xref: /openbmc/linux/drivers/mmc/core/block.c (revision bbecb07f)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41 
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47 
48 #include <linux/uaccess.h>
49 
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
59 
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
65 
66 #define MMC_BLK_TIMEOUT_MS  (10 * 60 * 1000)        /* 10 minute timeout */
67 #define MMC_SANITIZE_REQ_TIMEOUT 240000
68 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
69 
70 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
71 				  (rq_data_dir(req) == WRITE))
72 static DEFINE_MUTEX(block_mutex);
73 
74 /*
75  * The defaults come from config options but can be overriden by module
76  * or bootarg options.
77  */
78 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
79 
80 /*
81  * We've only got one major, so number of mmcblk devices is
82  * limited to (1 << 20) / number of minors per device.  It is also
83  * limited by the MAX_DEVICES below.
84  */
85 static int max_devices;
86 
87 #define MAX_DEVICES 256
88 
89 static DEFINE_IDA(mmc_blk_ida);
90 static DEFINE_IDA(mmc_rpmb_ida);
91 
92 /*
93  * There is one mmc_blk_data per slot.
94  */
95 struct mmc_blk_data {
96 	spinlock_t	lock;
97 	struct device	*parent;
98 	struct gendisk	*disk;
99 	struct mmc_queue queue;
100 	struct list_head part;
101 	struct list_head rpmbs;
102 
103 	unsigned int	flags;
104 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
105 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
106 
107 	unsigned int	usage;
108 	unsigned int	read_only;
109 	unsigned int	part_type;
110 	unsigned int	reset_done;
111 #define MMC_BLK_READ		BIT(0)
112 #define MMC_BLK_WRITE		BIT(1)
113 #define MMC_BLK_DISCARD		BIT(2)
114 #define MMC_BLK_SECDISCARD	BIT(3)
115 
116 	/*
117 	 * Only set in main mmc_blk_data associated
118 	 * with mmc_card with dev_set_drvdata, and keeps
119 	 * track of the current selected device partition.
120 	 */
121 	unsigned int	part_curr;
122 	struct device_attribute force_ro;
123 	struct device_attribute power_ro_lock;
124 	int	area_type;
125 
126 	/* debugfs files (only in main mmc_blk_data) */
127 	struct dentry *status_dentry;
128 	struct dentry *ext_csd_dentry;
129 };
130 
131 /* Device type for RPMB character devices */
132 static dev_t mmc_rpmb_devt;
133 
134 /* Bus type for RPMB character devices */
135 static struct bus_type mmc_rpmb_bus_type = {
136 	.name = "mmc_rpmb",
137 };
138 
139 /**
140  * struct mmc_rpmb_data - special RPMB device type for these areas
141  * @dev: the device for the RPMB area
142  * @chrdev: character device for the RPMB area
143  * @id: unique device ID number
144  * @part_index: partition index (0 on first)
145  * @md: parent MMC block device
146  * @node: list item, so we can put this device on a list
147  */
148 struct mmc_rpmb_data {
149 	struct device dev;
150 	struct cdev chrdev;
151 	int id;
152 	unsigned int part_index;
153 	struct mmc_blk_data *md;
154 	struct list_head node;
155 };
156 
157 static DEFINE_MUTEX(open_lock);
158 
159 module_param(perdev_minors, int, 0444);
160 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
161 
162 static inline int mmc_blk_part_switch(struct mmc_card *card,
163 				      unsigned int part_type);
164 
165 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
166 {
167 	struct mmc_blk_data *md;
168 
169 	mutex_lock(&open_lock);
170 	md = disk->private_data;
171 	if (md && md->usage == 0)
172 		md = NULL;
173 	if (md)
174 		md->usage++;
175 	mutex_unlock(&open_lock);
176 
177 	return md;
178 }
179 
180 static inline int mmc_get_devidx(struct gendisk *disk)
181 {
182 	int devidx = disk->first_minor / perdev_minors;
183 	return devidx;
184 }
185 
186 static void mmc_blk_put(struct mmc_blk_data *md)
187 {
188 	mutex_lock(&open_lock);
189 	md->usage--;
190 	if (md->usage == 0) {
191 		int devidx = mmc_get_devidx(md->disk);
192 		blk_cleanup_queue(md->queue.queue);
193 		ida_simple_remove(&mmc_blk_ida, devidx);
194 		put_disk(md->disk);
195 		kfree(md);
196 	}
197 	mutex_unlock(&open_lock);
198 }
199 
200 static ssize_t power_ro_lock_show(struct device *dev,
201 		struct device_attribute *attr, char *buf)
202 {
203 	int ret;
204 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
205 	struct mmc_card *card = md->queue.card;
206 	int locked = 0;
207 
208 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
209 		locked = 2;
210 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
211 		locked = 1;
212 
213 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
214 
215 	mmc_blk_put(md);
216 
217 	return ret;
218 }
219 
220 static ssize_t power_ro_lock_store(struct device *dev,
221 		struct device_attribute *attr, const char *buf, size_t count)
222 {
223 	int ret;
224 	struct mmc_blk_data *md, *part_md;
225 	struct mmc_queue *mq;
226 	struct request *req;
227 	unsigned long set;
228 
229 	if (kstrtoul(buf, 0, &set))
230 		return -EINVAL;
231 
232 	if (set != 1)
233 		return count;
234 
235 	md = mmc_blk_get(dev_to_disk(dev));
236 	mq = &md->queue;
237 
238 	/* Dispatch locking to the block layer */
239 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM);
240 	if (IS_ERR(req)) {
241 		count = PTR_ERR(req);
242 		goto out_put;
243 	}
244 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
245 	blk_execute_rq(mq->queue, NULL, req, 0);
246 	ret = req_to_mmc_queue_req(req)->drv_op_result;
247 	blk_put_request(req);
248 
249 	if (!ret) {
250 		pr_info("%s: Locking boot partition ro until next power on\n",
251 			md->disk->disk_name);
252 		set_disk_ro(md->disk, 1);
253 
254 		list_for_each_entry(part_md, &md->part, part)
255 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
256 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
257 				set_disk_ro(part_md->disk, 1);
258 			}
259 	}
260 out_put:
261 	mmc_blk_put(md);
262 	return count;
263 }
264 
265 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
266 			     char *buf)
267 {
268 	int ret;
269 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
270 
271 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
272 		       get_disk_ro(dev_to_disk(dev)) ^
273 		       md->read_only);
274 	mmc_blk_put(md);
275 	return ret;
276 }
277 
278 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
279 			      const char *buf, size_t count)
280 {
281 	int ret;
282 	char *end;
283 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
284 	unsigned long set = simple_strtoul(buf, &end, 0);
285 	if (end == buf) {
286 		ret = -EINVAL;
287 		goto out;
288 	}
289 
290 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
291 	ret = count;
292 out:
293 	mmc_blk_put(md);
294 	return ret;
295 }
296 
297 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
298 {
299 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
300 	int ret = -ENXIO;
301 
302 	mutex_lock(&block_mutex);
303 	if (md) {
304 		if (md->usage == 2)
305 			check_disk_change(bdev);
306 		ret = 0;
307 
308 		if ((mode & FMODE_WRITE) && md->read_only) {
309 			mmc_blk_put(md);
310 			ret = -EROFS;
311 		}
312 	}
313 	mutex_unlock(&block_mutex);
314 
315 	return ret;
316 }
317 
318 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
319 {
320 	struct mmc_blk_data *md = disk->private_data;
321 
322 	mutex_lock(&block_mutex);
323 	mmc_blk_put(md);
324 	mutex_unlock(&block_mutex);
325 }
326 
327 static int
328 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
329 {
330 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
331 	geo->heads = 4;
332 	geo->sectors = 16;
333 	return 0;
334 }
335 
336 struct mmc_blk_ioc_data {
337 	struct mmc_ioc_cmd ic;
338 	unsigned char *buf;
339 	u64 buf_bytes;
340 	struct mmc_rpmb_data *rpmb;
341 };
342 
343 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
344 	struct mmc_ioc_cmd __user *user)
345 {
346 	struct mmc_blk_ioc_data *idata;
347 	int err;
348 
349 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
350 	if (!idata) {
351 		err = -ENOMEM;
352 		goto out;
353 	}
354 
355 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
356 		err = -EFAULT;
357 		goto idata_err;
358 	}
359 
360 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
361 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
362 		err = -EOVERFLOW;
363 		goto idata_err;
364 	}
365 
366 	if (!idata->buf_bytes) {
367 		idata->buf = NULL;
368 		return idata;
369 	}
370 
371 	idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
372 	if (!idata->buf) {
373 		err = -ENOMEM;
374 		goto idata_err;
375 	}
376 
377 	if (copy_from_user(idata->buf, (void __user *)(unsigned long)
378 					idata->ic.data_ptr, idata->buf_bytes)) {
379 		err = -EFAULT;
380 		goto copy_err;
381 	}
382 
383 	return idata;
384 
385 copy_err:
386 	kfree(idata->buf);
387 idata_err:
388 	kfree(idata);
389 out:
390 	return ERR_PTR(err);
391 }
392 
393 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
394 				      struct mmc_blk_ioc_data *idata)
395 {
396 	struct mmc_ioc_cmd *ic = &idata->ic;
397 
398 	if (copy_to_user(&(ic_ptr->response), ic->response,
399 			 sizeof(ic->response)))
400 		return -EFAULT;
401 
402 	if (!idata->ic.write_flag) {
403 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
404 				 idata->buf, idata->buf_bytes))
405 			return -EFAULT;
406 	}
407 
408 	return 0;
409 }
410 
411 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
412 				       u32 retries_max)
413 {
414 	int err;
415 	u32 retry_count = 0;
416 
417 	if (!status || !retries_max)
418 		return -EINVAL;
419 
420 	do {
421 		err = __mmc_send_status(card, status, 5);
422 		if (err)
423 			break;
424 
425 		if (!R1_STATUS(*status) &&
426 				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
427 			break; /* RPMB programming operation complete */
428 
429 		/*
430 		 * Rechedule to give the MMC device a chance to continue
431 		 * processing the previous command without being polled too
432 		 * frequently.
433 		 */
434 		usleep_range(1000, 5000);
435 	} while (++retry_count < retries_max);
436 
437 	if (retry_count == retries_max)
438 		err = -EPERM;
439 
440 	return err;
441 }
442 
443 static int ioctl_do_sanitize(struct mmc_card *card)
444 {
445 	int err;
446 
447 	if (!mmc_can_sanitize(card)) {
448 			pr_warn("%s: %s - SANITIZE is not supported\n",
449 				mmc_hostname(card->host), __func__);
450 			err = -EOPNOTSUPP;
451 			goto out;
452 	}
453 
454 	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
455 		mmc_hostname(card->host), __func__);
456 
457 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
458 					EXT_CSD_SANITIZE_START, 1,
459 					MMC_SANITIZE_REQ_TIMEOUT);
460 
461 	if (err)
462 		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
463 		       mmc_hostname(card->host), __func__, err);
464 
465 	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
466 					     __func__);
467 out:
468 	return err;
469 }
470 
471 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
472 			       struct mmc_blk_ioc_data *idata)
473 {
474 	struct mmc_command cmd = {};
475 	struct mmc_data data = {};
476 	struct mmc_request mrq = {};
477 	struct scatterlist sg;
478 	int err;
479 	unsigned int target_part;
480 	u32 status = 0;
481 
482 	if (!card || !md || !idata)
483 		return -EINVAL;
484 
485 	/*
486 	 * The RPMB accesses comes in from the character device, so we
487 	 * need to target these explicitly. Else we just target the
488 	 * partition type for the block device the ioctl() was issued
489 	 * on.
