1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/cdev.h> 32 #include <linux/mutex.h> 33 #include <linux/scatterlist.h> 34 #include <linux/string_helpers.h> 35 #include <linux/delay.h> 36 #include <linux/capability.h> 37 #include <linux/compat.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/idr.h> 40 #include <linux/debugfs.h> 41 42 #include <linux/mmc/ioctl.h> 43 #include <linux/mmc/card.h> 44 #include <linux/mmc/host.h> 45 #include <linux/mmc/mmc.h> 46 #include <linux/mmc/sd.h> 47 48 #include <linux/uaccess.h> 49 50 #include "queue.h" 51 #include "block.h" 52 #include "core.h" 53 #include "card.h" 54 #include "host.h" 55 #include "bus.h" 56 #include "mmc_ops.h" 57 #include "quirks.h" 58 #include "sd_ops.h" 59 60 MODULE_ALIAS("mmc:block"); 61 #ifdef MODULE_PARAM_PREFIX 62 #undef MODULE_PARAM_PREFIX 63 #endif 64 #define MODULE_PARAM_PREFIX "mmcblk." 65 66 /* 67 * Set a 10 second timeout for polling write request busy state. Note, mmc core 68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 69 * second software timer to timeout the whole request, so 10 seconds should be 70 * ample. 71 */ 72 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 73 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 74 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 75 76 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 77 (rq_data_dir(req) == WRITE)) 78 static DEFINE_MUTEX(block_mutex); 79 80 /* 81 * The defaults come from config options but can be overriden by module 82 * or bootarg options. 83 */ 84 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 85 86 /* 87 * We've only got one major, so number of mmcblk devices is 88 * limited to (1 << 20) / number of minors per device. It is also 89 * limited by the MAX_DEVICES below. 90 */ 91 static int max_devices; 92 93 #define MAX_DEVICES 256 94 95 static DEFINE_IDA(mmc_blk_ida); 96 static DEFINE_IDA(mmc_rpmb_ida); 97 98 /* 99 * There is one mmc_blk_data per slot. 100 */ 101 struct mmc_blk_data { 102 struct device *parent; 103 struct gendisk *disk; 104 struct mmc_queue queue; 105 struct list_head part; 106 struct list_head rpmbs; 107 108 unsigned int flags; 109 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 110 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 111 112 unsigned int usage; 113 unsigned int read_only; 114 unsigned int part_type; 115 unsigned int reset_done; 116 #define MMC_BLK_READ BIT(0) 117 #define MMC_BLK_WRITE BIT(1) 118 #define MMC_BLK_DISCARD BIT(2) 119 #define MMC_BLK_SECDISCARD BIT(3) 120 #define MMC_BLK_CQE_RECOVERY BIT(4) 121 122 /* 123 * Only set in main mmc_blk_data associated 124 * with mmc_card with dev_set_drvdata, and keeps 125 * track of the current selected device partition. 126 */ 127 unsigned int part_curr; 128 struct device_attribute force_ro; 129 struct device_attribute power_ro_lock; 130 int area_type; 131 132 /* debugfs files (only in main mmc_blk_data) */ 133 struct dentry *status_dentry; 134 struct dentry *ext_csd_dentry; 135 }; 136 137 /* Device type for RPMB character devices */ 138 static dev_t mmc_rpmb_devt; 139 140 /* Bus type for RPMB character devices */ 141 static struct bus_type mmc_rpmb_bus_type = { 142 .name = "mmc_rpmb", 143 }; 144 145 /** 146 * struct mmc_rpmb_data - special RPMB device type for these areas 147 * @dev: the device for the RPMB area 148 * @chrdev: character device for the RPMB area 149 * @id: unique device ID number 150 * @part_index: partition index (0 on first) 151 * @md: parent MMC block device 152 * @node: list item, so we can put this device on a list 153 */ 154 struct mmc_rpmb_data { 155 struct device dev; 156 struct cdev chrdev; 157 int id; 158 unsigned int part_index; 159 struct mmc_blk_data *md; 160 struct list_head node; 161 }; 162 163 static DEFINE_MUTEX(open_lock); 164 165 module_param(perdev_minors, int, 0444); 166 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 167 168 static inline int mmc_blk_part_switch(struct mmc_card *card, 169 unsigned int part_type); 170 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 171 struct mmc_card *card, 172 int disable_multi, 173 struct mmc_queue *mq); 174 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 175 176 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 177 { 178 struct mmc_blk_data *md; 179 180 mutex_lock(&open_lock); 181 md = disk->private_data; 182 if (md && md->usage == 0) 183 md = NULL; 184 if (md) 185 md->usage++; 186 mutex_unlock(&open_lock); 187 188 return md; 189 } 190 191 static inline int mmc_get_devidx(struct gendisk *disk) 192 { 193 int devidx = disk->first_minor / perdev_minors; 194 return devidx; 195 } 196 197 static void mmc_blk_put(struct mmc_blk_data *md) 198 { 199 mutex_lock(&open_lock); 200 md->usage--; 201 if (md->usage == 0) { 202 int devidx = mmc_get_devidx(md->disk); 203 blk_put_queue(md->queue.queue); 204 ida_simple_remove(&mmc_blk_ida, devidx); 205 put_disk(md->disk); 206 kfree(md); 207 } 208 mutex_unlock(&open_lock); 209 } 210 211 static ssize_t power_ro_lock_show(struct device *dev, 212 struct device_attribute *attr, char *buf) 213 { 214 int ret; 215 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 216 struct mmc_card *card = md->queue.card; 217 int locked = 0; 218 219 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 220 locked = 2; 221 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 222 locked = 1; 223 224 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 225 226 mmc_blk_put(md); 227 228 return ret; 229 } 230 231 static ssize_t power_ro_lock_store(struct device *dev, 232 struct device_attribute *attr, const char *buf, size_t count) 233 { 234 int ret; 235 struct mmc_blk_data *md, *part_md; 236 struct mmc_queue *mq; 237 struct request *req; 238 unsigned long set; 239 240 if (kstrtoul(buf, 0, &set)) 241 return -EINVAL; 242 243 if (set != 1) 244 return count; 245 246 md = mmc_blk_get(dev_to_disk(dev)); 247 mq = &md->queue; 248 249 /* Dispatch locking to the block layer */ 250 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0); 251 if (IS_ERR(req)) { 252 count = PTR_ERR(req); 253 goto out_put; 254 } 255 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 256 blk_execute_rq(mq->queue, NULL, req, 0); 257 ret = req_to_mmc_queue_req(req)->drv_op_result; 258 blk_put_request(req); 259 260 if (!ret) { 261 pr_info("%s: Locking boot partition ro until next power on\n", 262 md->disk->disk_name); 263 set_disk_ro(md->disk, 1); 264 265 list_for_each_entry(part_md, &md->part, part) 266 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 267 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 268 set_disk_ro(part_md->disk, 1); 269 } 270 } 271 out_put: 272 mmc_blk_put(md); 273 return count; 274 } 275 276 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 277 char *buf) 278 { 279 int ret; 280 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 281 282 ret = snprintf(buf, PAGE_SIZE, "%d\n", 283 get_disk_ro(dev_to_disk(dev)) ^ 284 md->read_only); 285 mmc_blk_put(md); 286 return ret; 287 } 288 289 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 290 const char *buf, size_t count) 291 { 292 int ret; 293 char *end; 294 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 295 unsigned long set = simple_strtoul(buf, &end, 0); 296 if (end == buf) { 297 ret = -EINVAL; 298 goto out; 299 } 300 301 set_disk_ro(dev_to_disk(dev), set || md->read_only); 302 ret = count; 303 out: 304 mmc_blk_put(md); 305 return ret; 306 } 307 308 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 309 { 310 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 311 int ret = -ENXIO; 312 313 mutex_lock(&block_mutex); 314 if (md) { 315 if (md->usage == 2) 316 check_disk_change(bdev); 317 ret = 0; 318 319 if ((mode & FMODE_WRITE) && md->read_only) { 320 mmc_blk_put(md); 321 ret = -EROFS; 322 } 323 } 324 mutex_unlock(&block_mutex); 325 326 return ret; 327 } 328 329 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 330 { 331 struct mmc_blk_data *md = disk->private_data; 332 333 mutex_lock(&block_mutex); 334 mmc_blk_put(md); 335 mutex_unlock(&block_mutex); 336 } 337 338 static int 339 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 340 { 341 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 342 geo->heads = 4; 343 geo->sectors = 16; 344 return 0; 345 } 346 347 struct mmc_blk_ioc_data { 348 struct mmc_ioc_cmd ic; 349 unsigned char *buf; 350 u64 buf_bytes; 351 struct mmc_rpmb_data *rpmb; 352 }; 353 354 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 355 struct mmc_ioc_cmd __user *user) 356 { 357 struct mmc_blk_ioc_data *idata; 358 int err; 359 360 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 361 if (!idata) { 362 err = -ENOMEM; 363 goto out; 364 } 365 366 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 367 err = -EFAULT; 368 goto idata_err; 369 } 370 371 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 372 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 373 err = -EOVERFLOW; 374 goto idata_err; 375 } 376 377 if (!idata->buf_bytes) { 378 idata->buf = NULL; 379 return idata; 380 } 381 382 idata->buf = memdup_user((void __user *)(unsigned long) 383 idata->ic.data_ptr, idata->buf_bytes); 384 if (IS_ERR(idata->buf)) { 385 err = PTR_ERR(idata->buf); 386 goto idata_err; 387 } 388 389 return idata; 390 391 idata_err: 392 kfree(idata); 393 out: 394 return ERR_PTR(err); 395 } 396 397 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 398 struct mmc_blk_ioc_data *idata) 399 { 400 struct mmc_ioc_cmd *ic = &idata->ic; 401 402 if (copy_to_user(&(ic_ptr->response), ic->response, 403 sizeof(ic->response))) 404 return -EFAULT; 405 406 if (!idata->ic.write_flag) { 407 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 408 idata->buf, idata->buf_bytes)) 409 return -EFAULT; 410 } 411 412 return 0; 413 } 414 415 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 416 u32 *resp_errs) 417 { 418 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 419 int err = 0; 420 u32 status; 421 422 do { 423 bool done = time_after(jiffies, timeout); 424 425 err = __mmc_send_status(card, &status, 5); 426 if (err) { 427 dev_err(mmc_dev(card->host), 428 "error %d requesting status\n", err); 429 return err; 430 } 431 432 /* Accumulate any response error bits seen */ 433 if (resp_errs) 434 *resp_errs |= status; 435 436 /* 437 * Timeout if the device never becomes ready for data and never 438 * leaves the program state. 