reset_success(mq, req);
2110 
2111 	mq->rw_wait = false;
2112 	wake_up(&mq->wait);
2113 
2114 	mmc_blk_mq_post_req(mq, req);
2115 }
2116 
2117 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2118 {
2119 	struct request_queue *q = mq->queue;
2120 	unsigned long flags;
2121 	bool done;
2122 
2123 	/*
2124 	 * Wait while there is another request in progress, but not if recovery
2125 	 * is needed. Also indicate whether there is a request waiting to start.
2126 	 */
2127 	spin_lock_irqsave(q->queue_lock, flags);
2128 	if (mq->recovery_needed) {
2129 		*err = -EBUSY;
2130 		done = true;
2131 	} else {
2132 		done = !mq->rw_wait;
2133 	}
2134 	mq->waiting = !done;
2135 	spin_unlock_irqrestore(q->queue_lock, flags);
2136 
2137 	return done;
2138 }
2139 
2140 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2141 {
2142 	int err = 0;
2143 
2144 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2145 
2146 	/* Always complete the previous request if there is one */
2147 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2148 
2149 	return err;
2150 }
2151 
2152 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2153 				  struct request *req)
2154 {
2155 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2156 	struct mmc_host *host = mq->card->host;
2157 	struct request *prev_req = NULL;
2158 	int err = 0;
2159 
2160 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2161 
2162 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2163 
2164 	mmc_pre_req(host, &mqrq->brq.mrq);
2165 
2166 	err = mmc_blk_rw_wait(mq, &prev_req);
2167 	if (err)
2168 		goto out_post_req;
2169 
2170 	mq->rw_wait = true;
2171 
2172 	err = mmc_start_request(host, &mqrq->brq.mrq);
2173 
2174 	if (prev_req)
2175 		mmc_blk_mq_post_req(mq, prev_req);
2176 
2177 	if (err)
2178 		mq->rw_wait = false;
2179 
2180 	/* Release re-tuning here where there is no synchronization required */
2181 	if (err || mmc_host_done_complete(host))
2182 		mmc_retune_release(host);
2183 
2184 out_post_req:
2185 	if (err)
2186 		mmc_post_req(host, &mqrq->brq.mrq, err);
2187 
2188 	return err;
2189 }
2190 
2191 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2192 {
2193 	if (mq->use_cqe)
2194 		return host->cqe_ops->cqe_wait_for_idle(host);
2195 
2196 	return mmc_blk_rw_wait(mq, NULL);
2197 }
2198 
2199 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2200 {
2201 	struct mmc_blk_data *md = mq->blkdata;
2202 	struct mmc_card *card = md->queue.card;
2203 	struct mmc_host *host = card->host;
2204 	int ret;
2205 
2206 	ret = mmc_blk_part_switch(card, md->part_type);
2207 	if (ret)
2208 		return MMC_REQ_FAILED_TO_START;
2209 
2210 	switch (mmc_issue_type(mq, req)) {
2211 	case MMC_ISSUE_SYNC:
2212 		ret = mmc_blk_wait_for_idle(mq, host);
2213 		if (ret)
2214 			return MMC_REQ_BUSY;
2215 		switch (req_op(req)) {
2216 		case REQ_OP_DRV_IN:
2217 		case REQ_OP_DRV_OUT:
2218 			mmc_blk_issue_drv_op(mq, req);
2219 			break;
2220 		case REQ_OP_DISCARD:
2221 			mmc_blk_issue_discard_rq(mq, req);
2222 			break;
2223 		case REQ_OP_SECURE_ERASE:
2224 			mmc_blk_issue_secdiscard_rq(mq, req);
2225 			break;
2226 		case REQ_OP_FLUSH:
2227 			mmc_blk_issue_flush(mq, req);
2228 			break;
2229 		default:
2230 			WARN_ON_ONCE(1);
2231 			return MMC_REQ_FAILED_TO_START;
2232 		}
2233 		return MMC_REQ_FINISHED;
2234 	case MMC_ISSUE_DCMD:
2235 	case MMC_ISSUE_ASYNC:
2236 		switch (req_op(req)) {
2237 		case REQ_OP_FLUSH:
2238 			ret = mmc_blk_cqe_issue_flush(mq, req);
2239 			break;
2240 		case REQ_OP_READ:
2241 		case REQ_OP_WRITE:
2242 			if (mq->use_cqe)
2243 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2244 			else
2245 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2246 			break;
2247 		default:
2248 			WARN_ON_ONCE(1);
2249 			ret = -EINVAL;
2250 		}
2251 		if (!ret)
2252 			return MMC_REQ_STARTED;
2253 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2254 	default:
2255 		WARN_ON_ONCE(1);
2256 		return MMC_REQ_FAILED_TO_START;
2257 	}
2258 }
2259 
2260 static inline int mmc_blk_readonly(struct mmc_card *card)
2261 {
2262 	return mmc_card_readonly(card) ||
2263 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2264 }
2265 
2266 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2267 					      struct device *parent,
2268 					      sector_t size,
2269 					      bool default_ro,
2270 					      const char *subname,
2271 					      int area_type)
2272 {
2273 	struct mmc_blk_data *md;
2274 	int devidx, ret;
2275 
2276 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2277 	if (devidx < 0) {
2278 		/*
2279 		 * We get -ENOSPC because there are no more any available
2280 		 * devidx. The reason may be that, either userspace haven't yet
2281 		 * unmounted the partitions, which postpones mmc_blk_release()
2282 		 * from being called, or the device has more partitions than
2283 		 * what we support.