490 	 */
491 	if (idata->rpmb) {
492 		/* Support multiple RPMB partitions */
493 		target_part = idata->rpmb->part_index;
494 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
495 	} else {
496 		target_part = md->part_type;
497 	}
498 
499 	cmd.opcode = idata->ic.opcode;
500 	cmd.arg = idata->ic.arg;
501 	cmd.flags = idata->ic.flags;
502 
503 	if (idata->buf_bytes) {
504 		data.sg = &sg;
505 		data.sg_len = 1;
506 		data.blksz = idata->ic.blksz;
507 		data.blocks = idata->ic.blocks;
508 
509 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
510 
511 		if (idata->ic.write_flag)
512 			data.flags = MMC_DATA_WRITE;
513 		else
514 			data.flags = MMC_DATA_READ;
515 
516 		/* data.flags must already be set before doing this. */
517 		mmc_set_data_timeout(&data, card);
518 
519 		/* Allow overriding the timeout_ns for empirical tuning. */
520 		if (idata->ic.data_timeout_ns)
521 			data.timeout_ns = idata->ic.data_timeout_ns;
522 
523 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
524 			/*
525 			 * Pretend this is a data transfer and rely on the
526 			 * host driver to compute timeout.  When all host
527 			 * drivers support cmd.cmd_timeout for R1B, this
528 			 * can be changed to:
529 			 *
530 			 *     mrq.data = NULL;
531 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
532 			 */
533 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
534 		}
535 
536 		mrq.data = &data;
537 	}
538 
539 	mrq.cmd = &cmd;
540 
541 	err = mmc_blk_part_switch(card, target_part);
542 	if (err)
543 		return err;
544 
545 	if (idata->ic.is_acmd) {
546 		err = mmc_app_cmd(card->host, card);
547 		if (err)
548 			return err;
549 	}
550 
551 	if (idata->rpmb) {
552 		err = mmc_set_blockcount(card, data.blocks,
553 			idata->ic.write_flag & (1 << 31));
554 		if (err)
555 			return err;
556 	}
557 
558 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
559 	    (cmd.opcode == MMC_SWITCH)) {
560 		err = ioctl_do_sanitize(card);
561 
562 		if (err)
563 			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
564 			       __func__, err);
565 
566 		return err;
567 	}
568 
569 	mmc_wait_for_req(card->host, &mrq);
570 
571 	if (cmd.error) {
572 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
573 						__func__, cmd.error);
574 		return cmd.error;
575 	}
576 	if (data.error) {
577 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
578 						__func__, data.error);
579 		return data.error;
580 	}
581 
582 	/*
583 	 * According to the SD specs, some commands require a delay after
584 	 * issuing the command.
585 	 */
586 	if (idata->ic.postsleep_min_us)
587 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
588 
589 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
590 
591 	if (idata->rpmb) {
592 		/*
593 		 * Ensure RPMB command has completed by polling CMD13
594 		 * "Send Status".
595 		 */
596 		err = ioctl_rpmb_card_status_poll(card, &status, 5);
597 		if (err)
598 			dev_err(mmc_dev(card->host),
599 					"%s: Card Status=0x%08X, error %d\n",
600 					__func__, status, err);
601 	}
602 
603 	return err;
604 }
605 
606 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
607 			     struct mmc_ioc_cmd __user *ic_ptr,
608 			     struct mmc_rpmb_data *rpmb)
609 {
610 	struct mmc_blk_ioc_data *idata;
611 	struct mmc_blk_ioc_data *idatas[1];
612 	struct mmc_queue *mq;
613 	struct mmc_card *card;
614 	int err = 0, ioc_err = 0;
615 	struct request *req;
616 
617 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
618 	if (IS_ERR(idata))
619 		return PTR_ERR(idata);
620 	/* This will be NULL on non-RPMB ioctl():s */
621 	idata->rpmb = rpmb;
622 
623 	card = md->queue.card;
624 	if (IS_ERR(card)) {
625 		err = PTR_ERR(card);
626 		goto cmd_done;
627 	}
628 
629 	/*
630 	 * Dispatch the ioctl() into the block request queue.
631 	 */
632 	mq = &md->queue;
633 	req = blk_get_request(mq->queue,
634 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
635 		__GFP_RECLAIM);
636 	if (IS_ERR(req)) {
637 		err = PTR_ERR(req);
638 		goto cmd_done;
639 	}
640 	idatas[0] = idata;
641 	req_to_mmc_queue_req(req)->drv_op =
642 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
643 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
644 	req_to_mmc_queue_req(req)->ioc_count = 1;
645 	blk_execute_rq(mq->queue, NULL, req, 0);
646 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
647 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
648 	blk_put_request(req);
649 
650 cmd_done:
651 	kfree(idata->buf);
652 	kfree(idata);
653 	return ioc_err ? ioc_err : err;
654 }
655 
656 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
657 				   struct mmc_ioc_multi_cmd __user *user,
658 				   struct mmc_rpmb_data *rpmb)
659 {
660 	struct mmc_blk_ioc_data **idata = NULL;
661 	struct mmc_ioc_cmd __user *cmds = user->cmds;
662 	struct mmc_card *card;
663 	struct mmc_queue *mq;
664 	int i, err = 0, ioc_err = 0;
665 	__u64 num_of_cmds;
666 	struct request *req;
667 
668 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
669 			   sizeof(num_of_cmds)))
670 		return -EFAULT;
671 
672 	if (!num_of_cmds)
673 		return 0;
674 
675 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
676 		return -EINVAL;
677 
678 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
679 	if (!idata)
680 		return -ENOMEM;
681 
682 	for (i = 0; i < num_of_cmds; i++) {
683 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
684 		if (IS_ERR(idata[i])) {
685 			err = PTR_ERR(idata[i]);
686 			num_of_cmds = i;
687 			goto cmd_err;
688 		}
689 		/* This will be NULL on non-RPMB ioctl():s */
690 		idata[i]->rpmb = rpmb;
691 	}
692 
693 	card = md->queue.card;
694 	if (IS_ERR(card)) {
695 		err = PTR_ERR(card);
696 		goto cmd_err;
697 	}
698 
699 
700 	/*
701 	 * Dispatch the ioctl()s into the block request queue.
702 	 */
703 	mq = &md->queue;
704 	req = blk_get_request(mq->queue,
705 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
706 		__GFP_RECLAIM);
707 	if (IS_ERR(req)) {
708 		err = PTR_ERR(req);
709 		goto cmd_err;
710 	}
711 	req_to_mmc_queue_req(req)->drv_op =
712 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
713 	req_to_mmc_queue_req(req)->drv_op_data = idata;
714 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
715 	blk_execute_rq(mq->queue, NULL, req, 0);
716 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
717 
718 	/* copy to user if data and response */
719 	for (i = 0; i < num_of_cmds && !err; i++)
720 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
721 
722 	blk_put_request(req);
723 
724 cmd_err:
725 	for (i = 0; i < num_of_cmds; i++) {
726 		kfree(idata[i]->buf);
727 		kfree(idata[i]);
728 	}
729 	kfree(idata);
730 	return ioc_err ? ioc_err : err;
731 }
732 
733 static int mmc_blk_check_blkdev(struct block_device *bdev)
734 {
735 	/*
736 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
737 	 * whole block device, not on a partition.  This prevents overspray
738 	 * between sibling partitions.
739 	 */
740 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
741 		return -EPERM;
742 	return 0;
743 }
744 
745 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
746 	unsigned int cmd, unsigned long arg)
747 {
748 	struct mmc_blk_data *md;
749 	int ret;
750 
751 	switch (cmd) {
752 	case MMC_IOC_CMD:
753 		ret = mmc_blk_check_blkdev(bdev);
754 		if (ret)
755 			return ret;
756 		md = mmc_blk_get(bdev->bd_disk);
757 		if (!md)
758 			return -EINVAL;
759 		ret = mmc_blk_ioctl_cmd(md,
760 					(struct mmc_ioc_cmd __user *)arg,
761 					NULL);
762 		mmc_blk_put(md);
763 		return ret;
764 	case MMC_IOC_MULTI_CMD:
765 		ret = mmc_blk_check_blkdev(bdev);
766 		if (ret)
767 			return ret;
768 		md = mmc_blk_get(bdev->bd_disk);
769 		if (!md)
770 			return -EINVAL;
771 		ret = mmc_blk_ioctl_multi_cmd(md,
772 					(struct mmc_ioc_multi_cmd __user *)arg,
773 					NULL);
774 		mmc_blk_put(md);
775 		return ret;
776 	default:
777 		return -EINVAL;
778 	}
779 }
780 
781 #ifdef CONFIG_COMPAT
782 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
783 	unsigned int cmd, unsigned long arg)
784 {
785 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
786 }
787 #endif
788 
789 static const struct block_device_operations mmc_bdops = {
790 	.open			= mmc_blk_open,
791 	.release		= mmc_blk_release,
792 	.getgeo			= mmc_blk_getgeo,
793 	.owner			= THIS_MODULE,
794 	.ioctl			= mmc_blk_ioctl,
795 #ifdef CONFIG_COMPAT
796 	.compat_ioctl		= mmc_blk_compat_ioctl,
797 #endif
798 };
799 
800 static int mmc_blk_part_switch_pre(struct mmc_card *card,
801 				   unsigned int part_type)
802 {
803 	int ret = 0;
804 
805 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
806 		if (card->ext_csd.cmdq_en) {
807 			ret = mmc_cmdq_disable(card);
808 			if (ret)
809 				return ret;
810 		}
811 		mmc_retune_pause(card->host);
812 	}
813 
814 	return ret;
815 }
816 
817 static int mmc_blk_part_switch_post(struct mmc_card *card,
818 				    unsigned int part_type)
819 {
820 	int ret = 0;
821 
822 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
823 		mmc_retune_unpause(card->host);
824 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
825 			ret = mmc_cmdq_enable(card);
826 	}
827 
828 	return ret;
829 }
830 
831 static inline int mmc_blk_part_switch(struct mmc_card *card,
832 				      unsigned int part_type)
833 {
834 	int ret = 0;
835 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
836 
837 	if (main_md->part_curr == part_type)
838 		return 0;
839 
840 	if (mmc_card_mmc(card)) {
841 		u8 part_config = card->ext_csd.part_config;
842 
843 		ret = mmc_blk_part_switch_pre(card, part_type);
844 		if (ret)
845 			return ret;
846 
847 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
848 		part_config |= part_type;
849 
850 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
851 				 EXT_CSD_PART_CONFIG, part_config,
852 				 card->ext_csd.part_time);
853 		if (ret) {
854 			mmc_blk_part_switch_post(card, part_type);
855 			return ret;
856 		}
857 
858 		card->ext_csd.part_config = part_config;
859 
860 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
861 	}
862 
863 	main_md->part_curr = part_type;
864 	return ret;
865 }
866 
867 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
868 {
869 	int err;
870 	u32 result;
871 	__be32 *blocks;
872 
873 	struct mmc_request mrq = {};
874 	struct mmc_command cmd = {};
875 	struct mmc_data data = {};
876 
877 	struct scatterlist sg;
878 
879 	cmd.opcode = MMC_APP_CMD;
880 	cmd.arg = card->rca << 16;
881 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
882 
883 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
884 	if (err)
885 		return err;
886 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
887 		return -EIO;
888 
889 	memset(&cmd, 0, sizeof(struct mmc_command));
890 
891 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
892 	cmd.arg = 0;
893 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
894 
895 	data.blksz = 4;
896 	data.blocks = 1;
897 	data.flags = MMC_DATA_READ;
898 	data.sg = &sg;
899 	data.sg_len = 1;
900 	mmc_set_data_timeout(&data, card);
901 
902 	mrq.cmd = &cmd;
903 	mrq.data = &data;
904 
905 	blocks = kmalloc(4, GFP_KERNEL);
906 	if (!blocks)
907 		return -ENOMEM;
908 
909 	sg_init_one(&sg, blocks, 4);
910 
911 	mmc_wait_for_req(card->host, &mrq);
912 
913 	result = ntohl(*blocks);
914 	kfree(blocks);
915 
916 	if (cmd.error || data.error)
917 		return -EIO;
918 
919 	*written_blocks = result;
920 
921 	return 0;
922 }
923 
924 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
925 		bool hw_busy_detect, struct request *req, bool *gen_err)
926 {
927 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
928 	int err = 0;
929 	u32 status;
930 
931 	do {
932 		err = __mmc_send_status(card, &status, 5);
933 		if (err) {
934 			pr_err("%s: error %d requesting status\n",
935 			       req->rq_disk->disk_name, err);
936 			return err;
937 		}
938 
939 		if (status & R1_ERROR) {
940 			pr_err("%s: %s: error sending status cmd, status %#x\n",
941 				req->rq_disk->disk_name, __func__, status);
942 			*gen_err = true;
943 		}
944 
945 		/* We may rely on the host hw to handle busy detection.*/
946 		if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
947 			hw_busy_detect)
948 			break;
949 
950 		/*
951 		 * Timeout if the device never becomes ready for data and never
952 		 * leaves the program state.