439 */ 440 if (done) { 441 dev_err(mmc_dev(card->host), 442 "Card stuck in wrong state! %s status: %#x\n", 443 __func__, status); 444 return -ETIMEDOUT; 445 } 446 } while (!mmc_ready_for_data(status)); 447 448 return err; 449 } 450 451 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 452 struct mmc_blk_ioc_data *idata) 453 { 454 struct mmc_command cmd = {}, sbc = {}; 455 struct mmc_data data = {}; 456 struct mmc_request mrq = {}; 457 struct scatterlist sg; 458 int err; 459 unsigned int target_part; 460 461 if (!card || !md || !idata) 462 return -EINVAL; 463 464 /* 465 * The RPMB accesses comes in from the character device, so we 466 * need to target these explicitly. Else we just target the 467 * partition type for the block device the ioctl() was issued 468 * on. 469 */ 470 if (idata->rpmb) { 471 /* Support multiple RPMB partitions */ 472 target_part = idata->rpmb->part_index; 473 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 474 } else { 475 target_part = md->part_type; 476 } 477 478 cmd.opcode = idata->ic.opcode; 479 cmd.arg = idata->ic.arg; 480 cmd.flags = idata->ic.flags; 481 482 if (idata->buf_bytes) { 483 data.sg = &sg; 484 data.sg_len = 1; 485 data.blksz = idata->ic.blksz; 486 data.blocks = idata->ic.blocks; 487 488 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 489 490 if (idata->ic.write_flag) 491 data.flags = MMC_DATA_WRITE; 492 else 493 data.flags = MMC_DATA_READ; 494 495 /* data.flags must already be set before doing this. */ 496 mmc_set_data_timeout(&data, card); 497 498 /* Allow overriding the timeout_ns for empirical tuning. */ 499 if (idata->ic.data_timeout_ns) 500 data.timeout_ns = idata->ic.data_timeout_ns; 501 502 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 503 /* 504 * Pretend this is a data transfer and rely on the 505 * host driver to compute timeout. When all host 506 * drivers support cmd.cmd_timeout for R1B, this 507 * can be changed to: 508 * 509 * mrq.data = NULL; 510 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 511 */ 512 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 513 } 514 515 mrq.data = &data; 516 } 517 518 mrq.cmd = &cmd; 519 520 err = mmc_blk_part_switch(card, target_part); 521 if (err) 522 return err; 523 524 if (idata->ic.is_acmd) { 525 err = mmc_app_cmd(card->host, card); 526 if (err) 527 return err; 528 } 529 530 if (idata->rpmb) { 531 sbc.opcode = MMC_SET_BLOCK_COUNT; 532 /* 533 * We don't do any blockcount validation because the max size 534 * may be increased by a future standard. We just copy the 535 * 'Reliable Write' bit here. 536 */ 537 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 538 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 539 mrq.sbc = &sbc; 540 } 541 542 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 543 (cmd.opcode == MMC_SWITCH)) 544 return mmc_sanitize(card); 545 546 mmc_wait_for_req(card->host, &mrq); 547 548 if (cmd.error) { 549 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 550 __func__, cmd.error); 551 return cmd.error; 552 } 553 if (data.error) { 554 dev_err(mmc_dev(card->host), "%s: data error %d\n", 555 __func__, data.error); 556 return data.error; 557 } 558 559 /* 560 * Make sure the cache of the PARTITION_CONFIG register and 561 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 562 * changed it successfully. 563 */ 564 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 565 (cmd.opcode == MMC_SWITCH)) { 566 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 567 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 568 569 /* 570 * Update cache so the next mmc_blk_part_switch call operates 571 * on up-to-date data. 572 */ 573 card->ext_csd.part_config = value; 574 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 575 } 576 577 /* 578 * According to the SD specs, some commands require a delay after 579 * issuing the command. 580 */ 581 if (idata->ic.postsleep_min_us) 582 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 583 584 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 585 586 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B)) { 587 /* 588 * Ensure RPMB/R1B command has completed by polling CMD13 589 * "Send Status". 590 */ 591 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL); 592 } 593 594 return err; 595 } 596 597 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 598 struct mmc_ioc_cmd __user *ic_ptr, 599 struct mmc_rpmb_data *rpmb) 600 { 601 struct mmc_blk_ioc_data *idata; 602 struct mmc_blk_ioc_data *idatas[1]; 603 struct mmc_queue *mq; 604 struct mmc_card *card; 605 int err = 0, ioc_err = 0; 606 struct request *req; 607 608 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 609 if (IS_ERR(idata)) 610 return PTR_ERR(idata); 611 /* This will be NULL on non-RPMB ioctl():s */ 612 idata->rpmb = rpmb; 613 614 card = md->queue.card; 615 if (IS_ERR(card)) { 616 err = PTR_ERR(card); 617 goto cmd_done; 618 } 619 620 /* 621 * Dispatch the ioctl() into the block request queue. 622 */ 623 mq = &md->queue; 624 req = blk_get_request(mq->queue, 625 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 626 if (IS_ERR(req)) { 627 err = PTR_ERR(req); 628 goto cmd_done; 629 } 630 idatas[0] = idata; 631 req_to_mmc_queue_req(req)->drv_op = 632 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 633 req_to_mmc_queue_req(req)->drv_op_data = idatas; 634 req_to_mmc_queue_req(req)->ioc_count = 1; 635 blk_execute_rq(mq->queue, NULL, req, 0); 636 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 637 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 638 blk_put_request(req); 639 640 cmd_done: 641 kfree(idata->buf); 642 kfree(idata); 643 return ioc_err ? ioc_err : err; 644 } 645 646 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 647 struct mmc_ioc_multi_cmd __user *user, 648 struct mmc_rpmb_data *rpmb) 649 { 650 struct mmc_blk_ioc_data **idata = NULL; 651 struct mmc_ioc_cmd __user *cmds = user->cmds; 652 struct mmc_card *card; 653 struct mmc_queue *mq; 654 int i, err = 0, ioc_err = 0; 655 __u64 num_of_cmds; 656 struct request *req; 657 658 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 659 sizeof(num_of_cmds))) 660 return -EFAULT; 661 662 if (!num_of_cmds) 663 return 0; 664 665 if (num_of_cmds > MMC_IOC_MAX_CMDS) 666 return -EINVAL; 667 668 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 669 if (!idata) 670 return -ENOMEM; 671 672 for (i = 0; i < num_of_cmds; i++) { 673 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 674 if (IS_ERR(idata[i])) { 675 err = PTR_ERR(idata[i]); 676 num_of_cmds = i; 677 goto cmd_err; 678 } 679 /* This will be NULL on non-RPMB ioctl():s */ 680 idata[i]->rpmb = rpmb; 681 } 682 683 card = md->queue.card; 684 if (IS_ERR(card)) { 685 err = PTR_ERR(card); 686 goto cmd_err; 687 } 688 689 690 /* 691 * Dispatch the ioctl()s into the block request queue. 692 */ 693 mq = &md->queue; 694 req = blk_get_request(mq->queue, 695 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 696 if (IS_ERR(req)) { 697 err = PTR_ERR(req); 698 goto cmd_err; 699 } 700 req_to_mmc_queue_req(req)->drv_op = 701 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 702 req_to_mmc_queue_req(req)->drv_op_data = idata; 703 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 704 blk_execute_rq(mq->queue, NULL, req, 0); 705 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 706 707 /* copy to user if data and response */ 708 for (i = 0; i < num_of_cmds && !err; i++) 709 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 710 711 blk_put_request(req); 712 713 cmd_err: 714 for (i = 0; i < num_of_cmds; i++) { 715 kfree(idata[i]->buf); 716 kfree(idata[i]); 717 } 718 kfree(idata); 719 return ioc_err ? ioc_err : err; 720 } 721 722 static int mmc_blk_check_blkdev(struct block_device *bdev) 723 { 724 /* 725 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 726 * whole block device, not on a partition. This prevents overspray 727 * between sibling partitions. 728 */ 729 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 730 return -EPERM; 731 return 0; 732 } 733 734 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 735 unsigned int cmd, unsigned long arg) 736 { 737 struct mmc_blk_data *md; 738 int ret; 739 740 switch (cmd) { 741 case MMC_IOC_CMD: 742 ret = mmc_blk_check_blkdev(bdev); 743 if (ret) 744 return ret; 745 md = mmc_blk_get(bdev->bd_disk); 746 if (!md) 747 return -EINVAL; 748 ret = mmc_blk_ioctl_cmd(md, 749 (struct mmc_ioc_cmd __user *)arg, 750 NULL); 751 mmc_blk_put(md); 752 return ret; 753 case MMC_IOC_MULTI_CMD: 754 ret = mmc_blk_check_blkdev(bdev); 755 if (ret) 756 return ret; 757 md = mmc_blk_get(bdev->bd_disk); 758 if (!md) 759 return -EINVAL; 760 ret = mmc_blk_ioctl_multi_cmd(md, 761 (struct mmc_ioc_multi_cmd __user *)arg, 762 NULL); 763 mmc_blk_put(md); 764 return ret; 765 default: 766 return -EINVAL; 767 } 768 } 769 770 #ifdef CONFIG_COMPAT 771 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 772 unsigned int cmd, unsigned long arg) 773 { 774 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 775 } 776 #endif 777 778 static const struct block_device_operations mmc_bdops = { 779 .open = mmc_blk_open, 780 .release = mmc_blk_release, 781 .getgeo = mmc_blk_getgeo, 782 .owner = THIS_MODULE, 783 .ioctl = mmc_blk_ioctl, 784 #ifdef CONFIG_COMPAT 785 .compat_ioctl = mmc_blk_compat_ioctl, 786 #endif 787 }; 788 789 static int mmc_blk_part_switch_pre(struct mmc_card *card, 790 unsigned int part_type) 791 { 792 int ret = 0; 793 794 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 795 if (card->ext_csd.cmdq_en) { 796 ret = mmc_cmdq_disable(card); 797 if (ret) 798 return ret; 799 } 800 mmc_retune_pause(card->host); 801 } 802 803 return ret; 804 } 805 806 static int mmc_blk_part_switch_post(struct mmc_card *card, 807 unsigned int part_type) 808 { 809 int ret = 0; 810 811 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 812 mmc_retune_unpause(card->host); 813 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 814 ret = mmc_cmdq_enable(card); 815 } 816 817 return ret; 818 } 819 820 static inline int mmc_blk_part_switch(struct mmc_card *card, 821 unsigned int part_type) 822 { 823 int ret = 0; 824 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 825 826 if (main_md->part_curr == part_type) 827 return 0; 828 829 if (mmc_card_mmc(card)) { 830 u8 part_config = card->ext_csd.part_config; 831 832 ret = mmc_blk_part_switch_pre(card, part_type); 833 if (ret) 834 return ret; 835 836 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 837 part_config |= part_type; 838 839 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 840 EXT_CSD_PART_CONFIG, part_config, 841 card->ext_csd.part_time); 842 if (ret) { 843 