xref: /openbmc/linux/drivers/mmc/core/block.c (revision dea54fba)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/idr.h>
39 
40 #include <linux/mmc/ioctl.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/host.h>
43 #include <linux/mmc/mmc.h>
44 #include <linux/mmc/sd.h>
45 
46 #include <linux/uaccess.h>
47 
48 #include "queue.h"
49 #include "block.h"
50 #include "core.h"
51 #include "card.h"
52 #include "host.h"
53 #include "bus.h"
54 #include "mmc_ops.h"
55 #include "quirks.h"
56 #include "sd_ops.h"
57 
58 MODULE_ALIAS("mmc:block");
59 #ifdef MODULE_PARAM_PREFIX
60 #undef MODULE_PARAM_PREFIX
61 #endif
62 #define MODULE_PARAM_PREFIX "mmcblk."
63 
64 #define MMC_BLK_TIMEOUT_MS  (10 * 60 * 1000)        /* 10 minute timeout */
65 #define MMC_SANITIZE_REQ_TIMEOUT 240000
66 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
67 
68 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
69 				  (rq_data_dir(req) == WRITE))
70 static DEFINE_MUTEX(block_mutex);
71 
72 /*
73  * The defaults come from config options but can be overriden by module
74  * or bootarg options.
75  */
76 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
77 
78 /*
79  * We've only got one major, so number of mmcblk devices is
80  * limited to (1 << 20) / number of minors per device.  It is also
81  * limited by the MAX_DEVICES below.
82  */
83 static int max_devices;
84 
85 #define MAX_DEVICES 256
86 
87 static DEFINE_IDA(mmc_blk_ida);
88 
89 /*
90  * There is one mmc_blk_data per slot.
91  */
92 struct mmc_blk_data {
93 	spinlock_t	lock;
94 	struct device	*parent;
95 	struct gendisk	*disk;
96 	struct mmc_queue queue;
97 	struct list_head part;
98 
99 	unsigned int	flags;
100 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
101 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
102 
103 	unsigned int	usage;
104 	unsigned int	read_only;
105 	unsigned int	part_type;
106 	unsigned int	reset_done;
107 #define MMC_BLK_READ		BIT(0)
108 #define MMC_BLK_WRITE		BIT(1)
109 #define MMC_BLK_DISCARD		BIT(2)
110 #define MMC_BLK_SECDISCARD	BIT(3)
111 
112 	/*
113 	 * Only set in main mmc_blk_data associated
114 	 * with mmc_card with dev_set_drvdata, and keeps
115 	 * track of the current selected device partition.
116 	 */
117 	unsigned int	part_curr;
118 	struct device_attribute force_ro;
119 	struct device_attribute power_ro_lock;
120 	int	area_type;
121 };
122 
123 static DEFINE_MUTEX(open_lock);
124 
125 module_param(perdev_minors, int, 0444);
126 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
127 
128 static inline int mmc_blk_part_switch(struct mmc_card *card,
129 				      struct mmc_blk_data *md);
130 
131 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
132 {
133 	struct mmc_blk_data *md;
134 
135 	mutex_lock(&open_lock);
136 	md = disk->private_data;
137 	if (md && md->usage == 0)
138 		md = NULL;
139 	if (md)
140 		md->usage++;
141 	mutex_unlock(&open_lock);
142 
143 	return md;
144 }
145 
146 static inline int mmc_get_devidx(struct gendisk *disk)
147 {
148 	int devidx = disk->first_minor / perdev_minors;
149 	return devidx;
150 }
151 
152 static void mmc_blk_put(struct mmc_blk_data *md)
153 {
154 	mutex_lock(&open_lock);
155 	md->usage--;
156 	if (md->usage == 0) {
157 		int devidx = mmc_get_devidx(md->disk);
158 		blk_cleanup_queue(md->queue.queue);
159 		ida_simple_remove(&mmc_blk_ida, devidx);
160 		put_disk(md->disk);
161 		kfree(md);
162 	}
163 	mutex_unlock(&open_lock);
164 }
165 
166 static ssize_t power_ro_lock_show(struct device *dev,
167 		struct device_attribute *attr, char *buf)
168 {
169 	int ret;
170 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
171 	struct mmc_card *card = md->queue.card;
172 	int locked = 0;
173 
174 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
175 		locked = 2;
176 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
177 		locked = 1;
178 
179 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
180 
181 	mmc_blk_put(md);
182 
183 	return ret;
184 }
185 
186 static ssize_t power_ro_lock_store(struct device *dev,
187 		struct device_attribute *attr, const char *buf, size_t count)
188 {
189 	int ret;
190 	struct mmc_blk_data *md, *part_md;
191 	struct mmc_card *card;
192 	struct mmc_queue *mq;
193 	struct request *req;
194 	unsigned long set;
195 
196 	if (kstrtoul(buf, 0, &set))
197 		return -EINVAL;
198 
199 	if (set != 1)
200 		return count;
201 
202 	md = mmc_blk_get(dev_to_disk(dev));
203 	mq = &md->queue;
204 	card = md->queue.card;
205 
206 	/* Dispatch locking to the block layer */
207 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM);
208 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
209 	blk_execute_rq(mq->queue, NULL, req, 0);
210 	ret = req_to_mmc_queue_req(req)->drv_op_result;
211 
212 	if (!ret) {
213 		pr_info("%s: Locking boot partition ro until next power on\n",
214 			md->disk->disk_name);
215 		set_disk_ro(md->disk, 1);
216 
217 		list_for_each_entry(part_md, &md->part, part)
218 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
219 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
220 				set_disk_ro(part_md->disk, 1);
221 			}
222 	}
223 
224 	mmc_blk_put(md);
225 	return count;
226 }
227 
228 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
229 			     char *buf)
230 {
231 	int ret;
232 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
233 
234 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
235 		       get_disk_ro(dev_to_disk(dev)) ^
236 		       md->read_only);
237 	mmc_blk_put(md);
238 	return ret;
239 }
240 
241 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
242 			      const char *buf, size_t count)
243 {
244 	int ret;
245 	char *end;
246 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
247 	unsigned long set = simple_strtoul(buf, &end, 0);
248 	if (end == buf) {
249 		ret = -EINVAL;
250 		goto out;
251 	}
252 
253 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
254 	ret = count;
255 out:
256 	mmc_blk_put(md);
257 	return ret;
258 }
259 
260 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
261 {
262 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
263 	int ret = -ENXIO;
264 
265 	mutex_lock(&block_mutex);
266 	if (md) {
267 		if (md->usage == 2)
268 			check_disk_change(bdev);
269 		ret = 0;
270 
271 		if ((mode & FMODE_WRITE) && md->read_only) {
272 			mmc_blk_put(md);
273 			ret = -EROFS;
274 		}
275 	}
276 	mutex_unlock(&block_mutex);
277 
278 	return ret;
279 }
280 
281 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
282 {
283 	struct mmc_blk_data *md = disk->private_data;
284 
285 	mutex_lock(&block_mutex);
286 	mmc_blk_put(md);
287 	mutex_unlock(&block_mutex);
288 }
289 
290 static int
291 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
292 {
293 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
294 	geo->heads = 4;
295 	geo->sectors = 16;
296 	return 0;
297 }
298 
299 struct mmc_blk_ioc_data {
300 	struct mmc_ioc_cmd ic;
301 	unsigned char *buf;
302 	u64 buf_bytes;
303 };
304 
305 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
306 	struct mmc_ioc_cmd __user *user)
307 {
308 	struct mmc_blk_ioc_data *idata;
309 	int err;
310 
311 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
312 	if (!idata) {
313 		err = -ENOMEM;
314 		goto out;
315 	}
316 
317 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
318 		err = -EFAULT;
319 		goto idata_err;
320 	}
321 
322 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
323 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
324 		err = -EOVERFLOW;
325 		goto idata_err;
326 	}
327 
328 	if (!idata->buf_bytes) {
329 		idata->buf = NULL;
330 		return idata;
331 	}
332 
333 	idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
334 	if (!idata->buf) {
335 		err = -ENOMEM;
336 		goto idata_err;
337 	}
338 
339 	if (copy_from_user(idata->buf, (void __user *)(unsigned long)
340 					idata->ic.data_ptr, idata->buf_bytes)) {
341 		err = -EFAULT;
342 		goto copy_err;
343 	}
344 
345 	return idata;
346 
347 copy_err:
348 	kfree(idata->buf);
349 idata_err:
350 	kfree(idata);
351 out:
352 	return ERR_PTR(err);
353 }
354 
355 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
356 				      struct mmc_blk_ioc_data *idata)
357 {
358 	struct mmc_ioc_cmd *ic = &idata->ic;
359 
360 	if (copy_to_user(&(ic_ptr->response), ic->response,
361 			 sizeof(ic->response)))
362 		return -EFAULT;
363 
364 	if (!idata->ic.write_flag) {
365 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
366 				 idata->buf, idata->buf_bytes))
367 			return -EFAULT;
368 	}
369 
370 	return 0;
371 }
372 
373 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
374 				       u32 retries_max)
375 {
376 	int err;
377 	u32 retry_count = 0;
378 
379 	if (!status || !retries_max)
380 		return -EINVAL;
381 
382 	do {
383 		err = __mmc_send_status(card, status, 5);
384 		if (err)
385 			break;
386 
387 		if (!R1_STATUS(*status) &&
388 				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
389 			break; /* RPMB programming operation complete */
390 
391 		/*
392 		 * Rechedule to give the MMC device a chance to continue
393 		 * processing the previous command without being polled too
394 		 * frequently.