953 		 */
954 		if (time_after(jiffies, timeout)) {
955 			pr_err("%s: Card stuck in programming state! %s %s\n",
956 				mmc_hostname(card->host),
957 				req->rq_disk->disk_name, __func__);
958 			return -ETIMEDOUT;
959 		}
960 
961 		/*
962 		 * Some cards mishandle the status bits,
963 		 * so make sure to check both the busy
964 		 * indication and the card state.
965 		 */
966 	} while (!(status & R1_READY_FOR_DATA) ||
967 		 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
968 
969 	return err;
970 }
971 
972 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
973 		struct request *req, bool *gen_err, u32 *stop_status)
974 {
975 	struct mmc_host *host = card->host;
976 	struct mmc_command cmd = {};
977 	int err;
978 	bool use_r1b_resp = rq_data_dir(req) == WRITE;
979 
980 	/*
981 	 * Normally we use R1B responses for WRITE, but in cases where the host
982 	 * has specified a max_busy_timeout we need to validate it. A failure
983 	 * means we need to prevent the host from doing hw busy detection, which
984 	 * is done by converting to a R1 response instead.
985 	 */
986 	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
987 		use_r1b_resp = false;
988 
989 	cmd.opcode = MMC_STOP_TRANSMISSION;
990 	if (use_r1b_resp) {
991 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
992 		cmd.busy_timeout = timeout_ms;
993 	} else {
994 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
995 	}
996 
997 	err = mmc_wait_for_cmd(host, &cmd, 5);
998 	if (err)
999 		return err;
1000 
1001 	*stop_status = cmd.resp[0];
1002 
1003 	/* No need to check card status in case of READ. */
1004 	if (rq_data_dir(req) == READ)
1005 		return 0;
1006 
1007 	if (!mmc_host_is_spi(host) &&
1008 		(*stop_status & R1_ERROR)) {
1009 		pr_err("%s: %s: general error sending stop command, resp %#x\n",
1010 			req->rq_disk->disk_name, __func__, *stop_status);
1011 		*gen_err = true;
1012 	}
1013 
1014 	return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
1015 }
1016 
1017 #define ERR_NOMEDIUM	3
1018 #define ERR_RETRY	2
1019 #define ERR_ABORT	1
1020 #define ERR_CONTINUE	0
1021 
1022 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
1023 	bool status_valid, u32 status)
1024 {
1025 	switch (error) {
1026 	case -EILSEQ:
1027 		/* response crc error, retry the r/w cmd */
1028 		pr_err("%s: %s sending %s command, card status %#x\n",
1029 			req->rq_disk->disk_name, "response CRC error",
1030 			name, status);
1031 		return ERR_RETRY;
1032 
1033 	case -ETIMEDOUT:
1034 		pr_err("%s: %s sending %s command, card status %#x\n",
1035 			req->rq_disk->disk_name, "timed out", name, status);
1036 
1037 		/* If the status cmd initially failed, retry the r/w cmd */
1038 		if (!status_valid) {
1039 			pr_err("%s: status not valid, retrying timeout\n",
1040 				req->rq_disk->disk_name);
1041 			return ERR_RETRY;
1042 		}
1043 
1044 		/*
1045 		 * If it was a r/w cmd crc error, or illegal command
1046 		 * (eg, issued in wrong state) then retry - we should
1047 		 * have corrected the state problem above.
1048 		 */
1049 		if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
1050 			pr_err("%s: command error, retrying timeout\n",
1051 				req->rq_disk->disk_name);
1052 			return ERR_RETRY;
1053 		}
1054 
1055 		/* Otherwise abort the command */
1056 		return ERR_ABORT;
1057 
1058 	default:
1059 		/* We don't understand the error code the driver gave us */
1060 		pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
1061 		       req->rq_disk->disk_name, error, status);
1062 		return ERR_ABORT;
1063 	}
1064 }
1065 
1066 /*
1067  * Initial r/w and stop cmd error recovery.
1068  * We don't know whether the card received the r/w cmd or not, so try to
1069  * restore things back to a sane state.  Essentially, we do this as follows:
1070  * - Obtain card status.  If the first attempt to obtain card status fails,
1071  *   the status word will reflect the failed status cmd, not the failed
1072  *   r/w cmd.  If we fail to obtain card status, it suggests we can no
1073  *   longer communicate with the card.
1074  * - Check the card state.  If the card received the cmd but there was a
1075  *   transient problem with the response, it might still be in a data transfer
1076  *   mode.  Try to send it a stop command.  If this fails, we can't recover.
1077  * - If the r/w cmd failed due to a response CRC error, it was probably
1078  *   transient, so retry the cmd.
1079  * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
1080  * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
1081  *   illegal cmd, retry.
1082  * Otherwise we don't understand what happened, so abort.
1083  */
1084 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
1085 	struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err)
1086 {
1087 	bool prev_cmd_status_valid = true;
1088 	u32 status, stop_status = 0;
1089 	int err, retry;
1090 
1091 	if (mmc_card_removed(card))
1092 		return ERR_NOMEDIUM;
1093 
1094 	/*
1095 	 * Try to get card status which indicates both the card state
1096 	 * and why there was no response.  If the first attempt fails,
1097 	 * we can't be sure the returned status is for the r/w command.
1098 	 */
1099 	for (retry = 2; retry >= 0; retry--) {
1100 		err = __mmc_send_status(card, &status, 0);
1101 		if (!err)
1102 			break;
1103 
1104 		/* Re-tune if needed */
1105 		mmc_retune_recheck(card->host);
1106 
1107 		prev_cmd_status_valid = false;
1108 		pr_err("%s: error %d sending status command, %sing\n",
1109 		       req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1110 	}
1111 
1112 	/* We couldn't get a response from the card.  Give up. */
1113 	if (err) {
1114 		/* Check if the card is removed */
1115 		if (mmc_detect_card_removed(card->host))
1116 			return ERR_NOMEDIUM;
1117 		return ERR_ABORT;
1118 	}
1119 
1120 	/* Flag ECC errors */
1121 	if ((status & R1_CARD_ECC_FAILED) ||
1122 	    (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1123 	    (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1124 		*ecc_err = true;
1125 
1126 	/* Flag General errors */
1127 	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1128 		if ((status & R1_ERROR) ||
1129 			(brq->stop.resp[0] & R1_ERROR)) {
1130 			pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1131 			       req->rq_disk->disk_name, __func__,
1132 			       brq->stop.resp[0], status);
1133 			*gen_err = true;
1134 		}
1135 
1136 	/*
1137 	 * Check the current card state.  If it is in some data transfer
1138 	 * mode, tell it to stop (and hopefully transition back to TRAN.)
1139 	 */
1140 	if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1141 	    R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1142 		err = send_stop(card,
1143 			DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1144 			req, gen_err, &stop_status);
1145 		if (err) {
1146 			pr_err("%s: error %d sending stop command\n",
1147 			       req->rq_disk->disk_name, err);
1148 			/*
1149 			 * If the stop cmd also timed out, the card is probably
1150 			 * not present, so abort. Other errors are bad news too.
1151 			 */
1152 			return ERR_ABORT;
1153 		}
1154 
1155 		if (stop_status & R1_CARD_ECC_FAILED)
1156 			*ecc_err = true;
1157 	}
1158 
1159 	/* Check for set block count errors */
1160 	if (brq->sbc.error)
1161 		return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1162 				prev_cmd_status_valid, status);
1163 
1164 	/* Check for r/w command errors */
1165 	if (brq->cmd.error)
1166 		return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1167 				prev_cmd_status_valid, status);
1168 
1169 	/* Data errors */
1170 	if (!brq->stop.error)
1171 		return ERR_CONTINUE;
1172 
1173 	/* Now for stop errors.  These aren't fatal to the transfer. */
1174 	pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1175 	       req->rq_disk->disk_name, brq->stop.error,
1176 	       brq->cmd.resp[0], status);
1177 
1178 	/*
1179 	 * Subsitute in our own stop status as this will give the error
1180 	 * state which happened during the execution of the r/w command.
1181 	 */
1182 	if (stop_status) {
1183 		brq->stop.resp[0] = stop_status;
1184 		brq->stop.error = 0;
1185 	}
1186 	return ERR_CONTINUE;
1187 }
1188 
1189 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1190 			 int type)
1191 {
1192 	int err;
1193 
1194 	if (md->reset_done & type)
1195 		return -EEXIST;
1196 
1197 	md->reset_done |= type;
1198 	err = mmc_hw_reset(host);
1199 	/* Ensure we switch back to the correct partition */
1200 	if (err != -EOPNOTSUPP) {
1201 		struct mmc_blk_data *main_md =
1202 			dev_get_drvdata(&host->card->dev);
1203 		int part_err;
1204 
1205 		main_md->part_curr = main_md->part_type;
1206 		part_err = mmc_blk_part_switch(host->card, md->part_type);
1207 		if (part_err) {
1208 			/*
1209 			 * We have failed to get back into the correct
1210 			 * partition, so we need to abort the whole request.
