1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/cdev.h> 32 #include <linux/mutex.h> 33 #include <linux/scatterlist.h> 34 #include <linux/string_helpers.h> 35 #include <linux/delay.h> 36 #include <linux/capability.h> 37 #include <linux/compat.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/idr.h> 40 #include <linux/debugfs.h> 41 42 #include <linux/mmc/ioctl.h> 43 #include <linux/mmc/card.h> 44 #include <linux/mmc/host.h> 45 #include <linux/mmc/mmc.h> 46 #include <linux/mmc/sd.h> 47 48 #include <linux/uaccess.h> 49 50 #include "queue.h" 51 #include "block.h" 52 #include "core.h" 53 #include "card.h" 54 #include "host.h" 55 #include "bus.h" 56 #include "mmc_ops.h" 57 #include "quirks.h" 58 #include "sd_ops.h" 59 60 MODULE_ALIAS("mmc:block"); 61 #ifdef MODULE_PARAM_PREFIX 62 #undef MODULE_PARAM_PREFIX 63 #endif 64 #define MODULE_PARAM_PREFIX "mmcblk." 65 66 /* 67 * Set a 10 second timeout for polling write request busy state. Note, mmc core 68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 69 * second software timer to timeout the whole request, so 10 seconds should be 70 * ample. 71 */ 72 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 73 #define MMC_SANITIZE_REQ_TIMEOUT 240000 74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 75 76 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 77 (rq_data_dir(req) == WRITE)) 78 static DEFINE_MUTEX(block_mutex); 79 80 /* 81 * The defaults come from config options but can be overriden by module 82 * or bootarg options. 83 */ 84 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 85 86 /* 87 * We've only got one major, so number of mmcblk devices is 88 * limited to (1 << 20) / number of minors per device. It is also 89 * limited by the MAX_DEVICES below. 90 */ 91 static int max_devices; 92 93 #define MAX_DEVICES 256 94 95 static DEFINE_IDA(mmc_blk_ida); 96 static DEFINE_IDA(mmc_rpmb_ida); 97 98 /* 99 * There is one mmc_blk_data per slot. 100 */ 101 struct mmc_blk_data { 102 spinlock_t lock; 103 struct device *parent; 104 struct gendisk *disk; 105 struct mmc_queue queue; 106 struct list_head part; 107 struct list_head rpmbs; 108 109 unsigned int flags; 110 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 111 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 112 113 unsigned int usage; 114 unsigned int read_only; 115 unsigned int part_type; 116 unsigned int reset_done; 117 #define MMC_BLK_READ BIT(0) 118 #define MMC_BLK_WRITE BIT(1) 119 #define MMC_BLK_DISCARD BIT(2) 120 #define MMC_BLK_SECDISCARD BIT(3) 121 #define MMC_BLK_CQE_RECOVERY BIT(4) 122 123 /* 124 * Only set in main mmc_blk_data associated 125 * with mmc_card with dev_set_drvdata, and keeps 126 * track of the current selected device partition. 127 */ 128 unsigned int part_curr; 129 struct device_attribute force_ro; 130 struct device_attribute power_ro_lock; 131 int area_type; 132 133 /* debugfs files (only in main mmc_blk_data) */ 134 struct dentry *status_dentry; 135 struct dentry *ext_csd_dentry; 136 }; 137 138 /* Device type for RPMB character devices */ 139 static dev_t mmc_rpmb_devt; 140 141 /* Bus type for RPMB character devices */ 142 static struct bus_type mmc_rpmb_bus_type = { 143 .name = "mmc_rpmb", 144 }; 145 146 /** 147 * struct mmc_rpmb_data - special RPMB device type for these areas 148 * @dev: the device for the RPMB area 149 * @chrdev: character device for the RPMB area 150 * @id: unique device ID number 151 * @part_index: partition index (0 on first) 152 * @md: parent MMC block device 153 * @node: list item, so we can put this device on a list 154 */ 155 struct mmc_rpmb_data { 156 struct device dev; 157 struct cdev chrdev; 158 int id; 159 unsigned int part_index; 160 struct mmc_blk_data *md; 161 struct list_head node; 162 }; 163 164 static DEFINE_MUTEX(open_lock); 165 166 module_param(perdev_minors, int, 0444); 167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 168 169 static inline int mmc_blk_part_switch(struct mmc_card *card, 170 unsigned int part_type); 171 172 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 173 { 174 struct mmc_blk_data *md; 175 176 mutex_lock(&open_lock); 177 md = disk->private_data; 178 if (md && md->usage == 0) 179 md = NULL; 180 if (md) 181 md->usage++; 182 mutex_unlock(&open_lock); 183 184 return md; 185 } 186 187 static inline int mmc_get_devidx(struct gendisk *disk) 188 { 189 int devidx = disk->first_minor / perdev_minors; 190 return devidx; 191 } 192 193 static void mmc_blk_put(struct mmc_blk_data *md) 194 { 195 mutex_lock(&open_lock); 196 md->usage--; 197 if (md->usage == 0) { 198 int devidx = mmc_get_devidx(md->disk); 199 blk_put_queue(md->queue.queue); 200 ida_simple_remove(&mmc_blk_ida, devidx); 201 put_disk(md->disk); 202 kfree(md); 203 } 204 mutex_unlock(&open_lock); 205 } 206 207 static ssize_t power_ro_lock_show(struct device *dev, 208 struct device_attribute *attr, char *buf) 209 { 210 int ret; 211 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 212 struct mmc_card *card = md->queue.card; 213 int locked = 0; 214 215 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 216 locked = 2; 217 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 218 locked = 1; 219 220 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 221 222 mmc_blk_put(md); 223 224 return ret; 225 } 226 227 static ssize_t power_ro_lock_store(struct device *dev, 228 struct device_attribute *attr, const char *buf, size_t count) 229 { 230 int ret; 231 struct mmc_blk_data *md, *part_md; 232 struct mmc_queue *mq; 233 struct request *req; 234 unsigned long set; 235 236 if (kstrtoul(buf, 0, &set)) 237 return -EINVAL; 238 239 if (set != 1) 240 return count; 241 242 md = mmc_blk_get(dev_to_disk(dev)); 243 mq = &md->queue; 244 245 /* Dispatch locking to the block layer */ 246 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM); 247 if (IS_ERR(req)) { 248 count = PTR_ERR(req); 249 goto out_put; 250 } 251 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 252 blk_execute_rq(mq->queue, NULL, req, 0); 253 ret = req_to_mmc_queue_req(req)->drv_op_result; 254 blk_put_request(req); 255 256 if (!ret) { 257 pr_info("%s: Locking boot partition ro until next power on\n", 258 md->disk->disk_name); 259 set_disk_ro(md->disk, 1); 260 261 list_for_each_entry(part_md, &md->part, part) 262 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 263 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 264 set_disk_ro(part_md->disk, 1); 265 } 266 } 267 out_put: 268 mmc_blk_put(md); 269 return count; 270 } 271 272 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 273 char *buf) 274 { 275 int ret; 276 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 277 278 ret = snprintf(buf, PAGE_SIZE, "%d\n", 279 get_disk_ro(dev_to_disk(dev)) ^ 280 md->read_only); 281 mmc_blk_put(md); 282 return ret; 283 } 284 285 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 286 const char *buf, size_t count) 287 { 288 int ret; 289 char *end; 290 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 291 unsigned long set = simple_strtoul(buf, &end, 0); 292 if (end == buf) { 293 ret = -EINVAL; 294 goto out; 295 } 296 297 set_disk_ro(dev_to_disk(dev), set || md->read_only); 298 ret = count; 299 out: 300 mmc_blk_put(md); 301 return ret; 302 } 303 304 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 305 { 306 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 307 int ret = -ENXIO; 308 309 mutex_lock(&block_mutex); 310 if (md) { 311 if (md->usage == 2) 312 check_disk_change(bdev); 313 ret = 0; 314 315 if ((mode & FMODE_WRITE) && md->read_only) { 316 mmc_blk_put(md); 317 ret = -EROFS; 318 } 319 } 320 mutex_unlock(&block_mutex); 321 322 return ret; 323 } 324 325 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 326 { 327 struct mmc_blk_data *md = disk->private_data; 328 329 mutex_lock(&block_mutex); 330 mmc_blk_put(md); 331 mutex_unlock(&block_mutex); 332 } 333 334 static int 335 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 336 { 337 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 338 geo->heads = 4; 339 geo->sectors = 16; 340 return 0; 341 } 342 343 struct mmc_blk_ioc_data { 344 struct mmc_ioc_cmd ic; 345 unsigned char *buf; 346 u64 buf_bytes; 347 struct mmc_rpmb_data *rpmb; 348 }; 349 350 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 351 struct mmc_ioc_cmd __user *user) 352 { 353 struct mmc_blk_ioc_data *idata; 354 int err; 355 356 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 357 if (!idata) { 358 err = -ENOMEM; 359 goto out; 360 } 361 362 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 363 err = -EFAULT; 364 goto idata_err; 365 } 366 367 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 368 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 369 err = -EOVERFLOW; 370 goto idata_err; 371 } 372 373 if (!idata->buf_bytes) { 374 idata->buf = NULL; 375 return idata; 376 } 377 378 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL); 379 if (!idata->buf) { 380 err = -ENOMEM; 381 goto idata_err; 382 } 383 384 if (copy_from_user(idata->buf, (void __user *)(unsigned long) 385 idata->ic.data_ptr, idata->buf_bytes)) { 386 err = -EFAULT; 387 goto copy_err; 388 } 389 390 return idata; 391 392 copy_err: 393 kfree(idata->buf); 394 idata_err: 395 kfree(idata); 396 out: 397 return ERR_PTR(err); 398 } 399 400 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 401 struct mmc_blk_ioc_data *idata) 402 { 403 struct mmc_ioc_cmd *ic = &idata->ic; 404 405 if (copy_to_user(&(ic_ptr->response), ic->response, 406 sizeof(ic->response))) 407 return -EFAULT; 408 409 if (!idata->ic.write_flag) { 410 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 411 idata->buf, idata->buf_bytes)) 412 return -EFAULT; 413 } 414 415 return 0; 416 } 417 418 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status, 419 u32 retries_max) 420 { 421 int err; 422 u32 retry_count = 0; 423 424 if (!status || !retries_max) 425 return -EINVAL; 426 427 do { 428 err = __mmc_send_status(card, status, 5); 429 if (err) 430 break; 431 432 if (!R1_STATUS(*status) && 433 (R1_CURRENT_STATE(*status) != R1_STATE_PRG)) 434 break; /* RPMB programming operation complete */ 435 436 /* 437 * Rechedule to give the MMC device a chance to continue 438 * processing the previous command without being polled too 439 * frequently. 