xref: /openbmc/linux/drivers/mmc/core/block.c (revision b755c25fbcd568821a3bb0e0d5c2daa5fcb00bba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43 
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49 
50 #include <linux/uaccess.h>
51 
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62 
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68 
69 /*
70  * Set a 10 second timeout for polling write request busy state. Note, mmc core
71  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72  * second software timer to timeout the whole request, so 10 seconds should be
73  * ample.
74  */
75 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78 
79 static DEFINE_MUTEX(block_mutex);
80 
81 /*
82  * The defaults come from config options but can be overriden by module
83  * or bootarg options.
84  */
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86 
87 /*
88  * We've only got one major, so number of mmcblk devices is
89  * limited to (1 << 20) / number of minors per device.  It is also
90  * limited by the MAX_DEVICES below.
91  */
92 static int max_devices;
93 
94 #define MAX_DEVICES 256
95 
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
98 
99 struct mmc_blk_busy_data {
100 	struct mmc_card *card;
101 	u32 status;
102 };
103 
104 /*
105  * There is one mmc_blk_data per slot.
106  */
107 struct mmc_blk_data {
108 	struct device	*parent;
109 	struct gendisk	*disk;
110 	struct mmc_queue queue;
111 	struct list_head part;
112 	struct list_head rpmbs;
113 
114 	unsigned int	flags;
115 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
116 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
117 
118 	struct kref	kref;
119 	unsigned int	read_only;
120 	unsigned int	part_type;
121 	unsigned int	reset_done;
122 #define MMC_BLK_READ		BIT(0)
123 #define MMC_BLK_WRITE		BIT(1)
124 #define MMC_BLK_DISCARD		BIT(2)
125 #define MMC_BLK_SECDISCARD	BIT(3)
126 #define MMC_BLK_CQE_RECOVERY	BIT(4)
127 #define MMC_BLK_TRIM		BIT(5)
128 
129 	/*
130 	 * Only set in main mmc_blk_data associated
131 	 * with mmc_card with dev_set_drvdata, and keeps
132 	 * track of the current selected device partition.
133 	 */
134 	unsigned int	part_curr;
135 #define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
136 	int	area_type;
137 
138 	/* debugfs files (only in main mmc_blk_data) */
139 	struct dentry *status_dentry;
140 	struct dentry *ext_csd_dentry;
141 };
142 
143 /* Device type for RPMB character devices */
144 static dev_t mmc_rpmb_devt;
145 
146 /* Bus type for RPMB character devices */
147 static struct bus_type mmc_rpmb_bus_type = {
148 	.name = "mmc_rpmb",
149 };
150 
151 /**
152  * struct mmc_rpmb_data - special RPMB device type for these areas
153  * @dev: the device for the RPMB area
154  * @chrdev: character device for the RPMB area
155  * @id: unique device ID number
156  * @part_index: partition index (0 on first)
157  * @md: parent MMC block device
158  * @node: list item, so we can put this device on a list
159  */
160 struct mmc_rpmb_data {
161 	struct device dev;
162 	struct cdev chrdev;
163 	int id;
164 	unsigned int part_index;
165 	struct mmc_blk_data *md;
166 	struct list_head node;
167 };
168 
169 static DEFINE_MUTEX(open_lock);
170 
171 module_param(perdev_minors, int, 0444);
172 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
173 
174 static inline int mmc_blk_part_switch(struct mmc_card *card,
175 				      unsigned int part_type);
176 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
177 			       struct mmc_card *card,
178 			       int recovery_mode,
179 			       struct mmc_queue *mq);
180 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
181 static int mmc_spi_err_check(struct mmc_card *card);
182 
183 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
184 {
185 	struct mmc_blk_data *md;
186 
187 	mutex_lock(&open_lock);
188 	md = disk->private_data;
189 	if (md && !kref_get_unless_zero(&md->kref))
190 		md = NULL;
191 	mutex_unlock(&open_lock);
192 
193 	return md;
194 }
195 
196 static inline int mmc_get_devidx(struct gendisk *disk)
197 {
198 	int devidx = disk->first_minor / perdev_minors;
199 	return devidx;
200 }
201 
202 static void mmc_blk_kref_release(struct kref *ref)
203 {
204 	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
205 	int devidx;
206 
207 	devidx = mmc_get_devidx(md->disk);
208 	ida_simple_remove(&mmc_blk_ida, devidx);
209 
210 	mutex_lock(&open_lock);
211 	md->disk->private_data = NULL;
212 	mutex_unlock(&open_lock);
213 
214 	put_disk(md->disk);
215 	kfree(md);
216 }
217 
218 static void mmc_blk_put(struct mmc_blk_data *md)
219 {
220 	kref_put(&md->kref, mmc_blk_kref_release);
221 }
222 
223 static ssize_t power_ro_lock_show(struct device *dev,
224 		struct device_attribute *attr, char *buf)
225 {
226 	int ret;
227 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
228 	struct mmc_card *card = md->queue.card;
229 	int locked = 0;
230 
231 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
232 		locked = 2;
233 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
234 		locked = 1;
235 
236 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
237 
238 	mmc_blk_put(md);
239 
240 	return ret;
241 }
242 
243 static ssize_t power_ro_lock_store(struct device *dev,
244 		struct device_attribute *attr, const char *buf, size_t count)
245 {
246 	int ret;
247 	struct mmc_blk_data *md, *part_md;
248 	struct mmc_queue *mq;
249 	struct request *req;
250 	unsigned long set;
251 
252 	if (kstrtoul(buf, 0, &set))
253 		return -EINVAL;
254 
255 	if (set != 1)
256 		return count;
257 
258 	md = mmc_blk_get(dev_to_disk(dev));
259 	mq = &md->queue;
260 
261 	/* Dispatch locking to the block layer */
262 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
263 	if (IS_ERR(req)) {
264 		count = PTR_ERR(req);
265 		goto out_put;
266 	}
267 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
268 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
269 	blk_execute_rq(req, false);
270 	ret = req_to_mmc_queue_req(req)->drv_op_result;
271 	blk_mq_free_request(req);
272 
273 	if (!ret) {
274 		pr_info("%s: Locking boot partition ro until next power on\n",
275 			md->disk->disk_name);
276 		set_disk_ro(md->disk, 1);
277 
278 		list_for_each_entry(part_md, &md->part, part)
279 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
280 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
281 				set_disk_ro(part_md->disk, 1);
282 			}
283 	}
284 out_put:
285 	mmc_blk_put(md);
286 	return count;
287 }
288 
289 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
290 		power_ro_lock_show, power_ro_lock_store);
291 
292 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
293 			     char *buf)
294 {
295 	int ret;
296 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
297 
298 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
299 		       get_disk_ro(dev_to_disk(dev)) ^
300 		       md->read_only);
301 	mmc_blk_put(md);
302 	return ret;
303 }
304 
305 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
306 			      const char *buf, size_t count)
307 {
308 	int ret;
309 	char *end;
310 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
311 	unsigned long set = simple_strtoul(buf, &end, 0);
312 	if (end == buf) {
313 		ret = -EINVAL;
314 		goto out;
315 	}
316 
317 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
318 	ret = count;
319 out:
320 	mmc_blk_put(md);
321 	return ret;
322 }
323 
324 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
325 
326 static struct attribute *mmc_disk_attrs[] = {
327 	&dev_attr_force_ro.attr,
328 	&dev_attr_ro_lock_until_next_power_on.attr,
329 	NULL,
330 };
331 
332 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
333 		struct attribute *a, int n)
334 {
335 	struct device *dev = kobj_to_dev(kobj);
336 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
337 	umode_t mode = a->mode;
338 
339 	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
340 	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
341 	    md->queue.card->ext_csd.boot_ro_lockable) {
342 		mode = S_IRUGO;
343 		if (!(md->queue.card->ext_csd.boot_ro_lock &
344 				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
345 			mode |= S_IWUSR;
346 	}
347 
348 	mmc_blk_put(md);
349 	return mode;
350 }
351 
352 static const struct attribute_group mmc_disk_attr_group = {
353 	.is_visible	= mmc_disk_attrs_is_visible,
354 	.attrs		= mmc_disk_attrs,
355 };
356 
357 static const struct attribute_group *mmc_disk_attr_groups[] = {
358 	&mmc_disk_attr_group,
359 	NULL,
360 };
361 
362 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
363 {
364 	struct mmc_blk_data *md = mmc_blk_get(disk);
365 	int ret = -ENXIO;
366 
367 	mutex_lock(&block_mutex);
368 	if (md) {
369 		ret = 0;
370 		if ((mode & BLK_OPEN_WRITE) && md->read_only) {
371 			mmc_blk_put(md);
372 			ret = -EROFS;
373 		}
374 	}
375 	mutex_unlock(&block_mutex);
376 
377 	return ret;
378 }
379 
380 static void mmc_blk_release(struct gendisk *disk)
381 {
382 	struct mmc_blk_data *md = disk->private_data;
383 
384 	mutex_lock(&block_mutex);
385 	mmc_blk_put(md);
386 	mutex_unlock(&block_mutex);
387 }
388 
389 static int
390 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
391 {
392 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
393 	geo->heads = 4;
394 	geo->sectors = 16;
395 	return 0;
396 }
397 
398 struct mmc_blk_ioc_data {
399 	struct mmc_ioc_cmd ic;
400 	unsigned char *buf;
401 	u64 buf_bytes;
402 	struct mmc_rpmb_data *rpmb;
403 };
404 
405 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
406 	struct mmc_ioc_cmd __user *user)
407 {
408 	struct mmc_blk_ioc_data *idata;
409 	int err;
410 
411 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
412 	if (!idata) {
413 		err = -ENOMEM;
414 		goto out;
415 	}
416 
417 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
418 		err = -EFAULT;
419 		goto idata_err;
420 	}
421 
422 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
423 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
424 		err = -EOVERFLOW;
425 		goto idata_err;
426 	}
427 
428 	if (!idata->buf_bytes) {
429 		idata->buf = NULL;
430 		return idata;
431 	}
432 
433 	idata->buf = memdup_user((void __user *)(unsigned long)
434 				 idata->ic.data_ptr, idata->buf_bytes);
435 	if (IS_ERR(idata->buf)) {
436 		err = PTR_ERR(idata->buf);
437 		goto idata_err;
438 	}
439 
440 	return idata;
441 
442 idata_err:
443 	kfree(idata);
444 out:
445 	return ERR_PTR(err);
446 }
447 
448 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
449 				      struct mmc_blk_ioc_data *idata)
450 {
451 	struct mmc_ioc_cmd *ic = &idata->ic;
452 
453 	if (copy_to_user(&(ic_ptr->response), ic->response,
454 			 sizeof(ic->response)))
455 		return -EFAULT;
456 
457 	if (!idata->ic.write_flag) {
458 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
459 				 idata->buf, idata->buf_bytes))
460 			return -EFAULT;
461 	}
462 
463 	return 0;
464 }
465 
466 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
467 			       struct mmc_blk_ioc_data *idata)
468 {
469 	struct mmc_command cmd = {}, sbc = {};
470 	struct mmc_data data = {};
471 	struct mmc_request mrq = {};
472 	struct scatterlist sg;
473 	bool r1b_resp, use_r1b_resp = false;
474 	unsigned int busy_timeout_ms;
475 	int err;
476 	unsigned int target_part;
477 
478 	if (!card || !md || !idata)
479 		return -EINVAL;
480 
481 	/*
482 	 * The RPMB accesses comes in from the character device, so we
483 	 * need to target these explicitly. Else we just target the
484 	 * partition type for the block device the ioctl() was issued
485 	 * on.