mmc_blk_part_switch_post(card, part_type); 844 return ret; 845 } 846 847 card->ext_csd.part_config = part_config; 848 849 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 850 } 851 852 main_md->part_curr = part_type; 853 return ret; 854 } 855 856 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 857 { 858 int err; 859 u32 result; 860 __be32 *blocks; 861 862 struct mmc_request mrq = {}; 863 struct mmc_command cmd = {}; 864 struct mmc_data data = {}; 865 866 struct scatterlist sg; 867 868 cmd.opcode = MMC_APP_CMD; 869 cmd.arg = card->rca << 16; 870 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 871 872 err = mmc_wait_for_cmd(card->host, &cmd, 0); 873 if (err) 874 return err; 875 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 876 return -EIO; 877 878 memset(&cmd, 0, sizeof(struct mmc_command)); 879 880 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 881 cmd.arg = 0; 882 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 883 884 data.blksz = 4; 885 data.blocks = 1; 886 data.flags = MMC_DATA_READ; 887 data.sg = &sg; 888 data.sg_len = 1; 889 mmc_set_data_timeout(&data, card); 890 891 mrq.cmd = &cmd; 892 mrq.data = &data; 893 894 blocks = kmalloc(4, GFP_KERNEL); 895 if (!blocks) 896 return -ENOMEM; 897 898 sg_init_one(&sg, blocks, 4); 899 900 mmc_wait_for_req(card->host, &mrq); 901 902 result = ntohl(*blocks); 903 kfree(blocks); 904 905 if (cmd.error || data.error) 906 return -EIO; 907 908 *written_blocks = result; 909 910 return 0; 911 } 912 913 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 914 { 915 if (host->actual_clock) 916 return host->actual_clock / 1000; 917 918 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 919 if (host->ios.clock) 920 return host->ios.clock / 2000; 921 922 /* How can there be no clock */ 923 WARN_ON_ONCE(1); 924 return 100; /* 100 kHz is minimum possible value */ 925 } 926 927 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 928 struct mmc_data *data) 929 { 930 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 931 unsigned int khz; 932 933 if (data->timeout_clks) { 934 khz = mmc_blk_clock_khz(host); 935 ms += DIV_ROUND_UP(data->timeout_clks, khz); 936 } 937 938 return ms; 939 } 940 941 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 942 int type) 943 { 944 int err; 945 946 if (md->reset_done & type) 947 return -EEXIST; 948 949 md->reset_done |= type; 950 err = mmc_hw_reset(host); 951 /* Ensure we switch back to the correct partition */ 952 if (err != -EOPNOTSUPP) { 953 struct mmc_blk_data *main_md = 954 dev_get_drvdata(&host->card->dev); 955 int part_err; 956 957 main_md->part_curr = main_md->part_type; 958 part_err = mmc_blk_part_switch(host->card, md->part_type); 959 if (part_err) { 960 /* 961 * We have failed to get back into the correct 962 * partition, so we need to abort the whole request. 963 */ 964 return -ENODEV; 965 } 966 } 967 return err; 968 } 969 970 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 971 { 972 md->reset_done &= ~type; 973 } 974 975 /* 976 * The non-block commands come back from the block layer after it queued it and 977 * processed it with all other requests and then they get issued in this 978 * function. 979 */ 980 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 981 { 982 struct mmc_queue_req *mq_rq; 983 struct mmc_card *card = mq->card; 984 struct mmc_blk_data *md = mq->blkdata; 985 struct mmc_blk_ioc_data **idata; 986 bool rpmb_ioctl; 987 u8 **ext_csd; 988 u32 status; 989 int ret; 990 int i; 991 992 mq_rq = req_to_mmc_queue_req(req); 993 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 994 995 switch (mq_rq->drv_op) { 996 case MMC_DRV_OP_IOCTL: 997 case MMC_DRV_OP_IOCTL_RPMB: 998 idata = mq_rq->drv_op_data; 999 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1000 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1001 if (ret) 1002 break; 1003 } 1004 /* Always switch back to main area after RPMB access */ 1005 if (rpmb_ioctl) 1006 mmc_blk_part_switch(card, 0); 1007 break; 1008 case MMC_DRV_OP_BOOT_WP: 1009 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1010 card->ext_csd.boot_ro_lock | 1011 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1012 card->ext_csd.part_time); 1013 if (ret) 1014 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1015 md->disk->disk_name, ret); 1016 else 1017 card->ext_csd.boot_ro_lock |= 1018 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1019 break; 1020 case MMC_DRV_OP_GET_CARD_STATUS: 1021 ret = mmc_send_status(card, &status); 1022 if (!ret) 1023 ret = status; 1024 break; 1025 case MMC_DRV_OP_GET_EXT_CSD: 1026 ext_csd = mq_rq->drv_op_data; 1027 ret = mmc_get_ext_csd(card, ext_csd); 1028 break; 1029 default: 1030 pr_err("%s: unknown driver specific operation\n", 1031 md->disk->disk_name); 1032 ret = -EINVAL; 1033 break; 1034 } 1035 mq_rq->drv_op_result = ret; 1036 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1037 } 1038 1039 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1040 { 1041 struct mmc_blk_data *md = mq->blkdata; 1042 struct mmc_card *card = md->queue.card; 1043 unsigned int from, nr; 1044 int err = 0, type = MMC_BLK_DISCARD; 1045 blk_status_t status = BLK_STS_OK; 1046 1047 if (!mmc_can_erase(card)) { 1048 status = BLK_STS_NOTSUPP; 1049 goto fail; 1050 } 1051 1052 from = blk_rq_pos(req); 1053 nr = blk_rq_sectors(req); 1054 1055 do { 1056 err = 0; 1057 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1058 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1059 INAND_CMD38_ARG_EXT_CSD, 1060 card->erase_arg == MMC_TRIM_ARG ? 1061 INAND_CMD38_ARG_TRIM : 1062 INAND_CMD38_ARG_ERASE, 1063 card->ext_csd.generic_cmd6_time); 1064 } 1065 if (!err) 1066 err = mmc_erase(card, from, nr, card->erase_arg); 1067 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1068 if (err) 1069 status = BLK_STS_IOERR; 1070 else 1071 mmc_blk_reset_success(md, type); 1072 fail: 1073 blk_mq_end_request(req, status); 1074 } 1075 1076 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1077 struct request *req) 1078 { 1079 struct mmc_blk_data *md = mq->blkdata; 1080 struct mmc_card *card = md->queue.card; 1081 unsigned int from, nr, arg; 1082 int err = 0, type = MMC_BLK_SECDISCARD; 1083 blk_status_t status = BLK_STS_OK; 1084 1085 if (!(mmc_can_secure_erase_trim(card))) { 1086 status = BLK_STS_NOTSUPP; 1087 goto out; 1088 } 1089 1090 from = blk_rq_pos(req); 1091 nr = blk_rq_sectors(req); 1092 1093 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1094 arg = MMC_SECURE_TRIM1_ARG; 1095 else 1096 arg = MMC_SECURE_ERASE_ARG; 1097 1098 retry: 1099 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1100 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1101 INAND_CMD38_ARG_EXT_CSD, 1102 arg == MMC_SECURE_TRIM1_ARG ? 1103 INAND_CMD38_ARG_SECTRIM1 : 1104 INAND_CMD38_ARG_SECERASE, 1105 card->ext_csd.generic_cmd6_time); 1106 if (err) 1107 goto out_retry; 1108 } 1109 1110 err = mmc_erase(card, from, nr, arg); 1111 if (err == -EIO) 1112 goto out_retry; 1113 if (err) { 1114 status = BLK_STS_IOERR; 1115 goto out; 1116 } 1117 1118 if (arg == MMC_SECURE_TRIM1_ARG) { 1119 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1120 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1121 INAND_CMD38_ARG_EXT_CSD, 1122 INAND_CMD38_ARG_SECTRIM2, 1123 card->ext_csd.generic_cmd6_time); 1124 if (err) 1125 goto out_retry; 1126 } 1127 1128 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1129 if (err == -EIO) 1130 goto out_retry; 1131 if (err) { 1132 status = BLK_STS_IOERR; 1133 goto out; 1134 } 1135 } 1136 1137 out_retry: 1138 if (err && !mmc_blk_reset(md, card->host, type)) 1139 goto retry; 1140 if (!err) 1141 mmc_blk_reset_success(md, type); 1142 out: 1143 blk_mq_end_request(req, status); 1144 } 1145 1146 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1147 { 1148 struct mmc_blk_data *md = mq->blkdata; 1149 struct mmc_card *card = md->queue.card; 1150 int ret = 0; 1151 1152 ret = mmc_flush_cache(card); 1153 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1154 } 1155 1156 /* 1157 * Reformat current write as a reliable write, supporting 1158 * both legacy and the enhanced reliable write MMC cards. 1159 * In each transfer we'll handle only as much as a single 1160 * reliable write can handle, thus finish the request in 1161 * partial completions. 1162 */ 1163 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1164 struct mmc_card *card, 1165 struct request *req) 1166 { 1167 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1168 /* Legacy mode imposes restrictions on transfers. */ 1169 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1170 brq->data.blocks = 1; 1171 1172 if (brq->data.blocks > card->ext_csd.rel_sectors) 1173 brq->data.blocks = card->ext_csd.rel_sectors; 1174 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1175 brq->data.blocks = 1; 1176 } 1177 } 1178 1179 #define CMD_ERRORS_EXCL_OOR \ 1180 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1181 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1182 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1183 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1184 R1_CC_ERROR | /* Card controller error */ \ 1185 R1_ERROR) /* General/unknown error */ 1186 1187 #define CMD_ERRORS \ 1188 (CMD_ERRORS_EXCL_OOR | \ 1189 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1190 1191 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1192 { 1193 u32 val; 1194 1195 /* 1196 * Per the SD specification(physical layer version 4.10)[1], 1197 * section 4.3.3, it explicitly states that "When the last 1198 * block of user area is read using CMD18, the host should 1199 * ignore OUT_OF_RANGE error that may occur even the sequence 1200 * is correct". And JESD84-B51 for eMMC also has a similar 1201 * statement on section 6.8.3. 