xref: /openbmc/linux/drivers/mmc/core/block.c (revision ccc319dc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43 
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49 
50 #include <linux/uaccess.h>
51 
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62 
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68 
69 /*
70  * Set a 10 second timeout for polling write request busy state. Note, mmc core
71  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72  * second software timer to timeout the whole request, so 10 seconds should be
73  * ample.
74  */
75 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78 
79 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
80 				  (rq_data_dir(req) == WRITE))
81 static DEFINE_MUTEX(block_mutex);
82 
83 /*
84  * The defaults come from config options but can be overriden by module
85  * or bootarg options.
86  */
87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88 
89 /*
90  * We've only got one major, so number of mmcblk devices is
91  * limited to (1 << 20) / number of minors per device.  It is also
92  * limited by the MAX_DEVICES below.
93  */
94 static int max_devices;
95 
96 #define MAX_DEVICES 256
97 
98 static DEFINE_IDA(mmc_blk_ida);
99 static DEFINE_IDA(mmc_rpmb_ida);
100 
101 struct mmc_blk_busy_data {
102 	struct mmc_card *card;
103 	u32 status;
104 };
105 
106 /*
107  * There is one mmc_blk_data per slot.
108  */
109 struct mmc_blk_data {
110 	struct device	*parent;
111 	struct gendisk	*disk;
112 	struct mmc_queue queue;
113 	struct list_head part;
114 	struct list_head rpmbs;
115 
116 	unsigned int	flags;
117 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
118 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
119 
120 	struct kref	kref;
121 	unsigned int	read_only;
122 	unsigned int	part_type;
123 	unsigned int	reset_done;
124 #define MMC_BLK_READ		BIT(0)
125 #define MMC_BLK_WRITE		BIT(1)
126 #define MMC_BLK_DISCARD		BIT(2)
127 #define MMC_BLK_SECDISCARD	BIT(3)
128 #define MMC_BLK_CQE_RECOVERY	BIT(4)
129 #define MMC_BLK_TRIM		BIT(5)
130 
131 	/*
132 	 * Only set in main mmc_blk_data associated
133 	 * with mmc_card with dev_set_drvdata, and keeps
134 	 * track of the current selected device partition.
135 	 */
136 	unsigned int	part_curr;
137 	int	area_type;
138 
139 	/* debugfs files (only in main mmc_blk_data) */
140 	struct dentry *status_dentry;
141 	struct dentry *ext_csd_dentry;
142 };
143 
144 /* Device type for RPMB character devices */
145 static dev_t mmc_rpmb_devt;
146 
147 /* Bus type for RPMB character devices */
148 static struct bus_type mmc_rpmb_bus_type = {
149 	.name = "mmc_rpmb",
150 };
151 
152 /**
153  * struct mmc_rpmb_data - special RPMB device type for these areas
154  * @dev: the device for the RPMB area
155  * @chrdev: character device for the RPMB area
156  * @id: unique device ID number
157  * @part_index: partition index (0 on first)
158  * @md: parent MMC block device
159  * @node: list item, so we can put this device on a list
160  */
161 struct mmc_rpmb_data {
162 	struct device dev;
163 	struct cdev chrdev;
164 	int id;
165 	unsigned int part_index;
166 	struct mmc_blk_data *md;
167 	struct list_head node;
168 };
169 
170 static DEFINE_MUTEX(open_lock);
171 
172 module_param(perdev_minors, int, 0444);
173 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
174 
175 static inline int mmc_blk_part_switch(struct mmc_card *card,
176 				      unsigned int part_type);
177 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
178 			       struct mmc_card *card,
179 			       int disable_multi,
180 			       struct mmc_queue *mq);
181 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
182 
183 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
184 {
185 	struct mmc_blk_data *md;
186 
187 	mutex_lock(&open_lock);
188 	md = disk->private_data;
189 	if (md && !kref_get_unless_zero(&md->kref))
190 		md = NULL;
191 	mutex_unlock(&open_lock);
192 
193 	return md;
194 }
195 
196 static inline int mmc_get_devidx(struct gendisk *disk)
197 {
198 	int devidx = disk->first_minor / perdev_minors;
199 	return devidx;
200 }
201 
202 static void mmc_blk_kref_release(struct kref *ref)
203 {
204 	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
205 	int devidx;
206 
207 	devidx = mmc_get_devidx(md->disk);
208 	ida_simple_remove(&mmc_blk_ida, devidx);
209 
210 	mutex_lock(&open_lock);
211 	md->disk->private_data = NULL;
212 	mutex_unlock(&open_lock);
213 
214 	put_disk(md->disk);
215 	kfree(md);
216 }
217 
218 static void mmc_blk_put(struct mmc_blk_data *md)
219 {
220 	kref_put(&md->kref, mmc_blk_kref_release);
221 }
222 
223 static ssize_t power_ro_lock_show(struct device *dev,
224 		struct device_attribute *attr, char *buf)
225 {
226 	int ret;
227 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
228 	struct mmc_card *card = md->queue.card;
229 	int locked = 0;
230 
231 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
232 		locked = 2;
233 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
234 		locked = 1;
235 
236 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
237 
238 	mmc_blk_put(md);
239 
240 	return ret;
241 }
242 
243 static ssize_t power_ro_lock_store(struct device *dev,
244 		struct device_attribute *attr, const char *buf, size_t count)
245 {
246 	int ret;
247 	struct mmc_blk_data *md, *part_md;
248 	struct mmc_queue *mq;
249 	struct request *req;
250 	unsigned long set;
251 
252 	if (kstrtoul(buf, 0, &set))
253 		return -EINVAL;
254 
255 	if (set != 1)
256 		return count;
257 
258 	md = mmc_blk_get(dev_to_disk(dev));
259 	mq = &md->queue;
260 
261 	/* Dispatch locking to the block layer */
262 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
263 	if (IS_ERR(req)) {
264 		count = PTR_ERR(req);
265 		goto out_put;
266 	}
267 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
268 	blk_execute_rq(req, false);
269 	ret = req_to_mmc_queue_req(req)->drv_op_result;
270 	blk_mq_free_request(req);
271 
272 	if (!ret) {
273 		pr_info("%s: Locking boot partition ro until next power on\n",
274 			md->disk->disk_name);
275 		set_disk_ro(md->disk, 1);
276 
277 		list_for_each_entry(part_md, &md->part, part)
278 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
279 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
280 				set_disk_ro(part_md->disk, 1);
281 			}
282 	}
283 out_put:
284 	mmc_blk_put(md);
285 	return count;
286 }
287 
288 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
289 		power_ro_lock_show, power_ro_lock_store);
290 
291 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
292 			     char *buf)
293 {
294 	int ret;
295 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
296 
297 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
298 		       get_disk_ro(dev_to_disk(dev)) ^
299 		       md->read_only);
300 	mmc_blk_put(md);
301 	return ret;
302 }
303 
304 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
305 			      const char *buf, size_t count)
306 {
307 	int ret;
308 	char *end;
309 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
310 	unsigned long set = simple_strtoul(buf, &end, 0);
311 	if (end == buf) {
312 		ret = -EINVAL;
313 		goto out;
314 	}
315 
316 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
317 	ret = count;
318 out:
319 	mmc_blk_put(md);
320 	return ret;
321 }
322 
323 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
324 
325 static struct attribute *mmc_disk_attrs[] = {
326 	&dev_attr_force_ro.attr,
327 	&dev_attr_ro_lock_until_next_power_on.attr,
328 	NULL,
329 };
330 
331 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
332 		struct attribute *a, int n)
333 {
334 	struct device *dev = kobj_to_dev(kobj);
335 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
336 	umode_t mode = a->mode;
337 
338 	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
339 	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
340 	    md->queue.card->ext_csd.boot_ro_lockable) {
341 		mode = S_IRUGO;
342 		if (!(md->queue.card->ext_csd.boot_ro_lock &
343 				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
344 			mode |= S_IWUSR;
345 	}
346 
347 	mmc_blk_put(md);
348 	return mode;
349 }
350 
351 static const struct attribute_group mmc_disk_attr_group = {
352 	.is_visible	= mmc_disk_attrs_is_visible,
353 	.attrs		= mmc_disk_attrs,
354 };
355 
356 static const struct attribute_group *mmc_disk_attr_groups[] = {
357 	&mmc_disk_attr_group,
358 	NULL,
359 };
360 
361 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
362 {
363 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
364 	int ret = -ENXIO;
365 
366 	mutex_lock(&block_mutex);
367 	if (md) {
368 		ret = 0;
369 		if ((mode & FMODE_WRITE) && md->read_only) {
370 			mmc_blk_put(md);
371 			ret = -EROFS;
372 		}
373 	}
374 	mutex_unlock(&block_mutex);
375 
376 	return ret;
377 }
378 
379 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
380 {
381 	struct mmc_blk_data *md = disk->private_data;
382 
383 	mutex_lock(&block_mutex);
384 	mmc_blk_put(md);
385 	mutex_unlock(&block_mutex);
386 }
387 
388 static int
389 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
390 {
391 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
392 	geo->heads = 4;
393 	geo->sectors = 16;
394 	return 0;
395 }
396 
397 struct mmc_blk_ioc_data {
398 	struct mmc_ioc_cmd ic;
399 	unsigned char *buf;
400 	u64 buf_bytes;
401 	struct mmc_rpmb_data *rpmb;
402 };
403 
404 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
405 	struct mmc_ioc_cmd __user *user)
406 {
407 	struct mmc_blk_ioc_data *idata;
408 	int err;
409 
410 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
411 	if (!idata) {
412 		err = -ENOMEM;
413 		goto out;
414 	}
415 
416 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
417 		err = -EFAULT;
418 		goto idata_err;
419 	}
420 
421 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
422 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
423 		err = -EOVERFLOW;
424 		goto idata_err;
425 	}
426 
427 	if (!idata->buf_bytes) {
428 		idata->buf = NULL;
429 		return idata;
430 	}
431 
432 	idata->buf = memdup_user((void __user *)(unsigned long)
433 				 idata->ic.data_ptr, idata->buf_bytes);
434 	if (IS_ERR(idata->buf)) {
435 		err = PTR_ERR(idata->buf);
436 		goto idata_err;
437 	}
438 
439 	return idata;
440 
441 idata_err:
442 	kfree(idata);
443 out:
444 	return ERR_PTR(err);
445 }
446 
447 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
448 				      struct mmc_blk_ioc_data *idata)
449 {
450 	struct mmc_ioc_cmd *ic = &idata->ic;
451 
452 	if (copy_to_user(&(ic_ptr->response), ic->response,
453 			 sizeof(ic->response)))
454 		return -EFAULT;
455 
456 	if (!idata->ic.write_flag) {
457 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
458 				 idata->buf, idata->buf_bytes))
459 			return -EFAULT;
460 	}
461 
462 	return 0;
463 }
464 
465 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
466 			       struct mmc_blk_ioc_data *idata)
467 {
468 	struct mmc_command cmd = {}, sbc = {};
469 	struct mmc_data data = {};
470 	struct mmc_request mrq = {};
471 	struct scatterlist sg;
472 	int err;
473 	unsigned int target_part;
474 
475 	if (!card || !md || !idata)
476 		return -EINVAL;
477 
478 	/*
479 	 * The RPMB accesses comes in from the character device, so we
480 	 * need to target these explicitly. Else we just target the
481 	 * partition type for the block device the ioctl() was issued
482 	 * on.