486 	 */
487 	if (idata->rpmb) {
488 		/* Support multiple RPMB partitions */
489 		target_part = idata->rpmb->part_index;
490 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
491 	} else {
492 		target_part = md->part_type;
493 	}
494 
495 	cmd.opcode = idata->ic.opcode;
496 	cmd.arg = idata->ic.arg;
497 	cmd.flags = idata->ic.flags;
498 
499 	if (idata->buf_bytes) {
500 		data.sg = &sg;
501 		data.sg_len = 1;
502 		data.blksz = idata->ic.blksz;
503 		data.blocks = idata->ic.blocks;
504 
505 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
506 
507 		if (idata->ic.write_flag)
508 			data.flags = MMC_DATA_WRITE;
509 		else
510 			data.flags = MMC_DATA_READ;
511 
512 		/* data.flags must already be set before doing this. */
513 		mmc_set_data_timeout(&data, card);
514 
515 		/* Allow overriding the timeout_ns for empirical tuning. */
516 		if (idata->ic.data_timeout_ns)
517 			data.timeout_ns = idata->ic.data_timeout_ns;
518 
519 		mrq.data = &data;
520 	}
521 
522 	mrq.cmd = &cmd;
523 
524 	err = mmc_blk_part_switch(card, target_part);
525 	if (err)
526 		return err;
527 
528 	if (idata->ic.is_acmd) {
529 		err = mmc_app_cmd(card->host, card);
530 		if (err)
531 			return err;
532 	}
533 
534 	if (idata->rpmb) {
535 		sbc.opcode = MMC_SET_BLOCK_COUNT;
536 		/*
537 		 * We don't do any blockcount validation because the max size
538 		 * may be increased by a future standard. We just copy the
539 		 * 'Reliable Write' bit here.
540 		 */
541 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
542 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
543 		mrq.sbc = &sbc;
544 	}
545 
546 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
547 	    (cmd.opcode == MMC_SWITCH))
548 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
549 
550 	/* If it's an R1B response we need some more preparations. */
551 	busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
552 	r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
553 	if (r1b_resp)
554 		use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd,
555 						    busy_timeout_ms);
556 
557 	mmc_wait_for_req(card->host, &mrq);
558 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
559 
560 	if (cmd.error) {
561 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
562 						__func__, cmd.error);
563 		return cmd.error;
564 	}
565 	if (data.error) {
566 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
567 						__func__, data.error);
568 		return data.error;
569 	}
570 
571 	/*
572 	 * Make sure the cache of the PARTITION_CONFIG register and
573 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
574 	 * changed it successfully.
575 	 */
576 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
577 	    (cmd.opcode == MMC_SWITCH)) {
578 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
579 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
580 
581 		/*
582 		 * Update cache so the next mmc_blk_part_switch call operates
583 		 * on up-to-date data.
584 		 */
585 		card->ext_csd.part_config = value;
586 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
587 	}
588 
589 	/*
590 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
591 	 * will get turned back on if the card is re-initialized, e.g.
592 	 * suspend/resume or hw reset in recovery.
593 	 */
594 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
595 	    (cmd.opcode == MMC_SWITCH)) {
596 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
597 
598 		card->ext_csd.cache_ctrl = value;
599 	}
600 
601 	/*
602 	 * According to the SD specs, some commands require a delay after
603 	 * issuing the command.
604 	 */
605 	if (idata->ic.postsleep_min_us)
606 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
607 
608 	/* No need to poll when using HW busy detection. */
609 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
610 		return 0;
611 
612 	if (mmc_host_is_spi(card->host)) {
613 		if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
614 			return mmc_spi_err_check(card);
615 		return err;
616 	}
617 	/* Ensure RPMB/R1B command has completed by polling with CMD13. */
618 	if (idata->rpmb || r1b_resp)
619 		err = mmc_poll_for_busy(card, busy_timeout_ms, false,
620 					MMC_BUSY_IO);
621 
622 	return err;
623 }
624 
625 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
626 			     struct mmc_ioc_cmd __user *ic_ptr,
627 			     struct mmc_rpmb_data *rpmb)
628 {
629 	struct mmc_blk_ioc_data *idata;
630 	struct mmc_blk_ioc_data *idatas[1];
631 	struct mmc_queue *mq;
632 	struct mmc_card *card;
633 	int err = 0, ioc_err = 0;
634 	struct request *req;
635 
636 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
637 	if (IS_ERR(idata))
638 		return PTR_ERR(idata);
639 	/* This will be NULL on non-RPMB ioctl():s */
640 	idata->rpmb = rpmb;
641 
642 	card = md->queue.card;
643 	if (IS_ERR(card)) {
644 		err = PTR_ERR(card);
645 		goto cmd_done;
646 	}
647 
648 	/*
649 	 * Dispatch the ioctl() into the block request queue.
650 	 */
651 	mq = &md->queue;
652 	req = blk_mq_alloc_request(mq->queue,
653 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
654 	if (IS_ERR(req)) {
655 		err = PTR_ERR(req);
656 		goto cmd_done;
657 	}
658 	idatas[0] = idata;
659 	req_to_mmc_queue_req(req)->drv_op =
660 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
661 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
662 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
663 	req_to_mmc_queue_req(req)->ioc_count = 1;
664 	blk_execute_rq(req, false);
665 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
666 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
667 	blk_mq_free_request(req);
668 
669 cmd_done:
670 	kfree(idata->buf);
671 	kfree(idata);
672 	return ioc_err ? ioc_err : err;
673 }
674 
675 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
676 				   struct mmc_ioc_multi_cmd __user *user,
677 				   struct mmc_rpmb_data *rpmb)
678 {
679 	struct mmc_blk_ioc_data **idata = NULL;
680 	struct mmc_ioc_cmd __user *cmds = user->cmds;
681 	struct mmc_card *card;
682 	struct mmc_queue *mq;
683 	int err = 0, ioc_err = 0;
684 	__u64 num_of_cmds;
685 	unsigned int i, n;
686 	struct request *req;
687 
688 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
689 			   sizeof(num_of_cmds)))
690 		return -EFAULT;
691 
692 	if (!num_of_cmds)
693 		return 0;
694 
695 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
696 		return -EINVAL;
697 
698 	n = num_of_cmds;
699 	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
700 	if (!idata)
701 		return -ENOMEM;
702 
703 	for (i = 0; i < n; i++) {
704 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
705 		if (IS_ERR(idata[i])) {
706 			err = PTR_ERR(idata[i]);
707 			n = i;
708 			goto cmd_err;
709 		}
710 		/* This will be NULL on non-RPMB ioctl():s */
711 		idata[i]->rpmb = rpmb;
712 	}
713 
714 	card = md->queue.card;
715 	if (IS_ERR(card)) {
716 		err = PTR_ERR(card);
717 		goto cmd_err;
718 	}
719 
720 
721 	/*
722 	 * Dispatch the ioctl()s into the block request queue.
723 	 */
724 	mq = &md->queue;
725 	req = blk_mq_alloc_request(mq->queue,
726 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
727 	if (IS_ERR(req)) {
728 		err = PTR_ERR(req);
729 		goto cmd_err;
730 	}
731 	req_to_mmc_queue_req(req)->drv_op =
732 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
733 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
734 	req_to_mmc_queue_req(req)->drv_op_data = idata;
735 	req_to_mmc_queue_req(req)->ioc_count = n;
736 	blk_execute_rq(req, false);
737 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
738 
739 	/* copy to user if data and response */
740 	for (i = 0; i < n && !err; i++)
741 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
742 
743 	blk_mq_free_request(req);
744 
745 cmd_err:
746 	for (i = 0; i < n; i++) {
747 		kfree(idata[i]->buf);
748 		kfree(idata[i]);
749 	}
750 	kfree(idata);
751 	return ioc_err ? ioc_err : err;
752 }
753 
754 static int mmc_blk_check_blkdev(struct block_device *bdev)
755 {
756 	/*
757 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
758 	 * whole block device, not on a partition.  This prevents overspray
759 	 * between sibling partitions.
760 	 */
761 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
762 		return -EPERM;
763 	return 0;
764 }
765 
766 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
767 	unsigned int cmd, unsigned long arg)
768 {
769 	struct mmc_blk_data *md;
770 	int ret;
771 
772 	switch (cmd) {
773 	case MMC_IOC_CMD:
774 		ret = mmc_blk_check_blkdev(bdev);
775 		if (ret)
776 			return ret;
777 		md = mmc_blk_get(bdev->bd_disk);
778 		if (!md)
779 			return -EINVAL;
780 		ret = mmc_blk_ioctl_cmd(md,
781 					(struct mmc_ioc_cmd __user *)arg,
782 					NULL);
783 		mmc_blk_put(md);
784 		return ret;
785 	case MMC_IOC_MULTI_CMD:
786 		ret = mmc_blk_check_blkdev(bdev);
787 		if (ret)
788 			return ret;
789 		md = mmc_blk_get(bdev->bd_disk);
790 		if (!md)
791 			return -EINVAL;
792 		ret = mmc_blk_ioctl_multi_cmd(md,
793 					(struct mmc_ioc_multi_cmd __user *)arg,
794 					NULL);
795 		mmc_blk_put(md);
796 		return ret;
797 	default:
798 		return -EINVAL;
799 	}
800 }
801 
802 #ifdef CONFIG_COMPAT
803 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
804 	unsigned int cmd, unsigned long arg)
805 {
806 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
807 }
808 #endif
809 
810 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
811 					  sector_t *sector)
812 {
813 	struct mmc_blk_data *md;
814 	int ret;
815 
816 	md = mmc_blk_get(disk);
817 	if (!md)
818 		return -EINVAL;
819 
820 	if (md->queue.card)
821 		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
822 	else
823 		ret = -ENODEV;
824 
825 	mmc_blk_put(md);
826 
827 	return ret;
828 }
829 
830 static const struct block_device_operations mmc_bdops = {
831 	.open			= mmc_blk_open,
832 	.release		= mmc_blk_release,
833 	.getgeo			= mmc_blk_getgeo,
834 	.owner			= THIS_MODULE,
835 	.ioctl			= mmc_blk_ioctl,
836 #ifdef CONFIG_COMPAT
837 	.compat_ioctl		= mmc_blk_compat_ioctl,
838 #endif
839 	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
840 };
841 
842 static int mmc_blk_part_switch_pre(struct mmc_card *card,
843 				   unsigned int part_type)
844 {
845 	int ret = 0;
846 
847 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
848 		if (card->ext_csd.cmdq_en) {
849 			ret = mmc_cmdq_disable(card);
850 			if (ret)
851 				return ret;
852 		}
853 		mmc_retune_pause(card->host);
854 	}
855 
856 	return ret;
857 }
858 
859 static int mmc_blk_part_switch_post(struct mmc_card *card,
860 				    unsigned int part_type)
861 {
862 	int ret = 0;
863 
864 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
865 		mmc_retune_unpause(card->host);
866 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
867 			ret = mmc_cmdq_enable(card);
868 	}
869 
870 	return ret;
871 }
872 
873 static inline int mmc_blk_part_switch(struct mmc_card *card,
874 				      unsigned int part_type)
875 {
876 	int ret = 0;
877 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
878 
879 	if (main_md->part_curr == part_type)
880 		return 0;
881 
882 	if (mmc_card_mmc(card)) {
883 		u8 part_config = card->ext_csd.part_config;
884 
885 		ret = mmc_blk_part_switch_pre(card, part_type);
886 		if (ret)
887 			return ret;
888 
889 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
890 		part_config |= part_type;
891 
892 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
893 				 EXT_CSD_PART_CONFIG, part_config,
894 				 card->ext_csd.part_time);
895 		if (ret) {
896 			mmc_blk_part_switch_post(card, part_type);
897 			return ret;
898 		}
899 
900 		card->ext_csd.part_config = part_config;
901 
902 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
903 	}
904 
905 	main_md->part_curr = part_type;
906 	return ret;
907 }
908 
909 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
910 {
911 	int err;
912 	u32 result;
913 	__be32 *blocks;
914 
915 	struct mmc_request mrq = {};
916 	struct mmc_command cmd = {};
917 	struct mmc_data data = {};
918 
919 	struct scatterlist sg;
920 
921 	cmd.opcode = MMC_APP_CMD;
922 	cmd.arg = card->rca << 16;
923 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
924 
925 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
926 	if (err)
927 		return err;
928 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
929 		return -EIO;
930 
931 	memset(&cmd, 0, sizeof(struct mmc_command));
932 
933 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
934 	cmd.arg = 0;
935 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
936 
937 	data.blksz = 4;
938 	data.blocks = 1;
939 	data.flags = MMC_DATA_READ;
940 	data.sg = &sg;
941 	data.sg_len = 1;
942 	mmc_set_data_timeout(&data, card);
943 
944 	mrq.cmd = &cmd;
945 	mrq.data = &data;
946 
947 	blocks = kmalloc(4, GFP_KERNEL);
948 	if (!blocks)
949 		return -ENOMEM;
950 
951 	sg_init_one(&sg, blocks, 4);
952 
953 	mmc_wait_for_req(card->host, &mrq);
954 
955 	result = ntohl(*blocks);
956 	kfree(blocks);
957 
958 	if (cmd.error || data.error)
959 		return -EIO;
960 
961 	*written_blocks = result;
962 
963 	return 0;
964 }
965 
966 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
967 {
968 	if (host->actual_clock)
969 		return host->actual_clock / 1000;
970 
971 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
972 	if (host->ios.clock)
973 		return host->ios.clock / 2000;
974 
975 	/* How can there be no clock */
976 	WARN_ON_ONCE(1);
977 	return 100; /* 100 kHz is minimum possible value */
978 }
979 
980 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
981 					    struct mmc_data *data)
982 {
983 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
984 	unsigned int khz;
985 
986 	if (data->timeout_clks) {
987 		khz = mmc_blk_clock_khz(host);
988 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
989 	}
990 
991 	return ms;
992 }
993 
994 /*
995  * Attempts to reset the card and get back to the requested partition.
