1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/cdev.h> 32 #include <linux/mutex.h> 33 #include <linux/scatterlist.h> 34 #include <linux/string_helpers.h> 35 #include <linux/delay.h> 36 #include <linux/capability.h> 37 #include <linux/compat.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/idr.h> 40 #include <linux/debugfs.h> 41 42 #include <linux/mmc/ioctl.h> 43 #include <linux/mmc/card.h> 44 #include <linux/mmc/host.h> 45 #include <linux/mmc/mmc.h> 46 #include <linux/mmc/sd.h> 47 48 #include <linux/uaccess.h> 49 50 #include "queue.h" 51 #include "block.h" 52 #include "core.h" 53 #include "card.h" 54 #include "host.h" 55 #include "bus.h" 56 #include "mmc_ops.h" 57 #include "quirks.h" 58 #include "sd_ops.h" 59 60 MODULE_ALIAS("mmc:block"); 61 #ifdef MODULE_PARAM_PREFIX 62 #undef MODULE_PARAM_PREFIX 63 #endif 64 #define MODULE_PARAM_PREFIX "mmcblk." 65 66 /* 67 * Set a 10 second timeout for polling write request busy state. Note, mmc core 68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 69 * second software timer to timeout the whole request, so 10 seconds should be 70 * ample. 71 */ 72 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 73 #define MMC_SANITIZE_REQ_TIMEOUT 240000 74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 76 77 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 78 (rq_data_dir(req) == WRITE)) 79 static DEFINE_MUTEX(block_mutex); 80 81 /* 82 * The defaults come from config options but can be overriden by module 83 * or bootarg options. 84 */ 85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 86 87 /* 88 * We've only got one major, so number of mmcblk devices is 89 * limited to (1 << 20) / number of minors per device. It is also 90 * limited by the MAX_DEVICES below. 91 */ 92 static int max_devices; 93 94 #define MAX_DEVICES 256 95 96 static DEFINE_IDA(mmc_blk_ida); 97 static DEFINE_IDA(mmc_rpmb_ida); 98 99 /* 100 * There is one mmc_blk_data per slot. 101 */ 102 struct mmc_blk_data { 103 spinlock_t lock; 104 struct device *parent; 105 struct gendisk *disk; 106 struct mmc_queue queue; 107 struct list_head part; 108 struct list_head rpmbs; 109 110 unsigned int flags; 111 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 112 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 113 114 unsigned int usage; 115 unsigned int read_only; 116 unsigned int part_type; 117 unsigned int reset_done; 118 #define MMC_BLK_READ BIT(0) 119 #define MMC_BLK_WRITE BIT(1) 120 #define MMC_BLK_DISCARD BIT(2) 121 #define MMC_BLK_SECDISCARD BIT(3) 122 #define MMC_BLK_CQE_RECOVERY BIT(4) 123 124 /* 125 * Only set in main mmc_blk_data associated 126 * with mmc_card with dev_set_drvdata, and keeps 127 * track of the current selected device partition. 128 */ 129 unsigned int part_curr; 130 struct device_attribute force_ro; 131 struct device_attribute power_ro_lock; 132 int area_type; 133 134 /* debugfs files (only in main mmc_blk_data) */ 135 struct dentry *status_dentry; 136 struct dentry *ext_csd_dentry; 137 }; 138 139 /* Device type for RPMB character devices */ 140 static dev_t mmc_rpmb_devt; 141 142 /* Bus type for RPMB character devices */ 143 static struct bus_type mmc_rpmb_bus_type = { 144 .name = "mmc_rpmb", 145 }; 146 147 /** 148 * struct mmc_rpmb_data - special RPMB device type for these areas 149 * @dev: the device for the RPMB area 150 * @chrdev: character device for the RPMB area 151 * @id: unique device ID number 152 * @part_index: partition index (0 on first) 153 * @md: parent MMC block device 154 * @node: list item, so we can put this device on a list 155 */ 156 struct mmc_rpmb_data { 157 struct device dev; 158 struct cdev chrdev; 159 int id; 160 unsigned int part_index; 161 struct mmc_blk_data *md; 162 struct list_head node; 163 }; 164 165 static DEFINE_MUTEX(open_lock); 166 167 module_param(perdev_minors, int, 0444); 168 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 169 170 static inline int mmc_blk_part_switch(struct mmc_card *card, 171 unsigned int part_type); 172 173 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 174 { 175 struct mmc_blk_data *md; 176 177 mutex_lock(&open_lock); 178 md = disk->private_data; 179 if (md && md->usage == 0) 180 md = NULL; 181 if (md) 182 md->usage++; 183 mutex_unlock(&open_lock); 184 185 return md; 186 } 187 188 static inline int mmc_get_devidx(struct gendisk *disk) 189 { 190 int devidx = disk->first_minor / perdev_minors; 191 return devidx; 192 } 193 194 static void mmc_blk_put(struct mmc_blk_data *md) 195 { 196 mutex_lock(&open_lock); 197 md->usage--; 198 if (md->usage == 0) { 199 int devidx = mmc_get_devidx(md->disk); 200 blk_put_queue(md->queue.queue); 201 ida_simple_remove(&mmc_blk_ida, devidx); 202 put_disk(md->disk); 203 kfree(md); 204 } 205 mutex_unlock(&open_lock); 206 } 207 208 static ssize_t power_ro_lock_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 int ret; 212 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 213 struct mmc_card *card = md->queue.card; 214 int locked = 0; 215 216 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 217 locked = 2; 218 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 219 locked = 1; 220 221 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 222 223 mmc_blk_put(md); 224 225 return ret; 226 } 227 228 static ssize_t power_ro_lock_store(struct device *dev, 229 struct device_attribute *attr, const char *buf, size_t count) 230 { 231 int ret; 232 struct mmc_blk_data *md, *part_md; 233 struct mmc_queue *mq; 234 struct request *req; 235 unsigned long set; 236 237 if (kstrtoul(buf, 0, &set)) 238 return -EINVAL; 239 240 if (set != 1) 241 return count; 242 243 