483 	 */
484 	if (idata->rpmb) {
485 		/* Support multiple RPMB partitions */
486 		target_part = idata->rpmb->part_index;
487 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
488 	} else {
489 		target_part = md->part_type;
490 	}
491 
492 	cmd.opcode = idata->ic.opcode;
493 	cmd.arg = idata->ic.arg;
494 	cmd.flags = idata->ic.flags;
495 
496 	if (idata->buf_bytes) {
497 		data.sg = &sg;
498 		data.sg_len = 1;
499 		data.blksz = idata->ic.blksz;
500 		data.blocks = idata->ic.blocks;
501 
502 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
503 
504 		if (idata->ic.write_flag)
505 			data.flags = MMC_DATA_WRITE;
506 		else
507 			data.flags = MMC_DATA_READ;
508 
509 		/* data.flags must already be set before doing this. */
510 		mmc_set_data_timeout(&data, card);
511 
512 		/* Allow overriding the timeout_ns for empirical tuning. */
513 		if (idata->ic.data_timeout_ns)
514 			data.timeout_ns = idata->ic.data_timeout_ns;
515 
516 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
517 			/*
518 			 * Pretend this is a data transfer and rely on the
519 			 * host driver to compute timeout.  When all host
520 			 * drivers support cmd.cmd_timeout for R1B, this
521 			 * can be changed to:
522 			 *
523 			 *     mrq.data = NULL;
524 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
525 			 */
526 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
527 		}
528 
529 		mrq.data = &data;
530 	}
531 
532 	mrq.cmd = &cmd;
533 
534 	err = mmc_blk_part_switch(card, target_part);
535 	if (err)
536 		return err;
537 
538 	if (idata->ic.is_acmd) {
539 		err = mmc_app_cmd(card->host, card);
540 		if (err)
541 			return err;
542 	}
543 
544 	if (idata->rpmb) {
545 		sbc.opcode = MMC_SET_BLOCK_COUNT;
546 		/*
547 		 * We don't do any blockcount validation because the max size
548 		 * may be increased by a future standard. We just copy the
549 		 * 'Reliable Write' bit here.
550 		 */
551 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
552 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
553 		mrq.sbc = &sbc;
554 	}
555 
556 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
557 	    (cmd.opcode == MMC_SWITCH))
558 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
559 
560 	mmc_wait_for_req(card->host, &mrq);
561 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
562 
563 	if (cmd.error) {
564 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
565 						__func__, cmd.error);
566 		return cmd.error;
567 	}
568 	if (data.error) {
569 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
570 						__func__, data.error);
571 		return data.error;
572 	}
573 
574 	/*
575 	 * Make sure the cache of the PARTITION_CONFIG register and
576 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
577 	 * changed it successfully.
578 	 */
579 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
580 	    (cmd.opcode == MMC_SWITCH)) {
581 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
582 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
583 
584 		/*
585 		 * Update cache so the next mmc_blk_part_switch call operates
586 		 * on up-to-date data.
587 		 */
588 		card->ext_csd.part_config = value;
589 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
590 	}
591 
592 	/*
593 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
594 	 * will get turned back on if the card is re-initialized, e.g.
595 	 * suspend/resume or hw reset in recovery.
596 	 */
597 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
598 	    (cmd.opcode == MMC_SWITCH)) {
599 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
600 
601 		card->ext_csd.cache_ctrl = value;
602 	}
603 
604 	/*
605 	 * According to the SD specs, some commands require a delay after
606 	 * issuing the command.
607 	 */
608 	if (idata->ic.postsleep_min_us)
609 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
610 
611 	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
612 		/*
613 		 * Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we
614 		 * allow to override the default timeout value if a custom timeout is specified.
615 		 */
616 		err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS,
617 					false, MMC_BUSY_IO);
618 	}
619 
620 	return err;
621 }
622 
623 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
624 			     struct mmc_ioc_cmd __user *ic_ptr,
625 			     struct mmc_rpmb_data *rpmb)
626 {
627 	struct mmc_blk_ioc_data *idata;
628 	struct mmc_blk_ioc_data *idatas[1];
629 	struct mmc_queue *mq;
630 	struct mmc_card *card;
631 	int err = 0, ioc_err = 0;
632 	struct request *req;
633 
634 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
635 	if (IS_ERR(idata))
636 		return PTR_ERR(idata);
637 	/* This will be NULL on non-RPMB ioctl():s */
638 	idata->rpmb = rpmb;
639 
640 	card = md->queue.card;
641 	if (IS_ERR(card)) {
642 		err = PTR_ERR(card);
643 		goto cmd_done;
644 	}
645 
646 	/*
647 	 * Dispatch the ioctl() into the block request queue.
648 	 */
649 	mq = &md->queue;
650 	req = blk_mq_alloc_request(mq->queue,
651 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
652 	if (IS_ERR(req)) {
653 		err = PTR_ERR(req);
654 		goto cmd_done;
655 	}
656 	idatas[0] = idata;
657 	req_to_mmc_queue_req(req)->drv_op =
658 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
659 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
660 	req_to_mmc_queue_req(req)->ioc_count = 1;
661 	blk_execute_rq(req, false);
662 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
663 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
664 	blk_mq_free_request(req);
665 
666 cmd_done:
667 	kfree(idata->buf);
668 	kfree(idata);
669 	return ioc_err ? ioc_err : err;
670 }
671 
672 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
673 				   struct mmc_ioc_multi_cmd __user *user,
674 				   struct mmc_rpmb_data *rpmb)
675 {
676 	struct mmc_blk_ioc_data **idata = NULL;
677 	struct mmc_ioc_cmd __user *cmds = user->cmds;
678 	struct mmc_card *card;
679 	struct mmc_queue *mq;
680 	int err = 0, ioc_err = 0;
681 	__u64 num_of_cmds;
682 	unsigned int i, n;
683 	struct request *req;
684 
685 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
686 			   sizeof(num_of_cmds)))
687 		return -EFAULT;
688 
689 	if (!num_of_cmds)
690 		return 0;
691 
692 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
693 		return -EINVAL;
694 
695 	n = num_of_cmds;
696 	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
697 	if (!idata)
698 		return -ENOMEM;
699 
700 	for (i = 0; i < n; i++) {
701 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
702 		if (IS_ERR(idata[i])) {
703 			err = PTR_ERR(idata[i]);
704 			n = i;
705 			goto cmd_err;
706 		}
707 		/* This will be NULL on non-RPMB ioctl():s */
708 		idata[i]->rpmb = rpmb;
709 	}
710 
711 	card = md->queue.card;
712 	if (IS_ERR(card)) {
713 		err = PTR_ERR(card);
714 		goto cmd_err;
715 	}
716 
717 
718 	/*
719 	 * Dispatch the ioctl()s into the block request queue.
720 	 */
721 	mq = &md->queue;
722 	req = blk_mq_alloc_request(mq->queue,
723 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
724 	if (IS_ERR(req)) {
725 		err = PTR_ERR(req);
726 		goto cmd_err;
727 	}
728 	req_to_mmc_queue_req(req)->drv_op =
729 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
730 	req_to_mmc_queue_req(req)->drv_op_data = idata;
731 	req_to_mmc_queue_req(req)->ioc_count = n;
732 	blk_execute_rq(req, false);
733 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
734 
735 	/* copy to user if data and response */
736 	for (i = 0; i < n && !err; i++)
737 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
738 
739 	blk_mq_free_request(req);
740 
741 cmd_err:
742 	for (i = 0; i < n; i++) {
743 		kfree(idata[i]->buf);
744 		kfree(idata[i]);
745 	}
746 	kfree(idata);
747 	return ioc_err ? ioc_err : err;
748 }
749 
750 static int mmc_blk_check_blkdev(struct block_device *bdev)
751 {
752 	/*
753 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
754 	 * whole block device, not on a partition.  This prevents overspray
755 	 * between sibling partitions.
756 	 */
757 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
758 		return -EPERM;
759 	return 0;
760 }
761 
762 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
763 	unsigned int cmd, unsigned long arg)
764 {
765 	struct mmc_blk_data *md;
766 	int ret;
767 
768 	switch (cmd) {
769 	case MMC_IOC_CMD:
770 		ret = mmc_blk_check_blkdev(bdev);
771 		if (ret)
772 			return ret;
773 		md = mmc_blk_get(bdev->bd_disk);
774 		if (!md)
775 			return -EINVAL;
776 		ret = mmc_blk_ioctl_cmd(md,
777 					(struct mmc_ioc_cmd __user *)arg,
778 					NULL);
779 		mmc_blk_put(md);
780 		return ret;
781 	case MMC_IOC_MULTI_CMD:
782 		ret = mmc_blk_check_blkdev(bdev);
783 		if (ret)
784 			return ret;
785 		md = mmc_blk_get(bdev->bd_disk);
786 		if (!md)
787 			return -EINVAL;
788 		ret = mmc_blk_ioctl_multi_cmd(md,
789 					(struct mmc_ioc_multi_cmd __user *)arg,
790 					NULL);
791 		mmc_blk_put(md);
792 		return ret;
793 	default:
794 		return -EINVAL;
795 	}
796 }
797 
798 #ifdef CONFIG_COMPAT
799 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
800 	unsigned int cmd, unsigned long arg)
801 {
802 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
803 }
804 #endif
805 
806 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
807 					  sector_t *sector)
808 {
809 	struct mmc_blk_data *md;
810 	int ret;
811 
812 	md = mmc_blk_get(disk);
813 	if (!md)
814 		return -EINVAL;
815 
816 	if (md->queue.card)
817 		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
818 	else
819 		ret = -ENODEV;
820 
821 	mmc_blk_put(md);
822 
823 	return ret;
824 }
825 
826 static const struct block_device_operations mmc_bdops = {
827 	.open			= mmc_blk_open,
828 	.release		= mmc_blk_release,
829 	.getgeo			= mmc_blk_getgeo,
830 	.owner			= THIS_MODULE,
831 	.ioctl			= mmc_blk_ioctl,
832 #ifdef CONFIG_COMPAT
833 	.compat_ioctl		= mmc_blk_compat_ioctl,
834 #endif
835 	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
836 };
837 
838 static int mmc_blk_part_switch_pre(struct mmc_card *card,
839 				   unsigned int part_type)
840 {
841 	int ret = 0;
842 
843 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
844 		if (card->ext_csd.cmdq_en) {
845 			ret = mmc_cmdq_disable(card);
846 			if (ret)
847 				return ret;
848 		}
849 		mmc_retune_pause(card->host);
850 	}
851 
852 	return ret;
853 }
854 
855 static int mmc_blk_part_switch_post(struct mmc_card *card,
856 				    unsigned int part_type)
857 {
858 	int ret = 0;
859 
860 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
861 		mmc_retune_unpause(card->host);
862 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
863 			ret = mmc_cmdq_enable(card);
864 	}
865 
866 	return ret;
867 }
868 
869 static inline int mmc_blk_part_switch(struct mmc_card *card,
870 				      unsigned int part_type)
871 {
872 	int ret = 0;
873 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
874 
875 	if (main_md->part_curr == part_type)
876 		return 0;
877 
878 	if (mmc_card_mmc(card)) {
879 		u8 part_config = card->ext_csd.part_config;
880 
881 		ret = mmc_blk_part_switch_pre(card, part_type);
882 		if (ret)
883 			return ret;
884 
885 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
886 		part_config |= part_type;
887 
888 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
889 				 EXT_CSD_PART_CONFIG, part_config,
890 				 card->ext_csd.part_time);
891 		if (ret) {
892 			mmc_blk_part_switch_post(card, part_type);
893 			return ret;
894 		}
895 
896 		card->ext_csd.part_config = part_config;
897 
898 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
899 	}
900 
901 	main_md->part_curr = part_type;
902 	return ret;
903 }
904 
905 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
906 {
907 	int err;
908 	u32 result;
909 	__be32 *blocks;
910 
911 	struct mmc_request mrq = {};
912 	struct mmc_command cmd = {};
913 	struct mmc_data data = {};
914 
915 	struct scatterlist sg;
916 
917 	cmd.opcode = MMC_APP_CMD;
918 	cmd.arg = card->rca << 16;
919 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
920 
921 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
922 	if (err)
923 		return err;
924 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
925 		return -EIO;
926 
927 	memset(&cmd, 0, sizeof(struct mmc_command));
928 
929 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
930 	cmd.arg = 0;
931 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
932 
933 	data.blksz = 4;
934 	data.blocks = 1;
935 	data.flags = MMC_DATA_READ;
936 	data.sg = &sg;
937 	data.sg_len = 1;
938 	mmc_set_data_timeout(&data, card);
939 
940 	mrq.cmd = &cmd;
941 	mrq.data = &data;
942 
943 	blocks = kmalloc(4, GFP_KERNEL);
944 	if (!blocks)
945 		return -ENOMEM;
946 
947 	sg_init_one(&sg, blocks, 4);
948 
949 	mmc_wait_for_req(card->host, &mrq);
950 
951 	result = ntohl(*blocks);
952 	kfree(blocks);
953 
954 	if (cmd.error || data.error)
955 		return -EIO;
956 
957 	*written_blocks = result;
958 
959 	return 0;
960 }
961 
962 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
963 {
964 	if (host->actual_clock)
965 		return host->actual_clock / 1000;
966 
967 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
968 	if (host->ios.clock)
969 		return host->ios.clock / 2000;
970 
971 	/* How can there be no clock */
972 	WARN_ON_ONCE(1);
973 	return 100; /* 100 kHz is minimum possible value */
974 }
975 
976 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
977 					    struct mmc_data *data)
978 {
979 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
980 	unsigned int khz;
981 
982 	if (data->timeout_clks) {
983 		khz = mmc_blk_clock_khz(host);
984 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
985 	}
986 
987 	return ms;
988 }
989 
990 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
991 			 int type)
992 {
993 	int err;
994 
995 	if (md->reset_done & type)
996 		return -EEXIST;
997 
998 	md->reset_done |= type;
999 	err = mmc_hw_reset(host->card);
1000 	/* Ensure we switch back to the correct partition */
1001 	if (err) {
1002 		struct mmc_blk_data *main_md =
1003 			dev_get_drvdata(&host->card->dev);
1004 		int part_err;
1005 
1006 		main_md->part_curr = main_md->part_type;
1007 		part_err = mmc_blk_part_switch(host->card, md->part_type);
1008 		if (part_err) {
1009 			/*
1010 			 * We have failed to get back into the correct
1011 			 * partition, so we need to abort the whole request.