395 		 */
396 		usleep_range(1000, 5000);
397 	} while (++retry_count < retries_max);
398 
399 	if (retry_count == retries_max)
400 		err = -EPERM;
401 
402 	return err;
403 }
404 
405 static int ioctl_do_sanitize(struct mmc_card *card)
406 {
407 	int err;
408 
409 	if (!mmc_can_sanitize(card)) {
410 			pr_warn("%s: %s - SANITIZE is not supported\n",
411 				mmc_hostname(card->host), __func__);
412 			err = -EOPNOTSUPP;
413 			goto out;
414 	}
415 
416 	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
417 		mmc_hostname(card->host), __func__);
418 
419 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
420 					EXT_CSD_SANITIZE_START, 1,
421 					MMC_SANITIZE_REQ_TIMEOUT);
422 
423 	if (err)
424 		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
425 		       mmc_hostname(card->host), __func__, err);
426 
427 	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
428 					     __func__);
429 out:
430 	return err;
431 }
432 
433 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
434 			       struct mmc_blk_ioc_data *idata)
435 {
436 	struct mmc_command cmd = {};
437 	struct mmc_data data = {};
438 	struct mmc_request mrq = {};
439 	struct scatterlist sg;
440 	int err;
441 	bool is_rpmb = false;
442 	u32 status = 0;
443 
444 	if (!card || !md || !idata)
445 		return -EINVAL;
446 
447 	if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
448 		is_rpmb = true;
449 
450 	cmd.opcode = idata->ic.opcode;
451 	cmd.arg = idata->ic.arg;
452 	cmd.flags = idata->ic.flags;
453 
454 	if (idata->buf_bytes) {
455 		data.sg = &sg;
456 		data.sg_len = 1;
457 		data.blksz = idata->ic.blksz;
458 		data.blocks = idata->ic.blocks;
459 
460 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
461 
462 		if (idata->ic.write_flag)
463 			data.flags = MMC_DATA_WRITE;
464 		else
465 			data.flags = MMC_DATA_READ;
466 
467 		/* data.flags must already be set before doing this. */
468 		mmc_set_data_timeout(&data, card);
469 
470 		/* Allow overriding the timeout_ns for empirical tuning. */
471 		if (idata->ic.data_timeout_ns)
472 			data.timeout_ns = idata->ic.data_timeout_ns;
473 
474 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
475 			/*
476 			 * Pretend this is a data transfer and rely on the
477 			 * host driver to compute timeout.  When all host
478 			 * drivers support cmd.cmd_timeout for R1B, this
479 			 * can be changed to:
480 			 *
481 			 *     mrq.data = NULL;
482 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
483 			 */
484 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
485 		}
486 
487 		mrq.data = &data;
488 	}
489 
490 	mrq.cmd = &cmd;
491 
492 	err = mmc_blk_part_switch(card, md);
493 	if (err)
494 		return err;
495 
496 	if (idata->ic.is_acmd) {
497 		err = mmc_app_cmd(card->host, card);
498 		if (err)
499 			return err;
500 	}
501 
502 	if (is_rpmb) {
503 		err = mmc_set_blockcount(card, data.blocks,
504 			idata->ic.write_flag & (1 << 31));
505 		if (err)
506 			return err;
507 	}
508 
509 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
510 	    (cmd.opcode == MMC_SWITCH)) {
511 		err = ioctl_do_sanitize(card);
512 
513 		if (err)
514 			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
515 			       __func__, err);
516 
517 		return err;
518 	}
519 
520 	mmc_wait_for_req(card->host, &mrq);
521 
522 	if (cmd.error) {
523 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
524 						__func__, cmd.error);
525 		return cmd.error;
526 	}
527 	if (data.error) {
528 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
529 						__func__, data.error);
530 		return data.error;
531 	}
532 
533 	/*
534 	 * According to the SD specs, some commands require a delay after
535 	 * issuing the command.
536 	 */
537 	if (idata->ic.postsleep_min_us)
538 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
539 
540 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
541 
542 	if (is_rpmb) {
543 		/*
544 		 * Ensure RPMB command has completed by polling CMD13
545 		 * "Send Status".
546 		 */
547 		err = ioctl_rpmb_card_status_poll(card, &status, 5);
548 		if (err)
549 			dev_err(mmc_dev(card->host),
550 					"%s: Card Status=0x%08X, error %d\n",
551 					__func__, status, err);
552 	}
553 
554 	return err;
555 }
556 
557 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
558 			     struct mmc_ioc_cmd __user *ic_ptr)
559 {
560 	struct mmc_blk_ioc_data *idata;
561 	struct mmc_blk_ioc_data *idatas[1];
562 	struct mmc_blk_data *md;
563 	struct mmc_queue *mq;
564 	struct mmc_card *card;
565 	int err = 0, ioc_err = 0;
566 	struct request *req;
567 
568 	/*
569 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
570 	 * whole block device, not on a partition.  This prevents overspray
571 	 * between sibling partitions.
572 	 */
573 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
574 		return -EPERM;
575 
576 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
577 	if (IS_ERR(idata))
578 		return PTR_ERR(idata);
579 
580 	md = mmc_blk_get(bdev->bd_disk);
581 	if (!md) {
582 		err = -EINVAL;
583 		goto cmd_err;
584 	}
585 
586 	card = md->queue.card;
587 	if (IS_ERR(card)) {
588 		err = PTR_ERR(card);
589 		goto cmd_done;
590 	}
591 
592 	/*
593 	 * Dispatch the ioctl() into the block request queue.
594 	 */
595 	mq = &md->queue;
596 	req = blk_get_request(mq->queue,
597 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
598 		__GFP_RECLAIM);
599 	idatas[0] = idata;
600 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL;
601 	req_to_mmc_queue_req(req)->idata = idatas;
602 	req_to_mmc_queue_req(req)->ioc_count = 1;
603 	blk_execute_rq(mq->queue, NULL, req, 0);
604 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
605 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
606 	blk_put_request(req);
607 
608 cmd_done:
609 	mmc_blk_put(md);
610 cmd_err:
611 	kfree(idata->buf);
612 	kfree(idata);
613 	return ioc_err ? ioc_err : err;
614 }
615 
616 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
617 				   struct mmc_ioc_multi_cmd __user *user)
618 {
619 	struct mmc_blk_ioc_data **idata = NULL;
620 	struct mmc_ioc_cmd __user *cmds = user->cmds;
621 	struct mmc_card *card;
622 	struct mmc_blk_data *md;
623 	struct mmc_queue *mq;
624 	int i, err = 0, ioc_err = 0;
625 	__u64 num_of_cmds;
626 	struct request *req;
627 
628 	/*
629 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
630 	 * whole block device, not on a partition.  This prevents overspray
631 	 * between sibling partitions.
632 	 */
633 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
634 		return -EPERM;
635 
636 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
637 			   sizeof(num_of_cmds)))
638 		return -EFAULT;
639 
640 	if (!num_of_cmds)
641 		return 0;
642 
643 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
644 		return -EINVAL;
645 
646 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
647 	if (!idata)
648 		return -ENOMEM;
649 
650 	for (i = 0; i < num_of_cmds; i++) {
651 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
652 		if (IS_ERR(idata[i])) {
653 			err = PTR_ERR(idata[i]);
654 			num_of_cmds = i;
655 			goto cmd_err;
656 		}
657 	}
658 
659 	md = mmc_blk_get(bdev->bd_disk);
660 	if (!md) {
661 		err = -EINVAL;
662 		goto cmd_err;
663 	}
664 
665 	card = md->queue.card;
666 	if (IS_ERR(card)) {
667 		err = PTR_ERR(card);
668 		goto cmd_done;
669 	}
670 
671 
672 	/*
673 	 * Dispatch the ioctl()s into the block request queue.