440 */ 441 usleep_range(1000, 5000); 442 } while (++retry_count < retries_max); 443 444 if (retry_count == retries_max) 445 err = -EPERM; 446 447 return err; 448 } 449 450 static int ioctl_do_sanitize(struct mmc_card *card) 451 { 452 int err; 453 454 if (!mmc_can_sanitize(card)) { 455 pr_warn("%s: %s - SANITIZE is not supported\n", 456 mmc_hostname(card->host), __func__); 457 err = -EOPNOTSUPP; 458 goto out; 459 } 460 461 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n", 462 mmc_hostname(card->host), __func__); 463 464 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 465 EXT_CSD_SANITIZE_START, 1, 466 MMC_SANITIZE_REQ_TIMEOUT); 467 468 if (err) 469 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n", 470 mmc_hostname(card->host), __func__, err); 471 472 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host), 473 __func__); 474 out: 475 return err; 476 } 477 478 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 479 struct mmc_blk_ioc_data *idata) 480 { 481 struct mmc_command cmd = {}; 482 struct mmc_data data = {}; 483 struct mmc_request mrq = {}; 484 struct scatterlist sg; 485 int err; 486 unsigned int target_part; 487 u32 status = 0; 488 489 if (!card || !md || !idata) 490 return -EINVAL; 491 492 /* 493 * The RPMB accesses comes in from the character device, so we 494 * need to target these explicitly. Else we just target the 495 * partition type for the block device the ioctl() was issued 496 * on. 497 */ 498 if (idata->rpmb) { 499 /* Support multiple RPMB partitions */ 500 target_part = idata->rpmb->part_index; 501 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 502 } else { 503 target_part = md->part_type; 504 } 505 506 cmd.opcode = idata->ic.opcode; 507 cmd.arg = idata->ic.arg; 508 cmd.flags = idata->ic.flags; 509 510 if (idata->buf_bytes) { 511 data.sg = &sg; 512 data.sg_len = 1; 513 data.blksz = idata->ic.blksz; 514 data.blocks = idata->ic.blocks; 515 516 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 517 518 if (idata->ic.write_flag) 519 data.flags = MMC_DATA_WRITE; 520 else 521 data.flags = MMC_DATA_READ; 522 523 /* data.flags must already be set before doing this. */ 524 mmc_set_data_timeout(&data, card); 525 526 /* Allow overriding the timeout_ns for empirical tuning. */ 527 if (idata->ic.data_timeout_ns) 528 data.timeout_ns = idata->ic.data_timeout_ns; 529 530 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 531 /* 532 * Pretend this is a data transfer and rely on the 533 * host driver to compute timeout. When all host 534 * drivers support cmd.cmd_timeout for R1B, this 535 * can be changed to: 536 * 537 * mrq.data = NULL; 538 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 539 */ 540 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 541 } 542 543 mrq.data = &data; 544 } 545 546 mrq.cmd = &cmd; 547 548 err = mmc_blk_part_switch(card, target_part); 549 if (err) 550 return err; 551 552 if (idata->ic.is_acmd) { 553 err = mmc_app_cmd(card->host, card); 554 if (err) 555 return err; 556 } 557 558 if (idata->rpmb) { 559 err = mmc_set_blockcount(card, data.blocks, 560 idata->ic.write_flag & (1 << 31)); 561 if (err) 562 return err; 563 } 564 565 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 566 (cmd.opcode == MMC_SWITCH)) { 567 err = ioctl_do_sanitize(card); 568 569 if (err) 570 pr_err("%s: ioctl_do_sanitize() failed. err = %d", 571 __func__, err); 572 573 return err; 574 } 575 576 mmc_wait_for_req(card->host, &mrq); 577 578 if (cmd.error) { 579 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 580 __func__, cmd.error); 581 return cmd.error; 582 } 583 if (data.error) { 584 dev_err(mmc_dev(card->host), "%s: data error %d\n", 585 __func__, data.error); 586 return data.error; 587 } 588 589 /* 590 * According to the SD specs, some commands require a delay after 591 * issuing the command. 592 */ 593 if (idata->ic.postsleep_min_us) 594 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 595 596 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 597 598 if (idata->rpmb) { 599 /* 600 * Ensure RPMB command has completed by polling CMD13 601 * "Send Status". 602 */ 603 err = ioctl_rpmb_card_status_poll(card, &status, 5); 604 if (err) 605 dev_err(mmc_dev(card->host), 606 "%s: Card Status=0x%08X, error %d\n", 607 __func__, status, err); 608 } 609 610 return err; 611 } 612 613 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 614 struct mmc_ioc_cmd __user *ic_ptr, 615 struct mmc_rpmb_data *rpmb) 616 { 617 struct mmc_blk_ioc_data *idata; 618 struct mmc_blk_ioc_data *idatas[1]; 619 struct mmc_queue *mq; 620 struct mmc_card *card; 621 int err = 0, ioc_err = 0; 622 struct request *req; 623 624 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 625 if (IS_ERR(idata)) 626 return PTR_ERR(idata); 627 /* This will be NULL on non-RPMB ioctl():s */ 628 idata->rpmb = rpmb; 629 630 card = md->queue.card; 631 if (IS_ERR(card)) { 632 err = PTR_ERR(card); 633 goto cmd_done; 634 } 635 636 /* 637 * Dispatch the ioctl() into the block request queue. 638 */ 639 mq = &md->queue; 640 req = blk_get_request(mq->queue, 641 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 642 __GFP_RECLAIM); 643 if (IS_ERR(req)) { 644 err = PTR_ERR(req); 645 goto cmd_done; 646 } 647 idatas[0] = idata; 648 req_to_mmc_queue_req(req)->drv_op = 649 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 650 req_to_mmc_queue_req(req)->drv_op_data = idatas; 651 req_to_mmc_queue_req(req)->ioc_count = 1; 652 blk_execute_rq(mq->queue, NULL, req, 0); 653 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 654 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 655 blk_put_request(req); 656 657 cmd_done: 658 kfree(idata->buf); 659 kfree(idata); 660 return ioc_err ? ioc_err : err; 661 } 662 663 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 664 struct mmc_ioc_multi_cmd __user *user, 665 struct mmc_rpmb_data *rpmb) 666 { 667 struct mmc_blk_ioc_data **idata = NULL; 668 struct mmc_ioc_cmd __user *cmds = user->cmds; 669 struct mmc_card *card; 670 struct mmc_queue *mq; 671 int i, err = 0, ioc_err = 0; 672 __u64 num_of_cmds; 673 struct request *req; 674 675 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 676 sizeof(num_of_cmds))) 677 return -EFAULT; 678 679 if (!num_of_cmds) 680 return 0; 681 682 if (num_of_cmds > MMC_IOC_MAX_CMDS) 683 return -EINVAL; 684 685 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 686 if (!idata) 687 return -ENOMEM; 688 689 for (i = 0; i < num_of_cmds; i++) { 690 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 691 if (IS_ERR(idata[i])) { 692 err = PTR_ERR(idata[i]); 693 num_of_cmds = i; 694 goto cmd_err; 695 } 696 /* This will be NULL on non-RPMB ioctl():s */ 697 idata[i]->rpmb = rpmb; 698 } 699 700 card = md->queue.card; 701 if (IS_ERR(card)) { 702 err = PTR_ERR(card); 703 goto cmd_err; 704 } 705 706 707 /* 708 * Dispatch the ioctl()s into the block request queue. 709 */ 710 mq = &md->queue; 711 req = blk_get_request(mq->queue, 712 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 713 __GFP_RECLAIM); 714 if (IS_ERR(req)) { 715 err = PTR_ERR(req); 716 goto cmd_err; 717 } 718 req_to_mmc_queue_req(req)->drv_op = 719 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 720 req_to_mmc_queue_req(req)->drv_op_data = idata; 721 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 722 blk_execute_rq(mq->queue, NULL, req, 0); 723 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 724 725 /* copy to user if data and response */ 726 for (i = 0; i < num_of_cmds && !err; i++) 727 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 728 729 blk_put_request(req); 730 731 cmd_err: 732 for (i = 0; i < num_of_cmds; i++) { 733 kfree(idata[i]->buf); 734 kfree(idata[i]); 735 } 736 kfree(idata); 737 return ioc_err ? ioc_err : err; 738 } 739 740 static int mmc_blk_check_blkdev(struct block_device *bdev) 741 { 742 /* 743 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 744 * whole block device, not on a partition. This prevents overspray 745 * between sibling partitions. 746 */ 747 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 748 return -EPERM; 749 return 0; 750 } 751 752 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 753 unsigned int cmd, unsigned long arg) 754 { 755 struct mmc_blk_data *md; 756 int ret; 757 758 switch (cmd) { 759 case MMC_IOC_CMD: 760 ret = mmc_blk_check_blkdev(bdev); 761 if (ret) 762 return ret; 763 md = mmc_blk_get(bdev->bd_disk); 764 if (!md) 765 return -EINVAL; 766 ret = mmc_blk_ioctl_cmd(md, 767 (struct mmc_ioc_cmd __user *)arg, 768 NULL); 769 mmc_blk_put(md); 770 return ret; 771 case MMC_IOC_MULTI_CMD: 772 ret = mmc_blk_check_blkdev(bdev); 773 if (ret) 774 return ret; 775 md = mmc_blk_get(bdev->bd_disk); 776 if (!md) 777 return -EINVAL; 778 ret = mmc_blk_ioctl_multi_cmd(md, 779 (struct mmc_ioc_multi_cmd __user *)arg, 780 NULL); 781 mmc_blk_put(md); 782 return ret; 783 default: 784 return -EINVAL; 785 } 786 } 787 788 #ifdef CONFIG_COMPAT 789 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 790 unsigned int cmd, unsigned long arg) 791 { 792 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 793 } 794 #endif 795 796 static const struct block_device_operations mmc_bdops = { 797 .open = mmc_blk_open, 798 .release = mmc_blk_release, 799 .getgeo = mmc_blk_getgeo, 800 .owner = THIS_MODULE, 801 .ioctl = mmc_blk_ioctl, 802 #ifdef CONFIG_COMPAT 803 .compat_ioctl = mmc_blk_compat_ioctl, 804 #endif 805 }; 806 807 static int mmc_blk_part_switch_pre(struct mmc_card *card, 808 unsigned int part_type) 809 { 810 int ret = 0; 811 812 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 813 if (card->ext_csd.cmdq_en) { 814 ret = mmc_cmdq_disable(card); 815 if (ret) 816 return ret; 817 } 818 mmc_retune_pause(card->host); 819 } 820 821 return ret; 822 } 823 824 static int mmc_blk_part_switch_post(struct mmc_card *card, 825 unsigned int part_type) 826 { 827 int ret = 0; 828 829 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 830 mmc_retune_unpause(card->host); 831 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 832 ret = mmc_cmdq_enable(card); 833 } 834 835 return ret; 836 } 837 838 static inline int mmc_blk_part_switch(struct mmc_card *card, 839 unsigned int part_type) 840 { 841 int ret = 0; 842 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 843 844 if (main_md->part_curr == part_type) 845 return 0; 846 847 if (mmc_card_mmc(card)) { 848 u8 part_config = card->ext_csd.part_config; 849 850 ret = mmc_blk_part_switch_pre(card, part_type); 851 if (ret) 852 return ret; 853 854 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 855 part_config |= part_type; 856 857 