1012 			 */
1013 			return -ENODEV;
1014 		}
1015 	}
1016 	return err;
1017 }
1018 
1019 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1020 {
1021 	md->reset_done &= ~type;
1022 }
1023 
1024 /*
1025  * The non-block commands come back from the block layer after it queued it and
1026  * processed it with all other requests and then they get issued in this
1027  * function.
1028  */
1029 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1030 {
1031 	struct mmc_queue_req *mq_rq;
1032 	struct mmc_card *card = mq->card;
1033 	struct mmc_blk_data *md = mq->blkdata;
1034 	struct mmc_blk_ioc_data **idata;
1035 	bool rpmb_ioctl;
1036 	u8 **ext_csd;
1037 	u32 status;
1038 	int ret;
1039 	int i;
1040 
1041 	mq_rq = req_to_mmc_queue_req(req);
1042 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1043 
1044 	switch (mq_rq->drv_op) {
1045 	case MMC_DRV_OP_IOCTL:
1046 		if (card->ext_csd.cmdq_en) {
1047 			ret = mmc_cmdq_disable(card);
1048 			if (ret)
1049 				break;
1050 		}
1051 		fallthrough;
1052 	case MMC_DRV_OP_IOCTL_RPMB:
1053 		idata = mq_rq->drv_op_data;
1054 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1055 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1056 			if (ret)
1057 				break;
1058 		}
1059 		/* Always switch back to main area after RPMB access */
1060 		if (rpmb_ioctl)
1061 			mmc_blk_part_switch(card, 0);
1062 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1063 			mmc_cmdq_enable(card);
1064 		break;
1065 	case MMC_DRV_OP_BOOT_WP:
1066 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1067 				 card->ext_csd.boot_ro_lock |
1068 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1069 				 card->ext_csd.part_time);
1070 		if (ret)
1071 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1072 			       md->disk->disk_name, ret);
1073 		else
1074 			card->ext_csd.boot_ro_lock |=
1075 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1076 		break;
1077 	case MMC_DRV_OP_GET_CARD_STATUS:
1078 		ret = mmc_send_status(card, &status);
1079 		if (!ret)
1080 			ret = status;
1081 		break;
1082 	case MMC_DRV_OP_GET_EXT_CSD:
1083 		ext_csd = mq_rq->drv_op_data;
1084 		ret = mmc_get_ext_csd(card, ext_csd);
1085 		break;
1086 	default:
1087 		pr_err("%s: unknown driver specific operation\n",
1088 		       md->disk->disk_name);
1089 		ret = -EINVAL;
1090 		break;
1091 	}
1092 	mq_rq->drv_op_result = ret;
1093 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1094 }
1095 
1096 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1097 				   int type, unsigned int erase_arg)
1098 {
1099 	struct mmc_blk_data *md = mq->blkdata;
1100 	struct mmc_card *card = md->queue.card;
1101 	unsigned int from, nr;
1102 	int err = 0;
1103 	blk_status_t status = BLK_STS_OK;
1104 
1105 	if (!mmc_can_erase(card)) {
1106 		status = BLK_STS_NOTSUPP;
1107 		goto fail;
1108 	}
1109 
1110 	from = blk_rq_pos(req);
1111 	nr = blk_rq_sectors(req);
1112 
1113 	do {
1114 		err = 0;
1115 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1116 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1117 					 INAND_CMD38_ARG_EXT_CSD,
1118 					 erase_arg == MMC_TRIM_ARG ?
1119 					 INAND_CMD38_ARG_TRIM :
1120 					 INAND_CMD38_ARG_ERASE,
1121 					 card->ext_csd.generic_cmd6_time);
1122 		}
1123 		if (!err)
1124 			err = mmc_erase(card, from, nr, erase_arg);
1125 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1126 	if (err)
1127 		status = BLK_STS_IOERR;
1128 	else
1129 		mmc_blk_reset_success(md, type);
1130 fail:
1131 	blk_mq_end_request(req, status);
1132 }
1133 
1134 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1135 {
1136 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1137 }
1138 
1139 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1140 {
1141 	struct mmc_blk_data *md = mq->blkdata;
1142 	struct mmc_card *card = md->queue.card;
1143 
1144 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, card->erase_arg);
1145 }
1146 
1147 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1148 				       struct request *req)
1149 {
1150 	struct mmc_blk_data *md = mq->blkdata;
1151 	struct mmc_card *card = md->queue.card;
1152 	unsigned int from, nr, arg;
1153 	int err = 0, type = MMC_BLK_SECDISCARD;
1154 	blk_status_t status = BLK_STS_OK;
1155 
1156 	if (!(mmc_can_secure_erase_trim(card))) {
1157 		status = BLK_STS_NOTSUPP;
1158 		goto out;
1159 	}
1160 
1161 	from = blk_rq_pos(req);
1162 	nr = blk_rq_sectors(req);
1163 
1164 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1165 		arg = MMC_SECURE_TRIM1_ARG;
1166 	else
1167 		arg = MMC_SECURE_ERASE_ARG;
1168 
1169 retry:
1170 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1171 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1172 				 INAND_CMD38_ARG_EXT_CSD,
1173 				 arg == MMC_SECURE_TRIM1_ARG ?
1174 				 INAND_CMD38_ARG_SECTRIM1 :
1175 				 INAND_CMD38_ARG_SECERASE,
1176 				 card->ext_csd.generic_cmd6_time);
1177 		if (err)
1178 			goto out_retry;
1179 	}
1180 
1181 	err = mmc_erase(card, from, nr, arg);
1182 	if (err == -EIO)
1183 		goto out_retry;
1184 	if (err) {
1185 		status = BLK_STS_IOERR;
1186 		goto out;
1187 	}
1188 
1189 	if (arg == MMC_SECURE_TRIM1_ARG) {
1190 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1191 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1192 					 INAND_CMD38_ARG_EXT_CSD,
1193 					 INAND_CMD38_ARG_SECTRIM2,
1194 					 card->ext_csd.generic_cmd6_time);
1195 			if (err)
1196 				goto out_retry;
1197 		}
1198 
1199 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1200 		if (err == -EIO)
1201 			goto out_retry;
1202 		if (err) {
1203 			status = BLK_STS_IOERR;
1204 			goto out;
1205 		}
1206 	}
1207 
1208 out_retry:
1209 	if (err && !mmc_blk_reset(md, card->host, type))
1210 		goto retry;
1211 	if (!err)
1212 		mmc_blk_reset_success(md, type);
1213 out:
1214 	blk_mq_end_request(req, status);
1215 }
1216 
1217 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1218 {
1219 	struct mmc_blk_data *md = mq->blkdata;
1220 	struct mmc_card *card = md->queue.card;
1221 	int ret = 0;
1222 
1223 	ret = mmc_flush_cache(card->host);
1224 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1225 }
1226 
1227 /*
1228  * Reformat current write as a reliable write, supporting
1229  * both legacy and the enhanced reliable write MMC cards.
1230  * In each transfer we'll handle only as much as a single
1231  * reliable write can handle, thus finish the request in
1232  * partial completions.
1233  */
1234 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1235 				    struct mmc_card *card,
1236 				    struct request *req)
1237 {
1238 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1239 		/* Legacy mode imposes restrictions on transfers. */
1240 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1241 			brq->data.blocks = 1;
1242 
1243 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1244 			brq->data.blocks = card->ext_csd.rel_sectors;
1245 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1246 			brq->data.blocks = 1;
1247 	}
1248 }
1249 
1250 #define CMD_ERRORS_EXCL_OOR						\
1251 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1252 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1253 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1254 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1255 	 R1_CC_ERROR |		/* Card controller error */		\
1256 	 R1_ERROR)		/* General/unknown error */
1257 
1258 #define CMD_ERRORS							\
1259 	(CMD_ERRORS_EXCL_OOR |						\
1260 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1261 
1262 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1263 {
1264 	u32 val;
1265 
1266 	/*
1267 	 * Per the SD specification(physical layer version 4.10)[1],
1268 	 * section 4.3.3, it explicitly states that "When the last
1269 	 * block of user area is read using CMD18, the host should
1270 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1271 	 * is correct". And JESD84-B51 for eMMC also has a similar
1272 	 * statement on section 6.8.3.