674 	 */
675 	mq = &md->queue;
676 	req = blk_get_request(mq->queue,
677 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
678 		__GFP_RECLAIM);
679 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL;
680 	req_to_mmc_queue_req(req)->idata = idata;
681 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
682 	blk_execute_rq(mq->queue, NULL, req, 0);
683 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
684 
685 	/* copy to user if data and response */
686 	for (i = 0; i < num_of_cmds && !err; i++)
687 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
688 
689 	blk_put_request(req);
690 
691 cmd_done:
692 	mmc_blk_put(md);
693 cmd_err:
694 	for (i = 0; i < num_of_cmds; i++) {
695 		kfree(idata[i]->buf);
696 		kfree(idata[i]);
697 	}
698 	kfree(idata);
699 	return ioc_err ? ioc_err : err;
700 }
701 
702 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
703 	unsigned int cmd, unsigned long arg)
704 {
705 	switch (cmd) {
706 	case MMC_IOC_CMD:
707 		return mmc_blk_ioctl_cmd(bdev,
708 				(struct mmc_ioc_cmd __user *)arg);
709 	case MMC_IOC_MULTI_CMD:
710 		return mmc_blk_ioctl_multi_cmd(bdev,
711 				(struct mmc_ioc_multi_cmd __user *)arg);
712 	default:
713 		return -EINVAL;
714 	}
715 }
716 
717 #ifdef CONFIG_COMPAT
718 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
719 	unsigned int cmd, unsigned long arg)
720 {
721 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
722 }
723 #endif
724 
725 static const struct block_device_operations mmc_bdops = {
726 	.open			= mmc_blk_open,
727 	.release		= mmc_blk_release,
728 	.getgeo			= mmc_blk_getgeo,
729 	.owner			= THIS_MODULE,
730 	.ioctl			= mmc_blk_ioctl,
731 #ifdef CONFIG_COMPAT
732 	.compat_ioctl		= mmc_blk_compat_ioctl,
733 #endif
734 };
735 
736 static int mmc_blk_part_switch_pre(struct mmc_card *card,
737 				   unsigned int part_type)
738 {
739 	int ret = 0;
740 
741 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
742 		if (card->ext_csd.cmdq_en) {
743 			ret = mmc_cmdq_disable(card);
744 			if (ret)
745 				return ret;
746 		}
747 		mmc_retune_pause(card->host);
748 	}
749 
750 	return ret;
751 }
752 
753 static int mmc_blk_part_switch_post(struct mmc_card *card,
754 				    unsigned int part_type)
755 {
756 	int ret = 0;
757 
758 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
759 		mmc_retune_unpause(card->host);
760 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
761 			ret = mmc_cmdq_enable(card);
762 	}
763 
764 	return ret;
765 }
766 
767 static inline int mmc_blk_part_switch(struct mmc_card *card,
768 				      struct mmc_blk_data *md)
769 {
770 	int ret = 0;
771 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
772 
773 	if (main_md->part_curr == md->part_type)
774 		return 0;
775 
776 	if (mmc_card_mmc(card)) {
777 		u8 part_config = card->ext_csd.part_config;
778 
779 		ret = mmc_blk_part_switch_pre(card, md->part_type);
780 		if (ret)
781 			return ret;
782 
783 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
784 		part_config |= md->part_type;
785 
786 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
787 				 EXT_CSD_PART_CONFIG, part_config,
788 				 card->ext_csd.part_time);
789 		if (ret) {
790 			mmc_blk_part_switch_post(card, md->part_type);
791 			return ret;
792 		}
793 
794 		card->ext_csd.part_config = part_config;
795 
796 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
797 	}
798 
799 	main_md->part_curr = md->part_type;
800 	return ret;
801 }
802 
803 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
804 {
805 	int err;
806 	u32 result;
807 	__be32 *blocks;
808 
809 	struct mmc_request mrq = {};
810 	struct mmc_command cmd = {};
811 	struct mmc_data data = {};
812 
813 	struct scatterlist sg;
814 
815 	cmd.opcode = MMC_APP_CMD;
816 	cmd.arg = card->rca << 16;
817 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
818 
819 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
820 	if (err)
821 		return err;
822 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
823 		return -EIO;
824 
825 	memset(&cmd, 0, sizeof(struct mmc_command));
826 
827 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
828 	cmd.arg = 0;
829 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
830 
831 	data.blksz = 4;
832 	data.blocks = 1;
833 	data.flags = MMC_DATA_READ;
834 	data.sg = &sg;
835 	data.sg_len = 1;
836 	mmc_set_data_timeout(&data, card);
837 
838 	mrq.cmd = &cmd;
839 	mrq.data = &data;
840 
841 	blocks = kmalloc(4, GFP_KERNEL);
842 	if (!blocks)
843 		return -ENOMEM;
844 
845 	sg_init_one(&sg, blocks, 4);
846 
847 	mmc_wait_for_req(card->host, &mrq);
848 
849 	result = ntohl(*blocks);
850 	kfree(blocks);
851 
852 	if (cmd.error || data.error)
853 		return -EIO;
854 
855 	*written_blocks = result;
856 
857 	return 0;
858 }
859 
860 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
861 		bool hw_busy_detect, struct request *req, bool *gen_err)
862 {
863 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
864 	int err = 0;
865 	u32 status;
866 
867 	do {
868 		err = __mmc_send_status(card, &status, 5);
869 		if (err) {
870 			pr_err("%s: error %d requesting status\n",
871 			       req->rq_disk->disk_name, err);
872 			return err;
873 		}
874 
875 		if (status & R1_ERROR) {
876 			pr_err("%s: %s: error sending status cmd, status %#x\n",
877 				req->rq_disk->disk_name, __func__, status);
878 			*gen_err = true;
879 		}
880 
881 		/* We may rely on the host hw to handle busy detection.*/
882 		if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
883 			hw_busy_detect)
884 			break;
885 
886 		/*
887 		 * Timeout if the device never becomes ready for data and never
888 		 * leaves the program state.
889 		 */
890 		if (time_after(jiffies, timeout)) {
891 			pr_err("%s: Card stuck in programming state! %s %s\n",
892 				mmc_hostname(card->host),
893 				req->rq_disk->disk_name, __func__);
894 			return -ETIMEDOUT;
895 		}
896 
897 		/*
898 		 * Some cards mishandle the status bits,
899 		 * so make sure to check both the busy
900 		 * indication and the card state.
901 		 */
902 	} while (!(status & R1_READY_FOR_DATA) ||
903 		 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
904 
905 	return err;
906 }
907 
908 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
909 		struct request *req, bool *gen_err, u32 *stop_status)
910 {
911 	struct mmc_host *host = card->host;
912 	struct mmc_command cmd = {};
913 	int err;
914 	bool use_r1b_resp = rq_data_dir(req) == WRITE;
915 
916 	/*
917 	 * Normally we use R1B responses for WRITE, but in cases where the host
918 	 * has specified a max_busy_timeout we need to validate it. A failure
919 	 * means we need to prevent the host from doing hw busy detection, which
920 	 * is done by converting to a R1 response instead.
921 	 */
922 	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
923 		use_r1b_resp = false;
924 
925 	cmd.opcode = MMC_STOP_TRANSMISSION;
926 	if (use_r1b_resp) {
927 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
928 		cmd.busy_timeout = timeout_ms;
929 	} else {
930 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
931 	}
932 
933 	err = mmc_wait_for_cmd(host, &cmd, 5);
934 	if (err)
935 		return err;
936 
937 	*stop_status = cmd.resp[0];
938 
939 	/* No need to check card status in case of READ. */
940 	if (rq_data_dir(req) == READ)
941 		return 0;
942 
943 	if (!mmc_host_is_spi(host) &&
944 		(*stop_status & R1_ERROR)) {
945 		pr_err("%s: %s: general error sending stop command, resp %#x\n",
946 			req->rq_disk->disk_name, __func__, *stop_status);
947 		*gen_err = true;
948 	}
949 
950 	return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
951 }
952 
953 #define ERR_NOMEDIUM	3
954 #define ERR_RETRY	2
955 #define ERR_ABORT	1
956 #define ERR_CONTINUE	0
957 
958 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
959 	bool status_valid, u32 status)
960 {
961 	switch (error) {
962 	case -EILSEQ:
963 		/* response crc error, retry the r/w cmd */
964 		pr_err("%s: %s sending %s command, card status %#x\n",
965 			req->rq_disk->disk_name, "response CRC error",
966 			name, status);
967 		return ERR_RETRY;
968 
969 	case -ETIMEDOUT:
970 		pr_err("%s: %s sending %s command, card status %#x\n",
971 			req->rq_disk->disk_name, "timed out", name, status);
972 
973 		/* If the status cmd initially failed, retry the r/w cmd */
974 		if (!status_valid) {
975 			pr_err("%s: status not valid, retrying timeout\n",
976 				req->rq_disk->disk_name);
977 			return ERR_RETRY;
978 		}
979 
980 		/*
981 		 * If it was a r/w cmd crc error, or illegal command
982 		 * (eg, issued in wrong state) then retry - we should
983 		 * have corrected the state problem above.
984 		 */
985 		if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
986 			pr_err("%s: command error, retrying timeout\n",
987 				req->rq_disk->disk_name);
988 			return ERR_RETRY;
989 		}
990 
991 		/* Otherwise abort the command */
992 		return ERR_ABORT;
993 
994 	default:
995 		/* We don't understand the error code the driver gave us */
996 		pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
997 		       req->rq_disk->disk_name, error, status);
998 		return ERR_ABORT;
999 	}
1000 }
1001 
1002 /*
1003  * Initial r/w and stop cmd error recovery.
1004  * We don't know whether the card received the r/w cmd or not, so try to
1005  * restore things back to a sane state.  Essentially, we do this as follows:
1006  * - Obtain card status.  If the first attempt to obtain card status fails,
1007  *   the status word will reflect the failed status cmd, not the failed
1008  *   r/w cmd.  If we fail to obtain card status, it suggests we can no
1009  *   longer communicate with the card.
1010  * - Check the card state.  If the card received the cmd but there was a
1011  *   transient problem with the response, it might still be in a data transfer
1012  *   mode.  Try to send it a stop command.  If this fails, we can't recover.
1013  * - If the r/w cmd failed due to a response CRC error, it was probably
1014  *   transient, so retry the cmd.
1015  * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
1016  * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
1017  *   illegal cmd, retry.
1018  * Otherwise we don't understand what happened, so abort.
1019  */
1020 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
1021 	struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err)
1022 {
1023 	bool prev_cmd_status_valid = true;
1024 	u32 status, stop_status = 0;
1025 	int err, retry;
1026 
1027 	if (mmc_card_removed(card))
1028 		return ERR_NOMEDIUM;
1029 
1030 	/*
1031 	 * Try to get card status which indicates both the card state
1032 	 * and why there was no response.  If the first attempt fails,
1033 	 * we can't be sure the returned status is for the r/w command.