2284 		 */
2285 		if (devidx == -ENOSPC)
2286 			dev_err(mmc_dev(card->host),
2287 				"no more device IDs available\n");
2288 
2289 		return ERR_PTR(devidx);
2290 	}
2291 
2292 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2293 	if (!md) {
2294 		ret = -ENOMEM;
2295 		goto out;
2296 	}
2297 
2298 	md->area_type = area_type;
2299 
2300 	/*
2301 	 * Set the read-only status based on the supported commands
2302 	 * and the write protect switch.
2303 	 */
2304 	md->read_only = mmc_blk_readonly(card);
2305 
2306 	md->disk = alloc_disk(perdev_minors);
2307 	if (md->disk == NULL) {
2308 		ret = -ENOMEM;
2309 		goto err_kfree;
2310 	}
2311 
2312 	spin_lock_init(&md->lock);
2313 	INIT_LIST_HEAD(&md->part);
2314 	INIT_LIST_HEAD(&md->rpmbs);
2315 	md->usage = 1;
2316 
2317 	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2318 	if (ret)
2319 		goto err_putdisk;
2320 
2321 	md->queue.blkdata = md;
2322 
2323 	/*
2324 	 * Keep an extra reference to the queue so that we can shutdown the
2325 	 * queue (i.e. call blk_cleanup_queue()) while there are still
2326 	 * references to the 'md'. The corresponding blk_put_queue() is in
2327 	 * mmc_blk_put().
2328 	 */
2329 	if (!blk_get_queue(md->queue.queue)) {
2330 		mmc_cleanup_queue(&md->queue);
2331 		ret = -ENODEV;
2332 		goto err_putdisk;
2333 	}
2334 
2335 	md->disk->major	= MMC_BLOCK_MAJOR;
2336 	md->disk->first_minor = devidx * perdev_minors;
2337 	md->disk->fops = &mmc_bdops;
2338 	md->disk->private_data = md;
2339 	md->disk->queue = md->queue.queue;
2340 	md->parent = parent;
2341 	set_disk_ro(md->disk, md->read_only || default_ro);
2342 	md->disk->flags = GENHD_FL_EXT_DEVT;
2343 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2344 		md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2345 
2346 	/*
2347 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2348 	 *
2349 	 * - be set for removable media with permanent block devices
2350 	 * - be unset for removable block devices with permanent media
2351 	 *
2352 	 * Since MMC block devices clearly fall under the second
2353 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2354 	 * should use the block device creation/destruction hotplug
2355 	 * messages to tell when the card is present.