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 858 EXT_CSD_PART_CONFIG, part_config, 859 card->ext_csd.part_time); 860 if (ret) { 861 mmc_blk_part_switch_post(card, part_type); 862 return ret; 863 } 864 865 card->ext_csd.part_config = part_config; 866 867 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 868 } 869 870 main_md->part_curr = part_type; 871 return ret; 872 } 873 874 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 875 { 876 int err; 877 u32 result; 878 __be32 *blocks; 879 880 struct mmc_request mrq = {}; 881 struct mmc_command cmd = {}; 882 struct mmc_data data = {}; 883 884 struct scatterlist sg; 885 886 cmd.opcode = MMC_APP_CMD; 887 cmd.arg = card->rca << 16; 888 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 889 890 err = mmc_wait_for_cmd(card->host, &cmd, 0); 891 if (err) 892 return err; 893 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 894 return -EIO; 895 896 memset(&cmd, 0, sizeof(struct mmc_command)); 897 898 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 899 cmd.arg = 0; 900 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 901 902 data.blksz = 4; 903 data.blocks = 1; 904 data.flags = MMC_DATA_READ; 905 data.sg = &sg; 906 data.sg_len = 1; 907 mmc_set_data_timeout(&data, card); 908 909 mrq.cmd = &cmd; 910 mrq.data = &data; 911 912 blocks = kmalloc(4, GFP_KERNEL); 913 if (!blocks) 914 return -ENOMEM; 915 916 sg_init_one(&sg, blocks, 4); 917 918 mmc_wait_for_req(card->host, &mrq); 919 920 result = ntohl(*blocks); 921 kfree(blocks); 922 923 if (cmd.error || data.error) 924 return -EIO; 925 926 *written_blocks = result; 927 928 return 0; 929 } 930 931 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 932 { 933 if (host->actual_clock) 934 return host->actual_clock / 1000; 935 936 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 937 if (host->ios.clock) 938 return host->ios.clock / 2000; 939 940 /* How can there be no clock */ 941 WARN_ON_ONCE(1); 942 return 100; /* 100 kHz is minimum possible value */ 943 } 944 945 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 946 struct mmc_data *data) 947 { 948 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 949 unsigned int khz; 950 951 if (data->timeout_clks) { 952 khz = mmc_blk_clock_khz(host); 953 ms += DIV_ROUND_UP(data->timeout_clks, khz); 954 } 955 956 return ms; 957 } 958 959 static inline bool mmc_blk_in_tran_state(u32 status) 960 { 961 /* 962 * Some cards mishandle the status bits, so make sure to check both the 963 * busy indication and the card state. 964 */ 965 return status & R1_READY_FOR_DATA && 966 (R1_CURRENT_STATE(status) == R1_STATE_TRAN); 967 } 968 969 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 970 struct request *req, u32 *resp_errs) 971 { 972 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 973 int err = 0; 974 u32 status; 975 976 do { 977 bool done = time_after(jiffies, timeout); 978 979 err = __mmc_send_status(card, &status, 5); 980 if (err) { 981 pr_err("%s: error %d requesting status\n", 982 req->rq_disk->disk_name, err); 983 return err; 984 } 985 986 /* Accumulate any response error bits seen */ 987 if (resp_errs) 988 *resp_errs |= status; 989 990 /* 991 * Timeout if the device never becomes ready for data and never 992 * leaves the program state. 993 */ 994 if (done) { 995 pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n", 996 mmc_hostname(card->host), 997 req->rq_disk->disk_name, __func__, status); 998 return -ETIMEDOUT; 999 } 1000 1001 /* 1002 * Some cards mishandle the status bits, 1003 * so make sure to check both the busy 1004 * indication and the card state. 1005 */ 1006 } while (!mmc_blk_in_tran_state(status)); 1007 1008 return err; 1009 } 1010 1011 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1012 int type) 1013 { 1014 int err; 1015 1016 if (md->reset_done & type) 1017 return -EEXIST; 1018 1019 md->reset_done |= type; 1020 err = mmc_hw_reset(host); 1021 /* Ensure we switch back to the correct partition */ 1022 if (err != -EOPNOTSUPP) { 1023 struct mmc_blk_data *main_md = 1024 dev_get_drvdata(&host->card->dev); 1025 int part_err; 1026 1027 main_md->part_curr = main_md->part_type; 1028 part_err = mmc_blk_part_switch(host->card, md->part_type); 1029 if (part_err) { 1030 /* 1031 * We have failed to get back into the correct 1032 * partition, so we need to abort the whole request. 1033 */ 1034 return -ENODEV; 1035 } 1036 } 1037 return err; 1038 } 1039 1040 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1041 { 1042 md->reset_done &= ~type; 1043 } 1044 1045 /* 1046 * The non-block commands come back from the block layer after it queued it and 1047 * processed it with all other requests and then they get issued in this 1048 * function. 1049 */ 1050 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1051 { 1052 struct mmc_queue_req *mq_rq; 1053 struct mmc_card *card = mq->card; 1054 struct mmc_blk_data *md = mq->blkdata; 1055 struct mmc_blk_ioc_data **idata; 1056 bool rpmb_ioctl; 1057 u8 **ext_csd; 1058 u32 status; 1059 int ret; 1060 int i; 1061 1062 mq_rq = req_to_mmc_queue_req(req); 1063 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1064 1065 switch (mq_rq->drv_op) { 1066 case MMC_DRV_OP_IOCTL: 1067 case MMC_DRV_OP_IOCTL_RPMB: 1068 idata = mq_rq->drv_op_data; 1069 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1070 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1071 if (ret) 1072 break; 1073 } 1074 /* Always switch back to main area after RPMB access */ 1075 if (rpmb_ioctl) 1076 mmc_blk_part_switch(card, 0); 1077 break; 1078 case MMC_DRV_OP_BOOT_WP: 1079 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1080 card->ext_csd.boot_ro_lock | 1081 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1082 card->ext_csd.part_time); 1083 if (ret) 1084 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1085 md->disk->disk_name, ret); 1086 else 1087 card->ext_csd.boot_ro_lock |= 1088 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1089 break; 1090 case MMC_DRV_OP_GET_CARD_STATUS: 1091 ret = mmc_send_status(card, &status); 1092 if (!ret) 1093 ret = status; 1094 break; 1095 case MMC_DRV_OP_GET_EXT_CSD: 1096 ext_csd = mq_rq->drv_op_data; 1097 ret = mmc_get_ext_csd(card, ext_csd); 1098 break; 1099 default: 1100 pr_err("%s: unknown driver specific operation\n", 1101 md->disk->disk_name); 1102 ret = -EINVAL; 1103 break; 1104 } 1105 mq_rq->drv_op_result = ret; 1106 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1107 } 1108 1109 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1110 { 1111 struct mmc_blk_data *md = mq->blkdata; 1112 struct mmc_card *card = md->queue.card; 1113 unsigned int from, nr, arg; 1114 int err = 0, type = MMC_BLK_DISCARD; 1115 blk_status_t status = BLK_STS_OK; 1116 1117 if (!mmc_can_erase(card)) { 1118 status = BLK_STS_NOTSUPP; 1119 goto fail; 1120 } 1121 1122 from = blk_rq_pos(req); 1123 nr = blk_rq_sectors(req); 1124 1125 if (mmc_can_discard(card)) 1126 arg = MMC_DISCARD_ARG; 1127 else if (mmc_can_trim(card)) 1128 arg = MMC_TRIM_ARG; 1129 else 1130 arg = MMC_ERASE_ARG; 1131 do { 1132 err = 0; 1133 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1134 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1135 INAND_CMD38_ARG_EXT_CSD, 1136 arg == MMC_TRIM_ARG ? 1137 INAND_CMD38_ARG_TRIM : 1138 INAND_CMD38_ARG_ERASE, 1139 0); 1140 } 1141 if (!err) 1142 err = mmc_erase(card, from, nr, arg); 1143 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1144 if (err) 1145 status = BLK_STS_IOERR; 1146 else 1147 mmc_blk_reset_success(md, type); 1148 fail: 1149 blk_mq_end_request(req, status); 1150 } 1151 1152 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1153 struct request *req) 1154 { 1155 struct mmc_blk_data *md = mq->blkdata; 1156 struct mmc_card *card = md->queue.card; 1157 unsigned int from, nr, arg; 1158 int err = 0, type = MMC_BLK_SECDISCARD; 1159 blk_status_t status = BLK_STS_OK; 1160 1161 if (!(mmc_can_secure_erase_trim(card))) { 1162 status = BLK_STS_NOTSUPP; 1163 goto out; 1164 } 1165 1166 from = blk_rq_pos(req); 1167 nr = blk_rq_sectors(req); 1168 1169 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1170 arg = MMC_SECURE_TRIM1_ARG; 1171 else 1172 arg = MMC_SECURE_ERASE_ARG; 1173 1174 retry: 1175 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1176 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1177 INAND_CMD38_ARG_EXT_CSD, 1178 arg == MMC_SECURE_TRIM1_ARG ? 1179 INAND_CMD38_ARG_SECTRIM1 : 1180 INAND_CMD38_ARG_SECERASE, 1181 0); 1182 if (err) 1183 goto out_retry; 1184 } 1185 1186 err = mmc_erase(card, from, nr, arg); 1187 if (err == -EIO) 1188 goto out_retry; 1189 if (err) { 1190 status = BLK_STS_IOERR; 1191 goto out; 1192 } 1193 1194 if (arg == MMC_SECURE_TRIM1_ARG) { 1195 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1196 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1197 INAND_CMD38_ARG_EXT_CSD, 1198 INAND_CMD38_ARG_SECTRIM2, 1199 0); 1200 if (err) 1201 goto out_retry; 1202 } 1203 1204 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1205 if (err == -EIO) 1206 goto out_retry; 1207 if (err) { 1208 status = BLK_STS_IOERR; 1209 goto out; 1210 } 1211 } 1212 1213 out_retry: 1214 if (err && !mmc_blk_reset(md, card->host, type)) 1215 goto retry; 1216 if (!err) 1217 mmc_blk_reset_success(md, type); 1218 out: 1219 blk_mq_end_request(req, status); 1220 } 1221 1222 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1223 { 1224 struct mmc_blk_data *md = mq->blkdata; 1225 struct mmc_card *card = md->queue.card; 1226 int ret = 0; 1227 1228 ret = mmc_flush_cache(card); 1229 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1230 } 1231 1232 /* 1233 * Reformat current write as a reliable write, supporting 1234 * both legacy and the enhanced reliable write MMC cards. 1235 * In each transfer we'll handle only as much as a single 1236 * reliable write can handle, thus finish the request in 1237 * partial completions. 