1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/cdev.h> 32 #include <linux/mutex.h> 33 #include <linux/scatterlist.h> 34 #include <linux/string_helpers.h> 35 #include <linux/delay.h> 36 #include <linux/capability.h> 37 #include <linux/compat.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/idr.h> 40 #include <linux/debugfs.h> 41 42 #include <linux/mmc/ioctl.h> 43 #include <linux/mmc/card.h> 44 #include <linux/mmc/host.h> 45 #include <linux/mmc/mmc.h> 46 #include <linux/mmc/sd.h> 47 48 #include <linux/uaccess.h> 49 50 #include "queue.h" 51 #include "block.h" 52 #include "core.h" 53 #include "card.h" 54 #include "host.h" 55 #include "bus.h" 56 #include "mmc_ops.h" 57 #include "quirks.h" 58 #include "sd_ops.h" 59 60 MODULE_ALIAS("mmc:block"); 61 #ifdef MODULE_PARAM_PREFIX 62 #undef MODULE_PARAM_PREFIX 63 #endif 64 #define MODULE_PARAM_PREFIX "mmcblk." 65 66 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 67 #define MMC_SANITIZE_REQ_TIMEOUT 240000 68 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 69 70 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 71 (rq_data_dir(req) == WRITE)) 72 static DEFINE_MUTEX(block_mutex); 73 74 /* 75 * The defaults come from config options but can be overriden by module 76 * or bootarg options. 77 */ 78 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 79 80 /* 81 * We've only got one major, so number of mmcblk devices is 82 * limited to (1 << 20) / number of minors per device. It is also 83 * limited by the MAX_DEVICES below. 84 */ 85 static int max_devices; 86 87 #define MAX_DEVICES 256 88 89 static DEFINE_IDA(mmc_blk_ida); 90 static DEFINE_IDA(mmc_rpmb_ida); 91 92 /* 93 * There is one mmc_blk_data per slot. 94 */ 95 struct mmc_blk_data { 96 spinlock_t lock; 97 struct device *parent; 98 struct gendisk *disk; 99 struct mmc_queue queue; 100 struct list_head part; 101 struct list_head rpmbs; 102 103 unsigned int flags; 104 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 105 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 106 107 unsigned int usage; 108 unsigned int read_only; 109 unsigned int part_type; 110 unsigned int reset_done; 111 #define MMC_BLK_READ BIT(0) 112 #define MMC_BLK_WRITE BIT(1) 113 #define MMC_BLK_DISCARD BIT(2) 114 #define MMC_BLK_SECDISCARD BIT(3) 115 116 /* 117 * Only set in main mmc_blk_data associated 118 * with mmc_card with dev_set_drvdata, and keeps 119 * track of the current selected device partition. 120 */ 121 unsigned int part_curr; 122 struct device_attribute force_ro; 123 struct device_attribute power_ro_lock; 124 int area_type; 125 126 /* debugfs files (only in main mmc_blk_data) */ 127 struct dentry *status_dentry; 128 struct dentry *ext_csd_dentry; 129 }; 130 131 /* Device type for RPMB character devices */ 132 static dev_t mmc_rpmb_devt; 133 134 /* Bus type for RPMB character devices */ 135 static struct bus_type mmc_rpmb_bus_type = { 136 .name = "mmc_rpmb", 137 }; 138 139 /** 140 * struct mmc_rpmb_data - special RPMB device type for these areas 141 * @dev: the device for the RPMB area 142 * @chrdev: character device for the RPMB area 143 * @id: unique device ID number 144 * @part_index: partition index (0 on first) 145 * @md: parent MMC block device 146 * @node: list item, so we can put this device on a list 147 */ 148 struct mmc_rpmb_data { 149 struct device dev; 150 struct cdev chrdev; 151 int id; 152 unsigned int part_index; 153 struct mmc_blk_data *md; 154 struct list_head node; 155 }; 156 157 static DEFINE_MUTEX(open_lock); 158 159 module_param(perdev_minors, int, 0444); 160 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 161 162 static inline int mmc_blk_part_switch(struct mmc_card *card, 163 unsigned int part_type); 164 165 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 166 { 167 struct mmc_blk_data *md; 168 169 mutex_lock(&open_lock); 170 md = disk->private_data; 171 if (md && md->usage == 0) 172 md = NULL; 173 if (md) 174 md->usage++; 175 mutex_unlock(&open_lock); 176 177 return md; 178 } 179 180 static inline int mmc_get_devidx(struct gendisk *disk) 181 { 182 int devidx = disk->first_minor / perdev_minors; 183 return devidx; 184 } 185 186 static void mmc_blk_put(struct mmc_blk_data *md) 187 { 188 mutex_lock(&open_lock); 189 md->usage--; 190 if (md->usage == 0) { 191 int devidx = mmc_get_devidx(md->disk); 192 blk_cleanup_queue(md->queue.queue); 193 ida_simple_remove(&mmc_blk_ida, devidx); 194 put_disk(md->disk); 195 kfree(md); 196 } 197 mutex_unlock(&open_lock); 198 } 199 200 static ssize_t power_ro_lock_show(struct device *dev, 201 struct device_attribute *attr, char *buf) 202 { 203 int ret; 204 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 205 struct mmc_card *card = md->queue.card; 206 int locked = 0; 207 208 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 209 locked = 2; 210 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 211 locked = 1; 212 213 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 214 215 mmc_blk_put(md); 216 217 return ret; 218 } 219 220 static ssize_t power_ro_lock_store(struct device *dev, 221 struct device_attribute *attr, const char *buf, size_t count) 222 { 223 int ret; 224 struct mmc_blk_data *md, *part_md; 225 struct mmc_queue *mq; 226 struct request *req; 227 unsigned long set; 228 229 if (kstrtoul(buf, 0, &set)) 230 return -EINVAL; 231 232 if (set != 1) 233 return count; 234 235 md = mmc_blk_get(dev_to_disk(dev)); 236 mq = &md->queue; 237 238 /* Dispatch locking to the block layer */ 239 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM); 240 if (IS_ERR(req)) { 241 count = PTR_ERR(req); 242 goto out_put; 243 } 244 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 245 blk_execute_rq(mq->queue, NULL, req, 0); 246 ret = req_to_mmc_queue_req(req)->drv_op_result; 247 blk_put_request(req); 248 249 if (!ret) { 250 pr_info("%s: Locking boot partition ro until next power on\n", 251 md->disk->disk_name); 252 set_disk_ro(md->disk, 1); 253 254 list_for_each_entry(part_md, &md->part, part) 255 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 256 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 257 set_disk_ro(part_md->disk, 1); 258 } 259 } 260 out_put: 261 mmc_blk_put(md); 262 return count; 263 } 264 265 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 266 char *buf) 267 { 268 int ret; 269 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 270 271 ret = snprintf(buf, PAGE_SIZE, "%d\n", 272 get_disk_ro(dev_to_disk(dev)) ^ 273 md->read_only); 274 mmc_blk_put(md); 275 return ret; 276 } 277 278 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 279 const char *buf, size_t count) 280 { 281 int ret; 282 char *end; 283 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 284 unsigned long set = simple_strtoul(buf, &end, 0); 285 if (end == buf) { 286 ret = -EINVAL; 287 goto out; 288 } 289 290 set_disk_ro(dev_to_disk(dev), set || md->read_only); 291 ret = count; 292 out: 293 mmc_blk_put(md); 294 return ret; 295 } 296 297 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 298 { 299 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 300 int ret = -ENXIO; 301 302 mutex_lock(&block_mutex); 303 if (md) { 304 if (md->usage == 2) 305 check_disk_change(bdev); 306 ret = 0; 307 308 if ((mode & FMODE_WRITE) && md->read_only) { 309 mmc_blk_put(md); 310 ret = -EROFS; 311 } 312 } 313 mutex_unlock(&block_mutex); 314 315 return ret; 316 } 317 318 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 319 { 320 struct mmc_blk_data *md = disk->private_data; 321 322 mutex_lock(&block_mutex); 323 mmc_blk_put(md); 324 mutex_unlock(&block_mutex); 325 } 326 327 static int 328 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 329 { 330 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 331 geo->heads = 4; 332 geo->sectors = 16; 333 return 0; 334 } 335 336 struct mmc_blk_ioc_data { 337 struct mmc_ioc_cmd ic; 338 unsigned char *buf; 339 u64 buf_bytes; 340 struct mmc_rpmb_data *rpmb; 341 }; 342 343 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 344 struct mmc_ioc_cmd __user *user) 345 { 346 struct mmc_blk_ioc_data *idata; 347 int err; 348 349 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 350 if (!idata) { 351 err = -ENOMEM; 352 goto out; 353 } 354 355 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 356 err = -EFAULT; 357 goto idata_err; 358 } 359 360 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 361 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 362 err = -EOVERFLOW; 363 goto idata_err; 364 } 365 366 if (!idata->buf_bytes) { 367 idata->buf = NULL; 368 return idata; 369 } 370 371 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL); 372 if (!idata->buf) { 373 err = -ENOMEM; 374 goto idata_err; 375 } 376 377 if (copy_from_user(idata->buf, (void __user *)(unsigned long) 378 idata->ic.data_ptr, idata->buf_bytes)) { 379 err = -EFAULT; 380 goto copy_err; 381 } 382 383 return idata; 384 385 copy_err: 386 kfree(idata->buf); 387 idata_err: 388 kfree(idata); 389 out: 390 return ERR_PTR(err); 391 } 392 393 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 394 struct mmc_blk_ioc_data *idata) 395 { 396 struct mmc_ioc_cmd *ic = &idata->ic; 397 398 if (copy_to_user(&(ic_ptr->response), ic->response, 399 sizeof(ic->response))) 400 return -EFAULT; 401 402 if (!idata->ic.write_flag) { 403 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 404 idata->buf, idata->buf_bytes)) 405 return -EFAULT; 406 } 407 408 return 0; 409 } 410 411 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status, 412 u32 retries_max) 413 { 414 int err; 415 u32 retry_count = 0; 416 417 if (!status || !retries_max) 418 return -EINVAL; 419 420 do { 421 err = __mmc_send_status(card, status, 5); 422 if (err) 423 break; 424 425 if (!R1_STATUS(*status) && 426 (R1_CURRENT_STATE(*status) != R1_STATE_PRG)) 427 break; /* RPMB programming operation complete */ 428 429 /* 430 * Rechedule to give the MMC device a chance to continue 431 * processing the previous command without being polled too 432 * frequently. 