1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block driver for media (i.e., flash cards) 4 * 5 * Copyright 2002 Hewlett-Packard Company 6 * Copyright 2005-2008 Pierre Ossman 7 * 8 * Use consistent with the GNU GPL is permitted, 9 * provided that this copyright notice is 10 * preserved in its entirety in all copies and derived works. 11 * 12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 14 * FITNESS FOR ANY PARTICULAR PURPOSE. 15 * 16 * Many thanks to Alessandro Rubini and Jonathan Corbet! 17 * 18 * Author: Andrew Christian 19 * 28 May 2002 20 */ 21 #include <linux/moduleparam.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/errno.h> 29 #include <linux/hdreg.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kref.h> 32 #include <linux/blkdev.h> 33 #include <linux/cdev.h> 34 #include <linux/mutex.h> 35 #include <linux/scatterlist.h> 36 #include <linux/string_helpers.h> 37 #include <linux/delay.h> 38 #include <linux/capability.h> 39 #include <linux/compat.h> 40 #include <linux/pm_runtime.h> 41 #include <linux/idr.h> 42 #include <linux/debugfs.h> 43 44 #include <linux/mmc/ioctl.h> 45 #include <linux/mmc/card.h> 46 #include <linux/mmc/host.h> 47 #include <linux/mmc/mmc.h> 48 #include <linux/mmc/sd.h> 49 50 #include <linux/uaccess.h> 51 52 #include "queue.h" 53 #include "block.h" 54 #include "core.h" 55 #include "card.h" 56 #include "crypto.h" 57 #include "host.h" 58 #include "bus.h" 59 #include "mmc_ops.h" 60 #include "quirks.h" 61 #include "sd_ops.h" 62 63 MODULE_ALIAS("mmc:block"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "mmcblk." 68 69 /* 70 * Set a 10 second timeout for polling write request busy state. Note, mmc core 71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 72 * second software timer to timeout the whole request, so 10 seconds should be 73 * ample. 74 */ 75 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 78 79 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 80 (rq_data_dir(req) == WRITE)) 81 static DEFINE_MUTEX(block_mutex); 82 83 /* 84 * The defaults come from config options but can be overriden by module 85 * or bootarg options. 86 */ 87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 88 89 /* 90 * We've only got one major, so number of mmcblk devices is 91 * limited to (1 << 20) / number of minors per device. It is also 92 * limited by the MAX_DEVICES below. 93 */ 94 static int max_devices; 95 96 #define MAX_DEVICES 256 97 98 static DEFINE_IDA(mmc_blk_ida); 99 static DEFINE_IDA(mmc_rpmb_ida); 100 101 struct mmc_blk_busy_data { 102 struct mmc_card *card; 103 u32 status; 104 }; 105 106 /* 107 * There is one mmc_blk_data per slot. 108 */ 109 struct mmc_blk_data { 110 struct device *parent; 111 struct gendisk *disk; 112 struct mmc_queue queue; 113 struct list_head part; 114 struct list_head rpmbs; 115 116 unsigned int flags; 117 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 118 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 119 120 struct kref kref; 121 unsigned int read_only; 122 unsigned int part_type; 123 unsigned int reset_done; 124 #define MMC_BLK_READ BIT(0) 125 #define MMC_BLK_WRITE BIT(1) 126 #define MMC_BLK_DISCARD BIT(2) 127 #define MMC_BLK_SECDISCARD BIT(3) 128 #define MMC_BLK_CQE_RECOVERY BIT(4) 129 #define MMC_BLK_TRIM BIT(5) 130 131 /* 132 * Only set in main mmc_blk_data associated 133 * with mmc_card with dev_set_drvdata, and keeps 134 * track of the current selected device partition. 135 */ 136 unsigned int part_curr; 137 int area_type; 138 139 /* debugfs files (only in main mmc_blk_data) */ 140 struct dentry *status_dentry; 141 struct dentry *ext_csd_dentry; 142 }; 143 144 /* Device type for RPMB character devices */ 145 static dev_t mmc_rpmb_devt; 146 147 /* Bus type for RPMB character devices */ 148 static struct bus_type mmc_rpmb_bus_type = { 149 .name = "mmc_rpmb", 150 }; 151 152 /** 153 * struct mmc_rpmb_data - special RPMB device type for these areas 154 * @dev: the device for the RPMB area 155 * @chrdev: character device for the RPMB area 156 * @id: unique device ID number 157 * @part_index: partition index (0 on first) 158 * @md: parent MMC block device 159 * @node: list item, so we can put this device on a list 160 */ 161 struct mmc_rpmb_data { 162 struct device dev; 163 struct cdev chrdev; 164 int id; 165 unsigned int part_index; 166 struct mmc_blk_data *md; 167 struct list_head node; 168 }; 169 170 static DEFINE_MUTEX(open_lock); 171 172 module_param(perdev_minors, int, 0444); 173 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 174 175 static inline int mmc_blk_part_switch(struct mmc_card *card, 176 unsigned int part_type); 177 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 178 struct mmc_card *card, 179 int disable_multi, 180 struct mmc_queue *mq); 181 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 182 183 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 184 { 185 struct mmc_blk_data *md; 186 187 mutex_lock(&open_lock); 188 md = disk->private_data; 189 if (md && !kref_get_unless_zero(&md->kref)) 190 md = NULL; 191 mutex_unlock(&open_lock); 192 193 return md; 194 } 195 196 static inline int mmc_get_devidx(struct gendisk *disk) 197 { 198 int devidx = disk->first_minor / perdev_minors; 199 return devidx; 200 } 201 202 static void mmc_blk_kref_release(struct kref *ref) 203 { 204 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref); 205 int devidx; 206 207 devidx = mmc_get_devidx(md->disk); 208 ida_simple_remove(&mmc_blk_ida, devidx); 209 210 mutex_lock(&open_lock); 211 md->disk->private_data = NULL; 212 mutex_unlock(&open_lock); 213 214 put_disk(md->disk); 215 kfree(md); 216 } 217 218 static void mmc_blk_put(struct mmc_blk_data *md) 219 { 220 kref_put(&md->kref, mmc_blk_kref_release); 221 } 222 223 static ssize_t power_ro_lock_show(struct device *dev, 224 struct device_attribute *attr, char *buf) 225 { 226 int ret; 227 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 228 struct mmc_card *card = md->queue.card; 229 int locked = 0; 230 231 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 232 locked = 2; 233 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 234 locked = 1; 235 236 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 237 238 mmc_blk_put(md); 239 240 return ret; 241 } 242 243 static ssize_t power_ro_lock_store(struct device *dev, 244 struct device_attribute *attr, const char *buf, size_t count) 245 { 246 int ret; 247 struct mmc_blk_data *md, *part_md; 248 struct mmc_queue *mq; 249 struct request *req; 250 unsigned long set; 251 252 if (kstrtoul(buf, 0, &set)) 253 return -EINVAL; 254 255 if (set != 1) 256 return count; 257 258 md = mmc_blk_get(dev_to_disk(dev)); 259 mq = &md->queue; 260 261 /* Dispatch locking to the block layer */ 262 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0); 263 if (IS_ERR(req)) { 264 count = PTR_ERR(req); 265 goto out_put; 266 } 267 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 268 blk_execute_rq(req, false); 269 ret = req_to_mmc_queue_req(req)->drv_op_result; 270 blk_mq_free_request(req); 271 272 if (!ret) { 273 pr_info("%s: Locking boot partition ro until next power on\n", 274 md->disk->disk_name); 275 set_disk_ro(md->disk, 1); 276 277 list_for_each_entry(part_md, &md->part, part) 278 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 279 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 280 set_disk_ro(part_md->disk, 1); 281 } 282 } 283 out_put: 284 mmc_blk_put(md); 285 return count; 286 } 287 288 static DEVICE_ATTR(ro_lock_until_next_power_on, 0, 289 power_ro_lock_show, power_ro_lock_store); 290 291 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 292 char *buf) 293 { 294 int ret; 295 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 296 297 ret = snprintf(buf, PAGE_SIZE, "%d\n", 298 get_disk_ro(dev_to_disk(dev)) ^ 299 md->read_only); 300 mmc_blk_put(md); 301 return ret; 302 } 303 304 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 305 const char *buf, size_t count) 306 { 307 int ret; 308 char *end; 309 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 310 unsigned long set = simple_strtoul(buf, &end, 0); 311 if (end == buf) { 312 ret = -EINVAL; 313 goto out; 314 } 315 316 set_disk_ro(dev_to_disk(dev), set || md->read_only); 317 ret = count; 318 out: 319 mmc_blk_put(md); 320 return ret; 321 } 322 323 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store); 324 325 static struct attribute *mmc_disk_attrs[] = { 326 &dev_attr_force_ro.attr, 327 &dev_attr_ro_lock_until_next_power_on.attr, 328 NULL, 329 }; 330 331 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj, 332 struct attribute *a, int n) 333 { 334 struct device *dev = kobj_to_dev(kobj); 335 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 336 umode_t mode = a->mode; 337 338 if (a == &dev_attr_ro_lock_until_next_power_on.attr && 339 (md->area_type & MMC_BLK_DATA_AREA_BOOT) && 340 md->queue.card->ext_csd.boot_ro_lockable) { 341 mode = S_IRUGO; 342 if (!(md->queue.card->ext_csd.boot_ro_lock & 343 EXT_CSD_BOOT_WP_B_PWR_WP_DIS)) 344 mode |= S_IWUSR; 345 } 346 347 mmc_blk_put(md); 348 return mode; 349 } 350 351 static const struct attribute_group mmc_disk_attr_group = { 352 .is_visible = mmc_disk_attrs_is_visible, 353 .attrs = mmc_disk_attrs, 354 }; 355 356 static const struct attribute_group *mmc_disk_attr_groups[] = { 357 &mmc_disk_attr_group, 358 NULL, 359 }; 360 361 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 362 { 363 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 364 int ret = -ENXIO; 365 366 mutex_lock(&block_mutex); 367 if (md) { 368 ret = 0; 369 if ((mode & FMODE_WRITE) && md->read_only) { 370 mmc_blk_put(md); 371 ret = -EROFS; 372 } 373 } 374 mutex_unlock(&block_mutex); 375 376 return ret; 377 } 378 379 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 380 { 381 struct mmc_blk_data *md = disk->private_data; 382 383 mutex_lock(&block_mutex); 384 mmc_blk_put(md); 385 mutex_unlock(&block_mutex); 386 } 387 388 static int 389 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 390 { 391 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 392 geo->heads = 4; 393 geo->sectors = 16; 394 return 0; 395 } 396 397 struct mmc_blk_ioc_data { 398 struct mmc_ioc_cmd ic; 399 unsigned char *buf; 400 u64 buf_bytes; 401 struct mmc_rpmb_data *rpmb; 402 }; 403 404 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 405 struct mmc_ioc_cmd __user *user) 406 { 407 struct mmc_blk_ioc_data *idata; 408 int err; 409 410 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 411 if (!idata) { 412 err = -ENOMEM; 413 goto out; 414 } 415 416 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 417 err = -EFAULT; 418 goto idata_err; 419 } 420 421 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 422 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 423 err = -EOVERFLOW; 424 goto idata_err; 425 } 426 427 if (!idata->buf_bytes) { 428 idata->buf = NULL; 429 return idata; 430 } 431 432 idata->buf = memdup_user((void __user *)(unsigned long) 433 idata->ic.data_ptr, idata->buf_bytes); 434 if (IS_ERR(idata->buf)) { 435 err = PTR_ERR(idata->buf); 436 goto idata_err; 437 } 438 439 return idata; 440 441 idata_err: 442 kfree(idata); 443 out: 444 return ERR_PTR(err); 445 } 446 447 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 448 struct mmc_blk_ioc_data *idata) 449 { 450 struct mmc_ioc_cmd *ic = &idata->ic; 451 452 if (copy_to_user(&(ic_ptr->response), ic->response, 453 sizeof(ic->response))) 454 return -EFAULT; 455 456 if (!idata->ic.write_flag) { 457 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 458 idata->buf, idata->buf_bytes)) 459 return -EFAULT; 460 } 461 462 return 0; 463 } 464 465 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 466 struct mmc_blk_ioc_data *idata) 467 { 468 struct mmc_command cmd = {}, sbc = {}; 469 struct mmc_data data = {}; 470 struct mmc_request mrq = {}; 471 struct scatterlist sg; 472 int err; 473 unsigned int target_part; 474 475 if (!card || !md || !idata) 476 return -EINVAL; 477 478 /* 479 * The RPMB accesses comes in from the character device, so we 480 * need to target these explicitly. Else we just target the 481 * partition type for the block device the ioctl() was issued 482 * on. 483 */ 484 if (idata->rpmb) { 485 /* Support multiple RPMB partitions */ 486 target_part = idata->rpmb->part_index; 487 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 488 } else { 489 target_part = md->part_type; 490 } 491 492 cmd.opcode = idata->ic.opcode; 493 cmd.arg = idata->ic.arg; 494 cmd.flags = idata->ic.flags; 495 496 if (idata->buf_bytes) { 497 data.sg = &sg; 498 data.sg_len = 1; 499 data.blksz = idata->ic.blksz; 500 data.blocks = idata->ic.blocks; 501 502 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 503 504 if (idata->ic.write_flag) 505 data.flags = MMC_DATA_WRITE; 506 else 507 data.flags = MMC_DATA_READ; 508 509 /* data.flags must already be set before doing this. */ 510 mmc_set_data_timeout(&data, card); 511 512 /* Allow overriding the timeout_ns for empirical tuning. */ 513 if (idata->ic.data_timeout_ns) 514 data.timeout_ns = idata->ic.data_timeout_ns; 515 516 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 517 /* 518 * Pretend this is a data transfer and rely on the 519 * host driver to compute timeout. When all host 520 * drivers support cmd.cmd_timeout for R1B, this 521 * can be changed to: 522 * 523 * mrq.data = NULL; 524 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 525 */ 526 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 527 } 528 529 mrq.data = &data; 530 } 531 532 mrq.cmd = &cmd; 533 534 err = mmc_blk_part_switch(card, target_part); 535 if (err) 536 return err; 537 538 if (idata->ic.is_acmd) { 539 err = mmc_app_cmd(card->host, card); 540 if (err) 541 return err; 542 } 543 544 if (idata->rpmb) { 545 sbc.opcode = MMC_SET_BLOCK_COUNT; 546 /* 547 * We don't do any blockcount validation because the max size 548 * may be increased by a future standard. We just copy the 549 * 'Reliable Write' bit here. 550 */ 551 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 552 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 553 mrq.sbc = &sbc; 554 } 555 556 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 557 (cmd.opcode == MMC_SWITCH)) 558 return mmc_sanitize(card, idata->ic.cmd_timeout_ms); 559 560 mmc_wait_for_req(card->host, &mrq); 561 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp)); 562 563 if (cmd.error) { 564 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 565 __func__, cmd.error); 566 return cmd.error; 567 } 568 if (data.error) { 569 dev_err(mmc_dev(card->host), "%s: data error %d\n", 570 __func__, data.error); 571 return data.error; 572 } 573 574 /* 575 * Make sure the cache of the PARTITION_CONFIG register and 576 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 577 * changed it successfully. 578 */ 579 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 580 (cmd.opcode == MMC_SWITCH)) { 581 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 582 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 583 584 /* 585 * Update cache so the next mmc_blk_part_switch call operates 586 * on up-to-date data. 587 */ 588 card->ext_csd.part_config = value; 589 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 590 } 591 592 /* 593 * Make sure to update CACHE_CTRL in case it was changed. The cache 594 * will get turned back on if the card is re-initialized, e.g. 595 * suspend/resume or hw reset in recovery. 596 */ 597 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && 598 (cmd.opcode == MMC_SWITCH)) { 599 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; 600 601 card->ext_csd.cache_ctrl = value; 602 } 603 604 /* 605 * According to the SD specs, some commands require a delay after 606 * issuing the command. 607 */ 608 if (idata->ic.postsleep_min_us) 609 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 610 611 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 612 /* 613 * Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we 614 * allow to override the default timeout value if a custom timeout is specified. 615 */ 616 err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS, 617 false, MMC_BUSY_IO); 618 } 619 620 return err; 621 } 622 623 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 624 struct mmc_ioc_cmd __user *ic_ptr, 625 struct mmc_rpmb_data *rpmb) 626 { 627 struct mmc_blk_ioc_data *idata; 628 struct mmc_blk_ioc_data *idatas[1]; 629 struct mmc_queue *mq; 630 struct mmc_card *card; 631 int err = 0, ioc_err = 0; 632 struct request *req; 633 634 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 635 if (IS_ERR(idata)) 636 return PTR_ERR(idata); 637 /* This will be NULL on non-RPMB ioctl():s */ 638 idata->rpmb = rpmb; 639 640 card = md->queue.card; 641 if (IS_ERR(card)) { 642 err = PTR_ERR(card); 643 goto cmd_done; 644 } 645 646 /* 647 * Dispatch the ioctl() into the block request queue. 648 */ 649 mq = &md->queue; 650 req = blk_mq_alloc_request(mq->queue, 651 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 652 if (IS_ERR(req)) { 653 err = PTR_ERR(req); 654 goto cmd_done; 655 } 656 idatas[0] = idata; 657 req_to_mmc_queue_req(req)->drv_op = 658 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 659 req_to_mmc_queue_req(req)->drv_op_data = idatas; 660 req_to_mmc_queue_req(req)->ioc_count = 1; 661 blk_execute_rq(req, false); 662 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 663 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 664 blk_mq_free_request(req); 665 666 cmd_done: 667 kfree(idata->buf); 668 kfree(idata); 669 return ioc_err ? ioc_err : err; 670 } 671 672 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 673 struct mmc_ioc_multi_cmd __user *user, 674 struct mmc_rpmb_data *rpmb) 675 { 676 struct mmc_blk_ioc_data **idata = NULL; 677 struct mmc_ioc_cmd __user *cmds = user->cmds; 678 struct mmc_card *card; 679 struct mmc_queue *mq; 680 int err = 0, ioc_err = 0; 681 __u64 num_of_cmds; 682 unsigned int i, n; 683 struct request *req; 684 685 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 686 sizeof(num_of_cmds))) 687 return -EFAULT; 688 689 if (!num_of_cmds) 690 return 0; 691 692 if (num_of_cmds > MMC_IOC_MAX_CMDS) 693 return -EINVAL; 694 695 n = num_of_cmds; 696 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL); 697 if (!idata) 698 return -ENOMEM; 699 700 for (i = 0; i < n; i++) { 701 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 702 if (IS_ERR(idata[i])) { 703 err = PTR_ERR(idata[i]); 704 n = i; 705 goto cmd_err; 706 } 707 /* This will be NULL on non-RPMB ioctl():s */ 708 idata[i]->rpmb = rpmb; 709 } 710 711 card = md->queue.card; 712 if (IS_ERR(card)) { 713 err = PTR_ERR(card); 714 goto cmd_err; 715 } 716 717 718 /* 719 * Dispatch the ioctl()s into the block request queue. 720 */ 721 mq = &md->queue; 722 req = blk_mq_alloc_request(mq->queue, 723 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 724 if (IS_ERR(req)) { 725 err = PTR_ERR(req); 726 goto cmd_err; 727 } 728 req_to_mmc_queue_req(req)->drv_op = 729 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 730 req_to_mmc_queue_req(req)->drv_op_data = idata; 731 req_to_mmc_queue_req(req)->ioc_count = n; 732 blk_execute_rq(req, false); 733 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 734 735 /* copy to user if data and response */ 736 for (i = 0; i < n && !err; i++) 737 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 738 739 blk_mq_free_request(req); 740 741 cmd_err: 742 for (i = 0; i < n; i++) { 743 kfree(idata[i]->buf); 744 kfree(idata[i]); 745 } 746 kfree(idata); 747 return ioc_err ? ioc_err : err; 748 } 749 750 static int mmc_blk_check_blkdev(struct block_device *bdev) 751 { 752 /* 753 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 754 * whole block device, not on a partition. This prevents overspray 755 * between sibling partitions. 756 */ 757 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 758 return -EPERM; 759 return 0; 760 } 761 762 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 763 unsigned int cmd, unsigned long arg) 764 { 765 struct mmc_blk_data *md; 766 int ret; 767 768 switch (cmd) { 769 case MMC_IOC_CMD: 770 ret = mmc_blk_check_blkdev(bdev); 771 if (ret) 772 return ret; 773 md = mmc_blk_get(bdev->bd_disk); 774 if (!md) 775 return -EINVAL; 776 ret = mmc_blk_ioctl_cmd(md, 777 (struct mmc_ioc_cmd __user *)arg, 778 NULL); 779 mmc_blk_put(md); 780 return ret; 781 case MMC_IOC_MULTI_CMD: 782 ret = mmc_blk_check_blkdev(bdev); 783 if (ret) 784 return ret; 785 md = mmc_blk_get(bdev->bd_disk); 786 if (!md) 787 return -EINVAL; 788 ret = mmc_blk_ioctl_multi_cmd(md, 789 (struct mmc_ioc_multi_cmd __user *)arg, 790 NULL); 791 mmc_blk_put(md); 792 return ret; 793 default: 794 return -EINVAL; 795 } 796 } 797 798 #ifdef CONFIG_COMPAT 799 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 800 unsigned int cmd, unsigned long arg) 801 { 802 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 803 } 804 #endif 805 806 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk, 807 sector_t *sector) 808 { 809 struct mmc_blk_data *md; 810 int ret; 811 812 md = mmc_blk_get(disk); 813 if (!md) 814 return -EINVAL; 815 816 if (md->queue.card) 817 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector); 818 else 819 ret = -ENODEV; 820 821 mmc_blk_put(md); 822 823 return ret; 824 } 825 826 static const struct block_device_operations mmc_bdops = { 827 .open = mmc_blk_open, 828 .release = mmc_blk_release, 829 .getgeo = mmc_blk_getgeo, 830 .owner = THIS_MODULE, 831 .ioctl = mmc_blk_ioctl, 832 #ifdef CONFIG_COMPAT 833 .compat_ioctl = mmc_blk_compat_ioctl, 834 #endif 835 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector, 836 }; 837 838 static int