md = mmc_blk_get(dev_to_disk(dev)); 244 mq = &md->queue; 245 246 /* Dispatch locking to the block layer */ 247 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM); 248 if (IS_ERR(req)) { 249 count = PTR_ERR(req); 250 goto out_put; 251 } 252 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 253 blk_execute_rq(mq->queue, NULL, req, 0); 254 ret = req_to_mmc_queue_req(req)->drv_op_result; 255 blk_put_request(req); 256 257 if (!ret) { 258 pr_info("%s: Locking boot partition ro until next power on\n", 259 md->disk->disk_name); 260 set_disk_ro(md->disk, 1); 261 262 list_for_each_entry(part_md, &md->part, part) 263 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 264 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 265 set_disk_ro(part_md->disk, 1); 266 } 267 } 268 out_put: 269 mmc_blk_put(md); 270 return count; 271 } 272 273 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 274 char *buf) 275 { 276 int ret; 277 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 278 279 ret = snprintf(buf, PAGE_SIZE, "%d\n", 280 get_disk_ro(dev_to_disk(dev)) ^ 281 md->read_only); 282 mmc_blk_put(md); 283 return ret; 284 } 285 286 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 287 const char *buf, size_t count) 288 { 289 int ret; 290 char *end; 291 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 292 unsigned long set = simple_strtoul(buf, &end, 0); 293 if (end == buf) { 294 ret = -EINVAL; 295 goto out; 296 } 297 298 set_disk_ro(dev_to_disk(dev), set || md->read_only); 299 ret = count; 300 out: 301 mmc_blk_put(md); 302 return ret; 303 } 304 305 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 306 { 307 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 308 int ret = -ENXIO; 309 310 mutex_lock(&block_mutex); 311 if (md) { 312 if (md->usage == 2) 313 check_disk_change(bdev); 314 ret = 0; 315 316 if ((mode & FMODE_WRITE) && md->read_only) { 317 mmc_blk_put(md); 318 ret = -EROFS; 319 } 320 } 321 mutex_unlock(&block_mutex); 322 323 return ret; 324 } 325 326 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 327 { 328 struct mmc_blk_data *md = disk->private_data; 329 330 mutex_lock(&block_mutex); 331 mmc_blk_put(md); 332 mutex_unlock(&block_mutex); 333 } 334 335 static int 336 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 337 { 338 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 339 geo->heads = 4; 340 geo->sectors = 16; 341 return 0; 342 } 343 344 struct mmc_blk_ioc_data { 345 struct mmc_ioc_cmd ic; 346 unsigned char *buf; 347 u64 buf_bytes; 348 struct mmc_rpmb_data *rpmb; 349 }; 350 351 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 352 struct mmc_ioc_cmd __user *user) 353 { 354 struct mmc_blk_ioc_data *idata; 355 int err; 356 357 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 358 if (!idata) { 359 err = -ENOMEM; 360 goto out; 361 } 362 363 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 364 err = -EFAULT; 365 goto idata_err; 366 } 367 368 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 369 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 370 err = -EOVERFLOW; 371 goto idata_err; 372 } 373 374 if (!idata->buf_bytes) { 375 idata->buf = NULL; 376 return idata; 377 } 378 379 idata->buf = memdup_user((void __user *)(unsigned long) 380 idata->ic.data_ptr, idata->buf_bytes); 381 if (IS_ERR(idata->buf)) { 382 err = PTR_ERR(idata->buf); 383 goto idata_err; 384 } 385 386 return idata; 387 388 idata_err: 389 kfree(idata); 390 out: 391 return ERR_PTR(err); 392 } 393 394 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 395 struct mmc_blk_ioc_data *idata) 396 { 397 struct mmc_ioc_cmd *ic = &idata->ic; 398 399 if (copy_to_user(&(ic_ptr->response), ic->response, 400 sizeof(ic->response))) 401 return -EFAULT; 402 403 if (!idata->ic.write_flag) { 404 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 405 idata->buf, idata->buf_bytes)) 406 return -EFAULT; 407 } 408 409 return 0; 410 } 411 412 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status, 413 u32 retries_max) 414 { 415 int err; 416 u32 retry_count = 0; 417 418 if (!status || !retries_max) 419 return -EINVAL; 420 421 do { 422 err = __mmc_send_status(card, status, 5); 423 if (err) 424 break; 425 426 if (!R1_STATUS(*status) && 427 (R1_CURRENT_STATE(*status) != R1_STATE_PRG)) 428 break; /* RPMB programming operation complete */ 429 430 /* 431 * Rechedule to give the MMC device a chance to continue 432 * processing the previous command without being polled too 433 * frequently. 434 */ 435 usleep_range(1000, 5000); 436 } while (++retry_count < retries_max); 437 438 if (retry_count == retries_max) 439 err = -EPERM; 440 441 return err; 442 } 443 444 static int ioctl_do_sanitize(struct mmc_card *card) 445 { 446 int err; 447 448 if (!mmc_can_sanitize(card)) { 449 pr_warn("%s: %s - SANITIZE is not supported\n", 450 mmc_hostname(card->host), __func__); 451 err = -EOPNOTSUPP; 452 goto out; 453 } 454 455 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n", 456 mmc_hostname(card->host), __func__); 457 458 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 459 EXT_CSD_SANITIZE_START, 1, 460 MMC_SANITIZE_REQ_TIMEOUT); 461 462 if (err) 463 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n", 464 mmc_hostname(card->host), __func__, err); 465 466 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host), 467 __func__); 468 out: 469 return err; 470 } 471 472 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 473 struct mmc_blk_ioc_data *idata) 474 { 475 struct mmc_command cmd = {}; 476 struct mmc_data data = {}; 477 struct mmc_request mrq = {}; 478 struct scatterlist sg; 479 int err; 480 unsigned