1238 */ 1239 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1240 struct mmc_card *card, 1241 struct request *req) 1242 { 1243 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1244 /* Legacy mode imposes restrictions on transfers. */ 1245 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1246 brq->data.blocks = 1; 1247 1248 if (brq->data.blocks > card->ext_csd.rel_sectors) 1249 brq->data.blocks = card->ext_csd.rel_sectors; 1250 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1251 brq->data.blocks = 1; 1252 } 1253 } 1254 1255 #define CMD_ERRORS_EXCL_OOR \ 1256 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1257 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1258 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1259 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1260 R1_CC_ERROR | /* Card controller error */ \ 1261 R1_ERROR) /* General/unknown error */ 1262 1263 #define CMD_ERRORS \ 1264 (CMD_ERRORS_EXCL_OOR | \ 1265 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1266 1267 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1268 { 1269 u32 val; 1270 1271 /* 1272 * Per the SD specification(physical layer version 4.10)[1], 1273 * section 4.3.3, it explicitly states that "When the last 1274 * block of user area is read using CMD18, the host should 1275 * ignore OUT_OF_RANGE error that may occur even the sequence 1276 * is correct". And JESD84-B51 for eMMC also has a similar 1277 * statement on section 6.8.3. 1278 * 1279 * Multiple block read/write could be done by either predefined 1280 * method, namely CMD23, or open-ending mode. For open-ending mode, 1281 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1282 * 1283 * However the spec[1] doesn't tell us whether we should also 1284 * ignore that for predefined method. But per the spec[1], section 1285 * 4.15 Set Block Count Command, it says"If illegal block count 1286 * is set, out of range error will be indicated during read/write 1287 * operation (For example, data transfer is stopped at user area 1288 * boundary)." In another word, we could expect a out of range error 1289 * in the response for the following CMD18/25. And if argument of 1290 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1291 * we could also expect to get a -ETIMEDOUT or any error number from 1292 * the host drivers due to missing data response(for write)/data(for 1293 * read), as the cards will stop the data transfer by itself per the 1294 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1295 */ 1296 1297 if (!brq->stop.error) { 1298 bool oor_with_open_end; 1299 /* If there is no error yet, check R1 response */ 1300 1301 val = brq->stop.resp[0] & CMD_ERRORS; 1302 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1303 1304 if (val && !oor_with_open_end) 1305 brq->stop.error = -EIO; 1306 } 1307 } 1308 1309 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1310 int disable_multi, bool *do_rel_wr_p, 1311 bool *do_data_tag_p) 1312 { 1313 struct mmc_blk_data *md = mq->blkdata; 1314 struct mmc_card *card = md->queue.card; 1315 struct mmc_blk_request *brq = &mqrq->brq; 1316 struct request *req = mmc_queue_req_to_req(mqrq); 1317 bool do_rel_wr, do_data_tag; 1318 1319 /* 1320 * Reliable writes are used to implement Forced Unit Access and 1321 * are supported only on MMCs. 1322 */ 1323 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1324 rq_data_dir(req) == WRITE && 1325 (md->flags & MMC_BLK_REL_WR); 1326 1327 memset(brq, 0, sizeof(struct mmc_blk_request)); 1328 1329 brq->mrq.data = &brq->data; 1330 brq->mrq.tag = req->tag; 1331 1332 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1333 brq->stop.arg = 0; 1334 1335 if (rq_data_dir(req) == READ) { 1336 brq->data.flags = MMC_DATA_READ; 1337 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1338 } else { 1339 brq->data.flags = MMC_DATA_WRITE; 1340 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1341 } 1342 1343 brq->data.blksz = 512; 1344 brq->data.blocks = blk_rq_sectors(req); 1345 brq->data.blk_addr = blk_rq_pos(req); 1346 1347 /* 1348 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1349 * The eMMC will give "high" priority tasks priority over "simple" 1350 * priority tasks. Here we always set "simple" priority by not setting 1351 * MMC_DATA_PRIO. 1352 */ 1353 1354 /* 1355 * The block layer doesn't support all sector count 1356 * restrictions, so we need to be prepared for too big 1357 * requests. 1358 */ 1359 if (brq->data.blocks > card->host->max_blk_count) 1360 brq->data.blocks = card->host->max_blk_count; 1361 1362 if (brq->data.blocks > 1) { 1363 /* 1364 * After a read error, we redo the request one sector 1365 * at a time in order to accurately determine which 1366 * sectors can be read successfully. 1367 */ 1368 if (disable_multi) 1369 brq->data.blocks = 1; 1370 1371 /* 1372 * Some controllers have HW issues while operating 1373 * in multiple I/O mode 1374 */ 1375 if (card->host->ops->multi_io_quirk) 1376 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1377 (rq_data_dir(req) == READ) ? 1378 MMC_DATA_READ : MMC_DATA_WRITE, 1379 brq->data.blocks); 1380 } 1381 1382 if (do_rel_wr) { 1383 mmc_apply_rel_rw(brq, card, req); 1384 brq->data.flags |= MMC_DATA_REL_WR; 1385 } 1386 1387 /* 1388 * Data tag is used only during writing meta data to speed 1389 * up write and any subsequent read of this meta data 1390 */ 1391 do_data_tag = card->ext_csd.data_tag_unit_size && 1392 (req->cmd_flags & REQ_META) && 1393 (rq_data_dir(req) == WRITE) && 1394 ((brq->data.blocks * brq->data.blksz) >= 1395 card->ext_csd.data_tag_unit_size); 1396 1397 if (do_data_tag) 1398 brq->data.flags |= MMC_DATA_DAT_TAG; 1399 1400 mmc_set_data_timeout(&brq->data, card); 1401 1402 brq->data.sg = mqrq->sg; 1403 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1404 1405 /* 1406 * Adjust the sg list so it is the same size as the 1407 * request. 1408 */ 1409 if (brq->data.blocks != blk_rq_sectors(req)) { 1410 int i, data_size = brq->data.blocks << 9; 1411 struct scatterlist *sg; 1412 1413 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1414 data_size -= sg->length; 1415 if (data_size <= 0) { 1416 sg->length += data_size; 1417 i++; 1418 break; 1419 } 1420 } 1421 brq->data.sg_len = i; 1422 } 1423 1424 if (do_rel_wr_p) 1425 *do_rel_wr_p = do_rel_wr; 1426 1427 if (do_data_tag_p) 1428 *do_data_tag_p = do_data_tag; 1429 } 1430 1431 #define MMC_CQE_RETRIES 2 1432 1433 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1434 { 1435 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1436 struct mmc_request *mrq = &mqrq->brq.mrq; 1437 struct request_queue *q = req->q; 1438 struct mmc_host *host = mq->card->host; 1439 unsigned long flags; 1440 bool put_card; 1441 int err; 1442 1443 mmc_cqe_post_req(host, mrq); 1444 1445 if (mrq->cmd && mrq->cmd->error) 1446 err = mrq->cmd->error; 1447 else if (mrq->data && mrq->data->error) 1448 err = mrq->data->error; 1449 else 1450 err = 0; 1451 1452 if (err) { 1453 if (mqrq->retries++ < MMC_CQE_RETRIES) 1454 blk_mq_requeue_request(req, true); 1455 else 1456 blk_mq_end_request(req, BLK_STS_IOERR); 1457 } else if (mrq->data) { 1458 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1459 blk_mq_requeue_request(req, true); 1460 else 1461 __blk_mq_end_request(req, BLK_STS_OK); 1462 } else { 1463 blk_mq_end_request(req, BLK_STS_OK); 1464 } 1465 1466 spin_lock_irqsave(q->queue_lock, flags); 1467 1468 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1469 1470 put_card = (mmc_tot_in_flight(mq) == 0); 1471 1472 mmc_cqe_check_busy(mq); 1473 1474 spin_unlock_irqrestore(q->queue_lock, flags); 1475 1476 if (!mq->cqe_busy) 1477 blk_mq_run_hw_queues(q, true); 1478 1479 if (put_card) 1480 mmc_put_card(mq->card, &mq->ctx); 1481 } 1482 1483 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1484 { 1485 struct mmc_card *card = mq->card; 1486 struct mmc_host *host = card->host; 1487 int err; 1488 1489 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1490 1491 err = mmc_cqe_recovery(host); 1492 if (err) 1493 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1494 else 1495 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1496 1497 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1498 } 1499 1500 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1501 { 1502 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1503 brq.mrq); 1504 struct request *req = mmc_queue_req_to_req(mqrq); 1505 struct request_queue *q = req->q; 1506 struct mmc_queue *mq = q->queuedata; 1507 1508 /* 1509 * Block layer timeouts race with completions which means the normal 1510 * completion path cannot be used during recovery. 1511 */ 1512 if (mq->in_recovery) 1513 mmc_blk_cqe_complete_rq(mq, req); 1514 else 1515 blk_mq_complete_request(req); 1516 } 1517 1518 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1519 { 1520 mrq->done = mmc_blk_cqe_req_done; 1521 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1522 1523 return mmc_cqe_start_req(host, mrq); 1524 } 1525 1526 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1527 struct request *req) 1528 { 1529 struct mmc_blk_request *brq = &mqrq->brq; 1530 1531 memset(brq, 0, sizeof(*brq)); 1532 1533 brq->mrq.cmd = &brq->cmd; 1534 brq->mrq.tag = req->tag; 1535 1536 return &brq->mrq; 1537 } 1538 1539 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1540 { 1541 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1542 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1543 1544 mrq->cmd->opcode = MMC_SWITCH; 1545 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1546 (EXT_CSD_FLUSH_CACHE << 16) | 1547 (1 << 8) | 1548 EXT_CSD_CMD_SET_NORMAL; 1549 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1550 1551 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1552 } 1553 1554 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1555 { 1556 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1557 1558 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1559 1560 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1561 } 1562 1563 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1564 struct mmc_card *card, 1565 int disable_multi, 1566 struct mmc_queue *mq) 1567 { 1568 u32 readcmd, writecmd; 1569 struct mmc_blk_request *brq = &mqrq->brq; 1570 struct request *req = mmc_queue_req_to_req(mqrq); 1571 struct mmc_blk_data *md = mq->blkdata; 1572 bool do_rel_wr, do_data_tag; 1573 1574 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1575 1576 brq->mrq.cmd = &brq->cmd; 1577 1578 brq->cmd.arg = blk_rq_pos(req); 1579 if (!mmc_card_blockaddr(card)) 1580 brq->cmd.arg <<= 9; 1581 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1582 1583 if (brq->data.blocks > 1 || do_rel_wr) { 1584 /* SPI multiblock writes terminate using a special 1585 * token, not a STOP_TRANSMISSION request. 