996  * Therefore any error here must result in cancelling the block layer
997  * request, it must not be reattempted without going through the mmc_blk
998  * partition sanity checks.
999  */
1000 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1001 			 int type)
1002 {
1003 	int err;
1004 	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1005 
1006 	if (md->reset_done & type)
1007 		return -EEXIST;
1008 
1009 	md->reset_done |= type;
1010 	err = mmc_hw_reset(host->card);
1011 	/*
1012 	 * A successful reset will leave the card in the main partition, but
1013 	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1014 	 * in that case.
1015 	 */
1016 	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1017 	if (err)
1018 		return err;
1019 	/* Ensure we switch back to the correct partition */
1020 	if (mmc_blk_part_switch(host->card, md->part_type))
1021 		/*
1022 		 * We have failed to get back into the correct
1023 		 * partition, so we need to abort the whole request.
1024 		 */
1025 		return -ENODEV;
1026 	return 0;
1027 }
1028 
1029 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1030 {
1031 	md->reset_done &= ~type;
1032 }
1033 
1034 /*
1035  * The non-block commands come back from the block layer after it queued it and
1036  * processed it with all other requests and then they get issued in this
1037  * function.
1038  */
1039 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1040 {
1041 	struct mmc_queue_req *mq_rq;
1042 	struct mmc_card *card = mq->card;
1043 	struct mmc_blk_data *md = mq->blkdata;
1044 	struct mmc_blk_ioc_data **idata;
1045 	bool rpmb_ioctl;
1046 	u8 **ext_csd;
1047 	u32 status;
1048 	int ret;
1049 	int i;
1050 
1051 	mq_rq = req_to_mmc_queue_req(req);
1052 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1053 
1054 	switch (mq_rq->drv_op) {
1055 	case MMC_DRV_OP_IOCTL:
1056 		if (card->ext_csd.cmdq_en) {
1057 			ret = mmc_cmdq_disable(card);
1058 			if (ret)
1059 				break;
1060 		}
1061 		fallthrough;
1062 	case MMC_DRV_OP_IOCTL_RPMB:
1063 		idata = mq_rq->drv_op_data;
1064 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1065 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1066 			if (ret)
1067 				break;
1068 		}
1069 		/* Always switch back to main area after RPMB access */
1070 		if (rpmb_ioctl)
1071 			mmc_blk_part_switch(card, 0);
1072 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1073 			mmc_cmdq_enable(card);
1074 		break;
1075 	case MMC_DRV_OP_BOOT_WP:
1076 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1077 				 card->ext_csd.boot_ro_lock |
1078 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1079 				 card->ext_csd.part_time);
1080 		if (ret)
1081 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1082 			       md->disk->disk_name, ret);
1083 		else
1084 			card->ext_csd.boot_ro_lock |=
1085 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1086 		break;
1087 	case MMC_DRV_OP_GET_CARD_STATUS:
1088 		ret = mmc_send_status(card, &status);
1089 		if (!ret)
1090 			ret = status;
1091 		break;
1092 	case MMC_DRV_OP_GET_EXT_CSD:
1093 		ext_csd = mq_rq->drv_op_data;
1094 		ret = mmc_get_ext_csd(card, ext_csd);
1095 		break;
1096 	default:
1097 		pr_err("%s: unknown driver specific operation\n",
1098 		       md->disk->disk_name);
1099 		ret = -EINVAL;
1100 		break;
1101 	}
1102 	mq_rq->drv_op_result = ret;
1103 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1104 }
1105 
1106 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1107 				   int type, unsigned int erase_arg)
1108 {
1109 	struct mmc_blk_data *md = mq->blkdata;
1110 	struct mmc_card *card = md->queue.card;
1111 	unsigned int from, nr;
1112 	int err = 0;
1113 	blk_status_t status = BLK_STS_OK;
1114 
1115 	if (!mmc_can_erase(card)) {
1116 		status = BLK_STS_NOTSUPP;
1117 		goto fail;
1118 	}
1119 
1120 	from = blk_rq_pos(req);
1121 	nr = blk_rq_sectors(req);
1122 
1123 	do {
1124 		err = 0;
1125 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1126 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1127 					 INAND_CMD38_ARG_EXT_CSD,
1128 					 erase_arg == MMC_TRIM_ARG ?
1129 					 INAND_CMD38_ARG_TRIM :
1130 					 INAND_CMD38_ARG_ERASE,
1131 					 card->ext_csd.generic_cmd6_time);
1132 		}
1133 		if (!err)
1134 			err = mmc_erase(card, from, nr, erase_arg);
1135 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1136 	if (err)
1137 		status = BLK_STS_IOERR;
1138 	else
1139 		mmc_blk_reset_success(md, type);
1140 fail:
1141 	blk_mq_end_request(req, status);
1142 }
1143 
1144 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1145 {
1146 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1147 }
1148 
1149 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1150 {
1151 	struct mmc_blk_data *md = mq->blkdata;
1152 	struct mmc_card *card = md->queue.card;
1153 	unsigned int arg = card->erase_arg;
1154 
1155 	if (mmc_card_broken_sd_discard(card))
1156 		arg = SD_ERASE_ARG;
1157 
1158 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1159 }
1160 
1161 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1162 				       struct request *req)
1163 {
1164 	struct mmc_blk_data *md = mq->blkdata;
1165 	struct mmc_card *card = md->queue.card;
1166 	unsigned int from, nr, arg;
1167 	int err = 0, type = MMC_BLK_SECDISCARD;
1168 	blk_status_t status = BLK_STS_OK;
1169 
1170 	if (!(mmc_can_secure_erase_trim(card))) {
1171 		status = BLK_STS_NOTSUPP;
1172 		goto out;
1173 	}
1174 
1175 	from = blk_rq_pos(req);
1176 	nr = blk_rq_sectors(req);
1177 
1178 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1179 		arg = MMC_SECURE_TRIM1_ARG;
1180 	else
1181 		arg = MMC_SECURE_ERASE_ARG;
1182 
1183 retry:
1184 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1185 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1186 				 INAND_CMD38_ARG_EXT_CSD,
1187 				 arg == MMC_SECURE_TRIM1_ARG ?
1188 				 INAND_CMD38_ARG_SECTRIM1 :
1189 				 INAND_CMD38_ARG_SECERASE,
1190 				 card->ext_csd.generic_cmd6_time);
1191 		if (err)
1192 			goto out_retry;
1193 	}
1194 
1195 	err = mmc_erase(card, from, nr, arg);
1196 	if (err == -EIO)
1197 		goto out_retry;
1198 	if (err) {
1199 		status = BLK_STS_IOERR;
1200 		goto out;
1201 	}
1202 
1203 	if (arg == MMC_SECURE_TRIM1_ARG) {
1204 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1205 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1206 					 INAND_CMD38_ARG_EXT_CSD,
1207 					 INAND_CMD38_ARG_SECTRIM2,
1208 					 card->ext_csd.generic_cmd6_time);
1209 			if (err)
1210 				goto out_retry;
1211 		}
1212 
1213 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1214 		if (err == -EIO)
1215 			goto out_retry;
1216 		if (err) {
1217 			status = BLK_STS_IOERR;
1218 			goto out;
1219 		}
1220 	}
1221 
1222 out_retry:
1223 	if (err && !mmc_blk_reset(md, card->host, type))
1224 		goto retry;
1225 	if (!err)
1226 		mmc_blk_reset_success(md, type);
1227 out:
1228 	blk_mq_end_request(req, status);
1229 }
1230 
1231 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1232 {
1233 	struct mmc_blk_data *md = mq->blkdata;
1234 	struct mmc_card *card = md->queue.card;
1235 	int ret = 0;
1236 
1237 	ret = mmc_flush_cache(card->host);
1238 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1239 }
1240 
1241 /*
1242  * Reformat current write as a reliable write, supporting
1243  * both legacy and the enhanced reliable write MMC cards.
1244  * In each transfer we'll handle only as much as a single
1245  * reliable write can handle, thus finish the request in
1246  * partial completions.
1247  */
1248 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1249 				    struct mmc_card *card,
1250 				    struct request *req)
1251 {
1252 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1253 		/* Legacy mode imposes restrictions on transfers. */
1254 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1255 			brq->data.blocks = 1;
1256 
1257 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1258 			brq->data.blocks = card->ext_csd.rel_sectors;
1259 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1260 			brq->data.blocks = 1;
1261 	}
1262 }
1263 
1264 #define CMD_ERRORS_EXCL_OOR						\
1265 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1266 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1267 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1268 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1269 	 R1_CC_ERROR |		/* Card controller error */		\
1270 	 R1_ERROR)		/* General/unknown error */
1271 
1272 #define CMD_ERRORS							\
1273 	(CMD_ERRORS_EXCL_OOR |						\
1274 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1275 
1276 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1277 {
1278 	u32 val;
1279 
1280 	/*
1281 	 * Per the SD specification(physical layer version 4.10)[1],
1282 	 * section 4.3.3, it explicitly states that "When the last
1283 	 * block of user area is read using CMD18, the host should
1284 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1285 	 * is correct". And JESD84-B51 for eMMC also has a similar
1286 	 * statement on section 6.8.3.