2356 	 */
2357 
2358 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2359 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2360 
2361 	if (mmc_card_mmc(card))
2362 		blk_queue_logical_block_size(md->queue.queue,
2363 					     card->ext_csd.data_sector_size);
2364 	else
2365 		blk_queue_logical_block_size(md->queue.queue, 512);
2366 
2367 	set_capacity(md->disk, size);
2368 
2369 	if (mmc_host_cmd23(card->host)) {
2370 		if ((mmc_card_mmc(card) &&
2371 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2372 		    (mmc_card_sd(card) &&
2373 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2374 			md->flags |= MMC_BLK_CMD23;
2375 	}
2376 
2377 	if (mmc_card_mmc(card) &&
2378 	    md->flags & MMC_BLK_CMD23 &&
2379 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2380 	     card->ext_csd.rel_sectors)) {
2381 		md->flags |= MMC_BLK_REL_WR;
2382 		blk_queue_write_cache(md->queue.queue, true, true);
2383 	}
2384 
2385 	return md;
2386 
2387  err_putdisk:
2388 	put_disk(md->disk);
2389  err_kfree:
2390 	kfree(md);
2391  out:
2392 	ida_simple_remove(&mmc_blk_ida, devidx);
2393 	return ERR_PTR(ret);
2394 }
2395 
2396 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2397 {
2398 	sector_t size;
2399 
2400 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2401 		/*
2402 		 * The EXT_CSD sector count is in number or 512 byte
2403 		 * sectors.
2404 		 */
2405 		size = card->ext_csd.sectors;
2406 	} else {
2407 		/*
2408 		 * The CSD capacity field is in units of read_blkbits.
2409 		 * set_capacity takes units of 512 bytes.
2410 		 */
2411 		size = (typeof(sector_t))card->csd.capacity
2412 			<< (card->csd.read_blkbits - 9);
2413 	}
2414 
2415 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2416 					MMC_BLK_DATA_AREA_MAIN);
2417 }
2418 
2419 static int mmc_blk_alloc_part(struct mmc_card *card,
2420 			      struct mmc_blk_data *md,
2421 			      unsigned int part_type,
2422 			      sector_t size,
2423 			      bool default_ro,
2424 			      const char *subname,
2425 			      int area_type)
2426 {
2427 	char cap_str[10];
2428 	struct mmc_blk_data *part_md;
2429 
2430 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2431 				    subname, area_type);
2432 	if (IS_ERR(part_md))
2433 		return PTR_ERR(part_md);
2434 	part_md->part_type = part_type;
2435 	list_add(&part_md->part, &md->part);
2436 
2437 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2438 			cap_str, sizeof(cap_str));
2439 	pr_info("%s: %s %s partition %u %s\n",
2440 	       part_md->disk->disk_name, mmc_card_id(card),
2441 	       mmc_card_name(card), part_md->part_type, cap_str);
2442 	return 0;
2443 }
2444 
2445 /**
2446  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2447  * @filp: the character device file
2448  * @cmd: the ioctl() command
2449  * @arg: the argument from userspace
2450  *
2451  * This will essentially just redirect the ioctl()s coming in over to
2452  * the main block device spawning the RPMB character device.
2453  */
2454 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2455 			   unsigned long arg)
2456 {
2457 	struct mmc_rpmb_data *rpmb = filp->private_data;
2458 	int ret;
2459 
2460 	switch (cmd) {
2461 	case MMC_IOC_CMD:
2462 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2463 					(struct mmc_ioc_cmd __user *)arg,
2464 					rpmb);
2465 		break;
2466 	case MMC_IOC_MULTI_CMD:
2467 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2468 					(struct mmc_ioc_multi_cmd __user *)arg,
2469 					rpmb);
2470 		break;
2471 	default:
2472 		ret = -EINVAL;
2473 		break;
2474 	}
2475 
2476 	return 0;
2477 }
2478 
2479 #ifdef CONFIG_COMPAT
2480 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2481 			      unsigned long arg)
2482 {
2483 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2484 }
2485 #endif
2486 
2487 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2488 {
2489 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2490 						  struct mmc_rpmb_data, chrdev);
2491 
2492 	get_device(&rpmb->dev);
2493 	filp->private_data = rpmb;
2494 	mmc_blk_get(rpmb->md->disk);
2495 
2496 	return nonseekable_open(inode, filp);
2497 }
2498 
2499 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2500 {
2501 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2502 						  struct mmc_rpmb_data, chrdev);
2503 