1273 	 *
1274 	 * Multiple block read/write could be done by either predefined
1275 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1276 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1277 	 *
1278 	 * However the spec[1] doesn't tell us whether we should also
1279 	 * ignore that for predefined method. But per the spec[1], section
1280 	 * 4.15 Set Block Count Command, it says"If illegal block count
1281 	 * is set, out of range error will be indicated during read/write
1282 	 * operation (For example, data transfer is stopped at user area
1283 	 * boundary)." In another word, we could expect a out of range error
1284 	 * in the response for the following CMD18/25. And if argument of
1285 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1286 	 * we could also expect to get a -ETIMEDOUT or any error number from
1287 	 * the host drivers due to missing data response(for write)/data(for
1288 	 * read), as the cards will stop the data transfer by itself per the
1289 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1290 	 */
1291 
1292 	if (!brq->stop.error) {
1293 		bool oor_with_open_end;
1294 		/* If there is no error yet, check R1 response */
1295 
1296 		val = brq->stop.resp[0] & CMD_ERRORS;
1297 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1298 
1299 		if (val && !oor_with_open_end)
1300 			brq->stop.error = -EIO;
1301 	}
1302 }
1303 
1304 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1305 			      int disable_multi, bool *do_rel_wr_p,
1306 			      bool *do_data_tag_p)
1307 {
1308 	struct mmc_blk_data *md = mq->blkdata;
1309 	struct mmc_card *card = md->queue.card;
1310 	struct mmc_blk_request *brq = &mqrq->brq;
1311 	struct request *req = mmc_queue_req_to_req(mqrq);
1312 	bool do_rel_wr, do_data_tag;
1313 
1314 	/*
1315 	 * Reliable writes are used to implement Forced Unit Access and
1316 	 * are supported only on MMCs.
1317 	 */
1318 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1319 		    rq_data_dir(req) == WRITE &&
1320 		    (md->flags & MMC_BLK_REL_WR);
1321 
1322 	memset(brq, 0, sizeof(struct mmc_blk_request));
1323 
1324 	mmc_crypto_prepare_req(mqrq);
1325 
1326 	brq->mrq.data = &brq->data;
1327 	brq->mrq.tag = req->tag;
1328 
1329 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1330 	brq->stop.arg = 0;
1331 
1332 	if (rq_data_dir(req) == READ) {
1333 		brq->data.flags = MMC_DATA_READ;
1334 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1335 	} else {
1336 		brq->data.flags = MMC_DATA_WRITE;
1337 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1338 	}
1339 
1340 	brq->data.blksz = 512;
1341 	brq->data.blocks = blk_rq_sectors(req);
1342 	brq->data.blk_addr = blk_rq_pos(req);
1343 
1344 	/*
1345 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1346 	 * The eMMC will give "high" priority tasks priority over "simple"
1347 	 * priority tasks. Here we always set "simple" priority by not setting
1348 	 * MMC_DATA_PRIO.
1349 	 */
1350 
1351 	/*
1352 	 * The block layer doesn't support all sector count
1353 	 * restrictions, so we need to be prepared for too big
1354 	 * requests.
1355 	 */
1356 	if (brq->data.blocks > card->host->max_blk_count)
1357 		brq->data.blocks = card->host->max_blk_count;
1358 
1359 	if (brq->data.blocks > 1) {
1360 		/*
1361 		 * Some SD cards in SPI mode return a CRC error or even lock up
1362 		 * completely when trying to read the last block using a
1363 		 * multiblock read command.
1364 		 */
1365 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1366 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1367 		     get_capacity(md->disk)))
1368 			brq->data.blocks--;
1369 
1370 		/*
1371 		 * After a read error, we redo the request one sector
1372 		 * at a time in order to accurately determine which
1373 		 * sectors can be read successfully.
1374 		 */
1375 		if (disable_multi)
1376 			brq->data.blocks = 1;
1377 
1378 		/*
1379 		 * Some controllers have HW issues while operating
1380 		 * in multiple I/O mode
1381 		 */
1382 		if (card->host->ops->multi_io_quirk)
1383 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1384 						(rq_data_dir(req) == READ) ?
1385 						MMC_DATA_READ : MMC_DATA_WRITE,
1386 						brq->data.blocks);
1387 	}
1388 
1389 	if (do_rel_wr) {
1390 		mmc_apply_rel_rw(brq, card, req);
1391 		brq->data.flags |= MMC_DATA_REL_WR;
1392 	}
1393 
1394 	/*
1395 	 * Data tag is used only during writing meta data to speed
1396 	 * up write and any subsequent read of this meta data
1397 	 */
1398 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1399 		      (req->cmd_flags & REQ_META) &&
1400 		      (rq_data_dir(req) == WRITE) &&
1401 		      ((brq->data.blocks * brq->data.blksz) >=
1402 		       card->ext_csd.data_tag_unit_size);
1403 
1404 	if (do_data_tag)
1405 		brq->data.flags |= MMC_DATA_DAT_TAG;
1406 
1407 	mmc_set_data_timeout(&brq->data, card);
1408 
1409 	brq->data.sg = mqrq->sg;
1410 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1411 
1412 	/*
1413 	 * Adjust the sg list so it is the same size as the
1414 	 * request.
1415 	 */
1416 	if (brq->data.blocks != blk_rq_sectors(req)) {
1417 		int i, data_size = brq->data.blocks << 9;
1418 		struct scatterlist *sg;
1419 
1420 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1421 			data_size -= sg->length;
1422 			if (data_size <= 0) {
1423 				sg->length += data_size;
1424 				i++;
1425 				break;
1426 			}
1427 		}
1428 		brq->data.sg_len = i;
1429 	}
1430 
1431 	if (do_rel_wr_p)
1432 		*do_rel_wr_p = do_rel_wr;
1433 
1434 	if (do_data_tag_p)
1435 		*do_data_tag_p = do_data_tag;
1436 }
1437 
1438 #define MMC_CQE_RETRIES 2
1439 
1440 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1441 {
1442 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1443 	struct mmc_request *mrq = &mqrq->brq.mrq;
1444 	struct request_queue *q = req->q;
1445 	struct mmc_host *host = mq->card->host;
1446 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1447 	unsigned long flags;
1448 	bool put_card;
1449 	int err;
1450 
1451 	mmc_cqe_post_req(host, mrq);
1452 
1453 	if (mrq->cmd && mrq->cmd->error)
1454 		err = mrq->cmd->error;
1455 	else if (mrq->data && mrq->data->error)
1456 		err = mrq->data->error;
1457 	else
1458 		err = 0;
1459 
1460 	if (err) {
1461 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1462 			blk_mq_requeue_request(req, true);
1463 		else
1464 			blk_mq_end_request(req, BLK_STS_IOERR);
1465 	} else if (mrq->data) {
1466 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1467 			blk_mq_requeue_request(req, true);
1468 		else
1469 			__blk_mq_end_request(req, BLK_STS_OK);
1470 	} else {
1471 		blk_mq_end_request(req, BLK_STS_OK);
1472 	}
1473 
1474 	spin_lock_irqsave(&mq->lock, flags);
1475 
1476 	mq->in_flight[issue_type] -= 1;
1477 
1478 	put_card = (mmc_tot_in_flight(mq) == 0);
1479 
1480 	mmc_cqe_check_busy(mq);
1481 
1482 	spin_unlock_irqrestore(&mq->lock, flags);
1483 
1484 	if (!mq->cqe_busy)
1485 		blk_mq_run_hw_queues(q, true);
1486 
1487 	if (put_card)
1488 		mmc_put_card(mq->card, &mq->ctx);
1489 }
1490 
1491 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1492 {
1493 	struct mmc_card *card = mq->card;
1494 	struct mmc_host *host = card->host;
1495 	int err;
1496 
1497 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1498 
1499 	err = mmc_cqe_recovery(host);
1500 	if (err)
1501 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1502 	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1503 
1504 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1505 }
1506 
1507 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1508 {
1509 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1510 						  brq.mrq);
1511 	struct request *req = mmc_queue_req_to_req(mqrq);
1512 	struct request_queue *q = req->q;
1513 	struct mmc_queue *mq = q->queuedata;
1514 
1515 	/*
1516 	 * Block layer timeouts race with completions which means the normal
1517 	 * completion path cannot be used during recovery.
1518 	 */
1519 	if (mq->in_recovery)
1520 		mmc_blk_cqe_complete_rq(mq, req);
1521 	else if (likely(!blk_should_fake_timeout(req->q)))
1522 		blk_mq_complete_request(req);
1523 }
1524 
1525 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1526 {
1527 	mrq->done		= mmc_blk_cqe_req_done;
1528 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1529 
1530 	return mmc_cqe_start_req(host, mrq);
1531 }
1532 
1533 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1534 						 struct request *req)
1535 {
1536 	struct mmc_blk_request *brq = &mqrq->brq;
1537 
1538 	memset(brq, 0, sizeof(*brq));
1539 
1540 	brq->mrq.cmd = &brq->cmd;
1541 	brq->mrq.tag = req->tag;
1542 
1543 	return &brq->mrq;
1544 }
1545 
1546 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1547 {
1548 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1549 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1550 
1551 	mrq->cmd->opcode = MMC_SWITCH;
1552 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1553 			(EXT_CSD_FLUSH_CACHE << 16) |
1554 			(1 << 8) |
1555 			EXT_CSD_CMD_SET_NORMAL;
1556 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1557 
1558 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1559 }
1560 
1561 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1562 {
1563 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1564 	struct mmc_host *host = mq->card->host;
1565 	int err;
1566 
1567 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1568 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1569 	mmc_pre_req(host, &mqrq->brq.mrq);
1570 
1571 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1572 	if (err)
1573 		mmc_post_req(host, &mqrq->brq.mrq, err);
1574 
1575 	return err;
1576 }
1577 
1578 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1579 {
1580 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1581 	struct mmc_host *host = mq->card->host;
1582 
1583 	if (host->hsq_enabled)
1584 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1585 
1586 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1587 
1588 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1589 }
1590 
1591 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1592 			       struct mmc_card *card,
1593 			       int disable_multi,
1594 			       struct mmc_queue *mq)
1595 {
1596 	u32 readcmd, writecmd;
1597 	struct mmc_blk_request *brq = &mqrq->brq;
1598 	struct request *req = mmc_queue_req_to_req(mqrq);
1599 	struct mmc_blk_data *md = mq->blkdata;
1600 	bool do_rel_wr, do_data_tag;
1601 
1602 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1603 
1604 	brq->mrq.cmd = &brq->cmd;
1605 
1606 	brq->cmd.arg = blk_rq_pos(req);
1607 	if (!mmc_card_blockaddr(card))
1608 		brq->cmd.arg <<= 9;
1609 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1610 
1611 	if (brq->data.blocks > 1 || do_rel_wr) {
1612 		/* SPI multiblock writes terminate using a special
1613 		 * token, not a STOP_TRANSMISSION request.
1614 		 */
1615 		if (!mmc_host_is_spi(card->host) ||
1616 		    rq_data_dir(req) == READ)
1617 			brq->mrq.stop = &brq->stop;
1618 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1619 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1620 	} else {
1621 		brq->mrq.stop = NULL;
1622 		readcmd = MMC_READ_SINGLE_BLOCK;
1623 		writecmd = MMC_WRITE_BLOCK;
1624 	}
1625 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1626 
1627 	/*
1628 	 * Pre-defined multi-block transfers are preferable to
1629 	 * open ended-ones (and necessary for reliable writes).