1287 	 *
1288 	 * Multiple block read/write could be done by either predefined
1289 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1290 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1291 	 *
1292 	 * However the spec[1] doesn't tell us whether we should also
1293 	 * ignore that for predefined method. But per the spec[1], section
1294 	 * 4.15 Set Block Count Command, it says"If illegal block count
1295 	 * is set, out of range error will be indicated during read/write
1296 	 * operation (For example, data transfer is stopped at user area
1297 	 * boundary)." In another word, we could expect a out of range error
1298 	 * in the response for the following CMD18/25. And if argument of
1299 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1300 	 * we could also expect to get a -ETIMEDOUT or any error number from
1301 	 * the host drivers due to missing data response(for write)/data(for
1302 	 * read), as the cards will stop the data transfer by itself per the
1303 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1304 	 */
1305 
1306 	if (!brq->stop.error) {
1307 		bool oor_with_open_end;
1308 		/* If there is no error yet, check R1 response */
1309 
1310 		val = brq->stop.resp[0] & CMD_ERRORS;
1311 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1312 
1313 		if (val && !oor_with_open_end)
1314 			brq->stop.error = -EIO;
1315 	}
1316 }
1317 
1318 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1319 			      int recovery_mode, bool *do_rel_wr_p,
1320 			      bool *do_data_tag_p)
1321 {
1322 	struct mmc_blk_data *md = mq->blkdata;
1323 	struct mmc_card *card = md->queue.card;
1324 	struct mmc_blk_request *brq = &mqrq->brq;
1325 	struct request *req = mmc_queue_req_to_req(mqrq);
1326 	bool do_rel_wr, do_data_tag;
1327 
1328 	/*
1329 	 * Reliable writes are used to implement Forced Unit Access and
1330 	 * are supported only on MMCs.
1331 	 */
1332 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1333 		    rq_data_dir(req) == WRITE &&
1334 		    (md->flags & MMC_BLK_REL_WR);
1335 
1336 	memset(brq, 0, sizeof(struct mmc_blk_request));
1337 
1338 	mmc_crypto_prepare_req(mqrq);
1339 
1340 	brq->mrq.data = &brq->data;
1341 	brq->mrq.tag = req->tag;
1342 
1343 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1344 	brq->stop.arg = 0;
1345 
1346 	if (rq_data_dir(req) == READ) {
1347 		brq->data.flags = MMC_DATA_READ;
1348 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1349 	} else {
1350 		brq->data.flags = MMC_DATA_WRITE;
1351 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1352 	}
1353 
1354 	brq->data.blksz = 512;
1355 	brq->data.blocks = blk_rq_sectors(req);
1356 	brq->data.blk_addr = blk_rq_pos(req);
1357 
1358 	/*
1359 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1360 	 * The eMMC will give "high" priority tasks priority over "simple"
1361 	 * priority tasks. Here we always set "simple" priority by not setting
1362 	 * MMC_DATA_PRIO.
1363 	 */
1364 
1365 	/*
1366 	 * The block layer doesn't support all sector count
1367 	 * restrictions, so we need to be prepared for too big
1368 	 * requests.
1369 	 */
1370 	if (brq->data.blocks > card->host->max_blk_count)
1371 		brq->data.blocks = card->host->max_blk_count;
1372 
1373 	if (brq->data.blocks > 1) {
1374 		/*
1375 		 * Some SD cards in SPI mode return a CRC error or even lock up
1376 		 * completely when trying to read the last block using a
1377 		 * multiblock read command.
1378 		 */
1379 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1380 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1381 		     get_capacity(md->disk)))
1382 			brq->data.blocks--;
1383 
1384 		/*
1385 		 * After a read error, we redo the request one (native) sector
1386 		 * at a time in order to accurately determine which
1387 		 * sectors can be read successfully.
1388 		 */
1389 		if (recovery_mode)
1390 			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1391 
1392 		/*
1393 		 * Some controllers have HW issues while operating
1394 		 * in multiple I/O mode
1395 		 */
1396 		if (card->host->ops->multi_io_quirk)
1397 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1398 						(rq_data_dir(req) == READ) ?
1399 						MMC_DATA_READ : MMC_DATA_WRITE,
1400 						brq->data.blocks);
1401 	}
1402 
1403 	if (do_rel_wr) {
1404 		mmc_apply_rel_rw(brq, card, req);
1405 		brq->data.flags |= MMC_DATA_REL_WR;
1406 	}
1407 
1408 	/*
1409 	 * Data tag is used only during writing meta data to speed
1410 	 * up write and any subsequent read of this meta data
1411 	 */
1412 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1413 		      (req->cmd_flags & REQ_META) &&
1414 		      (rq_data_dir(req) == WRITE) &&
1415 		      ((brq->data.blocks * brq->data.blksz) >=
1416 		       card->ext_csd.data_tag_unit_size);
1417 
1418 	if (do_data_tag)
1419 		brq->data.flags |= MMC_DATA_DAT_TAG;
1420 
1421 	mmc_set_data_timeout(&brq->data, card);
1422 
1423 	brq->data.sg = mqrq->sg;
1424 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1425 
1426 	/*
1427 	 * Adjust the sg list so it is the same size as the
1428 	 * request.
1429 	 */
1430 	if (brq->data.blocks != blk_rq_sectors(req)) {
1431 		int i, data_size = brq->data.blocks << 9;
1432 		struct scatterlist *sg;
1433 
1434 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1435 			data_size -= sg->length;
1436 			if (data_size <= 0) {
1437 				sg->length += data_size;
1438 				i++;
1439 				break;
1440 			}
1441 		}
1442 		brq->data.sg_len = i;
1443 	}
1444 
1445 	if (do_rel_wr_p)
1446 		*do_rel_wr_p = do_rel_wr;
1447 
1448 	if (do_data_tag_p)
1449 		*do_data_tag_p = do_data_tag;
1450 }
1451 
1452 #define MMC_CQE_RETRIES 2
1453 
1454 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1455 {
1456 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1457 	struct mmc_request *mrq = &mqrq->brq.mrq;
1458 	struct request_queue *q = req->q;
1459 	struct mmc_host *host = mq->card->host;
1460 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1461 	unsigned long flags;
1462 	bool put_card;
1463 	int err;
1464 
1465 	mmc_cqe_post_req(host, mrq);
1466 
1467 	if (mrq->cmd && mrq->cmd->error)
1468 		err = mrq->cmd->error;
1469 	else if (mrq->data && mrq->data->error)
1470 		err = mrq->data->error;
1471 	else
1472 		err = 0;
1473 
1474 	if (err) {
1475 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1476 			blk_mq_requeue_request(req, true);
1477 		else
1478 			blk_mq_end_request(req, BLK_STS_IOERR);
1479 	} else if (mrq->data) {
1480 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1481 			blk_mq_requeue_request(req, true);
1482 		else
1483 			__blk_mq_end_request(req, BLK_STS_OK);
1484 	} else {
1485 		blk_mq_end_request(req, BLK_STS_OK);
1486 	}
1487 
1488 	spin_lock_irqsave(&mq->lock, flags);
1489 
1490 	mq->in_flight[issue_type] -= 1;
1491 
1492 	put_card = (mmc_tot_in_flight(mq) == 0);
1493 
1494 	mmc_cqe_check_busy(mq);
1495 
1496 	spin_unlock_irqrestore(&mq->lock, flags);
1497 
1498 	if (!mq->cqe_busy)
1499 		blk_mq_run_hw_queues(q, true);
1500 
1501 	if (put_card)
1502 		mmc_put_card(mq->card, &mq->ctx);
1503 }
1504 
1505 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1506 {
1507 	struct mmc_card *card = mq->card;
1508 	struct mmc_host *host = card->host;
1509 	int err;
1510 
1511 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1512 
1513 	err = mmc_cqe_recovery(host);
1514 	if (err)
1515 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1516 	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1517 
1518 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1519 }
1520 
1521 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1522 {
1523 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1524 						  brq.mrq);
1525 	struct request *req = mmc_queue_req_to_req(mqrq);
1526 	struct request_queue *q = req->q;
1527 	struct mmc_queue *mq = q->queuedata;
1528 
1529 	/*
1530 	 * Block layer timeouts race with completions which means the normal
1531 	 * completion path cannot be used during recovery.
1532 	 */
1533 	if (mq->in_recovery)
1534 		mmc_blk_cqe_complete_rq(mq, req);
1535 	else if (likely(!blk_should_fake_timeout(req->q)))
1536 		blk_mq_complete_request(req);
1537 }
1538 
1539 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1540 {
1541 	mrq->done		= mmc_blk_cqe_req_done;
1542 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1543 
1544 	return mmc_cqe_start_req(host, mrq);
1545 }
1546 
1547 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1548 						 struct request *req)
1549 {
1550 	struct mmc_blk_request *brq = &mqrq->brq;
1551 
1552 	memset(brq, 0, sizeof(*brq));
1553 
1554 	brq->mrq.cmd = &brq->cmd;
1555 	brq->mrq.tag = req->tag;
1556 
1557 	return &brq->mrq;
1558 }
1559 
1560 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1561 {
1562 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1563 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1564 
1565 	mrq->cmd->opcode = MMC_SWITCH;
1566 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1567 			(EXT_CSD_FLUSH_CACHE << 16) |
1568 			(1 << 8) |
1569 			EXT_CSD_CMD_SET_NORMAL;
1570 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1571 
1572 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1573 }
1574 
1575 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1576 {
1577 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1578 	struct mmc_host *host = mq->card->host;
1579 	int err;
1580 
1581 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1582 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1583 	mmc_pre_req(host, &mqrq->brq.mrq);
1584 
1585 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1586 	if (err)
1587 		mmc_post_req(host, &mqrq->brq.mrq, err);
1588 
1589 	return err;
1590 }
1591 
1592 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1593 {
1594 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1595 	struct mmc_host *host = mq->card->host;
1596 
1597 	if (host->hsq_enabled)
1598 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1599 
1600 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1601 
1602 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1603 }
1604 
1605 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1606 			       struct mmc_card *card,
1607 			       int recovery_mode,
1608 			       struct mmc_queue *mq)
1609 {
1610 	u32 readcmd, writecmd;
1611 	struct mmc_blk_request *brq = &mqrq->brq;
1612 	struct request *req = mmc_queue_req_to_req(mqrq);
1613 	struct mmc_blk_data *md = mq->blkdata;
1614 	bool do_rel_wr, do_data_tag;
1615 
1616 	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1617 
1618 	brq->mrq.cmd = &brq->cmd;
1619 
1620 	brq->cmd.arg = blk_rq_pos(req);
1621 	if (!mmc_card_blockaddr(card))
1622 		brq->cmd.arg <<= 9;
1623 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1624 
1625 	if (brq->data.blocks > 1 || do_rel_wr) {
1626 		/* SPI multiblock writes terminate using a special
1627 		 * token, not a STOP_TRANSMISSION request.
1628 		 */
1629 		if (!mmc_host_is_spi(card->host) ||
1630 		    rq_data_dir(req) == READ)
1631 			brq->mrq.stop = &brq->stop;
1632 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1633 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1634 	} else {
1635 		brq->mrq.stop = NULL;
1636 		readcmd = MMC_READ_SINGLE_BLOCK;
1637 		writecmd = MMC_WRITE_BLOCK;
1638 	}
1639 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1640 
1641 	/*
1642 	 * Pre-defined multi-block transfers are preferable to
1643 	 * open ended-ones (and necessary for reliable writes).