1211 			 */
1212 			return -ENODEV;
1213 		}
1214 	}
1215 	return err;
1216 }
1217 
1218 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1219 {
1220 	md->reset_done &= ~type;
1221 }
1222 
1223 /*
1224  * The non-block commands come back from the block layer after it queued it and
1225  * processed it with all other requests and then they get issued in this
1226  * function.
1227  */
1228 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1229 {
1230 	struct mmc_queue_req *mq_rq;
1231 	struct mmc_card *card = mq->card;
1232 	struct mmc_blk_data *md = mq->blkdata;
1233 	struct mmc_blk_ioc_data **idata;
1234 	bool rpmb_ioctl;
1235 	u8 **ext_csd;
1236 	u32 status;
1237 	int ret;
1238 	int i;
1239 
1240 	mq_rq = req_to_mmc_queue_req(req);
1241 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1242 
1243 	switch (mq_rq->drv_op) {
1244 	case MMC_DRV_OP_IOCTL:
1245 	case MMC_DRV_OP_IOCTL_RPMB:
1246 		idata = mq_rq->drv_op_data;
1247 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1248 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1249 			if (ret)
1250 				break;
1251 		}
1252 		/* Always switch back to main area after RPMB access */
1253 		if (rpmb_ioctl)
1254 			mmc_blk_part_switch(card, 0);
1255 		break;
1256 	case MMC_DRV_OP_BOOT_WP:
1257 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1258 				 card->ext_csd.boot_ro_lock |
1259 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1260 				 card->ext_csd.part_time);
1261 		if (ret)
1262 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1263 			       md->disk->disk_name, ret);
1264 		else
1265 			card->ext_csd.boot_ro_lock |=
1266 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1267 		break;
1268 	case MMC_DRV_OP_GET_CARD_STATUS:
1269 		ret = mmc_send_status(card, &status);
1270 		if (!ret)
1271 			ret = status;
1272 		break;
1273 	case MMC_DRV_OP_GET_EXT_CSD:
1274 		ext_csd = mq_rq->drv_op_data;
1275 		ret = mmc_get_ext_csd(card, ext_csd);
1276 		break;
1277 	default:
1278 		pr_err("%s: unknown driver specific operation\n",
1279 		       md->disk->disk_name);
1280 		ret = -EINVAL;
1281 		break;
1282 	}
1283 	mq_rq->drv_op_result = ret;
1284 	blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1285 }
1286 
1287 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1288 {
1289 	struct mmc_blk_data *md = mq->blkdata;
1290 	struct mmc_card *card = md->queue.card;
1291 	unsigned int from, nr, arg;
1292 	int err = 0, type = MMC_BLK_DISCARD;
1293 	blk_status_t status = BLK_STS_OK;
1294 
1295 	if (!mmc_can_erase(card)) {
1296 		status = BLK_STS_NOTSUPP;
1297 		goto fail;
1298 	}
1299 
1300 	from = blk_rq_pos(req);
1301 	nr = blk_rq_sectors(req);
1302 
1303 	if (mmc_can_discard(card))
1304 		arg = MMC_DISCARD_ARG;
1305 	else if (mmc_can_trim(card))
1306 		arg = MMC_TRIM_ARG;
1307 	else
1308 		arg = MMC_ERASE_ARG;
1309 	do {
1310 		err = 0;
1311 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1312 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1313 					 INAND_CMD38_ARG_EXT_CSD,
1314 					 arg == MMC_TRIM_ARG ?
1315 					 INAND_CMD38_ARG_TRIM :
1316 					 INAND_CMD38_ARG_ERASE,
1317 					 0);
1318 		}
1319 		if (!err)
1320 			err = mmc_erase(card, from, nr, arg);
1321 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1322 	if (err)
1323 		status = BLK_STS_IOERR;
1324 	else
1325 		mmc_blk_reset_success(md, type);
1326 fail:
1327 	blk_end_request(req, status, blk_rq_bytes(req));
1328 }
1329 
1330 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1331 				       struct request *req)
1332 {
1333 	struct mmc_blk_data *md = mq->blkdata;
1334 	struct mmc_card *card = md->queue.card;
1335 	unsigned int from, nr, arg;
1336 	int err = 0, type = MMC_BLK_SECDISCARD;
1337 	blk_status_t status = BLK_STS_OK;
1338 
1339 	if (!(mmc_can_secure_erase_trim(card))) {
1340 		status = BLK_STS_NOTSUPP;
1341 		goto out;
1342 	}
1343 
1344 	from = blk_rq_pos(req);
1345 	nr = blk_rq_sectors(req);
1346 
1347 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1348 		arg = MMC_SECURE_TRIM1_ARG;
1349 	else
1350 		arg = MMC_SECURE_ERASE_ARG;
1351 
1352 retry:
1353 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1354 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1355 				 INAND_CMD38_ARG_EXT_CSD,
1356 				 arg == MMC_SECURE_TRIM1_ARG ?
1357 				 INAND_CMD38_ARG_SECTRIM1 :
1358 				 INAND_CMD38_ARG_SECERASE,
1359 				 0);
1360 		if (err)
1361 			goto out_retry;
1362 	}
1363 
1364 	err = mmc_erase(card, from, nr, arg);
1365 	if (err == -EIO)
1366 		goto out_retry;
1367 	if (err) {
1368 		status = BLK_STS_IOERR;
1369 		goto out;
1370 	}
1371 
1372 	if (arg == MMC_SECURE_TRIM1_ARG) {
1373 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1374 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1375 					 INAND_CMD38_ARG_EXT_CSD,
1376 					 INAND_CMD38_ARG_SECTRIM2,
1377 					 0);
1378 			if (err)
1379 				goto out_retry;
1380 		}
1381 
1382 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1383 		if (err == -EIO)
1384 			goto out_retry;
1385 		if (err) {
1386 			status = BLK_STS_IOERR;
1387 			goto out;
1388 		}
1389 	}
1390 
1391 out_retry:
1392 	if (err && !mmc_blk_reset(md, card->host, type))
1393 		goto retry;
1394 	if (!err)
1395 		mmc_blk_reset_success(md, type);
1396 out:
1397 	blk_end_request(req, status, blk_rq_bytes(req));
1398 }
1399 
1400 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1401 {
1402 	struct mmc_blk_data *md = mq->blkdata;
1403 	struct mmc_card *card = md->queue.card;
1404 	int ret = 0;
1405 
1406 	ret = mmc_flush_cache(card);
1407 	blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1408 }
1409 
1410 /*
1411  * Reformat current write as a reliable write, supporting
1412  * both legacy and the enhanced reliable write MMC cards.
1413  * In each transfer we'll handle only as much as a single
1414  * reliable write can handle, thus finish the request in
1415  * partial completions.
1416  */
1417 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1418 				    struct mmc_card *card,
1419 				    struct request *req)
1420 {
1421 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1422 		/* Legacy mode imposes restrictions on transfers. */
1423 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1424 			brq->data.blocks = 1;
1425 
1426 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1427 			brq->data.blocks = card->ext_csd.rel_sectors;
1428 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1429 			brq->data.blocks = 1;
1430 	}
1431 }
1432 
1433 #define CMD_ERRORS							\
1434 	(R1_OUT_OF_RANGE |	/* Command argument out of range */	\
1435 	 R1_ADDRESS_ERROR |	/* Misaligned address */		\
1436 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1437 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1438 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1439 	 R1_CC_ERROR |		/* Card controller error */		\
1440 	 R1_ERROR)		/* General/unknown error */
1441 
1442 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1443 {
1444 	u32 val;
1445 
1446 	/*
1447 	 * Per the SD specification(physical layer version 4.10)[1],
1448 	 * section 4.3.3, it explicitly states that "When the last
1449 	 * block of user area is read using CMD18, the host should
1450 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1451 	 * is correct". And JESD84-B51 for eMMC also has a similar
1452 	 * statement on section 6.8.3.
1453 	 *
1454 	 * Multiple block read/write could be done by either predefined
1455 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1456 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1457 	 *
1458 	 * However the spec[1] doesn't tell us whether we should also
1459 	 * ignore that for predefined method. But per the spec[1], section
1460 	 * 4.15 Set Block Count Command, it says"If illegal block count
1461 	 * is set, out of range error will be indicated during read/write
1462 	 * operation (For example, data transfer is stopped at user area
1463 	 * boundary)." In another word, we could expect a out of range error
1464 	 * in the response for the following CMD18/25. And if argument of
1465 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1466 	 * we could also expect to get a -ETIMEDOUT or any error number from
1467 	 * the host drivers due to missing data response(for write)/data(for
1468 	 * read), as the cards will stop the data transfer by itself per the
1469 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1470 	 */
1471 
1472 	if (!brq->stop.error) {
1473 		bool oor_with_open_end;
1474 		/* If there is no error yet, check R1 response */
1475 
1476 		val = brq->stop.resp[0] & CMD_ERRORS;
1477 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1478 
1479 		if (val && !oor_with_open_end)
1480 			brq->stop.error = -EIO;
1481 	}
1482 }
1483 
1484 static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card,
1485 					     struct mmc_async_req *areq)
1486 {
1487 	struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1488 						    areq);
1489 	struct mmc_blk_request *brq = &mq_mrq->brq;
1490 	struct request *req = mmc_queue_req_to_req(mq_mrq);
1491 	int need_retune = card->host->need_retune;
1492 	bool ecc_err = false;
1493 	bool gen_err = false;
1494 
1495 	/*
1496 	 * sbc.error indicates a problem with the set block count
1497 	 * command.  No data will have been transferred.
1498 	 *
1499 	 * cmd.error indicates a problem with the r/w command.  No
1500 	 * data will have been transferred.
1501 	 *
1502 	 * stop.error indicates a problem with the stop command.  Data
1503 	 * may have been transferred, or may still be transferring.
1504 	 */
1505 
1506 	mmc_blk_eval_resp_error(brq);
1507 
1508 	if (brq->sbc.error || brq->cmd.error ||
1509 	    brq->stop.error || brq->data.error) {
1510 		switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1511 		case ERR_RETRY:
1512 			return MMC_BLK_RETRY;
1513 		case ERR_ABORT:
1514 			return MMC_BLK_ABORT;
1515 		case ERR_NOMEDIUM:
1516 			return MMC_BLK_NOMEDIUM;
1517 		case ERR_CONTINUE:
1518 			break;
1519 		}
1520 	}
1521 
1522 	/*
1523 	 * Check for errors relating to the execution of the
1524 	 * initial command - such as address errors.  No data
1525 	 * has been transferred.
1526 	 */
1527 	if (brq->cmd.resp[0] & CMD_ERRORS) {
1528 		pr_err("%s: r/w command failed, status = %#x\n",
1529 		       req->rq_disk->disk_name, brq->cmd.resp[0]);
1530 		return MMC_BLK_ABORT;
1531 	}
1532 
1533 	/*
1534 	 * Everything else is either success, or a data error of some
1535 	 * kind.  If it was a write, we may have transitioned to
1536 	 * program mode, which we have to wait for it to complete.