int target_part; 481 u32 status = 0; 482 483 if (!card || !md || !idata) 484 return -EINVAL; 485 486 /* 487 * The RPMB accesses comes in from the character device, so we 488 * need to target these explicitly. Else we just target the 489 * partition type for the block device the ioctl() was issued 490 * on. 491 */ 492 if (idata->rpmb) { 493 /* Support multiple RPMB partitions */ 494 target_part = idata->rpmb->part_index; 495 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 496 } else { 497 target_part = md->part_type; 498 } 499 500 cmd.opcode = idata->ic.opcode; 501 cmd.arg = idata->ic.arg; 502 cmd.flags = idata->ic.flags; 503 504 if (idata->buf_bytes) { 505 data.sg = &sg; 506 data.sg_len = 1; 507 data.blksz = idata->ic.blksz; 508 data.blocks = idata->ic.blocks; 509 510 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 511 512 if (idata->ic.write_flag) 513 data.flags = MMC_DATA_WRITE; 514 else 515 data.flags = MMC_DATA_READ; 516 517 /* data.flags must already be set before doing this. */ 518 mmc_set_data_timeout(&data, card); 519 520 /* Allow overriding the timeout_ns for empirical tuning. */ 521 if (idata->ic.data_timeout_ns) 522 data.timeout_ns = idata->ic.data_timeout_ns; 523 524 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 525 /* 526 * Pretend this is a data transfer and rely on the 527 * host driver to compute timeout. When all host 528 * drivers support cmd.cmd_timeout for R1B, this 529 * can be changed to: 530 * 531 * mrq.data = NULL; 532 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 533 */ 534 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 535 } 536 537 mrq.data = &data; 538 } 539 540 mrq.cmd = &cmd; 541 542 err = mmc_blk_part_switch(card, target_part); 543 if (err) 544 return err; 545 546 if (idata->ic.is_acmd) { 547 err = mmc_app_cmd(card->host, card); 548 if (err) 549 return err; 550 } 551 552 if (idata->rpmb) { 553 err = mmc_set_blockcount(card, data.blocks, 554 idata->ic.write_flag & (1 << 31)); 555 if (err) 556 return err; 557 } 558 559 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 560 (cmd.opcode == MMC_SWITCH)) { 561 err = ioctl_do_sanitize(card); 562 563 if (err) 564 pr_err("%s: ioctl_do_sanitize() failed. err = %d", 565 __func__, err); 566 567 return err; 568 } 569 570 mmc_wait_for_req(card->host, &mrq); 571 572 if (cmd.error) { 573 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 574 __func__, cmd.error); 575 return cmd.error; 576 } 577 if (data.error) { 578 dev_err(mmc_dev(card->host), "%s: data error %d\n", 579 __func__, data.error); 580 return data.error; 581 } 582 583 /* 584 * Make sure the cache of the PARTITION_CONFIG register and 585 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 586 * changed it successfully. 587 */ 588 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 589 (cmd.opcode == MMC_SWITCH)) { 590 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 591 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 592 593 /* 594 * Update cache so the next mmc_blk_part_switch call operates 595 * on up-to-date data. 596 */ 597 card->ext_csd.part_config = value; 598 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 599 } 600 601 /* 602 * According to the SD specs, some commands require a delay after 603 * issuing the command. 604 */ 605 if (idata->ic.postsleep_min_us) 606 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 607 608 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 609 610 if (idata->rpmb) { 611 /* 612 * Ensure RPMB command has completed by polling CMD13 613 * "Send Status". 614 */ 615 err = ioctl_rpmb_card_status_poll(card, &status, 5); 616 if (err) 617 dev_err(mmc_dev(card->host), 618 "%s: Card Status=0x%08X, error %d\n", 619 __func__, status, err); 620 } 621 622 return err; 623 } 624 625 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 626 struct mmc_ioc_cmd __user *ic_ptr, 627 struct mmc_rpmb_data *rpmb) 628 { 629 struct mmc_blk_ioc_data *idata; 630 struct mmc_blk_ioc_data *idatas[1]; 631 struct mmc_queue *mq; 632 struct mmc_card *card; 633 int err = 0, ioc_err = 0; 634 struct request *req; 635 636 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 637 if (IS_ERR(idata)) 638 return PTR_ERR(idata); 639 /* This will be NULL on non-RPMB ioctl():s */ 640 idata->rpmb = rpmb; 641 642 card = md->queue.card; 643 if (IS_ERR(card)) { 644 err = PTR_ERR(card); 645 goto cmd_done; 646 } 647 648 /* 649 * Dispatch the ioctl() into the block request queue. 650 */ 651 mq = &md->queue; 652 req = blk_get_request(mq->queue, 653 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 654 __GFP_RECLAIM); 655 if (IS_ERR(req)) { 656 err = PTR_ERR(req); 657 goto cmd_done; 658 } 659 idatas[0] = idata; 660 req_to_mmc_queue_req(req)->drv_op = 661 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 662 req_to_mmc_queue_req(req)->drv_op_data = idatas; 663 req_to_mmc_queue_req(req)->ioc_count = 1; 664 blk_execute_rq(mq->queue, NULL, req, 0); 665 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 666 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 667 blk_put_request(req); 668 669 cmd_done: 670 kfree(idata->buf); 671 kfree(idata); 672 return ioc_err ? ioc_err : err; 673 } 674 675 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 676 struct mmc_ioc_multi_cmd __user *user, 677 struct mmc_rpmb_data *rpmb) 678 { 679 struct mmc_blk_ioc_data **idata = NULL; 680 struct mmc_ioc_cmd __user *cmds = user->cmds; 681 struct mmc_card *card; 682 struct mmc_queue *mq; 683 int i, err = 0, ioc_err = 0; 684 __u64 num_of_cmds; 685 struct request *req; 686 687 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 688 sizeof(num_of_cmds))) 689 return -EFAULT; 690 691 if (!num_of_cmds) 692 return 0; 693 694 if (num_of_cmds > MMC_IOC_MAX_CMDS) 695 return -EINVAL; 696 697 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 698 if (!idata) 699 return -ENOMEM; 700 701 for (i = 0; i < num_of_cmds; i++) { 702 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 703 if (IS_ERR(idata[i])) { 704 err = PTR_ERR(idata[i]); 705 num_of_cmds = i; 706 goto cmd_err; 707 } 708 /* This will be NULL on non-RPMB ioctl():s */ 709 idata[i]->rpmb = rpmb; 710 } 711 712 card = md->queue.card; 713 if (IS_ERR(card)) { 714 err = PTR_ERR(card); 715 goto cmd_err; 716 } 717 718 719 /* 720 * Dispatch the ioctl()s into the block request queue. 