2504 	put_device(&rpmb->dev);
2505 	mmc_blk_put(rpmb->md);
2506 
2507 	return 0;
2508 }
2509 
2510 static const struct file_operations mmc_rpmb_fileops = {
2511 	.release = mmc_rpmb_chrdev_release,
2512 	.open = mmc_rpmb_chrdev_open,
2513 	.owner = THIS_MODULE,
2514 	.llseek = no_llseek,
2515 	.unlocked_ioctl = mmc_rpmb_ioctl,
2516 #ifdef CONFIG_COMPAT
2517 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2518 #endif
2519 };
2520 
2521 static void mmc_blk_rpmb_device_release(struct device *dev)
2522 {
2523 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2524 
2525 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2526 	kfree(rpmb);
2527 }
2528 
2529 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2530 				   struct mmc_blk_data *md,
2531 				   unsigned int part_index,
2532 				   sector_t size,
2533 				   const char *subname)
2534 {
2535 	int devidx, ret;
2536 	char rpmb_name[DISK_NAME_LEN];
2537 	char cap_str[10];
2538 	struct mmc_rpmb_data *rpmb;
2539 
2540 	/* This creates the minor number for the RPMB char device */
2541 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2542 	if (devidx < 0)
2543 		return devidx;
2544 
2545 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2546 	if (!rpmb) {
2547 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2548 		return -ENOMEM;
2549 	}
2550 
2551 	snprintf(rpmb_name, sizeof(rpmb_name),
2552 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2553 
2554 	rpmb->id = devidx;
2555 	rpmb->part_index = part_index;
2556 	rpmb->dev.init_name = rpmb_name;
2557 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2558 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2559 	rpmb->dev.parent = &card->dev;
2560 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2561 	device_initialize(&rpmb->dev);
2562 	dev_set_drvdata(&rpmb->dev, rpmb);
2563 	rpmb->md = md;
2564 
2565 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2566 	rpmb->chrdev.owner = THIS_MODULE;
2567 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2568 	if (ret) {
2569 		pr_err("%s: could not add character device\n", rpmb_name);
2570 		goto out_put_device;
2571 	}
2572 
2573 	list_add(&rpmb->node, &md->rpmbs);
2574 
2575 	string_get_size((u64)size, 512, STRING_UNITS_2,
2576 			cap_str, sizeof(cap_str));
2577 
2578 	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2579 		rpmb_name, mmc_card_id(card),
2580 		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2581 		MAJOR(mmc_rpmb_devt), rpmb->id);
2582 
2583 	return 0;
2584 
2585 out_put_device:
2586 	put_device(&rpmb->dev);
2587 	return ret;
2588 }
2589 
2590 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2591 
2592 {
2593 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2594 	put_device(&rpmb->dev);
2595 }
2596 
2597 /* MMC Physical partitions consist of two boot partitions and
2598  * up to four general purpose partitions.
2599  * For each partition enabled in EXT_CSD a block device will be allocatedi
2600  * to provide access to the partition.
2601  */
2602 
2603 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2604 {
2605 	int idx, ret;
2606 
2607 	if (!mmc_card_mmc(card))
2608 		return 0;
2609 
2610 	for (idx = 0; idx < card->nr_parts; idx++) {
2611 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2612 			/*
2613 			 * RPMB partitions does not provide block access, they
2614 			 * are only accessed using ioctl():s. Thus create
2615 			 * special RPMB block devices that do not have a
2616 			 * backing block queue for these.
2617 			 */
2618 			ret = mmc_blk_alloc_rpmb_part(card, md,
2619 				card->part[idx].part_cfg,
2620 				card->part[idx].size >> 9,
2621 				card->part[idx].name);
2622 			if (ret)
2623 				return ret;
2624 		} else if (card->part[idx].size) {
2625 			ret = mmc_blk_alloc_part(card, md,
2626 				card->part[idx].part_cfg,
2627 				card->part[idx].size >> 9,
2628 				card->part[idx].force_ro,
2629 				card->part[idx].name,
2630 				card->part[idx].area_type);
2631 			if (ret)
2632 				return ret;
2633 		}
2634 	}
2635 
2636 	return 0;
2637 }
2638 
2639 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2640 {
2641 	struct mmc_card *card;
2642 
2643 	if (md) {
2644 		/*
2645 		 * Flush remaining requests and free queues. It
2646 		 * is freeing the queue that stops new requests
2647 		 * from being accepted.