433 */ 434 usleep_range(1000, 5000); 435 } while (++retry_count < retries_max); 436 437 if (retry_count == retries_max) 438 err = -EPERM; 439 440 return err; 441 } 442 443 static int ioctl_do_sanitize(struct mmc_card *card) 444 { 445 int err; 446 447 if (!mmc_can_sanitize(card)) { 448 pr_warn("%s: %s - SANITIZE is not supported\n", 449 mmc_hostname(card->host), __func__); 450 err = -EOPNOTSUPP; 451 goto out; 452 } 453 454 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n", 455 mmc_hostname(card->host), __func__); 456 457 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 458 EXT_CSD_SANITIZE_START, 1, 459 MMC_SANITIZE_REQ_TIMEOUT); 460 461 if (err) 462 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n", 463 mmc_hostname(card->host), __func__, err); 464 465 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host), 466 __func__); 467 out: 468 return err; 469 } 470 471 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 472 struct mmc_blk_ioc_data *idata) 473 { 474 struct mmc_command cmd = {}; 475 struct mmc_data data = {}; 476 struct mmc_request mrq = {}; 477 struct scatterlist sg; 478 int err; 479 unsigned int target_part; 480 u32 status = 0; 481 482 if (!card || !md || !idata) 483 return -EINVAL; 484 485 /* 486 * The RPMB accesses comes in from the character device, so we 487 * need to target these explicitly. Else we just target the 488 * partition type for the block device the ioctl() was issued 489 * on. 490 */ 491 if (idata->rpmb) { 492 /* Support multiple RPMB partitions */ 493 target_part = idata->rpmb->part_index; 494 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 495 } else { 496 target_part = md->part_type; 497 } 498 499 cmd.opcode = idata->ic.opcode; 500 cmd.arg = idata->ic.arg; 501 cmd.flags = idata->ic.flags; 502 503 if (idata->buf_bytes) { 504 data.sg = &sg; 505 data.sg_len = 1; 506 data.blksz = idata->ic.blksz; 507 data.blocks = idata->ic.blocks; 508 509 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 510 511 if (idata->ic.write_flag) 512 data.flags = MMC_DATA_WRITE; 513 else 514 data.flags = MMC_DATA_READ; 515 516 /* data.flags must already be set before doing this. */ 517 mmc_set_data_timeout(&data, card); 518 519 /* Allow overriding the timeout_ns for empirical tuning. */ 520 if (idata->ic.data_timeout_ns) 521 data.timeout_ns = idata->ic.data_timeout_ns; 522 523 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 524 /* 525 * Pretend this is a data transfer and rely on the 526 * host driver to compute timeout. When all host 527 * drivers support cmd.cmd_timeout for R1B, this 528 * can be changed to: 529 * 530 * mrq.data = NULL; 531 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 532 */ 533 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 534 } 535 536 mrq.data = &data; 537 } 538 539 mrq.cmd = &cmd; 540 541 err = mmc_blk_part_switch(card, target_part); 542 if (err) 543 return err; 544 545 if (idata->ic.is_acmd) { 546 err = mmc_app_cmd(card->host, card); 547 if (err) 548 return err; 549 } 550 551 if (idata->rpmb) { 552 err = mmc_set_blockcount(card, data.blocks, 553 idata->ic.write_flag & (1 << 31)); 554 if (err) 555 return err; 556 } 557 558 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 559 (cmd.opcode == MMC_SWITCH)) { 560 err = ioctl_do_sanitize(card); 561 562 if (err) 563 pr_err("%s: ioctl_do_sanitize() failed. err = %d", 564 __func__, err); 565 566 return err; 567 } 568 569 mmc_wait_for_req(card->host, &mrq); 570 571 if (cmd.error) { 572 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 573 __func__, cmd.error); 574 return cmd.error; 575 } 576 if (data.error) { 577 dev_err(mmc_dev(card->host), "%s: data error %d\n", 578 __func__, data.error); 579 return data.error; 580 } 581 582 /* 583 * According to the SD specs, some commands require a delay after 584 * issuing the command. 585 */ 586 if (idata->ic.postsleep_min_us) 587 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 588 589 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 590 591 if (idata->rpmb) { 592 /* 593 * Ensure RPMB command has completed by polling CMD13 594 * "Send Status". 595 */ 596 err = ioctl_rpmb_card_status_poll(card, &status, 5); 597 if (err) 598 dev_err(mmc_dev(card->host), 599 "%s: Card Status=0x%08X, error %d\n", 600 __func__, status, err); 601 } 602 603 return err; 604 } 605 606 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 607 struct mmc_ioc_cmd __user *ic_ptr, 608 struct mmc_rpmb_data *rpmb) 609 { 610 struct mmc_blk_ioc_data *idata; 611 struct mmc_blk_ioc_data *idatas[1]; 612 struct mmc_queue *mq; 613 struct mmc_card *card; 614 int err = 0, ioc_err = 0; 615 struct request *req; 616 617 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 618 if (IS_ERR(idata)) 619 return PTR_ERR(idata); 620 /* This will be NULL on non-RPMB ioctl():s */ 621 idata->rpmb = rpmb; 622 623 card = md->queue.card; 624 if (IS_ERR(card)) { 625 err = PTR_ERR(card); 626 goto cmd_done; 627 } 628 629 /* 630 * Dispatch the ioctl() into the block request queue. 631 */ 632 mq = &md->queue; 633 req = blk_get_request(mq->queue, 634 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 635 __GFP_RECLAIM); 636 if (IS_ERR(req)) { 637 err = PTR_ERR(req); 638 goto cmd_done; 639 } 640 idatas[0] = idata; 641 req_to_mmc_queue_req(req)->drv_op = 642 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 643 req_to_mmc_queue_req(req)->drv_op_data = idatas; 644 req_to_mmc_queue_req(req)->ioc_count = 1; 645 blk_execute_rq(mq->queue, NULL, req, 0); 646 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 647 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 648 blk_put_request(req); 649 650 cmd_done: 651 kfree(idata->buf); 652 kfree(idata); 653 return ioc_err ? ioc_err : err; 654 } 655 656 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 657 struct mmc_ioc_multi_cmd __user *user, 658 struct mmc_rpmb_data *rpmb) 659 { 660 struct mmc_blk_ioc_data **idata = NULL; 661 struct mmc_ioc_cmd __user *cmds = user->cmds; 662 struct mmc_card *card; 663 struct mmc_queue *mq; 664 int i, err = 0, ioc_err = 0; 665 __u64 num_of_cmds; 666 struct request *req; 667 668 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 669 sizeof(num_of_cmds))) 670 return -EFAULT; 671 672 if (!num_of_cmds) 673 return 0; 674 675 if (num_of_cmds > MMC_IOC_MAX_CMDS) 676 return -EINVAL; 677 678 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 679 if (!idata) 680 return -ENOMEM; 681 682 for (i = 0; i < num_of_cmds; i++) { 683 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 684 if (IS_ERR(idata[i])) { 685 err = PTR_ERR(idata[i]); 686 num_of_cmds = i; 687 goto cmd_err; 688 } 689 /* This will be NULL on non-RPMB ioctl():s */ 690 idata[i]->rpmb = rpmb; 691 } 692 693 card = md->queue.card; 694 if (IS_ERR(card)) { 695 err = PTR_ERR(card); 696 goto cmd_err; 697 } 698 699 700 /* 701 * Dispatch the ioctl()s into the block request queue. 702 */ 703 mq = &md->queue; 704 req = blk_get_request(mq->queue, 705 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 706 __GFP_RECLAIM); 707 if (IS_ERR(req)) { 708 err = PTR_ERR(req); 709 goto cmd_err; 710 } 711 req_to_mmc_queue_req(req)->drv_op = 712 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 713 req_to_mmc_queue_req(req)->drv_op_data = idata; 714 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 715 blk_execute_rq(mq->queue, NULL, req, 0); 716 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 717 718 /* copy to user if data and response */ 719 for (i = 0; i < num_of_cmds && !err; i++) 720 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 721 722 blk_put_request(req); 723 724 cmd_err: 725 for (i = 0; i < num_of_cmds; i++) { 726 kfree(idata[i]->buf); 727 kfree(idata[i]); 728 } 729 kfree(idata); 730 return ioc_err ? ioc_err : err; 731 } 732 733 static int mmc_blk_check_blkdev(struct block_device *bdev) 734 { 735 /* 736 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 737 * whole block device, not on a partition. This prevents overspray 738 * between sibling partitions. 739 */ 740 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 741 return -EPERM; 742 return 0; 743 } 744 745 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 746 unsigned int cmd, unsigned long arg) 747 { 748 struct mmc_blk_data *md; 749 int ret; 750 751 switch (cmd) { 752 case MMC_IOC_CMD: 753 ret = mmc_blk_check_blkdev(bdev); 754 if (ret) 755 return ret; 756 md = mmc_blk_get(bdev->bd_disk); 757 if (!md) 758 return -EINVAL; 759 ret = mmc_blk_ioctl_cmd(md, 760 (struct mmc_ioc_cmd __user *)arg, 761 NULL); 762 mmc_blk_put(md); 763 return ret; 764 case MMC_IOC_MULTI_CMD: 765 ret = mmc_blk_check_blkdev(bdev); 766 if (ret) 767 return ret; 768 md = mmc_blk_get(bdev->bd_disk); 769 if (!md) 770 return -EINVAL; 771 ret = mmc_blk_ioctl_multi_cmd(md, 772 (struct mmc_ioc_multi_cmd __user *)arg, 773 NULL); 774 mmc_blk_put(md); 775 return ret; 776 default: 777 return -EINVAL; 778 } 779 } 780 781 #ifdef CONFIG_COMPAT 782 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 783 unsigned int cmd, unsigned long arg) 784 { 785 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 786 } 787 #endif 788 789 static const struct block_device_operations mmc_bdops = { 790 .open = mmc_blk_open, 791 .release = mmc_blk_release, 792 .getgeo = mmc_blk_getgeo, 793 .owner = THIS_MODULE, 794 .ioctl = mmc_blk_ioctl, 795 #ifdef CONFIG_COMPAT 796 .compat_ioctl = mmc_blk_compat_ioctl, 797 #endif 798 }; 799 800 static int mmc_blk_part_switch_pre(struct mmc_card *card, 801 unsigned int part_type) 802 { 803 int ret = 0; 804 805 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 806 if (card->ext_csd.cmdq_en) { 807 ret = mmc_cmdq_disable(card); 808 if (ret) 809 return ret; 810 } 811 mmc_retune_pause(card->host); 812 } 813 814 return ret; 815 } 816 817 static int mmc_blk_part_switch_post(struct mmc_card *card, 818 unsigned int part_type) 819 { 820 int ret = 0; 821 822 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 823 mmc_retune_unpause(card->host); 824 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 825 ret = mmc_cmdq_enable(card); 826 } 827 828 return ret; 829 } 830 831 static inline int