721 */ 722 mq = &md->queue; 723 req = blk_get_request(mq->queue, 724 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 725 __GFP_RECLAIM); 726 if (IS_ERR(req)) { 727 err = PTR_ERR(req); 728 goto cmd_err; 729 } 730 req_to_mmc_queue_req(req)->drv_op = 731 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 732 req_to_mmc_queue_req(req)->drv_op_data = idata; 733 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 734 blk_execute_rq(mq->queue, NULL, req, 0); 735 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 736 737 /* copy to user if data and response */ 738 for (i = 0; i < num_of_cmds && !err; i++) 739 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 740 741 blk_put_request(req); 742 743 cmd_err: 744 for (i = 0; i < num_of_cmds; i++) { 745 kfree(idata[i]->buf); 746 kfree(idata[i]); 747 } 748 kfree(idata); 749 return ioc_err ? ioc_err : err; 750 } 751 752 static int mmc_blk_check_blkdev(struct block_device *bdev) 753 { 754 /* 755 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 756 * whole block device, not on a partition. This prevents overspray 757 * between sibling partitions. 758 */ 759 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 760 return -EPERM; 761 return 0; 762 } 763 764 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 765 unsigned int cmd, unsigned long arg) 766 { 767 struct mmc_blk_data *md; 768 int ret; 769 770 switch (cmd) { 771 case MMC_IOC_CMD: 772 ret = mmc_blk_check_blkdev(bdev); 773 if (ret) 774 return ret; 775 md = mmc_blk_get(bdev->bd_disk); 776 if (!md) 777 return -EINVAL; 778 ret = mmc_blk_ioctl_cmd(md, 779 (struct mmc_ioc_cmd __user *)arg, 780 NULL); 781 mmc_blk_put(md); 782 return ret; 783 case MMC_IOC_MULTI_CMD: 784 ret = mmc_blk_check_blkdev(bdev); 785 if (ret) 786 return ret; 787 md = mmc_blk_get(bdev->bd_disk); 788 if (!md) 789 return -EINVAL; 790 ret = mmc_blk_ioctl_multi_cmd(md, 791 (struct mmc_ioc_multi_cmd __user *)arg, 792 NULL); 793 mmc_blk_put(md); 794 return ret; 795 default: 796 return -EINVAL; 797 } 798 } 799 800 #ifdef CONFIG_COMPAT 801 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 802 unsigned int cmd, unsigned long arg) 803 { 804 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 805 } 806 #endif 807 808 static const struct block_device_operations mmc_bdops = { 809 .open = mmc_blk_open, 810 .release = mmc_blk_release, 811 .getgeo = mmc_blk_getgeo, 812 .owner = THIS_MODULE, 813 .ioctl = mmc_blk_ioctl, 814 #ifdef CONFIG_COMPAT 815 .compat_ioctl = mmc_blk_compat_ioctl, 816 #endif 817 }; 818 819 static int mmc_blk_part_switch_pre(struct mmc_card *card, 820 unsigned int part_type) 821 { 822 int ret = 0; 823 824 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 825 if (card->ext_csd.cmdq_en) { 826 ret = mmc_cmdq_disable(card); 827 if (ret) 828 return ret; 829 } 830 mmc_retune_pause(card->host); 831 } 832 833 return ret; 834 } 835 836 static int mmc_blk_part_switch_post(struct mmc_card *card, 837 unsigned int part_type) 838 { 839 int ret = 0; 840 841 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 842 mmc_retune_unpause(card->host); 843 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 844 ret = mmc_cmdq_enable(card); 845 } 846 847 return ret; 848 } 849 850 static inline int mmc_blk_part_switch(struct mmc_card *card, 851 unsigned int part_type) 852 { 853 int ret = 0; 854 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 855 856 if (main_md->part_curr == part_type) 857 return 0; 858 859 if (mmc_card_mmc(card)) { 860 u8 part_config = card->ext_csd.part_config; 861 862 ret = mmc_blk_part_switch_pre(card, part_type); 863 if (ret) 864 return ret; 865 866 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 867 part_config |= part_type; 868 869 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 870 EXT_CSD_PART_CONFIG, part_config, 871 card->ext_csd.part_time); 872 if (ret) { 873 mmc_blk_part_switch_post(card, part_type); 874 return ret; 875 } 876 877 card->ext_csd.part_config = part_config; 878 879 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 880 } 881 882 main_md->part_curr = part_type; 883 return ret; 884 } 885 886 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 887 { 888 int err; 889 u32 result; 890 __be32 *blocks; 891 892 struct mmc_request mrq = {}; 893 struct mmc_command cmd = {}; 894 struct mmc_data data = {}; 895 896 struct scatterlist sg; 897 898 cmd.opcode = MMC_APP_CMD; 899 cmd.arg = card->rca << 16; 900 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 901 902 err = mmc_wait_for_cmd(card->host, &cmd, 0); 903 if (err) 904 return err; 905 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 906 return -EIO; 907 908 memset(&cmd, 0, sizeof(struct mmc_command)); 909 910 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 911 cmd.arg = 0; 912 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 913 914 data.blksz = 4; 915 data.blocks = 1; 916 data.flags = MMC_DATA_READ; 917 data.sg = &sg; 918 data.sg_len = 1; 919 mmc_set_data_timeout(&data, card); 920 921 mrq.cmd = &cmd; 922 mrq.data = &data; 923 924 blocks = kmalloc(4, GFP_KERNEL); 925 if (!blocks) 926 return -ENOMEM; 927 928 sg_init_one(&sg, blocks, 4); 929 930 mmc_wait_for_req(card->host, &mrq); 931 932 result = ntohl(*blocks); 933 kfree(blocks); 934 935 if (cmd.error || data.error) 936 return -EIO; 937 938 *written_blocks = result; 939 940 return 0; 941 } 942 943 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 944 { 945 if (host->actual_clock) 946 return host->actual_clock / 1000; 947 948 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 949 if (host->ios.clock) 950 return host->ios.clock / 2000; 951 952 /* How can there be no clock */ 953 WARN_ON_ONCE(1); 954 return 100; /* 100 kHz is minimum possible value */ 955 } 956 957 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 958 struct mmc_data *data) 959 { 960 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 961 unsigned int khz; 962 963 if (data->timeout_clks) { 964 khz = mmc_blk_clock_khz(host); 965 ms += DIV_ROUND_UP(data->timeout_clks, khz); 966 } 967 968 return ms; 969 } 970 971 static inline bool mmc_blk_in_tran_state(u32 status) 972 { 973 /* 974 * Some cards mishandle the status bits, so make sure to check both the 975 * busy indication and the card state. 976 */ 977 return status & R1_READY_FOR_DATA && 978 (R1_CURRENT_STATE(status) == R1_STATE_TRAN); 979 } 980 981 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 982 struct request *req, u32 *resp_errs) 983 { 984 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 985 int err = 0; 986 u32 status; 987 988 do { 989 bool done = time_after(jiffies, timeout); 990 991 err = __mmc_send_status(card, &status, 5); 992 if (err) { 993 pr_err("%s: error %d requesting status\n", 994 req->rq_disk->disk_name, err); 995 return err; 996 } 997 998 /* Accumulate any response error bits seen */ 999 if (resp_errs) 1000 *resp_errs |= status; 1001 1002 /* 1003 * Timeout if the device never becomes ready for data and never 1004 * leaves the program state. 1005 */ 1006 if (done) { 1007 pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n", 1008 mmc_hostname(card->host), 1009 req->rq_disk->disk_name, __func__, status); 1010 return -ETIMEDOUT; 1011 } 1012 1013 /* 1014 * Some cards mishandle the status bits, 1015 * so make sure to check both the busy 1016 * indication and the card state. 1017 */ 1018 } while (!mmc_blk_in_tran_state(status)); 1019 1020 return err; 1021 } 1022 1023 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1024 int type) 1025 { 1026 int err; 1027 1028 if (md->reset_done & type) 1029 return -EEXIST; 1030 1031 md->reset_done |= type; 1032 err = mmc_hw_reset(host); 1033 /* Ensure we switch back to the correct partition */ 1034 if (err != -EOPNOTSUPP) { 1035 struct mmc_blk_data *main_md = 1036 dev_get_drvdata(&host->card->dev); 1037 int part_err; 1038 1039 main_md->part_curr = main_md->part_type; 1040 part_err = mmc_blk_part_switch(host->card, md->part_type); 1041 if (part_err) { 1042 /* 1043 * We have failed to get back into the correct 1044 * partition, so we need to abort the whole request. 1045 */ 1046 return -ENODEV; 1047 } 1048 } 1049 return err; 1050 } 1051 1052 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1053 { 1054 md->reset_done &= ~type; 1055 } 1056 1057 /* 1058 * The non-block commands come back from the block layer after it queued it and 1059 * processed it with all other requests and then they get issued in this 1060 * function. 1061 */ 1062 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1063 { 1064 struct mmc_queue_req *mq_rq; 1065 struct mmc_card *card = mq->card; 1066 struct mmc_blk_data *md = mq->blkdata; 1067 struct mmc_blk_ioc_data **idata; 1068 bool rpmb_ioctl; 1069 u8 **ext_csd; 1070 u32 status; 1071 int ret; 1072 int i; 1073 1074 mq_rq = req_to_mmc_queue_req(req); 1075 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1076 1077 switch (mq_rq->drv_op) { 1078 case MMC_DRV_OP_IOCTL: 1079 case MMC_DRV_OP_IOCTL_RPMB: 1080 idata = mq_rq->drv_op_data; 1081 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1082 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1083 if (ret) 1084 break; 1085 } 1086 /* Always switch back to main area after RPMB access */ 1087 if (rpmb_ioctl) 1088 mmc_blk_part_switch(card, 0); 1089 break; 1090 case MMC_DRV_OP_BOOT_WP: 1091 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1092 card->ext_csd.boot_ro_lock | 1093 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1094 card->ext_csd.part_time); 1095 if (ret) 1096 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1097 md->disk->disk_name, ret); 1098 else 1099 card->ext_csd.boot_ro_lock |= 1100 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1101 break; 1102 case MMC_DRV_OP_GET_CARD_STATUS: 1103 ret = mmc_send_status(card, &status); 1104 if (!ret) 1105 ret = status; 1106 break; 1107 case MMC_DRV_OP_GET_EXT_CSD: 1108 ext_csd = mq_rq->drv_op_data; 1109 ret = mmc_get_ext_csd(card, ext_csd); 1110 break; 1111 default: 1112 pr_err("%s: unknown driver specific operation\n", 1113 md->disk->disk_name); 1114 ret = -EINVAL; 1115 break; 1116 } 1117 mq_rq->drv_op_result = ret; 1118 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1119 } 1120 1121 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1122 { 1123 struct mmc_blk_data *md = mq->blkdata; 1124 struct mmc_card *card = md->queue.card; 1125 unsigned int from, nr, arg; 1126 int err = 0, type = MMC_BLK_DISCARD; 1127 blk_status_t status = BLK_STS_OK; 1128 1129 if (!mmc_can_erase(card)) { 1130 status = BLK_STS_NOTSUPP; 1131 goto fail; 1132 } 1133 1134 from = blk_rq_pos(req); 1135 nr = blk_rq_sectors(req); 1136 1137 if (mmc_can_discard(card)) 1138 arg = MMC_DISCARD_ARG; 1139 else if (mmc_can_trim(card)) 1140 arg = MMC_TRIM_ARG; 1141 else 1142 arg = MMC_ERASE_ARG; 1143 do { 1144 err = 0; 1145 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1146 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1147 INAND_CMD38_ARG_EXT_CSD, 1148 arg == MMC_TRIM_ARG ? 