2648 		 */
2649 		card = md->queue.card;
2650 		mmc_cleanup_queue(&md->queue);
2651 		if (md->disk->flags & GENHD_FL_UP) {
2652 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2653 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2654 					card->ext_csd.boot_ro_lockable)
2655 				device_remove_file(disk_to_dev(md->disk),
2656 					&md->power_ro_lock);
2657 
2658 			del_gendisk(md->disk);
2659 		}
2660 		mmc_blk_put(md);
2661 	}
2662 }
2663 
2664 static void mmc_blk_remove_parts(struct mmc_card *card,
2665 				 struct mmc_blk_data *md)
2666 {
2667 	struct list_head *pos, *q;
2668 	struct mmc_blk_data *part_md;
2669 	struct mmc_rpmb_data *rpmb;
2670 
2671 	/* Remove RPMB partitions */
2672 	list_for_each_safe(pos, q, &md->rpmbs) {
2673 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2674 		list_del(pos);
2675 		mmc_blk_remove_rpmb_part(rpmb);
2676 	}
2677 	/* Remove block partitions */
2678 	list_for_each_safe(pos, q, &md->part) {
2679 		part_md = list_entry(pos, struct mmc_blk_data, part);
2680 		list_del(pos);
2681 		mmc_blk_remove_req(part_md);
2682 	}
2683 }
2684 
2685 static int mmc_add_disk(struct mmc_blk_data *md)
2686 {
2687 	int ret;
2688 	struct mmc_card *card = md->queue.card;
2689 
2690 	device_add_disk(md->parent, md->disk);
2691 	md->force_ro.show = force_ro_show;
2692 	md->force_ro.store = force_ro_store;
2693 	sysfs_attr_init(&md->force_ro.attr);
2694 	md->force_ro.attr.name = "force_ro";
2695 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2696 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2697 	if (ret)
2698 		goto force_ro_fail;
2699 
2700 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2701 	     card->ext_csd.boot_ro_lockable) {
2702 		umode_t mode;
2703 
2704 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2705 			mode = S_IRUGO;
2706 		else
2707 			mode = S_IRUGO | S_IWUSR;
2708 
2709 		md->power_ro_lock.show = power_ro_lock_show;
2710 		md->power_ro_lock.store = power_ro_lock_store;
2711 		sysfs_attr_init(&md->power_ro_lock.attr);
2712 		md->power_ro_lock.attr.mode = mode;
2713 		md->power_ro_lock.attr.name =
2714 					"ro_lock_until_next_power_on";
2715 		ret = device_create_file(disk_to_dev(md->disk),
2716 				&md->power_ro_lock);
2717 		if (ret)
2718 			goto power_ro_lock_fail;
2719 	}
2720 	return ret;
2721 
2722 power_ro_lock_fail:
2723 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2724 force_ro_fail:
2725 	del_gendisk(md->disk);
2726 
2727 	return ret;
2728 }
2729 
2730 #ifdef CONFIG_DEBUG_FS
2731 
2732 static int mmc_dbg_card_status_get(void *data, u64 *val)
2733 {
2734 	struct mmc_card *card = data;
2735 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2736 	struct mmc_queue *mq = &md->queue;
2737 	struct request *req;
2738 	int ret;
2739 
2740 	/* Ask the block layer about the card status */
2741 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2742 	if (IS_ERR(req))
2743 		return PTR_ERR(req);
2744 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2745 	blk_execute_rq(mq->queue, NULL, req, 0);
2746 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2747 	if (ret >= 0) {
2748 		*val = ret;
2749 		ret = 0;
2750 	}
2751 	blk_put_request(req);
2752 
2753 	return ret;
2754 }
2755 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2756 		NULL, "%08llx\n");
2757 
2758 /* That is two digits * 512 + 1 for newline */
2759 #define EXT_CSD_STR_LEN 1025
2760 
2761 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2762 {
2763 	struct mmc_card *card = inode->i_private;
2764 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2765 	struct mmc_queue *mq = &md->queue;
2766 	struct request *req;
2767 	char *buf;
2768 	ssize_t n = 0;
2769 	u8 *ext_csd;
2770 	int err, i;
2771 
2772 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2773 	if (!buf)
2774 		return -ENOMEM;
2775 
2776 	/* Ask the block layer for the EXT CSD */
2777 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2778 	if (IS_ERR(req)) {
2779 		err = PTR_ERR(req);
2780 		goto out_free;
2781 	}