1537 	 */
1538 	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1539 		int err;
1540 
1541 		/* Check stop command response */
1542 		if (brq->stop.resp[0] & R1_ERROR) {
1543 			pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1544 			       req->rq_disk->disk_name, __func__,
1545 			       brq->stop.resp[0]);
1546 			gen_err = true;
1547 		}
1548 
1549 		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1550 					&gen_err);
1551 		if (err)
1552 			return MMC_BLK_CMD_ERR;
1553 	}
1554 
1555 	/* if general error occurs, retry the write operation. */
1556 	if (gen_err) {
1557 		pr_warn("%s: retrying write for general error\n",
1558 				req->rq_disk->disk_name);
1559 		return MMC_BLK_RETRY;
1560 	}
1561 
1562 	/* Some errors (ECC) are flagged on the next commmand, so check stop, too */
1563 	if (brq->data.error || brq->stop.error) {
1564 		if (need_retune && !brq->retune_retry_done) {
1565 			pr_debug("%s: retrying because a re-tune was needed\n",
1566 				 req->rq_disk->disk_name);
1567 			brq->retune_retry_done = 1;
1568 			return MMC_BLK_RETRY;
1569 		}
1570 		pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1571 		       req->rq_disk->disk_name, brq->data.error ?: brq->stop.error,
1572 		       (unsigned)blk_rq_pos(req),
1573 		       (unsigned)blk_rq_sectors(req),
1574 		       brq->cmd.resp[0], brq->stop.resp[0]);
1575 
1576 		if (rq_data_dir(req) == READ) {
1577 			if (ecc_err)
1578 				return MMC_BLK_ECC_ERR;
1579 			return MMC_BLK_DATA_ERR;
1580 		} else {
1581 			return MMC_BLK_CMD_ERR;
1582 		}
1583 	}
1584 
1585 	if (!brq->data.bytes_xfered)
1586 		return MMC_BLK_RETRY;
1587 
1588 	if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1589 		return MMC_BLK_PARTIAL;
1590 
1591 	return MMC_BLK_SUCCESS;
1592 }
1593 
1594 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1595 			      int disable_multi, bool *do_rel_wr_p,
1596 			      bool *do_data_tag_p)
1597 {
1598 	struct mmc_blk_data *md = mq->blkdata;
1599 	struct mmc_card *card = md->queue.card;
1600 	struct mmc_blk_request *brq = &mqrq->brq;
1601 	struct request *req = mmc_queue_req_to_req(mqrq);
1602 	bool do_rel_wr, do_data_tag;
1603 
1604 	/*
1605 	 * Reliable writes are used to implement Forced Unit Access and
1606 	 * are supported only on MMCs.
1607 	 */
1608 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1609 		    rq_data_dir(req) == WRITE &&
1610 		    (md->flags & MMC_BLK_REL_WR);
1611 
1612 	memset(brq, 0, sizeof(struct mmc_blk_request));
1613 
1614 	brq->mrq.data = &brq->data;
1615 	brq->mrq.tag = req->tag;
1616 
1617 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1618 	brq->stop.arg = 0;
1619 
1620 	if (rq_data_dir(req) == READ) {
1621 		brq->data.flags = MMC_DATA_READ;
1622 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1623 	} else {
1624 		brq->data.flags = MMC_DATA_WRITE;
1625 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1626 	}
1627 
1628 	brq->data.blksz = 512;
1629 	brq->data.blocks = blk_rq_sectors(req);
1630 	brq->data.blk_addr = blk_rq_pos(req);
1631 
1632 	/*
1633 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1634 	 * The eMMC will give "high" priority tasks priority over "simple"
1635 	 * priority tasks. Here we always set "simple" priority by not setting
1636 	 * MMC_DATA_PRIO.
1637 	 */
1638 
1639 	/*
1640 	 * The block layer doesn't support all sector count
1641 	 * restrictions, so we need to be prepared for too big
1642 	 * requests.
1643 	 */
1644 	if (brq->data.blocks > card->host->max_blk_count)
1645 		brq->data.blocks = card->host->max_blk_count;
1646 
1647 	if (brq->data.blocks > 1) {
1648 		/*
1649 		 * After a read error, we redo the request one sector
1650 		 * at a time in order to accurately determine which
1651 		 * sectors can be read successfully.
1652 		 */
1653 		if (disable_multi)
1654 			brq->data.blocks = 1;
1655 
1656 		/*
1657 		 * Some controllers have HW issues while operating
1658 		 * in multiple I/O mode
1659 		 */
1660 		if (card->host->ops->multi_io_quirk)
1661 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1662 						(rq_data_dir(req) == READ) ?
1663 						MMC_DATA_READ : MMC_DATA_WRITE,
1664 						brq->data.blocks);
1665 	}
1666 
1667 	if (do_rel_wr) {
1668 		mmc_apply_rel_rw(brq, card, req);
1669 		brq->data.flags |= MMC_DATA_REL_WR;
1670 	}
1671 
1672 	/*
1673 	 * Data tag is used only during writing meta data to speed
1674 	 * up write and any subsequent read of this meta data
1675 	 */
1676 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1677 		      (req->cmd_flags & REQ_META) &&
1678 		      (rq_data_dir(req) == WRITE) &&
1679 		      ((brq->data.blocks * brq->data.blksz) >=
1680 		       card->ext_csd.data_tag_unit_size);
1681 
1682 	if (do_data_tag)
1683 		brq->data.flags |= MMC_DATA_DAT_TAG;
1684 
1685 	mmc_set_data_timeout(&brq->data, card);
1686 
1687 	brq->data.sg = mqrq->sg;
1688 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1689 
1690 	/*
1691 	 * Adjust the sg list so it is the same size as the
1692 	 * request.
1693 	 */
1694 	if (brq->data.blocks != blk_rq_sectors(req)) {
1695 		int i, data_size = brq->data.blocks << 9;
1696 		struct scatterlist *sg;
1697 
1698 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1699 			data_size -= sg->length;
1700 			if (data_size <= 0) {
1701 				sg->length += data_size;
1702 				i++;
1703 				break;
1704 			}
1705 		}
1706 		brq->data.sg_len = i;
1707 	}
1708 
1709 	mqrq->areq.mrq = &brq->mrq;
1710 
1711 	if (do_rel_wr_p)
1712 		*do_rel_wr_p = do_rel_wr;
1713 
1714 	if (do_data_tag_p)
1715 		*do_data_tag_p = do_data_tag;
1716 }
1717 
1718 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1719 			       struct mmc_card *card,
1720 			       int disable_multi,
1721 			       struct mmc_queue *mq)
1722 {
1723 	u32 readcmd, writecmd;
1724 	struct mmc_blk_request *brq = &mqrq->brq;
1725 	struct request *req = mmc_queue_req_to_req(mqrq);
1726 	struct mmc_blk_data *md = mq->blkdata;
1727 	bool do_rel_wr, do_data_tag;
1728 
1729 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1730 
1731 	brq->mrq.cmd = &brq->cmd;
1732 
1733 	brq->cmd.arg = blk_rq_pos(req);
1734 	if (!mmc_card_blockaddr(card))
1735 		brq->cmd.arg <<= 9;
1736 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1737 
1738 	if (brq->data.blocks > 1 || do_rel_wr) {
1739 		/* SPI multiblock writes terminate using a special
1740 		 * token, not a STOP_TRANSMISSION request.
1741 		 */
1742 		if (!mmc_host_is_spi(card->host) ||
1743 		    rq_data_dir(req) == READ)
1744 			brq->mrq.stop = &brq->stop;
1745 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1746 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1747 	} else {
1748 		brq->mrq.stop = NULL;
1749 		readcmd = MMC_READ_SINGLE_BLOCK;
1750 		writecmd = MMC_WRITE_BLOCK;
1751 	}
1752 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1753 
1754 	/*
1755 	 * Pre-defined multi-block transfers are preferable to
1756 	 * open ended-ones (and necessary for reliable writes).
1757 	 * However, it is not sufficient to just send CMD23,
1758 	 * and avoid the final CMD12, as on an error condition
1759 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1760 	 * with Auto-CMD23 enhancements provided by some
1761 	 * hosts, means that the complexity of dealing
1762 	 * with this is best left to the host. If CMD23 is
1763 	 * supported by card and host, we'll fill sbc in and let
1764 	 * the host deal with handling it correctly. This means
1765 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1766 	 * change of behavior will be observed.
1767 	 *
1768 	 * N.B: Some MMC cards experience perf degradation.
1769 	 * We'll avoid using CMD23-bounded multiblock writes for
1770 	 * these, while retaining features like reliable writes.
1771 	 */
1772 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1773 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1774 	     do_data_tag)) {
1775 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1776 		brq->sbc.arg = brq->data.blocks |
1777 			(do_rel_wr ? (1 << 31) : 0) |
1778 			(do_data_tag ? (1 << 29) : 0);
1779 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1780 		brq->mrq.sbc = &brq->sbc;
1781 	}
1782 
1783 	mqrq->areq.err_check = mmc_blk_err_check;
1784 }
1785 
1786 static bool mmc_blk_rw_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1787 			       struct mmc_blk_request *brq, struct request *req,
1788 			       bool old_req_pending)
1789 {
1790 	bool req_pending;
1791 
1792 	/*
1793 	 * If this is an SD card and we're writing, we can first
1794 	 * mark the known good sectors as ok.
1795 	 *
1796 	 * If the card is not SD, we can still ok written sectors
1797 	 * as reported by the controller (which might be less than
1798 	 * the real number of written sectors, but never more).
1799 	 */
1800 	if (mmc_card_sd(card)) {
1801 		u32 blocks;
1802 		int err;
1803 
1804 		err = mmc_sd_num_wr_blocks(card, &blocks);
1805 		if (err)
1806 			req_pending = old_req_pending;
1807 		else
1808 			req_pending = blk_end_request(req, BLK_STS_OK, blocks << 9);
1809 	} else {
1810 		req_pending = blk_end_request(req, BLK_STS_OK, brq->data.bytes_xfered);
1811 	}
1812 	return req_pending;
1813 }
1814 
1815 static void mmc_blk_rw_cmd_abort(struct mmc_queue *mq, struct mmc_card *card,
1816 				 struct request *req,
1817 				 struct mmc_queue_req *mqrq)
1818 {
1819 	if (mmc_card_removed(card))
1820 		req->rq_flags |= RQF_QUIET;
1821 	while (blk_end_request(req, BLK_STS_IOERR, blk_rq_cur_bytes(req)));
1822 	mq->qcnt--;
1823 }
1824 
1825 /**
1826  * mmc_blk_rw_try_restart() - tries to restart the current async request
1827  * @mq: the queue with the card and host to restart
1828  * @req: a new request that want to be started after the current one
1829  */
1830 static void mmc_blk_rw_try_restart(struct mmc_queue *mq, struct request *req,
1831 				   struct mmc_queue_req *mqrq)
1832 {
1833 	if (!req)
1834 		return;
1835 
1836 	/*
1837 	 * If the card was removed, just cancel everything and return.