1149 INAND_CMD38_ARG_TRIM : 1150 INAND_CMD38_ARG_ERASE, 1151 0); 1152 } 1153 if (!err) 1154 err = mmc_erase(card, from, nr, arg); 1155 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1156 if (err) 1157 status = BLK_STS_IOERR; 1158 else 1159 mmc_blk_reset_success(md, type); 1160 fail: 1161 blk_mq_end_request(req, status); 1162 } 1163 1164 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1165 struct request *req) 1166 { 1167 struct mmc_blk_data *md = mq->blkdata; 1168 struct mmc_card *card = md->queue.card; 1169 unsigned int from, nr, arg; 1170 int err = 0, type = MMC_BLK_SECDISCARD; 1171 blk_status_t status = BLK_STS_OK; 1172 1173 if (!(mmc_can_secure_erase_trim(card))) { 1174 status = BLK_STS_NOTSUPP; 1175 goto out; 1176 } 1177 1178 from = blk_rq_pos(req); 1179 nr = blk_rq_sectors(req); 1180 1181 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1182 arg = MMC_SECURE_TRIM1_ARG; 1183 else 1184 arg = MMC_SECURE_ERASE_ARG; 1185 1186 retry: 1187 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1188 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1189 INAND_CMD38_ARG_EXT_CSD, 1190 arg == MMC_SECURE_TRIM1_ARG ? 1191 INAND_CMD38_ARG_SECTRIM1 : 1192 INAND_CMD38_ARG_SECERASE, 1193 0); 1194 if (err) 1195 goto out_retry; 1196 } 1197 1198 err = mmc_erase(card, from, nr, arg); 1199 if (err == -EIO) 1200 goto out_retry; 1201 if (err) { 1202 status = BLK_STS_IOERR; 1203 goto out; 1204 } 1205 1206 if (arg == MMC_SECURE_TRIM1_ARG) { 1207 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1208 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1209 INAND_CMD38_ARG_EXT_CSD, 1210 INAND_CMD38_ARG_SECTRIM2, 1211 0); 1212 if (err) 1213 goto out_retry; 1214 } 1215 1216 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1217 if (err == -EIO) 1218 goto out_retry; 1219 if (err) { 1220 status = BLK_STS_IOERR; 1221 goto out; 1222 } 1223 } 1224 1225 out_retry: 1226 if (err && !mmc_blk_reset(md, card->host, type)) 1227 goto retry; 1228 if (!err) 1229 mmc_blk_reset_success(md, type); 1230 out: 1231 blk_mq_end_request(req, status); 1232 } 1233 1234 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1235 { 1236 struct mmc_blk_data *md = mq->blkdata; 1237 struct mmc_card *card = md->queue.card; 1238 int ret = 0; 1239 1240 ret = mmc_flush_cache(card); 1241 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1242 } 1243 1244 /* 1245 * Reformat current write as a reliable write, supporting 1246 * both legacy and the enhanced reliable write MMC cards. 1247 * In each transfer we'll handle only as much as a single 1248 * reliable write can handle, thus finish the request in 1249 * partial completions. 1250 */ 1251 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1252 struct mmc_card *card, 1253 struct request *req) 1254 { 1255 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1256 /* Legacy mode imposes restrictions on transfers. */ 1257 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1258 brq->data.blocks = 1; 1259 1260 if (brq->data.blocks > card->ext_csd.rel_sectors) 1261 brq->data.blocks = card->ext_csd.rel_sectors; 1262 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1263 brq->data.blocks = 1; 1264 } 1265 } 1266 1267 #define CMD_ERRORS_EXCL_OOR \ 1268 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1269 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1270 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1271 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1272 R1_CC_ERROR | /* Card controller error */ \ 1273 R1_ERROR) /* General/unknown error */ 1274 1275 #define CMD_ERRORS \ 1276 (CMD_ERRORS_EXCL_OOR | \ 1277 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1278 1279 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1280 { 1281 u32 val; 1282 1283 /* 1284 * Per the SD specification(physical layer version 4.10)[1], 1285 * section 4.3.3, it explicitly states that "When the last 1286 * block of user area is read using CMD18, the host should 1287 * ignore OUT_OF_RANGE error that may occur even the sequence 1288 * is correct". And JESD84-B51 for eMMC also has a similar 1289 * statement on section 6.8.3. 1290 * 1291 * Multiple block read/write could be done by either predefined 1292 * method, namely CMD23, or open-ending mode. For open-ending mode, 1293 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1294 * 1295 * However the spec[1] doesn't tell us whether we should also 1296 * ignore that for predefined method. But per the spec[1], section 1297 * 4.15 Set Block Count Command, it says"If illegal block count 1298 * is set, out of range error will be indicated during read/write 1299 * operation (For example, data transfer is stopped at user area 1300 * boundary)." In another word, we could expect a out of range error 1301 * in the response for the following CMD18/25. And if argument of 1302 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1303 * we could also expect to get a -ETIMEDOUT or any error number from 1304 * the host drivers due to missing data response(for write)/data(for 1305 * read), as the cards will stop the data transfer by itself per the 1306 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1307 */ 1308 1309 if (!brq->stop.error) { 1310 bool oor_with_open_end; 