1630 	 * However, it is not sufficient to just send CMD23,
1631 	 * and avoid the final CMD12, as on an error condition
1632 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1633 	 * with Auto-CMD23 enhancements provided by some
1634 	 * hosts, means that the complexity of dealing
1635 	 * with this is best left to the host. If CMD23 is
1636 	 * supported by card and host, we'll fill sbc in and let
1637 	 * the host deal with handling it correctly. This means
1638 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1639 	 * change of behavior will be observed.
1640 	 *
1641 	 * N.B: Some MMC cards experience perf degradation.
1642 	 * We'll avoid using CMD23-bounded multiblock writes for
1643 	 * these, while retaining features like reliable writes.
1644 	 */
1645 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1646 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1647 	     do_data_tag)) {
1648 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1649 		brq->sbc.arg = brq->data.blocks |
1650 			(do_rel_wr ? (1 << 31) : 0) |
1651 			(do_data_tag ? (1 << 29) : 0);
1652 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1653 		brq->mrq.sbc = &brq->sbc;
1654 	}
1655 }
1656 
1657 #define MMC_MAX_RETRIES		5
1658 #define MMC_DATA_RETRIES	2
1659 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1660 
1661 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1662 {
1663 	struct mmc_command cmd = {
1664 		.opcode = MMC_STOP_TRANSMISSION,
1665 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1666 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1667 		.busy_timeout = timeout,
1668 	};
1669 
1670 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1671 }
1672 
1673 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1674 {
1675 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1676 	struct mmc_blk_request *brq = &mqrq->brq;
1677 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1678 	int err;
1679 
1680 	mmc_retune_hold_now(card->host);
1681 
1682 	mmc_blk_send_stop(card, timeout);
1683 
1684 	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1685 
1686 	mmc_retune_release(card->host);
1687 
1688 	return err;
1689 }
1690 
1691 #define MMC_READ_SINGLE_RETRIES	2
1692 
1693 /* Single sector read during recovery */
1694 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1695 {
1696 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1697 	struct mmc_request *mrq = &mqrq->brq.mrq;
1698 	struct mmc_card *card = mq->card;
1699 	struct mmc_host *host = card->host;
1700 	blk_status_t error = BLK_STS_OK;
1701 
1702 	do {
1703 		u32 status;
1704 		int err;
1705 		int retries = 0;
1706 
1707 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1708 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1709 
1710 			mmc_wait_for_req(host, mrq);
1711 
1712 			err = mmc_send_status(card, &status);
1713 			if (err)
1714 				goto error_exit;
1715 
1716 			if (!mmc_host_is_spi(host) &&
1717 			    !mmc_ready_for_data(status)) {
1718 				err = mmc_blk_fix_state(card, req);
1719 				if (err)
1720 					goto error_exit;
1721 			}
1722 
1723 			if (!mrq->cmd->error)
1724 				break;
1725 		}
1726 
1727 		if (mrq->cmd->error ||
1728 		    mrq->data->error ||
1729 		    (!mmc_host_is_spi(host) &&
1730 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1731 			error = BLK_STS_IOERR;
1732 		else
1733 			error = BLK_STS_OK;
1734 
1735 	} while (blk_update_request(req, error, 512));
1736 
1737 	return;
1738 
1739 error_exit:
1740 	mrq->data->bytes_xfered = 0;
1741 	blk_update_request(req, BLK_STS_IOERR, 512);
1742 	/* Let it try the remaining request again */
1743 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1744 		mqrq->retries = MMC_MAX_RETRIES - 1;
1745 }
1746 
1747 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1748 {
1749 	return !!brq->mrq.sbc;
1750 }
1751 
1752 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1753 {
1754 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1755 }
1756 
1757 /*
1758  * Check for errors the host controller driver might not have seen such as
1759  * response mode errors or invalid card state.
1760  */
1761 static bool mmc_blk_status_error(struct request *req, u32 status)
1762 {
1763 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1764 	struct mmc_blk_request *brq = &mqrq->brq;
1765 	struct mmc_queue *mq = req->q->queuedata;
1766 	u32 stop_err_bits;
1767 
1768 	if (mmc_host_is_spi(mq->card->host))
1769 		return false;
1770 
1771 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1772 
1773 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1774 	       brq->stop.resp[0] & stop_err_bits ||
1775 	       status            & stop_err_bits ||
1776 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1777 }
1778 
1779 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1780 {
1781 	return !brq->sbc.error && !brq->cmd.error &&
1782 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1783 }
1784 
1785 /*
1786  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1787  * policy:
1788  * 1. A request that has transferred at least some data is considered
1789  * successful and will be requeued if there is remaining data to
1790  * transfer.
1791  * 2. Otherwise the number of retries is incremented and the request
1792  * will be requeued if there are remaining retries.
1793  * 3. Otherwise the request will be errored out.
1794  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1795  * mqrq->retries. So there are only 4 possible actions here:
1796  *	1. do not accept the bytes_xfered value i.e. set it to zero
1797  *	2. change mqrq->retries to determine the number of retries
1798  *	3. try to reset the card
1799  *	4. read one sector at a time
1800  */
1801 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1802 {
1803 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1804 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1805 	struct mmc_blk_request *brq = &mqrq->brq;
1806 	struct mmc_blk_data *md = mq->blkdata;
1807 	struct mmc_card *card = mq->card;
1808 	u32 status;
1809 	u32 blocks;
1810 	int err;
1811 
1812 	/*
1813 	 * Some errors the host driver might not have seen. Set the number of
1814 	 * bytes transferred to zero in that case.
1815 	 */
1816 	err = __mmc_send_status(card, &status, 0);
1817 	if (err || mmc_blk_status_error(req, status))
1818 		brq->data.bytes_xfered = 0;
1819 
1820 	mmc_retune_release(card->host);
1821 
1822 	/*
1823 	 * Try again to get the status. This also provides an opportunity for
1824 	 * re-tuning.
1825 	 */
1826 	if (err)
1827 		err = __mmc_send_status(card, &status, 0);
1828 
1829 	/*
1830 	 * Nothing more to do after the number of bytes transferred has been
1831 	 * updated and there is no card.
1832 	 */
1833 	if (err && mmc_detect_card_removed(card->host))
1834 		return;
1835 
1836 	/* Try to get back to "tran" state */
1837 	if (!mmc_host_is_spi(mq->card->host) &&
1838 	    (err || !mmc_ready_for_data(status)))
1839 		err = mmc_blk_fix_state(mq->card, req);
1840 
1841 	/*
1842 	 * Special case for SD cards where the card might record the number of
1843 	 * blocks written.
1844 	 */
1845 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1846 	    rq_data_dir(req) == WRITE) {
1847 		if (mmc_sd_num_wr_blocks(card, &blocks))
1848 			brq->data.bytes_xfered = 0;
1849 		else
1850 			brq->data.bytes_xfered = blocks << 9;
1851 	}
1852 
1853 	/* Reset if the card is in a bad state */
1854 	if (!mmc_host_is_spi(mq->card->host) &&
1855 	    err && mmc_blk_reset(md, card->host, type)) {
1856 		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1857 		mqrq->retries = MMC_NO_RETRIES;
1858 		return;
1859 	}
1860 
1861 	/*
1862 	 * If anything was done, just return and if there is anything remaining
1863 	 * on the request it will get requeued.
1864 	 */
1865 	if (brq->data.bytes_xfered)
1866 		return;
1867 
1868 	/* Reset before last retry */
1869 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1870 		mmc_blk_reset(md, card->host, type);
1871 
1872 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1873 	if (brq->sbc.error || brq->cmd.error)
1874 		return;
1875 
1876 	/* Reduce the remaining retries for data errors */
1877 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1878 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1879 		return;
1880 	}
1881 
1882 	/* FIXME: Missing single sector read for large sector size */
1883 	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1884 	    brq->data.blocks > 1) {
1885 		/* Read one sector at a time */
1886 		mmc_blk_read_single(mq, req);
1887 		return;
1888 	}
1889 }
1890 
1891 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1892 {
1893 	mmc_blk_eval_resp_error(brq);
1894 
1895 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1896 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1897 }
1898 
1899 static int mmc_spi_err_check(struct mmc_card *card)
1900 {
1901 	u32 status = 0;
1902 	int err;
1903 
1904 	/*
1905 	 * SPI does not have a TRAN state we have to wait on, instead the
1906 	 * card is ready again when it no longer holds the line LOW.
1907 	 * We still have to ensure two things here before we know the write
1908 	 * was successful:
1909 	 * 1. The card has not disconnected during busy and we actually read our
1910 	 * own pull-up, thinking it was still connected, so ensure it
1911 	 * still responds.
1912 	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1913 	 * just reconnected card after being disconnected during busy.
1914 	 */
1915 	err = __mmc_send_status(card, &status, 0);
1916 	if (err)
1917 		return err;
1918 	/* All R1 and R2 bits of SPI are errors in our case */
1919 	if (status)
1920 		return -EIO;
1921 	return 0;
1922 }
1923 
1924 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1925 {
1926 	struct mmc_blk_busy_data *data = cb_data;
1927 	u32 status = 0;
1928 	int err;
1929 
1930 	err = mmc_send_status(data->card, &status);
1931 	if (err)
1932 		return err;
1933 
1934 	/* Accumulate response error bits. */
1935 	data->status |= status;
1936 
1937 	*busy = !mmc_ready_for_data(status);
1938 	return 0;
1939 }
1940 
1941 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1942 {
1943 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1944 	struct mmc_blk_busy_data cb_data;
1945 	int err;
1946 
1947 	if (rq_data_dir(req) == READ)
1948 		return 0;
1949 
1950 	if (mmc_host_is_spi(card->host)) {
1951 		err = mmc_spi_err_check(card);
1952 		if (err)
1953 			mqrq->brq.data.bytes_xfered = 0;
1954 		return err;
1955 	}
1956 
1957 	cb_data.card = card;
1958 	cb_data.status = 0;
1959 	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1960 				  &mmc_blk_busy_cb, &cb_data);
1961 
1962 	/*
1963 	 * Do not assume data transferred correctly if there are any error bits
1964 	 * set.
1965 	 */
1966 	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1967 		mqrq->brq.data.bytes_xfered = 0;
1968 		err = err ? err : -EIO;
1969 	}
1970 
1971 	/* Copy the exception bit so it will be seen later on */
1972 	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1973 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1974 
1975 	return err;
1976 }
1977 
1978 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1979 					    struct request *req)
1980 {
1981 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1982 
1983 	mmc_blk_reset_success(mq->blkdata, type);
1984 }
1985 
1986 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1987 {
1988 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1989 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1990 
1991 	if (nr_bytes) {
1992 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1993 			blk_mq_requeue_request(req, true);
1994 		else
1995 			__blk_mq_end_request(req, BLK_STS_OK);
1996 	} else if (!blk_rq_bytes(req)) {
1997 		__blk_mq_end_request(req, BLK_STS_IOERR);
1998 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1999 		blk_mq_requeue_request(req, true);
2000 	} else {
2001 		if (mmc_card_removed(mq->card))
2002 			req->rq_flags |= RQF_QUIET;
2003 		blk_mq_end_request(req, BLK_STS_IOERR);
2004 	}
2005 }
2006 
2007 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2008 					struct mmc_queue_req *mqrq)
2009 {
2010 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2011 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2012 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2013 }
2014 
2015 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2016 				 struct mmc_queue_req *mqrq)
2017 {
2018 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2019 		mmc_run_bkops(mq->card);
2020 }
2021 
2022 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2023 {
2024 	struct mmc_queue_req *mqrq =
2025 		container_of(mrq, struct mmc_queue_req, brq.mrq);
2026 	struct request *req = mmc_queue_req_to_req(mqrq);
2027 	struct request_queue *q = req->q;
2028 	struct mmc_queue *mq = q->queuedata;
2029 	struct mmc_host *host = mq->card->host;
2030 	unsigned long flags;
2031 
2032 	if (mmc_blk_rq_error(&mqrq->brq) ||
2033 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2034 		spin_lock_irqsave(&mq->lock, flags);
2035 		mq->recovery_needed = true;
2036 		mq->recovery_req = req;
2037 		spin_unlock_irqrestore(&mq->lock, flags);
2038 
2039 		host->cqe_ops->cqe_recovery_start(host);
2040 
2041 		schedule_work(&mq->recovery_work);
2042 		return;
2043 	}
2044 
2045 	mmc_blk_rw_reset_success(mq, req);
2046 
2047 	/*
2048 	 * Block layer timeouts race with completions which means the normal
2049 	 * completion path cannot be used during recovery.