1838 	 */
1839 	if (mmc_card_removed(mq->card)) {
1840 		req->rq_flags |= RQF_QUIET;
1841 		blk_end_request_all(req, BLK_STS_IOERR);
1842 		mq->qcnt--; /* FIXME: just set to 0? */
1843 		return;
1844 	}
1845 	/* Else proceed and try to restart the current async request */
1846 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1847 	mmc_start_areq(mq->card->host, &mqrq->areq, NULL);
1848 }
1849 
1850 static void mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *new_req)
1851 {
1852 	struct mmc_blk_data *md = mq->blkdata;
1853 	struct mmc_card *card = md->queue.card;
1854 	struct mmc_blk_request *brq;
1855 	int disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1856 	enum mmc_blk_status status;
1857 	struct mmc_queue_req *mqrq_cur = NULL;
1858 	struct mmc_queue_req *mq_rq;
1859 	struct request *old_req;
1860 	struct mmc_async_req *new_areq;
1861 	struct mmc_async_req *old_areq;
1862 	bool req_pending = true;
1863 
1864 	if (new_req) {
1865 		mqrq_cur = req_to_mmc_queue_req(new_req);
1866 		mq->qcnt++;
1867 	}
1868 
1869 	if (!mq->qcnt)
1870 		return;
1871 
1872 	do {
1873 		if (new_req) {
1874 			/*
1875 			 * When 4KB native sector is enabled, only 8 blocks
1876 			 * multiple read or write is allowed
1877 			 */
1878 			if (mmc_large_sector(card) &&
1879 				!IS_ALIGNED(blk_rq_sectors(new_req), 8)) {
1880 				pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1881 					new_req->rq_disk->disk_name);
1882 				mmc_blk_rw_cmd_abort(mq, card, new_req, mqrq_cur);
1883 				return;
1884 			}
1885 
1886 			mmc_blk_rw_rq_prep(mqrq_cur, card, 0, mq);
1887 			new_areq = &mqrq_cur->areq;
1888 		} else
1889 			new_areq = NULL;
1890 
1891 		old_areq = mmc_start_areq(card->host, new_areq, &status);
1892 		if (!old_areq) {
1893 			/*
1894 			 * We have just put the first request into the pipeline
1895 			 * and there is nothing more to do until it is
1896 			 * complete.
1897 			 */
1898 			return;
1899 		}
1900 
1901 		/*
1902 		 * An asynchronous request has been completed and we proceed
1903 		 * to handle the result of it.
1904 		 */
1905 		mq_rq =	container_of(old_areq, struct mmc_queue_req, areq);
1906 		brq = &mq_rq->brq;
1907 		old_req = mmc_queue_req_to_req(mq_rq);
1908 		type = rq_data_dir(old_req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1909 
1910 		switch (status) {
1911 		case MMC_BLK_SUCCESS:
1912 		case MMC_BLK_PARTIAL:
1913 			/*
1914 			 * A block was successfully transferred.
1915 			 */
1916 			mmc_blk_reset_success(md, type);
1917 
1918 			req_pending = blk_end_request(old_req, BLK_STS_OK,
1919 						      brq->data.bytes_xfered);
1920 			/*
1921 			 * If the blk_end_request function returns non-zero even
1922 			 * though all data has been transferred and no errors
1923 			 * were returned by the host controller, it's a bug.
1924 			 */
1925 			if (status == MMC_BLK_SUCCESS && req_pending) {
1926 				pr_err("%s BUG rq_tot %d d_xfer %d\n",
1927 				       __func__, blk_rq_bytes(old_req),
1928 				       brq->data.bytes_xfered);
1929 				mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1930 				return;
1931 			}
1932 			break;
1933 		case MMC_BLK_CMD_ERR:
1934 			req_pending = mmc_blk_rw_cmd_err(md, card, brq, old_req, req_pending);
1935 			if (mmc_blk_reset(md, card->host, type)) {
1936 				if (req_pending)
1937 					mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1938 				else
1939 					mq->qcnt--;
1940 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1941 				return;
1942 			}
1943 			if (!req_pending) {
1944 				mq->qcnt--;
1945 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1946 				return;
1947 			}
1948 			break;
1949 		case MMC_BLK_RETRY:
1950 			retune_retry_done = brq->retune_retry_done;
1951 			if (retry++ < 5)
1952 				break;
1953 			/* Fall through */
1954 		case MMC_BLK_ABORT:
1955 			if (!mmc_blk_reset(md, card->host, type))
1956 				break;
1957 			mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1958 			mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1959 			return;
1960 		case MMC_BLK_DATA_ERR: {
1961 			int err;
1962 
1963 			err = mmc_blk_reset(md, card->host, type);
1964 			if (!err)
1965 				break;
1966 			if (err == -ENODEV) {
1967 				mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1968 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1969 				return;
1970 			}
1971 			/* Fall through */
1972 		}
1973 		case MMC_BLK_ECC_ERR:
1974 			if (brq->data.blocks > 1) {
1975 				/* Redo read one sector at a time */
1976 				pr_warn("%s: retrying using single block read\n",
1977 					old_req->rq_disk->disk_name);
1978 				disable_multi = 1;
1979 				break;
1980 			}
1981 			/*
1982 			 * After an error, we redo I/O one sector at a
1983 			 * time, so we only reach here after trying to
1984 			 * read a single sector.
1985 			 */
1986 			req_pending = blk_end_request(old_req, BLK_STS_IOERR,
1987 						      brq->data.blksz);
1988 			if (!req_pending) {
1989 				mq->qcnt--;
1990 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1991 				return;
1992 			}
1993 			break;
1994 		case MMC_BLK_NOMEDIUM:
1995 			mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1996 			mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1997 			return;
1998 		default:
1999 			pr_err("%s: Unhandled return value (%d)",
2000 					old_req->rq_disk->disk_name, status);
2001 			mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
2002 			mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
2003 			return;
2004 		}
2005 
2006 		if (req_pending) {
2007 			/*
2008 			 * In case of a incomplete request
2009 			 * prepare it again and resend.
2010 			 */
2011 			mmc_blk_rw_rq_prep(mq_rq, card,
2012 					disable_multi, mq);
2013 			mmc_start_areq(card->host,
2014 					&mq_rq->areq, NULL);
2015 			mq_rq->brq.retune_retry_done = retune_retry_done;
2016 		}
2017 	} while (req_pending);
2018 
2019 	mq->qcnt--;
2020 }
2021 
2022 void mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2023 {
2024 	int ret;
2025 	struct mmc_blk_data *md = mq->blkdata;
2026 	struct mmc_card *card = md->queue.card;
2027 
2028 	if (req && !mq->qcnt)
2029 		/* claim host only for the first request */
2030 		mmc_get_card(card, NULL);
2031 
2032 	ret = mmc_blk_part_switch(card, md->part_type);
2033 	if (ret) {
2034 		if (req) {
2035 			blk_end_request_all(req, BLK_STS_IOERR);
2036 		}
2037 		goto out;
2038 	}
2039 
2040 	if (req) {
2041 		switch (req_op(req)) {
2042 		case REQ_OP_DRV_IN:
2043 		case REQ_OP_DRV_OUT:
2044 			/*
2045 			 * Complete ongoing async transfer before issuing
2046 			 * ioctl()s
2047 			 */
2048 			if (mq->qcnt)
2049 				mmc_blk_issue_rw_rq(mq, NULL);
2050 			mmc_blk_issue_drv_op(mq, req);
2051 			break;
2052 		case REQ_OP_DISCARD:
2053 			/*
2054 			 * Complete ongoing async transfer before issuing
2055 			 * discard.
2056 			 */
2057 			if (mq->qcnt)
2058 				mmc_blk_issue_rw_rq(mq, NULL);
2059 			mmc_blk_issue_discard_rq(mq, req);
2060 			break;
2061 		case REQ_OP_SECURE_ERASE:
2062 			/*
2063 			 * Complete ongoing async transfer before issuing
2064 			 * secure erase.
2065 			 */
2066 			if (mq->qcnt)
2067 				mmc_blk_issue_rw_rq(mq, NULL);
2068 			mmc_blk_issue_secdiscard_rq(mq, req);
2069 			break;
2070 		case REQ_OP_FLUSH:
2071 			/*
2072 			 * Complete ongoing async transfer before issuing
2073 			 * flush.
2074 			 */
2075 			if (mq->qcnt)
2076 				mmc_blk_issue_rw_rq(mq, NULL);
2077 			mmc_blk_issue_flush(mq, req);
2078 			break;
2079 		default:
2080 			/* Normal request, just issue it */
2081 			mmc_blk_issue_rw_rq(mq, req);
2082 			card->host->context_info.is_waiting_last_req = false;
2083 			break;
2084 		}
2085 	} else {
2086 		/* No request, flushing the pipeline with NULL */
2087 		mmc_blk_issue_rw_rq(mq, NULL);
2088 		card->host->context_info.is_waiting_last_req = false;
2089 	}
2090 
2091 out:
2092 	if (!mq->qcnt)
2093 		mmc_put_card(card, NULL);
2094 }
2095 
2096 static inline int mmc_blk_readonly(struct mmc_card *card)
2097 {
2098 	return mmc_card_readonly(card) ||
2099 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2100 }
2101 
2102 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2103 					      struct device *parent,
2104 					      sector_t size,
2105 					      bool default_ro,
2106 					      const char *subname,
2107 					      int area_type)
2108 {
2109 	struct mmc_blk_data *md;
2110 	int devidx, ret;
2111 
2112 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2113 	if (devidx < 0) {
2114 		/*
2115 		 * We get -ENOSPC because there are no more any available
2116 		 * devidx. The reason may be that, either userspace haven't yet
2117 		 * unmounted the partitions, which postpones mmc_blk_release()
2118 		 * from being called, or the device has more partitions than
2119 		 * what we support.
2120 		 */
2121 		if (devidx == -ENOSPC)
2122 			dev_err(mmc_dev(card->host),
2123 				"no more device IDs available\n");
2124 
2125 		return ERR_PTR(devidx);
2126 	}
2127 
2128 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2129 	if (!md) {
2130 		ret = -ENOMEM;
2131 		goto out;
2132 	}
2133 
2134 	md->area_type = area_type;
2135 
2136 	/*
2137 	 * Set the read-only status based on the supported commands
2138 	 * and the write protect switch.
2139 	 */
2140 	md->read_only = mmc_blk_readonly(card);
2141 
2142 	md->disk = alloc_disk(perdev_minors);
2143 	if (md->disk == NULL) {
2144 		ret = -ENOMEM;
2145 		goto err_kfree;
2146 	}
2147 
2148 	spin_lock_init(&md->lock);
2149 	INIT_LIST_HEAD(&md->part);
2150 	INIT_LIST_HEAD(&md->rpmbs);
2151 	md->usage = 1;
2152 
2153 	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2154 	if (ret)
2155 		goto err_putdisk;
2156 
2157 	md->queue.blkdata = md;
2158 
2159 	md->disk->major	= MMC_BLOCK_MAJOR;
2160 	md->disk->first_minor = devidx * perdev_minors;
2161 	md->disk->fops = &mmc_bdops;
2162 	md->disk->private_data = md;
2163 	md->disk->queue = md->queue.queue;
2164 	md->parent = parent;
2165 	set_disk_ro(md->disk, md->read_only || default_ro);
2166 	md->disk->flags = GENHD_FL_EXT_DEVT;
2167 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2168 		md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2169 
2170 	/*
2171 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2172 	 *
2173 	 * - be set for removable media with permanent block devices
2174 	 * - be unset for removable block devices with permanent media
2175 	 *
2176 	 * Since MMC block devices clearly fall under the second
2177 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2178 	 * should use the block device creation/destruction hotplug
2179 	 * messages to tell when the card is present.