mmc_blk_part_switch_pre(struct mmc_card *card, 839 unsigned int part_type) 840 { 841 int ret = 0; 842 843 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 844 if (card->ext_csd.cmdq_en) { 845 ret = mmc_cmdq_disable(card); 846 if (ret) 847 return ret; 848 } 849 mmc_retune_pause(card->host); 850 } 851 852 return ret; 853 } 854 855 static int mmc_blk_part_switch_post(struct mmc_card *card, 856 unsigned int part_type) 857 { 858 int ret = 0; 859 860 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 861 mmc_retune_unpause(card->host); 862 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 863 ret = mmc_cmdq_enable(card); 864 } 865 866 return ret; 867 } 868 869 static inline int mmc_blk_part_switch(struct mmc_card *card, 870 unsigned int part_type) 871 { 872 int ret = 0; 873 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 874 875 if (main_md->part_curr == part_type) 876 return 0; 877 878 if (mmc_card_mmc(card)) { 879 u8 part_config = card->ext_csd.part_config; 880 881 ret = mmc_blk_part_switch_pre(card, part_type); 882 if (ret) 883 return ret; 884 885 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 886 part_config |= part_type; 887 888 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 889 EXT_CSD_PART_CONFIG, part_config, 890 card->ext_csd.part_time); 891 if (ret) { 892 mmc_blk_part_switch_post(card, part_type); 893 return ret; 894 } 895 896 card->ext_csd.part_config = part_config; 897 898 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 899 } 900 901 main_md->part_curr = part_type; 902 return ret; 903 } 904 905 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 906 { 907 int err; 908 u32 result; 909 __be32 *blocks; 910 911 struct mmc_request mrq = {}; 912 struct mmc_command cmd = {}; 913 struct mmc_data data = {}; 914 915 struct scatterlist sg; 916 917 cmd.opcode = MMC_APP_CMD; 918 cmd.arg = card->rca << 16; 919 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 920 921 err = mmc_wait_for_cmd(card->host, &cmd, 0); 922 if (err) 923 return err; 924 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 925 return -EIO; 926 927 memset(&cmd, 0, sizeof(struct mmc_command)); 928 929 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 930 cmd.arg = 0; 931 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 932 933 data.blksz = 4; 934 data.blocks = 1; 935 data.flags = MMC_DATA_READ; 936 data.sg = &sg; 937 data.sg_len = 1; 938 mmc_set_data_timeout(&data, card); 939 940 mrq.cmd = &cmd; 941 mrq.data = &data; 942 943 blocks = kmalloc(4, GFP_KERNEL); 944 if (!blocks) 945 return -ENOMEM; 946 947 sg_init_one(&sg, blocks, 4); 948 949 mmc_wait_for_req(card->host, &mrq); 950 951 result = ntohl(*blocks); 952 kfree(blocks); 953 954 if (cmd.error || data.error) 955 return -EIO; 956 957 *written_blocks = result; 958 959 return 0; 960 } 961 962 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 963 { 964 if (host->actual_clock) 965 return host->actual_clock / 1000; 966 967 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 968 if (host->ios.clock) 969 return host->ios.clock / 2000; 970 971 /* How can there be no clock */ 972 WARN_ON_ONCE(1); 973 return 100; /* 100 kHz is minimum possible value */ 974 } 975 976 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 977 struct mmc_data *data) 978 { 979 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 980 unsigned int khz; 981 982 if (data->timeout_clks) { 983 khz = mmc_blk_clock_khz(host); 984 ms += DIV_ROUND_UP(data->timeout_clks, khz); 985 } 986 987 return ms; 988 } 989 990 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 991 int type) 992 { 993 int err; 994 995 if (md->reset_done & type) 996 return -EEXIST; 997 998 md->reset_done |= type; 999 err = mmc_hw_reset(host->card); 1000 /* Ensure we switch back to the correct partition */ 1001 if (err) { 1002 struct mmc_blk_data *main_md = 1003 dev_get_drvdata(&host->card->dev); 1004 int part_err; 1005 1006 main_md->part_curr = main_md->part_type; 1007 part_err = mmc_blk_part_switch(host->card, md->part_type); 1008 if (part_err) { 1009 /* 1010 * We have failed to get back into the correct 1011 * partition, so we need to abort the whole request. 1012 */ 1013 return -ENODEV; 1014 } 1015 } 1016 return err; 1017 } 1018 1019 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1020 { 1021 md->reset_done &= ~type; 1022 } 1023 1024 /* 1025 * The non-block commands come back from the block layer after it queued it and 1026 * processed it with all other requests and then they get issued in this 1027 * function. 1028 */ 1029 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1030 { 1031 struct mmc_queue_req *mq_rq; 1032 struct mmc_card *card = mq->card; 1033 struct mmc_blk_data *md = mq->blkdata; 1034 struct mmc_blk_ioc_data **idata; 1035 bool rpmb_ioctl; 1036 u8 **ext_csd; 1037 u32 status; 1038 int ret; 1039 int i; 1040 1041 mq_rq = req_to_mmc_queue_req(req); 1042 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1043 1044 switch (mq_rq->drv_op) { 1045 case MMC_DRV_OP_IOCTL: 1046 if (card->ext_csd.cmdq_en) { 1047 ret = mmc_cmdq_disable(card); 1048 if (ret) 1049 break; 1050 } 1051 fallthrough; 1052 case MMC_DRV_OP_IOCTL_RPMB: 1053 idata = mq_rq->drv_op_data; 1054 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1055 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1056 if (ret) 1057 break; 1058 } 1059 /* Always switch back to main area after RPMB access */ 1060 if (rpmb_ioctl) 1061 mmc_blk_part_switch(card, 0); 1062 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 1063 mmc_cmdq_enable(card); 1064 break; 1065 case MMC_DRV_OP_BOOT_WP: 1066 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1067 card->ext_csd.boot_ro_lock | 1068 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1069 card->ext_csd.part_time); 1070 if (ret) 1071 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1072 md->disk->disk_name, ret); 1073 else 1074 card->ext_csd.boot_ro_lock |= 1075 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1076 break; 1077 case MMC_DRV_OP_GET_CARD_STATUS: 1078 ret = mmc_send_status(card, &status); 1079 if (!ret) 1080 ret = status; 1081 break; 1082 case MMC_DRV_OP_GET_EXT_CSD: 1083 ext_csd = mq_rq->drv_op_data; 1084 ret = mmc_get_ext_csd(card, ext_csd); 1085 break; 1086 default: 1087 pr_err("%s: unknown driver specific operation\n", 1088 md->disk->disk_name); 1089 ret = -EINVAL; 1090 break; 1091 } 1092 mq_rq->drv_op_result = ret; 1093 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1094 } 1095 1096 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req, 1097 int type, unsigned int erase_arg) 1098 { 1099 struct mmc_blk_data *md = mq->blkdata; 1100 struct mmc_card *card = md->queue.card; 1101 unsigned int from, nr; 1102 int err = 0; 1103 blk_status_t status = BLK_STS_OK; 1104 1105 if (!mmc_can_erase(card)) { 1106 status = BLK_STS_NOTSUPP; 1107 goto fail; 1108 } 1109 1110 from = blk_rq_pos(req); 1111 nr = blk_rq_sectors(req); 1112 1113 do { 1114 err = 0; 1115 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1116 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1117 INAND_CMD38_ARG_EXT_CSD, 1118 erase_arg == MMC_TRIM_ARG ? 1119 INAND_CMD38_ARG_TRIM : 1120 INAND_CMD38_ARG_ERASE, 1121 card->ext_csd.generic_cmd6_time); 1122 } 1123 if (!err) 1124 err = mmc_erase(card, from, nr, erase_arg); 1125 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1126 if (err) 1127 status = BLK_STS_IOERR; 1128 else 1129 mmc_blk_reset_success(md, type); 1130 fail: 1131 blk_mq_end_request(req, status); 1132 } 1133 1134 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req) 1135 { 1136 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG); 1137 } 1138 1139 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1140 { 1141 struct mmc_blk_data *md = mq->blkdata; 1142 struct mmc_card *card = md->queue.card; 1143 1144 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, card->erase_arg); 1145 } 1146 1147 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1148 struct request *req) 1149 { 1150 struct mmc_blk_data *md = mq->blkdata; 1151 struct mmc_card *card = md->queue.card; 1152 unsigned int from, nr, arg; 1153 int err = 0, type = MMC_BLK_SECDISCARD; 1154 blk_status_t status = BLK_STS_OK; 1155 1156 if (!(mmc_can_secure_erase_trim(card))) { 1157 status = BLK_STS_NOTSUPP; 1158 goto out; 1159 } 1160 1161 from = blk_rq_pos(req); 1162 nr = blk_rq_sectors(req); 1163 1164 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1165 arg = MMC_SECURE_TRIM1_ARG; 1166 else 1167 arg = MMC_SECURE_ERASE_ARG; 1168 1169 retry: 1170 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1171 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1172 INAND_CMD38_ARG_EXT_CSD, 1173 arg == MMC_SECURE_TRIM1_ARG ? 1174 INAND_CMD38_ARG_SECTRIM1 : 1175 INAND_CMD38_ARG_SECERASE, 1176 card->ext_csd.generic_cmd6_time); 1177 if (err) 1178 goto out_retry; 1179 } 1180 1181 err = mmc_erase(card, from, nr, arg); 1182 if (err == -EIO) 1183 goto out_retry; 1184 if (err) { 1185 status = BLK_STS_IOERR; 1186 goto out; 1187 } 1188 1189 if (arg == MMC_SECURE_TRIM1_ARG) { 1190 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1191 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1192 INAND_CMD38_ARG_EXT_CSD, 1193 INAND_CMD38_ARG_SECTRIM2, 1194 card->ext_csd.generic_cmd6_time); 1195 if (err) 1196 goto out_retry; 1197 } 1198 1199 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1200 if (err == -EIO) 1201 goto out_retry; 1202 if (err) { 1203 status = BLK_STS_IOERR; 1204 goto out; 1205 } 1206 } 1207 1208 out_retry: 1209 if (err && !mmc_blk_reset(md, card->host, type)) 1210 goto retry; 1211 if (!err) 1212 mmc_blk_reset_success(md, type); 1213 out: 1214 blk_mq_end_request(req, status); 1215 } 1216 1217 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1218 { 1219 struct mmc_blk_data *md = mq->blkdata; 1220 struct mmc_card *card = md->queue.card; 1221 int ret = 0; 1222 1223 ret = mmc_flush_cache(card->host); 1224 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1225 } 1226 1227 /* 1228 * Reformat current write as a reliable write, supporting 1229 * both legacy and the enhanced reliable write MMC cards. 1230 * In each transfer we'll handle only as much as a single 1231 * reliable write can handle, thus finish the request in 1232 * partial completions. 