2050 	 */
2051 	if (mq->in_recovery)
2052 		mmc_blk_cqe_complete_rq(mq, req);
2053 	else if (likely(!blk_should_fake_timeout(req->q)))
2054 		blk_mq_complete_request(req);
2055 }
2056 
2057 void mmc_blk_mq_complete(struct request *req)
2058 {
2059 	struct mmc_queue *mq = req->q->queuedata;
2060 	struct mmc_host *host = mq->card->host;
2061 
2062 	if (host->cqe_enabled)
2063 		mmc_blk_cqe_complete_rq(mq, req);
2064 	else if (likely(!blk_should_fake_timeout(req->q)))
2065 		mmc_blk_mq_complete_rq(mq, req);
2066 }
2067 
2068 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2069 				       struct request *req)
2070 {
2071 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2072 	struct mmc_host *host = mq->card->host;
2073 
2074 	if (mmc_blk_rq_error(&mqrq->brq) ||
2075 	    mmc_blk_card_busy(mq->card, req)) {
2076 		mmc_blk_mq_rw_recovery(mq, req);
2077 	} else {
2078 		mmc_blk_rw_reset_success(mq, req);
2079 		mmc_retune_release(host);
2080 	}
2081 
2082 	mmc_blk_urgent_bkops(mq, mqrq);
2083 }
2084 
2085 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
2086 {
2087 	unsigned long flags;
2088 	bool put_card;
2089 
2090 	spin_lock_irqsave(&mq->lock, flags);
2091 
2092 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2093 
2094 	put_card = (mmc_tot_in_flight(mq) == 0);
2095 
2096 	spin_unlock_irqrestore(&mq->lock, flags);
2097 
2098 	if (put_card)
2099 		mmc_put_card(mq->card, &mq->ctx);
2100 }
2101 
2102 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2103 				bool can_sleep)
2104 {
2105 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2106 	struct mmc_request *mrq = &mqrq->brq.mrq;
2107 	struct mmc_host *host = mq->card->host;
2108 
2109 	mmc_post_req(host, mrq, 0);
2110 
2111 	/*
2112 	 * Block layer timeouts race with completions which means the normal
2113 	 * completion path cannot be used during recovery.
2114 	 */
2115 	if (mq->in_recovery) {
2116 		mmc_blk_mq_complete_rq(mq, req);
2117 	} else if (likely(!blk_should_fake_timeout(req->q))) {
2118 		if (can_sleep)
2119 			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2120 		else
2121 			blk_mq_complete_request(req);
2122 	}
2123 
2124 	mmc_blk_mq_dec_in_flight(mq, req);
2125 }
2126 
2127 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2128 {
2129 	struct request *req = mq->recovery_req;
2130 	struct mmc_host *host = mq->card->host;
2131 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2132 
2133 	mq->recovery_req = NULL;
2134 	mq->rw_wait = false;
2135 
2136 	if (mmc_blk_rq_error(&mqrq->brq)) {
2137 		mmc_retune_hold_now(host);
2138 		mmc_blk_mq_rw_recovery(mq, req);
2139 	}
2140 
2141 	mmc_blk_urgent_bkops(mq, mqrq);
2142 
2143 	mmc_blk_mq_post_req(mq, req, true);
2144 }
2145 
2146 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2147 					 struct request **prev_req)
2148 {
2149 	if (mmc_host_done_complete(mq->card->host))
2150 		return;
2151 
2152 	mutex_lock(&mq->complete_lock);
2153 
2154 	if (!mq->complete_req)
2155 		goto out_unlock;
2156 
2157 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2158 
2159 	if (prev_req)
2160 		*prev_req = mq->complete_req;
2161 	else
2162 		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2163 
2164 	mq->complete_req = NULL;
2165 
2166 out_unlock:
2167 	mutex_unlock(&mq->complete_lock);
2168 }
2169 
2170 void mmc_blk_mq_complete_work(struct work_struct *work)
2171 {
2172 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2173 					    complete_work);
2174 
2175 	mmc_blk_mq_complete_prev_req(mq, NULL);
2176 }
2177 
2178 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2179 {
2180 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2181 						  brq.mrq);
2182 	struct request *req = mmc_queue_req_to_req(mqrq);
2183 	struct request_queue *q = req->q;
2184 	struct mmc_queue *mq = q->queuedata;
2185 	struct mmc_host *host = mq->card->host;
2186 	unsigned long flags;
2187 
2188 	if (!mmc_host_done_complete(host)) {
2189 		bool waiting;
2190 
2191 		/*
2192 		 * We cannot complete the request in this context, so record
2193 		 * that there is a request to complete, and that a following
2194 		 * request does not need to wait (although it does need to
2195 		 * complete complete_req first).
2196 		 */
2197 		spin_lock_irqsave(&mq->lock, flags);
2198 		mq->complete_req = req;
2199 		mq->rw_wait = false;
2200 		waiting = mq->waiting;
2201 		spin_unlock_irqrestore(&mq->lock, flags);
2202 
2203 		/*
2204 		 * If 'waiting' then the waiting task will complete this
2205 		 * request, otherwise queue a work to do it. Note that
2206 		 * complete_work may still race with the dispatch of a following
2207 		 * request.
2208 		 */
2209 		if (waiting)
2210 			wake_up(&mq->wait);
2211 		else
2212 			queue_work(mq->card->complete_wq, &mq->complete_work);
2213 
2214 		return;
2215 	}
2216 
2217 	/* Take the recovery path for errors or urgent background operations */
2218 	if (mmc_blk_rq_error(&mqrq->brq) ||
2219 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2220 		spin_lock_irqsave(&mq->lock, flags);
2221 		mq->recovery_needed = true;
2222 		mq->recovery_req = req;
2223 		spin_unlock_irqrestore(&mq->lock, flags);
2224 		wake_up(&mq->wait);
2225 		schedule_work(&mq->recovery_work);
2226 		return;
2227 	}
2228 
2229 	mmc_blk_rw_reset_success(mq, req);
2230 
2231 	mq->rw_wait = false;
2232 	wake_up(&mq->wait);
2233 
2234 	/* context unknown */
2235 	mmc_blk_mq_post_req(mq, req, false);
2236 }
2237 
2238 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2239 {
2240 	unsigned long flags;
2241 	bool done;
2242 
2243 	/*
2244 	 * Wait while there is another request in progress, but not if recovery
2245 	 * is needed. Also indicate whether there is a request waiting to start.
2246 	 */
2247 	spin_lock_irqsave(&mq->lock, flags);
2248 	if (mq->recovery_needed) {
2249 		*err = -EBUSY;
2250 		done = true;
2251 	} else {
2252 		done = !mq->rw_wait;
2253 	}
2254 	mq->waiting = !done;
2255 	spin_unlock_irqrestore(&mq->lock, flags);
2256 
2257 	return done;
2258 }
2259 
2260 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2261 {
2262 	int err = 0;
2263 
2264 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2265 
2266 	/* Always complete the previous request if there is one */
2267 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2268 
2269 	return err;
2270 }
2271 
2272 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2273 				  struct request *req)
2274 {
2275 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2276 	struct mmc_host *host = mq->card->host;
2277 	struct request *prev_req = NULL;
2278 	int err = 0;
2279 
2280 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2281 
2282 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2283 
2284 	mmc_pre_req(host, &mqrq->brq.mrq);
2285 
2286 	err = mmc_blk_rw_wait(mq, &prev_req);
2287 	if (err)
2288 		goto out_post_req;
2289 
2290 	mq->rw_wait = true;
2291 
2292 	err = mmc_start_request(host, &mqrq->brq.mrq);
2293 
2294 	if (prev_req)
2295 		mmc_blk_mq_post_req(mq, prev_req, true);
2296 
2297 	if (err)
2298 		mq->rw_wait = false;
2299 
2300 	/* Release re-tuning here where there is no synchronization required */
2301 	if (err || mmc_host_done_complete(host))
2302 		mmc_retune_release(host);
2303 
2304 out_post_req:
2305 	if (err)
2306 		mmc_post_req(host, &mqrq->brq.mrq, err);
2307 
2308 	return err;
2309 }
2310 
2311 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2312 {
2313 	if (host->cqe_enabled)
2314 		return host->cqe_ops->cqe_wait_for_idle(host);
2315 
2316 	return mmc_blk_rw_wait(mq, NULL);
2317 }
2318 
2319 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2320 {
2321 	struct mmc_blk_data *md = mq->blkdata;
2322 	struct mmc_card *card = md->queue.card;
2323 	struct mmc_host *host = card->host;
2324 	int ret;
2325 
2326 	ret = mmc_blk_part_switch(card, md->part_type);
2327 	if (ret)
2328 		return MMC_REQ_FAILED_TO_START;
2329 
2330 	switch (mmc_issue_type(mq, req)) {
2331 	case MMC_ISSUE_SYNC:
2332 		ret = mmc_blk_wait_for_idle(mq, host);
2333 		if (ret)
2334 			return MMC_REQ_BUSY;
2335 		switch (req_op(req)) {
2336 		case REQ_OP_DRV_IN:
2337 		case REQ_OP_DRV_OUT:
2338 			mmc_blk_issue_drv_op(mq, req);
2339 			break;
2340 		case REQ_OP_DISCARD:
2341 			mmc_blk_issue_discard_rq(mq, req);
2342 			break;
2343 		case REQ_OP_SECURE_ERASE:
2344 			mmc_blk_issue_secdiscard_rq(mq, req);
2345 			break;
2346 		case REQ_OP_WRITE_ZEROES:
2347 			mmc_blk_issue_trim_rq(mq, req);
2348 			break;
2349 		case REQ_OP_FLUSH:
2350 			mmc_blk_issue_flush(mq, req);
2351 			break;
2352 		default:
2353 			WARN_ON_ONCE(1);
2354 			return MMC_REQ_FAILED_TO_START;
2355 		}
2356 		return MMC_REQ_FINISHED;
2357 	case MMC_ISSUE_DCMD:
2358 	case MMC_ISSUE_ASYNC:
2359 		switch (req_op(req)) {
2360 		case REQ_OP_FLUSH:
2361 			if (!mmc_cache_enabled(host)) {
2362 				blk_mq_end_request(req, BLK_STS_OK);
2363 				return MMC_REQ_FINISHED;
2364 			}
2365 			ret = mmc_blk_cqe_issue_flush(mq, req);
2366 			break;
2367 		case REQ_OP_READ:
2368 		case REQ_OP_WRITE:
2369 			if (host->cqe_enabled)
2370 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2371 			else
2372 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2373 			break;
2374 		default:
2375 			WARN_ON_ONCE(1);
2376 			ret = -EINVAL;
2377 		}
2378 		if (!ret)
2379 			return MMC_REQ_STARTED;
2380 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2381 	default:
2382 		WARN_ON_ONCE(1);
2383 		return MMC_REQ_FAILED_TO_START;
2384 	}
2385 }
2386 
2387 static inline int mmc_blk_readonly(struct mmc_card *card)
2388 {
2389 	return mmc_card_readonly(card) ||
2390 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2391 }
2392 
2393 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2394 					      struct device *parent,
2395 					      sector_t size,
2396 					      bool default_ro,
2397 					      const char *subname,
2398 					      int area_type,
2399 					      unsigned int part_type)
2400 {
2401 	struct mmc_blk_data *md;
2402 	int devidx, ret;
2403 	char cap_str[10];
2404 	bool cache_enabled = false;
2405 	bool fua_enabled = false;
2406 
2407 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2408 	if (devidx < 0) {
2409 		/*
2410 		 * We get -ENOSPC because there are no more any available
2411 		 * devidx. The reason may be that, either userspace haven't yet
2412 		 * unmounted the partitions, which postpones mmc_blk_release()
2413 		 * from being called, or the device has more partitions than
2414 		 * what we support.