1202 * 1203 * Multiple block read/write could be done by either predefined 1204 * method, namely CMD23, or open-ending mode. For open-ending mode, 1205 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1206 * 1207 * However the spec[1] doesn't tell us whether we should also 1208 * ignore that for predefined method. But per the spec[1], section 1209 * 4.15 Set Block Count Command, it says"If illegal block count 1210 * is set, out of range error will be indicated during read/write 1211 * operation (For example, data transfer is stopped at user area 1212 * boundary)." In another word, we could expect a out of range error 1213 * in the response for the following CMD18/25. And if argument of 1214 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1215 * we could also expect to get a -ETIMEDOUT or any error number from 1216 * the host drivers due to missing data response(for write)/data(for 1217 * read), as the cards will stop the data transfer by itself per the 1218 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1219 */ 1220 1221 if (!brq->stop.error) { 1222 bool oor_with_open_end; 1223 /* If there is no error yet, check R1 response */ 1224 1225 val = brq->stop.resp[0] & CMD_ERRORS; 1226 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1227 1228 if (val && !oor_with_open_end) 1229 brq->stop.error = -EIO; 1230 } 1231 } 1232 1233 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1234 int disable_multi, bool *do_rel_wr_p, 1235 bool *do_data_tag_p) 1236 { 1237 struct mmc_blk_data *md = mq->blkdata; 1238 struct mmc_card *card = md->queue.card; 1239 struct mmc_blk_request *brq = &mqrq->brq; 1240 struct request *req = mmc_queue_req_to_req(mqrq); 1241 bool do_rel_wr, do_data_tag; 1242 1243 /* 1244 * Reliable writes are used to implement Forced Unit Access and 1245 * are supported only on MMCs. 1246 */ 1247 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1248 rq_data_dir(req) == WRITE && 1249 (md->flags & MMC_BLK_REL_WR); 1250 1251 memset(brq, 0, sizeof(struct mmc_blk_request)); 1252 1253 brq->mrq.data = &brq->data; 1254 brq->mrq.tag = req->tag; 1255 1256 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1257 brq->stop.arg = 0; 1258 1259 if (rq_data_dir(req) == READ) { 1260 brq->data.flags = MMC_DATA_READ; 1261 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1262 } else { 1263 brq->data.flags = MMC_DATA_WRITE; 1264 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1265 } 1266 1267 brq->data.blksz = 512; 1268 brq->data.blocks = blk_rq_sectors(req); 1269 brq->data.blk_addr = blk_rq_pos(req); 1270 1271 /* 1272 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1273 * The eMMC will give "high" priority tasks priority over "simple" 1274 * priority tasks. Here we always set "simple" priority by not setting 1275 * MMC_DATA_PRIO. 1276 */ 1277 1278 /* 1279 * The block layer doesn't support all sector count 1280 * restrictions, so we need to be prepared for too big 1281 * requests. 1282 */ 1283 if (brq->data.blocks > card->host->max_blk_count) 1284 brq->data.blocks = card->host->max_blk_count; 1285 1286 if (brq->data.blocks > 1) { 1287 /* 1288 * Some SD cards in SPI mode return a CRC error or even lock up 1289 * completely when trying to read the last block using a 1290 * multiblock read command. 1291 */ 1292 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1293 (blk_rq_pos(req) + blk_rq_sectors(req) == 1294 get_capacity(md->disk))) 1295 brq->data.blocks--; 1296 1297 /* 1298 * After a read error, we redo the request one sector 1299 * at a time in order to accurately determine which 1300 * sectors can be read successfully. 1301 */ 1302 if (disable_multi) 1303 brq->data.blocks = 1; 1304 1305 /* 1306 * Some controllers have HW issues while operating 1307 * in multiple I/O mode 1308 */ 1309 if (card->host->ops->multi_io_quirk) 1310 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1311 (rq_data_dir(req) == READ) ? 1312 MMC_DATA_READ : MMC_DATA_WRITE, 1313 brq->data.blocks); 1314 } 1315 1316 if (do_rel_wr) { 1317 mmc_apply_rel_rw(brq, card, req); 1318 brq->data.flags |= MMC_DATA_REL_WR; 1319 } 1320 1321 /* 1322 * Data tag is used only during writing meta data to speed 1323 * up write and any subsequent read of this meta data 1324 */ 1325 do_data_tag = card->ext_csd.data_tag_unit_size && 1326 (req->cmd_flags & REQ_META) && 1327 (rq_data_dir(req) == WRITE) && 1328 ((brq->data.blocks * brq->data.blksz) >= 1329 card->ext_csd.data_tag_unit_size); 1330 1331 if (do_data_tag) 1332 brq->data.flags |= MMC_DATA_DAT_TAG; 1333 1334 mmc_set_data_timeout(&brq->data, card); 1335 1336 brq->data.sg = mqrq->sg; 1337 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1338 1339 /* 1340 * Adjust the sg list so it is the same size as the 1341 * request. 1342 */ 1343 if (brq->data.blocks != blk_rq_sectors(req)) { 1344 int i, data_size = brq->data.blocks << 9; 1345 struct scatterlist *sg; 1346 1347 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1348 data_size -= sg->length; 1349 if (data_size <= 0) { 1350 sg->length += data_size; 1351 i++; 1352 break; 1353 } 1354 } 1355 brq->data.sg_len = i; 1356 } 1357 1358 if (do_rel_wr_p) 1359 *do_rel_wr_p = do_rel_wr; 1360 1361 if (do_data_tag_p) 1362 *do_data_tag_p = do_data_tag; 1363 } 1364 1365 #define MMC_CQE_RETRIES 2 1366 1367 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1368 { 1369 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1370 struct mmc_request *mrq = &mqrq->brq.mrq; 1371 struct request_queue *q = req->q; 1372 struct mmc_host *host = mq->card->host; 1373 unsigned long flags; 1374 bool put_card; 1375 int err; 1376 1377 mmc_cqe_post_req(host, mrq); 1378 1379 if (mrq->cmd && mrq->cmd->error) 1380 err = mrq->cmd->error; 1381 else if (mrq->data && mrq->data->error) 1382 err = mrq->data->error; 1383 else 1384 err = 0; 1385 1386 if (err) { 1387 if (mqrq->retries++ < MMC_CQE_RETRIES) 1388 blk_mq_requeue_request(req, true); 1389 else 1390 blk_mq_end_request(req, BLK_STS_IOERR); 1391 } else if (mrq->data) { 1392 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1393 blk_mq_requeue_request(req, true); 1394 else 1395 __blk_mq_end_request(req, BLK_STS_OK); 1396 } else { 1397 blk_mq_end_request(req, BLK_STS_OK); 1398 } 1399 1400 spin_lock_irqsave(&mq->lock, flags); 1401 1402 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1403 1404 put_card = (mmc_tot_in_flight(mq) == 0); 1405 1406 mmc_cqe_check_busy(mq); 1407 1408 spin_unlock_irqrestore(&mq->lock, flags); 1409 1410 if (!mq->cqe_busy) 1411 blk_mq_run_hw_queues(q, true); 1412 1413 if (put_card) 1414 mmc_put_card(mq->card, &mq->ctx); 1415 } 1416 1417 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1418 { 1419 struct mmc_card *card = mq->card; 1420 struct mmc_host *host = card->host; 1421 int err; 1422 1423 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1424 1425 err = mmc_cqe_recovery(host); 1426 if (err) 1427 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1428 else 1429 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1430 1431 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1432 } 1433 1434 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1435 { 1436 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1437 brq.mrq); 1438 struct request *req = mmc_queue_req_to_req(mqrq); 1439 struct request_queue *q = req->q; 1440 struct mmc_queue *mq = q->queuedata; 1441 1442 /* 1443 * Block layer timeouts race with completions which means the normal 1444 * completion path cannot be used during recovery. 1445 */ 1446 if (mq->in_recovery) 1447 mmc_blk_cqe_complete_rq(mq, req); 1448 else 1449 blk_mq_complete_request(req); 1450 } 1451 1452 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1453 { 1454 mrq->done = mmc_blk_cqe_req_done; 1455 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1456 1457 return mmc_cqe_start_req(host, mrq); 1458 } 1459 1460 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1461 struct request *req) 1462 { 1463 struct mmc_blk_request *brq = &mqrq->brq; 1464 1465 memset(brq, 0, sizeof(*brq)); 1466 1467 brq->mrq.cmd = &brq->cmd; 1468 brq->mrq.tag = req->tag; 1469 1470 return &brq->mrq; 1471 } 1472 1473 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1474 { 1475 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1476 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1477 1478 mrq->cmd->opcode = MMC_SWITCH; 1479 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1480 (EXT_CSD_FLUSH_CACHE << 16) | 1481 (1 << 8) | 1482 EXT_CSD_CMD_SET_NORMAL; 1483 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1484 1485 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1486 } 1487 1488 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1489 { 1490 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1491 struct mmc_host *host = mq->card->host; 1492 int err; 1493 1494 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1495 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1496 mmc_pre_req(host, &mqrq->brq.mrq); 1497 1498 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1499 if (err) 1500 mmc_post_req(host, &mqrq->brq.mrq, err); 1501 1502 return err; 1503 } 1504 1505 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1506 { 1507 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1508 struct mmc_host *host = mq->card->host; 1509 1510 if (host->hsq_enabled) 1511 return mmc_blk_hsq_issue_rw_rq(mq, req); 1512 1513 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1514 1515 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1516 } 1517 1518 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1519 struct mmc_card *card, 1520 int disable_multi, 1521 struct mmc_queue *mq) 1522 { 1523 u32 readcmd, writecmd; 1524 struct mmc_blk_request *brq = &mqrq->brq; 1525 struct request *req = mmc_queue_req_to_req(mqrq); 1526 struct mmc_blk_data *md = mq->blkdata; 1527 bool do_rel_wr, do_data_tag; 1528 1529 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1530 1531 brq->mrq.cmd = &brq->cmd; 1532 1533 brq->cmd.arg = blk_rq_pos(req); 1534 if (!mmc_card_blockaddr(card)) 1535 brq->cmd.arg <<= 9; 1536 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1537 1538 if (brq->data.blocks > 1 || do_rel_wr) { 1539 /* SPI multiblock writes terminate using a special 1540 * token, not a STOP_TRANSMISSION request. 1541 */ 1542 if (!mmc_host_is_spi(card->host) || 1543 rq_data_dir(req) == READ) 1544 brq->mrq.stop = &brq->stop; 1545 readcmd = MMC_READ_MULTIPLE_BLOCK; 1546 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1547 } else { 1548 brq->mrq.stop = NULL; 1549 readcmd = MMC_READ_SINGLE_BLOCK; 1550 writecmd = MMC_WRITE_BLOCK; 1551 } 1552 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1553 1554 /* 1555 * Pre-defined multi-block transfers are preferable to 1556 * open ended-ones (and necessary for reliable writes). 1557 * However, it is not sufficient to just send CMD23, 1558 * and avoid the final CMD12, as on an error condition 1559 * CMD12 (stop) needs to be sent anyway. This, coupled 1560 * with Auto-CMD23 enhancements provided by some 1561 * hosts, means that the complexity of dealing 1562 * with this is best left to the host. If CMD23 is 1563 * supported by card and host, we'll fill sbc in and let 1564 * the host deal with handling it correctly. This means 1565 * that for hosts that don't expose MMC_CAP_CMD23, no 1566 * change of behavior will be observed. 