1233 */ 1234 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1235 struct mmc_card *card, 1236 struct request *req) 1237 { 1238 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1239 /* Legacy mode imposes restrictions on transfers. */ 1240 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1241 brq->data.blocks = 1; 1242 1243 if (brq->data.blocks > card->ext_csd.rel_sectors) 1244 brq->data.blocks = card->ext_csd.rel_sectors; 1245 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1246 brq->data.blocks = 1; 1247 } 1248 } 1249 1250 #define CMD_ERRORS_EXCL_OOR \ 1251 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1252 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1253 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1254 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1255 R1_CC_ERROR | /* Card controller error */ \ 1256 R1_ERROR) /* General/unknown error */ 1257 1258 #define CMD_ERRORS \ 1259 (CMD_ERRORS_EXCL_OOR | \ 1260 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1261 1262 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1263 { 1264 u32 val; 1265 1266 /* 1267 * Per the SD specification(physical layer version 4.10)[1], 1268 * section 4.3.3, it explicitly states that "When the last 1269 * block of user area is read using CMD18, the host should 1270 * ignore OUT_OF_RANGE error that may occur even the sequence 1271 * is correct". And JESD84-B51 for eMMC also has a similar 1272 * statement on section 6.8.3. 1273 * 1274 * Multiple block read/write could be done by either predefined 1275 * method, namely CMD23, or open-ending mode. For open-ending mode, 1276 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1277 * 1278 * However the spec[1] doesn't tell us whether we should also 1279 * ignore that for predefined method. But per the spec[1], section 1280 * 4.15 Set Block Count Command, it says"If illegal block count 1281 * is set, out of range error will be indicated during read/write 1282 * operation (For example, data transfer is stopped at user area 1283 * boundary)." In another word, we could expect a out of range error 1284 * in the response for the following CMD18/25. And if argument of 1285 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1286 * we could also expect to get a -ETIMEDOUT or any error number from 1287 * the host drivers due to missing data response(for write)/data(for 1288 * read), as the cards will stop the data transfer by itself per the 1289 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1290 */ 1291 1292 if (!brq->stop.error) { 1293 bool oor_with_open_end; 1294 /* If there is no error yet, check R1 response */ 1295 1296 val = brq->stop.resp[0] & CMD_ERRORS; 1297 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1298 1299 if (val && !oor_with_open_end) 1300 brq->stop.error = -EIO; 1301 } 1302 } 1303 1304 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1305 int disable_multi, bool *do_rel_wr_p, 1306 bool *do_data_tag_p) 1307 { 1308 struct mmc_blk_data *md = mq->blkdata; 1309 struct mmc_card *card = md->queue.card; 1310 struct mmc_blk_request *brq = &mqrq->brq; 1311 struct request *req = mmc_queue_req_to_req(mqrq); 1312 bool do_rel_wr, do_data_tag; 1313 1314 /* 1315 * Reliable writes are used to implement Forced Unit Access and 1316 * are supported only on MMCs. 1317 */ 1318 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1319 rq_data_dir(req) == WRITE && 1320 (md->flags & MMC_BLK_REL_WR); 1321 1322 memset(brq, 0, sizeof(struct mmc_blk_request)); 1323 1324 mmc_crypto_prepare_req(mqrq); 1325 1326 brq->mrq.data = &brq->data; 1327 brq->mrq.tag = req->tag; 1328 1329 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1330 brq->stop.arg = 0; 1331 1332 if (rq_data_dir(req) == READ) { 1333 brq->data.flags = MMC_DATA_READ; 1334 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1335 } else { 1336 brq->data.flags = MMC_DATA_WRITE; 1337 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1338 } 1339 1340 brq->data.blksz = 512; 1341 brq->data.blocks = blk_rq_sectors(req); 1342 brq->data.blk_addr = blk_rq_pos(req); 1343 1344 /* 1345 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1346 * The eMMC will give "high" priority tasks priority over "simple" 1347 * priority tasks. Here we always set "simple" priority by not setting 1348 * MMC_DATA_PRIO. 1349 */ 1350 1351 /* 1352 * The block layer doesn't support all sector count 1353 * restrictions, so we need to be prepared for too big 1354 * requests. 1355 */ 1356 if (brq->data.blocks > card->host->max_blk_count) 1357 brq->data.blocks = card->host->max_blk_count; 1358 1359 if (brq->data.blocks > 1) { 1360 /* 1361 * Some SD cards in SPI mode return a CRC error or even lock up 1362 * completely when trying to read the last block using a 1363 * multiblock read command. 1364 */ 1365 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1366 (blk_rq_pos(req) + blk_rq_sectors(req) == 1367 get_capacity(md->disk))) 1368 brq->data.blocks--; 1369 1370 /* 1371 * After a read error, we redo the request one sector 1372 * at a time in order to accurately determine which 1373 * sectors can be read successfully. 1374 */ 1375 if (disable_multi) 1376 brq->data.blocks = 1; 1377 1378 /* 1379 * Some controllers have HW issues while operating 1380 * in multiple I/O mode 1381 */ 1382 if (card->host->ops->multi_io_quirk) 1383 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1384 (rq_data_dir(req) == READ) ? 1385 MMC_DATA_READ : MMC_DATA_WRITE, 1386 brq->data.blocks); 1387 } 1388 1389 if (do_rel_wr) { 1390 mmc_apply_rel_rw(brq, card, req); 1391 brq->data.flags |= MMC_DATA_REL_WR; 1392 } 1393 1394 /* 1395 * Data tag is used only during writing meta data to speed 1396 * up write and any subsequent read of this meta data 1397 */ 1398 do_data_tag = card->ext_csd.data_tag_unit_size && 1399 (req->cmd_flags & REQ_META) && 1400 (rq_data_dir(req) == WRITE) && 1401 ((brq->data.blocks * brq->data.blksz) >= 1402 card->ext_csd.data_tag_unit_size); 1403 1404 if (do_data_tag) 1405 brq->data.flags |= MMC_DATA_DAT_TAG; 1406 1407 mmc_set_data_timeout(&brq->data, card); 1408 1409 brq->data.sg = mqrq->sg; 1410 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1411 1412 /* 1413 * Adjust the sg list so it is the same size as the 1414 * request. 1415 */ 1416 if (brq->data.blocks != blk_rq_sectors(req)) { 1417 int i, data_size = brq->data.blocks << 9; 1418 struct scatterlist *sg; 1419 1420 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1421 data_size -= sg->length; 1422 if (data_size <= 0) { 1423 sg->length += data_size; 1424 i++; 1425 break; 1426 } 1427 } 1428 brq->data.sg_len = i; 1429 } 1430 1431 if (do_rel_wr_p) 1432 *do_rel_wr_p = do_rel_wr; 1433 1434 if (do_data_tag_p) 1435 *do_data_tag_p = do_data_tag; 1436 } 1437 1438 #define MMC_CQE_RETRIES 2 1439 1440 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1441 { 1442 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1443 struct mmc_request *mrq = &mqrq->brq.mrq; 1444 struct request_queue *q = req->q; 1445 struct mmc_host *host = mq->card->host; 1446 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1447 unsigned long flags; 1448 bool put_card; 1449 int err; 1450 1451 mmc_cqe_post_req(host, mrq); 1452 1453 if (mrq->cmd && mrq->cmd->error) 1454 err = mrq->cmd->error; 1455 else if (mrq->data && mrq->data->error) 1456 err = mrq->data->error; 1457 else 1458 err = 0; 1459 1460 if (err) { 1461 if (mqrq->retries++ < MMC_CQE_RETRIES) 1462 blk_mq_requeue_request(req, true); 1463 else 1464 blk_mq_end_request(req, BLK_STS_IOERR); 1465 } else if (mrq->data) { 1466 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1467 blk_mq_requeue_request(req, true); 1468 else 1469 __blk_mq_end_request(req, BLK_STS_OK); 1470 } else { 1471 blk_mq_end_request(req, BLK_STS_OK); 1472 } 1473 1474 spin_lock_irqsave(&mq->lock, flags); 1475 1476 mq->in_flight[issue_type] -= 1; 1477 1478 put_card = (mmc_tot_in_flight(mq) == 0); 1479 1480 mmc_cqe_check_busy(mq); 1481 1482 spin_unlock_irqrestore(&mq->lock, flags); 1483 1484 if (!mq->cqe_busy) 1485 blk_mq_run_hw_queues(q, true); 1486 1487 if (put_card) 1488 mmc_put_card(mq->card, &mq->ctx); 1489 } 1490 1491 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1492 { 1493 struct mmc_card *card = mq->card; 1494 struct mmc_host *host = card->host; 1495 int err; 1496 1497 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1498 1499 err = mmc_cqe_recovery(host); 1500 if (err) 1501 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1502 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1503 1504 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1505 } 1506 1507 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1508 { 1509 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1510 brq.mrq); 1511 struct request *req = mmc_queue_req_to_req(mqrq); 1512 struct request_queue *q = req->q; 1513 struct mmc_queue *mq = q->queuedata; 1514 1515 /* 1516 * Block layer timeouts race with completions which means the normal 1517 * completion path cannot be used during recovery. 1518 */ 1519 if (mq->in_recovery) 1520 mmc_blk_cqe_complete_rq(mq, req); 1521 else if (likely(!blk_should_fake_timeout(req->q))) 1522 blk_mq_complete_request(req); 1523 } 1524 1525 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1526 { 1527 mrq->done = mmc_blk_cqe_req_done; 1528 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1529 1530 return mmc_cqe_start_req(host, mrq); 1531 } 1532 1533 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1534 struct request *req) 1535 { 1536 struct mmc_blk_request *brq = &mqrq->brq; 1537 1538 memset(brq, 0, sizeof(*brq)); 1539 1540 brq->mrq.cmd = &brq->cmd; 1541 brq->mrq.tag = req->tag; 1542 1543 return &brq->mrq; 1544 } 1545 1546 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1547 { 1548 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1549 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1550 1551 mrq->cmd->opcode = MMC_SWITCH; 1552 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1553 (EXT_CSD_FLUSH_CACHE << 16) | 1554 (1 << 8) | 1555 EXT_CSD_CMD_SET_NORMAL; 1556 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1557 1558 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1559 } 1560 1561 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1562 { 1563 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1564 struct mmc_host *host = mq->card->host; 1565 int err; 1566 1567 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1568 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1569 mmc_pre_req(host, &mqrq->brq.mrq); 1570 1571 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1572 if (err) 1573 mmc_post_req(host, &mqrq->brq.mrq, err); 1574 1575 return err; 1576 } 1577 1578 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1579 { 1580 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1581 struct mmc_host *host = mq->card->host; 1582 1583 if (host->hsq_enabled) 1584 return mmc_blk_hsq_issue_rw_rq(mq, req); 1585 1586 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1587 1588 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1589 } 1590 1591 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1592 struct mmc_card *card, 1593 int disable_multi, 1594 struct mmc_queue *mq) 1595 { 1596 u32 readcmd, writecmd; 1597 struct mmc_blk_request *brq = &mqrq->brq; 1598 struct request *req = mmc_queue_req_to_req(mqrq); 1599 struct mmc_blk_data *md = mq->blkdata; 1600 bool do_rel_wr, do_data_tag; 1601 1602 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1603 1604 brq->mrq.cmd = &brq->cmd; 1605 1606 brq->cmd.arg = blk_rq_pos(req); 1607 if (!mmc_card_blockaddr(card)) 1608 brq->cmd.arg <<= 9; 1609 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1610 1611 if (brq->data.blocks > 1 || do_rel_wr) { 1612 /* SPI multiblock writes terminate using a special 1613 * token, not a STOP_TRANSMISSION request. 