mmc_blk_part_switch(struct mmc_card *card, 832 unsigned int part_type) 833 { 834 int ret = 0; 835 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 836 837 if (main_md->part_curr == part_type) 838 return 0; 839 840 if (mmc_card_mmc(card)) { 841 u8 part_config = card->ext_csd.part_config; 842 843 ret = mmc_blk_part_switch_pre(card, part_type); 844 if (ret) 845 return ret; 846 847 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 848 part_config |= part_type; 849 850 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 851 EXT_CSD_PART_CONFIG, part_config, 852 card->ext_csd.part_time); 853 if (ret) { 854 mmc_blk_part_switch_post(card, part_type); 855 return ret; 856 } 857 858 card->ext_csd.part_config = part_config; 859 860 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 861 } 862 863 main_md->part_curr = part_type; 864 return ret; 865 } 866 867 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 868 { 869 int err; 870 u32 result; 871 __be32 *blocks; 872 873 struct mmc_request mrq = {}; 874 struct mmc_command cmd = {}; 875 struct mmc_data data = {}; 876 877 struct scatterlist sg; 878 879 cmd.opcode = MMC_APP_CMD; 880 cmd.arg = card->rca << 16; 881 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 882 883 err = mmc_wait_for_cmd(card->host, &cmd, 0); 884 if (err) 885 return err; 886 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 887 return -EIO; 888 889 memset(&cmd, 0, sizeof(struct mmc_command)); 890 891 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 892 cmd.arg = 0; 893 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 894 895 data.blksz = 4; 896 data.blocks = 1; 897 data.flags = MMC_DATA_READ; 898 data.sg = &sg; 899 data.sg_len = 1; 900 mmc_set_data_timeout(&data, card); 901 902 mrq.cmd = &cmd; 903 mrq.data = &data; 904 905 blocks = kmalloc(4, GFP_KERNEL); 906 if (!blocks) 907 return -ENOMEM; 908 909 sg_init_one(&sg, blocks, 4); 910 911 mmc_wait_for_req(card->host, &mrq); 912 913 result = ntohl(*blocks); 914 kfree(blocks); 915 916 if (cmd.error || data.error) 917 return -EIO; 918 919 *written_blocks = result; 920 921 return 0; 922 } 923 924 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 925 bool hw_busy_detect, struct request *req, bool *gen_err) 926 { 927 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 928 int err = 0; 929 u32 status; 930 931 do { 932 err = __mmc_send_status(card, &status, 5); 933 if (err) { 934 pr_err("%s: error %d requesting status\n", 935 req->rq_disk->disk_name, err); 936 return err; 937 } 938 939 if (status & R1_ERROR) { 940 pr_err("%s: %s: error sending status cmd, status %#x\n", 941 req->rq_disk->disk_name, __func__, status); 942 *gen_err = true; 943 } 944 945 /* We may rely on the host hw to handle busy detection.*/ 946 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && 947 hw_busy_detect) 948 break; 949 950 /* 951 * Timeout if the device never becomes ready for data and never 952 * leaves the program state. 953 */ 954 if (time_after(jiffies, timeout)) { 955 pr_err("%s: Card stuck in programming state! %s %s\n", 956 mmc_hostname(card->host), 957 req->rq_disk->disk_name, __func__); 958 return -ETIMEDOUT; 959 } 960 961 /* 962 * Some cards mishandle the status bits, 963 * so make sure to check both the busy 964 * indication and the card state. 965 */ 966 } while (!(status & R1_READY_FOR_DATA) || 967 (R1_CURRENT_STATE(status) == R1_STATE_PRG)); 968 969 return err; 970 } 971 972 static int send_stop(struct mmc_card *card, unsigned int timeout_ms, 973 struct request *req, bool *gen_err, u32 *stop_status) 974 { 975 struct mmc_host *host = card->host; 976 struct mmc_command cmd = {}; 977 int err; 978 bool use_r1b_resp = rq_data_dir(req) == WRITE; 979 980 /* 981 * Normally we use R1B responses for WRITE, but in cases where the host 982 * has specified a max_busy_timeout we need to validate it. A failure 983 * means we need to prevent the host from doing hw busy detection, which 984 * is done by converting to a R1 response instead. 985 */ 986 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) 987 use_r1b_resp = false; 988 989 cmd.opcode = MMC_STOP_TRANSMISSION; 990 if (use_r1b_resp) { 991 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 992 cmd.busy_timeout = timeout_ms; 993 } else { 994 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 995 } 996 997 err = mmc_wait_for_cmd(host, &cmd, 5); 998 if (err) 999 return err; 1000 1001 *stop_status = cmd.resp[0]; 1002 1003 /* No need to check card status in case of READ. */ 1004 if (rq_data_dir(req) == READ) 1005 return 0; 1006 1007 if (!mmc_host_is_spi(host) && 1008 (*stop_status & R1_ERROR)) { 1009 pr_err("%s: %s: general error sending stop command, resp %#x\n", 1010 req->rq_disk->disk_name, __func__, *stop_status); 1011 *gen_err = true; 1012 } 1013 1014 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err); 1015 } 1016 1017 #define ERR_NOMEDIUM 3 1018 #define ERR_RETRY 2 1019 #define ERR_ABORT 1 1020 #define ERR_CONTINUE 0 1021 1022 static int mmc_blk_cmd_error(struct request *req, const char *name, int error, 1023 bool status_valid, u32 status) 1024 { 1025 switch (error) { 1026 case -EILSEQ: 1027 /* response crc error, retry the r/w cmd */ 1028 pr_err("%s: %s sending %s command, card status %#x\n", 1029 req->rq_disk->disk_name, "response CRC error", 1030 name, status); 1031 return ERR_RETRY; 1032 1033 case -ETIMEDOUT: 1034 pr_err("%s: %s sending %s command, card status %#x\n", 1035 req->rq_disk->disk_name, "timed out", name, status); 1036 1037 /* If the status cmd initially failed, retry the r/w cmd */ 1038 if (!status_valid) { 1039 pr_err("%s: status not valid, retrying timeout\n", 1040 req->rq_disk->disk_name); 1041 return ERR_RETRY; 1042 } 1043 1044 /* 1045 * If it was a r/w cmd crc error, or illegal command 1046 * (eg, issued in wrong state) then retry - we should 1047 * have corrected the state problem above. 1048 */ 1049 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) { 1050 pr_err("%s: command error, retrying timeout\n", 1051 req->rq_disk->disk_name); 1052 return ERR_RETRY; 1053 } 1054 1055 /* Otherwise abort the command */ 1056 return ERR_ABORT; 1057 1058 default: 1059 /* We don't understand the error code the driver gave us */ 1060 pr_err("%s: unknown error %d sending read/write command, card status %#x\n", 1061 req->rq_disk->disk_name, error, status); 1062 return ERR_ABORT; 1063 } 1064 } 1065 1066 /* 1067 * Initial r/w and stop cmd error recovery. 1068 * We don't know whether the card received the r/w cmd or not, so try to 1069 * restore things back to a sane state. Essentially, we do this as follows: 1070 * - Obtain card status. If the first attempt to obtain card status fails, 1071 * the status word will reflect the failed status cmd, not the failed 1072 * r/w cmd. If we fail to obtain card status, it suggests we can no 1073 * longer communicate with the card. 1074 * - Check the card state. If the card received the cmd but there was a 1075 * transient problem with the response, it might still be in a data transfer 1076 * mode. Try to send it a stop command. If this fails, we can't recover. 1077 * - If the r/w cmd failed due to a response CRC error, it was probably 1078 * transient, so retry the cmd. 1079 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry. 1080 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or 1081 * illegal cmd, retry. 1082 * Otherwise we don't understand what happened, so abort. 1083 */ 1084 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req, 1085 struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err) 1086 { 1087 bool prev_cmd_status_valid = true; 1088 u32 status, stop_status = 0; 1089 int err, retry; 1090 1091 if (mmc_card_removed(card)) 1092 return ERR_NOMEDIUM; 1093 1094 /* 1095 * Try to get card status which indicates both the card state 1096 * and why there was no response. If the first attempt fails, 1097 * we can't be sure the returned status is for the r/w command. 1098 */ 1099 for (retry = 2; retry >= 0; retry--) { 1100 err = __mmc_send_status(card, &status, 0); 1101 if (!err) 1102 break; 1103 1104 /* Re-tune if needed */ 1105 mmc_retune_recheck(card->host); 1106 1107 prev_cmd_status_valid = false; 1108 pr_err("%s: error %d sending status command, %sing\n", 1109 req->rq_disk->disk_name, err, retry ? "retry" : "abort"); 1110 } 1111 1112 /* We couldn't get a response from the card. Give up. */ 1113 if (err) { 1114 /* Check if the card is removed */ 1115 if (mmc_detect_card_removed(card->host)) 1116 return ERR_NOMEDIUM; 1117 return ERR_ABORT; 1118 } 1119 1120 /* Flag ECC errors */ 1121 if ((status & R1_CARD_ECC_FAILED) || 1122 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) || 1123 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED)) 1124 *ecc_err = true; 1125 1126 /* Flag General errors */ 1127 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) 1128 if ((status & R1_ERROR) || 1129 (brq->stop.resp[0] & R1_ERROR)) { 1130 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n", 1131 req->rq_disk->disk_name, __func__, 1132 brq->stop.resp[0], status); 1133 *gen_err = true; 1134 } 1135 1136 /* 1137 * Check the current card state. If it is in some data transfer 1138 * mode, tell it to stop (and hopefully transition back to TRAN.) 1139 */ 1140 if (R1_CURRENT_STATE(status) == R1_STATE_DATA || 1141 R1_CURRENT_STATE(status) == R1_STATE_RCV) { 1142 err = send_stop(card, 1143 DIV_ROUND_UP(brq->data.timeout_ns, 1000000), 1144 req, gen_err, &stop_status); 1145 if (err) { 1146 pr_err("%s: error %d sending stop command\n", 1147 req->rq_disk->disk_name, err); 1148 /* 1149 * If the stop cmd also timed out, the card is probably 1150 * not present, so abort. Other errors are bad news too. 1151 */ 1152 return ERR_ABORT; 1153 } 1154 1155 if (stop_status & R1_CARD_ECC_FAILED) 1156 *ecc_err = true; 1157 } 1158 1159 /* Check for set block count errors */ 1160 if (brq->sbc.error) 1161 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error, 1162 prev_cmd_status_valid, status); 1163 1164 /* Check for r/w command errors */ 1165 if (brq->cmd.error) 1166 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error, 1167 prev_cmd_status_valid, status); 1168 1169 /* Data errors */ 1170 if (!brq->stop.error) 1171 return ERR_CONTINUE; 1172 1173 /* Now for stop errors. These aren't fatal to the transfer. */ 1174 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n", 1175 req->rq_disk->disk_name, brq->stop.error, 1176 brq->cmd.resp[0], status); 1177 1178 /* 1179 * Subsitute in our own stop status as this will give the error 1180 * state which happened during the execution of the r/w command. 