1034 	 */
1035 	for (retry = 2; retry >= 0; retry--) {
1036 		err = __mmc_send_status(card, &status, 0);
1037 		if (!err)
1038 			break;
1039 
1040 		/* Re-tune if needed */
1041 		mmc_retune_recheck(card->host);
1042 
1043 		prev_cmd_status_valid = false;
1044 		pr_err("%s: error %d sending status command, %sing\n",
1045 		       req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1046 	}
1047 
1048 	/* We couldn't get a response from the card.  Give up. */
1049 	if (err) {
1050 		/* Check if the card is removed */
1051 		if (mmc_detect_card_removed(card->host))
1052 			return ERR_NOMEDIUM;
1053 		return ERR_ABORT;
1054 	}
1055 
1056 	/* Flag ECC errors */
1057 	if ((status & R1_CARD_ECC_FAILED) ||
1058 	    (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1059 	    (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1060 		*ecc_err = true;
1061 
1062 	/* Flag General errors */
1063 	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1064 		if ((status & R1_ERROR) ||
1065 			(brq->stop.resp[0] & R1_ERROR)) {
1066 			pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1067 			       req->rq_disk->disk_name, __func__,
1068 			       brq->stop.resp[0], status);
1069 			*gen_err = true;
1070 		}
1071 
1072 	/*
1073 	 * Check the current card state.  If it is in some data transfer
1074 	 * mode, tell it to stop (and hopefully transition back to TRAN.)
1075 	 */
1076 	if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1077 	    R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1078 		err = send_stop(card,
1079 			DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1080 			req, gen_err, &stop_status);
1081 		if (err) {
1082 			pr_err("%s: error %d sending stop command\n",
1083 			       req->rq_disk->disk_name, err);
1084 			/*
1085 			 * If the stop cmd also timed out, the card is probably
1086 			 * not present, so abort. Other errors are bad news too.
1087 			 */
1088 			return ERR_ABORT;
1089 		}
1090 
1091 		if (stop_status & R1_CARD_ECC_FAILED)
1092 			*ecc_err = true;
1093 	}
1094 
1095 	/* Check for set block count errors */
1096 	if (brq->sbc.error)
1097 		return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1098 				prev_cmd_status_valid, status);
1099 
1100 	/* Check for r/w command errors */
1101 	if (brq->cmd.error)
1102 		return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1103 				prev_cmd_status_valid, status);
1104 
1105 	/* Data errors */
1106 	if (!brq->stop.error)
1107 		return ERR_CONTINUE;
1108 
1109 	/* Now for stop errors.  These aren't fatal to the transfer. */
1110 	pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1111 	       req->rq_disk->disk_name, brq->stop.error,
1112 	       brq->cmd.resp[0], status);
1113 
1114 	/*
1115 	 * Subsitute in our own stop status as this will give the error
1116 	 * state which happened during the execution of the r/w command.
1117 	 */
1118 	if (stop_status) {
1119 		brq->stop.resp[0] = stop_status;
1120 		brq->stop.error = 0;
1121 	}
1122 	return ERR_CONTINUE;
1123 }
1124 
1125 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1126 			 int type)
1127 {
1128 	int err;
1129 
1130 	if (md->reset_done & type)
1131 		return -EEXIST;
1132 
1133 	md->reset_done |= type;
1134 	err = mmc_hw_reset(host);
1135 	/* Ensure we switch back to the correct partition */
1136 	if (err != -EOPNOTSUPP) {
1137 		struct mmc_blk_data *main_md =
1138 			dev_get_drvdata(&host->card->dev);
1139 		int part_err;
1140 
1141 		main_md->part_curr = main_md->part_type;
1142 		part_err = mmc_blk_part_switch(host->card, md);
1143 		if (part_err) {
1144 			/*
1145 			 * We have failed to get back into the correct
1146 			 * partition, so we need to abort the whole request.
1147 			 */
1148 			return -ENODEV;
1149 		}
1150 	}
1151 	return err;
1152 }
1153 
1154 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1155 {
1156 	md->reset_done &= ~type;
1157 }
1158 
1159 int mmc_access_rpmb(struct mmc_queue *mq)
1160 {
1161 	struct mmc_blk_data *md = mq->blkdata;
1162 	/*
1163 	 * If this is a RPMB partition access, return ture
1164 	 */
1165 	if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1166 		return true;
1167 
1168 	return false;
1169 }
1170 
1171 /*
1172  * The non-block commands come back from the block layer after it queued it and
1173  * processed it with all other requests and then they get issued in this
1174  * function.
1175  */
1176 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1177 {
1178 	struct mmc_queue_req *mq_rq;
1179 	struct mmc_card *card = mq->card;
1180 	struct mmc_blk_data *md = mq->blkdata;
1181 	int ret;
1182 	int i;
1183 
1184 	mq_rq = req_to_mmc_queue_req(req);
1185 
1186 	switch (mq_rq->drv_op) {
1187 	case MMC_DRV_OP_IOCTL:
1188 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1189 			ret = __mmc_blk_ioctl_cmd(card, md, mq_rq->idata[i]);
1190 			if (ret)
1191 				break;
1192 		}
1193 		/* Always switch back to main area after RPMB access */
1194 		if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
1195 			mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
1196 		break;
1197 	case MMC_DRV_OP_BOOT_WP:
1198 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1199 				 card->ext_csd.boot_ro_lock |
1200 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1201 				 card->ext_csd.part_time);
1202 		if (ret)
1203 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1204 			       md->disk->disk_name, ret);
1205 		else
1206 			card->ext_csd.boot_ro_lock |=
1207 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1208 		break;
1209 	default:
1210 		pr_err("%s: unknown driver specific operation\n",
1211 		       md->disk->disk_name);
1212 		ret = -EINVAL;
1213 		break;
1214 	}
1215 	mq_rq->drv_op_result = ret;
1216 	blk_end_request_all(req, ret);
1217 }
1218 
1219 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1220 {
1221 	struct mmc_blk_data *md = mq->blkdata;
1222 	struct mmc_card *card = md->queue.card;
1223 	unsigned int from, nr, arg;
1224 	int err = 0, type = MMC_BLK_DISCARD;
1225 	blk_status_t status = BLK_STS_OK;
1226 
1227 	if (!mmc_can_erase(card)) {
1228 		status = BLK_STS_NOTSUPP;
1229 		goto fail;
1230 	}
1231 
1232 	from = blk_rq_pos(req);
1233 	nr = blk_rq_sectors(req);
1234 
1235 	if (mmc_can_discard(card))
1236 		arg = MMC_DISCARD_ARG;
1237 	else if (mmc_can_trim(card))
1238 		arg = MMC_TRIM_ARG;
1239 	else
1240 		arg = MMC_ERASE_ARG;
1241 	do {
1242 		err = 0;
1243 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1244 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1245 					 INAND_CMD38_ARG_EXT_CSD,
1246 					 arg == MMC_TRIM_ARG ?
1247 					 INAND_CMD38_ARG_TRIM :
1248 					 INAND_CMD38_ARG_ERASE,
1249 					 0);
1250 		}
1251 		if (!err)
1252 			err = mmc_erase(card, from, nr, arg);
1253 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1254 	if (err)
1255 		status = BLK_STS_IOERR;
1256 	else
1257 		mmc_blk_reset_success(md, type);
1258 fail:
1259 	blk_end_request(req, status, blk_rq_bytes(req));
1260 }
1261 
1262 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1263 				       struct request *req)
1264 {
1265 	struct mmc_blk_data *md = mq->blkdata;
1266 	struct mmc_card *card = md->queue.card;
1267 	unsigned int from, nr, arg;
1268 	int err = 0, type = MMC_BLK_SECDISCARD;
1269 	blk_status_t status = BLK_STS_OK;
1270 
1271 	if (!(mmc_can_secure_erase_trim(card))) {
1272 		status = BLK_STS_NOTSUPP;
1273 		goto out;
1274 	}
1275 
1276 	from = blk_rq_pos(req);
1277 	nr = blk_rq_sectors(req);
1278 
1279 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1280 		arg = MMC_SECURE_TRIM1_ARG;
1281 	else
1282 		arg = MMC_SECURE_ERASE_ARG;
1283 
1284 retry:
1285 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1286 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1287 				 INAND_CMD38_ARG_EXT_CSD,
1288 				 arg == MMC_SECURE_TRIM1_ARG ?
1289 				 INAND_CMD38_ARG_SECTRIM1 :
1290 				 INAND_CMD38_ARG_SECERASE,
1291 				 0);
1292 		if (err)
1293 			goto out_retry;
1294 	}
1295 
1296 	err = mmc_erase(card, from, nr, arg);
1297 	if (err == -EIO)
1298 		goto out_retry;
1299 	if (err) {
1300 		status = BLK_STS_IOERR;
1301 		goto out;
1302 	}
1303 
1304 	if (arg == MMC_SECURE_TRIM1_ARG) {
1305 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1306 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1307 					 INAND_CMD38_ARG_EXT_CSD,
1308 					 INAND_CMD38_ARG_SECTRIM2,
1309 					 0);
1310 			if (err)
1311 				goto out_retry;
1312 		}
1313 
1314 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1315 		if (err == -EIO)
1316 			goto out_retry;
1317 		if (err) {
1318 			status = BLK_STS_IOERR;
1319 			goto out;
1320 		}
1321 	}
1322 
1323 out_retry:
1324 	if (err && !mmc_blk_reset(md, card->host, type))
1325 		goto retry;
1326 	if (!err)
1327 		mmc_blk_reset_success(md, type);
1328 out:
1329 	blk_end_request(req, status, blk_rq_bytes(req));
1330 }
1331 
1332 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1333 {
1334 	struct mmc_blk_data *md = mq->blkdata;
1335 	struct mmc_card *card = md->queue.card;
1336 	int ret = 0;
1337 
1338 	ret = mmc_flush_cache(card);
1339 	blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1340 }
1341 
1342 /*
1343  * Reformat current write as a reliable write, supporting
1344  * both legacy and the enhanced reliable write MMC cards.