1586 */ 1587 if (!mmc_host_is_spi(card->host) || 1588 rq_data_dir(req) == READ) 1589 brq->mrq.stop = &brq->stop; 1590 readcmd = MMC_READ_MULTIPLE_BLOCK; 1591 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1592 } else { 1593 brq->mrq.stop = NULL; 1594 readcmd = MMC_READ_SINGLE_BLOCK; 1595 writecmd = MMC_WRITE_BLOCK; 1596 } 1597 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1598 1599 /* 1600 * Pre-defined multi-block transfers are preferable to 1601 * open ended-ones (and necessary for reliable writes). 1602 * However, it is not sufficient to just send CMD23, 1603 * and avoid the final CMD12, as on an error condition 1604 * CMD12 (stop) needs to be sent anyway. This, coupled 1605 * with Auto-CMD23 enhancements provided by some 1606 * hosts, means that the complexity of dealing 1607 * with this is best left to the host. If CMD23 is 1608 * supported by card and host, we'll fill sbc in and let 1609 * the host deal with handling it correctly. This means 1610 * that for hosts that don't expose MMC_CAP_CMD23, no 1611 * change of behavior will be observed. 1612 * 1613 * N.B: Some MMC cards experience perf degradation. 1614 * We'll avoid using CMD23-bounded multiblock writes for 1615 * these, while retaining features like reliable writes. 1616 */ 1617 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1618 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1619 do_data_tag)) { 1620 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1621 brq->sbc.arg = brq->data.blocks | 1622 (do_rel_wr ? (1 << 31) : 0) | 1623 (do_data_tag ? (1 << 29) : 0); 1624 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1625 brq->mrq.sbc = &brq->sbc; 1626 } 1627 } 1628 1629 #define MMC_MAX_RETRIES 5 1630 #define MMC_DATA_RETRIES 2 1631 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1632 1633 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1634 { 1635 struct mmc_command cmd = { 1636 .opcode = MMC_STOP_TRANSMISSION, 1637 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1638 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1639 .busy_timeout = timeout, 1640 }; 1641 1642 return mmc_wait_for_cmd(card->host, &cmd, 5); 1643 } 1644 1645 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1646 { 1647 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1648 struct mmc_blk_request *brq = &mqrq->brq; 1649 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1650 int err; 1651 1652 mmc_retune_hold_now(card->host); 1653 1654 mmc_blk_send_stop(card, timeout); 1655 1656 err = card_busy_detect(card, timeout, req, NULL); 1657 1658 mmc_retune_release(card->host); 1659 1660 return err; 1661 } 1662 1663 #define MMC_READ_SINGLE_RETRIES 2 1664 1665 /* Single sector read during recovery */ 1666 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1667 { 1668 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1669 struct mmc_request *mrq = &mqrq->brq.mrq; 1670 struct mmc_card *card = mq->card; 1671 struct mmc_host *host = card->host; 1672 blk_status_t error = BLK_STS_OK; 1673 int retries = 0; 1674 1675 do { 1676 u32 status; 1677 int err; 1678 1679 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1680 1681 mmc_wait_for_req(host, mrq); 1682 1683 err = mmc_send_status(card, &status); 1684 if (err) 1685 goto error_exit; 1686 1687 if (!mmc_host_is_spi(host) && 1688 !mmc_blk_in_tran_state(status)) { 1689 err = mmc_blk_fix_state(card, req); 1690 if (err) 1691 goto error_exit; 1692 } 1693 1694 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES) 1695 continue; 1696 1697 retries = 0; 1698 1699 if (mrq->cmd->error || 1700 mrq->data->error || 1701 (!mmc_host_is_spi(host) && 1702 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1703 error = BLK_STS_IOERR; 1704 else 1705 error = BLK_STS_OK; 1706 1707 } while (blk_update_request(req, error, 512)); 1708 1709 return; 1710 1711 error_exit: 1712 mrq->data->bytes_xfered = 0; 1713 blk_update_request(req, BLK_STS_IOERR, 512); 1714 /* Let it try the remaining request again */ 1715 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1716 mqrq->retries = MMC_MAX_RETRIES - 1; 1717 } 1718 1719 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1720 { 1721 return !!brq->mrq.sbc; 1722 } 1723 1724 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1725 { 1726 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1727 } 1728 1729 /* 1730 * Check for errors the host controller driver might not have seen such as 1731 * response mode errors or invalid card state. 1732 */ 1733 static bool mmc_blk_status_error(struct request *req, u32 status) 1734 { 1735 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1736 struct mmc_blk_request *brq = &mqrq->brq; 1737 struct mmc_queue *mq = req->q->queuedata; 1738 u32 stop_err_bits; 1739 1740 if (mmc_host_is_spi(mq->card->host)) 1741 return false; 1742 1743 stop_err_bits = mmc_blk_stop_err_bits(brq); 1744 1745 return brq->cmd.resp[0] & CMD_ERRORS || 1746 brq->stop.resp[0] & stop_err_bits || 1747 status & stop_err_bits || 1748 (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status)); 1749 } 1750 1751 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1752 { 1753 return !brq->sbc.error && !brq->cmd.error && 1754 !(brq->cmd.resp[0] & CMD_ERRORS); 1755 } 1756 1757 /* 1758 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1759 * policy: 1760 * 1. A request that has transferred at least some data is considered 1761 * successful and will be requeued if there is remaining data to 1762 * transfer. 1763 * 2. Otherwise the number of retries is incremented and the request 1764 * will be requeued if there are remaining retries. 1765 * 3. Otherwise the request will be errored out. 1766 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1767 * mqrq->retries. So there are only 4 possible actions here: 1768 * 1. do not accept the bytes_xfered value i.e. set it to zero 1769 * 2. change mqrq->retries to determine the number of retries 1770 * 3. try to reset the card 1771 * 4. read one sector at a time 1772 */ 1773 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1774 { 1775 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1776 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1777 struct mmc_blk_request *brq = &mqrq->brq; 1778 struct mmc_blk_data *md = mq->blkdata; 1779 struct mmc_card *card = mq->card; 1780 u32 status; 1781 u32 blocks; 1782 int err; 1783 1784 /* 1785 * Some errors the host driver might not have seen. Set the number of 1786 * bytes transferred to zero in that case. 1787 */ 1788 err = __mmc_send_status(card, &status, 0); 1789 if (err || mmc_blk_status_error(req, status)) 1790 brq->data.bytes_xfered = 0; 1791 1792 mmc_retune_release(card->host); 1793 1794 /* 1795 * Try again to get the status. This also provides an opportunity for 1796 * re-tuning. 1797 */ 1798 if (err) 1799 err = __mmc_send_status(card, &status, 0); 1800 1801 /* 1802 * Nothing more to do after the number of bytes transferred has been 1803 * updated and there is no card. 1804 */ 1805 if (err && mmc_detect_card_removed(card->host)) 1806 return; 1807 1808 /* Try to get back to "tran" state */ 1809 if (!mmc_host_is_spi(mq->card->host) && 1810 (err || !mmc_blk_in_tran_state(status))) 1811 err = mmc_blk_fix_state(mq->card, req); 1812 1813 /* 1814 * Special case for SD cards where the card might record the number of 1815 * blocks written. 1816 */ 1817 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1818 rq_data_dir(req) == WRITE) { 1819 if (mmc_sd_num_wr_blocks(card, &blocks)) 1820 brq->data.bytes_xfered = 0; 1821 else 1822 brq->data.bytes_xfered = blocks << 9; 1823 } 1824 1825 /* Reset if the card is in a bad state */ 1826 if (!mmc_host_is_spi(mq->card->host) && 1827 err && mmc_blk_reset(md, card->host, type)) { 1828 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name); 1829 mqrq->retries = MMC_NO_RETRIES; 1830 return; 1831 } 1832 1833 /* 1834 * If anything was done, just return and if there is anything remaining 1835 * on the request it will get requeued. 1836 */ 1837 if (brq->data.bytes_xfered) 1838 return; 1839 1840 /* Reset before last retry */ 1841 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1842 mmc_blk_reset(md, card->host, type); 1843 1844 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1845 if (brq->sbc.error || brq->cmd.error) 1846 return; 1847 1848 /* Reduce the remaining retries for data errors */ 1849 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1850 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1851 return; 1852 } 1853 1854 /* FIXME: Missing single sector read for large sector size */ 1855 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1856 brq->data.blocks > 1) { 1857 /* Read one sector at a time */ 1858 mmc_blk_read_single(mq, req); 1859 return; 1860 } 1861 } 1862 1863 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1864 { 1865 mmc_blk_eval_resp_error(brq); 1866 1867 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1868 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1869 } 1870 1871 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1872 { 1873 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1874 u32 status = 0; 1875 int err; 1876 1877 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) 1878 return 0; 1879 1880 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status); 1881 1882 /* 1883 * Do not assume data transferred correctly if there are any error bits 1884 * set. 1885 */ 1886 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1887 mqrq->brq.data.bytes_xfered = 0; 1888 err = err ? err : -EIO; 1889 } 1890 1891 /* Copy the exception bit so it will be seen later on */ 1892 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT) 1893 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1894 1895 return err; 1896 } 1897 1898 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1899 struct request *req) 1900 { 1901 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1902 1903 mmc_blk_reset_success(mq->blkdata, type); 1904 } 1905 1906 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1907 { 1908 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1909 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1910 1911 if (nr_bytes) { 1912 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1913 blk_mq_requeue_request(req, true); 1914 else 1915 __blk_mq_end_request(req, BLK_STS_OK); 1916 } else if (!blk_rq_bytes(req)) { 1917 __blk_mq_end_request(req, BLK_STS_IOERR); 1918 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1919 blk_mq_requeue_request(req, true); 1920 } else { 1921 if (mmc_card_removed(mq->card)) 1922 req->rq_flags |= RQF_QUIET; 1923 blk_mq_end_request(req, BLK_STS_IOERR); 1924 } 