1644 	 * However, it is not sufficient to just send CMD23,
1645 	 * and avoid the final CMD12, as on an error condition
1646 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1647 	 * with Auto-CMD23 enhancements provided by some
1648 	 * hosts, means that the complexity of dealing
1649 	 * with this is best left to the host. If CMD23 is
1650 	 * supported by card and host, we'll fill sbc in and let
1651 	 * the host deal with handling it correctly. This means
1652 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1653 	 * change of behavior will be observed.
1654 	 *
1655 	 * N.B: Some MMC cards experience perf degradation.
1656 	 * We'll avoid using CMD23-bounded multiblock writes for
1657 	 * these, while retaining features like reliable writes.
1658 	 */
1659 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1660 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1661 	     do_data_tag)) {
1662 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1663 		brq->sbc.arg = brq->data.blocks |
1664 			(do_rel_wr ? (1 << 31) : 0) |
1665 			(do_data_tag ? (1 << 29) : 0);
1666 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1667 		brq->mrq.sbc = &brq->sbc;
1668 	}
1669 }
1670 
1671 #define MMC_MAX_RETRIES		5
1672 #define MMC_DATA_RETRIES	2
1673 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1674 
1675 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1676 {
1677 	struct mmc_command cmd = {
1678 		.opcode = MMC_STOP_TRANSMISSION,
1679 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1680 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1681 		.busy_timeout = timeout,
1682 	};
1683 
1684 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1685 }
1686 
1687 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1688 {
1689 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1690 	struct mmc_blk_request *brq = &mqrq->brq;
1691 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1692 	int err;
1693 
1694 	mmc_retune_hold_now(card->host);
1695 
1696 	mmc_blk_send_stop(card, timeout);
1697 
1698 	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1699 
1700 	mmc_retune_release(card->host);
1701 
1702 	return err;
1703 }
1704 
1705 #define MMC_READ_SINGLE_RETRIES	2
1706 
1707 /* Single (native) sector read during recovery */
1708 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1709 {
1710 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1711 	struct mmc_request *mrq = &mqrq->brq.mrq;
1712 	struct mmc_card *card = mq->card;
1713 	struct mmc_host *host = card->host;
1714 	blk_status_t error = BLK_STS_OK;
1715 	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1716 
1717 	do {
1718 		u32 status;
1719 		int err;
1720 		int retries = 0;
1721 
1722 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1723 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1724 
1725 			mmc_wait_for_req(host, mrq);
1726 
1727 			err = mmc_send_status(card, &status);
1728 			if (err)
1729 				goto error_exit;
1730 
1731 			if (!mmc_host_is_spi(host) &&
1732 			    !mmc_ready_for_data(status)) {
1733 				err = mmc_blk_fix_state(card, req);
1734 				if (err)
1735 					goto error_exit;
1736 			}
1737 
1738 			if (!mrq->cmd->error)
1739 				break;
1740 		}
1741 
1742 		if (mrq->cmd->error ||
1743 		    mrq->data->error ||
1744 		    (!mmc_host_is_spi(host) &&
1745 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1746 			error = BLK_STS_IOERR;
1747 		else
1748 			error = BLK_STS_OK;
1749 
1750 	} while (blk_update_request(req, error, bytes_per_read));
1751 
1752 	return;
1753 
1754 error_exit:
1755 	mrq->data->bytes_xfered = 0;
1756 	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1757 	/* Let it try the remaining request again */
1758 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1759 		mqrq->retries = MMC_MAX_RETRIES - 1;
1760 }
1761 
1762 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1763 {
1764 	return !!brq->mrq.sbc;
1765 }
1766 
1767 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1768 {
1769 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1770 }
1771 
1772 /*
1773  * Check for errors the host controller driver might not have seen such as
1774  * response mode errors or invalid card state.
1775  */
1776 static bool mmc_blk_status_error(struct request *req, u32 status)
1777 {
1778 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1779 	struct mmc_blk_request *brq = &mqrq->brq;
1780 	struct mmc_queue *mq = req->q->queuedata;
1781 	u32 stop_err_bits;
1782 
1783 	if (mmc_host_is_spi(mq->card->host))
1784 		return false;
1785 
1786 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1787 
1788 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1789 	       brq->stop.resp[0] & stop_err_bits ||
1790 	       status            & stop_err_bits ||
1791 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1792 }
1793 
1794 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1795 {
1796 	return !brq->sbc.error && !brq->cmd.error &&
1797 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1798 }
1799 
1800 /*
1801  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1802  * policy:
1803  * 1. A request that has transferred at least some data is considered
1804  * successful and will be requeued if there is remaining data to
1805  * transfer.
1806  * 2. Otherwise the number of retries is incremented and the request
1807  * will be requeued if there are remaining retries.
1808  * 3. Otherwise the request will be errored out.
1809  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1810  * mqrq->retries. So there are only 4 possible actions here:
1811  *	1. do not accept the bytes_xfered value i.e. set it to zero
1812  *	2. change mqrq->retries to determine the number of retries
1813  *	3. try to reset the card
1814  *	4. read one sector at a time
1815  */
1816 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1817 {
1818 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1819 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1820 	struct mmc_blk_request *brq = &mqrq->brq;
1821 	struct mmc_blk_data *md = mq->blkdata;
1822 	struct mmc_card *card = mq->card;
1823 	u32 status;
1824 	u32 blocks;
1825 	int err;
1826 
1827 	/*
1828 	 * Some errors the host driver might not have seen. Set the number of
1829 	 * bytes transferred to zero in that case.
1830 	 */
1831 	err = __mmc_send_status(card, &status, 0);
1832 	if (err || mmc_blk_status_error(req, status))
1833 		brq->data.bytes_xfered = 0;
1834 
1835 	mmc_retune_release(card->host);
1836 
1837 	/*
1838 	 * Try again to get the status. This also provides an opportunity for
1839 	 * re-tuning.
1840 	 */
1841 	if (err)
1842 		err = __mmc_send_status(card, &status, 0);
1843 
1844 	/*
1845 	 * Nothing more to do after the number of bytes transferred has been
1846 	 * updated and there is no card.
1847 	 */
1848 	if (err && mmc_detect_card_removed(card->host))
1849 		return;
1850 
1851 	/* Try to get back to "tran" state */
1852 	if (!mmc_host_is_spi(mq->card->host) &&
1853 	    (err || !mmc_ready_for_data(status)))
1854 		err = mmc_blk_fix_state(mq->card, req);
1855 
1856 	/*
1857 	 * Special case for SD cards where the card might record the number of
1858 	 * blocks written.
1859 	 */
1860 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1861 	    rq_data_dir(req) == WRITE) {
1862 		if (mmc_sd_num_wr_blocks(card, &blocks))
1863 			brq->data.bytes_xfered = 0;
1864 		else
1865 			brq->data.bytes_xfered = blocks << 9;
1866 	}
1867 
1868 	/* Reset if the card is in a bad state */
1869 	if (!mmc_host_is_spi(mq->card->host) &&
1870 	    err && mmc_blk_reset(md, card->host, type)) {
1871 		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1872 		mqrq->retries = MMC_NO_RETRIES;
1873 		return;
1874 	}
1875 
1876 	/*
1877 	 * If anything was done, just return and if there is anything remaining
1878 	 * on the request it will get requeued.
1879 	 */
1880 	if (brq->data.bytes_xfered)
1881 		return;
1882 
1883 	/* Reset before last retry */
1884 	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1885 	    mmc_blk_reset(md, card->host, type))
1886 		return;
1887 
1888 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1889 	if (brq->sbc.error || brq->cmd.error)
1890 		return;
1891 
1892 	/* Reduce the remaining retries for data errors */
1893 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1894 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1895 		return;
1896 	}
1897 
1898 	if (rq_data_dir(req) == READ && brq->data.blocks >
1899 			queue_physical_block_size(mq->queue) >> 9) {
1900 		/* Read one (native) sector at a time */
1901 		mmc_blk_read_single(mq, req);
1902 		return;
1903 	}
1904 }
1905 
1906 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1907 {
1908 	mmc_blk_eval_resp_error(brq);
1909 
1910 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1911 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1912 }
1913 
1914 static int mmc_spi_err_check(struct mmc_card *card)
1915 {
1916 	u32 status = 0;
1917 	int err;
1918 
1919 	/*
1920 	 * SPI does not have a TRAN state we have to wait on, instead the
1921 	 * card is ready again when it no longer holds the line LOW.
1922 	 * We still have to ensure two things here before we know the write
1923 	 * was successful:
1924 	 * 1. The card has not disconnected during busy and we actually read our
1925 	 * own pull-up, thinking it was still connected, so ensure it
1926 	 * still responds.
1927 	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1928 	 * just reconnected card after being disconnected during busy.
1929 	 */
1930 	err = __mmc_send_status(card, &status, 0);
1931 	if (err)
1932 		return err;
1933 	/* All R1 and R2 bits of SPI are errors in our case */
1934 	if (status)
1935 		return -EIO;
1936 	return 0;
1937 }
1938 
1939 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1940 {
1941 	struct mmc_blk_busy_data *data = cb_data;
1942 	u32 status = 0;
1943 	int err;
1944 
1945 	err = mmc_send_status(data->card, &status);
1946 	if (err)
1947 		return err;
1948 
1949 	/* Accumulate response error bits. */
1950 	data->status |= status;
1951 
1952 	*busy = !mmc_ready_for_data(status);
1953 	return 0;
1954 }
1955 
1956 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1957 {
1958 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1959 	struct mmc_blk_busy_data cb_data;
1960 	int err;
1961 
1962 	if (rq_data_dir(req) == READ)
1963 		return 0;
1964 
1965 	if (mmc_host_is_spi(card->host)) {
1966 		err = mmc_spi_err_check(card);
1967 		if (err)
1968 			mqrq->brq.data.bytes_xfered = 0;
1969 		return err;
1970 	}
1971 
1972 	cb_data.card = card;
1973 	cb_data.status = 0;
1974 	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1975 				  &mmc_blk_busy_cb, &cb_data);
1976 
1977 	/*
1978 	 * Do not assume data transferred correctly if there are any error bits
1979 	 * set.