2782 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2783 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2784 	blk_execute_rq(mq->queue, NULL, req, 0);
2785 	err = req_to_mmc_queue_req(req)->drv_op_result;
2786 	blk_put_request(req);
2787 	if (err) {
2788 		pr_err("FAILED %d\n", err);
2789 		goto out_free;
2790 	}
2791 
2792 	for (i = 0; i < 512; i++)
2793 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2794 	n += sprintf(buf + n, "\n");
2795 
2796 	if (n != EXT_CSD_STR_LEN) {
2797 		err = -EINVAL;
2798 		kfree(ext_csd);
2799 		goto out_free;
2800 	}
2801 
2802 	filp->private_data = buf;
2803 	kfree(ext_csd);
2804 	return 0;
2805 
2806 out_free:
2807 	kfree(buf);
2808 	return err;
2809 }
2810 
2811 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2812 				size_t cnt, loff_t *ppos)
2813 {
2814 	char *buf = filp->private_data;
2815 
2816 	return simple_read_from_buffer(ubuf, cnt, ppos,
2817 				       buf, EXT_CSD_STR_LEN);
2818 }
2819 
2820 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2821 {
2822 	kfree(file->private_data);
2823 	return 0;
2824 }
2825 
2826 static const struct file_operations mmc_dbg_ext_csd_fops = {
2827 	.open		= mmc_ext_csd_open,
2828 	.read		= mmc_ext_csd_read,
2829 	.release	= mmc_ext_csd_release,
2830 	.llseek		= default_llseek,
2831 };
2832 
2833 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2834 {
2835 	struct dentry *root;
2836 
2837 	if (!card->debugfs_root)
2838 		return 0;
2839 
2840 	root = card->debugfs_root;
2841 
2842 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2843 		md->status_dentry =
2844 			debugfs_create_file("status", S_IRUSR, root, card,
2845 					    &mmc_dbg_card_status_fops);
2846 		if (!md->status_dentry)
2847 			return -EIO;
2848 	}
2849 
2850 	if (mmc_card_mmc(card)) {
2851 		md->ext_csd_dentry =
2852 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2853 					    &mmc_dbg_ext_csd_fops);
2854 		if (!md->ext_csd_dentry)
2855 			return -EIO;
2856 	}
2857 
2858 	return 0;
2859 }
2860 
2861 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2862 				   struct mmc_blk_data *md)
2863 {
2864 	if (!card->debugfs_root)
2865 		return;
2866 
2867 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2868 		debugfs_remove(md->status_dentry);
2869 		md->status_dentry = NULL;
2870 	}
2871 
2872 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2873 		debugfs_remove(md->ext_csd_dentry);
2874 		md->ext_csd_dentry = NULL;
2875 	}
2876 }
2877 
2878 #else
2879 
2880 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2881 {
2882 	return 0;
2883 }
2884 
2885 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2886 				   struct mmc_blk_data *md)
2887 {
2888 }
2889 
2890 #endif /* CONFIG_DEBUG_FS */
2891 
2892 static int mmc_blk_probe(struct mmc_card *card)
2893 {
2894 	struct mmc_blk_data *md, *part_md;
2895 	char cap_str[10];
2896 
2897 	/*
2898 	 * Check that the card supports the command class(es) we need.
2899 	 */
2900 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2901 		return -ENODEV;
2902 
2903 	mmc_fixup_device(card, mmc_blk_fixups);
2904 
2905 	md = mmc_blk_alloc(card);
2906 	if (IS_ERR(md))
2907 		return PTR_ERR(md);
2908 
2909 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2910 			cap_str, sizeof(cap_str));
2911 	pr_info("%s: %s %s %s %s\n",
2912 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2913 		cap_str, md->read_only ? "(ro)" : "");
2914 
2915 	if (mmc_blk_alloc_parts(card, md))
2916 		goto out;
2917 
2918 	dev_set_drvdata(&card->dev, md);
2919 
2920 	if (mmc_add_disk(md))
2921 		goto out;
2922 
2923 	list_for_each_entry(part_md, &md->part, part) {
2924 		if (mmc_add_disk(part_md))
2925 			goto out;
2926 	}
2927 
2928 	/* Add two debugfs entries */
2929 	mmc_blk_add_debugfs(card, md);
2930 
2931 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2932 	pm_runtime_use_autosuspend(&card->dev);
2933 
2934 	/*
2935 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2936 	 * decision to be taken during the SDIO init sequence instead.