1567 * 1568 * N.B: Some MMC cards experience perf degradation. 1569 * We'll avoid using CMD23-bounded multiblock writes for 1570 * these, while retaining features like reliable writes. 1571 */ 1572 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1573 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1574 do_data_tag)) { 1575 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1576 brq->sbc.arg = brq->data.blocks | 1577 (do_rel_wr ? (1 << 31) : 0) | 1578 (do_data_tag ? (1 << 29) : 0); 1579 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1580 brq->mrq.sbc = &brq->sbc; 1581 } 1582 } 1583 1584 #define MMC_MAX_RETRIES 5 1585 #define MMC_DATA_RETRIES 2 1586 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1587 1588 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1589 { 1590 struct mmc_command cmd = { 1591 .opcode = MMC_STOP_TRANSMISSION, 1592 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1593 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1594 .busy_timeout = timeout, 1595 }; 1596 1597 return mmc_wait_for_cmd(card->host, &cmd, 5); 1598 } 1599 1600 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1601 { 1602 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1603 struct mmc_blk_request *brq = &mqrq->brq; 1604 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1605 int err; 1606 1607 mmc_retune_hold_now(card->host); 1608 1609 mmc_blk_send_stop(card, timeout); 1610 1611 err = card_busy_detect(card, timeout, NULL); 1612 1613 mmc_retune_release(card->host); 1614 1615 return err; 1616 } 1617 1618 #define MMC_READ_SINGLE_RETRIES 2 1619 1620 /* Single sector read during recovery */ 1621 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1622 { 1623 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1624 struct mmc_request *mrq = &mqrq->brq.mrq; 1625 struct mmc_card *card = mq->card; 1626 struct mmc_host *host = card->host; 1627 blk_status_t error = BLK_STS_OK; 1628 int retries = 0; 1629 1630 do { 1631 u32 status; 1632 int err; 1633 1634 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1635 1636 mmc_wait_for_req(host, mrq); 1637 1638 err = mmc_send_status(card, &status); 1639 if (err) 1640 goto error_exit; 1641 1642 if (!mmc_host_is_spi(host) && 1643 !mmc_ready_for_data(status)) { 1644 err = mmc_blk_fix_state(card, req); 1645 if (err) 1646 goto error_exit; 1647 } 1648 1649 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES) 1650 continue; 1651 1652 retries = 0; 1653 1654 if (mrq->cmd->error || 1655 mrq->data->error || 1656 (!mmc_host_is_spi(host) && 1657 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1658 error = BLK_STS_IOERR; 1659 else 1660 error = BLK_STS_OK; 1661 1662 } while (blk_update_request(req, error, 512)); 1663 1664 return; 1665 1666 error_exit: 1667 mrq->data->bytes_xfered = 0; 1668 blk_update_request(req, BLK_STS_IOERR, 512); 1669 /* Let it try the remaining request again */ 1670 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1671 mqrq->retries = MMC_MAX_RETRIES - 1; 1672 } 1673 1674 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1675 { 1676 return !!brq->mrq.sbc; 1677 } 1678 1679 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1680 { 1681 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1682 } 1683 1684 /* 1685 * Check for errors the host controller driver might not have seen such as 1686 * response mode errors or invalid card state. 1687 */ 1688 static bool mmc_blk_status_error(struct request *req, u32 status) 1689 { 1690 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1691 struct mmc_blk_request *brq = &mqrq->brq; 1692 struct mmc_queue *mq = req->q->queuedata; 1693 u32 stop_err_bits; 1694 1695 if (mmc_host_is_spi(mq->card->host)) 1696 return false; 1697 1698 stop_err_bits = mmc_blk_stop_err_bits(brq); 1699 1700 return brq->cmd.resp[0] & CMD_ERRORS || 1701 brq->stop.resp[0] & stop_err_bits || 1702 status & stop_err_bits || 1703 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1704 } 1705 1706 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1707 { 1708 return !brq->sbc.error && !brq->cmd.error && 1709 !(brq->cmd.resp[0] & CMD_ERRORS); 1710 } 1711 1712 /* 1713 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1714 * policy: 1715 * 1. A request that has transferred at least some data is considered 1716 * successful and will be requeued if there is remaining data to 1717 * transfer. 1718 * 2. Otherwise the number of retries is incremented and the request 1719 * will be requeued if there are remaining retries. 1720 * 3. Otherwise the request will be errored out. 1721 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1722 * mqrq->retries. So there are only 4 possible actions here: 1723 * 1. do not accept the bytes_xfered value i.e. set it to zero 1724 * 2. change mqrq->retries to determine the number of retries 1725 * 3. try to reset the card 1726 * 4. read one sector at a time 1727 */ 1728 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1729 { 1730 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1731 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1732 struct mmc_blk_request *brq = &mqrq->brq; 1733 struct mmc_blk_data *md = mq->blkdata; 1734 struct mmc_card *card = mq->card; 1735 u32 status; 1736 u32 blocks; 1737 int err; 1738 1739 /* 1740 * Some errors the host driver might not have seen. Set the number of 1741 * bytes transferred to zero in that case. 1742 */ 1743 err = __mmc_send_status(card, &status, 0); 1744 if (err || mmc_blk_status_error(req, status)) 1745 brq->data.bytes_xfered = 0; 1746 1747 mmc_retune_release(card->host); 1748 1749 /* 1750 * Try again to get the status. This also provides an opportunity for 1751 * re-tuning. 1752 */ 1753 if (err) 1754 err = __mmc_send_status(card, &status, 0); 1755 1756 /* 1757 * Nothing more to do after the number of bytes transferred has been 1758 * updated and there is no card. 1759 */ 1760 if (err && mmc_detect_card_removed(card->host)) 1761 return; 1762 1763 /* Try to get back to "tran" state */ 1764 if (!mmc_host_is_spi(mq->card->host) && 1765 (err || !mmc_ready_for_data(status))) 1766 err = mmc_blk_fix_state(mq->card, req); 1767 1768 /* 1769 * Special case for SD cards where the card might record the number of 1770 * blocks written. 1771 */ 1772 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1773 rq_data_dir(req) == WRITE) { 1774 if (mmc_sd_num_wr_blocks(card, &blocks)) 1775 brq->data.bytes_xfered = 0; 1776 else 1777 brq->data.bytes_xfered = blocks << 9; 1778 } 1779 1780 /* Reset if the card is in a bad state */ 1781 if (!mmc_host_is_spi(mq->card->host) && 1782 err && mmc_blk_reset(md, card->host, type)) { 1783 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name); 1784 mqrq->retries = MMC_NO_RETRIES; 1785 return; 1786 } 1787 1788 /* 1789 * If anything was done, just return and if there is anything remaining 1790 * on the request it will get requeued. 1791 */ 1792 if (brq->data.bytes_xfered) 1793 return; 1794 1795 /* Reset before last retry */ 1796 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1797 mmc_blk_reset(md, card->host, type); 1798 1799 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1800 if (brq->sbc.error || brq->cmd.error) 1801 return; 1802 1803 /* Reduce the remaining retries for data errors */ 1804 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1805 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1806 return; 1807 } 1808 1809 /* FIXME: Missing single sector read for large sector size */ 1810 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1811 brq->data.blocks > 1) { 1812 /* Read one sector at a time */ 1813 mmc_blk_read_single(mq, req); 1814 return; 1815 } 1816 } 1817 1818 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1819 { 1820 mmc_blk_eval_resp_error(brq); 1821 1822 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1823 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1824 } 1825 1826 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1827 { 1828 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1829 u32 status = 0; 1830 int err; 1831 1832 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) 1833 return 0; 1834 1835 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status); 1836 1837 /* 1838 * Do not assume data transferred correctly if there are any error bits 1839 * set. 1840 */ 1841 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1842 mqrq->brq.data.bytes_xfered = 0; 1843 err = err ? err : -EIO; 1844 } 1845 1846 /* Copy the exception bit so it will be seen later on */ 1847 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT) 1848 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1849 1850 return err; 1851 } 1852 1853 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1854 struct request *req) 1855 { 1856 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1857 1858 mmc_blk_reset_success(mq->blkdata, type); 1859 } 1860 1861 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1862 { 1863 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1864 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1865 1866 if (nr_bytes) { 1867 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1868 blk_mq_requeue_request(req, true); 1869 else 1870 __blk_mq_end_request(req, BLK_STS_OK); 1871 } else if (!blk_rq_bytes(req)) { 1872 __blk_mq_end_request(req, BLK_STS_IOERR); 1873 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1874 blk_mq_requeue_request(req, true); 1875 } else { 1876 if (mmc_card_removed(mq->card)) 1877 req->rq_flags |= RQF_QUIET; 1878 blk_mq_end_request(req, BLK_STS_IOERR); 1879 } 1880 } 1881 1882 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1883 struct mmc_queue_req *mqrq) 1884 { 1885 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1886 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1887 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1888 } 1889 1890 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 1891 struct mmc_queue_req *mqrq) 1892 { 1893 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 1894 mmc_run_bkops(mq->card); 1895 } 1896 1897 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 1898 { 1899 struct mmc_queue_req *mqrq = 1900 container_of(mrq, struct mmc_queue_req, brq.mrq); 1901 struct request *req = mmc_queue_req_to_req(mqrq); 1902 struct request_queue *q = req->q; 1903 struct mmc_queue *mq = q->queuedata; 1904 struct mmc_host *host = mq->card->host; 1905 unsigned long flags; 1906 1907 if (mmc_blk_rq_error(&mqrq->brq) || 1908 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 1909 spin_lock_irqsave(&mq->lock, flags); 1910 mq->recovery_needed = true; 1911 mq->recovery_req = req; 1912 spin_unlock_irqrestore(&mq->lock, flags); 1913 1914 host->cqe_ops->cqe_recovery_start(host); 1915 1916 schedule_work(&mq->recovery_work); 1917 return; 1918 } 1919 1920 mmc_blk_rw_reset_success(mq, req); 1921 1922 /* 1923 * Block layer timeouts race with completions which means the normal 1924 * completion path cannot be used during recovery. 