1345  * In each transfer we'll handle only as much as a single
1346  * reliable write can handle, thus finish the request in
1347  * partial completions.
1348  */
1349 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1350 				    struct mmc_card *card,
1351 				    struct request *req)
1352 {
1353 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1354 		/* Legacy mode imposes restrictions on transfers. */
1355 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1356 			brq->data.blocks = 1;
1357 
1358 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1359 			brq->data.blocks = card->ext_csd.rel_sectors;
1360 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1361 			brq->data.blocks = 1;
1362 	}
1363 }
1364 
1365 #define CMD_ERRORS							\
1366 	(R1_OUT_OF_RANGE |	/* Command argument out of range */	\
1367 	 R1_ADDRESS_ERROR |	/* Misaligned address */		\
1368 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1369 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1370 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1371 	 R1_CC_ERROR |		/* Card controller error */		\
1372 	 R1_ERROR)		/* General/unknown error */
1373 
1374 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1375 {
1376 	u32 val;
1377 
1378 	/*
1379 	 * Per the SD specification(physical layer version 4.10)[1],
1380 	 * section 4.3.3, it explicitly states that "When the last
1381 	 * block of user area is read using CMD18, the host should
1382 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1383 	 * is correct". And JESD84-B51 for eMMC also has a similar
1384 	 * statement on section 6.8.3.
1385 	 *
1386 	 * Multiple block read/write could be done by either predefined
1387 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1388 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1389 	 *
1390 	 * However the spec[1] doesn't tell us whether we should also
1391 	 * ignore that for predefined method. But per the spec[1], section
1392 	 * 4.15 Set Block Count Command, it says"If illegal block count
1393 	 * is set, out of range error will be indicated during read/write
1394 	 * operation (For example, data transfer is stopped at user area
1395 	 * boundary)." In another word, we could expect a out of range error
1396 	 * in the response for the following CMD18/25. And if argument of
1397 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1398 	 * we could also expect to get a -ETIMEDOUT or any error number from
1399 	 * the host drivers due to missing data response(for write)/data(for
1400 	 * read), as the cards will stop the data transfer by itself per the
1401 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1402 	 */
1403 
1404 	if (!brq->stop.error) {
1405 		bool oor_with_open_end;
1406 		/* If there is no error yet, check R1 response */
1407 
1408 		val = brq->stop.resp[0] & CMD_ERRORS;
1409 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1410 
1411 		if (val && !oor_with_open_end)
1412 			brq->stop.error = -EIO;
1413 	}
1414 }
1415 
1416 static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card,
1417 					     struct mmc_async_req *areq)
1418 {
1419 	struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1420 						    areq);
1421 	struct mmc_blk_request *brq = &mq_mrq->brq;
1422 	struct request *req = mmc_queue_req_to_req(mq_mrq);
1423 	int need_retune = card->host->need_retune;
1424 	bool ecc_err = false;
1425 	bool gen_err = false;
1426 
1427 	/*
1428 	 * sbc.error indicates a problem with the set block count
1429 	 * command.  No data will have been transferred.
1430 	 *
1431 	 * cmd.error indicates a problem with the r/w command.  No
1432 	 * data will have been transferred.
1433 	 *
1434 	 * stop.error indicates a problem with the stop command.  Data
1435 	 * may have been transferred, or may still be transferring.
1436 	 */
1437 
1438 	mmc_blk_eval_resp_error(brq);
1439 
1440 	if (brq->sbc.error || brq->cmd.error ||
1441 	    brq->stop.error || brq->data.error) {
1442 		switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1443 		case ERR_RETRY:
1444 			return MMC_BLK_RETRY;
1445 		case ERR_ABORT:
1446 			return MMC_BLK_ABORT;
1447 		case ERR_NOMEDIUM:
1448 			return MMC_BLK_NOMEDIUM;
1449 		case ERR_CONTINUE:
1450 			break;
1451 		}
1452 	}
1453 
1454 	/*
1455 	 * Check for errors relating to the execution of the
1456 	 * initial command - such as address errors.  No data
1457 	 * has been transferred.
1458 	 */
1459 	if (brq->cmd.resp[0] & CMD_ERRORS) {
1460 		pr_err("%s: r/w command failed, status = %#x\n",
1461 		       req->rq_disk->disk_name, brq->cmd.resp[0]);
1462 		return MMC_BLK_ABORT;
1463 	}
1464 
1465 	/*
1466 	 * Everything else is either success, or a data error of some
1467 	 * kind.  If it was a write, we may have transitioned to
1468 	 * program mode, which we have to wait for it to complete.
1469 	 */
1470 	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1471 		int err;
1472 
1473 		/* Check stop command response */
1474 		if (brq->stop.resp[0] & R1_ERROR) {
1475 			pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1476 			       req->rq_disk->disk_name, __func__,
1477 			       brq->stop.resp[0]);
1478 			gen_err = true;
1479 		}
1480 
1481 		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1482 					&gen_err);
1483 		if (err)
1484 			return MMC_BLK_CMD_ERR;
1485 	}
1486 
1487 	/* if general error occurs, retry the write operation. */
1488 	if (gen_err) {
1489 		pr_warn("%s: retrying write for general error\n",
1490 				req->rq_disk->disk_name);
1491 		return MMC_BLK_RETRY;
1492 	}
1493 
1494 	/* Some errors (ECC) are flagged on the next commmand, so check stop, too */
1495 	if (brq->data.error || brq->stop.error) {
1496 		if (need_retune && !brq->retune_retry_done) {
1497 			pr_debug("%s: retrying because a re-tune was needed\n",
1498 				 req->rq_disk->disk_name);
1499 			brq->retune_retry_done = 1;
1500 			return MMC_BLK_RETRY;
1501 		}
1502 		pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1503 		       req->rq_disk->disk_name, brq->data.error ?: brq->stop.error,
1504 		       (unsigned)blk_rq_pos(req),
1505 		       (unsigned)blk_rq_sectors(req),
1506 		       brq->cmd.resp[0], brq->stop.resp[0]);
1507 
1508 		if (rq_data_dir(req) == READ) {
1509 			if (ecc_err)
1510 				return MMC_BLK_ECC_ERR;
1511 			return MMC_BLK_DATA_ERR;
1512 		} else {
1513 			return MMC_BLK_CMD_ERR;
1514 		}
1515 	}
1516 
1517 	if (!brq->data.bytes_xfered)
1518 		return MMC_BLK_RETRY;
1519 
1520 	if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1521 		return MMC_BLK_PARTIAL;
1522 
1523 	return MMC_BLK_SUCCESS;
1524 }
1525 
1526 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1527 			      int disable_multi, bool *do_rel_wr,
1528 			      bool *do_data_tag)
1529 {
1530 	struct mmc_blk_data *md = mq->blkdata;
1531 	struct mmc_card *card = md->queue.card;
1532 	struct mmc_blk_request *brq = &mqrq->brq;
1533 	struct request *req = mmc_queue_req_to_req(mqrq);
1534 
1535 	/*
1536 	 * Reliable writes are used to implement Forced Unit Access and
1537 	 * are supported only on MMCs.
1538 	 */
1539 	*do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1540 		     rq_data_dir(req) == WRITE &&
1541 		     (md->flags & MMC_BLK_REL_WR);
1542 
1543 	memset(brq, 0, sizeof(struct mmc_blk_request));
1544 
1545 	brq->mrq.data = &brq->data;
1546 
1547 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1548 	brq->stop.arg = 0;
1549 
1550 	if (rq_data_dir(req) == READ) {
1551 		brq->data.flags = MMC_DATA_READ;
1552 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1553 	} else {
1554 		brq->data.flags = MMC_DATA_WRITE;
1555 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1556 	}
1557 
1558 	brq->data.blksz = 512;
1559 	brq->data.blocks = blk_rq_sectors(req);
1560 
1561 	/*
1562 	 * The block layer doesn't support all sector count
1563 	 * restrictions, so we need to be prepared for too big
1564 	 * requests.
1565 	 */
1566 	if (brq->data.blocks > card->host->max_blk_count)
1567 		brq->data.blocks = card->host->max_blk_count;
1568 
1569 	if (brq->data.blocks > 1) {
1570 		/*
1571 		 * After a read error, we redo the request one sector
1572 		 * at a time in order to accurately determine which
1573 		 * sectors can be read successfully.
1574 		 */
1575 		if (disable_multi)
1576 			brq->data.blocks = 1;
1577 
1578 		/*
1579 		 * Some controllers have HW issues while operating
1580 		 * in multiple I/O mode
1581 		 */
1582 		if (card->host->ops->multi_io_quirk)
1583 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1584 						(rq_data_dir(req) == READ) ?
1585 						MMC_DATA_READ : MMC_DATA_WRITE,
1586 						brq->data.blocks);
1587 	}
1588 
1589 	if (*do_rel_wr)
1590 		mmc_apply_rel_rw(brq, card, req);
1591 
1592 	/*
1593 	 * Data tag is used only during writing meta data to speed
1594 	 * up write and any subsequent read of this meta data
1595 	 */
1596 	*do_data_tag = card->ext_csd.data_tag_unit_size &&
1597 		       (req->cmd_flags & REQ_META) &&
1598 		       (rq_data_dir(req) == WRITE) &&
1599 		       ((brq->data.blocks * brq->data.blksz) >=
1600 			card->ext_csd.data_tag_unit_size);
1601 
1602 	mmc_set_data_timeout(&brq->data, card);
1603 
1604 	brq->data.sg = mqrq->sg;
1605 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1606 
1607 	/*
1608 	 * Adjust the sg list so it is the same size as the
1609 	 * request.