1181 */ 1182 if (stop_status) { 1183 brq->stop.resp[0] = stop_status; 1184 brq->stop.error = 0; 1185 } 1186 return ERR_CONTINUE; 1187 } 1188 1189 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1190 int type) 1191 { 1192 int err; 1193 1194 if (md->reset_done & type) 1195 return -EEXIST; 1196 1197 md->reset_done |= type; 1198 err = mmc_hw_reset(host); 1199 /* Ensure we switch back to the correct partition */ 1200 if (err != -EOPNOTSUPP) { 1201 struct mmc_blk_data *main_md = 1202 dev_get_drvdata(&host->card->dev); 1203 int part_err; 1204 1205 main_md->part_curr = main_md->part_type; 1206 part_err = mmc_blk_part_switch(host->card, md->part_type); 1207 if (part_err) { 1208 /* 1209 * We have failed to get back into the correct 1210 * partition, so we need to abort the whole request. 1211 */ 1212 return -ENODEV; 1213 } 1214 } 1215 return err; 1216 } 1217 1218 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1219 { 1220 md->reset_done &= ~type; 1221 } 1222 1223 /* 1224 * The non-block commands come back from the block layer after it queued it and 1225 * processed it with all other requests and then they get issued in this 1226 * function. 1227 */ 1228 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1229 { 1230 struct mmc_queue_req *mq_rq; 1231 struct mmc_card *card = mq->card; 1232 struct mmc_blk_data *md = mq->blkdata; 1233 struct mmc_blk_ioc_data **idata; 1234 bool rpmb_ioctl; 1235 u8 **ext_csd; 1236 u32 status; 1237 int ret; 1238 int i; 1239 1240 mq_rq = req_to_mmc_queue_req(req); 1241 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1242 1243 switch (mq_rq->drv_op) { 1244 case MMC_DRV_OP_IOCTL: 1245 case MMC_DRV_OP_IOCTL_RPMB: 1246 idata = mq_rq->drv_op_data; 1247 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1248 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1249 if (ret) 1250 break; 1251 } 1252 /* Always switch back to main area after RPMB access */ 1253 if (rpmb_ioctl) 1254 mmc_blk_part_switch(card, 0); 1255 break; 1256 case MMC_DRV_OP_BOOT_WP: 1257 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1258 card->ext_csd.boot_ro_lock | 1259 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1260 card->ext_csd.part_time); 1261 if (ret) 1262 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1263 md->disk->disk_name, ret); 1264 else 1265 card->ext_csd.boot_ro_lock |= 1266 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1267 break; 1268 case MMC_DRV_OP_GET_CARD_STATUS: 1269 ret = mmc_send_status(card, &status); 1270 if (!ret) 1271 ret = status; 1272 break; 1273 case MMC_DRV_OP_GET_EXT_CSD: 1274 ext_csd = mq_rq->drv_op_data; 1275 ret = mmc_get_ext_csd(card, ext_csd); 1276 break; 1277 default: 1278 pr_err("%s: unknown driver specific operation\n", 1279 md->disk->disk_name); 1280 ret = -EINVAL; 1281 break; 1282 } 1283 mq_rq->drv_op_result = ret; 1284 blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1285 } 1286 1287 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1288 { 1289 struct mmc_blk_data *md = mq->blkdata; 1290 struct mmc_card *card = md->queue.card; 1291 unsigned int from, nr, arg; 1292 int err = 0, type = MMC_BLK_DISCARD; 1293 blk_status_t status = BLK_STS_OK; 1294 1295 if (!mmc_can_erase(card)) { 1296 status = BLK_STS_NOTSUPP; 1297 goto fail; 1298 } 1299 1300 from = blk_rq_pos(req); 1301 nr = blk_rq_sectors(req); 1302 1303 if (mmc_can_discard(card)) 1304 arg = MMC_DISCARD_ARG; 1305 else if (mmc_can_trim(card)) 1306 arg = MMC_TRIM_ARG; 1307 else 1308 arg = MMC_ERASE_ARG; 1309 do { 1310 err = 0; 1311 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1312 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1313 INAND_CMD38_ARG_EXT_CSD, 1314 arg == MMC_TRIM_ARG ? 1315 INAND_CMD38_ARG_TRIM : 1316 INAND_CMD38_ARG_ERASE, 1317 0); 1318 } 1319 if (!err) 1320 err = mmc_erase(card, from, nr, arg); 1321 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1322 if (err) 1323 status = BLK_STS_IOERR; 1324 else 1325 mmc_blk_reset_success(md, type); 1326 fail: 1327 blk_end_request(req, status, blk_rq_bytes(req)); 1328 } 1329 1330 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1331 struct request *req) 1332 { 1333 struct mmc_blk_data *md = mq->blkdata; 1334 struct mmc_card *card = md->queue.card; 1335 unsigned int from, nr, arg; 1336 int err = 0, type = MMC_BLK_SECDISCARD; 1337 blk_status_t status = BLK_STS_OK; 1338 1339 if (!(mmc_can_secure_erase_trim(card))) { 1340 status = BLK_STS_NOTSUPP; 1341 goto out; 1342 } 1343 1344 from = blk_rq_pos(req); 1345 nr = blk_rq_sectors(req); 1346 1347 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1348 arg = MMC_SECURE_TRIM1_ARG; 1349 else 1350 arg = MMC_SECURE_ERASE_ARG; 1351 1352 retry: 1353 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1354 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1355 INAND_CMD38_ARG_EXT_CSD, 1356 arg == MMC_SECURE_TRIM1_ARG ? 1357 INAND_CMD38_ARG_SECTRIM1 : 1358 INAND_CMD38_ARG_SECERASE, 1359 0); 1360 if (err) 1361 goto out_retry; 1362 } 1363 1364 err = mmc_erase(card, from, nr, arg); 1365 if (err == -EIO) 1366 goto out_retry; 1367 if (err) { 1368 status = BLK_STS_IOERR; 1369 goto out; 1370 } 1371 1372 if (arg == MMC_SECURE_TRIM1_ARG) { 1373 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1374 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1375 INAND_CMD38_ARG_EXT_CSD, 1376 INAND_CMD38_ARG_SECTRIM2, 1377 0); 1378 if (err) 1379 goto out_retry; 1380 } 1381 1382 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1383 if (err == -EIO) 1384 goto out_retry; 1385 if (err) { 1386 status = BLK_STS_IOERR; 1387 goto out; 1388 } 1389 } 1390 1391 out_retry: 1392 if (err && !mmc_blk_reset(md, card->host, type)) 1393 goto retry; 1394 if (!err) 1395 mmc_blk_reset_success(md, type); 1396 out: 1397 blk_end_request(req, status, blk_rq_bytes(req)); 1398 } 1399 1400 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1401 { 1402 struct mmc_blk_data *md = mq->blkdata; 1403 struct mmc_card *card = md->queue.card; 1404 int ret = 0; 1405 1406 ret = mmc_flush_cache(card); 1407 blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1408 } 1409 1410 /* 1411 * Reformat current write as a reliable write, supporting 1412 * both legacy and the enhanced reliable write MMC cards. 1413 * In each transfer we'll handle only as much as a single 1414 * reliable write can handle, thus finish the request in 1415 * partial completions. 1416 */ 1417 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1418 struct mmc_card *card, 1419 struct request *req) 1420 { 1421 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1422 /* Legacy mode imposes restrictions on transfers. */ 1423 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1424 brq->data.blocks = 1; 1425 1426 if (brq->data.blocks > card->ext_csd.rel_sectors) 1427 brq->data.blocks = card->ext_csd.rel_sectors; 1428 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1429 brq->data.blocks = 1; 1430 } 1431 } 1432 1433 #define CMD_ERRORS \ 1434 (R1_OUT_OF_RANGE | /* Command argument out of range */ \ 1435 R1_ADDRESS_ERROR | /* Misaligned address */ \ 1436 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1437 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1438 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1439 R1_CC_ERROR | /* Card controller error */ \ 1440 R1_ERROR) /* General/unknown error */ 1441 1442 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1443 { 1444 u32 val; 1445 1446 /* 1447 * Per the SD specification(physical layer version 4.10)[1], 1448 * section 4.3.3, it explicitly states that "When the last 1449 * block of user area is read using CMD18, the host should 1450 * ignore OUT_OF_RANGE error that may occur even the sequence 1451 * is correct". And JESD84-B51 for eMMC also has a similar 1452 * statement on section 6.8.3. 1453 * 1454 * Multiple block read/write could be done by either predefined 1455 * method, namely CMD23, or open-ending mode. For open-ending mode, 1456 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1457 * 1458 * However the spec[1] doesn't tell us whether we should also 1459 * ignore that for predefined method. But per the spec[1], section 1460 * 4.15 Set Block Count Command, it says"If illegal block count 1461 * is set, out of range error will be indicated during read/write 1462 * operation (For example, data transfer is stopped at user area 1463 * boundary)." In another word, we could expect a out of range error 1464 * in the response for the following CMD18/25. And if argument of 1465 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1466 * we could also expect to get a -ETIMEDOUT or any error number from 1467 * the host drivers due to missing data response(for write)/data(for 1468 * read), as the cards will stop the data transfer by itself per the 1469 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1470 */ 1471 1472 if (!brq->stop.error) { 1473 bool oor_with_open_end; 1474 /* If there is no error yet, check R1 response */ 1475 1476 val = brq->stop.resp[0] & CMD_ERRORS; 1477 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1478 1479 if (val && !oor_with_open_end) 1480 brq->stop.error = -EIO; 1481 } 1482 } 1483 1484 static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card, 1485 struct mmc_async_req *areq) 1486 { 1487 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req, 1488 areq); 1489 struct mmc_blk_request *brq = &mq_mrq->brq; 1490 struct request *req = mmc_queue_req_to_req(mq_mrq); 1491 int need_retune = card->host->need_retune; 1492 bool ecc_err = false; 1493 bool gen_err = false; 1494 1495 /* 1496 * sbc.error indicates a problem with the set block count 1497 * command. No data will have been transferred. 