2415 		 */
2416 		if (devidx == -ENOSPC)
2417 			dev_err(mmc_dev(card->host),
2418 				"no more device IDs available\n");
2419 
2420 		return ERR_PTR(devidx);
2421 	}
2422 
2423 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2424 	if (!md) {
2425 		ret = -ENOMEM;
2426 		goto out;
2427 	}
2428 
2429 	md->area_type = area_type;
2430 
2431 	/*
2432 	 * Set the read-only status based on the supported commands
2433 	 * and the write protect switch.
2434 	 */
2435 	md->read_only = mmc_blk_readonly(card);
2436 
2437 	md->disk = mmc_init_queue(&md->queue, card);
2438 	if (IS_ERR(md->disk)) {
2439 		ret = PTR_ERR(md->disk);
2440 		goto err_kfree;
2441 	}
2442 
2443 	INIT_LIST_HEAD(&md->part);
2444 	INIT_LIST_HEAD(&md->rpmbs);
2445 	kref_init(&md->kref);
2446 
2447 	md->queue.blkdata = md;
2448 	md->part_type = part_type;
2449 
2450 	md->disk->major	= MMC_BLOCK_MAJOR;
2451 	md->disk->minors = perdev_minors;
2452 	md->disk->first_minor = devidx * perdev_minors;
2453 	md->disk->fops = &mmc_bdops;
2454 	md->disk->private_data = md;
2455 	md->parent = parent;
2456 	set_disk_ro(md->disk, md->read_only || default_ro);
2457 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2458 		md->disk->flags |= GENHD_FL_NO_PART;
2459 
2460 	/*
2461 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2462 	 *
2463 	 * - be set for removable media with permanent block devices
2464 	 * - be unset for removable block devices with permanent media
2465 	 *
2466 	 * Since MMC block devices clearly fall under the second
2467 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2468 	 * should use the block device creation/destruction hotplug
2469 	 * messages to tell when the card is present.
2470 	 */
2471 
2472 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2473 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2474 
2475 	set_capacity(md->disk, size);
2476 
2477 	if (mmc_host_cmd23(card->host)) {
2478 		if ((mmc_card_mmc(card) &&
2479 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2480 		    (mmc_card_sd(card) &&
2481 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2482 			md->flags |= MMC_BLK_CMD23;
2483 	}
2484 
2485 	if (md->flags & MMC_BLK_CMD23 &&
2486 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2487 	     card->ext_csd.rel_sectors)) {
2488 		md->flags |= MMC_BLK_REL_WR;
2489 		fua_enabled = true;
2490 		cache_enabled = true;
2491 	}
2492 	if (mmc_cache_enabled(card->host))
2493 		cache_enabled  = true;
2494 
2495 	blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2496 
2497 	string_get_size((u64)size, 512, STRING_UNITS_2,
2498 			cap_str, sizeof(cap_str));
2499 	pr_info("%s: %s %s %s %s\n",
2500 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2501 		cap_str, md->read_only ? "(ro)" : "");
2502 
2503 	/* used in ->open, must be set before add_disk: */
2504 	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2505 		dev_set_drvdata(&card->dev, md);
2506 	ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2507 	if (ret)
2508 		goto err_cleanup_queue;
2509 	return md;
2510 
2511  err_cleanup_queue:
2512 	blk_cleanup_queue(md->disk->queue);
2513 	blk_mq_free_tag_set(&md->queue.tag_set);
2514  err_kfree:
2515 	kfree(md);
2516  out:
2517 	ida_simple_remove(&mmc_blk_ida, devidx);
2518 	return ERR_PTR(ret);
2519 }
2520 
2521 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2522 {
2523 	sector_t size;
2524 
2525 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2526 		/*
2527 		 * The EXT_CSD sector count is in number or 512 byte
2528 		 * sectors.
2529 		 */
2530 		size = card->ext_csd.sectors;
2531 	} else {
2532 		/*
2533 		 * The CSD capacity field is in units of read_blkbits.
2534 		 * set_capacity takes units of 512 bytes.
2535 		 */
2536 		size = (typeof(sector_t))card->csd.capacity
2537 			<< (card->csd.read_blkbits - 9);
2538 	}
2539 
2540 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2541 					MMC_BLK_DATA_AREA_MAIN, 0);
2542 }
2543 
2544 static int mmc_blk_alloc_part(struct mmc_card *card,
2545 			      struct mmc_blk_data *md,
2546 			      unsigned int part_type,
2547 			      sector_t size,
2548 			      bool default_ro,
2549 			      const char *subname,
2550 			      int area_type)
2551 {
2552 	struct mmc_blk_data *part_md;
2553 
2554 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2555 				    subname, area_type, part_type);
2556 	if (IS_ERR(part_md))
2557 		return PTR_ERR(part_md);
2558 	list_add(&part_md->part, &md->part);
2559 
2560 	return 0;
2561 }
2562 
2563 /**
2564  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2565  * @filp: the character device file
2566  * @cmd: the ioctl() command
2567  * @arg: the argument from userspace
2568  *
2569  * This will essentially just redirect the ioctl()s coming in over to
2570  * the main block device spawning the RPMB character device.
2571  */
2572 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2573 			   unsigned long arg)
2574 {
2575 	struct mmc_rpmb_data *rpmb = filp->private_data;
2576 	int ret;
2577 
2578 	switch (cmd) {
2579 	case MMC_IOC_CMD:
2580 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2581 					(struct mmc_ioc_cmd __user *)arg,
2582 					rpmb);
2583 		break;
2584 	case MMC_IOC_MULTI_CMD:
2585 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2586 					(struct mmc_ioc_multi_cmd __user *)arg,
2587 					rpmb);
2588 		break;
2589 	default:
2590 		ret = -EINVAL;
2591 		break;
2592 	}
2593 
2594 	return ret;
2595 }
2596 
2597 #ifdef CONFIG_COMPAT
2598 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2599 			      unsigned long arg)
2600 {
2601 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2602 }
2603 #endif
2604 
2605 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2606 {
2607 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2608 						  struct mmc_rpmb_data, chrdev);
2609 
2610 	get_device(&rpmb->dev);
2611 	filp->private_data = rpmb;
2612 	mmc_blk_get(rpmb->md->disk);
2613 
2614 	return nonseekable_open(inode, filp);
2615 }
2616 
2617 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2618 {
2619 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2620 						  struct mmc_rpmb_data, chrdev);
2621 
2622 	mmc_blk_put(rpmb->md);
2623 	put_device(&rpmb->dev);
2624 
2625 	return 0;
2626 }
2627 
2628 static const struct file_operations mmc_rpmb_fileops = {
2629 	.release = mmc_rpmb_chrdev_release,
2630 	.open = mmc_rpmb_chrdev_open,
2631 	.owner = THIS_MODULE,
2632 	.llseek = no_llseek,
2633 	.unlocked_ioctl = mmc_rpmb_ioctl,
2634 #ifdef CONFIG_COMPAT
2635 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2636 #endif
2637 };
2638 
2639 static void mmc_blk_rpmb_device_release(struct device *dev)
2640 {
2641 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2642 
2643 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2644 	kfree(rpmb);
2645 }
2646 
2647 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2648 				   struct mmc_blk_data *md,
2649 				   unsigned int part_index,
2650 				   sector_t size,
2651 				   const char *subname)
2652 {
2653 	int devidx, ret;
2654 	char rpmb_name[DISK_NAME_LEN];
2655 	char cap_str[10];
2656 	struct mmc_rpmb_data *rpmb;
2657 
2658 	/* This creates the minor number for the RPMB char device */
2659 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2660 	if (devidx < 0)
2661 		return devidx;
2662 
2663 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2664 	if (!rpmb) {
2665 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2666 		return -ENOMEM;
2667 	}
2668 
2669 	snprintf(rpmb_name, sizeof(rpmb_name),
2670 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2671 
2672 	rpmb->id = devidx;
2673 	rpmb->part_index = part_index;
2674 	rpmb->dev.init_name = rpmb_name;
2675 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2676 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2677 	rpmb->dev.parent = &card->dev;
2678 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2679 	device_initialize(&rpmb->dev);
2680 	dev_set_drvdata(&rpmb->dev, rpmb);
2681 	rpmb->md = md;
2682 
2683 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2684 	rpmb->chrdev.owner = THIS_MODULE;
2685 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2686 	if (ret) {
2687 		pr_err("%s: could not add character device\n", rpmb_name);
2688 		goto out_put_device;
2689 	}
2690 
2691 	list_add(&rpmb->node, &md->rpmbs);
2692 
2693 	string_get_size((u64)size, 512, STRING_UNITS_2,
2694 			cap_str, sizeof(cap_str));
2695 
2696 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2697 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2698 		MAJOR(mmc_rpmb_devt), rpmb->id);
2699 
2700 	return 0;
2701 
2702 out_put_device:
2703 	put_device(&rpmb->dev);
2704 	return ret;
2705 }
2706 
2707 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2708 
2709 {
2710 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2711 	put_device(&rpmb->dev);
2712 }
2713 
2714 /* MMC Physical partitions consist of two boot partitions and
2715  * up to four general purpose partitions.
2716  * For each partition enabled in EXT_CSD a block device will be allocatedi
2717  * to provide access to the partition.
2718  */
2719 
2720 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2721 {
2722 	int idx, ret;
2723 
2724 	if (!mmc_card_mmc(card))
2725 		return 0;
2726 
2727 	for (idx = 0; idx < card->nr_parts; idx++) {
2728 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2729 			/*
2730 			 * RPMB partitions does not provide block access, they
2731 			 * are only accessed using ioctl():s. Thus create
2732 			 * special RPMB block devices that do not have a
2733 			 * backing block queue for these.
2734 			 */
2735 			ret = mmc_blk_alloc_rpmb_part(card, md,
2736 				card->part[idx].part_cfg,
2737 				card->part[idx].size >> 9,
2738 				card->part[idx].name);
2739 			if (ret)
2740 				return ret;
2741 		} else if (card->part[idx].size) {
2742 			ret = mmc_blk_alloc_part(card, md,
2743 				card->part[idx].part_cfg,
2744 				card->part[idx].size >> 9,
2745 				card->part[idx].force_ro,
2746 				card->part[idx].name,
2747 				card->part[idx].area_type);
2748 			if (ret)
2749 				return ret;
2750 		}
2751 	}
2752 
2753 	return 0;
2754 }
2755 
2756 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2757 {
2758 	/*
2759 	 * Flush remaining requests and free queues. It is freeing the queue
2760 	 * that stops new requests from being accepted.