1311 /* If there is no error yet, check R1 response */ 1312 1313 val = brq->stop.resp[0] & CMD_ERRORS; 1314 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1315 1316 if (val && !oor_with_open_end) 1317 brq->stop.error = -EIO; 1318 } 1319 } 1320 1321 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1322 int disable_multi, bool *do_rel_wr_p, 1323 bool *do_data_tag_p) 1324 { 1325 struct mmc_blk_data *md = mq->blkdata; 1326 struct mmc_card *card = md->queue.card; 1327 struct mmc_blk_request *brq = &mqrq->brq; 1328 struct request *req = mmc_queue_req_to_req(mqrq); 1329 bool do_rel_wr, do_data_tag; 1330 1331 /* 1332 * Reliable writes are used to implement Forced Unit Access and 1333 * are supported only on MMCs. 1334 */ 1335 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1336 rq_data_dir(req) == WRITE && 1337 (md->flags & MMC_BLK_REL_WR); 1338 1339 memset(brq, 0, sizeof(struct mmc_blk_request)); 1340 1341 brq->mrq.data = &brq->data; 1342 brq->mrq.tag = req->tag; 1343 1344 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1345 brq->stop.arg = 0; 1346 1347 if (rq_data_dir(req) == READ) { 1348 brq->data.flags = MMC_DATA_READ; 1349 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1350 } else { 1351 brq->data.flags = MMC_DATA_WRITE; 1352 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1353 } 1354 1355 brq->data.blksz = 512; 1356 brq->data.blocks = blk_rq_sectors(req); 1357 brq->data.blk_addr = blk_rq_pos(req); 1358 1359 /* 1360 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1361 * The eMMC will give "high" priority tasks priority over "simple" 1362 * priority tasks. Here we always set "simple" priority by not setting 1363 * MMC_DATA_PRIO. 1364 */ 1365 1366 /* 1367 * The block layer doesn't support all sector count 1368 * restrictions, so we need to be prepared for too big 1369 * requests. 1370 */ 1371 if (brq->data.blocks > card->host->max_blk_count) 1372 brq->data.blocks = card->host->max_blk_count; 1373 1374 if (brq->data.blocks > 1) { 1375 /* 1376 * After a read error, we redo the request one sector 1377 * at a time in order to accurately determine which 1378 * sectors can be read successfully. 1379 */ 1380 if (disable_multi) 1381 brq->data.blocks = 1; 1382 1383 /* 1384 * Some controllers have HW issues while operating 1385 * in multiple I/O mode 1386 */ 1387 if (card->host->ops->multi_io_quirk) 1388 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1389 (rq_data_dir(req) == READ) ? 1390 MMC_DATA_READ : MMC_DATA_WRITE, 1391 brq->data.blocks); 1392 } 1393 1394 if (do_rel_wr) { 1395 mmc_apply_rel_rw(brq, card, req); 1396 brq->data.flags |= MMC_DATA_REL_WR; 1397 } 1398 1399 /* 1400 * Data tag is used only during writing meta data to speed 1401 * up write and any subsequent read of this meta data 1402 */ 1403 do_data_tag = card->ext_csd.data_tag_unit_size && 1404 (req->cmd_flags & REQ_META) && 1405 (rq_data_dir(req) == WRITE) && 1406 ((brq->data.blocks * brq->data.blksz) >= 1407 card->ext_csd.data_tag_unit_size); 1408 1409 if (do_data_tag) 1410 brq->data.flags |= MMC_DATA_DAT_TAG; 1411 1412 mmc_set_data_timeout(&brq->data, card); 1413 1414 brq->data.sg = mqrq->sg; 1415 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1416 1417 /* 1418 * Adjust the sg list so it is the same size as the 1419 * request. 1420 */ 1421 if (brq->data.blocks != blk_rq_sectors(req)) { 1422 int i, data_size = brq->data.blocks << 9; 1423 struct scatterlist *sg; 1424 1425 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1426 data_size -= sg->length; 1427 if (data_size <= 0) { 1428 sg->length += data_size; 1429 i++; 1430 break; 1431 } 1432 } 1433 brq->data.sg_len = i; 1434 } 1435 1436 if (do_rel_wr_p) 1437 *do_rel_wr_p = do_rel_wr; 1438 1439 if (do_data_tag_p) 1440 *do_data_tag_p = do_data_tag; 1441 } 1442 1443 #define MMC_CQE_RETRIES 2 1444 1445 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1446 { 1447 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1448 struct mmc_request *mrq = &mqrq->brq.mrq; 1449 struct request_queue *q = req->q; 1450 struct mmc_host *host = mq->card->host; 1451 unsigned long flags; 1452 bool put_card; 1453 int err; 1454 1455 mmc_cqe_post_req(host, mrq); 1456 1457 if (mrq->cmd && mrq->cmd->error) 1458 err = mrq->cmd->error; 1459 else if (mrq->data && mrq->data->error) 1460 err = mrq->data->error; 1461 else 1462 err = 0; 1463 1464 if (err) { 1465 if (mqrq->retries++ < MMC_CQE_RETRIES) 1466 blk_mq_requeue_request(req, true); 1467 else 1468 blk_mq_end_request(req, BLK_STS_IOERR); 1469 } else if (mrq->data) { 1470 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1471 blk_mq_requeue_request(req, true); 1472 else 1473 __blk_mq_end_request(req, BLK_STS_OK); 1474 } else { 1475 blk_mq_end_request(req, BLK_STS_OK); 1476 } 1477 1478 spin_lock_irqsave(q->queue_lock, flags); 1479 1480 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1481 1482 put_card = (mmc_tot_in_flight(mq) == 0); 1483 1484 mmc_cqe_check_busy(mq); 1485 1486 spin_unlock_irqrestore(q->queue_lock, flags); 1487 1488 if (!mq->cqe_busy) 1489 blk_mq_run_hw_queues(q, true); 1490 1491 if (put_card) 1492 mmc_put_card(mq->card, &mq->ctx); 1493 } 1494 1495 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1496 { 1497 struct mmc_card *card = mq->card; 1498 struct mmc_host *host = card->host; 1499 int err; 1500 1501 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1502 1503 err = mmc_cqe_recovery(host); 1504 if (err) 1505 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1506 else 1507 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1508 1509 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1510 } 1511 1512 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1513 { 1514 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1515 brq.mrq); 1516 struct request *req = mmc_queue_req_to_req(mqrq); 1517 struct request_queue *q = req->q; 1518 struct mmc_queue *mq = q->queuedata; 1519 1520 /* 1521 * Block layer timeouts race with completions which means the normal 1522 * completion path cannot be used during recovery. 