2180 	 */
2181 
2182 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2183 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2184 
2185 	if (mmc_card_mmc(card))
2186 		blk_queue_logical_block_size(md->queue.queue,
2187 					     card->ext_csd.data_sector_size);
2188 	else
2189 		blk_queue_logical_block_size(md->queue.queue, 512);
2190 
2191 	set_capacity(md->disk, size);
2192 
2193 	if (mmc_host_cmd23(card->host)) {
2194 		if ((mmc_card_mmc(card) &&
2195 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2196 		    (mmc_card_sd(card) &&
2197 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2198 			md->flags |= MMC_BLK_CMD23;
2199 	}
2200 
2201 	if (mmc_card_mmc(card) &&
2202 	    md->flags & MMC_BLK_CMD23 &&
2203 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2204 	     card->ext_csd.rel_sectors)) {
2205 		md->flags |= MMC_BLK_REL_WR;
2206 		blk_queue_write_cache(md->queue.queue, true, true);
2207 	}
2208 
2209 	return md;
2210 
2211  err_putdisk:
2212 	put_disk(md->disk);
2213  err_kfree:
2214 	kfree(md);
2215  out:
2216 	ida_simple_remove(&mmc_blk_ida, devidx);
2217 	return ERR_PTR(ret);
2218 }
2219 
2220 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2221 {
2222 	sector_t size;
2223 
2224 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2225 		/*
2226 		 * The EXT_CSD sector count is in number or 512 byte
2227 		 * sectors.
2228 		 */
2229 		size = card->ext_csd.sectors;
2230 	} else {
2231 		/*
2232 		 * The CSD capacity field is in units of read_blkbits.
2233 		 * set_capacity takes units of 512 bytes.
2234 		 */
2235 		size = (typeof(sector_t))card->csd.capacity
2236 			<< (card->csd.read_blkbits - 9);
2237 	}
2238 
2239 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2240 					MMC_BLK_DATA_AREA_MAIN);
2241 }
2242 
2243 static int mmc_blk_alloc_part(struct mmc_card *card,
2244 			      struct mmc_blk_data *md,
2245 			      unsigned int part_type,
2246 			      sector_t size,
2247 			      bool default_ro,
2248 			      const char *subname,
2249 			      int area_type)
2250 {
2251 	char cap_str[10];
2252 	struct mmc_blk_data *part_md;
2253 
2254 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2255 				    subname, area_type);
2256 	if (IS_ERR(part_md))
2257 		return PTR_ERR(part_md);
2258 	part_md->part_type = part_type;
2259 	list_add(&part_md->part, &md->part);
2260 
2261 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2262 			cap_str, sizeof(cap_str));
2263 	pr_info("%s: %s %s partition %u %s\n",
2264 	       part_md->disk->disk_name, mmc_card_id(card),
2265 	       mmc_card_name(card), part_md->part_type, cap_str);
2266 	return 0;
2267 }
2268 
2269 /**
2270  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2271  * @filp: the character device file
2272  * @cmd: the ioctl() command
2273  * @arg: the argument from userspace
2274  *
2275  * This will essentially just redirect the ioctl()s coming in over to
2276  * the main block device spawning the RPMB character device.
2277  */
2278 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2279 			   unsigned long arg)
2280 {
2281 	struct mmc_rpmb_data *rpmb = filp->private_data;
2282 	int ret;
2283 
2284 	switch (cmd) {
2285 	case MMC_IOC_CMD:
2286 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2287 					(struct mmc_ioc_cmd __user *)arg,
2288 					rpmb);
2289 		break;
2290 	case MMC_IOC_MULTI_CMD:
2291 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2292 					(struct mmc_ioc_multi_cmd __user *)arg,
2293 					rpmb);
2294 		break;
2295 	default:
2296 		ret = -EINVAL;
2297 		break;
2298 	}
2299 
2300 	return 0;
2301 }
2302 
2303 #ifdef CONFIG_COMPAT
2304 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2305 			      unsigned long arg)
2306 {
2307 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2308 }
2309 #endif
2310 
2311 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2312 {
2313 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2314 						  struct mmc_rpmb_data, chrdev);
2315 
2316 	get_device(&rpmb->dev);
2317 	filp->private_data = rpmb;
2318 	mmc_blk_get(rpmb->md->disk);
2319 
2320 	return nonseekable_open(inode, filp);
2321 }
2322 
2323 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2324 {
2325 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2326 						  struct mmc_rpmb_data, chrdev);
2327 
2328 	put_device(&rpmb->dev);
2329 	mmc_blk_put(rpmb->md);
2330 
2331 	return 0;
2332 }
2333 
2334 static const struct file_operations mmc_rpmb_fileops = {
2335 	.release = mmc_rpmb_chrdev_release,
2336 	.open = mmc_rpmb_chrdev_open,
2337 	.owner = THIS_MODULE,
2338 	.llseek = no_llseek,
2339 	.unlocked_ioctl = mmc_rpmb_ioctl,
2340 #ifdef CONFIG_COMPAT
2341 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2342 #endif
2343 };
2344 
2345 static void mmc_blk_rpmb_device_release(struct device *dev)
2346 {
2347 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2348 
2349 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2350 	kfree(rpmb);
2351 }
2352 
2353 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2354 				   struct mmc_blk_data *md,
2355 				   unsigned int part_index,
2356 				   sector_t size,
2357 				   const char *subname)
2358 {
2359 	int devidx, ret;
2360 	char rpmb_name[DISK_NAME_LEN];
2361 	char cap_str[10];
2362 	struct mmc_rpmb_data *rpmb;
2363 
2364 	/* This creates the minor number for the RPMB char device */
2365 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2366 	if (devidx < 0)
2367 		return devidx;
2368 
2369 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2370 	if (!rpmb) {
2371 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2372 		return -ENOMEM;
2373 	}
2374 
2375 	snprintf(rpmb_name, sizeof(rpmb_name),
2376 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2377 
2378 	rpmb->id = devidx;
2379 	rpmb->part_index = part_index;
2380 	rpmb->dev.init_name = rpmb_name;
2381 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2382 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2383 	rpmb->dev.parent = &card->dev;
2384 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2385 	device_initialize(&rpmb->dev);
2386 	dev_set_drvdata(&rpmb->dev, rpmb);
2387 	rpmb->md = md;
2388 
2389 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2390 	rpmb->chrdev.owner = THIS_MODULE;
2391 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2392 	if (ret) {
2393 		pr_err("%s: could not add character device\n", rpmb_name);
2394 		goto out_put_device;
2395 	}
2396 
2397 	list_add(&rpmb->node, &md->rpmbs);
2398 
2399 	string_get_size((u64)size, 512, STRING_UNITS_2,
2400 			cap_str, sizeof(cap_str));
2401 
2402 	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2403 		rpmb_name, mmc_card_id(card),
2404 		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2405 		MAJOR(mmc_rpmb_devt), rpmb->id);
2406 
2407 	return 0;
2408 
2409 out_put_device:
2410 	put_device(&rpmb->dev);
2411 	return ret;
2412 }
2413 
2414 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2415 
2416 {
2417 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2418 	put_device(&rpmb->dev);
2419 }
2420 
2421 /* MMC Physical partitions consist of two boot partitions and
2422  * up to four general purpose partitions.
2423  * For each partition enabled in EXT_CSD a block device will be allocatedi
2424  * to provide access to the partition.
2425  */
2426 
2427 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2428 {
2429 	int idx, ret;
2430 
2431 	if (!mmc_card_mmc(card))
2432 		return 0;
2433 
2434 	for (idx = 0; idx < card->nr_parts; idx++) {
2435 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2436 			/*
2437 			 * RPMB partitions does not provide block access, they
2438 			 * are only accessed using ioctl():s. Thus create
2439 			 * special RPMB block devices that do not have a
2440 			 * backing block queue for these.
2441 			 */
2442 			ret = mmc_blk_alloc_rpmb_part(card, md,
2443 				card->part[idx].part_cfg,
2444 				card->part[idx].size >> 9,
2445 				card->part[idx].name);
2446 			if (ret)
2447 				return ret;
2448 		} else if (card->part[idx].size) {
2449 			ret = mmc_blk_alloc_part(card, md,
2450 				card->part[idx].part_cfg,
2451 				card->part[idx].size >> 9,
2452 				card->part[idx].force_ro,
2453 				card->part[idx].name,
2454 				card->part[idx].area_type);
2455 			if (ret)
2456 				return ret;
2457 		}
2458 	}
2459 
2460 	return 0;
2461 }
2462 
2463 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2464 {
2465 	struct mmc_card *card;
2466 
2467 	if (md) {
2468 		/*
2469 		 * Flush remaining requests and free queues. It
2470 		 * is freeing the queue that stops new requests
2471 		 * from being accepted.