1498 * 1499 * cmd.error indicates a problem with the r/w command. No 1500 * data will have been transferred. 1501 * 1502 * stop.error indicates a problem with the stop command. Data 1503 * may have been transferred, or may still be transferring. 1504 */ 1505 1506 mmc_blk_eval_resp_error(brq); 1507 1508 if (brq->sbc.error || brq->cmd.error || 1509 brq->stop.error || brq->data.error) { 1510 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) { 1511 case ERR_RETRY: 1512 return MMC_BLK_RETRY; 1513 case ERR_ABORT: 1514 return MMC_BLK_ABORT; 1515 case ERR_NOMEDIUM: 1516 return MMC_BLK_NOMEDIUM; 1517 case ERR_CONTINUE: 1518 break; 1519 } 1520 } 1521 1522 /* 1523 * Check for errors relating to the execution of the 1524 * initial command - such as address errors. No data 1525 * has been transferred. 1526 */ 1527 if (brq->cmd.resp[0] & CMD_ERRORS) { 1528 pr_err("%s: r/w command failed, status = %#x\n", 1529 req->rq_disk->disk_name, brq->cmd.resp[0]); 1530 return MMC_BLK_ABORT; 1531 } 1532 1533 /* 1534 * Everything else is either success, or a data error of some 1535 * kind. If it was a write, we may have transitioned to 1536 * program mode, which we have to wait for it to complete. 1537 */ 1538 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) { 1539 int err; 1540 1541 /* Check stop command response */ 1542 if (brq->stop.resp[0] & R1_ERROR) { 1543 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n", 1544 req->rq_disk->disk_name, __func__, 1545 brq->stop.resp[0]); 1546 gen_err = true; 1547 } 1548 1549 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req, 1550 &gen_err); 1551 if (err) 1552 return MMC_BLK_CMD_ERR; 1553 } 1554 1555 /* if general error occurs, retry the write operation. */ 1556 if (gen_err) { 1557 pr_warn("%s: retrying write for general error\n", 1558 req->rq_disk->disk_name); 1559 return MMC_BLK_RETRY; 1560 } 1561 1562 /* Some errors (ECC) are flagged on the next commmand, so check stop, too */ 1563 if (brq->data.error || brq->stop.error) { 1564 if (need_retune && !brq->retune_retry_done) { 1565 pr_debug("%s: retrying because a re-tune was needed\n", 1566 req->rq_disk->disk_name); 1567 brq->retune_retry_done = 1; 1568 return MMC_BLK_RETRY; 1569 } 1570 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n", 1571 req->rq_disk->disk_name, brq->data.error ?: brq->stop.error, 1572 (unsigned)blk_rq_pos(req), 1573 (unsigned)blk_rq_sectors(req), 1574 brq->cmd.resp[0], brq->stop.resp[0]); 1575 1576 if (rq_data_dir(req) == READ) { 1577 if (ecc_err) 1578 return MMC_BLK_ECC_ERR; 1579 return MMC_BLK_DATA_ERR; 1580 } else { 1581 return MMC_BLK_CMD_ERR; 1582 } 1583 } 1584 1585 if (!brq->data.bytes_xfered) 1586 return MMC_BLK_RETRY; 1587 1588 if (blk_rq_bytes(req) != brq->data.bytes_xfered) 1589 return MMC_BLK_PARTIAL; 1590 1591 return MMC_BLK_SUCCESS; 1592 } 1593 1594 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1595 int disable_multi, bool *do_rel_wr_p, 1596 bool *do_data_tag_p) 1597 { 1598 struct mmc_blk_data *md = mq->blkdata; 1599 struct mmc_card *card = md->queue.card; 1600 struct mmc_blk_request *brq = &mqrq->brq; 1601 struct request *req = mmc_queue_req_to_req(mqrq); 1602 bool do_rel_wr, do_data_tag; 1603 1604 /* 1605 * Reliable writes are used to implement Forced Unit Access and 1606 * are supported only on MMCs. 1607 */ 1608 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1609 rq_data_dir(req) == WRITE && 1610 (md->flags & MMC_BLK_REL_WR); 1611 1612 memset(brq, 0, sizeof(struct mmc_blk_request)); 1613 1614 brq->mrq.data = &brq->data; 1615 brq->mrq.tag = req->tag; 1616 1617 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1618 brq->stop.arg = 0; 1619 1620 if (rq_data_dir(req) == READ) { 1621 brq->data.flags = MMC_DATA_READ; 1622 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1623 } else { 1624 brq->data.flags = MMC_DATA_WRITE; 1625 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1626 } 1627 1628 brq->data.blksz = 512; 1629 brq->data.blocks = blk_rq_sectors(req); 1630 brq->data.blk_addr = blk_rq_pos(req); 1631 1632 /* 1633 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1634 * The eMMC will give "high" priority tasks priority over "simple" 1635 * priority tasks. Here we always set "simple" priority by not setting 1636 * MMC_DATA_PRIO. 1637 */ 1638 1639 /* 1640 * The block layer doesn't support all sector count 1641 * restrictions, so we need to be prepared for too big 1642 * requests. 1643 */ 1644 if (brq->data.blocks > card->host->max_blk_count) 1645 brq->data.blocks = card->host->max_blk_count; 1646 1647 if (brq->data.blocks > 1) { 1648 /* 1649 * After a read error, we redo the request one sector 1650 * at a time in order to accurately determine which 1651 * sectors can be read successfully. 1652 */ 1653 if (disable_multi) 1654 brq->data.blocks = 1; 1655 1656 /* 1657 * Some controllers have HW issues while operating 1658 * in multiple I/O mode 1659 */ 1660 if (card->host->ops->multi_io_quirk) 1661 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1662 (rq_data_dir(req) == READ) ? 1663 MMC_DATA_READ : MMC_DATA_WRITE, 1664 brq->data.blocks); 1665 } 1666 1667 if (do_rel_wr) { 1668 mmc_apply_rel_rw(brq, card, req); 1669 brq->data.flags |= MMC_DATA_REL_WR; 1670 } 1671 1672 /* 1673 * Data tag is used only during writing meta data to speed 1674 * up write and any subsequent read of this meta data 1675 */ 1676 do_data_tag = card->ext_csd.data_tag_unit_size && 1677 (req->cmd_flags & REQ_META) && 1678 (rq_data_dir(req) == WRITE) && 1679 ((brq->data.blocks * brq->data.blksz) >= 1680 card->ext_csd.data_tag_unit_size); 1681 1682 if (do_data_tag) 1683 brq->data.flags |= MMC_DATA_DAT_TAG; 1684 1685 mmc_set_data_timeout(&brq->data, card); 1686 1687 brq->data.sg = mqrq->sg; 1688 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1689 1690 /* 1691 * Adjust the sg list so it is the same size as the 1692 * request. 1693 */ 1694 if (brq->data.blocks != blk_rq_sectors(req)) { 1695 int i, data_size = brq->data.blocks << 9; 1696 struct scatterlist *sg; 1697 1698 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1699 data_size -= sg->length; 1700 if (data_size <= 0) { 1701 sg->length += data_size; 1702 i++; 1703 break; 1704 } 1705 } 1706 brq->data.sg_len = i; 1707 } 1708 1709 mqrq->areq.mrq = &brq->mrq; 1710 1711 if (do_rel_wr_p) 1712 *do_rel_wr_p = do_rel_wr; 1713 1714 if (do_data_tag_p) 1715 *do_data_tag_p = do_data_tag; 1716 } 1717 1718 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1719 struct mmc_card *card, 1720 int disable_multi, 1721 struct mmc_queue *mq) 1722 { 1723 u32 readcmd, writecmd; 1724 struct mmc_blk_request *brq = &mqrq->brq; 1725 struct request *req = mmc_queue_req_to_req(mqrq); 1726 struct mmc_blk_data *md = mq->blkdata; 1727 bool do_rel_wr, do_data_tag; 1728 1729 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1730 1731 brq->mrq.cmd = &brq->cmd; 1732 1733 brq->cmd.arg = blk_rq_pos(req); 1734 if (!mmc_card_blockaddr(card)) 1735 brq->cmd.arg <<= 9; 1736 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1737 1738 if (brq->data.blocks > 1 || do_rel_wr) { 1739 /* SPI multiblock writes terminate using a special 1740 * token, not a STOP_TRANSMISSION request. 1741 */ 1742 if (!mmc_host_is_spi(card->host) || 1743 rq_data_dir(req) == READ) 1744 brq->mrq.stop = &brq->stop; 1745 readcmd = MMC_READ_MULTIPLE_BLOCK; 1746 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1747 } else { 1748 brq->mrq.stop = NULL; 1749 readcmd = MMC_READ_SINGLE_BLOCK; 1750 writecmd = MMC_WRITE_BLOCK; 1751 } 1752 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1753 1754 /* 1755 * Pre-defined multi-block transfers are preferable to 1756 * open ended-ones (and necessary for reliable writes). 1757 * However, it is not sufficient to just send CMD23, 1758 * and avoid the final CMD12, as on an error condition 1759 * CMD12 (stop) needs to be sent anyway. This, coupled 1760 * with Auto-CMD23 enhancements provided by some 1761 * hosts, means that the complexity of dealing 1762 * with this is best left to the host. If CMD23 is 1763 * supported by card and host, we'll fill sbc in and let 1764 * the host deal with handling it correctly. This means 1765 * that for hosts that don't expose MMC_CAP_CMD23, no 1766 * change of behavior will be observed. 1767 * 1768 * N.B: Some MMC cards experience perf degradation. 1769 * We'll avoid using CMD23-bounded multiblock writes for 1770 * these, while retaining features like reliable writes. 1771 */ 1772 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1773 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1774 do_data_tag)) { 1775 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1776 brq->sbc.arg = brq->data.blocks | 1777 (do_rel_wr ? (1 << 31) : 0) | 1778 (do_data_tag ? (1 << 29) : 0); 1779 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1780 brq->mrq.sbc = &brq->sbc; 1781 } 1782 1783 mqrq->areq.err_check = mmc_blk_err_check; 1784 } 1785 1786 static bool mmc_blk_rw_cmd_err(struct mmc_blk_data *md, struct mmc_card *card, 1787 struct mmc_blk_request *brq, struct request *req, 1788 bool old_req_pending) 1789 { 1790 bool req_pending; 1791 1792 /* 1793 * If this is an SD card and we're writing, we can first 1794 * mark the known good sectors as ok. 1795 * 1796 * If the card is not SD, we can still ok written sectors 1797 * as reported by the controller (which might be less than 1798 * the real number of written sectors, but never more). 