1980 	 */
1981 	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1982 		mqrq->brq.data.bytes_xfered = 0;
1983 		err = err ? err : -EIO;
1984 	}
1985 
1986 	/* Copy the exception bit so it will be seen later on */
1987 	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1988 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1989 
1990 	return err;
1991 }
1992 
1993 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1994 					    struct request *req)
1995 {
1996 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1997 
1998 	mmc_blk_reset_success(mq->blkdata, type);
1999 }
2000 
2001 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2002 {
2003 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2004 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2005 
2006 	if (nr_bytes) {
2007 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2008 			blk_mq_requeue_request(req, true);
2009 		else
2010 			__blk_mq_end_request(req, BLK_STS_OK);
2011 	} else if (!blk_rq_bytes(req)) {
2012 		__blk_mq_end_request(req, BLK_STS_IOERR);
2013 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2014 		blk_mq_requeue_request(req, true);
2015 	} else {
2016 		if (mmc_card_removed(mq->card))
2017 			req->rq_flags |= RQF_QUIET;
2018 		blk_mq_end_request(req, BLK_STS_IOERR);
2019 	}
2020 }
2021 
2022 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2023 					struct mmc_queue_req *mqrq)
2024 {
2025 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2026 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2027 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2028 }
2029 
2030 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2031 				 struct mmc_queue_req *mqrq)
2032 {
2033 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2034 		mmc_run_bkops(mq->card);
2035 }
2036 
2037 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2038 {
2039 	struct mmc_queue_req *mqrq =
2040 		container_of(mrq, struct mmc_queue_req, brq.mrq);
2041 	struct request *req = mmc_queue_req_to_req(mqrq);
2042 	struct request_queue *q = req->q;
2043 	struct mmc_queue *mq = q->queuedata;
2044 	struct mmc_host *host = mq->card->host;
2045 	unsigned long flags;
2046 
2047 	if (mmc_blk_rq_error(&mqrq->brq) ||
2048 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2049 		spin_lock_irqsave(&mq->lock, flags);
2050 		mq->recovery_needed = true;
2051 		mq->recovery_req = req;
2052 		spin_unlock_irqrestore(&mq->lock, flags);
2053 
2054 		host->cqe_ops->cqe_recovery_start(host);
2055 
2056 		schedule_work(&mq->recovery_work);
2057 		return;
2058 	}
2059 
2060 	mmc_blk_rw_reset_success(mq, req);
2061 
2062 	/*
2063 	 * Block layer timeouts race with completions which means the normal
2064 	 * completion path cannot be used during recovery.
2065 	 */
2066 	if (mq->in_recovery)
2067 		mmc_blk_cqe_complete_rq(mq, req);
2068 	else if (likely(!blk_should_fake_timeout(req->q)))
2069 		blk_mq_complete_request(req);
2070 }
2071 
2072 void mmc_blk_mq_complete(struct request *req)
2073 {
2074 	struct mmc_queue *mq = req->q->queuedata;
2075 	struct mmc_host *host = mq->card->host;
2076 
2077 	if (host->cqe_enabled)
2078 		mmc_blk_cqe_complete_rq(mq, req);
2079 	else if (likely(!blk_should_fake_timeout(req->q)))
2080 		mmc_blk_mq_complete_rq(mq, req);
2081 }
2082 
2083 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2084 				       struct request *req)
2085 {
2086 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2087 	struct mmc_host *host = mq->card->host;
2088 
2089 	if (mmc_blk_rq_error(&mqrq->brq) ||
2090 	    mmc_blk_card_busy(mq->card, req)) {
2091 		mmc_blk_mq_rw_recovery(mq, req);
2092 	} else {
2093 		mmc_blk_rw_reset_success(mq, req);
2094 		mmc_retune_release(host);
2095 	}
2096 
2097 	mmc_blk_urgent_bkops(mq, mqrq);
2098 }
2099 
2100 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
2101 {
2102 	unsigned long flags;
2103 	bool put_card;
2104 
2105 	spin_lock_irqsave(&mq->lock, flags);
2106 
2107 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2108 
2109 	put_card = (mmc_tot_in_flight(mq) == 0);
2110 
2111 	spin_unlock_irqrestore(&mq->lock, flags);
2112 
2113 	if (put_card)
2114 		mmc_put_card(mq->card, &mq->ctx);
2115 }
2116 
2117 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2118 				bool can_sleep)
2119 {
2120 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2121 	struct mmc_request *mrq = &mqrq->brq.mrq;
2122 	struct mmc_host *host = mq->card->host;
2123 
2124 	mmc_post_req(host, mrq, 0);
2125 
2126 	/*
2127 	 * Block layer timeouts race with completions which means the normal
2128 	 * completion path cannot be used during recovery.
2129 	 */
2130 	if (mq->in_recovery) {
2131 		mmc_blk_mq_complete_rq(mq, req);
2132 	} else if (likely(!blk_should_fake_timeout(req->q))) {
2133 		if (can_sleep)
2134 			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2135 		else
2136 			blk_mq_complete_request(req);
2137 	}
2138 
2139 	mmc_blk_mq_dec_in_flight(mq, req);
2140 }
2141 
2142 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2143 {
2144 	struct request *req = mq->recovery_req;
2145 	struct mmc_host *host = mq->card->host;
2146 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2147 
2148 	mq->recovery_req = NULL;
2149 	mq->rw_wait = false;
2150 
2151 	if (mmc_blk_rq_error(&mqrq->brq)) {
2152 		mmc_retune_hold_now(host);
2153 		mmc_blk_mq_rw_recovery(mq, req);
2154 	}
2155 
2156 	mmc_blk_urgent_bkops(mq, mqrq);
2157 
2158 	mmc_blk_mq_post_req(mq, req, true);
2159 }
2160 
2161 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2162 					 struct request **prev_req)
2163 {
2164 	if (mmc_host_done_complete(mq->card->host))
2165 		return;
2166 
2167 	mutex_lock(&mq->complete_lock);
2168 
2169 	if (!mq->complete_req)
2170 		goto out_unlock;
2171 
2172 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2173 
2174 	if (prev_req)
2175 		*prev_req = mq->complete_req;
2176 	else
2177 		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2178 
2179 	mq->complete_req = NULL;
2180 
2181 out_unlock:
2182 	mutex_unlock(&mq->complete_lock);
2183 }
2184 
2185 void mmc_blk_mq_complete_work(struct work_struct *work)
2186 {
2187 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2188 					    complete_work);
2189 
2190 	mmc_blk_mq_complete_prev_req(mq, NULL);
2191 }
2192 
2193 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2194 {
2195 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2196 						  brq.mrq);
2197 	struct request *req = mmc_queue_req_to_req(mqrq);
2198 	struct request_queue *q = req->q;
2199 	struct mmc_queue *mq = q->queuedata;
2200 	struct mmc_host *host = mq->card->host;
2201 	unsigned long flags;
2202 
2203 	if (!mmc_host_done_complete(host)) {
2204 		bool waiting;
2205 
2206 		/*
2207 		 * We cannot complete the request in this context, so record
2208 		 * that there is a request to complete, and that a following
2209 		 * request does not need to wait (although it does need to
2210 		 * complete complete_req first).
2211 		 */
2212 		spin_lock_irqsave(&mq->lock, flags);
2213 		mq->complete_req = req;
2214 		mq->rw_wait = false;
2215 		waiting = mq->waiting;
2216 		spin_unlock_irqrestore(&mq->lock, flags);
2217 
2218 		/*
2219 		 * If 'waiting' then the waiting task will complete this
2220 		 * request, otherwise queue a work to do it. Note that
2221 		 * complete_work may still race with the dispatch of a following
2222 		 * request.
2223 		 */
2224 		if (waiting)
2225 			wake_up(&mq->wait);
2226 		else
2227 			queue_work(mq->card->complete_wq, &mq->complete_work);
2228 
2229 		return;
2230 	}
2231 
2232 	/* Take the recovery path for errors or urgent background operations */
2233 	if (mmc_blk_rq_error(&mqrq->brq) ||
2234 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2235 		spin_lock_irqsave(&mq->lock, flags);
2236 		mq->recovery_needed = true;
2237 		mq->recovery_req = req;
2238 		spin_unlock_irqrestore(&mq->lock, flags);
2239 		wake_up(&mq->wait);
2240 		schedule_work(&mq->recovery_work);
2241 		return;
2242 	}
2243 
2244 	mmc_blk_rw_reset_success(mq, req);
2245 
2246 	mq->rw_wait = false;
2247 	wake_up(&mq->wait);
2248 
2249 	/* context unknown */
2250 	mmc_blk_mq_post_req(mq, req, false);
2251 }
2252 
2253 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2254 {
2255 	unsigned long flags;
2256 	bool done;
2257 
2258 	/*
2259 	 * Wait while there is another request in progress, but not if recovery
2260 	 * is needed. Also indicate whether there is a request waiting to start.
2261 	 */
2262 	spin_lock_irqsave(&mq->lock, flags);
2263 	if (mq->recovery_needed) {
2264 		*err = -EBUSY;
2265 		done = true;
2266 	} else {
2267 		done = !mq->rw_wait;
2268 	}
2269 	mq->waiting = !done;
2270 	spin_unlock_irqrestore(&mq->lock, flags);
2271 
2272 	return done;
2273 }
2274 
2275 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2276 {
2277 	int err = 0;
2278 
2279 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2280 
2281 	/* Always complete the previous request if there is one */
2282 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2283 
2284 	return err;
2285 }
2286 
2287 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2288 				  struct request *req)
2289 {
2290 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2291 	struct mmc_host *host = mq->card->host;
2292 	struct request *prev_req = NULL;
2293 	int err = 0;
2294 
2295 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2296 
2297 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2298 
2299 	mmc_pre_req(host, &mqrq->brq.mrq);
2300 
2301 	err = mmc_blk_rw_wait(mq, &prev_req);
2302 	if (err)
2303 		goto out_post_req;
2304 
2305 	mq->rw_wait = true;
2306 
2307 	err = mmc_start_request(host, &mqrq->brq.mrq);
2308 
2309 	if (prev_req)
2310 		mmc_blk_mq_post_req(mq, prev_req, true);
2311 
2312 	if (err)
2313 		mq->rw_wait = false;
2314 
2315 	/* Release re-tuning here where there is no synchronization required */
2316 	if (err || mmc_host_done_complete(host))
2317 		mmc_retune_release(host);
2318 
2319 out_post_req:
2320 	if (err)
2321 		mmc_post_req(host, &mqrq->brq.mrq, err);
2322 
2323 	return err;
2324 }
2325 
2326 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2327 {
2328 	if (host->cqe_enabled)
2329 		return host->cqe_ops->cqe_wait_for_idle(host);
2330 
2331 	return mmc_blk_rw_wait(mq, NULL);
2332 }
2333 
2334 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2335 {
2336 	struct mmc_blk_data *md = mq->blkdata;
2337 	struct mmc_card *card = md->queue.card;
2338 	struct mmc_host *host = card->host;
2339 	int ret;
2340 
2341 	ret = mmc_blk_part_switch(card, md->part_type);
2342 	if (ret)
2343 		return MMC_REQ_FAILED_TO_START;
2344 
2345 	switch (mmc_issue_type(mq, req)) {
2346 	case MMC_ISSUE_SYNC:
2347 		ret = mmc_blk_wait_for_idle(mq, host);
2348 		if (ret)
2349 			return MMC_REQ_BUSY;
2350 		switch (req_op(req)) {
2351 		case REQ_OP_DRV_IN:
2352 		case REQ_OP_DRV_OUT:
2353 			mmc_blk_issue_drv_op(mq, req);
2354 			break;
2355 		case REQ_OP_DISCARD:
2356 			mmc_blk_issue_discard_rq(mq, req);
2357 			break;
2358 		case REQ_OP_SECURE_ERASE:
2359 			mmc_blk_issue_secdiscard_rq(mq, req);
2360 			break;
2361 		case REQ_OP_WRITE_ZEROES:
2362 			mmc_blk_issue_trim_rq(mq, req);
2363 			break;
2364 		case REQ_OP_FLUSH:
2365 			mmc_blk_issue_flush(mq, req);
2366 			break;
2367 		default:
2368 			WARN_ON_ONCE(1);
2369 			return MMC_REQ_FAILED_TO_START;
2370 		}
2371 		return MMC_REQ_FINISHED;
2372 	case MMC_ISSUE_DCMD:
2373 	case MMC_ISSUE_ASYNC:
2374 		switch (req_op(req)) {
2375 		case REQ_OP_FLUSH:
2376 			if (!mmc_cache_enabled(host)) {
2377 				blk_mq_end_request(req, BLK_STS_OK);
2378 				return MMC_REQ_FINISHED;
2379 			}
2380 			ret = mmc_blk_cqe_issue_flush(mq, req);
2381 			break;
2382 		case REQ_OP_READ:
2383 		case REQ_OP_WRITE:
2384 			if (host->cqe_enabled)
2385 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2386 			else
2387 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2388 			break;
2389 		default:
2390 			WARN_ON_ONCE(1);
2391 			ret = -EINVAL;
2392 		}
2393 		if (!ret)
2394 			return MMC_REQ_STARTED;
2395 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2396 	default:
2397 		WARN_ON_ONCE(1);
2398 		return MMC_REQ_FAILED_TO_START;
2399 	}
2400 }
2401 
2402 static inline int mmc_blk_readonly(struct mmc_card *card)
2403 {
2404 	return mmc_card_readonly(card) ||
2405 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2406 }
2407 
2408 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2409 					      struct device *parent,
2410 					      sector_t size,
2411 					      bool default_ro,
2412 					      const char *subname,
2413 					      int area_type,
2414 					      unsigned int part_type)
2415 {
2416 	struct mmc_blk_data *md;
2417 	int devidx, ret;
2418 	char cap_str[10];
2419 	bool cache_enabled = false;
2420 	bool fua_enabled = false;
2421 
2422 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2423 	if (devidx < 0) {
2424 		/*
2425 		 * We get -ENOSPC because there are no more any available
2426 		 * devidx. The reason may be that, either userspace haven't yet
2427 		 * unmounted the partitions, which postpones mmc_blk_release()
2428 		 * from being called, or the device has more partitions than
2429 		 * what we support.