2472 		 */
2473 		card = md->queue.card;
2474 		spin_lock_irq(md->queue.queue->queue_lock);
2475 		queue_flag_set(QUEUE_FLAG_BYPASS, md->queue.queue);
2476 		spin_unlock_irq(md->queue.queue->queue_lock);
2477 		blk_set_queue_dying(md->queue.queue);
2478 		mmc_cleanup_queue(&md->queue);
2479 		if (md->disk->flags & GENHD_FL_UP) {
2480 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2481 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2482 					card->ext_csd.boot_ro_lockable)
2483 				device_remove_file(disk_to_dev(md->disk),
2484 					&md->power_ro_lock);
2485 
2486 			del_gendisk(md->disk);
2487 		}
2488 		mmc_blk_put(md);
2489 	}
2490 }
2491 
2492 static void mmc_blk_remove_parts(struct mmc_card *card,
2493 				 struct mmc_blk_data *md)
2494 {
2495 	struct list_head *pos, *q;
2496 	struct mmc_blk_data *part_md;
2497 	struct mmc_rpmb_data *rpmb;
2498 
2499 	/* Remove RPMB partitions */
2500 	list_for_each_safe(pos, q, &md->rpmbs) {
2501 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2502 		list_del(pos);
2503 		mmc_blk_remove_rpmb_part(rpmb);
2504 	}
2505 	/* Remove block partitions */
2506 	list_for_each_safe(pos, q, &md->part) {
2507 		part_md = list_entry(pos, struct mmc_blk_data, part);
2508 		list_del(pos);
2509 		mmc_blk_remove_req(part_md);
2510 	}
2511 }
2512 
2513 static int mmc_add_disk(struct mmc_blk_data *md)
2514 {
2515 	int ret;
2516 	struct mmc_card *card = md->queue.card;
2517 
2518 	device_add_disk(md->parent, md->disk);
2519 	md->force_ro.show = force_ro_show;
2520 	md->force_ro.store = force_ro_store;
2521 	sysfs_attr_init(&md->force_ro.attr);
2522 	md->force_ro.attr.name = "force_ro";
2523 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2524 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2525 	if (ret)
2526 		goto force_ro_fail;
2527 
2528 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2529 	     card->ext_csd.boot_ro_lockable) {
2530 		umode_t mode;
2531 
2532 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2533 			mode = S_IRUGO;
2534 		else
2535 			mode = S_IRUGO | S_IWUSR;
2536 
2537 		md->power_ro_lock.show = power_ro_lock_show;
2538 		md->power_ro_lock.store = power_ro_lock_store;
2539 		sysfs_attr_init(&md->power_ro_lock.attr);
2540 		md->power_ro_lock.attr.mode = mode;
2541 		md->power_ro_lock.attr.name =
2542 					"ro_lock_until_next_power_on";
2543 		ret = device_create_file(disk_to_dev(md->disk),
2544 				&md->power_ro_lock);
2545 		if (ret)
2546 			goto power_ro_lock_fail;
2547 	}
2548 	return ret;
2549 
2550 power_ro_lock_fail:
2551 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2552 force_ro_fail:
2553 	del_gendisk(md->disk);
2554 
2555 	return ret;
2556 }
2557 
2558 #ifdef CONFIG_DEBUG_FS
2559 
2560 static int mmc_dbg_card_status_get(void *data, u64 *val)
2561 {
2562 	struct mmc_card *card = data;
2563 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2564 	struct mmc_queue *mq = &md->queue;
2565 	struct request *req;
2566 	int ret;
2567 
2568 	/* Ask the block layer about the card status */
2569 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2570 	if (IS_ERR(req))
2571 		return PTR_ERR(req);
2572 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2573 	blk_execute_rq(mq->queue, NULL, req, 0);
2574 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2575 	if (ret >= 0) {
2576 		*val = ret;
2577 		ret = 0;
2578 	}
2579 	blk_put_request(req);
2580 
2581 	return ret;
2582 }
2583 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2584 		NULL, "%08llx\n");
2585 
2586 /* That is two digits * 512 + 1 for newline */
2587 #define EXT_CSD_STR_LEN 1025
2588 
2589 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2590 {
2591 	struct mmc_card *card = inode->i_private;
2592 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2593 	struct mmc_queue *mq = &md->queue;
2594 	struct request *req;
2595 	char *buf;
2596 	ssize_t n = 0;
2597 	u8 *ext_csd;
2598 	int err, i;
2599 
2600 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2601 	if (!buf)
2602 		return -ENOMEM;
2603 
2604 	/* Ask the block layer for the EXT CSD */
2605 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2606 	if (IS_ERR(req)) {
2607 		err = PTR_ERR(req);
2608 		goto out_free;
2609 	}
2610 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2611 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2612 	blk_execute_rq(mq->queue, NULL, req, 0);
2613 	err = req_to_mmc_queue_req(req)->drv_op_result;
2614 	blk_put_request(req);
2615 	if (err) {
2616 		pr_err("FAILED %d\n", err);
2617 		goto out_free;
2618 	}
2619 
2620 	for (i = 0; i < 512; i++)
2621 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2622 	n += sprintf(buf + n, "\n");
2623 
2624 	if (n != EXT_CSD_STR_LEN) {
2625 		err = -EINVAL;
2626 		goto out_free;
2627 	}
2628 
2629 	filp->private_data = buf;
2630 	kfree(ext_csd);
2631 	return 0;
2632 
2633 out_free:
2634 	kfree(buf);
2635 	return err;
2636 }
2637 
2638 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2639 				size_t cnt, loff_t *ppos)
2640 {
2641 	char *buf = filp->private_data;
2642 
2643 	return simple_read_from_buffer(ubuf, cnt, ppos,
2644 				       buf, EXT_CSD_STR_LEN);
2645 }
2646 
2647 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2648 {
2649 	kfree(file->private_data);
2650 	return 0;
2651 }
2652 
2653 static const struct file_operations mmc_dbg_ext_csd_fops = {
2654 	.open		= mmc_ext_csd_open,
2655 	.read		= mmc_ext_csd_read,
2656 	.release	= mmc_ext_csd_release,
2657 	.llseek		= default_llseek,
2658 };
2659 
2660 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2661 {
2662 	struct dentry *root;
2663 
2664 	if (!card->debugfs_root)
2665 		return 0;
2666 
2667 	root = card->debugfs_root;
2668 
2669 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2670 		md->status_dentry =
2671 			debugfs_create_file("status", S_IRUSR, root, card,
2672 					    &mmc_dbg_card_status_fops);
2673 		if (!md->status_dentry)
2674 			return -EIO;
2675 	}
2676 
2677 	if (mmc_card_mmc(card)) {
2678 		md->ext_csd_dentry =
2679 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2680 					    &mmc_dbg_ext_csd_fops);
2681 		if (!md->ext_csd_dentry)
2682 			return -EIO;
2683 	}
2684 
2685 	return 0;
2686 }
2687 
2688 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2689 				   struct mmc_blk_data *md)
2690 {
2691 	if (!card->debugfs_root)
2692 		return;
2693 
2694 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2695 		debugfs_remove(md->status_dentry);
2696 		md->status_dentry = NULL;
2697 	}
2698 
2699 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2700 		debugfs_remove(md->ext_csd_dentry);
2701 		md->ext_csd_dentry = NULL;
2702 	}
2703 }
2704 
2705 #else
2706 
2707 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2708 {
2709 	return 0;
2710 }
2711 
2712 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2713 				   struct mmc_blk_data *md)
2714 {
2715 }
2716 
2717 #endif /* CONFIG_DEBUG_FS */
2718 
2719 static int mmc_blk_probe(struct mmc_card *card)
2720 {
2721 	struct mmc_blk_data *md, *part_md;
2722 	char cap_str[10];
2723 
2724 	/*
2725 	 * Check that the card supports the command class(es) we need.
2726 	 */
2727 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2728 		return -ENODEV;
2729 
2730 	mmc_fixup_device(card, mmc_blk_fixups);
2731 
2732 	md = mmc_blk_alloc(card);
2733 	if (IS_ERR(md))
2734 		return PTR_ERR(md);
2735 
2736 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2737 			cap_str, sizeof(cap_str));
2738 	pr_info("%s: %s %s %s %s\n",
2739 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2740 		cap_str, md->read_only ? "(ro)" : "");
2741 
2742 	if (mmc_blk_alloc_parts(card, md))
2743 		goto out;
2744 
2745 	dev_set_drvdata(&card->dev, md);
2746 
2747 	if (mmc_add_disk(md))
2748 		goto out;
2749 
2750 	list_for_each_entry(part_md, &md->part, part) {
2751 		if (mmc_add_disk(part_md))
2752 			goto out;
2753 	}
2754 
2755 	/* Add two debugfs entries */
2756 	mmc_blk_add_debugfs(card, md);
2757 
2758 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2759 	pm_runtime_use_autosuspend(&card->dev);
2760 
2761 	/*
2762 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2763 	 * decision to be taken during the SDIO init sequence instead.
2764 	 */
2765 	if (card->type != MMC_TYPE_SD_COMBO) {
2766 		pm_runtime_set_active(&card->dev);
2767 		pm_runtime_enable(&card->dev);
2768 	}
2769 
2770 	return 0;
2771 
2772  out:
2773 	mmc_blk_remove_parts(card, md);
2774 	mmc_blk_remove_req(md);
2775 	return 0;
2776 }
2777 
2778 static void mmc_blk_remove(struct mmc_card *card)
2779 {
2780 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2781 
2782 	mmc_blk_remove_debugfs(card, md);
2783 	mmc_blk_remove_parts(card, md);
2784 	pm_runtime_get_sync(&card->dev);
2785 	mmc_claim_host(card->host);
2786 	mmc_blk_part_switch(card, md->part_type);
2787 	mmc_release_host(card->host);
2788 	if (card->type != MMC_TYPE_SD_COMBO)
2789 		pm_runtime_disable(&card->dev);
2790 	pm_runtime_put_noidle(&card->dev);
2791 	mmc_blk_remove_req(md);
2792 	dev_set_drvdata(&card->dev, NULL);
2793 }
2794 
2795 static int _mmc_blk_suspend(struct mmc_card *card)
2796 {
2797 	struct mmc_blk_data *part_md;
2798 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2799 
2800 	if (md) {
2801 		mmc_queue_suspend(&md->queue);
2802 		list_for_each_entry(part_md, &md->part, part) {
2803 			mmc_queue_suspend(&part_md->queue);
2804 		}
2805 	}
2806 	return 0;
2807 }
2808 
2809 static void mmc_blk_shutdown(struct mmc_card *card)
2810 {
2811 	_mmc_blk_suspend(card);
2812 }
2813 
2814 #ifdef CONFIG_PM_SLEEP
2815 static int mmc_blk_suspend(struct device *dev)
2816 {
2817 	struct mmc_card *card = mmc_dev_to_card(dev);
2818 
2819 	return _mmc_blk_suspend(card);
2820 }
2821 
2822 static int mmc_blk_resume(struct device *dev)
2823 {
2824 	struct mmc_blk_data *part_md;
2825 	struct mmc_blk_data *md = dev_get_drvdata(dev);
2826 
2827 	if (md) {
2828 		/*
2829 		 * Resume involves the card going into idle state,
2830 		 * so current partition is always the main one.
2831 		 */
2832 		md->part_curr = md->part_type;
2833 		mmc_queue_resume(&md->queue);
2834 		list_for_each_entry(part_md, &md->part, part) {
2835 			mmc_queue_resume(&part_md->queue);
2836 		}
2837 	}
2838 	return 0;
2839 }
2840 #endif
2841 
2842 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2843 
2844 static struct mmc_driver mmc_driver = {
2845 	.drv		= {
2846 		.name	= "mmcblk",
2847 		.pm	= &mmc_blk_pm_ops,
2848 	},
2849 	.probe		= mmc_blk_probe,
2850 	.remove		= mmc_blk_remove,
2851 	.shutdown	= mmc_blk_shutdown,
2852 };
2853 
2854 static int __init mmc_blk_init(void)
2855 {
2856 	int res;
2857 
2858 	res  = bus_register(&mmc_rpmb_bus_type);
2859 	if (res < 0) {
2860 		pr_err("mmcblk: could not register RPMB bus type\n");
2861 		return res;
2862 	}
2863 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
2864 	if (res < 0) {
2865 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
2866 		goto out_bus_unreg;
2867 	}
2868 
2869 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2870 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2871 
2872 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2873 
2874 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2875 	if (res)
2876 		goto out_chrdev_unreg;
2877 
2878 	res = mmc_register_driver(&mmc_driver);
2879 	if (res)
2880 		goto out_blkdev_unreg;
2881 
2882 	return 0;
2883 
2884 out_blkdev_unreg:
2885 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2886 out_chrdev_unreg:
2887 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
2888 out_bus_unreg:
2889 	bus_unregister(&mmc_rpmb_bus_type);
2890 	return res;
2891 }
2892 
2893 static void __exit mmc_blk_exit(void)
2894 {
2895 	mmc_unregister_driver(&mmc_driver);
2896 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2897 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
2898 }
2899 
2900 module_init(mmc_blk_init);
2901 module_exit(mmc_blk_exit);
2902 
2903 MODULE_LICENSE("GPL");
2904 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2905 
2906