1614 */ 1615 if (!mmc_host_is_spi(card->host) || 1616 rq_data_dir(req) == READ) 1617 brq->mrq.stop = &brq->stop; 1618 readcmd = MMC_READ_MULTIPLE_BLOCK; 1619 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1620 } else { 1621 brq->mrq.stop = NULL; 1622 readcmd = MMC_READ_SINGLE_BLOCK; 1623 writecmd = MMC_WRITE_BLOCK; 1624 } 1625 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1626 1627 /* 1628 * Pre-defined multi-block transfers are preferable to 1629 * open ended-ones (and necessary for reliable writes). 1630 * However, it is not sufficient to just send CMD23, 1631 * and avoid the final CMD12, as on an error condition 1632 * CMD12 (stop) needs to be sent anyway. This, coupled 1633 * with Auto-CMD23 enhancements provided by some 1634 * hosts, means that the complexity of dealing 1635 * with this is best left to the host. If CMD23 is 1636 * supported by card and host, we'll fill sbc in and let 1637 * the host deal with handling it correctly. This means 1638 * that for hosts that don't expose MMC_CAP_CMD23, no 1639 * change of behavior will be observed. 1640 * 1641 * N.B: Some MMC cards experience perf degradation. 1642 * We'll avoid using CMD23-bounded multiblock writes for 1643 * these, while retaining features like reliable writes. 1644 */ 1645 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1646 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1647 do_data_tag)) { 1648 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1649 brq->sbc.arg = brq->data.blocks | 1650 (do_rel_wr ? (1 << 31) : 0) | 1651 (do_data_tag ? (1 << 29) : 0); 1652 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1653 brq->mrq.sbc = &brq->sbc; 1654 } 1655 } 1656 1657 #define MMC_MAX_RETRIES 5 1658 #define MMC_DATA_RETRIES 2 1659 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1660 1661 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1662 { 1663 struct mmc_command cmd = { 1664 .opcode = MMC_STOP_TRANSMISSION, 1665 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1666 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1667 .busy_timeout = timeout, 1668 }; 1669 1670 return mmc_wait_for_cmd(card->host, &cmd, 5); 1671 } 1672 1673 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1674 { 1675 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1676 struct mmc_blk_request *brq = &mqrq->brq; 1677 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1678 int err; 1679 1680 mmc_retune_hold_now(card->host); 1681 1682 mmc_blk_send_stop(card, timeout); 1683 1684 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO); 1685 1686 mmc_retune_release(card->host); 1687 1688 return err; 1689 } 1690 1691 #define MMC_READ_SINGLE_RETRIES 2 1692 1693 /* Single sector read during recovery */ 1694 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1695 { 1696 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1697 struct mmc_request *mrq = &mqrq->brq.mrq; 1698 struct mmc_card *card = mq->card; 1699 struct mmc_host *host = card->host; 1700 blk_status_t error = BLK_STS_OK; 1701 1702 do { 1703 u32 status; 1704 int err; 1705 int retries = 0; 1706 1707 while (retries++ <= MMC_READ_SINGLE_RETRIES) { 1708 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1709 1710 mmc_wait_for_req(host, mrq); 1711 1712 err = mmc_send_status(card, &status); 1713 if (err) 1714 goto error_exit; 1715 1716 if (!mmc_host_is_spi(host) && 1717 !mmc_ready_for_data(status)) { 1718 err = mmc_blk_fix_state(card, req); 1719 if (err) 1720 goto error_exit; 1721 } 1722 1723 if (!mrq->cmd->error) 1724 break; 1725 } 1726 1727 if (mrq->cmd->error || 1728 mrq->data->error || 1729 (!mmc_host_is_spi(host) && 1730 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1731 error = BLK_STS_IOERR; 1732 else 1733 error = BLK_STS_OK; 1734 1735 } while (blk_update_request(req, error, 512)); 1736 1737 return; 1738 1739 error_exit: 1740 mrq->data->bytes_xfered = 0; 1741 blk_update_request(req, BLK_STS_IOERR, 512); 1742 /* Let it try the remaining request again */ 1743 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1744 mqrq->retries = MMC_MAX_RETRIES - 1; 1745 } 1746 1747 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1748 { 1749 return !!brq->mrq.sbc; 1750 } 1751 1752 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1753 { 1754 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1755 } 1756 1757 /* 1758 * Check for errors the host controller driver might not have seen such as 1759 * response mode errors or invalid card state. 1760 */ 1761 static bool mmc_blk_status_error(struct request *req, u32 status) 1762 { 1763 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1764 struct mmc_blk_request *brq = &mqrq->brq; 1765 struct mmc_queue *mq = req->q->queuedata; 1766 u32 stop_err_bits; 1767 1768 if (mmc_host_is_spi(mq->card->host)) 1769 return false; 1770 1771 stop_err_bits = mmc_blk_stop_err_bits(brq); 1772 1773 return brq->cmd.resp[0] & CMD_ERRORS || 1774 brq->stop.resp[0] & stop_err_bits || 1775 status & stop_err_bits || 1776 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1777 } 1778 1779 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1780 { 1781 return !brq->sbc.error && !brq->cmd.error && 1782 !(brq->cmd.resp[0] & CMD_ERRORS); 1783 } 1784 1785 /* 1786 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1787 * policy: 1788 * 1. A request that has transferred at least some data is considered 1789 * successful and will be requeued if there is remaining data to 1790 * transfer. 1791 * 2. Otherwise the number of retries is incremented and the request 1792 * will be requeued if there are remaining retries. 1793 * 3. Otherwise the request will be errored out. 1794 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1795 * mqrq->retries. So there are only 4 possible actions here: 1796 * 1. do not accept the bytes_xfered value i.e. set it to zero 1797 * 2. change mqrq->retries to determine the number of retries 1798 * 3. try to reset the card 1799 * 4. read one sector at a time 1800 */ 1801 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1802 { 1803 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1804 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1805 struct mmc_blk_request *brq = &mqrq->brq; 1806 struct mmc_blk_data *md = mq->blkdata; 1807 struct mmc_card *card = mq->card; 1808 u32 status; 1809 u32 blocks; 1810 int err; 1811 1812 /* 1813 * Some errors the host driver might not have seen. Set the number of 1814 * bytes transferred to zero in that case. 1815 */ 1816 err = __mmc_send_status(card, &status, 0); 1817 if (err || mmc_blk_status_error(req, status)) 1818 brq->data.bytes_xfered = 0; 1819 1820 mmc_retune_release(card->host); 1821 1822 /* 1823 * Try again to get the status. This also provides an opportunity for 1824 * re-tuning. 1825 */ 1826 if (err) 1827 err = __mmc_send_status(card, &status, 0); 1828 1829 /* 1830 * Nothing more to do after the number of bytes transferred has been 1831 * updated and there is no card. 1832 */ 1833 if (err && mmc_detect_card_removed(card->host)) 1834 return; 1835 1836 /* Try to get back to "tran" state */ 1837 if (!mmc_host_is_spi(mq->card->host) && 1838 (err || !mmc_ready_for_data(status))) 1839 err = mmc_blk_fix_state(mq->card, req); 1840 1841 /* 1842 * Special case for SD cards where the card might record the number of 1843 * blocks written. 1844 */ 1845 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1846 rq_data_dir(req) == WRITE) { 1847 if (mmc_sd_num_wr_blocks(card, &blocks)) 1848 brq->data.bytes_xfered = 0; 1849 else 1850 brq->data.bytes_xfered = blocks << 9; 1851 } 1852 1853 /* Reset if the card is in a bad state */ 1854 if (!mmc_host_is_spi(mq->card->host) && 1855 err && mmc_blk_reset(md, card->host, type)) { 1856 pr_err("%s: recovery failed!\n", req->q->disk->disk_name); 1857 mqrq->retries = MMC_NO_RETRIES; 1858 return; 1859 } 1860 1861 /* 1862 * If anything was done, just return and if there is anything remaining 1863 * on the request it will get requeued. 1864 */ 1865 if (brq->data.bytes_xfered) 1866 return; 1867 1868 /* Reset before last retry */ 1869 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1870 mmc_blk_reset(md, card->host, type); 1871 1872 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1873 if (brq->sbc.error || brq->cmd.error) 1874 return; 1875 1876 /* Reduce the remaining retries for data errors */ 1877 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1878 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1879 return; 1880 } 1881 1882 /* FIXME: Missing single sector read for large sector size */ 1883 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1884 brq->data.blocks > 1) { 1885 /* Read one sector at a time */ 1886 mmc_blk_read_single(mq, req); 1887 return; 1888 } 1889 } 1890 1891 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1892 { 1893 mmc_blk_eval_resp_error(brq); 1894 1895 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1896 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1897 } 1898 1899 static int mmc_spi_err_check(struct mmc_card *card) 1900 { 1901 u32 status = 0; 1902 int err; 1903 1904 /* 1905 * SPI does not have a TRAN state we have to wait on, instead the 1906 * card is ready again when it no longer holds the line LOW. 1907 * We still have to ensure two things here before we know the write 1908 * was successful: 1909 * 1. The card has not disconnected during busy and we actually read our 1910 * own pull-up, thinking it was still connected, so ensure it 1911 * still responds. 