1799 */ 1800 if (mmc_card_sd(card)) { 1801 u32 blocks; 1802 int err; 1803 1804 err = mmc_sd_num_wr_blocks(card, &blocks); 1805 if (err) 1806 req_pending = old_req_pending; 1807 else 1808 req_pending = blk_end_request(req, BLK_STS_OK, blocks << 9); 1809 } else { 1810 req_pending = blk_end_request(req, BLK_STS_OK, brq->data.bytes_xfered); 1811 } 1812 return req_pending; 1813 } 1814 1815 static void mmc_blk_rw_cmd_abort(struct mmc_queue *mq, struct mmc_card *card, 1816 struct request *req, 1817 struct mmc_queue_req *mqrq) 1818 { 1819 if (mmc_card_removed(card)) 1820 req->rq_flags |= RQF_QUIET; 1821 while (blk_end_request(req, BLK_STS_IOERR, blk_rq_cur_bytes(req))); 1822 mq->qcnt--; 1823 } 1824 1825 /** 1826 * mmc_blk_rw_try_restart() - tries to restart the current async request 1827 * @mq: the queue with the card and host to restart 1828 * @req: a new request that want to be started after the current one 1829 */ 1830 static void mmc_blk_rw_try_restart(struct mmc_queue *mq, struct request *req, 1831 struct mmc_queue_req *mqrq) 1832 { 1833 if (!req) 1834 return; 1835 1836 /* 1837 * If the card was removed, just cancel everything and return. 1838 */ 1839 if (mmc_card_removed(mq->card)) { 1840 req->rq_flags |= RQF_QUIET; 1841 blk_end_request_all(req, BLK_STS_IOERR); 1842 mq->qcnt--; /* FIXME: just set to 0? */ 1843 return; 1844 } 1845 /* Else proceed and try to restart the current async request */ 1846 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1847 mmc_start_areq(mq->card->host, &mqrq->areq, NULL); 1848 } 1849 1850 static void mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *new_req) 1851 { 1852 struct mmc_blk_data *md = mq->blkdata; 1853 struct mmc_card *card = md->queue.card; 1854 struct mmc_blk_request *brq; 1855 int disable_multi = 0, retry = 0, type, retune_retry_done = 0; 1856 enum mmc_blk_status status; 1857 struct mmc_queue_req *mqrq_cur = NULL; 1858 struct mmc_queue_req *mq_rq; 1859 struct request *old_req; 1860 struct mmc_async_req *new_areq; 1861 struct mmc_async_req *old_areq; 1862 bool req_pending = true; 1863 1864 if (new_req) { 1865 mqrq_cur = req_to_mmc_queue_req(new_req); 1866 mq->qcnt++; 1867 } 1868 1869 if (!mq->qcnt) 1870 return; 1871 1872 do { 1873 if (new_req) { 1874 /* 1875 * When 4KB native sector is enabled, only 8 blocks 1876 * multiple read or write is allowed 1877 */ 1878 if (mmc_large_sector(card) && 1879 !IS_ALIGNED(blk_rq_sectors(new_req), 8)) { 1880 pr_err("%s: Transfer size is not 4KB sector size aligned\n", 1881 new_req->rq_disk->disk_name); 1882 mmc_blk_rw_cmd_abort(mq, card, new_req, mqrq_cur); 1883 return; 1884 } 1885 1886 mmc_blk_rw_rq_prep(mqrq_cur, card, 0, mq); 1887 new_areq = &mqrq_cur->areq; 1888 } else 1889 new_areq = NULL; 1890 1891 old_areq = mmc_start_areq(card->host, new_areq, &status); 1892 if (!old_areq) { 1893 /* 1894 * We have just put the first request into the pipeline 1895 * and there is nothing more to do until it is 1896 * complete. 1897 */ 1898 return; 1899 } 1900 1901 /* 1902 * An asynchronous request has been completed and we proceed 1903 * to handle the result of it. 1904 */ 1905 mq_rq = container_of(old_areq, struct mmc_queue_req, areq); 1906 brq = &mq_rq->brq; 1907 old_req = mmc_queue_req_to_req(mq_rq); 1908 type = rq_data_dir(old_req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1909 1910 switch (status) { 1911 case MMC_BLK_SUCCESS: 1912 case MMC_BLK_PARTIAL: 1913 /* 1914 * A block was successfully transferred. 1915 */ 1916 mmc_blk_reset_success(md, type); 1917 1918 req_pending = blk_end_request(old_req, BLK_STS_OK, 1919 brq->data.bytes_xfered); 1920 /* 1921 * If the blk_end_request function returns non-zero even 1922 * though all data has been transferred and no errors 1923 * were returned by the host controller, it's a bug. 1924 */ 1925 if (status == MMC_BLK_SUCCESS && req_pending) { 1926 pr_err("%s BUG rq_tot %d d_xfer %d\n", 1927 __func__, blk_rq_bytes(old_req), 1928 brq->data.bytes_xfered); 1929 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); 1930 return; 1931 } 1932 break; 1933 case MMC_BLK_CMD_ERR: 1934 req_pending = mmc_blk_rw_cmd_err(md, card, brq, old_req, req_pending); 1935 if (mmc_blk_reset(md, card->host, type)) { 1936 if (req_pending) 1937 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); 1938 else 1939 mq->qcnt--; 1940 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); 1941 return; 1942 } 1943 if (!req_pending) { 1944 mq->qcnt--; 1945 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); 1946 return; 1947 } 1948 break; 1949 case MMC_BLK_RETRY: 1950 retune_retry_done = brq->retune_retry_done; 1951 if (retry++ < 5) 1952 break; 1953 /* Fall through */ 1954 case MMC_BLK_ABORT: 1955 if (!mmc_blk_reset(md, card->host, type)) 1956 break; 1957 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); 1958 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); 1959 return; 1960 case MMC_BLK_DATA_ERR: { 1961 int err; 1962 1963 err = mmc_blk_reset(md, card->host, type); 1964 if (!err) 1965 break; 1966 if (err == -ENODEV) { 1967 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); 1968 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); 1969 return; 1970 } 1971 /* Fall through */ 1972 } 1973 case MMC_BLK_ECC_ERR: 1974 if (brq->data.blocks > 1) { 1975 /* Redo read one sector at a time */ 1976 pr_warn("%s: retrying using single block read\n", 1977 old_req->rq_disk->disk_name); 1978 disable_multi = 1; 1979 break; 1980 } 1981 /* 1982 * After an error, we redo I/O one sector at a 1983 * time, so we only reach here after trying to 1984 * read a single sector. 1985 */ 1986 req_pending = blk_end_request(old_req, BLK_STS_IOERR, 1987 brq->data.blksz); 1988 if (!req_pending) { 1989 mq->qcnt--; 1990 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); 1991 return; 1992 } 1993 break; 1994 case MMC_BLK_NOMEDIUM: 1995 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); 1996 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); 1997 return; 1998 default: 1999 pr_err("%s: Unhandled return value (%d)", 2000 old_req->rq_disk->disk_name, status); 2001 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); 2002 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); 2003 return; 2004 } 2005 2006 if (req_pending) { 2007 /* 2008 * In case of a incomplete request 2009 * prepare it again and resend. 2010 */ 2011 mmc_blk_rw_rq_prep(mq_rq, card, 2012 disable_multi, mq); 2013 mmc_start_areq(card->host, 2014 &mq_rq->areq, NULL); 2015 mq_rq->brq.retune_retry_done = retune_retry_done; 2016 } 2017 } while (req_pending); 2018 2019 mq->qcnt--; 2020 } 2021 2022 void mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req) 2023 { 2024 int ret; 2025 struct mmc_blk_data *md = mq->blkdata; 2026 struct mmc_card *card = md->queue.card; 2027 2028 if (req && !mq->qcnt) 2029 /* claim host only for the first request */ 2030 mmc_get_card(card, NULL); 2031 2032 ret = mmc_blk_part_switch(card, md->part_type); 2033 if (ret) { 2034 if (req) { 2035 blk_end_request_all(req, BLK_STS_IOERR); 2036 } 2037 goto out; 2038 } 2039 2040 if (req) { 2041 switch (req_op(req)) { 2042 case REQ_OP_DRV_IN: 2043 case REQ_OP_DRV_OUT: 2044 /* 2045 * Complete ongoing async transfer before issuing 2046 * ioctl()s 2047 */ 2048 if (mq->qcnt) 2049 mmc_blk_issue_rw_rq(mq, NULL); 2050 mmc_blk_issue_drv_op(mq, req); 2051 break; 2052 case REQ_OP_DISCARD: 2053 /* 2054 * Complete ongoing async transfer before issuing 2055 * discard. 2056 */ 2057 if (mq->qcnt) 2058 mmc_blk_issue_rw_rq(mq, NULL); 2059 mmc_blk_issue_discard_rq(mq, req); 2060 break; 2061 case REQ_OP_SECURE_ERASE: 2062 /* 2063 * Complete ongoing async transfer before issuing 2064 * secure erase. 2065 */ 2066 if (mq->qcnt) 2067 mmc_blk_issue_rw_rq(mq, NULL); 2068 mmc_blk_issue_secdiscard_rq(mq, req); 2069 break; 2070 case REQ_OP_FLUSH: 2071 /* 2072 * Complete ongoing async transfer before issuing 2073 * flush. 2074 */ 2075 if (mq->qcnt) 2076 mmc_blk_issue_rw_rq(mq, NULL); 2077 mmc_blk_issue_flush(mq, req); 2078 break; 2079 default: 2080 /* Normal request, just issue it */ 2081 mmc_blk_issue_rw_rq(mq, req); 2082 card->host->context_info.is_waiting_last_req = false; 2083 break; 2084 } 2085 } else { 2086 /* No request, flushing the pipeline with NULL */ 2087 mmc_blk_issue_rw_rq(mq, NULL); 2088 card->host->context_info.is_waiting_last_req = false; 2089 } 2090 2091 out: 2092 if (!mq->qcnt) 2093 mmc_put_card(card, NULL); 2094 } 2095 2096 static inline int mmc_blk_readonly(struct mmc_card *card) 2097 { 2098 return mmc_card_readonly(card) || 2099 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2100 } 2101 2102 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2103 struct device *parent, 2104 sector_t size, 2105 bool default_ro, 2106 const char *subname, 2107 int area_type) 2108 { 2109 struct mmc_blk_data *md; 2110 int devidx, ret; 2111 2112 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2113 if (devidx < 0) { 2114 /* 2115 * We get -ENOSPC because there are no more any available 2116 * devidx. The reason may be that, either userspace haven't yet 2117 * unmounted the partitions, which postpones mmc_blk_release() 2118 * from being called, or the device has more partitions than 2119 * what we support. 2120 */ 2121 if (devidx == -ENOSPC) 2122 dev_err(mmc_dev(card->host), 2123 "no more device IDs available\n"); 2124 2125 return ERR_PTR(devidx); 2126 } 2127 2128 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2129 if (!md) { 2130 ret = -ENOMEM; 2131 goto out; 2132 } 2133 2134 md->area_type = area_type; 2135 2136 /* 2137 * Set the read-only status based on the supported commands 2138 * and the write protect switch. 2139 */ 2140 md->read_only = mmc_blk_readonly(card); 2141 2142 md->disk = alloc_disk(perdev_minors); 2143 if (md->disk == NULL) { 2144 ret = -ENOMEM; 2145 goto err_kfree; 2146 } 2147 2148 spin_lock_init(&md->lock); 2149 INIT_LIST_HEAD(&md->part); 2150 INIT_LIST_HEAD(&md->rpmbs); 2151 md->usage = 1; 2152 2153 ret = mmc_init_queue(&md->queue, card, &md->lock, subname); 2154 if (ret) 2155 goto err_putdisk; 2156 2157 md->queue.blkdata = md; 2158 2159 md->disk->major = MMC_BLOCK_MAJOR; 2160 md->disk->first_minor = devidx * perdev_minors; 2161 md->disk->fops = &mmc_bdops; 2162 md->disk->private_data = md; 2163 md->disk->queue = md->queue.queue; 2164 md->parent = parent; 2165 set_disk_ro(md->disk, md->read_only || default_ro); 2166 md->disk->flags = GENHD_FL_EXT_DEVT; 2167 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2168 md->disk->flags |= GENHD_FL_NO_PART_SCAN; 2169 2170 /* 2171 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2172 * 2173 * - be set for removable media with permanent block devices 2174 * - be unset for removable block devices with permanent media 2175 * 2176 * Since MMC block devices clearly fall under the second 2177 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2178 * should use the block device creation/destruction hotplug 2179 * messages to tell when the card is present. 