1610 	 */
1611 	if (brq->data.blocks != blk_rq_sectors(req)) {
1612 		int i, data_size = brq->data.blocks << 9;
1613 		struct scatterlist *sg;
1614 
1615 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1616 			data_size -= sg->length;
1617 			if (data_size <= 0) {
1618 				sg->length += data_size;
1619 				i++;
1620 				break;
1621 			}
1622 		}
1623 		brq->data.sg_len = i;
1624 	}
1625 
1626 	mqrq->areq.mrq = &brq->mrq;
1627 
1628 	mmc_queue_bounce_pre(mqrq);
1629 }
1630 
1631 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1632 			       struct mmc_card *card,
1633 			       int disable_multi,
1634 			       struct mmc_queue *mq)
1635 {
1636 	u32 readcmd, writecmd;
1637 	struct mmc_blk_request *brq = &mqrq->brq;
1638 	struct request *req = mmc_queue_req_to_req(mqrq);
1639 	struct mmc_blk_data *md = mq->blkdata;
1640 	bool do_rel_wr, do_data_tag;
1641 
1642 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1643 
1644 	brq->mrq.cmd = &brq->cmd;
1645 
1646 	brq->cmd.arg = blk_rq_pos(req);
1647 	if (!mmc_card_blockaddr(card))
1648 		brq->cmd.arg <<= 9;
1649 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1650 
1651 	if (brq->data.blocks > 1 || do_rel_wr) {
1652 		/* SPI multiblock writes terminate using a special
1653 		 * token, not a STOP_TRANSMISSION request.
1654 		 */
1655 		if (!mmc_host_is_spi(card->host) ||
1656 		    rq_data_dir(req) == READ)
1657 			brq->mrq.stop = &brq->stop;
1658 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1659 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1660 	} else {
1661 		brq->mrq.stop = NULL;
1662 		readcmd = MMC_READ_SINGLE_BLOCK;
1663 		writecmd = MMC_WRITE_BLOCK;
1664 	}
1665 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1666 
1667 	/*
1668 	 * Pre-defined multi-block transfers are preferable to
1669 	 * open ended-ones (and necessary for reliable writes).
1670 	 * However, it is not sufficient to just send CMD23,
1671 	 * and avoid the final CMD12, as on an error condition
1672 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1673 	 * with Auto-CMD23 enhancements provided by some
1674 	 * hosts, means that the complexity of dealing
1675 	 * with this is best left to the host. If CMD23 is
1676 	 * supported by card and host, we'll fill sbc in and let
1677 	 * the host deal with handling it correctly. This means
1678 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1679 	 * change of behavior will be observed.
1680 	 *
1681 	 * N.B: Some MMC cards experience perf degradation.
1682 	 * We'll avoid using CMD23-bounded multiblock writes for
1683 	 * these, while retaining features like reliable writes.
1684 	 */
1685 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1686 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1687 	     do_data_tag)) {
1688 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1689 		brq->sbc.arg = brq->data.blocks |
1690 			(do_rel_wr ? (1 << 31) : 0) |
1691 			(do_data_tag ? (1 << 29) : 0);
1692 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1693 		brq->mrq.sbc = &brq->sbc;
1694 	}
1695 
1696 	mqrq->areq.err_check = mmc_blk_err_check;
1697 }
1698 
1699 static bool mmc_blk_rw_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1700 			       struct mmc_blk_request *brq, struct request *req,
1701 			       bool old_req_pending)
1702 {
1703 	bool req_pending;
1704 
1705 	/*
1706 	 * If this is an SD card and we're writing, we can first
1707 	 * mark the known good sectors as ok.
1708 	 *
1709 	 * If the card is not SD, we can still ok written sectors
1710 	 * as reported by the controller (which might be less than
1711 	 * the real number of written sectors, but never more).
1712 	 */
1713 	if (mmc_card_sd(card)) {
1714 		u32 blocks;
1715 		int err;
1716 
1717 		err = mmc_sd_num_wr_blocks(card, &blocks);
1718 		if (err)
1719 			req_pending = old_req_pending;
1720 		else
1721 			req_pending = blk_end_request(req, 0, blocks << 9);
1722 	} else {
1723 		req_pending = blk_end_request(req, 0, brq->data.bytes_xfered);
1724 	}
1725 	return req_pending;
1726 }
1727 
1728 static void mmc_blk_rw_cmd_abort(struct mmc_queue *mq, struct mmc_card *card,
1729 				 struct request *req,
1730 				 struct mmc_queue_req *mqrq)
1731 {
1732 	if (mmc_card_removed(card))
1733 		req->rq_flags |= RQF_QUIET;
1734 	while (blk_end_request(req, BLK_STS_IOERR, blk_rq_cur_bytes(req)));
1735 	mq->qcnt--;
1736 }
1737 
1738 /**
1739  * mmc_blk_rw_try_restart() - tries to restart the current async request
1740  * @mq: the queue with the card and host to restart
1741  * @req: a new request that want to be started after the current one
1742  */
1743 static void mmc_blk_rw_try_restart(struct mmc_queue *mq, struct request *req,
1744 				   struct mmc_queue_req *mqrq)
1745 {
1746 	if (!req)
1747 		return;
1748 
1749 	/*
1750 	 * If the card was removed, just cancel everything and return.
1751 	 */
1752 	if (mmc_card_removed(mq->card)) {
1753 		req->rq_flags |= RQF_QUIET;
1754 		blk_end_request_all(req, BLK_STS_IOERR);
1755 		mq->qcnt--; /* FIXME: just set to 0? */
1756 		return;
1757 	}
1758 	/* Else proceed and try to restart the current async request */
1759 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1760 	mmc_start_areq(mq->card->host, &mqrq->areq, NULL);
1761 }
1762 
1763 static void mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *new_req)
1764 {
1765 	struct mmc_blk_data *md = mq->blkdata;
1766 	struct mmc_card *card = md->queue.card;
1767 	struct mmc_blk_request *brq;
1768 	int disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1769 	enum mmc_blk_status status;
1770 	struct mmc_queue_req *mqrq_cur = NULL;
1771 	struct mmc_queue_req *mq_rq;
1772 	struct request *old_req;
1773 	struct mmc_async_req *new_areq;
1774 	struct mmc_async_req *old_areq;
1775 	bool req_pending = true;
1776 
1777 	if (new_req) {
1778 		mqrq_cur = req_to_mmc_queue_req(new_req);
1779 		mq->qcnt++;
1780 	}
1781 
1782 	if (!mq->qcnt)
1783 		return;
1784 
1785 	do {
1786 		if (new_req) {
1787 			/*
1788 			 * When 4KB native sector is enabled, only 8 blocks
1789 			 * multiple read or write is allowed
1790 			 */
1791 			if (mmc_large_sector(card) &&
1792 				!IS_ALIGNED(blk_rq_sectors(new_req), 8)) {
1793 				pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1794 					new_req->rq_disk->disk_name);
1795 				mmc_blk_rw_cmd_abort(mq, card, new_req, mqrq_cur);
1796 				return;
1797 			}
1798 
1799 			mmc_blk_rw_rq_prep(mqrq_cur, card, 0, mq);
1800 			new_areq = &mqrq_cur->areq;
1801 		} else
1802 			new_areq = NULL;
1803 
1804 		old_areq = mmc_start_areq(card->host, new_areq, &status);
1805 		if (!old_areq) {
1806 			/*
1807 			 * We have just put the first request into the pipeline
1808 			 * and there is nothing more to do until it is
1809 			 * complete.
1810 			 */
1811 			return;
1812 		}
1813 
1814 		/*
1815 		 * An asynchronous request has been completed and we proceed
1816 		 * to handle the result of it.
1817 		 */
1818 		mq_rq =	container_of(old_areq, struct mmc_queue_req, areq);
1819 		brq = &mq_rq->brq;
1820 		old_req = mmc_queue_req_to_req(mq_rq);
1821 		type = rq_data_dir(old_req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1822 		mmc_queue_bounce_post(mq_rq);
1823 
1824 		switch (status) {
1825 		case MMC_BLK_SUCCESS:
1826 		case MMC_BLK_PARTIAL:
1827 			/*
1828 			 * A block was successfully transferred.
1829 			 */
1830 			mmc_blk_reset_success(md, type);
1831 
1832 			req_pending = blk_end_request(old_req, BLK_STS_OK,
1833 						      brq->data.bytes_xfered);
1834 			/*
1835 			 * If the blk_end_request function returns non-zero even
1836 			 * though all data has been transferred and no errors
1837 			 * were returned by the host controller, it's a bug.