1912 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a 1913 * just reconnected card after being disconnected during busy. 1914 */ 1915 err = __mmc_send_status(card, &status, 0); 1916 if (err) 1917 return err; 1918 /* All R1 and R2 bits of SPI are errors in our case */ 1919 if (status) 1920 return -EIO; 1921 return 0; 1922 } 1923 1924 static int mmc_blk_busy_cb(void *cb_data, bool *busy) 1925 { 1926 struct mmc_blk_busy_data *data = cb_data; 1927 u32 status = 0; 1928 int err; 1929 1930 err = mmc_send_status(data->card, &status); 1931 if (err) 1932 return err; 1933 1934 /* Accumulate response error bits. */ 1935 data->status |= status; 1936 1937 *busy = !mmc_ready_for_data(status); 1938 return 0; 1939 } 1940 1941 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1942 { 1943 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1944 struct mmc_blk_busy_data cb_data; 1945 int err; 1946 1947 if (rq_data_dir(req) == READ) 1948 return 0; 1949 1950 if (mmc_host_is_spi(card->host)) { 1951 err = mmc_spi_err_check(card); 1952 if (err) 1953 mqrq->brq.data.bytes_xfered = 0; 1954 return err; 1955 } 1956 1957 cb_data.card = card; 1958 cb_data.status = 0; 1959 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS, 1960 &mmc_blk_busy_cb, &cb_data); 1961 1962 /* 1963 * Do not assume data transferred correctly if there are any error bits 1964 * set. 1965 */ 1966 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1967 mqrq->brq.data.bytes_xfered = 0; 1968 err = err ? err : -EIO; 1969 } 1970 1971 /* Copy the exception bit so it will be seen later on */ 1972 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT) 1973 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1974 1975 return err; 1976 } 1977 1978 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1979 struct request *req) 1980 { 1981 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1982 1983 mmc_blk_reset_success(mq->blkdata, type); 1984 } 1985 1986 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1987 { 1988 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1989 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1990 1991 if (nr_bytes) { 1992 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1993 blk_mq_requeue_request(req, true); 1994 else 1995 __blk_mq_end_request(req, BLK_STS_OK); 1996 } else if (!blk_rq_bytes(req)) { 1997 __blk_mq_end_request(req, BLK_STS_IOERR); 1998 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1999 blk_mq_requeue_request(req, true); 2000 } else { 2001 if (mmc_card_removed(mq->card)) 2002 req->rq_flags |= RQF_QUIET; 2003 blk_mq_end_request(req, BLK_STS_IOERR); 2004 } 2005 } 2006 2007 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 2008 struct mmc_queue_req *mqrq) 2009 { 2010 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 2011 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 2012 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 2013 } 2014 2015 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 2016 struct mmc_queue_req *mqrq) 2017 { 2018 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 2019 mmc_run_bkops(mq->card); 2020 } 2021 2022 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 2023 { 2024 struct mmc_queue_req *mqrq = 2025 container_of(mrq, struct mmc_queue_req, brq.mrq); 2026 struct request *req = mmc_queue_req_to_req(mqrq); 2027 struct request_queue *q = req->q; 2028 struct mmc_queue *mq = q->queuedata; 2029 struct mmc_host *host = mq->card->host; 2030 unsigned long flags; 2031 2032 if (mmc_blk_rq_error(&mqrq->brq) || 2033 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2034 spin_lock_irqsave(&mq->lock, flags); 2035 mq->recovery_needed = true; 2036 mq->recovery_req = req; 2037 spin_unlock_irqrestore(&mq->lock, flags); 2038 2039 host->cqe_ops->cqe_recovery_start(host); 2040 2041 schedule_work(&mq->recovery_work); 2042 return; 2043 } 2044 2045 mmc_blk_rw_reset_success(mq, req); 2046 2047 /* 2048 * Block layer timeouts race with completions which means the normal 2049 * completion path cannot be used during recovery. 2050 */ 2051 if (mq->in_recovery) 2052 mmc_blk_cqe_complete_rq(mq, req); 2053 else if (likely(!blk_should_fake_timeout(req->q))) 2054 blk_mq_complete_request(req); 2055 } 2056 2057 void mmc_blk_mq_complete(struct request *req) 2058 { 2059 struct mmc_queue *mq = req->q->queuedata; 2060 struct mmc_host *host = mq->card->host; 2061 2062 if (host->cqe_enabled) 2063 mmc_blk_cqe_complete_rq(mq, req); 2064 else if (likely(!blk_should_fake_timeout(req->q))) 2065 mmc_blk_mq_complete_rq(mq, req); 2066 } 2067 2068 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 2069 struct request *req) 2070 { 2071 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2072 struct mmc_host *host = mq->card->host; 2073 2074 if (mmc_blk_rq_error(&mqrq->brq) || 2075 mmc_blk_card_busy(mq->card, req)) { 2076 mmc_blk_mq_rw_recovery(mq, req); 2077 } else { 2078 mmc_blk_rw_reset_success(mq, req); 2079 mmc_retune_release(host); 2080 } 2081 2082 mmc_blk_urgent_bkops(mq, mqrq); 2083 } 2084 2085 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 2086 { 2087 unsigned long flags; 2088 bool put_card; 2089 2090 spin_lock_irqsave(&mq->lock, flags); 2091 2092 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 2093 2094 put_card = (mmc_tot_in_flight(mq) == 0); 2095 2096 spin_unlock_irqrestore(&mq->lock, flags); 2097 2098 if (put_card) 2099 mmc_put_card(mq->card, &mq->ctx); 2100 } 2101 2102 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req, 2103 bool can_sleep) 2104 { 2105 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2106 struct mmc_request *mrq = &mqrq->brq.mrq; 2107 struct mmc_host *host = mq->card->host; 2108 2109 mmc_post_req(host, mrq, 0); 2110 2111 /* 2112 * Block layer timeouts race with completions which means the normal 2113 * completion path cannot be used during recovery. 2114 */ 2115 if (mq->in_recovery) { 2116 mmc_blk_mq_complete_rq(mq, req); 2117 } else if (likely(!blk_should_fake_timeout(req->q))) { 2118 if (can_sleep) 2119 blk_mq_complete_request_direct(req, mmc_blk_mq_complete); 2120 else 2121 blk_mq_complete_request(req); 2122 } 2123 2124 mmc_blk_mq_dec_in_flight(mq, req); 2125 } 2126 2127 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2128 { 2129 struct request *req = mq->recovery_req; 2130 struct mmc_host *host = mq->card->host; 2131 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2132 2133 mq->recovery_req = NULL; 2134 mq->rw_wait = false; 2135 2136 if (mmc_blk_rq_error(&mqrq->brq)) { 2137 mmc_retune_hold_now(host); 2138 mmc_blk_mq_rw_recovery(mq, req); 2139 } 2140 2141 mmc_blk_urgent_bkops(mq, mqrq); 2142 2143 mmc_blk_mq_post_req(mq, req, true); 2144 } 2145 2146 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2147 struct request **prev_req) 2148 { 2149 if (mmc_host_done_complete(mq->card->host)) 2150 return; 2151 2152 mutex_lock(&mq->complete_lock); 2153 2154 if (!mq->complete_req) 2155 goto out_unlock; 2156 2157 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2158 2159 if (prev_req) 2160 *prev_req = mq->complete_req; 2161 else 2162 mmc_blk_mq_post_req(mq, mq->complete_req, true); 2163 2164 mq->complete_req = NULL; 2165 2166 out_unlock: 2167 mutex_unlock(&mq->complete_lock); 2168 } 2169 2170 void mmc_blk_mq_complete_work(struct work_struct *work) 2171 { 2172 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2173 complete_work); 2174 2175 mmc_blk_mq_complete_prev_req(mq, NULL); 2176 } 2177 2178 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2179 { 2180 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2181 brq.mrq); 2182 struct request *req = mmc_queue_req_to_req(mqrq); 2183 struct request_queue *q = req->q; 2184 struct mmc_queue *mq = q->queuedata; 2185 struct mmc_host *host = mq->card->host; 2186 unsigned long flags; 2187 2188 if (!mmc_host_done_complete(host)) { 2189 bool waiting; 2190 2191 /* 2192 * We cannot complete the request in this context, so record 2193 * that there is a request to complete, and that a following 2194 * request does not need to wait (although it does need to 2195 * complete complete_req first). 2196 */ 2197 spin_lock_irqsave(&mq->lock, flags); 2198 mq->complete_req = req; 2199 mq->rw_wait = false; 2200 waiting = mq->waiting; 2201 spin_unlock_irqrestore(&mq->lock, flags); 2202 2203 /* 2204 * If 'waiting' then the waiting task will complete this 2205 * request, otherwise queue a work to do it. Note that 2206 * complete_work may still race with the dispatch of a following 2207 * request. 2208 */ 2209 if (waiting) 2210 wake_up(&mq->wait); 2211 else 2212 queue_work(mq->card->complete_wq, &mq->complete_work); 2213 2214 return; 2215 } 2216 2217 /* Take the recovery path for errors or urgent background operations */ 2218 if (mmc_blk_rq_error(&mqrq->brq) || 2219 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2220 spin_lock_irqsave(&mq->lock, flags); 2221 mq->recovery_needed = true; 2222 mq->recovery_req = req; 2223 spin_unlock_irqrestore(&mq->lock, flags); 2224 wake_up(&mq->wait); 2225 schedule_work(&mq->recovery_work); 2226 return; 2227 } 2228 2229 mmc_blk_rw_reset_success(mq, req); 2230 2231 mq->rw_wait = false; 2232 wake_up(&mq->wait); 2233 2234 /* context unknown */ 2235 mmc_blk_mq_post_req(mq, req, false); 2236 } 2237 2238 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2239 { 2240 unsigned long flags; 2241 bool done; 2242 2243 /* 2244 * Wait while there is another request in progress, but not if recovery 2245 * is needed. Also indicate whether there is a request waiting to start. 2246 */ 2247 spin_lock_irqsave(&mq->lock, flags); 2248 if (mq->recovery_needed) { 2249 *err = -EBUSY; 2250 done = true; 2251 } else { 2252 done = !mq->rw_wait; 2253 } 2254 mq->waiting = !done; 2255 spin_unlock_irqrestore(&mq->lock, flags); 2256 2257 return done; 2258 } 2259 2260 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2261 { 2262 int err = 0; 2263 2264 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2265 2266 /* Always complete the previous request if there is one */ 2267 mmc_blk_mq_complete_prev_req(mq, prev_req); 2268 2269 return err; 2270 } 2271 2272 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2273 struct request *req) 2274 { 2275 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2276 struct mmc_host *host = mq->card->host; 2277 struct request *prev_req = NULL; 2278 int err = 0; 2279 2280 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2281 2282 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2283 2284 mmc_pre_req(host, &mqrq->brq.mrq); 2285 2286 err = mmc_blk_rw_wait(mq, &prev_req); 2287 if (err) 2288 goto out_post_req; 2289 2290 mq->rw_wait = true; 2291 2292 err = mmc_start_request(host, &mqrq->brq.mrq); 2293 2294 if (prev_req) 2295 mmc_blk_mq_post_req(mq, prev_req, true); 2296 2297 if (err) 2298 mq->rw_wait = false; 2299 2300 /* Release re-tuning here where there is no synchronization required */ 2301 if (err || mmc_host_done_complete(host)) 2302 mmc_retune_release(host); 2303 2304 out_post_req: 2305 if (err) 2306 mmc_post_req(host, &mqrq->brq.mrq, err); 2307 2308 return err; 2309 } 2310 2311 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2312 { 2313 if (host->cqe_enabled) 2314 return host->cqe_ops->cqe_wait_for_idle(host); 2315 2316 return mmc_blk_rw_wait(mq, NULL); 2317 } 2318 2319 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2320 { 2321 struct mmc_blk_data *md = mq->blkdata; 2322 struct mmc_card *card = md->queue.card; 2323 struct mmc_host *host = card->host; 2324 int ret; 2325 2326 ret = mmc_blk_part_switch(card, md->part_type); 2327 if (ret) 2328 return MMC_REQ_FAILED_TO_START; 2329 2330 switch (mmc_issue_type(mq, req)) { 2331 case MMC_ISSUE_SYNC: 2332 ret = mmc_blk_wait_for_idle(mq, host); 2333 if (ret) 2334 return MMC_REQ_BUSY; 2335 switch (req_op(req)) { 2336 case REQ_OP_DRV_IN: 2337 