2180 */ 2181 2182 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2183 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2184 2185 if (mmc_card_mmc(card)) 2186 blk_queue_logical_block_size(md->queue.queue, 2187 card->ext_csd.data_sector_size); 2188 else 2189 blk_queue_logical_block_size(md->queue.queue, 512); 2190 2191 set_capacity(md->disk, size); 2192 2193 if (mmc_host_cmd23(card->host)) { 2194 if ((mmc_card_mmc(card) && 2195 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2196 (mmc_card_sd(card) && 2197 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2198 md->flags |= MMC_BLK_CMD23; 2199 } 2200 2201 if (mmc_card_mmc(card) && 2202 md->flags & MMC_BLK_CMD23 && 2203 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2204 card->ext_csd.rel_sectors)) { 2205 md->flags |= MMC_BLK_REL_WR; 2206 blk_queue_write_cache(md->queue.queue, true, true); 2207 } 2208 2209 return md; 2210 2211 err_putdisk: 2212 put_disk(md->disk); 2213 err_kfree: 2214 kfree(md); 2215 out: 2216 ida_simple_remove(&mmc_blk_ida, devidx); 2217 return ERR_PTR(ret); 2218 } 2219 2220 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2221 { 2222 sector_t size; 2223 2224 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2225 /* 2226 * The EXT_CSD sector count is in number or 512 byte 2227 * sectors. 2228 */ 2229 size = card->ext_csd.sectors; 2230 } else { 2231 /* 2232 * The CSD capacity field is in units of read_blkbits. 2233 * set_capacity takes units of 512 bytes. 2234 */ 2235 size = (typeof(sector_t))card->csd.capacity 2236 << (card->csd.read_blkbits - 9); 2237 } 2238 2239 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2240 MMC_BLK_DATA_AREA_MAIN); 2241 } 2242 2243 static int mmc_blk_alloc_part(struct mmc_card *card, 2244 struct mmc_blk_data *md, 2245 unsigned int part_type, 2246 sector_t size, 2247 bool default_ro, 2248 const char *subname, 2249 int area_type) 2250 { 2251 char cap_str[10]; 2252 struct mmc_blk_data *part_md; 2253 2254 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2255 subname, area_type); 2256 if (IS_ERR(part_md)) 2257 return PTR_ERR(part_md); 2258 part_md->part_type = part_type; 2259 list_add(&part_md->part, &md->part); 2260 2261 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2262 cap_str, sizeof(cap_str)); 2263 pr_info("%s: %s %s partition %u %s\n", 2264 part_md->disk->disk_name, mmc_card_id(card), 2265 mmc_card_name(card), part_md->part_type, cap_str); 2266 return 0; 2267 } 2268 2269 /** 2270 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2271 * @filp: the character device file 2272 * @cmd: the ioctl() command 2273 * @arg: the argument from userspace 2274 * 2275 * This will essentially just redirect the ioctl()s coming in over to 2276 * the main block device spawning the RPMB character device. 2277 */ 2278 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2279 unsigned long arg) 2280 { 2281 struct mmc_rpmb_data *rpmb = filp->private_data; 2282 int ret; 2283 2284 switch (cmd) { 2285 case MMC_IOC_CMD: 2286 ret = mmc_blk_ioctl_cmd(rpmb->md, 2287 (struct mmc_ioc_cmd __user *)arg, 2288 rpmb); 2289 break; 2290 case MMC_IOC_MULTI_CMD: 2291 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2292 (struct mmc_ioc_multi_cmd __user *)arg, 2293 rpmb); 2294 break; 2295 default: 2296 ret = -EINVAL; 2297 break; 2298 } 2299 2300 return 0; 2301 } 2302 2303 #ifdef CONFIG_COMPAT 2304 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2305 unsigned long arg) 2306 { 2307 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2308 } 2309 #endif 2310 2311 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2312 { 2313 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2314 struct mmc_rpmb_data, chrdev); 2315 2316 get_device(&rpmb->dev); 2317 filp->private_data = rpmb; 2318 mmc_blk_get(rpmb->md->disk); 2319 2320 return nonseekable_open(inode, filp); 2321 } 2322 2323 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2324 { 2325 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2326 struct mmc_rpmb_data, chrdev); 2327 2328 put_device(&rpmb->dev); 2329 mmc_blk_put(rpmb->md); 2330 2331 return 0; 2332 } 2333 2334 static const struct file_operations mmc_rpmb_fileops = { 2335 .release = mmc_rpmb_chrdev_release, 2336 .open = mmc_rpmb_chrdev_open, 2337 .owner = THIS_MODULE, 2338 .llseek = no_llseek, 2339 .unlocked_ioctl = mmc_rpmb_ioctl, 2340 #ifdef CONFIG_COMPAT 2341 .compat_ioctl = mmc_rpmb_ioctl_compat, 2342 #endif 2343 }; 2344 2345 static void mmc_blk_rpmb_device_release(struct device *dev) 2346 { 2347 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2348 2349 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2350 kfree(rpmb); 2351 } 2352 2353 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2354 struct mmc_blk_data *md, 2355 unsigned int part_index, 2356 sector_t size, 2357 const char *subname) 2358 { 2359 int devidx, ret; 2360 char rpmb_name[DISK_NAME_LEN]; 2361 char cap_str[10]; 2362 struct mmc_rpmb_data *rpmb; 2363 2364 /* This creates the minor number for the RPMB char device */ 2365 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2366 if (devidx < 0) 2367 return devidx; 2368 2369 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2370 if (!rpmb) { 2371 ida_simple_remove(&mmc_rpmb_ida, devidx); 2372 return -ENOMEM; 2373 } 2374 2375 snprintf(rpmb_name, sizeof(rpmb_name), 2376 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2377 2378 rpmb->id = devidx; 2379 rpmb->part_index = part_index; 2380 rpmb->dev.init_name = rpmb_name; 2381 rpmb->dev.bus = &mmc_rpmb_bus_type; 2382 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2383 rpmb->dev.parent = &card->dev; 2384 rpmb->dev.release = mmc_blk_rpmb_device_release; 2385 device_initialize(&rpmb->dev); 2386 dev_set_drvdata(&rpmb->dev, rpmb); 2387 rpmb->md = md; 2388 2389 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2390 rpmb->chrdev.owner = THIS_MODULE; 2391 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2392 if (ret) { 2393 pr_err("%s: could not add character device\n", rpmb_name); 2394 goto out_put_device; 2395 } 2396 2397 list_add(&rpmb->node, &md->rpmbs); 2398 2399 string_get_size((u64)size, 512, STRING_UNITS_2, 2400 cap_str, sizeof(cap_str)); 2401 2402 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n", 2403 rpmb_name, mmc_card_id(card), 2404 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str, 2405 MAJOR(mmc_rpmb_devt), rpmb->id); 2406 2407 return 0; 2408 2409 out_put_device: 2410 put_device(&rpmb->dev); 2411 return ret; 2412 } 2413 2414 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2415 2416 { 2417 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2418 put_device(&rpmb->dev); 2419 } 2420 2421 /* MMC Physical partitions consist of two boot partitions and 2422 * up to four general purpose partitions. 2423 * For each partition enabled in EXT_CSD a block device will be allocatedi 2424 * to provide access to the partition. 2425 */ 2426 2427 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2428 { 2429 int idx, ret; 2430 2431 if (!mmc_card_mmc(card)) 2432 return 0; 2433 2434 for (idx = 0; idx < card->nr_parts; idx++) { 2435 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2436 /* 2437 * RPMB partitions does not provide block access, they 2438 * are only accessed using ioctl():s. Thus create 2439 * special RPMB block devices that do not have a 2440 * backing block queue for these. 2441 */ 2442 ret = mmc_blk_alloc_rpmb_part(card, md, 2443 card->part[idx].part_cfg, 2444 card->part[idx].size >> 9, 2445 card->part[idx].name); 2446 if (ret) 2447 return ret; 2448 } else if (card->part[idx].size) { 2449 ret = mmc_blk_alloc_part(card, md, 2450 card->part[idx].part_cfg, 2451 card->part[idx].size >> 9, 2452 card->part[idx].force_ro, 2453 card->part[idx].name, 2454 card->part[idx].area_type); 2455 if (ret) 2456 return ret; 2457 } 2458 } 2459 2460 return 0; 2461 } 2462 2463 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2464 { 2465 struct mmc_card *card; 2466 2467 if (md) { 2468 /* 2469 * Flush remaining requests and free queues. It 2470 * is freeing the queue that stops new requests 2471 * from being accepted. 2472 */ 2473 card = md->queue.card; 2474 spin_lock_irq(md->queue.queue->queue_lock); 2475 queue_flag_set(QUEUE_FLAG_BYPASS, md->queue.queue); 2476 spin_unlock_irq(md->queue.queue->queue_lock); 2477 blk_set_queue_dying(md->queue.queue); 2478 mmc_cleanup_queue(&md->queue); 2479 if (md->disk->flags & GENHD_FL_UP) { 2480 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2481 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2482 card->ext_csd.boot_ro_lockable) 2483 device_remove_file(disk_to_dev(md->disk), 2484 &md->power_ro_lock); 2485 2486 del_gendisk(md->disk); 2487 } 2488 mmc_blk_put(md); 2489 } 2490 } 2491 2492 static void mmc_blk_remove_parts(struct mmc_card *card, 2493 struct mmc_blk_data *md) 2494 { 2495 struct list_head *pos, *q; 2496 struct mmc_blk_data *part_md; 2497 struct mmc_rpmb_data *rpmb; 2498 2499 /* Remove RPMB partitions */ 2500 list_for_each_safe(pos, q, &md->rpmbs) { 2501 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2502 list_del(pos); 2503 mmc_blk_remove_rpmb_part(rpmb); 2504 } 2505 /* Remove block partitions */ 2506 list_for_each_safe(pos, q, &md->part) { 2507 part_md = list_entry(pos, struct mmc_blk_data, part); 2508 list_del(pos); 2509 mmc_blk_remove_req(part_md); 2510 } 2511 } 2512 2513 static int mmc_add_disk(struct mmc_blk_data *md) 2514 { 2515 int ret; 2516 struct mmc_card *card = md->queue.card; 2517 2518 device_add_disk(md->parent, md->disk); 2519 md->force_ro.show = force_ro_show; 2520 md->force_ro.store = force_ro_store; 2521 sysfs_attr_init(&md->force_ro.attr); 