1925 */ 1926 if (mq->in_recovery) 1927 mmc_blk_cqe_complete_rq(mq, req); 1928 else 1929 blk_mq_complete_request(req); 1930 } 1931 1932 void mmc_blk_mq_complete(struct request *req) 1933 { 1934 struct mmc_queue *mq = req->q->queuedata; 1935 1936 if (mq->use_cqe) 1937 mmc_blk_cqe_complete_rq(mq, req); 1938 else 1939 mmc_blk_mq_complete_rq(mq, req); 1940 } 1941 1942 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 1943 struct request *req) 1944 { 1945 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1946 struct mmc_host *host = mq->card->host; 1947 1948 if (mmc_blk_rq_error(&mqrq->brq) || 1949 mmc_blk_card_busy(mq->card, req)) { 1950 mmc_blk_mq_rw_recovery(mq, req); 1951 } else { 1952 mmc_blk_rw_reset_success(mq, req); 1953 mmc_retune_release(host); 1954 } 1955 1956 mmc_blk_urgent_bkops(mq, mqrq); 1957 } 1958 1959 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 1960 { 1961 unsigned long flags; 1962 bool put_card; 1963 1964 spin_lock_irqsave(&mq->lock, flags); 1965 1966 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1967 1968 put_card = (mmc_tot_in_flight(mq) == 0); 1969 1970 spin_unlock_irqrestore(&mq->lock, flags); 1971 1972 if (put_card) 1973 mmc_put_card(mq->card, &mq->ctx); 1974 } 1975 1976 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req) 1977 { 1978 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1979 struct mmc_request *mrq = &mqrq->brq.mrq; 1980 struct mmc_host *host = mq->card->host; 1981 1982 mmc_post_req(host, mrq, 0); 1983 1984 /* 1985 * Block layer timeouts race with completions which means the normal 1986 * completion path cannot be used during recovery. 1987 */ 1988 if (mq->in_recovery) 1989 mmc_blk_mq_complete_rq(mq, req); 1990 else 1991 blk_mq_complete_request(req); 1992 1993 mmc_blk_mq_dec_in_flight(mq, req); 1994 } 1995 1996 void mmc_blk_mq_recovery(struct mmc_queue *mq) 1997 { 1998 struct request *req = mq->recovery_req; 1999 struct mmc_host *host = mq->card->host; 2000 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2001 2002 mq->recovery_req = NULL; 2003 mq->rw_wait = false; 2004 2005 if (mmc_blk_rq_error(&mqrq->brq)) { 2006 mmc_retune_hold_now(host); 2007 mmc_blk_mq_rw_recovery(mq, req); 2008 } 2009 2010 mmc_blk_urgent_bkops(mq, mqrq); 2011 2012 mmc_blk_mq_post_req(mq, req); 2013 } 2014 2015 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2016 struct request **prev_req) 2017 { 2018 if (mmc_host_done_complete(mq->card->host)) 2019 return; 2020 2021 mutex_lock(&mq->complete_lock); 2022 2023 if (!mq->complete_req) 2024 goto out_unlock; 2025 2026 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2027 2028 if (prev_req) 2029 *prev_req = mq->complete_req; 2030 else 2031 mmc_blk_mq_post_req(mq, mq->complete_req); 2032 2033 mq->complete_req = NULL; 2034 2035 out_unlock: 2036 mutex_unlock(&mq->complete_lock); 2037 } 2038 2039 void mmc_blk_mq_complete_work(struct work_struct *work) 2040 { 2041 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2042 complete_work); 2043 2044 mmc_blk_mq_complete_prev_req(mq, NULL); 2045 } 2046 2047 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2048 { 2049 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2050 brq.mrq); 2051 struct request *req = mmc_queue_req_to_req(mqrq); 2052 struct request_queue *q = req->q; 2053 struct mmc_queue *mq = q->queuedata; 2054 struct mmc_host *host = mq->card->host; 2055 unsigned long flags; 2056 2057 if (!mmc_host_done_complete(host)) { 2058 bool waiting; 2059 2060 /* 2061 * We cannot complete the request in this context, so record 2062 * that there is a request to complete, and that a following 2063 * request does not need to wait (although it does need to 2064 * complete complete_req first). 2065 */ 2066 spin_lock_irqsave(&mq->lock, flags); 2067 mq->complete_req = req; 2068 mq->rw_wait = false; 2069 waiting = mq->waiting; 2070 spin_unlock_irqrestore(&mq->lock, flags); 2071 2072 /* 2073 * If 'waiting' then the waiting task will complete this 2074 * request, otherwise queue a work to do it. Note that 2075 * complete_work may still race with the dispatch of a following 2076 * request. 2077 */ 2078 if (waiting) 2079 wake_up(&mq->wait); 2080 else 2081 queue_work(mq->card->complete_wq, &mq->complete_work); 2082 2083 return; 2084 } 2085 2086 /* Take the recovery path for errors or urgent background operations */ 2087 if (mmc_blk_rq_error(&mqrq->brq) || 2088 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2089 spin_lock_irqsave(&mq->lock, flags); 2090 mq->recovery_needed = true; 2091 mq->recovery_req = req; 2092 spin_unlock_irqrestore(&mq->lock, flags); 2093 wake_up(&mq->wait); 2094 schedule_work(&mq->recovery_work); 2095 return; 2096 } 2097 2098 mmc_blk_rw_reset_success(mq, req); 2099 2100 mq->rw_wait = false; 2101 wake_up(&mq->wait); 2102 2103 mmc_blk_mq_post_req(mq, req); 2104 } 2105 2106 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2107 { 2108 unsigned long flags; 2109 bool done; 2110 2111 /* 2112 * Wait while there is another request in progress, but not if recovery 2113 * is needed. Also indicate whether there is a request waiting to start. 2114 */ 2115 spin_lock_irqsave(&mq->lock, flags); 2116 if (mq->recovery_needed) { 2117 *err = -EBUSY; 2118 done = true; 2119 } else { 2120 done = !mq->rw_wait; 2121 } 2122 mq->waiting = !done; 2123 spin_unlock_irqrestore(&mq->lock, flags); 2124 2125 return done; 2126 } 2127 2128 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2129 { 2130 int err = 0; 2131 2132 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2133 2134 /* Always complete the previous request if there is one */ 2135 mmc_blk_mq_complete_prev_req(mq, prev_req); 2136 2137 return err; 2138 } 2139 2140 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2141 struct request *req) 2142 { 2143 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2144 struct mmc_host *host = mq->card->host; 2145 struct request *prev_req = NULL; 2146 int err = 0; 2147 2148 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2149 2150 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2151 2152 mmc_pre_req(host, &mqrq->brq.mrq); 2153 2154 err = mmc_blk_rw_wait(mq, &prev_req); 2155 if (err) 2156 goto out_post_req; 2157 2158 mq->rw_wait = true; 2159 2160 err = mmc_start_request(host, &mqrq->brq.mrq); 2161 2162 if (prev_req) 2163 mmc_blk_mq_post_req(mq, prev_req); 2164 2165 if (err) 2166 mq->rw_wait = false; 2167 2168 /* Release re-tuning here where there is no synchronization required */ 2169 if (err || mmc_host_done_complete(host)) 2170 mmc_retune_release(host); 2171 2172 out_post_req: 2173 if (err) 2174 mmc_post_req(host, &mqrq->brq.mrq, err); 2175 2176 return err; 2177 } 2178 2179 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2180 { 2181 if (mq->use_cqe) 2182 return host->cqe_ops->cqe_wait_for_idle(host); 2183 2184 return mmc_blk_rw_wait(mq, NULL); 2185 } 2186 2187 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2188 { 2189 struct mmc_blk_data *md = mq->blkdata; 2190 struct mmc_card *card = md->queue.card; 2191 struct mmc_host *host = card->host; 2192 int ret; 2193 2194 ret = mmc_blk_part_switch(card, md->part_type); 2195 if (ret) 2196 return MMC_REQ_FAILED_TO_START; 2197 2198 switch (mmc_issue_type(mq, req)) { 2199 case MMC_ISSUE_SYNC: 2200 ret = mmc_blk_wait_for_idle(mq, host); 2201 if (ret) 2202 return MMC_REQ_BUSY; 2203 switch (req_op(req)) { 2204 case REQ_OP_DRV_IN: 2205 case REQ_OP_DRV_OUT: 2206 mmc_blk_issue_drv_op(mq, req); 2207 break; 2208 case REQ_OP_DISCARD: 2209 mmc_blk_issue_discard_rq(mq, req); 2210 break; 2211 case REQ_OP_SECURE_ERASE: 2212 mmc_blk_issue_secdiscard_rq(mq, req); 2213 break; 2214 case REQ_OP_FLUSH: 2215 mmc_blk_issue_flush(mq, req); 2216 break; 2217 default: 2218 WARN_ON_ONCE(1); 2219 return MMC_REQ_FAILED_TO_START; 2220 } 2221 return MMC_REQ_FINISHED; 2222 case MMC_ISSUE_DCMD: 2223 case MMC_ISSUE_ASYNC: 2224 switch (req_op(req)) { 2225 case REQ_OP_FLUSH: 2226 ret = mmc_blk_cqe_issue_flush(mq, req); 2227 break; 2228 case REQ_OP_READ: 2229 case REQ_OP_WRITE: 2230 if (mq->use_cqe) 2231 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2232 else 2233 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2234 break; 2235 default: 2236 WARN_ON_ONCE(1); 2237 ret = -EINVAL; 2238 } 2239 if (!ret) 2240 return MMC_REQ_STARTED; 2241 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2242 default: 2243 WARN_ON_ONCE(1); 2244 return MMC_REQ_FAILED_TO_START; 2245 } 2246 } 2247 2248 static inline int mmc_blk_readonly(struct mmc_card *card) 2249 { 2250 return mmc_card_readonly(card) || 2251 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2252 } 2253 2254 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2255 struct device *parent, 2256 sector_t size, 2257 bool default_ro, 2258 const char *subname, 2259 int area_type) 2260 { 2261 struct mmc_blk_data *md; 2262 int devidx, ret; 2263 2264 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2265 if (devidx < 0) { 2266 /* 2267 * We get -ENOSPC because there are no more any available 2268 * devidx. The reason may be that, either userspace haven't yet 2269 * unmounted the partitions, which postpones mmc_blk_release() 2270 * from being called, or the device has more partitions than 2271 * what we support. 2272 */ 2273 if (devidx == -ENOSPC) 2274 dev_err(mmc_dev(card->host), 2275 "no more device IDs available\n"); 2276 2277 return ERR_PTR(devidx); 2278 } 2279 2280 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2281 if (!md) { 2282 ret = -ENOMEM; 2283 goto out; 2284 } 2285 2286 md->area_type = area_type; 2287 2288 /* 2289 * Set the read-only status based on the supported commands 2290 * and the write protect switch. 2291 */ 2292 md->read_only = mmc_blk_readonly(card); 2293 2294 md->disk = alloc_disk(perdev_minors); 2295 if (md->disk == NULL) { 2296 ret = -ENOMEM; 2297 goto err_kfree; 2298 } 2299 2300 INIT_LIST_HEAD(&md->part); 2301 INIT_LIST_HEAD(&md->rpmbs); 2302 md->usage = 1; 2303 2304 ret = mmc_init_queue(&md->queue, card); 2305 if (ret) 2306 goto err_putdisk; 2307 2308 md->queue.blkdata = md; 2309 2310 /* 2311 * Keep an extra reference to the queue so that we can shutdown the 2312 * queue (i.e. call blk_cleanup_queue()) while there are still 2313 * references to the 'md'. The corresponding blk_put_queue() is in 2314 * mmc_blk_put(). 