case REQ_OP_DRV_OUT: 2338 mmc_blk_issue_drv_op(mq, req); 2339 break; 2340 case REQ_OP_DISCARD: 2341 mmc_blk_issue_discard_rq(mq, req); 2342 break; 2343 case REQ_OP_SECURE_ERASE: 2344 mmc_blk_issue_secdiscard_rq(mq, req); 2345 break; 2346 case REQ_OP_WRITE_ZEROES: 2347 mmc_blk_issue_trim_rq(mq, req); 2348 break; 2349 case REQ_OP_FLUSH: 2350 mmc_blk_issue_flush(mq, req); 2351 break; 2352 default: 2353 WARN_ON_ONCE(1); 2354 return MMC_REQ_FAILED_TO_START; 2355 } 2356 return MMC_REQ_FINISHED; 2357 case MMC_ISSUE_DCMD: 2358 case MMC_ISSUE_ASYNC: 2359 switch (req_op(req)) { 2360 case REQ_OP_FLUSH: 2361 if (!mmc_cache_enabled(host)) { 2362 blk_mq_end_request(req, BLK_STS_OK); 2363 return MMC_REQ_FINISHED; 2364 } 2365 ret = mmc_blk_cqe_issue_flush(mq, req); 2366 break; 2367 case REQ_OP_READ: 2368 case REQ_OP_WRITE: 2369 if (host->cqe_enabled) 2370 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2371 else 2372 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2373 break; 2374 default: 2375 WARN_ON_ONCE(1); 2376 ret = -EINVAL; 2377 } 2378 if (!ret) 2379 return MMC_REQ_STARTED; 2380 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2381 default: 2382 WARN_ON_ONCE(1); 2383 return MMC_REQ_FAILED_TO_START; 2384 } 2385 } 2386 2387 static inline int mmc_blk_readonly(struct mmc_card *card) 2388 { 2389 return mmc_card_readonly(card) || 2390 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2391 } 2392 2393 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2394 struct device *parent, 2395 sector_t size, 2396 bool default_ro, 2397 const char *subname, 2398 int area_type, 2399 unsigned int part_type) 2400 { 2401 struct mmc_blk_data *md; 2402 int devidx, ret; 2403 char cap_str[10]; 2404 bool cache_enabled = false; 2405 bool fua_enabled = false; 2406 2407 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2408 if (devidx < 0) { 2409 /* 2410 * We get -ENOSPC because there are no more any available 2411 * devidx. The reason may be that, either userspace haven't yet 2412 * unmounted the partitions, which postpones mmc_blk_release() 2413 * from being called, or the device has more partitions than 2414 * what we support. 2415 */ 2416 if (devidx == -ENOSPC) 2417 dev_err(mmc_dev(card->host), 2418 "no more device IDs available\n"); 2419 2420 return ERR_PTR(devidx); 2421 } 2422 2423 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2424 if (!md) { 2425 ret = -ENOMEM; 2426 goto out; 2427 } 2428 2429 md->area_type = area_type; 2430 2431 /* 2432 * Set the read-only status based on the supported commands 2433 * and the write protect switch. 2434 */ 2435 md->read_only = mmc_blk_readonly(card); 2436 2437 md->disk = mmc_init_queue(&md->queue, card); 2438 if (IS_ERR(md->disk)) { 2439 ret = PTR_ERR(md->disk); 2440 goto err_kfree; 2441 } 2442 2443 INIT_LIST_HEAD(&md->part); 2444 INIT_LIST_HEAD(&md->rpmbs); 2445 kref_init(&md->kref); 2446 2447 md->queue.blkdata = md; 2448 md->part_type = part_type; 2449 2450 md->disk->major = MMC_BLOCK_MAJOR; 2451 md->disk->minors = perdev_minors; 2452 md->disk->first_minor = devidx * perdev_minors; 2453 md->disk->fops = &mmc_bdops; 2454 md->disk->private_data = md; 2455 md->parent = parent; 2456 set_disk_ro(md->disk, md->read_only || default_ro); 2457 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2458 md->disk->flags |= GENHD_FL_NO_PART; 2459 2460 /* 2461 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2462 * 2463 * - be set for removable media with permanent block devices 2464 * - be unset for removable block devices with permanent media 2465 * 2466 * Since MMC block devices clearly fall under the second 2467 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2468 * should use the block device creation/destruction hotplug 2469 * messages to tell when the card is present. 2470 */ 2471 2472 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2473 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2474 2475 set_capacity(md->disk, size); 2476 2477 if (mmc_host_cmd23(card->host)) { 2478 if ((mmc_card_mmc(card) && 2479 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2480 (mmc_card_sd(card) && 2481 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2482 md->flags |= MMC_BLK_CMD23; 2483 } 2484 2485 if (md->flags & MMC_BLK_CMD23 && 2486 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2487 card->ext_csd.rel_sectors)) { 2488 md->flags |= MMC_BLK_REL_WR; 2489 fua_enabled = true; 2490 cache_enabled = true; 2491 } 2492 if (mmc_cache_enabled(card->host)) 2493 cache_enabled = true; 2494 2495 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled); 2496 2497 string_get_size((u64)size, 512, STRING_UNITS_2, 2498 cap_str, sizeof(cap_str)); 2499 pr_info("%s: %s %s %s %s\n", 2500 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2501 cap_str, md->read_only ? "(ro)" : ""); 2502 2503 /* used in ->open, must be set before add_disk: */ 2504 if (area_type == MMC_BLK_DATA_AREA_MAIN) 2505 dev_set_drvdata(&card->dev, md); 2506 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups); 2507 if (ret) 2508 goto err_cleanup_queue; 2509 return md; 2510 2511 err_cleanup_queue: 2512 blk_cleanup_queue(md->disk->queue); 2513 blk_mq_free_tag_set(&md->queue.tag_set); 2514 err_kfree: 2515 kfree(md); 2516 out: 2517 ida_simple_remove(&mmc_blk_ida, devidx); 2518 return ERR_PTR(ret); 2519 } 2520 2521 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2522 { 2523 sector_t size; 2524 2525 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2526 /* 2527 * The EXT_CSD sector count is in number or 512 byte 2528 * sectors. 2529 */ 2530 size = card->ext_csd.sectors; 2531 } else { 2532 /* 2533 * The CSD capacity field is in units of read_blkbits. 2534 * set_capacity takes units of 512 bytes. 2535 */ 2536 size = (typeof(sector_t))card->csd.capacity 2537 << (card->csd.read_blkbits - 9); 2538 } 2539 2540 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2541 MMC_BLK_DATA_AREA_MAIN, 0); 2542 } 2543 2544 static int mmc_blk_alloc_part(struct mmc_card *card, 2545 struct mmc_blk_data *md, 2546 unsigned int part_type, 2547 sector_t size, 2548 bool default_ro, 2549 const char *subname, 2550 int area_type) 2551 { 2552 struct mmc_blk_data *part_md; 2553 2554 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2555 subname, area_type, part_type); 2556 if (IS_ERR(part_md)) 2557 return PTR_ERR(part_md); 2558 list_add(&part_md->part, &md->part); 2559 2560 return 0; 2561 } 2562 2563 /** 2564 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2565 * @filp: the character device file 2566 * @cmd: the ioctl() command 2567 * @arg: the argument from userspace 2568 * 2569 * This will essentially just redirect the ioctl()s coming in over to 2570 * the main block device spawning the RPMB character device. 2571 */ 2572 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2573 unsigned long arg) 2574 { 2575 struct mmc_rpmb_data *rpmb = filp->private_data; 2576 int ret; 2577 2578 switch (cmd) { 2579 case MMC_IOC_CMD: 2580 ret = mmc_blk_ioctl_cmd(rpmb->md, 2581 (struct mmc_ioc_cmd __user *)arg, 2582 rpmb); 2583 break; 2584 case MMC_IOC_MULTI_CMD: 2585 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2586 (struct mmc_ioc_multi_cmd __user *)arg, 2587 rpmb); 2588 break; 2589 default: 2590 ret = -EINVAL; 2591 break; 2592 } 2593 2594 return ret; 2595 } 2596 2597 #ifdef CONFIG_COMPAT 2598 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2599 unsigned long arg) 2600 { 2601 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2602 } 2603 #endif 2604 2605 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2606 { 2607 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2608 struct mmc_rpmb_data, chrdev); 2609 2610 get_device(&rpmb->dev); 2611 filp->private_data = rpmb; 2612 mmc_blk_get(rpmb->md->disk); 2613 2614 return nonseekable_open(inode, filp); 2615 } 2616 2617 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2618 { 2619 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2620 struct mmc_rpmb_data, chrdev); 2621 2622 mmc_blk_put(rpmb->md); 2623 put_device(&rpmb->dev); 2624 2625 return 0; 2626 } 2627 2628 static const struct file_operations mmc_rpmb_fileops = { 2629 .release = mmc_rpmb_chrdev_release, 2630 .open = mmc_rpmb_chrdev_open, 2631 .owner = THIS_MODULE, 2632 .llseek = no_llseek, 2633 .unlocked_ioctl = mmc_rpmb_ioctl, 2634 #ifdef CONFIG_COMPAT 2635 .compat_ioctl = mmc_rpmb_ioctl_compat, 2636 #endif 2637 }; 2638 2639 static void mmc_blk_rpmb_device_release(struct device *dev) 2640 { 2641 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2642 2643 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2644 kfree(rpmb); 2645 } 2646 2647 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2648 struct mmc_blk_data *md, 2649 unsigned int part_index, 2650 sector_t size, 2651 const char *subname) 2652 { 2653 int devidx, ret; 2654 char rpmb_name[DISK_NAME_LEN]; 2655 char cap_str[10]; 2656 struct mmc_rpmb_data *rpmb; 2657 2658 /* This creates the minor number for the RPMB char device */ 2659 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2660 if (devidx < 0) 2661 return devidx; 2662 2663 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2664 if (!rpmb) { 2665 ida_simple_remove(&mmc_rpmb_ida, devidx); 2666 return -ENOMEM; 2667 } 2668 2669 snprintf(rpmb_name, sizeof(rpmb_name), 2670 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2671 2672 rpmb->id = devidx; 2673 rpmb->part_index = part_index; 2674 rpmb->dev.init_name = rpmb_name; 2675 rpmb->dev.bus = &mmc_rpmb_bus_type; 2676 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2677 rpmb->dev.parent = &card->dev; 2678 rpmb->dev.release = mmc_blk_rpmb_device_release; 2679 device_initialize(&rpmb->dev); 2680 dev_set_drvdata(&rpmb->dev, rpmb); 2681 rpmb->md = md; 2682 2683 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2684 rpmb->chrdev.owner = THIS_MODULE; 2685 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2686 if (ret) { 2687 pr_err("%s: could not add character device\n", rpmb_name); 2688 goto out_put_device; 2689 } 2690 2691 list_add(&rpmb->node, &md->rpmbs); 2692 2693 string_get_size((u64)size, 512, STRING_UNITS_2, 2694 cap_str, sizeof(cap_str)); 2695 2696 pr_info("%s: %s %s %s, chardev (%d:%d)\n", 2697 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, 2698 MAJOR(mmc_rpmb_devt), rpmb->id); 2699 2700 return 0; 2701 2702 out_put_device: 2703 put_device(&rpmb->dev); 2704 return ret; 2705 } 2706 2707 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2708 2709 { 2710 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2711 put_device(&rpmb->dev); 2712 } 2713 2714 /* MMC Physical partitions consist of two boot partitions and 2715 * up to four general purpose partitions. 2716 * For each partition enabled in EXT_CSD a block device will be allocatedi 2717 * to provide access to the partition. 