1925 } 1926 1927 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1928 struct mmc_queue_req *mqrq) 1929 { 1930 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1931 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1932 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1933 } 1934 1935 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 1936 struct mmc_queue_req *mqrq) 1937 { 1938 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 1939 mmc_start_bkops(mq->card, true); 1940 } 1941 1942 void mmc_blk_mq_complete(struct request *req) 1943 { 1944 struct mmc_queue *mq = req->q->queuedata; 1945 1946 if (mq->use_cqe) 1947 mmc_blk_cqe_complete_rq(mq, req); 1948 else 1949 mmc_blk_mq_complete_rq(mq, req); 1950 } 1951 1952 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 1953 struct request *req) 1954 { 1955 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1956 struct mmc_host *host = mq->card->host; 1957 1958 if (mmc_blk_rq_error(&mqrq->brq) || 1959 mmc_blk_card_busy(mq->card, req)) { 1960 mmc_blk_mq_rw_recovery(mq, req); 1961 } else { 1962 mmc_blk_rw_reset_success(mq, req); 1963 mmc_retune_release(host); 1964 } 1965 1966 mmc_blk_urgent_bkops(mq, mqrq); 1967 } 1968 1969 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 1970 { 1971 struct request_queue *q = req->q; 1972 unsigned long flags; 1973 bool put_card; 1974 1975 spin_lock_irqsave(q->queue_lock, flags); 1976 1977 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1978 1979 put_card = (mmc_tot_in_flight(mq) == 0); 1980 1981 spin_unlock_irqrestore(q->queue_lock, flags); 1982 1983 if (put_card) 1984 mmc_put_card(mq->card, &mq->ctx); 1985 } 1986 1987 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req) 1988 { 1989 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1990 struct mmc_request *mrq = &mqrq->brq.mrq; 1991 struct mmc_host *host = mq->card->host; 1992 1993 mmc_post_req(host, mrq, 0); 1994 1995 /* 1996 * Block layer timeouts race with completions which means the normal 1997 * completion path cannot be used during recovery. 1998 */ 1999 if (mq->in_recovery) 2000 mmc_blk_mq_complete_rq(mq, req); 2001 else 2002 blk_mq_complete_request(req); 2003 2004 mmc_blk_mq_dec_in_flight(mq, req); 2005 } 2006 2007 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2008 { 2009 struct request *req = mq->recovery_req; 2010 struct mmc_host *host = mq->card->host; 2011 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2012 2013 mq->recovery_req = NULL; 2014 mq->rw_wait = false; 2015 2016 if (mmc_blk_rq_error(&mqrq->brq)) { 2017 mmc_retune_hold_now(host); 2018 mmc_blk_mq_rw_recovery(mq, req); 2019 } 2020 2021 mmc_blk_urgent_bkops(mq, mqrq); 2022 2023 mmc_blk_mq_post_req(mq, req); 2024 } 2025 2026 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2027 struct request **prev_req) 2028 { 2029 if (mmc_host_done_complete(mq->card->host)) 2030 return; 2031 2032 mutex_lock(&mq->complete_lock); 2033 2034 if (!mq->complete_req) 2035 goto out_unlock; 2036 2037 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2038 2039 if (prev_req) 2040 *prev_req = mq->complete_req; 2041 else 2042 mmc_blk_mq_post_req(mq, mq->complete_req); 2043 2044 mq->complete_req = NULL; 2045 2046 out_unlock: 2047 mutex_unlock(&mq->complete_lock); 2048 } 2049 2050 void mmc_blk_mq_complete_work(struct work_struct *work) 2051 { 2052 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2053 complete_work); 2054 2055 mmc_blk_mq_complete_prev_req(mq, NULL); 2056 } 2057 2058 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2059 { 2060 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2061 brq.mrq); 2062 struct request *req = mmc_queue_req_to_req(mqrq); 2063 struct request_queue *q = req->q; 2064 struct mmc_queue *mq = q->queuedata; 2065 struct mmc_host *host = mq->card->host; 2066 unsigned long flags; 2067 2068 if (!mmc_host_done_complete(host)) { 2069 bool waiting; 2070 2071 /* 2072 * We cannot complete the request in this context, so record 2073 * that there is a request to complete, and that a following 2074 * request does not need to wait (although it does need to 2075 * complete complete_req first). 2076 */ 2077 spin_lock_irqsave(q->queue_lock, flags); 2078 mq->complete_req = req; 2079 mq->rw_wait = false; 2080 waiting = mq->waiting; 2081 spin_unlock_irqrestore(q->queue_lock, flags); 2082 2083 /* 2084 * If 'waiting' then the waiting task will complete this 2085 * request, otherwise queue a work to do it. Note that 2086 * complete_work may still race with the dispatch of a following 2087 * request. 2088 */ 2089 if (waiting) 2090 wake_up(&mq->wait); 2091 else 2092 kblockd_schedule_work(&mq->complete_work); 2093 2094 return; 2095 } 2096 2097 /* Take the recovery path for errors or urgent background operations */ 2098 if (mmc_blk_rq_error(&mqrq->brq) || 2099 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2100 spin_lock_irqsave(q->queue_lock, flags); 2101 mq->recovery_needed = true; 2102 mq->recovery_req = req; 2103 spin_unlock_irqrestore(q->queue_lock, flags); 2104 wake_up(&mq->wait); 2105 schedule_work(&mq->recovery_work); 2106 return; 2107 } 2108 2109 mmc_blk_rw_reset_success(mq, req); 2110 2111 mq->rw_wait = false; 2112 wake_up(&mq->wait); 2113 2114 mmc_blk_mq_post_req(mq, req); 2115 } 2116 2117 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2118 { 2119 struct request_queue *q = mq->queue; 2120 unsigned long flags; 2121 bool done; 2122 2123 /* 2124 * Wait while there is another request in progress, but not if recovery 2125 * is needed. Also indicate whether there is a request waiting to start. 2126 */ 2127 spin_lock_irqsave(q->queue_lock, flags); 2128 if (mq->recovery_needed) { 2129 *err = -EBUSY; 2130 done = true; 2131 } else { 2132 done = !mq->rw_wait; 2133 } 2134 mq->waiting = !done; 2135 spin_unlock_irqrestore(q->queue_lock, flags); 2136 2137 return done; 2138 } 2139 2140 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2141 { 2142 int err = 0; 2143 2144 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2145 2146 /* Always complete the previous request if there is one */ 2147 mmc_blk_mq_complete_prev_req(mq, prev_req); 2148 2149 return err; 2150 } 2151 2152 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2153 struct request *req) 2154 { 2155 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2156 struct mmc_host *host = mq->card->host; 2157 struct request *prev_req = NULL; 2158 int err = 0; 2159 2160 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2161 2162 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2163 2164 mmc_pre_req(host, &mqrq->brq.mrq); 2165 2166 err = mmc_blk_rw_wait(mq, &prev_req); 2167 if (err) 2168 goto out_post_req; 2169 2170 mq->rw_wait = true; 2171 2172 err = mmc_start_request(host, &mqrq->brq.mrq); 2173 2174 if (prev_req) 2175 mmc_blk_mq_post_req(mq, prev_req); 2176 2177 if (err) 2178 mq->rw_wait = false; 2179 2180 /* Release re-tuning here where there is no synchronization required */ 2181 if (err || mmc_host_done_complete(host)) 2182 mmc_retune_release(host); 2183 2184 out_post_req: 2185 if (err) 2186 mmc_post_req(host, &mqrq->brq.mrq, err); 2187 2188 return err; 2189 } 2190 2191 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2192 { 2193 if (mq->use_cqe) 2194 return host->cqe_ops->cqe_wait_for_idle(host); 2195 2196 return mmc_blk_rw_wait(mq, NULL); 2197 } 2198 2199 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2200 { 2201 struct mmc_blk_data *md = mq->blkdata; 2202 struct mmc_card *card = md->queue.card; 2203 struct mmc_host *host = card->host; 2204 int ret; 2205 2206 ret = mmc_blk_part_switch(card, md->part_type); 2207 if (ret) 2208 return MMC_REQ_FAILED_TO_START; 2209 2210 switch (mmc_issue_type(mq, req)) { 2211 case MMC_ISSUE_SYNC: 2212 ret = mmc_blk_wait_for_idle(mq, host); 2213 if (ret) 2214 return MMC_REQ_BUSY; 2215 switch (req_op(req)) { 2216 case REQ_OP_DRV_IN: 2217 case REQ_OP_DRV_OUT: 2218 mmc_blk_issue_drv_op(mq, req); 2219 break; 2220 case REQ_OP_DISCARD: 2221 mmc_blk_issue_discard_rq(mq, req); 2222 break; 2223 case REQ_OP_SECURE_ERASE: 2224 mmc_blk_issue_secdiscard_rq(mq, req); 2225 break; 2226 case REQ_OP_FLUSH: 2227 mmc_blk_issue_flush(mq, req); 2228 break; 2229 default: 2230 WARN_ON_ONCE(1); 2231 return MMC_REQ_FAILED_TO_START; 2232 } 2233 return MMC_REQ_FINISHED; 2234 case MMC_ISSUE_DCMD: 2235 case MMC_ISSUE_ASYNC: 2236 switch (req_op(req)) { 2237 case REQ_OP_FLUSH: 2238 ret = mmc_blk_cqe_issue_flush(mq, req); 2239 break; 2240 case REQ_OP_READ: 2241 case REQ_OP_WRITE: 2242 if (mq->use_cqe) 2243 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2244 else 2245 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2246 break; 2247 default: 2248 WARN_ON_ONCE(1); 2249 ret = -EINVAL; 2250 } 2251 if (!ret) 2252 return MMC_REQ_STARTED; 2253 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2254 default: 2255 WARN_ON_ONCE(1); 2256 return MMC_REQ_FAILED_TO_START; 2257 } 2258 } 2259 2260 static inline int mmc_blk_readonly(struct mmc_card *card) 2261 { 2262 return mmc_card_readonly(card) || 2263 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2264 } 2265 2266 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2267 struct device *parent, 2268 sector_t size, 2269 bool default_ro, 2270 const char *subname, 2271 int area_type) 2272 { 2273 struct mmc_blk_data *md; 2274 int devidx, ret; 2275 2276 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2277 if (devidx < 0) { 2278 /* 2279 * We get -ENOSPC because there are no more any available 2280 * devidx. The reason may be that, either userspace haven't yet 2281 * unmounted the partitions, which postpones mmc_blk_release() 2282 * from being called, or the device has more partitions than 2283 * what we support. 2284 */ 2285 if (devidx == -ENOSPC) 2286 dev_err(mmc_dev(card->host), 2287 "no more device IDs available\n"); 2288 2289 return ERR_PTR(devidx); 2290 } 2291 2292 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2293 if (!md) { 2294 ret = -ENOMEM; 2295 goto out; 2296 } 2297 2298 md->area_type = area_type; 2299 2300 /* 2301 * Set the read-only status based on the supported commands 2302 * and the write protect switch. 