2315 */ 2316 if (!blk_get_queue(md->queue.queue)) { 2317 mmc_cleanup_queue(&md->queue); 2318 ret = -ENODEV; 2319 goto err_putdisk; 2320 } 2321 2322 md->disk->major = MMC_BLOCK_MAJOR; 2323 md->disk->first_minor = devidx * perdev_minors; 2324 md->disk->fops = &mmc_bdops; 2325 md->disk->private_data = md; 2326 md->disk->queue = md->queue.queue; 2327 md->parent = parent; 2328 set_disk_ro(md->disk, md->read_only || default_ro); 2329 md->disk->flags = GENHD_FL_EXT_DEVT; 2330 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2331 md->disk->flags |= GENHD_FL_NO_PART_SCAN 2332 | GENHD_FL_SUPPRESS_PARTITION_INFO; 2333 2334 /* 2335 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2336 * 2337 * - be set for removable media with permanent block devices 2338 * - be unset for removable block devices with permanent media 2339 * 2340 * Since MMC block devices clearly fall under the second 2341 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2342 * should use the block device creation/destruction hotplug 2343 * messages to tell when the card is present. 2344 */ 2345 2346 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2347 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2348 2349 set_capacity(md->disk, size); 2350 2351 if (mmc_host_cmd23(card->host)) { 2352 if ((mmc_card_mmc(card) && 2353 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2354 (mmc_card_sd(card) && 2355 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2356 md->flags |= MMC_BLK_CMD23; 2357 } 2358 2359 if (mmc_card_mmc(card) && 2360 md->flags & MMC_BLK_CMD23 && 2361 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2362 card->ext_csd.rel_sectors)) { 2363 md->flags |= MMC_BLK_REL_WR; 2364 blk_queue_write_cache(md->queue.queue, true, true); 2365 } 2366 2367 return md; 2368 2369 err_putdisk: 2370 put_disk(md->disk); 2371 err_kfree: 2372 kfree(md); 2373 out: 2374 ida_simple_remove(&mmc_blk_ida, devidx); 2375 return ERR_PTR(ret); 2376 } 2377 2378 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2379 { 2380 sector_t size; 2381 2382 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2383 /* 2384 * The EXT_CSD sector count is in number or 512 byte 2385 * sectors. 2386 */ 2387 size = card->ext_csd.sectors; 2388 } else { 2389 /* 2390 * The CSD capacity field is in units of read_blkbits. 2391 * set_capacity takes units of 512 bytes. 2392 */ 2393 size = (typeof(sector_t))card->csd.capacity 2394 << (card->csd.read_blkbits - 9); 2395 } 2396 2397 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2398 MMC_BLK_DATA_AREA_MAIN); 2399 } 2400 2401 static int mmc_blk_alloc_part(struct mmc_card *card, 2402 struct mmc_blk_data *md, 2403 unsigned int part_type, 2404 sector_t size, 2405 bool default_ro, 2406 const char *subname, 2407 int area_type) 2408 { 2409 char cap_str[10]; 2410 struct mmc_blk_data *part_md; 2411 2412 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2413 subname, area_type); 2414 if (IS_ERR(part_md)) 2415 return PTR_ERR(part_md); 2416 part_md->part_type = part_type; 2417 list_add(&part_md->part, &md->part); 2418 2419 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2420 cap_str, sizeof(cap_str)); 2421 pr_info("%s: %s %s partition %u %s\n", 2422 part_md->disk->disk_name, mmc_card_id(card), 2423 mmc_card_name(card), part_md->part_type, cap_str); 2424 return 0; 2425 } 2426 2427 /** 2428 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2429 * @filp: the character device file 2430 * @cmd: the ioctl() command 2431 * @arg: the argument from userspace 2432 * 2433 * This will essentially just redirect the ioctl()s coming in over to 2434 * the main block device spawning the RPMB character device. 2435 */ 2436 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2437 unsigned long arg) 2438 { 2439 struct mmc_rpmb_data *rpmb = filp->private_data; 2440 int ret; 2441 2442 switch (cmd) { 2443 case MMC_IOC_CMD: 2444 ret = mmc_blk_ioctl_cmd(rpmb->md, 2445 (struct mmc_ioc_cmd __user *)arg, 2446 rpmb); 2447 break; 2448 case MMC_IOC_MULTI_CMD: 2449 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2450 (struct mmc_ioc_multi_cmd __user *)arg, 2451 rpmb); 2452 break; 2453 default: 2454 ret = -EINVAL; 2455 break; 2456 } 2457 2458 return ret; 2459 } 2460 2461 #ifdef CONFIG_COMPAT 2462 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2463 unsigned long arg) 2464 { 2465 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2466 } 2467 #endif 2468 2469 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2470 { 2471 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2472 struct mmc_rpmb_data, chrdev); 2473 2474 get_device(&rpmb->dev); 2475 filp->private_data = rpmb; 2476 mmc_blk_get(rpmb->md->disk); 2477 2478 return nonseekable_open(inode, filp); 2479 } 2480 2481 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2482 { 2483 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2484 struct mmc_rpmb_data, chrdev); 2485 2486 put_device(&rpmb->dev); 2487 mmc_blk_put(rpmb->md); 2488 2489 return 0; 2490 } 2491 2492 static const struct file_operations mmc_rpmb_fileops = { 2493 .release = mmc_rpmb_chrdev_release, 2494 .open = mmc_rpmb_chrdev_open, 2495 .owner = THIS_MODULE, 2496 .llseek = no_llseek, 2497 .unlocked_ioctl = mmc_rpmb_ioctl, 2498 #ifdef CONFIG_COMPAT 2499 .compat_ioctl = mmc_rpmb_ioctl_compat, 2500 #endif 2501 }; 2502 2503 static void mmc_blk_rpmb_device_release(struct device *dev) 2504 { 2505 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2506 2507 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2508 kfree(rpmb); 2509 } 2510 2511 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2512 struct mmc_blk_data *md, 2513 unsigned int part_index, 2514 sector_t size, 2515 const char *subname) 2516 { 2517 int devidx, ret; 2518 char rpmb_name[DISK_NAME_LEN]; 2519 char cap_str[10]; 2520 struct mmc_rpmb_data *rpmb; 2521 2522 /* This creates the minor number for the RPMB char device */ 2523 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2524 if (devidx < 0) 2525 return devidx; 2526 2527 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2528 if (!rpmb) { 2529 ida_simple_remove(&mmc_rpmb_ida, devidx); 2530 return -ENOMEM; 2531 } 2532 2533 snprintf(rpmb_name, sizeof(rpmb_name), 2534 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2535 2536 rpmb->id = devidx; 2537 rpmb->part_index = part_index; 2538 rpmb->dev.init_name = rpmb_name; 2539 rpmb->dev.bus = &mmc_rpmb_bus_type; 2540 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2541 rpmb->dev.parent = &card->dev; 2542 rpmb->dev.release = mmc_blk_rpmb_device_release; 2543 device_initialize(&rpmb->dev); 2544 dev_set_drvdata(&rpmb->dev, rpmb); 2545 rpmb->md = md; 2546 2547 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2548 rpmb->chrdev.owner = THIS_MODULE; 2549 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2550 if (ret) { 2551 pr_err("%s: could not add character device\n", rpmb_name); 2552 goto out_put_device; 2553 } 2554 2555 list_add(&rpmb->node, &md->rpmbs); 2556 2557 string_get_size((u64)size, 512, STRING_UNITS_2, 2558 cap_str, sizeof(cap_str)); 2559 2560 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n", 2561 rpmb_name, mmc_card_id(card), 2562 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str, 2563 MAJOR(mmc_rpmb_devt), rpmb->id); 2564 2565 return 0; 2566 2567 out_put_device: 2568 put_device(&rpmb->dev); 2569 return ret; 2570 } 2571 2572 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2573 2574 { 2575 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2576 put_device(&rpmb->dev); 2577 } 2578 2579 /* MMC Physical partitions consist of two boot partitions and 2580 * up to four general purpose partitions. 2581 * For each partition enabled in EXT_CSD a block device will be allocatedi 2582 * to provide access to the partition. 2583 */ 2584 2585 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2586 { 2587 int idx, ret; 2588 2589 if (!mmc_card_mmc(card)) 2590 return 0; 2591 2592 for (idx = 0; idx < card->nr_parts; idx++) { 2593 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2594 /* 2595 * RPMB partitions does not provide block access, they 2596 * are only accessed using ioctl():s. Thus create 2597 * special RPMB block devices that do not have a 2598 * backing block queue for these. 2599 */ 2600 ret = mmc_blk_alloc_rpmb_part(card, md, 2601 card->part[idx].part_cfg, 2602 card->part[idx].size >> 9, 2603 card->part[idx].name); 2604 if (ret) 2605 return ret; 2606 } else if (card->part[idx].size) { 2607 ret = mmc_blk_alloc_part(card, md, 2608 card->part[idx].part_cfg, 2609 card->part[idx].size >> 9, 2610 card->part[idx].force_ro, 2611 card->part[idx].name, 2612 card->part[idx].area_type); 2613 if (ret) 2614 return ret; 2615 } 2616 } 2617 2618 return 0; 2619 } 2620 2621 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2622 { 2623 struct mmc_card *card; 2624 2625 if (md) { 2626 /* 2627 * Flush remaining requests and free queues. It 2628 * is freeing the queue that stops new requests 2629 * from being accepted. 