2430 		 */
2431 		if (devidx == -ENOSPC)
2432 			dev_err(mmc_dev(card->host),
2433 				"no more device IDs available\n");
2434 
2435 		return ERR_PTR(devidx);
2436 	}
2437 
2438 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2439 	if (!md) {
2440 		ret = -ENOMEM;
2441 		goto out;
2442 	}
2443 
2444 	md->area_type = area_type;
2445 
2446 	/*
2447 	 * Set the read-only status based on the supported commands
2448 	 * and the write protect switch.
2449 	 */
2450 	md->read_only = mmc_blk_readonly(card);
2451 
2452 	md->disk = mmc_init_queue(&md->queue, card);
2453 	if (IS_ERR(md->disk)) {
2454 		ret = PTR_ERR(md->disk);
2455 		goto err_kfree;
2456 	}
2457 
2458 	INIT_LIST_HEAD(&md->part);
2459 	INIT_LIST_HEAD(&md->rpmbs);
2460 	kref_init(&md->kref);
2461 
2462 	md->queue.blkdata = md;
2463 	md->part_type = part_type;
2464 
2465 	md->disk->major	= MMC_BLOCK_MAJOR;
2466 	md->disk->minors = perdev_minors;
2467 	md->disk->first_minor = devidx * perdev_minors;
2468 	md->disk->fops = &mmc_bdops;
2469 	md->disk->private_data = md;
2470 	md->parent = parent;
2471 	set_disk_ro(md->disk, md->read_only || default_ro);
2472 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2473 		md->disk->flags |= GENHD_FL_NO_PART;
2474 
2475 	/*
2476 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2477 	 *
2478 	 * - be set for removable media with permanent block devices
2479 	 * - be unset for removable block devices with permanent media
2480 	 *
2481 	 * Since MMC block devices clearly fall under the second
2482 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2483 	 * should use the block device creation/destruction hotplug
2484 	 * messages to tell when the card is present.
2485 	 */
2486 
2487 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2488 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2489 
2490 	set_capacity(md->disk, size);
2491 
2492 	if (mmc_host_cmd23(card->host)) {
2493 		if ((mmc_card_mmc(card) &&
2494 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2495 		    (mmc_card_sd(card) &&
2496 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2497 			md->flags |= MMC_BLK_CMD23;
2498 	}
2499 
2500 	if (md->flags & MMC_BLK_CMD23 &&
2501 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2502 	     card->ext_csd.rel_sectors)) {
2503 		md->flags |= MMC_BLK_REL_WR;
2504 		fua_enabled = true;
2505 		cache_enabled = true;
2506 	}
2507 	if (mmc_cache_enabled(card->host))
2508 		cache_enabled  = true;
2509 
2510 	blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2511 
2512 	string_get_size((u64)size, 512, STRING_UNITS_2,
2513 			cap_str, sizeof(cap_str));
2514 	pr_info("%s: %s %s %s%s\n",
2515 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2516 		cap_str, md->read_only ? " (ro)" : "");
2517 
2518 	/* used in ->open, must be set before add_disk: */
2519 	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2520 		dev_set_drvdata(&card->dev, md);
2521 	ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2522 	if (ret)
2523 		goto err_put_disk;
2524 	return md;
2525 
2526  err_put_disk:
2527 	put_disk(md->disk);
2528 	blk_mq_free_tag_set(&md->queue.tag_set);
2529  err_kfree:
2530 	kfree(md);
2531  out:
2532 	ida_simple_remove(&mmc_blk_ida, devidx);
2533 	return ERR_PTR(ret);
2534 }
2535 
2536 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2537 {
2538 	sector_t size;
2539 
2540 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2541 		/*
2542 		 * The EXT_CSD sector count is in number or 512 byte
2543 		 * sectors.
2544 		 */
2545 		size = card->ext_csd.sectors;
2546 	} else {
2547 		/*
2548 		 * The CSD capacity field is in units of read_blkbits.
2549 		 * set_capacity takes units of 512 bytes.
2550 		 */
2551 		size = (typeof(sector_t))card->csd.capacity
2552 			<< (card->csd.read_blkbits - 9);
2553 	}
2554 
2555 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2556 					MMC_BLK_DATA_AREA_MAIN, 0);
2557 }
2558 
2559 static int mmc_blk_alloc_part(struct mmc_card *card,
2560 			      struct mmc_blk_data *md,
2561 			      unsigned int part_type,
2562 			      sector_t size,
2563 			      bool default_ro,
2564 			      const char *subname,
2565 			      int area_type)
2566 {
2567 	struct mmc_blk_data *part_md;
2568 
2569 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2570 				    subname, area_type, part_type);
2571 	if (IS_ERR(part_md))
2572 		return PTR_ERR(part_md);
2573 	list_add(&part_md->part, &md->part);
2574 
2575 	return 0;
2576 }
2577 
2578 /**
2579  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2580  * @filp: the character device file
2581  * @cmd: the ioctl() command
2582  * @arg: the argument from userspace
2583  *
2584  * This will essentially just redirect the ioctl()s coming in over to
2585  * the main block device spawning the RPMB character device.
2586  */
2587 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2588 			   unsigned long arg)
2589 {
2590 	struct mmc_rpmb_data *rpmb = filp->private_data;
2591 	int ret;
2592 
2593 	switch (cmd) {
2594 	case MMC_IOC_CMD:
2595 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2596 					(struct mmc_ioc_cmd __user *)arg,
2597 					rpmb);
2598 		break;
2599 	case MMC_IOC_MULTI_CMD:
2600 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2601 					(struct mmc_ioc_multi_cmd __user *)arg,
2602 					rpmb);
2603 		break;
2604 	default:
2605 		ret = -EINVAL;
2606 		break;
2607 	}
2608 
2609 	return ret;
2610 }
2611 
2612 #ifdef CONFIG_COMPAT
2613 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2614 			      unsigned long arg)
2615 {
2616 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2617 }
2618 #endif
2619 
2620 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2621 {
2622 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2623 						  struct mmc_rpmb_data, chrdev);
2624 
2625 	get_device(&rpmb->dev);
2626 	filp->private_data = rpmb;
2627 	mmc_blk_get(rpmb->md->disk);
2628 
2629 	return nonseekable_open(inode, filp);
2630 }
2631 
2632 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2633 {
2634 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2635 						  struct mmc_rpmb_data, chrdev);
2636 
2637 	mmc_blk_put(rpmb->md);
2638 	put_device(&rpmb->dev);
2639 
2640 	return 0;
2641 }
2642 
2643 static const struct file_operations mmc_rpmb_fileops = {
2644 	.release = mmc_rpmb_chrdev_release,
2645 	.open = mmc_rpmb_chrdev_open,
2646 	.owner = THIS_MODULE,
2647 	.llseek = no_llseek,
2648 	.unlocked_ioctl = mmc_rpmb_ioctl,
2649 #ifdef CONFIG_COMPAT
2650 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2651 #endif
2652 };
2653 
2654 static void mmc_blk_rpmb_device_release(struct device *dev)
2655 {
2656 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2657 
2658 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2659 	kfree(rpmb);
2660 }
2661 
2662 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2663 				   struct mmc_blk_data *md,
2664 				   unsigned int part_index,
2665 				   sector_t size,
2666 				   const char *subname)
2667 {
2668 	int devidx, ret;
2669 	char rpmb_name[DISK_NAME_LEN];
2670 	char cap_str[10];
2671 	struct mmc_rpmb_data *rpmb;
2672 
2673 	/* This creates the minor number for the RPMB char device */
2674 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2675 	if (devidx < 0)
2676 		return devidx;
2677 
2678 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2679 	if (!rpmb) {
2680 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2681 		return -ENOMEM;
2682 	}
2683 
2684 	snprintf(rpmb_name, sizeof(rpmb_name),
2685 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2686 
2687 	rpmb->id = devidx;
2688 	rpmb->part_index = part_index;
2689 	rpmb->dev.init_name = rpmb_name;
2690 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2691 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2692 	rpmb->dev.parent = &card->dev;
2693 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2694 	device_initialize(&rpmb->dev);
2695 	dev_set_drvdata(&rpmb->dev, rpmb);
2696 	rpmb->md = md;
2697 
2698 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2699 	rpmb->chrdev.owner = THIS_MODULE;
2700 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2701 	if (ret) {
2702 		pr_err("%s: could not add character device\n", rpmb_name);
2703 		goto out_put_device;
2704 	}
2705 
2706 	list_add(&rpmb->node, &md->rpmbs);
2707 
2708 	string_get_size((u64)size, 512, STRING_UNITS_2,
2709 			cap_str, sizeof(cap_str));
2710 
2711 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2712 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2713 		MAJOR(mmc_rpmb_devt), rpmb->id);
2714 
2715 	return 0;
2716 
2717 out_put_device:
2718 	put_device(&rpmb->dev);
2719 	return ret;
2720 }
2721 
2722 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2723 
2724 {
2725 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2726 	put_device(&rpmb->dev);
2727 }
2728 
2729 /* MMC Physical partitions consist of two boot partitions and
2730  * up to four general purpose partitions.
2731  * For each partition enabled in EXT_CSD a block device will be allocatedi
2732  * to provide access to the partition.
2733  */
2734 
2735 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2736 {
2737 	int idx, ret;
2738 
2739 	if (!mmc_card_mmc(card))
2740 		return 0;
2741 
2742 	for (idx = 0; idx < card->nr_parts; idx++) {
2743 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2744 			/*
2745 			 * RPMB partitions does not provide block access, they
2746 			 * are only accessed using ioctl():s. Thus create
2747 			 * special RPMB block devices that do not have a
2748 			 * backing block queue for these.