2937 	 */
2938 	if (card->type != MMC_TYPE_SD_COMBO) {
2939 		pm_runtime_set_active(&card->dev);
2940 		pm_runtime_enable(&card->dev);
2941 	}
2942 
2943 	return 0;
2944 
2945  out:
2946 	mmc_blk_remove_parts(card, md);
2947 	mmc_blk_remove_req(md);
2948 	return 0;
2949 }
2950 
2951 static void mmc_blk_remove(struct mmc_card *card)
2952 {
2953 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2954 
2955 	mmc_blk_remove_debugfs(card, md);
2956 	mmc_blk_remove_parts(card, md);
2957 	pm_runtime_get_sync(&card->dev);
2958 	mmc_claim_host(card->host);
2959 	mmc_blk_part_switch(card, md->part_type);
2960 	mmc_release_host(card->host);
2961 	if (card->type != MMC_TYPE_SD_COMBO)
2962 		pm_runtime_disable(&card->dev);
2963 	pm_runtime_put_noidle(&card->dev);
2964 	mmc_blk_remove_req(md);
2965 	dev_set_drvdata(&card->dev, NULL);
2966 }
2967 
2968 static int _mmc_blk_suspend(struct mmc_card *card)
2969 {
2970 	struct mmc_blk_data *part_md;
2971 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2972 
2973 	if (md) {
2974 		mmc_queue_suspend(&md->queue);
2975 		list_for_each_entry(part_md, &md->part, part) {
2976 			mmc_queue_suspend(&part_md->queue);
2977 		}
2978 	}
2979 	return 0;
2980 }
2981 
2982 static void mmc_blk_shutdown(struct mmc_card *card)
2983 {
2984 	_mmc_blk_suspend(card);
2985 }
2986 
2987 #ifdef CONFIG_PM_SLEEP
2988 static int mmc_blk_suspend(struct device *dev)
2989 {
2990 	struct mmc_card *card = mmc_dev_to_card(dev);
2991 
2992 	return _mmc_blk_suspend(card);
2993 }
2994 
2995 static int mmc_blk_resume(struct device *dev)
2996 {
2997 	struct mmc_blk_data *part_md;
2998 	struct mmc_blk_data *md = dev_get_drvdata(dev);
2999 
3000 	if (md) {
3001 		/*
3002 		 * Resume involves the card going into idle state,
3003 		 * so current partition is always the main one.
3004 		 */
3005 		md->part_curr = md->part_type;
3006 		mmc_queue_resume(&md->queue);
3007 		list_for_each_entry(part_md, &md->part, part) {
3008 			mmc_queue_resume(&part_md->queue);
3009 		}
3010 	}
3011 	return 0;
3012 }
3013 #endif
3014 
3015 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3016 
3017 static struct mmc_driver mmc_driver = {
3018 	.drv		= {
3019 		.name	= "mmcblk",
3020 		.pm	= &mmc_blk_pm_ops,
3021 	},
3022 	.probe		= mmc_blk_probe,
3023 	.remove		= mmc_blk_remove,
3024 	.shutdown	= mmc_blk_shutdown,
3025 };
3026 
3027 static int __init mmc_blk_init(void)
3028 {
3029 	int res;
3030 
3031 	res  = bus_register(&mmc_rpmb_bus_type);
3032 	if (res < 0) {
3033 		pr_err("mmcblk: could not register RPMB bus type\n");
3034 		return res;
3035 	}
3036 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3037 	if (res < 0) {
3038 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3039 		goto out_bus_unreg;
3040 	}
3041 
3042 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3043 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3044 
3045 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3046 
3047 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3048 	if (res)
3049 		goto out_chrdev_unreg;
3050 
3051 	res = mmc_register_driver(&mmc_driver);
3052 	if (res)
3053 		goto out_blkdev_unreg;
3054 
3055 	return 0;
3056 
3057 out_blkdev_unreg:
3058 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3059 out_chrdev_unreg:
3060 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3061 out_bus_unreg:
3062 	bus_unregister(&mmc_rpmb_bus_type);
3063 	return res;
3064 }
3065 
3066 static void __exit mmc_blk_exit(void)
3067 {
3068 	mmc_unregister_driver(&mmc_driver);
3069 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3070 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3071 }
3072 
3073 module_init(mmc_blk_init);
3074 module_exit(mmc_blk_exit);
3075 
3076 MODULE_LICENSE("GPL");
3077 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3078 
3079