1838 			 */
1839 			if (status == MMC_BLK_SUCCESS && req_pending) {
1840 				pr_err("%s BUG rq_tot %d d_xfer %d\n",
1841 				       __func__, blk_rq_bytes(old_req),
1842 				       brq->data.bytes_xfered);
1843 				mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1844 				return;
1845 			}
1846 			break;
1847 		case MMC_BLK_CMD_ERR:
1848 			req_pending = mmc_blk_rw_cmd_err(md, card, brq, old_req, req_pending);
1849 			if (mmc_blk_reset(md, card->host, type)) {
1850 				if (req_pending)
1851 					mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1852 				else
1853 					mq->qcnt--;
1854 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1855 				return;
1856 			}
1857 			if (!req_pending) {
1858 				mq->qcnt--;
1859 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1860 				return;
1861 			}
1862 			break;
1863 		case MMC_BLK_RETRY:
1864 			retune_retry_done = brq->retune_retry_done;
1865 			if (retry++ < 5)
1866 				break;
1867 			/* Fall through */
1868 		case MMC_BLK_ABORT:
1869 			if (!mmc_blk_reset(md, card->host, type))
1870 				break;
1871 			mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1872 			mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1873 			return;
1874 		case MMC_BLK_DATA_ERR: {
1875 			int err;
1876 
1877 			err = mmc_blk_reset(md, card->host, type);
1878 			if (!err)
1879 				break;
1880 			if (err == -ENODEV) {
1881 				mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1882 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1883 				return;
1884 			}
1885 			/* Fall through */
1886 		}
1887 		case MMC_BLK_ECC_ERR:
1888 			if (brq->data.blocks > 1) {
1889 				/* Redo read one sector at a time */
1890 				pr_warn("%s: retrying using single block read\n",
1891 					old_req->rq_disk->disk_name);
1892 				disable_multi = 1;
1893 				break;
1894 			}
1895 			/*
1896 			 * After an error, we redo I/O one sector at a
1897 			 * time, so we only reach here after trying to
1898 			 * read a single sector.
1899 			 */
1900 			req_pending = blk_end_request(old_req, BLK_STS_IOERR,
1901 						      brq->data.blksz);
1902 			if (!req_pending) {
1903 				mq->qcnt--;
1904 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1905 				return;
1906 			}
1907 			break;
1908 		case MMC_BLK_NOMEDIUM:
1909 			mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1910 			mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1911 			return;
1912 		default:
1913 			pr_err("%s: Unhandled return value (%d)",
1914 					old_req->rq_disk->disk_name, status);
1915 			mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1916 			mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1917 			return;
1918 		}
1919 
1920 		if (req_pending) {
1921 			/*
1922 			 * In case of a incomplete request
1923 			 * prepare it again and resend.
1924 			 */
1925 			mmc_blk_rw_rq_prep(mq_rq, card,
1926 					disable_multi, mq);
1927 			mmc_start_areq(card->host,
1928 					&mq_rq->areq, NULL);
1929 			mq_rq->brq.retune_retry_done = retune_retry_done;
1930 		}
1931 	} while (req_pending);
1932 
1933 	mq->qcnt--;
1934 }
1935 
1936 void mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1937 {
1938 	int ret;
1939 	struct mmc_blk_data *md = mq->blkdata;
1940 	struct mmc_card *card = md->queue.card;
1941 
1942 	if (req && !mq->qcnt)
1943 		/* claim host only for the first request */
1944 		mmc_get_card(card);
1945 
1946 	ret = mmc_blk_part_switch(card, md);
1947 	if (ret) {
1948 		if (req) {
1949 			blk_end_request_all(req, BLK_STS_IOERR);
1950 		}
1951 		goto out;
1952 	}
1953 
1954 	if (req) {
1955 		switch (req_op(req)) {
1956 		case REQ_OP_DRV_IN:
1957 		case REQ_OP_DRV_OUT:
1958 			/*
1959 			 * Complete ongoing async transfer before issuing
1960 			 * ioctl()s
1961 			 */
1962 			if (mq->qcnt)
1963 				mmc_blk_issue_rw_rq(mq, NULL);
1964 			mmc_blk_issue_drv_op(mq, req);
1965 			break;
1966 		case REQ_OP_DISCARD:
1967 			/*
1968 			 * Complete ongoing async transfer before issuing
1969 			 * discard.
1970 			 */
1971 			if (mq->qcnt)
1972 				mmc_blk_issue_rw_rq(mq, NULL);
1973 			mmc_blk_issue_discard_rq(mq, req);
1974 			break;
1975 		case REQ_OP_SECURE_ERASE:
1976 			/*
1977 			 * Complete ongoing async transfer before issuing
1978 			 * secure erase.
1979 			 */
1980 			if (mq->qcnt)
1981 				mmc_blk_issue_rw_rq(mq, NULL);
1982 			mmc_blk_issue_secdiscard_rq(mq, req);
1983 			break;
1984 		case REQ_OP_FLUSH:
1985 			/*
1986 			 * Complete ongoing async transfer before issuing
1987 			 * flush.
1988 			 */
1989 			if (mq->qcnt)
1990 				mmc_blk_issue_rw_rq(mq, NULL);
1991 			mmc_blk_issue_flush(mq, req);
1992 			break;
1993 		default:
1994 			/* Normal request, just issue it */
1995 			mmc_blk_issue_rw_rq(mq, req);
1996 			card->host->context_info.is_waiting_last_req = false;
1997 			break;
1998 		}
1999 	} else {
2000 		/* No request, flushing the pipeline with NULL */
2001 		mmc_blk_issue_rw_rq(mq, NULL);
2002 		card->host->context_info.is_waiting_last_req = false;
2003 	}
2004 
2005 out:
2006 	if (!mq->qcnt)
2007 		mmc_put_card(card);
2008 }
2009 
2010 static inline int mmc_blk_readonly(struct mmc_card *card)
2011 {
2012 	return mmc_card_readonly(card) ||
2013 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2014 }
2015 
2016 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2017 					      struct device *parent,
2018 					      sector_t size,
2019 					      bool default_ro,
2020 					      const char *subname,
2021 					      int area_type)
2022 {
2023 	struct mmc_blk_data *md;
2024 	int devidx, ret;
2025 
2026 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2027 	if (devidx < 0)
2028 		return ERR_PTR(devidx);
2029 
2030 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2031 	if (!md) {
2032 		ret = -ENOMEM;
2033 		goto out;
2034 	}
2035 
2036 	md->area_type = area_type;
2037 
2038 	/*
2039 	 * Set the read-only status based on the supported commands
2040 	 * and the write protect switch.
2041 	 */
2042 	md->read_only = mmc_blk_readonly(card);
2043 
2044 	md->disk = alloc_disk(perdev_minors);
2045 	if (md->disk == NULL) {
2046 		ret = -ENOMEM;
2047 		goto err_kfree;
2048 	}
2049 
2050 	spin_lock_init(&md->lock);
2051 	INIT_LIST_HEAD(&md->part);
2052 	md->usage = 1;
2053 
2054 	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2055 	if (ret)
2056 		goto err_putdisk;
2057 
2058 	md->queue.blkdata = md;
2059 
2060 	md->disk->major	= MMC_BLOCK_MAJOR;
2061 	md->disk->first_minor = devidx * perdev_minors;
2062 	md->disk->fops = &mmc_bdops;
2063 	md->disk->private_data = md;
2064 	md->disk->queue = md->queue.queue;
2065 	md->parent = parent;
2066 	set_disk_ro(md->disk, md->read_only || default_ro);
2067 	md->disk->flags = GENHD_FL_EXT_DEVT;
2068 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2069 		md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2070 
2071 	/*
2072 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2073 	 *
2074 	 * - be set for removable media with permanent block devices
2075 	 * - be unset for removable block devices with permanent media
2076 	 *
2077 	 * Since MMC block devices clearly fall under the second
2078 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2079 	 * should use the block device creation/destruction hotplug
2080 	 * messages to tell when the card is present.
2081 	 */
2082 
2083 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2084 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2085 
2086 	if (mmc_card_mmc(card))
2087 		blk_queue_logical_block_size(md->queue.queue,
2088 					     card->ext_csd.data_sector_size);
2089 	else
2090 		blk_queue_logical_block_size(md->queue.queue, 512);
2091 
2092 	set_capacity(md->disk, size);
2093 
2094 	if (mmc_host_cmd23(card->host)) {
2095 		if ((mmc_card_mmc(card) &&
2096 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2097 		    (mmc_card_sd(card) &&
2098 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2099 			md->flags |= MMC_BLK_CMD23;
2100 	}
2101 
2102 	if (mmc_card_mmc(card) &&
2103 	    md->flags & MMC_BLK_CMD23 &&
2104 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2105 	     card->ext_csd.rel_sectors)) {
2106 		md->flags |= MMC_BLK_REL_WR;
2107 		blk_queue_write_cache(md->queue.queue, true, true);
2108 	}
2109 
2110 	return md;
2111 
2112  err_putdisk:
2113 	put_disk(md->disk);
2114  err_kfree:
2115 	kfree(md);
2116  out:
2117 	ida_simple_remove(&mmc_blk_ida, devidx);
2118 	return ERR_PTR(ret);
2119 }
2120 
2121 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2122 {
2123 	sector_t size;
2124 
2125 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2126 		/*
2127 		 * The EXT_CSD sector count is in number or 512 byte
2128 		 * sectors.
2129 		 */
2130 		size = card->ext_csd.sectors;
2131 	} else {
2132 		/*
2133 		 * The CSD capacity field is in units of read_blkbits.
2134 		 * set_capacity takes units of 512 bytes.
2135 		 */
2136 		size = (typeof(sector_t))card->csd.capacity
2137 			<< (card->csd.read_blkbits - 9);
2138 	}
2139 
2140 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2141 					MMC_BLK_DATA_AREA_MAIN);
2142 }
2143 
2144 static int mmc_blk_alloc_part(struct mmc_card *card,
2145 			      struct mmc_blk_data *md,
2146 			      unsigned int part_type,
2147 			      sector_t size,
2148 			      bool default_ro,
2149 			      const char *subname,
2150 			      int area_type)
2151 {
2152 	char cap_str[10];
2153 	struct mmc_blk_data *part_md;
2154 
2155 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2156 				    subname, area_type);
2157 	if (IS_ERR(part_md))
2158 		return PTR_ERR(part_md);
2159 	part_md->part_type = part_type;
2160 	list_add(&part_md->part, &md->part);
2161 
2162 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2163 			cap_str, sizeof(cap_str));
2164 	pr_info("%s: %s %s partition %u %s\n",
2165 	       part_md->disk->disk_name, mmc_card_id(card),
2166 	       mmc_card_name(card), part_md->part_type, cap_str);
2167 	return 0;
2168 }
2169 
2170 /* MMC Physical partitions consist of two boot partitions and
2171  * up to four general purpose partitions.