2630 */ 2631 card = md->queue.card; 2632 if (md->disk->flags & GENHD_FL_UP) { 2633 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2634 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2635 card->ext_csd.boot_ro_lockable) 2636 device_remove_file(disk_to_dev(md->disk), 2637 &md->power_ro_lock); 2638 2639 del_gendisk(md->disk); 2640 } 2641 mmc_cleanup_queue(&md->queue); 2642 mmc_blk_put(md); 2643 } 2644 } 2645 2646 static void mmc_blk_remove_parts(struct mmc_card *card, 2647 struct mmc_blk_data *md) 2648 { 2649 struct list_head *pos, *q; 2650 struct mmc_blk_data *part_md; 2651 struct mmc_rpmb_data *rpmb; 2652 2653 /* Remove RPMB partitions */ 2654 list_for_each_safe(pos, q, &md->rpmbs) { 2655 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2656 list_del(pos); 2657 mmc_blk_remove_rpmb_part(rpmb); 2658 } 2659 /* Remove block partitions */ 2660 list_for_each_safe(pos, q, &md->part) { 2661 part_md = list_entry(pos, struct mmc_blk_data, part); 2662 list_del(pos); 2663 mmc_blk_remove_req(part_md); 2664 } 2665 } 2666 2667 static int mmc_add_disk(struct mmc_blk_data *md) 2668 { 2669 int ret; 2670 struct mmc_card *card = md->queue.card; 2671 2672 device_add_disk(md->parent, md->disk, NULL); 2673 md->force_ro.show = force_ro_show; 2674 md->force_ro.store = force_ro_store; 2675 sysfs_attr_init(&md->force_ro.attr); 2676 md->force_ro.attr.name = "force_ro"; 2677 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2678 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2679 if (ret) 2680 goto force_ro_fail; 2681 2682 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2683 card->ext_csd.boot_ro_lockable) { 2684 umode_t mode; 2685 2686 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2687 mode = S_IRUGO; 2688 else 2689 mode = S_IRUGO | S_IWUSR; 2690 2691 md->power_ro_lock.show = power_ro_lock_show; 2692 md->power_ro_lock.store = power_ro_lock_store; 2693 sysfs_attr_init(&md->power_ro_lock.attr); 2694 md->power_ro_lock.attr.mode = mode; 2695 md->power_ro_lock.attr.name = 2696 "ro_lock_until_next_power_on"; 2697 ret = device_create_file(disk_to_dev(md->disk), 2698 &md->power_ro_lock); 2699 if (ret) 2700 goto power_ro_lock_fail; 2701 } 2702 return ret; 2703 2704 power_ro_lock_fail: 2705 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2706 force_ro_fail: 2707 del_gendisk(md->disk); 2708 2709 return ret; 2710 } 2711 2712 #ifdef CONFIG_DEBUG_FS 2713 2714 static int mmc_dbg_card_status_get(void *data, u64 *val) 2715 { 2716 struct mmc_card *card = data; 2717 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2718 struct mmc_queue *mq = &md->queue; 2719 struct request *req; 2720 int ret; 2721 2722 /* Ask the block layer about the card status */ 2723 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2724 if (IS_ERR(req)) 2725 return PTR_ERR(req); 2726 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2727 blk_execute_rq(mq->queue, NULL, req, 0); 2728 ret = req_to_mmc_queue_req(req)->drv_op_result; 2729 if (ret >= 0) { 2730 *val = ret; 2731 ret = 0; 2732 } 2733 blk_put_request(req); 2734 2735 return ret; 2736 } 2737 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2738 NULL, "%08llx\n"); 2739 2740 /* That is two digits * 512 + 1 for newline */ 2741 #define EXT_CSD_STR_LEN 1025 2742 2743 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2744 { 2745 struct mmc_card *card = inode->i_private; 2746 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2747 struct mmc_queue *mq = &md->queue; 2748 struct request *req; 2749 char *buf; 2750 ssize_t n = 0; 2751 u8 *ext_csd; 2752 int err, i; 2753 2754 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2755 if (!buf) 2756 return -ENOMEM; 2757 2758 /* Ask the block layer for the EXT CSD */ 2759 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2760 if (IS_ERR(req)) { 2761 err = PTR_ERR(req); 2762 goto out_free; 2763 } 2764 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2765 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2766 blk_execute_rq(mq->queue, NULL, req, 0); 2767 err = req_to_mmc_queue_req(req)->drv_op_result; 2768 blk_put_request(req); 2769 if (err) { 2770 pr_err("FAILED %d\n", err); 2771 goto out_free; 2772 } 2773 2774 for (i = 0; i < 512; i++) 2775 n += sprintf(buf + n, "%02x", ext_csd[i]); 2776 n += sprintf(buf + n, "\n"); 2777 2778 if (n != EXT_CSD_STR_LEN) { 2779 err = -EINVAL; 2780 kfree(ext_csd); 2781 goto out_free; 2782 } 2783 2784 filp->private_data = buf; 2785 kfree(ext_csd); 2786 return 0; 2787 2788 out_free: 2789 kfree(buf); 2790 return err; 2791 } 2792 2793 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2794 size_t cnt, loff_t *ppos) 2795 { 2796 char *buf = filp->private_data; 2797 2798 return simple_read_from_buffer(ubuf, cnt, ppos, 2799 buf, EXT_CSD_STR_LEN); 2800 } 2801 2802 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2803 { 2804 kfree(file->private_data); 2805 return 0; 2806 } 2807 2808 static const struct file_operations mmc_dbg_ext_csd_fops = { 2809 .open = mmc_ext_csd_open, 2810 .read = mmc_ext_csd_read, 2811 .release = mmc_ext_csd_release, 2812 .llseek = default_llseek, 2813 }; 2814 2815 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2816 { 2817 struct dentry *root; 2818 2819 if (!card->debugfs_root) 2820 return 0; 2821 2822 root = card->debugfs_root; 2823 2824 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2825 md->status_dentry = 2826 debugfs_create_file_unsafe("status", 0400, root, 2827 card, 2828 &mmc_dbg_card_status_fops); 2829 if (!md->status_dentry) 2830 return -EIO; 2831 } 2832 2833 if (mmc_card_mmc(card)) { 2834 md->ext_csd_dentry = 2835 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2836 &mmc_dbg_ext_csd_fops); 2837 if (!md->ext_csd_dentry) 2838 return -EIO; 2839 } 2840 2841 return 0; 2842 } 2843 2844 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2845 struct mmc_blk_data *md) 2846 { 2847 if (!card->debugfs_root) 2848 return; 2849 2850 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2851 debugfs_remove(md->status_dentry); 2852 md->status_dentry = NULL; 2853 } 2854 2855 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2856 debugfs_remove(md->ext_csd_dentry); 2857 md->ext_csd_dentry = NULL; 2858 } 2859 } 2860 2861 #else 2862 2863 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2864 { 2865 return 0; 2866 } 2867 2868 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2869 struct mmc_blk_data *md) 2870 { 2871 } 2872 2873 #endif /* CONFIG_DEBUG_FS */ 2874 2875 static int mmc_blk_probe(struct mmc_card *card) 2876 { 2877 struct mmc_blk_data *md, *part_md; 2878 char cap_str[10]; 2879 2880 /* 2881 * Check that the card supports the command class(es) we need. 2882 */ 2883 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2884 return -ENODEV; 2885 2886 mmc_fixup_device(card, mmc_blk_fixups); 2887 2888 card->complete_wq = alloc_workqueue("mmc_complete", 2889 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2890 if (unlikely(!card->complete_wq)) { 2891 pr_err("Failed to create mmc completion workqueue"); 2892 return -ENOMEM; 2893 } 2894 2895 md = mmc_blk_alloc(card); 2896 if (IS_ERR(md)) 2897 return PTR_ERR(md); 2898 2899 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2900 cap_str, sizeof(cap_str)); 2901 pr_info("%s: %s %s %s %s\n", 2902 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2903 cap_str, md->read_only ? "(ro)" : ""); 2904 2905 if (mmc_blk_alloc_parts(card, md)) 2906 goto out; 2907 2908 dev_set_drvdata(&card->dev, md); 2909 2910 if (mmc_add_disk(md)) 2911 goto out; 2912 2913 list_for_each_entry(part_md, &md->part, part) { 2914 if (mmc_add_disk(part_md)) 2915 goto out; 2916 } 2917 2918 /* Add two debugfs entries */ 2919 mmc_blk_add_debugfs(card, md); 2920 2921 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2922 pm_runtime_use_autosuspend(&card->dev); 2923 2924 /* 2925 * Don't enable runtime PM for SD-combo cards here. Leave that 2926 * decision to be taken during the SDIO init sequence instead. 2927 */ 2928 if (card->type != MMC_TYPE_SD_COMBO) { 2929 pm_runtime_set_active(&card->dev); 2930 pm_runtime_enable(&card->dev); 2931 } 2932 2933 return 0; 2934 2935 out: 2936 mmc_blk_remove_parts(card, md); 2937 mmc_blk_remove_req(md); 2938 return 0; 2939 } 2940 2941 static void mmc_blk_remove(struct mmc_card *card) 2942 { 2943 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2944 2945 mmc_blk_remove_debugfs(card, md); 2946 mmc_blk_remove_parts(card, md); 2947 pm_runtime_get_sync(&card->dev); 2948 if (md->part_curr != md->part_type) { 2949 mmc_claim_host(card->host); 2950 mmc_blk_part_switch(card, md->part_type); 2951 mmc_release_host(card->host); 2952 } 2953 if (card->type != MMC_TYPE_SD_COMBO) 2954 pm_runtime_disable(&card->dev); 2955 pm_runtime_put_noidle(&card->dev); 2956 mmc_blk_remove_req(md); 2957 dev_set_drvdata(&card->dev, NULL); 2958 destroy_workqueue(card->complete_wq); 2959 } 2960 2961 static int _mmc_blk_suspend(struct mmc_card *card) 2962 { 2963 struct mmc_blk_data *part_md; 2964 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2965 2966 if (md) { 2967 mmc_queue_suspend(&md->queue); 2968 list_for_each_entry(part_md, &md->part, part) { 2969 mmc_queue_suspend(&part_md->queue); 2970 } 2971 } 2972 return 0; 2973 } 2974 2975 static void mmc_blk_shutdown(struct mmc_card *card) 2976 { 2977 _mmc_blk_suspend(card); 2978 } 2979 2980 #ifdef CONFIG_PM_SLEEP 2981 static int mmc_blk_suspend(struct device *dev) 2982 { 2983 struct mmc_card *card = mmc_dev_to_card(dev); 2984 2985 return _mmc_blk_suspend(card); 2986 } 2987 2988 static int mmc_blk_resume(struct device *dev) 2989 { 2990 struct mmc_blk_data *part_md; 2991 struct mmc_blk_data *md = dev_get_drvdata(dev); 2992 2993 if (md) { 2994 /* 2995 * Resume involves the card going into idle state, 2996 * so current partition is always the main one. 2997 */ 2998 md->part_curr = md->part_type; 2999 mmc_queue_resume(&md->queue); 3000 list_for_each_entry(part_md, &md->part, part) { 3001 mmc_queue_resume(&part_md->queue); 3002 } 3003 } 3004 return 0; 3005 } 3006 #endif 3007 3008 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3009 3010 static struct mmc_driver mmc_driver = { 3011 .drv = { 3012 .name = "mmcblk", 3013 .pm = &mmc_blk_pm_ops, 3014 }, 3015 .probe = mmc_blk_probe, 3016 .remove = mmc_blk_remove, 3017 .shutdown = mmc_blk_shutdown, 3018 }; 3019 3020 static int __init mmc_blk_init(void) 3021 { 3022 int res; 3023 3024 res = bus_register(&mmc_rpmb_bus_type); 3025 if (res < 0) { 3026 pr_err("mmcblk: could not register RPMB bus type\n"); 3027 return res; 3028 } 3029 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3030 if (res < 0) { 3031 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3032 goto out_bus_unreg; 3033 } 3034 3035 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3036 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3037 3038 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3039 3040 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3041 if (res) 3042 goto out_chrdev_unreg; 3043 3044 res = mmc_register_driver(&mmc_driver); 3045 if (res) 3046 goto out_blkdev_unreg; 3047 3048 return 0; 3049 3050 out_blkdev_unreg: 3051 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3052 out_chrdev_unreg: 3053 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3054 out_bus_unreg: 3055 bus_unregister(&mmc_rpmb_bus_type); 3056 return res; 3057 } 3058 3059 static void __exit mmc_blk_exit(void) 3060 { 3061 mmc_unregister_driver(&mmc_driver); 3062 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3063 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3064 bus_unregister(&mmc_rpmb_bus_type); 3065 } 3066 3067 module_init(mmc_blk_init); 3068 module_exit(mmc_blk_exit); 3069 3070 MODULE_LICENSE("GPL"); 3071 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3072 3073