2303 */ 2304 md->read_only = mmc_blk_readonly(card); 2305 2306 md->disk = alloc_disk(perdev_minors); 2307 if (md->disk == NULL) { 2308 ret = -ENOMEM; 2309 goto err_kfree; 2310 } 2311 2312 spin_lock_init(&md->lock); 2313 INIT_LIST_HEAD(&md->part); 2314 INIT_LIST_HEAD(&md->rpmbs); 2315 md->usage = 1; 2316 2317 ret = mmc_init_queue(&md->queue, card, &md->lock, subname); 2318 if (ret) 2319 goto err_putdisk; 2320 2321 md->queue.blkdata = md; 2322 2323 /* 2324 * Keep an extra reference to the queue so that we can shutdown the 2325 * queue (i.e. call blk_cleanup_queue()) while there are still 2326 * references to the 'md'. The corresponding blk_put_queue() is in 2327 * mmc_blk_put(). 2328 */ 2329 if (!blk_get_queue(md->queue.queue)) { 2330 mmc_cleanup_queue(&md->queue); 2331 ret = -ENODEV; 2332 goto err_putdisk; 2333 } 2334 2335 md->disk->major = MMC_BLOCK_MAJOR; 2336 md->disk->first_minor = devidx * perdev_minors; 2337 md->disk->fops = &mmc_bdops; 2338 md->disk->private_data = md; 2339 md->disk->queue = md->queue.queue; 2340 md->parent = parent; 2341 set_disk_ro(md->disk, md->read_only || default_ro); 2342 md->disk->flags = GENHD_FL_EXT_DEVT; 2343 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2344 md->disk->flags |= GENHD_FL_NO_PART_SCAN; 2345 2346 /* 2347 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2348 * 2349 * - be set for removable media with permanent block devices 2350 * - be unset for removable block devices with permanent media 2351 * 2352 * Since MMC block devices clearly fall under the second 2353 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2354 * should use the block device creation/destruction hotplug 2355 * messages to tell when the card is present. 2356 */ 2357 2358 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2359 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2360 2361 if (mmc_card_mmc(card)) 2362 blk_queue_logical_block_size(md->queue.queue, 2363 card->ext_csd.data_sector_size); 2364 else 2365 blk_queue_logical_block_size(md->queue.queue, 512); 2366 2367 set_capacity(md->disk, size); 2368 2369 if (mmc_host_cmd23(card->host)) { 2370 if ((mmc_card_mmc(card) && 2371 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2372 (mmc_card_sd(card) && 2373 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2374 md->flags |= MMC_BLK_CMD23; 2375 } 2376 2377 if (mmc_card_mmc(card) && 2378 md->flags & MMC_BLK_CMD23 && 2379 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2380 card->ext_csd.rel_sectors)) { 2381 md->flags |= MMC_BLK_REL_WR; 2382 blk_queue_write_cache(md->queue.queue, true, true); 2383 } 2384 2385 return md; 2386 2387 err_putdisk: 2388 put_disk(md->disk); 2389 err_kfree: 2390 kfree(md); 2391 out: 2392 ida_simple_remove(&mmc_blk_ida, devidx); 2393 return ERR_PTR(ret); 2394 } 2395 2396 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2397 { 2398 sector_t size; 2399 2400 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2401 /* 2402 * The EXT_CSD sector count is in number or 512 byte 2403 * sectors. 2404 */ 2405 size = card->ext_csd.sectors; 2406 } else { 2407 /* 2408 * The CSD capacity field is in units of read_blkbits. 2409 * set_capacity takes units of 512 bytes. 2410 */ 2411 size = (typeof(sector_t))card->csd.capacity 2412 << (card->csd.read_blkbits - 9); 2413 } 2414 2415 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2416 MMC_BLK_DATA_AREA_MAIN); 2417 } 2418 2419 static int mmc_blk_alloc_part(struct mmc_card *card, 2420 struct mmc_blk_data *md, 2421 unsigned int part_type, 2422 sector_t size, 2423 bool default_ro, 2424 const char *subname, 2425 int area_type) 2426 { 2427 char cap_str[10]; 2428 struct mmc_blk_data *part_md; 2429 2430 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2431 subname, area_type); 2432 if (IS_ERR(part_md)) 2433 return PTR_ERR(part_md); 2434 part_md->part_type = part_type; 2435 list_add(&part_md->part, &md->part); 2436 2437 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2438 cap_str, sizeof(cap_str)); 2439 pr_info("%s: %s %s partition %u %s\n", 2440 part_md->disk->disk_name, mmc_card_id(card), 2441 mmc_card_name(card), part_md->part_type, cap_str); 2442 return 0; 2443 } 2444 2445 /** 2446 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2447 * @filp: the character device file 2448 * @cmd: the ioctl() command 2449 * @arg: the argument from userspace 2450 * 2451 * This will essentially just redirect the ioctl()s coming in over to 2452 * the main block device spawning the RPMB character device. 2453 */ 2454 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2455 unsigned long arg) 2456 { 2457 struct mmc_rpmb_data *rpmb = filp->private_data; 2458 int ret; 2459 2460 switch (cmd) { 2461 case MMC_IOC_CMD: 2462 ret = mmc_blk_ioctl_cmd(rpmb->md, 2463 (struct mmc_ioc_cmd __user *)arg, 2464 rpmb); 2465 break; 2466 case MMC_IOC_MULTI_CMD: 2467 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2468 (struct mmc_ioc_multi_cmd __user *)arg, 2469 rpmb); 2470 break; 2471 default: 2472 ret = -EINVAL; 2473 break; 2474 } 2475 2476 return 0; 2477 } 2478 2479 #ifdef CONFIG_COMPAT 2480 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2481 unsigned long arg) 2482 { 2483 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2484 } 2485 #endif 2486 2487 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2488 { 2489 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2490 struct mmc_rpmb_data, chrdev); 2491 2492 get_device(&rpmb->dev); 2493 filp->private_data = rpmb; 2494 mmc_blk_get(rpmb->md->disk); 2495 2496 return nonseekable_open(inode, filp); 2497 } 2498 2499 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2500 { 2501 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2502 struct mmc_rpmb_data, chrdev); 2503 2504 put_device(&rpmb->dev); 2505 mmc_blk_put(rpmb->md); 2506 2507 return 0; 2508 } 2509 2510 static const struct file_operations mmc_rpmb_fileops = { 2511 .release = mmc_rpmb_chrdev_release, 2512 .open = mmc_rpmb_chrdev_open, 2513 .owner = THIS_MODULE, 2514 .llseek = no_llseek, 2515 .unlocked_ioctl = mmc_rpmb_ioctl, 2516 #ifdef CONFIG_COMPAT 2517 .compat_ioctl = mmc_rpmb_ioctl_compat, 2518 #endif 2519 }; 2520 2521 static void mmc_blk_rpmb_device_release(struct device *dev) 2522 { 2523 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2524 2525 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2526 kfree(rpmb); 2527 } 2528 2529 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2530 struct mmc_blk_data *md, 2531 unsigned int part_index, 2532 sector_t size, 2533 const char *subname) 2534 { 2535 int devidx, ret; 2536 char rpmb_name[DISK_NAME_LEN]; 2537 char cap_str[10]; 2538 struct mmc_rpmb_data *rpmb; 2539 2540 /* This creates the minor number for the RPMB char device */ 2541 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2542 if (devidx < 0) 2543 return devidx; 2544 2545 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2546 if (!rpmb) { 2547 ida_simple_remove(&mmc_rpmb_ida, devidx); 2548 return -ENOMEM; 2549 } 2550 2551 snprintf(rpmb_name, sizeof(rpmb_name), 2552 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2553 2554 rpmb->id = devidx; 2555 rpmb->part_index = part_index; 2556 rpmb->dev.init_name = rpmb_name; 2557 rpmb->dev.bus = &mmc_rpmb_bus_type; 2558 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2559 rpmb->dev.parent = &card->dev; 2560 rpmb->dev.release = mmc_blk_rpmb_device_release; 2561 device_initialize(&rpmb->dev); 2562 dev_set_drvdata(&rpmb->dev, rpmb); 2563 rpmb->md = md; 2564 2565 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2566 rpmb->chrdev.owner = THIS_MODULE; 2567 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2568 if (ret) { 2569 pr_err("%s: could not add character device\n", rpmb_name); 2570 goto out_put_device; 2571 } 2572 2573 list_add(&rpmb->node, &md->rpmbs); 2574 2575 string_get_size((u64)size, 512, STRING_UNITS_2, 2576 cap_str, sizeof(cap_str)); 2577 2578 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n", 2579 rpmb_name, mmc_card_id(card), 2580 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str, 2581 MAJOR(mmc_rpmb_devt), rpmb->id); 2582 2583 return 0; 2584 2585 out_put_device: 2586 put_device(&rpmb->dev); 2587 return ret; 2588 } 2589 2590 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2591 2592 { 2593 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2594 put_device(&rpmb->dev); 2595 } 2596 2597 /* MMC Physical partitions consist of two boot partitions and 2598 * up to four general purpose partitions. 2599 * For each partition enabled in EXT_CSD a block device will be allocatedi 2600 * to provide access to the partition. 2601 */ 2602 2603 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2604 { 2605 int idx, ret; 2606 2607 if (!mmc_card_mmc(card)) 2608 return 0; 2609 2610 for (idx = 0; idx < card->nr_parts; idx++) { 2611 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2612 /* 2613 * RPMB partitions does not provide block access, they 2614 * are only accessed using ioctl():s. Thus create 2615 * special RPMB block devices that do not have a 2616 * backing block queue for these. 2617 */ 2618 ret = mmc_blk_alloc_rpmb_part(card, md, 2619 card->part[idx].part_cfg, 2620 card->part[idx].size >> 9, 2621 card->part[idx].name); 2622 if (ret) 2623 return ret; 2624 } else if (card->part[idx].size) { 2625 ret = mmc_blk_alloc_part(card, md, 2626 card->part[idx].part_cfg, 2627 card->part[idx].size >> 9, 2628 card->part[idx].force_ro, 2629 card->part[idx].name, 2630 card->part[idx].area_type); 2631 if (ret) 2632 return ret; 2633 } 2634 } 2635 2636 return 0; 2637 } 2638 2639 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2640 { 2641 struct mmc_card *card; 2642 2643 if (md) { 2644 /* 2645 * Flush remaining requests and free queues. It 2646 * is freeing the queue that stops new requests 2647 * from being accepted. 