2172  * For each partition enabled in EXT_CSD a block device will be allocatedi
2173  * to provide access to the partition.
2174  */
2175 
2176 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2177 {
2178 	int idx, ret = 0;
2179 
2180 	if (!mmc_card_mmc(card))
2181 		return 0;
2182 
2183 	for (idx = 0; idx < card->nr_parts; idx++) {
2184 		if (card->part[idx].size) {
2185 			ret = mmc_blk_alloc_part(card, md,
2186 				card->part[idx].part_cfg,
2187 				card->part[idx].size >> 9,
2188 				card->part[idx].force_ro,
2189 				card->part[idx].name,
2190 				card->part[idx].area_type);
2191 			if (ret)
2192 				return ret;
2193 		}
2194 	}
2195 
2196 	return ret;
2197 }
2198 
2199 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2200 {
2201 	struct mmc_card *card;
2202 
2203 	if (md) {
2204 		/*
2205 		 * Flush remaining requests and free queues. It
2206 		 * is freeing the queue that stops new requests
2207 		 * from being accepted.
2208 		 */
2209 		card = md->queue.card;
2210 		spin_lock_irq(md->queue.queue->queue_lock);
2211 		queue_flag_set(QUEUE_FLAG_BYPASS, md->queue.queue);
2212 		spin_unlock_irq(md->queue.queue->queue_lock);
2213 		blk_set_queue_dying(md->queue.queue);
2214 		mmc_cleanup_queue(&md->queue);
2215 		if (md->disk->flags & GENHD_FL_UP) {
2216 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2217 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2218 					card->ext_csd.boot_ro_lockable)
2219 				device_remove_file(disk_to_dev(md->disk),
2220 					&md->power_ro_lock);
2221 
2222 			del_gendisk(md->disk);
2223 		}
2224 		mmc_blk_put(md);
2225 	}
2226 }
2227 
2228 static void mmc_blk_remove_parts(struct mmc_card *card,
2229 				 struct mmc_blk_data *md)
2230 {
2231 	struct list_head *pos, *q;
2232 	struct mmc_blk_data *part_md;
2233 
2234 	list_for_each_safe(pos, q, &md->part) {
2235 		part_md = list_entry(pos, struct mmc_blk_data, part);
2236 		list_del(pos);
2237 		mmc_blk_remove_req(part_md);
2238 	}
2239 }
2240 
2241 static int mmc_add_disk(struct mmc_blk_data *md)
2242 {
2243 	int ret;
2244 	struct mmc_card *card = md->queue.card;
2245 
2246 	device_add_disk(md->parent, md->disk);
2247 	md->force_ro.show = force_ro_show;
2248 	md->force_ro.store = force_ro_store;
2249 	sysfs_attr_init(&md->force_ro.attr);
2250 	md->force_ro.attr.name = "force_ro";
2251 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2252 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2253 	if (ret)
2254 		goto force_ro_fail;
2255 
2256 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2257 	     card->ext_csd.boot_ro_lockable) {
2258 		umode_t mode;
2259 
2260 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2261 			mode = S_IRUGO;
2262 		else
2263 			mode = S_IRUGO | S_IWUSR;
2264 
2265 		md->power_ro_lock.show = power_ro_lock_show;
2266 		md->power_ro_lock.store = power_ro_lock_store;
2267 		sysfs_attr_init(&md->power_ro_lock.attr);
2268 		md->power_ro_lock.attr.mode = mode;
2269 		md->power_ro_lock.attr.name =
2270 					"ro_lock_until_next_power_on";
2271 		ret = device_create_file(disk_to_dev(md->disk),
2272 				&md->power_ro_lock);
2273 		if (ret)
2274 			goto power_ro_lock_fail;
2275 	}
2276 	return ret;
2277 
2278 power_ro_lock_fail:
2279 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2280 force_ro_fail:
2281 	del_gendisk(md->disk);
2282 
2283 	return ret;
2284 }
2285 
2286 static int mmc_blk_probe(struct mmc_card *card)
2287 {
2288 	struct mmc_blk_data *md, *part_md;
2289 	char cap_str[10];
2290 
2291 	/*
2292 	 * Check that the card supports the command class(es) we need.
2293 	 */
2294 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2295 		return -ENODEV;
2296 
2297 	mmc_fixup_device(card, mmc_blk_fixups);
2298 
2299 	md = mmc_blk_alloc(card);
2300 	if (IS_ERR(md))
2301 		return PTR_ERR(md);
2302 
2303 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2304 			cap_str, sizeof(cap_str));
2305 	pr_info("%s: %s %s %s %s\n",
2306 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2307 		cap_str, md->read_only ? "(ro)" : "");
2308 
2309 	if (mmc_blk_alloc_parts(card, md))
2310 		goto out;
2311 
2312 	dev_set_drvdata(&card->dev, md);
2313 
2314 	if (mmc_add_disk(md))
2315 		goto out;
2316 
2317 	list_for_each_entry(part_md, &md->part, part) {
2318 		if (mmc_add_disk(part_md))
2319 			goto out;
2320 	}
2321 
2322 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2323 	pm_runtime_use_autosuspend(&card->dev);
2324 
2325 	/*
2326 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2327 	 * decision to be taken during the SDIO init sequence instead.
2328 	 */
2329 	if (card->type != MMC_TYPE_SD_COMBO) {
2330 		pm_runtime_set_active(&card->dev);
2331 		pm_runtime_enable(&card->dev);
2332 	}
2333 
2334 	return 0;
2335 
2336  out:
2337 	mmc_blk_remove_parts(card, md);
2338 	mmc_blk_remove_req(md);
2339 	return 0;
2340 }
2341 
2342 static void mmc_blk_remove(struct mmc_card *card)
2343 {
2344 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2345 
2346 	mmc_blk_remove_parts(card, md);
2347 	pm_runtime_get_sync(&card->dev);
2348 	mmc_claim_host(card->host);
2349 	mmc_blk_part_switch(card, md);
2350 	mmc_release_host(card->host);
2351 	if (card->type != MMC_TYPE_SD_COMBO)
2352 		pm_runtime_disable(&card->dev);
2353 	pm_runtime_put_noidle(&card->dev);
2354 	mmc_blk_remove_req(md);
2355 	dev_set_drvdata(&card->dev, NULL);
2356 }
2357 
2358 static int _mmc_blk_suspend(struct mmc_card *card)
2359 {
2360 	struct mmc_blk_data *part_md;
2361 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2362 
2363 	if (md) {
2364 		mmc_queue_suspend(&md->queue);
2365 		list_for_each_entry(part_md, &md->part, part) {
2366 			mmc_queue_suspend(&part_md->queue);
2367 		}
2368 	}
2369 	return 0;
2370 }
2371 
2372 static void mmc_blk_shutdown(struct mmc_card *card)
2373 {
2374 	_mmc_blk_suspend(card);
2375 }
2376 
2377 #ifdef CONFIG_PM_SLEEP
2378 static int mmc_blk_suspend(struct device *dev)
2379 {
2380 	struct mmc_card *card = mmc_dev_to_card(dev);
2381 
2382 	return _mmc_blk_suspend(card);
2383 }
2384 
2385 static int mmc_blk_resume(struct device *dev)
2386 {
2387 	struct mmc_blk_data *part_md;
2388 	struct mmc_blk_data *md = dev_get_drvdata(dev);
2389 
2390 	if (md) {
2391 		/*
2392 		 * Resume involves the card going into idle state,
2393 		 * so current partition is always the main one.
2394 		 */
2395 		md->part_curr = md->part_type;
2396 		mmc_queue_resume(&md->queue);
2397 		list_for_each_entry(part_md, &md->part, part) {
2398 			mmc_queue_resume(&part_md->queue);
2399 		}
2400 	}
2401 	return 0;
2402 }
2403 #endif
2404 
2405 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2406 
2407 static struct mmc_driver mmc_driver = {
2408 	.drv		= {
2409 		.name	= "mmcblk",
2410 		.pm	= &mmc_blk_pm_ops,
2411 	},
2412 	.probe		= mmc_blk_probe,
2413 	.remove		= mmc_blk_remove,
2414 	.shutdown	= mmc_blk_shutdown,
2415 };
2416 
2417 static int __init mmc_blk_init(void)
2418 {
2419 	int res;
2420 
2421 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2422 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2423 
2424 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2425 
2426 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2427 	if (res)
2428 		goto out;
2429 
2430 	res = mmc_register_driver(&mmc_driver);
2431 	if (res)
2432 		goto out2;
2433 
2434 	return 0;
2435  out2:
2436 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2437  out:
2438 	return res;
2439 }
2440 
2441 static void __exit mmc_blk_exit(void)
2442 {
2443 	mmc_unregister_driver(&mmc_driver);
2444 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2445 }
2446 
2447 module_init(mmc_blk_init);
2448 module_exit(mmc_blk_exit);
2449 
2450 MODULE_LICENSE("GPL");
2451 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2452 
2453