2761 	 */
2762 	del_gendisk(md->disk);
2763 	mmc_cleanup_queue(&md->queue);
2764 	mmc_blk_put(md);
2765 }
2766 
2767 static void mmc_blk_remove_parts(struct mmc_card *card,
2768 				 struct mmc_blk_data *md)
2769 {
2770 	struct list_head *pos, *q;
2771 	struct mmc_blk_data *part_md;
2772 	struct mmc_rpmb_data *rpmb;
2773 
2774 	/* Remove RPMB partitions */
2775 	list_for_each_safe(pos, q, &md->rpmbs) {
2776 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2777 		list_del(pos);
2778 		mmc_blk_remove_rpmb_part(rpmb);
2779 	}
2780 	/* Remove block partitions */
2781 	list_for_each_safe(pos, q, &md->part) {
2782 		part_md = list_entry(pos, struct mmc_blk_data, part);
2783 		list_del(pos);
2784 		mmc_blk_remove_req(part_md);
2785 	}
2786 }
2787 
2788 #ifdef CONFIG_DEBUG_FS
2789 
2790 static int mmc_dbg_card_status_get(void *data, u64 *val)
2791 {
2792 	struct mmc_card *card = data;
2793 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2794 	struct mmc_queue *mq = &md->queue;
2795 	struct request *req;
2796 	int ret;
2797 
2798 	/* Ask the block layer about the card status */
2799 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2800 	if (IS_ERR(req))
2801 		return PTR_ERR(req);
2802 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2803 	blk_execute_rq(req, false);
2804 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2805 	if (ret >= 0) {
2806 		*val = ret;
2807 		ret = 0;
2808 	}
2809 	blk_mq_free_request(req);
2810 
2811 	return ret;
2812 }
2813 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2814 			 NULL, "%08llx\n");
2815 
2816 /* That is two digits * 512 + 1 for newline */
2817 #define EXT_CSD_STR_LEN 1025
2818 
2819 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2820 {
2821 	struct mmc_card *card = inode->i_private;
2822 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2823 	struct mmc_queue *mq = &md->queue;
2824 	struct request *req;
2825 	char *buf;
2826 	ssize_t n = 0;
2827 	u8 *ext_csd;
2828 	int err, i;
2829 
2830 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2831 	if (!buf)
2832 		return -ENOMEM;
2833 
2834 	/* Ask the block layer for the EXT CSD */
2835 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2836 	if (IS_ERR(req)) {
2837 		err = PTR_ERR(req);
2838 		goto out_free;
2839 	}
2840 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2841 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2842 	blk_execute_rq(req, false);
2843 	err = req_to_mmc_queue_req(req)->drv_op_result;
2844 	blk_mq_free_request(req);
2845 	if (err) {
2846 		pr_err("FAILED %d\n", err);
2847 		goto out_free;
2848 	}
2849 
2850 	for (i = 0; i < 512; i++)
2851 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2852 	n += sprintf(buf + n, "\n");
2853 
2854 	if (n != EXT_CSD_STR_LEN) {
2855 		err = -EINVAL;
2856 		kfree(ext_csd);
2857 		goto out_free;
2858 	}
2859 
2860 	filp->private_data = buf;
2861 	kfree(ext_csd);
2862 	return 0;
2863 
2864 out_free:
2865 	kfree(buf);
2866 	return err;
2867 }
2868 
2869 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2870 				size_t cnt, loff_t *ppos)
2871 {
2872 	char *buf = filp->private_data;
2873 
2874 	return simple_read_from_buffer(ubuf, cnt, ppos,
2875 				       buf, EXT_CSD_STR_LEN);
2876 }
2877 
2878 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2879 {
2880 	kfree(file->private_data);
2881 	return 0;
2882 }
2883 
2884 static const struct file_operations mmc_dbg_ext_csd_fops = {
2885 	.open		= mmc_ext_csd_open,
2886 	.read		= mmc_ext_csd_read,
2887 	.release	= mmc_ext_csd_release,
2888 	.llseek		= default_llseek,
2889 };
2890 
2891 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2892 {
2893 	struct dentry *root;
2894 
2895 	if (!card->debugfs_root)
2896 		return 0;
2897 
2898 	root = card->debugfs_root;
2899 
2900 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2901 		md->status_dentry =
2902 			debugfs_create_file_unsafe("status", 0400, root,
2903 						   card,
2904 						   &mmc_dbg_card_status_fops);
2905 		if (!md->status_dentry)
2906 			return -EIO;
2907 	}
2908 
2909 	if (mmc_card_mmc(card)) {
2910 		md->ext_csd_dentry =
2911 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2912 					    &mmc_dbg_ext_csd_fops);
2913 		if (!md->ext_csd_dentry)
2914 			return -EIO;
2915 	}
2916 
2917 	return 0;
2918 }
2919 
2920 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2921 				   struct mmc_blk_data *md)
2922 {
2923 	if (!card->debugfs_root)
2924 		return;
2925 
2926 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2927 		debugfs_remove(md->status_dentry);
2928 		md->status_dentry = NULL;
2929 	}
2930 
2931 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2932 		debugfs_remove(md->ext_csd_dentry);
2933 		md->ext_csd_dentry = NULL;
2934 	}
2935 }
2936 
2937 #else
2938 
2939 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2940 {
2941 	return 0;
2942 }
2943 
2944 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2945 				   struct mmc_blk_data *md)
2946 {
2947 }
2948 
2949 #endif /* CONFIG_DEBUG_FS */
2950 
2951 static int mmc_blk_probe(struct mmc_card *card)
2952 {
2953 	struct mmc_blk_data *md;
2954 	int ret = 0;
2955 
2956 	/*
2957 	 * Check that the card supports the command class(es) we need.
2958 	 */
2959 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2960 		return -ENODEV;
2961 
2962 	mmc_fixup_device(card, mmc_blk_fixups);
2963 
2964 	card->complete_wq = alloc_workqueue("mmc_complete",
2965 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2966 	if (!card->complete_wq) {
2967 		pr_err("Failed to create mmc completion workqueue");
2968 		return -ENOMEM;
2969 	}
2970 
2971 	md = mmc_blk_alloc(card);
2972 	if (IS_ERR(md)) {
2973 		ret = PTR_ERR(md);
2974 		goto out_free;
2975 	}
2976 
2977 	ret = mmc_blk_alloc_parts(card, md);
2978 	if (ret)
2979 		goto out;
2980 
2981 	/* Add two debugfs entries */
2982 	mmc_blk_add_debugfs(card, md);
2983 
2984 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2985 	pm_runtime_use_autosuspend(&card->dev);
2986 
2987 	/*
2988 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2989 	 * decision to be taken during the SDIO init sequence instead.
2990 	 */
2991 	if (card->type != MMC_TYPE_SD_COMBO) {
2992 		pm_runtime_set_active(&card->dev);
2993 		pm_runtime_enable(&card->dev);
2994 	}
2995 
2996 	return 0;
2997 
2998 out:
2999 	mmc_blk_remove_parts(card, md);
3000 	mmc_blk_remove_req(md);
3001 out_free:
3002 	destroy_workqueue(card->complete_wq);
3003 	return ret;
3004 }
3005 
3006 static void mmc_blk_remove(struct mmc_card *card)
3007 {
3008 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3009 
3010 	mmc_blk_remove_debugfs(card, md);
3011 	mmc_blk_remove_parts(card, md);
3012 	pm_runtime_get_sync(&card->dev);
3013 	if (md->part_curr != md->part_type) {
3014 		mmc_claim_host(card->host);
3015 		mmc_blk_part_switch(card, md->part_type);
3016 		mmc_release_host(card->host);
3017 	}
3018 	if (card->type != MMC_TYPE_SD_COMBO)
3019 		pm_runtime_disable(&card->dev);
3020 	pm_runtime_put_noidle(&card->dev);
3021 	mmc_blk_remove_req(md);
3022 	dev_set_drvdata(&card->dev, NULL);
3023 	destroy_workqueue(card->complete_wq);
3024 }
3025 
3026 static int _mmc_blk_suspend(struct mmc_card *card)
3027 {
3028 	struct mmc_blk_data *part_md;
3029 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3030 
3031 	if (md) {
3032 		mmc_queue_suspend(&md->queue);
3033 		list_for_each_entry(part_md, &md->part, part) {
3034 			mmc_queue_suspend(&part_md->queue);
3035 		}
3036 	}
3037 	return 0;
3038 }
3039 
3040 static void mmc_blk_shutdown(struct mmc_card *card)
3041 {
3042 	_mmc_blk_suspend(card);
3043 }
3044 
3045 #ifdef CONFIG_PM_SLEEP
3046 static int mmc_blk_suspend(struct device *dev)
3047 {
3048 	struct mmc_card *card = mmc_dev_to_card(dev);
3049 
3050 	return _mmc_blk_suspend(card);
3051 }
3052 
3053 static int mmc_blk_resume(struct device *dev)
3054 {
3055 	struct mmc_blk_data *part_md;
3056 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3057 
3058 	if (md) {
3059 		/*
3060 		 * Resume involves the card going into idle state,
3061 		 * so current partition is always the main one.
3062 		 */
3063 		md->part_curr = md->part_type;
3064 		mmc_queue_resume(&md->queue);
3065 		list_for_each_entry(part_md, &md->part, part) {
3066 			mmc_queue_resume(&part_md->queue);
3067 		}
3068 	}
3069 	return 0;
3070 }
3071 #endif
3072 
3073 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3074 
3075 static struct mmc_driver mmc_driver = {
3076 	.drv		= {
3077 		.name	= "mmcblk",
3078 		.pm	= &mmc_blk_pm_ops,
3079 	},
3080 	.probe		= mmc_blk_probe,
3081 	.remove		= mmc_blk_remove,
3082 	.shutdown	= mmc_blk_shutdown,
3083 };
3084 
3085 static int __init mmc_blk_init(void)
3086 {
3087 	int res;
3088 
3089 	res  = bus_register(&mmc_rpmb_bus_type);
3090 	if (res < 0) {
3091 		pr_err("mmcblk: could not register RPMB bus type\n");
3092 		return res;
3093 	}
3094 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3095 	if (res < 0) {
3096 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3097 		goto out_bus_unreg;
3098 	}
3099 
3100 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3101 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3102 
3103 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3104 
3105 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3106 	if (res)
3107 		goto out_chrdev_unreg;
3108 
3109 	res = mmc_register_driver(&mmc_driver);
3110 	if (res)
3111 		goto out_blkdev_unreg;
3112 
3113 	return 0;
3114 
3115 out_blkdev_unreg:
3116 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3117 out_chrdev_unreg:
3118 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3119 out_bus_unreg:
3120 	bus_unregister(&mmc_rpmb_bus_type);
3121 	return res;
3122 }
3123 
3124 static void __exit mmc_blk_exit(void)
3125 {
3126 	mmc_unregister_driver(&mmc_driver);
3127 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3128 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3129 	bus_unregister(&mmc_rpmb_bus_type);
3130 }
3131 
3132 module_init(mmc_blk_init);
3133 module_exit(mmc_blk_exit);
3134 
3135 MODULE_LICENSE("GPL");
3136 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3137 
3138