2749 			 */
2750 			ret = mmc_blk_alloc_rpmb_part(card, md,
2751 				card->part[idx].part_cfg,
2752 				card->part[idx].size >> 9,
2753 				card->part[idx].name);
2754 			if (ret)
2755 				return ret;
2756 		} else if (card->part[idx].size) {
2757 			ret = mmc_blk_alloc_part(card, md,
2758 				card->part[idx].part_cfg,
2759 				card->part[idx].size >> 9,
2760 				card->part[idx].force_ro,
2761 				card->part[idx].name,
2762 				card->part[idx].area_type);
2763 			if (ret)
2764 				return ret;
2765 		}
2766 	}
2767 
2768 	return 0;
2769 }
2770 
2771 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2772 {
2773 	/*
2774 	 * Flush remaining requests and free queues. It is freeing the queue
2775 	 * that stops new requests from being accepted.
2776 	 */
2777 	del_gendisk(md->disk);
2778 	mmc_cleanup_queue(&md->queue);
2779 	mmc_blk_put(md);
2780 }
2781 
2782 static void mmc_blk_remove_parts(struct mmc_card *card,
2783 				 struct mmc_blk_data *md)
2784 {
2785 	struct list_head *pos, *q;
2786 	struct mmc_blk_data *part_md;
2787 	struct mmc_rpmb_data *rpmb;
2788 
2789 	/* Remove RPMB partitions */
2790 	list_for_each_safe(pos, q, &md->rpmbs) {
2791 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2792 		list_del(pos);
2793 		mmc_blk_remove_rpmb_part(rpmb);
2794 	}
2795 	/* Remove block partitions */
2796 	list_for_each_safe(pos, q, &md->part) {
2797 		part_md = list_entry(pos, struct mmc_blk_data, part);
2798 		list_del(pos);
2799 		mmc_blk_remove_req(part_md);
2800 	}
2801 }
2802 
2803 #ifdef CONFIG_DEBUG_FS
2804 
2805 static int mmc_dbg_card_status_get(void *data, u64 *val)
2806 {
2807 	struct mmc_card *card = data;
2808 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2809 	struct mmc_queue *mq = &md->queue;
2810 	struct request *req;
2811 	int ret;
2812 
2813 	/* Ask the block layer about the card status */
2814 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2815 	if (IS_ERR(req))
2816 		return PTR_ERR(req);
2817 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2818 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2819 	blk_execute_rq(req, false);
2820 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2821 	if (ret >= 0) {
2822 		*val = ret;
2823 		ret = 0;
2824 	}
2825 	blk_mq_free_request(req);
2826 
2827 	return ret;
2828 }
2829 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2830 			 NULL, "%08llx\n");
2831 
2832 /* That is two digits * 512 + 1 for newline */
2833 #define EXT_CSD_STR_LEN 1025
2834 
2835 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2836 {
2837 	struct mmc_card *card = inode->i_private;
2838 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2839 	struct mmc_queue *mq = &md->queue;
2840 	struct request *req;
2841 	char *buf;
2842 	ssize_t n = 0;
2843 	u8 *ext_csd;
2844 	int err, i;
2845 
2846 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2847 	if (!buf)
2848 		return -ENOMEM;
2849 
2850 	/* Ask the block layer for the EXT CSD */
2851 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2852 	if (IS_ERR(req)) {
2853 		err = PTR_ERR(req);
2854 		goto out_free;
2855 	}
2856 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2857 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2858 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2859 	blk_execute_rq(req, false);
2860 	err = req_to_mmc_queue_req(req)->drv_op_result;
2861 	blk_mq_free_request(req);
2862 	if (err) {
2863 		pr_err("FAILED %d\n", err);
2864 		goto out_free;
2865 	}
2866 
2867 	for (i = 0; i < 512; i++)
2868 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2869 	n += sprintf(buf + n, "\n");
2870 
2871 	if (n != EXT_CSD_STR_LEN) {
2872 		err = -EINVAL;
2873 		kfree(ext_csd);
2874 		goto out_free;
2875 	}
2876 
2877 	filp->private_data = buf;
2878 	kfree(ext_csd);
2879 	return 0;
2880 
2881 out_free:
2882 	kfree(buf);
2883 	return err;
2884 }
2885 
2886 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2887 				size_t cnt, loff_t *ppos)
2888 {
2889 	char *buf = filp->private_data;
2890 
2891 	return simple_read_from_buffer(ubuf, cnt, ppos,
2892 				       buf, EXT_CSD_STR_LEN);
2893 }
2894 
2895 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2896 {
2897 	kfree(file->private_data);
2898 	return 0;
2899 }
2900 
2901 static const struct file_operations mmc_dbg_ext_csd_fops = {
2902 	.open		= mmc_ext_csd_open,
2903 	.read		= mmc_ext_csd_read,
2904 	.release	= mmc_ext_csd_release,
2905 	.llseek		= default_llseek,
2906 };
2907 
2908 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2909 {
2910 	struct dentry *root;
2911 
2912 	if (!card->debugfs_root)
2913 		return;
2914 
2915 	root = card->debugfs_root;
2916 
2917 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2918 		md->status_dentry =
2919 			debugfs_create_file_unsafe("status", 0400, root,
2920 						   card,
2921 						   &mmc_dbg_card_status_fops);
2922 	}
2923 
2924 	if (mmc_card_mmc(card)) {
2925 		md->ext_csd_dentry =
2926 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2927 					    &mmc_dbg_ext_csd_fops);
2928 	}
2929 }
2930 
2931 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2932 				   struct mmc_blk_data *md)
2933 {
2934 	if (!card->debugfs_root)
2935 		return;
2936 
2937 	debugfs_remove(md->status_dentry);
2938 	md->status_dentry = NULL;
2939 
2940 	debugfs_remove(md->ext_csd_dentry);
2941 	md->ext_csd_dentry = NULL;
2942 }
2943 
2944 #else
2945 
2946 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2947 {
2948 }
2949 
2950 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2951 				   struct mmc_blk_data *md)
2952 {
2953 }
2954 
2955 #endif /* CONFIG_DEBUG_FS */
2956 
2957 static int mmc_blk_probe(struct mmc_card *card)
2958 {
2959 	struct mmc_blk_data *md;
2960 	int ret = 0;
2961 
2962 	/*
2963 	 * Check that the card supports the command class(es) we need.
2964 	 */
2965 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2966 		return -ENODEV;
2967 
2968 	mmc_fixup_device(card, mmc_blk_fixups);
2969 
2970 	card->complete_wq = alloc_workqueue("mmc_complete",
2971 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2972 	if (!card->complete_wq) {
2973 		pr_err("Failed to create mmc completion workqueue");
2974 		return -ENOMEM;
2975 	}
2976 
2977 	md = mmc_blk_alloc(card);
2978 	if (IS_ERR(md)) {
2979 		ret = PTR_ERR(md);
2980 		goto out_free;
2981 	}
2982 
2983 	ret = mmc_blk_alloc_parts(card, md);
2984 	if (ret)
2985 		goto out;
2986 
2987 	/* Add two debugfs entries */
2988 	mmc_blk_add_debugfs(card, md);
2989 
2990 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2991 	pm_runtime_use_autosuspend(&card->dev);
2992 
2993 	/*
2994 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2995 	 * decision to be taken during the SDIO init sequence instead.
2996 	 */
2997 	if (!mmc_card_sd_combo(card)) {
2998 		pm_runtime_set_active(&card->dev);
2999 		pm_runtime_enable(&card->dev);
3000 	}
3001 
3002 	return 0;
3003 
3004 out:
3005 	mmc_blk_remove_parts(card, md);
3006 	mmc_blk_remove_req(md);
3007 out_free:
3008 	destroy_workqueue(card->complete_wq);
3009 	return ret;
3010 }
3011 
3012 static void mmc_blk_remove(struct mmc_card *card)
3013 {
3014 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3015 
3016 	mmc_blk_remove_debugfs(card, md);
3017 	mmc_blk_remove_parts(card, md);
3018 	pm_runtime_get_sync(&card->dev);
3019 	if (md->part_curr != md->part_type) {
3020 		mmc_claim_host(card->host);
3021 		mmc_blk_part_switch(card, md->part_type);
3022 		mmc_release_host(card->host);
3023 	}
3024 	if (!mmc_card_sd_combo(card))
3025 		pm_runtime_disable(&card->dev);
3026 	pm_runtime_put_noidle(&card->dev);
3027 	mmc_blk_remove_req(md);
3028 	dev_set_drvdata(&card->dev, NULL);
3029 	destroy_workqueue(card->complete_wq);
3030 }
3031 
3032 static int _mmc_blk_suspend(struct mmc_card *card)
3033 {
3034 	struct mmc_blk_data *part_md;
3035 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3036 
3037 	if (md) {
3038 		mmc_queue_suspend(&md->queue);
3039 		list_for_each_entry(part_md, &md->part, part) {
3040 			mmc_queue_suspend(&part_md->queue);
3041 		}
3042 	}
3043 	return 0;
3044 }
3045 
3046 static void mmc_blk_shutdown(struct mmc_card *card)
3047 {
3048 	_mmc_blk_suspend(card);
3049 }
3050 
3051 #ifdef CONFIG_PM_SLEEP
3052 static int mmc_blk_suspend(struct device *dev)
3053 {
3054 	struct mmc_card *card = mmc_dev_to_card(dev);
3055 
3056 	return _mmc_blk_suspend(card);
3057 }
3058 
3059 static int mmc_blk_resume(struct device *dev)
3060 {
3061 	struct mmc_blk_data *part_md;
3062 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3063 
3064 	if (md) {
3065 		/*
3066 		 * Resume involves the card going into idle state,
3067 		 * so current partition is always the main one.
3068 		 */
3069 		md->part_curr = md->part_type;
3070 		mmc_queue_resume(&md->queue);
3071 		list_for_each_entry(part_md, &md->part, part) {
3072 			mmc_queue_resume(&part_md->queue);
3073 		}
3074 	}
3075 	return 0;
3076 }
3077 #endif
3078 
3079 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3080 
3081 static struct mmc_driver mmc_driver = {
3082 	.drv		= {
3083 		.name	= "mmcblk",
3084 		.pm	= &mmc_blk_pm_ops,
3085 	},
3086 	.probe		= mmc_blk_probe,
3087 	.remove		= mmc_blk_remove,
3088 	.shutdown	= mmc_blk_shutdown,
3089 };
3090 
3091 static int __init mmc_blk_init(void)
3092 {
3093 	int res;
3094 
3095 	res  = bus_register(&mmc_rpmb_bus_type);
3096 	if (res < 0) {
3097 		pr_err("mmcblk: could not register RPMB bus type\n");
3098 		return res;
3099 	}
3100 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3101 	if (res < 0) {
3102 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3103 		goto out_bus_unreg;
3104 	}
3105 
3106 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3107 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3108 
3109 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3110 
3111 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3112 	if (res)
3113 		goto out_chrdev_unreg;
3114 
3115 	res = mmc_register_driver(&mmc_driver);
3116 	if (res)
3117 		goto out_blkdev_unreg;
3118 
3119 	return 0;
3120 
3121 out_blkdev_unreg:
3122 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3123 out_chrdev_unreg:
3124 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3125 out_bus_unreg:
3126 	bus_unregister(&mmc_rpmb_bus_type);
3127 	return res;
3128 }
3129 
3130 static void __exit mmc_blk_exit(void)
3131 {
3132 	mmc_unregister_driver(&mmc_driver);
3133 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3134 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3135 	bus_unregister(&mmc_rpmb_bus_type);
3136 }
3137 
3138 module_init(mmc_blk_init);
3139 module_exit(mmc_blk_exit);
3140 
3141 MODULE_LICENSE("GPL");
3142 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3143 
3144