2522 md->force_ro.attr.name = "force_ro"; 2523 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2524 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2525 if (ret) 2526 goto force_ro_fail; 2527 2528 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2529 card->ext_csd.boot_ro_lockable) { 2530 umode_t mode; 2531 2532 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2533 mode = S_IRUGO; 2534 else 2535 mode = S_IRUGO | S_IWUSR; 2536 2537 md->power_ro_lock.show = power_ro_lock_show; 2538 md->power_ro_lock.store = power_ro_lock_store; 2539 sysfs_attr_init(&md->power_ro_lock.attr); 2540 md->power_ro_lock.attr.mode = mode; 2541 md->power_ro_lock.attr.name = 2542 "ro_lock_until_next_power_on"; 2543 ret = device_create_file(disk_to_dev(md->disk), 2544 &md->power_ro_lock); 2545 if (ret) 2546 goto power_ro_lock_fail; 2547 } 2548 return ret; 2549 2550 power_ro_lock_fail: 2551 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2552 force_ro_fail: 2553 del_gendisk(md->disk); 2554 2555 return ret; 2556 } 2557 2558 #ifdef CONFIG_DEBUG_FS 2559 2560 static int mmc_dbg_card_status_get(void *data, u64 *val) 2561 { 2562 struct mmc_card *card = data; 2563 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2564 struct mmc_queue *mq = &md->queue; 2565 struct request *req; 2566 int ret; 2567 2568 /* Ask the block layer about the card status */ 2569 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM); 2570 if (IS_ERR(req)) 2571 return PTR_ERR(req); 2572 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2573 blk_execute_rq(mq->queue, NULL, req, 0); 2574 ret = req_to_mmc_queue_req(req)->drv_op_result; 2575 if (ret >= 0) { 2576 *val = ret; 2577 ret = 0; 2578 } 2579 blk_put_request(req); 2580 2581 return ret; 2582 } 2583 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2584 NULL, "%08llx\n"); 2585 2586 /* That is two digits * 512 + 1 for newline */ 2587 #define EXT_CSD_STR_LEN 1025 2588 2589 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2590 { 2591 struct mmc_card *card = inode->i_private; 2592 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2593 struct mmc_queue *mq = &md->queue; 2594 struct request *req; 2595 char *buf; 2596 ssize_t n = 0; 2597 u8 *ext_csd; 2598 int err, i; 2599 2600 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2601 if (!buf) 2602 return -ENOMEM; 2603 2604 /* Ask the block layer for the EXT CSD */ 2605 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM); 2606 if (IS_ERR(req)) { 2607 err = PTR_ERR(req); 2608 goto out_free; 2609 } 2610 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2611 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2612 blk_execute_rq(mq->queue, NULL, req, 0); 2613 err = req_to_mmc_queue_req(req)->drv_op_result; 2614 blk_put_request(req); 2615 if (err) { 2616 pr_err("FAILED %d\n", err); 2617 goto out_free; 2618 } 2619 2620 for (i = 0; i < 512; i++) 2621 n += sprintf(buf + n, "%02x", ext_csd[i]); 2622 n += sprintf(buf + n, "\n"); 2623 2624 if (n != EXT_CSD_STR_LEN) { 2625 err = -EINVAL; 2626 goto out_free; 2627 } 2628 2629 filp->private_data = buf; 2630 kfree(ext_csd); 2631 return 0; 2632 2633 out_free: 2634 kfree(buf); 2635 return err; 2636 } 2637 2638 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2639 size_t cnt, loff_t *ppos) 2640 { 2641 char *buf = filp->private_data; 2642 2643 return simple_read_from_buffer(ubuf, cnt, ppos, 2644 buf, EXT_CSD_STR_LEN); 2645 } 2646 2647 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2648 { 2649 kfree(file->private_data); 2650 return 0; 2651 } 2652 2653 static const struct file_operations mmc_dbg_ext_csd_fops = { 2654 .open = mmc_ext_csd_open, 2655 .read = mmc_ext_csd_read, 2656 .release = mmc_ext_csd_release, 2657 .llseek = default_llseek, 2658 }; 2659 2660 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2661 { 2662 struct dentry *root; 2663 2664 if (!card->debugfs_root) 2665 return 0; 2666 2667 root = card->debugfs_root; 2668 2669 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2670 md->status_dentry = 2671 debugfs_create_file("status", S_IRUSR, root, card, 2672 &mmc_dbg_card_status_fops); 2673 if (!md->status_dentry) 2674 return -EIO; 2675 } 2676 2677 if (mmc_card_mmc(card)) { 2678 md->ext_csd_dentry = 2679 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2680 &mmc_dbg_ext_csd_fops); 2681 if (!md->ext_csd_dentry) 2682 return -EIO; 2683 } 2684 2685 return 0; 2686 } 2687 2688 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2689 struct mmc_blk_data *md) 2690 { 2691 if (!card->debugfs_root) 2692 return; 2693 2694 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2695 debugfs_remove(md->status_dentry); 2696 md->status_dentry = NULL; 2697 } 2698 2699 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2700 debugfs_remove(md->ext_csd_dentry); 2701 md->ext_csd_dentry = NULL; 2702 } 2703 } 2704 2705 #else 2706 2707 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2708 { 2709 return 0; 2710 } 2711 2712 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2713 struct mmc_blk_data *md) 2714 { 2715 } 2716 2717 #endif /* CONFIG_DEBUG_FS */ 2718 2719 static int mmc_blk_probe(struct mmc_card *card) 2720 { 2721 struct mmc_blk_data *md, *part_md; 2722 char cap_str[10]; 2723 2724 /* 2725 * Check that the card supports the command class(es) we need. 2726 */ 2727 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2728 return -ENODEV; 2729 2730 mmc_fixup_device(card, mmc_blk_fixups); 2731 2732 md = mmc_blk_alloc(card); 2733 if (IS_ERR(md)) 2734 return PTR_ERR(md); 2735 2736 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2737 cap_str, sizeof(cap_str)); 2738 pr_info("%s: %s %s %s %s\n", 2739 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2740 cap_str, md->read_only ? "(ro)" : ""); 2741 2742 if (mmc_blk_alloc_parts(card, md)) 2743 goto out; 2744 2745 dev_set_drvdata(&card->dev, md); 2746 2747 if (mmc_add_disk(md)) 2748 goto out; 2749 2750 list_for_each_entry(part_md, &md->part, part) { 2751 if (mmc_add_disk(part_md)) 2752 goto out; 2753 } 2754 2755 /* Add two debugfs entries */ 2756 mmc_blk_add_debugfs(card, md); 2757 2758 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2759 pm_runtime_use_autosuspend(&card->dev); 2760 2761 /* 2762 * Don't enable runtime PM for SD-combo cards here. Leave that 2763 * decision to be taken during the SDIO init sequence instead. 2764 */ 2765 if (card->type != MMC_TYPE_SD_COMBO) { 2766 pm_runtime_set_active(&card->dev); 2767 pm_runtime_enable(&card->dev); 2768 } 2769 2770 return 0; 2771 2772 out: 2773 mmc_blk_remove_parts(card, md); 2774 mmc_blk_remove_req(md); 2775 return 0; 2776 } 2777 2778 static void mmc_blk_remove(struct mmc_card *card) 2779 { 2780 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2781 2782 mmc_blk_remove_debugfs(card, md); 2783 mmc_blk_remove_parts(card, md); 2784 pm_runtime_get_sync(&card->dev); 2785 mmc_claim_host(card->host); 2786 mmc_blk_part_switch(card, md->part_type); 2787 mmc_release_host(card->host); 2788 if (card->type != MMC_TYPE_SD_COMBO) 2789 pm_runtime_disable(&card->dev); 2790 pm_runtime_put_noidle(&card->dev); 2791 mmc_blk_remove_req(md); 2792 dev_set_drvdata(&card->dev, NULL); 2793 } 2794 2795 static int _mmc_blk_suspend(struct mmc_card *card) 2796 { 2797 struct mmc_blk_data *part_md; 2798 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2799 2800 if (md) { 2801 mmc_queue_suspend(&md->queue); 2802 list_for_each_entry(part_md, &md->part, part) { 2803 mmc_queue_suspend(&part_md->queue); 2804 } 2805 } 2806 return 0; 2807 } 2808 2809 static void mmc_blk_shutdown(struct mmc_card *card) 2810 { 2811 _mmc_blk_suspend(card); 2812 } 2813 2814 #ifdef CONFIG_PM_SLEEP 2815 static int mmc_blk_suspend(struct device *dev) 2816 { 2817 struct mmc_card *card = mmc_dev_to_card(dev); 2818 2819 return _mmc_blk_suspend(card); 2820 } 2821 2822 static int mmc_blk_resume(struct device *dev) 2823 { 2824 struct mmc_blk_data *part_md; 2825 struct mmc_blk_data *md = dev_get_drvdata(dev); 2826 2827 if (md) { 2828 /* 2829 * Resume involves the card going into idle state, 2830 * so current partition is always the main one. 2831 */ 2832 md->part_curr = md->part_type; 2833 mmc_queue_resume(&md->queue); 2834 list_for_each_entry(part_md, &md->part, part) { 2835 mmc_queue_resume(&part_md->queue); 2836 } 2837 } 2838 return 0; 2839 } 2840 #endif 2841 2842 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 2843 2844 static struct mmc_driver mmc_driver = { 2845 .drv = { 2846 .name = "mmcblk", 2847 .pm = &mmc_blk_pm_ops, 2848 }, 2849 .probe = mmc_blk_probe, 2850 .remove = mmc_blk_remove, 2851 .shutdown = mmc_blk_shutdown, 2852 }; 2853 2854 static int __init mmc_blk_init(void) 2855 { 2856 int res; 2857 2858 res = bus_register(&mmc_rpmb_bus_type); 2859 if (res < 0) { 2860 pr_err("mmcblk: could not register RPMB bus type\n"); 2861 return res; 2862 } 2863 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 2864 if (res < 0) { 2865 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 2866 goto out_bus_unreg; 2867 } 2868 2869 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 2870 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 2871 2872 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 2873 2874 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 2875 if (res) 2876 goto out_chrdev_unreg; 2877 2878 res = mmc_register_driver(&mmc_driver); 2879 if (res) 2880 goto out_blkdev_unreg; 2881 2882 return 0; 2883 2884 out_blkdev_unreg: 2885 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 2886 out_chrdev_unreg: 2887 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 2888 out_bus_unreg: 2889 bus_unregister(&mmc_rpmb_bus_type); 2890 return res; 2891 } 2892 2893 static void __exit mmc_blk_exit(void) 2894 { 2895 mmc_unregister_driver(&mmc_driver); 2896 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 2897 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 2898 } 2899 2900 module_init(mmc_blk_init); 2901 module_exit(mmc_blk_exit); 2902 2903 MODULE_LICENSE("GPL"); 2904 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 2905 2906