2648 */ 2649 card = md->queue.card; 2650 mmc_cleanup_queue(&md->queue); 2651 if (md->disk->flags & GENHD_FL_UP) { 2652 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2653 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2654 card->ext_csd.boot_ro_lockable) 2655 device_remove_file(disk_to_dev(md->disk), 2656 &md->power_ro_lock); 2657 2658 del_gendisk(md->disk); 2659 } 2660 mmc_blk_put(md); 2661 } 2662 } 2663 2664 static void mmc_blk_remove_parts(struct mmc_card *card, 2665 struct mmc_blk_data *md) 2666 { 2667 struct list_head *pos, *q; 2668 struct mmc_blk_data *part_md; 2669 struct mmc_rpmb_data *rpmb; 2670 2671 /* Remove RPMB partitions */ 2672 list_for_each_safe(pos, q, &md->rpmbs) { 2673 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2674 list_del(pos); 2675 mmc_blk_remove_rpmb_part(rpmb); 2676 } 2677 /* Remove block partitions */ 2678 list_for_each_safe(pos, q, &md->part) { 2679 part_md = list_entry(pos, struct mmc_blk_data, part); 2680 list_del(pos); 2681 mmc_blk_remove_req(part_md); 2682 } 2683 } 2684 2685 static int mmc_add_disk(struct mmc_blk_data *md) 2686 { 2687 int ret; 2688 struct mmc_card *card = md->queue.card; 2689 2690 device_add_disk(md->parent, md->disk); 2691 md->force_ro.show = force_ro_show; 2692 md->force_ro.store = force_ro_store; 2693 sysfs_attr_init(&md->force_ro.attr); 2694 md->force_ro.attr.name = "force_ro"; 2695 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2696 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2697 if (ret) 2698 goto force_ro_fail; 2699 2700 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2701 card->ext_csd.boot_ro_lockable) { 2702 umode_t mode; 2703 2704 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2705 mode = S_IRUGO; 2706 else 2707 mode = S_IRUGO | S_IWUSR; 2708 2709 md->power_ro_lock.show = power_ro_lock_show; 2710 md->power_ro_lock.store = power_ro_lock_store; 2711 sysfs_attr_init(&md->power_ro_lock.attr); 2712 md->power_ro_lock.attr.mode = mode; 2713 md->power_ro_lock.attr.name = 2714 "ro_lock_until_next_power_on"; 2715 ret = device_create_file(disk_to_dev(md->disk), 2716 &md->power_ro_lock); 2717 if (ret) 2718 goto power_ro_lock_fail; 2719 } 2720 return ret; 2721 2722 power_ro_lock_fail: 2723 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2724 force_ro_fail: 2725 del_gendisk(md->disk); 2726 2727 return ret; 2728 } 2729 2730 #ifdef CONFIG_DEBUG_FS 2731 2732 static int mmc_dbg_card_status_get(void *data, u64 *val) 2733 { 2734 struct mmc_card *card = data; 2735 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2736 struct mmc_queue *mq = &md->queue; 2737 struct request *req; 2738 int ret; 2739 2740 /* Ask the block layer about the card status */ 2741 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM); 2742 if (IS_ERR(req)) 2743 return PTR_ERR(req); 2744 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2745 blk_execute_rq(mq->queue, NULL, req, 0); 2746 ret = req_to_mmc_queue_req(req)->drv_op_result; 2747 if (ret >= 0) { 2748 *val = ret; 2749 ret = 0; 2750 } 2751 blk_put_request(req); 2752 2753 return ret; 2754 } 2755 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2756 NULL, "%08llx\n"); 2757 2758 /* That is two digits * 512 + 1 for newline */ 2759 #define EXT_CSD_STR_LEN 1025 2760 2761 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2762 { 2763 struct mmc_card *card = inode->i_private; 2764 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2765 struct mmc_queue *mq = &md->queue; 2766 struct request *req; 2767 char *buf; 2768 ssize_t n = 0; 2769 u8 *ext_csd; 2770 int err, i; 2771 2772 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2773 if (!buf) 2774 return -ENOMEM; 2775 2776 /* Ask the block layer for the EXT CSD */ 2777 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM); 2778 if (IS_ERR(req)) { 2779 err = PTR_ERR(req); 2780 goto out_free; 2781 } 2782 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2783 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2784 blk_execute_rq(mq->queue, NULL, req, 0); 2785 err = req_to_mmc_queue_req(req)->drv_op_result; 2786 blk_put_request(req); 2787 if (err) { 2788 pr_err("FAILED %d\n", err); 2789 goto out_free; 2790 } 2791 2792 for (i = 0; i < 512; i++) 2793 n += sprintf(buf + n, "%02x", ext_csd[i]); 2794 n += sprintf(buf + n, "\n"); 2795 2796 if (n != EXT_CSD_STR_LEN) { 2797 err = -EINVAL; 2798 kfree(ext_csd); 2799 goto out_free; 2800 } 2801 2802 filp->private_data = buf; 2803 kfree(ext_csd); 2804 return 0; 2805 2806 out_free: 2807 kfree(buf); 2808 return err; 2809 } 2810 2811 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2812 size_t cnt, loff_t *ppos) 2813 { 2814 char *buf = filp->private_data; 2815 2816 return simple_read_from_buffer(ubuf, cnt, ppos, 2817 buf, EXT_CSD_STR_LEN); 2818 } 2819 2820 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2821 { 2822 kfree(file->private_data); 2823 return 0; 2824 } 2825 2826 static const struct file_operations mmc_dbg_ext_csd_fops = { 2827 .open = mmc_ext_csd_open, 2828 .read = mmc_ext_csd_read, 2829 .release = mmc_ext_csd_release, 2830 .llseek = default_llseek, 2831 }; 2832 2833 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2834 { 2835 struct dentry *root; 2836 2837 if (!card->debugfs_root) 2838 return 0; 2839 2840 root = card->debugfs_root; 2841 2842 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2843 md->status_dentry = 2844 debugfs_create_file("status", S_IRUSR, root, card, 2845 &mmc_dbg_card_status_fops); 2846 if (!md->status_dentry) 2847 return -EIO; 2848 } 2849 2850 if (mmc_card_mmc(card)) { 2851 md->ext_csd_dentry = 2852 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2853 &mmc_dbg_ext_csd_fops); 2854 if (!md->ext_csd_dentry) 2855 return -EIO; 2856 } 2857 2858 return 0; 2859 } 2860 2861 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2862 struct mmc_blk_data *md) 2863 { 2864 if (!card->debugfs_root) 2865 return; 2866 2867 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2868 debugfs_remove(md->status_dentry); 2869 md->status_dentry = NULL; 2870 } 2871 2872 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2873 debugfs_remove(md->ext_csd_dentry); 2874 md->ext_csd_dentry = NULL; 2875 } 2876 } 2877 2878 #else 2879 2880 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2881 { 2882 return 0; 2883 } 2884 2885 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2886 struct mmc_blk_data *md) 2887 { 2888 } 2889 2890 #endif /* CONFIG_DEBUG_FS */ 2891 2892 static int mmc_blk_probe(struct mmc_card *card) 2893 { 2894 struct mmc_blk_data *md, *part_md; 2895 char cap_str[10]; 2896 2897 /* 2898 * Check that the card supports the command class(es) we need. 2899 */ 2900 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2901 return -ENODEV; 2902 2903 mmc_fixup_device(card, mmc_blk_fixups); 2904 2905 md = mmc_blk_alloc(card); 2906 if (IS_ERR(md)) 2907 return PTR_ERR(md); 2908 2909 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2910 cap_str, sizeof(cap_str)); 2911 pr_info("%s: %s %s %s %s\n", 2912 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2913 cap_str, md->read_only ? "(ro)" : ""); 2914 2915 if (mmc_blk_alloc_parts(card, md)) 2916 goto out; 2917 2918 dev_set_drvdata(&card->dev, md); 2919 2920 if (mmc_add_disk(md)) 2921 goto out; 2922 2923 list_for_each_entry(part_md, &md->part, part) { 2924 if (mmc_add_disk(part_md)) 2925 goto out; 2926 } 2927 2928 /* Add two debugfs entries */ 2929 mmc_blk_add_debugfs(card, md); 2930 2931 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2932 pm_runtime_use_autosuspend(&card->dev); 2933 2934 /* 2935 * Don't enable runtime PM for SD-combo cards here. Leave that 2936 * decision to be taken during the SDIO init sequence instead. 2937 */ 2938 if (card->type != MMC_TYPE_SD_COMBO) { 2939 pm_runtime_set_active(&card->dev); 2940 pm_runtime_enable(&card->dev); 2941 } 2942 2943 return 0; 2944 2945 out: 2946 mmc_blk_remove_parts(card, md); 2947 mmc_blk_remove_req(md); 2948 return 0; 2949 } 2950 2951 static void mmc_blk_remove(struct mmc_card *card) 2952 { 2953 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2954 2955 mmc_blk_remove_debugfs(card, md); 2956 mmc_blk_remove_parts(card, md); 2957 pm_runtime_get_sync(&card->dev); 2958 mmc_claim_host(card->host); 2959 mmc_blk_part_switch(card, md->part_type); 2960 mmc_release_host(card->host); 2961 if (card->type != MMC_TYPE_SD_COMBO) 2962 pm_runtime_disable(&card->dev); 2963 pm_runtime_put_noidle(&card->dev); 2964 mmc_blk_remove_req(md); 2965 dev_set_drvdata(&card->dev, NULL); 2966 } 2967 2968 static int _mmc_blk_suspend(struct mmc_card *card) 2969 { 2970 struct mmc_blk_data *part_md; 2971 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2972 2973 if (md) { 2974 mmc_queue_suspend(&md->queue); 2975 list_for_each_entry(part_md, &md->part, part) { 2976 mmc_queue_suspend(&part_md->queue); 2977 } 2978 } 2979 return 0; 2980 } 2981 2982 static void mmc_blk_shutdown(struct mmc_card *card) 2983 { 2984 _mmc_blk_suspend(card); 2985 } 2986 2987 #ifdef CONFIG_PM_SLEEP 2988 static int mmc_blk_suspend(struct device *dev) 2989 { 2990 struct mmc_card *card = mmc_dev_to_card(dev); 2991 2992 return _mmc_blk_suspend(card); 2993 } 2994 2995 static int mmc_blk_resume(struct device *dev) 2996 { 2997 struct mmc_blk_data *part_md; 2998 struct mmc_blk_data *md = dev_get_drvdata(dev); 2999 3000 if (md) { 3001 /* 3002 * Resume involves the card going into idle state, 3003 * so current partition is always the main one. 3004 */ 3005 md->part_curr = md->part_type; 3006 mmc_queue_resume(&md->queue); 3007 list_for_each_entry(part_md, &md->part, part) { 3008 mmc_queue_resume(&part_md->queue); 3009 } 3010 } 3011 return 0; 3012 } 3013 #endif 3014 3015 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3016 3017 static struct mmc_driver mmc_driver = { 3018 .drv = { 3019 .name = "mmcblk", 3020 .pm = &mmc_blk_pm_ops, 3021 }, 3022 .probe = mmc_blk_probe, 3023 .remove = mmc_blk_remove, 3024 .shutdown = mmc_blk_shutdown, 3025 }; 3026 3027 static int __init mmc_blk_init(void) 3028 { 3029 int res; 3030 3031 res = bus_register(&mmc_rpmb_bus_type); 3032 if (res < 0) { 3033 pr_err("mmcblk: could not register RPMB bus type\n"); 3034 return res; 3035 } 3036 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3037 if (res < 0) { 3038 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3039 goto out_bus_unreg; 3040 } 3041 3042 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3043 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3044 3045 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3046 3047 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3048 if (res) 3049 goto out_chrdev_unreg; 3050 3051 res = mmc_register_driver(&mmc_driver); 3052 if (res) 3053 goto out_blkdev_unreg; 3054 3055 return 0; 3056 3057 out_blkdev_unreg: 3058 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3059 out_chrdev_unreg: 3060 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3061 out_bus_unreg: 3062 bus_unregister(&mmc_rpmb_bus_type); 3063 return res; 3064 } 3065 3066 static void __exit mmc_blk_exit(void) 3067 { 3068 mmc_unregister_driver(&mmc_driver); 3069 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3070 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3071 } 3072 3073 module_init(mmc_blk_init); 3074 module_exit(mmc_blk_exit); 3075 3076 MODULE_LICENSE("GPL"); 3077 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3078 3079