2718 */ 2719 2720 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2721 { 2722 int idx, ret; 2723 2724 if (!mmc_card_mmc(card)) 2725 return 0; 2726 2727 for (idx = 0; idx < card->nr_parts; idx++) { 2728 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2729 /* 2730 * RPMB partitions does not provide block access, they 2731 * are only accessed using ioctl():s. Thus create 2732 * special RPMB block devices that do not have a 2733 * backing block queue for these. 2734 */ 2735 ret = mmc_blk_alloc_rpmb_part(card, md, 2736 card->part[idx].part_cfg, 2737 card->part[idx].size >> 9, 2738 card->part[idx].name); 2739 if (ret) 2740 return ret; 2741 } else if (card->part[idx].size) { 2742 ret = mmc_blk_alloc_part(card, md, 2743 card->part[idx].part_cfg, 2744 card->part[idx].size >> 9, 2745 card->part[idx].force_ro, 2746 card->part[idx].name, 2747 card->part[idx].area_type); 2748 if (ret) 2749 return ret; 2750 } 2751 } 2752 2753 return 0; 2754 } 2755 2756 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2757 { 2758 /* 2759 * Flush remaining requests and free queues. It is freeing the queue 2760 * that stops new requests from being accepted. 2761 */ 2762 del_gendisk(md->disk); 2763 mmc_cleanup_queue(&md->queue); 2764 mmc_blk_put(md); 2765 } 2766 2767 static void mmc_blk_remove_parts(struct mmc_card *card, 2768 struct mmc_blk_data *md) 2769 { 2770 struct list_head *pos, *q; 2771 struct mmc_blk_data *part_md; 2772 struct mmc_rpmb_data *rpmb; 2773 2774 /* Remove RPMB partitions */ 2775 list_for_each_safe(pos, q, &md->rpmbs) { 2776 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2777 list_del(pos); 2778 mmc_blk_remove_rpmb_part(rpmb); 2779 } 2780 /* Remove block partitions */ 2781 list_for_each_safe(pos, q, &md->part) { 2782 part_md = list_entry(pos, struct mmc_blk_data, part); 2783 list_del(pos); 2784 mmc_blk_remove_req(part_md); 2785 } 2786 } 2787 2788 #ifdef CONFIG_DEBUG_FS 2789 2790 static int mmc_dbg_card_status_get(void *data, u64 *val) 2791 { 2792 struct mmc_card *card = data; 2793 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2794 struct mmc_queue *mq = &md->queue; 2795 struct request *req; 2796 int ret; 2797 2798 /* Ask the block layer about the card status */ 2799 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2800 if (IS_ERR(req)) 2801 return PTR_ERR(req); 2802 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2803 blk_execute_rq(req, false); 2804 ret = req_to_mmc_queue_req(req)->drv_op_result; 2805 if (ret >= 0) { 2806 *val = ret; 2807 ret = 0; 2808 } 2809 blk_mq_free_request(req); 2810 2811 return ret; 2812 } 2813 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2814 NULL, "%08llx\n"); 2815 2816 /* That is two digits * 512 + 1 for newline */ 2817 #define EXT_CSD_STR_LEN 1025 2818 2819 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2820 { 2821 struct mmc_card *card = inode->i_private; 2822 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2823 struct mmc_queue *mq = &md->queue; 2824 struct request *req; 2825 char *buf; 2826 ssize_t n = 0; 2827 u8 *ext_csd; 2828 int err, i; 2829 2830 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2831 if (!buf) 2832 return -ENOMEM; 2833 2834 /* Ask the block layer for the EXT CSD */ 2835 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2836 if (IS_ERR(req)) { 2837 err = PTR_ERR(req); 2838 goto out_free; 2839 } 2840 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2841 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2842 blk_execute_rq(req, false); 2843 err = req_to_mmc_queue_req(req)->drv_op_result; 2844 blk_mq_free_request(req); 2845 if (err) { 2846 pr_err("FAILED %d\n", err); 2847 goto out_free; 2848 } 2849 2850 for (i = 0; i < 512; i++) 2851 n += sprintf(buf + n, "%02x", ext_csd[i]); 2852 n += sprintf(buf + n, "\n"); 2853 2854 if (n != EXT_CSD_STR_LEN) { 2855 err = -EINVAL; 2856 kfree(ext_csd); 2857 goto out_free; 2858 } 2859 2860 filp->private_data = buf; 2861 kfree(ext_csd); 2862 return 0; 2863 2864 out_free: 2865 kfree(buf); 2866 return err; 2867 } 2868 2869 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2870 size_t cnt, loff_t *ppos) 2871 { 2872 char *buf = filp->private_data; 2873 2874 return simple_read_from_buffer(ubuf, cnt, ppos, 2875 buf, EXT_CSD_STR_LEN); 2876 } 2877 2878 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2879 { 2880 kfree(file->private_data); 2881 return 0; 2882 } 2883 2884 static const struct file_operations mmc_dbg_ext_csd_fops = { 2885 .open = mmc_ext_csd_open, 2886 .read = mmc_ext_csd_read, 2887 .release = mmc_ext_csd_release, 2888 .llseek = default_llseek, 2889 }; 2890 2891 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2892 { 2893 struct dentry *root; 2894 2895 if (!card->debugfs_root) 2896 return 0; 2897 2898 root = card->debugfs_root; 2899 2900 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2901 md->status_dentry = 2902 debugfs_create_file_unsafe("status", 0400, root, 2903 card, 2904 &mmc_dbg_card_status_fops); 2905 if (!md->status_dentry) 2906 return -EIO; 2907 } 2908 2909 if (mmc_card_mmc(card)) { 2910 md->ext_csd_dentry = 2911 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2912 &mmc_dbg_ext_csd_fops); 2913 if (!md->ext_csd_dentry) 2914 return -EIO; 2915 } 2916 2917 return 0; 2918 } 2919 2920 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2921 struct mmc_blk_data *md) 2922 { 2923 if (!card->debugfs_root) 2924 return; 2925 2926 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2927 debugfs_remove(md->status_dentry); 2928 md->status_dentry = NULL; 2929 } 2930 2931 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2932 debugfs_remove(md->ext_csd_dentry); 2933 md->ext_csd_dentry = NULL; 2934 } 2935 } 2936 2937 #else 2938 2939 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2940 { 2941 return 0; 2942 } 2943 2944 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2945 struct mmc_blk_data *md) 2946 { 2947 } 2948 2949 #endif /* CONFIG_DEBUG_FS */ 2950 2951 static int mmc_blk_probe(struct mmc_card *card) 2952 { 2953 struct mmc_blk_data *md; 2954 int ret = 0; 2955 2956 /* 2957 * Check that the card supports the command class(es) we need. 2958 */ 2959 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2960 return -ENODEV; 2961 2962 mmc_fixup_device(card, mmc_blk_fixups); 2963 2964 card->complete_wq = alloc_workqueue("mmc_complete", 2965 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2966 if (!card->complete_wq) { 2967 pr_err("Failed to create mmc completion workqueue"); 2968 return -ENOMEM; 2969 } 2970 2971 md = mmc_blk_alloc(card); 2972 if (IS_ERR(md)) { 2973 ret = PTR_ERR(md); 2974 goto out_free; 2975 } 2976 2977 ret = mmc_blk_alloc_parts(card, md); 2978 if (ret) 2979 goto out; 2980 2981 /* Add two debugfs entries */ 2982 mmc_blk_add_debugfs(card, md); 2983 2984 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2985 pm_runtime_use_autosuspend(&card->dev); 2986 2987 /* 2988 * Don't enable runtime PM for SD-combo cards here. Leave that 2989 * decision to be taken during the SDIO init sequence instead. 2990 */ 2991 if (card->type != MMC_TYPE_SD_COMBO) { 2992 pm_runtime_set_active(&card->dev); 2993 pm_runtime_enable(&card->dev); 2994 } 2995 2996 return 0; 2997 2998 out: 2999 mmc_blk_remove_parts(card, md); 3000 mmc_blk_remove_req(md); 3001 out_free: 3002 destroy_workqueue(card->complete_wq); 3003 return ret; 3004 } 3005 3006 static void mmc_blk_remove(struct mmc_card *card) 3007 { 3008 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3009 3010 mmc_blk_remove_debugfs(card, md); 3011 mmc_blk_remove_parts(card, md); 3012 pm_runtime_get_sync(&card->dev); 3013 if (md->part_curr != md->part_type) { 3014 mmc_claim_host(card->host); 3015 mmc_blk_part_switch(card, md->part_type); 3016 mmc_release_host(card->host); 3017 } 3018 if (card->type != MMC_TYPE_SD_COMBO) 3019 pm_runtime_disable(&card->dev); 3020 pm_runtime_put_noidle(&card->dev); 3021 mmc_blk_remove_req(md); 3022 dev_set_drvdata(&card->dev, NULL); 3023 destroy_workqueue(card->complete_wq); 3024 } 3025 3026 static int _mmc_blk_suspend(struct mmc_card *card) 3027 { 3028 struct mmc_blk_data *part_md; 3029 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3030 3031 if (md) { 3032 mmc_queue_suspend(&md->queue); 3033 list_for_each_entry(part_md, &md->part, part) { 3034 mmc_queue_suspend(&part_md->queue); 3035 } 3036 } 3037 return 0; 3038 } 3039 3040 static void mmc_blk_shutdown(struct mmc_card *card) 3041 { 3042 _mmc_blk_suspend(card); 3043 } 3044 3045 #ifdef CONFIG_PM_SLEEP 3046 static int mmc_blk_suspend(struct device *dev) 3047 { 3048 struct mmc_card *card = mmc_dev_to_card(dev); 3049 3050 return _mmc_blk_suspend(card); 3051 } 3052 3053 static int mmc_blk_resume(struct device *dev) 3054 { 3055 struct mmc_blk_data *part_md; 3056 struct mmc_blk_data *md = dev_get_drvdata(dev); 3057 3058 if (md) { 3059 /* 3060 * Resume involves the card going into idle state, 3061 * so current partition is always the main one. 3062 */ 3063 md->part_curr = md->part_type; 3064 mmc_queue_resume(&md->queue); 3065 list_for_each_entry(part_md, &md->part, part) { 3066 mmc_queue_resume(&part_md->queue); 3067 } 3068 } 3069 return 0; 3070 } 3071 #endif 3072 3073 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3074 3075 static struct mmc_driver mmc_driver = { 3076 .drv = { 3077 .name = "mmcblk", 3078 .pm = &mmc_blk_pm_ops, 3079 }, 3080 .probe = mmc_blk_probe, 3081 .remove = mmc_blk_remove, 3082 .shutdown = mmc_blk_shutdown, 3083 }; 3084 3085 static int __init mmc_blk_init(void) 3086 { 3087 int res; 3088 3089 res = bus_register(&mmc_rpmb_bus_type); 3090 if (res < 0) { 3091 pr_err("mmcblk: could not register RPMB bus type\n"); 3092 return res; 3093 } 3094 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3095 if (res < 0) { 3096 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3097 goto out_bus_unreg; 3098 } 3099 3100 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3101 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3102 3103 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3104 3105 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3106 if (res) 3107 goto out_chrdev_unreg; 3108 3109 res = mmc_register_driver(&mmc_driver); 3110 if (res) 3111 goto out_blkdev_unreg; 3112 3113 return 0; 3114 3115 out_blkdev_unreg: 3116 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3117 out_chrdev_unreg: 3118 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3119 out_bus_unreg: 3120 bus_unregister(&mmc_rpmb_bus_type); 3121 return res; 3122 } 3123 3124 static void __exit mmc_blk_exit(void) 3125 { 3126 mmc_unregister_driver(&mmc_driver); 3127 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3128 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3129 bus_unregister(&mmc_rpmb_bus_type); 3130 } 3131 3132 module_init(mmc_blk_init); 3133 module_exit(mmc_blk_exit); 3134 3135 MODULE_LICENSE("GPL"); 3136 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3137 3138