1523 */ 1524 if (mq->in_recovery) 1525 mmc_blk_cqe_complete_rq(mq, req); 1526 else 1527 blk_mq_complete_request(req); 1528 } 1529 1530 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1531 { 1532 mrq->done = mmc_blk_cqe_req_done; 1533 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1534 1535 return mmc_cqe_start_req(host, mrq); 1536 } 1537 1538 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1539 struct request *req) 1540 { 1541 struct mmc_blk_request *brq = &mqrq->brq; 1542 1543 memset(brq, 0, sizeof(*brq)); 1544 1545 brq->mrq.cmd = &brq->cmd; 1546 brq->mrq.tag = req->tag; 1547 1548 return &brq->mrq; 1549 } 1550 1551 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1552 { 1553 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1554 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1555 1556 mrq->cmd->opcode = MMC_SWITCH; 1557 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1558 (EXT_CSD_FLUSH_CACHE << 16) | 1559 (1 << 8) | 1560 EXT_CSD_CMD_SET_NORMAL; 1561 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1562 1563 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1564 } 1565 1566 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1567 { 1568 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1569 1570 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1571 1572 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1573 } 1574 1575 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1576 struct mmc_card *card, 1577 int disable_multi, 1578 struct mmc_queue *mq) 1579 { 1580 u32 readcmd, writecmd; 1581 struct mmc_blk_request *brq = &mqrq->brq; 1582 struct request *req = mmc_queue_req_to_req(mqrq); 1583 struct mmc_blk_data *md = mq->blkdata; 1584 bool do_rel_wr, do_data_tag; 1585 1586 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1587 1588 brq->mrq.cmd = &brq->cmd; 1589 1590 brq->cmd.arg = blk_rq_pos(req); 1591 if (!mmc_card_blockaddr(card)) 1592 brq->cmd.arg <<= 9; 1593 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1594 1595 if (brq->data.blocks > 1 || do_rel_wr) { 1596 /* SPI multiblock writes terminate using a special 1597 * token, not a STOP_TRANSMISSION request. 1598 */ 1599 if (!mmc_host_is_spi(card->host) || 1600 rq_data_dir(req) == READ) 1601 brq->mrq.stop = &brq->stop; 1602 readcmd = MMC_READ_MULTIPLE_BLOCK; 1603 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1604 } else { 1605 brq->mrq.stop = NULL; 1606 readcmd = MMC_READ_SINGLE_BLOCK; 1607 writecmd = MMC_WRITE_BLOCK; 1608 } 1609 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1610 1611 /* 1612 * Pre-defined multi-block transfers are preferable to 1613 * open ended-ones (and necessary for reliable writes). 1614 * However, it is not sufficient to just send CMD23, 1615 * and avoid the final CMD12, as on an error condition 1616 * CMD12 (stop) needs to be sent anyway. This, coupled 1617 * with Auto-CMD23 enhancements provided by some 1618 * hosts, means that the complexity of dealing 1619 * with this is best left to the host. If CMD23 is 1620 * supported by card and host, we'll fill sbc in and let 1621 * the host deal with handling it correctly. This means 1622 * that for hosts that don't expose MMC_CAP_CMD23, no 1623 * change of behavior will be observed. 1624 * 1625 * N.B: Some MMC cards experience perf degradation. 1626 * We'll avoid using CMD23-bounded multiblock writes for 1627 * these, while retaining features like reliable writes. 1628 */ 1629 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1630 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1631 do_data_tag)) { 1632 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1633 brq->sbc.arg = brq->data.blocks | 1634 (do_rel_wr ? (1 << 31) : 0) | 1635 (do_data_tag ? (1 << 29) : 0); 1636 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1637 brq->mrq.sbc = &brq->sbc; 1638 } 1639 } 1640 1641 #define MMC_MAX_RETRIES 5 1642 #define MMC_DATA_RETRIES 2 1643 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1644 1645 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1646 { 1647 struct mmc_command cmd = { 1648 .opcode = MMC_STOP_TRANSMISSION, 1649 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1650 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1651 .busy_timeout = timeout, 1652 }; 1653 1654 return mmc_wait_for_cmd(card->host, &cmd, 5); 1655 } 1656 1657 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1658 { 1659 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1660 struct mmc_blk_request *brq = &mqrq->brq; 1661 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1662 int err; 1663 1664 mmc_retune_hold_now(card->host); 1665 1666 mmc_blk_send_stop(card, timeout); 1667 1668 err = card_busy_detect(card, timeout, req, NULL); 1669 1670 mmc_retune_release(card->host); 1671 1672 return err; 1673 } 1674 1675 #define MMC_READ_SINGLE_RETRIES 2 1676 1677 /* Single sector read during recovery */ 1678 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1679 { 1680 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1681 struct mmc_request *mrq = &mqrq->brq.mrq; 1682 struct mmc_card *card = mq->card; 1683 struct mmc_host *host = card->host; 1684 blk_status_t error = BLK_STS_OK; 1685 int retries = 0; 1686 1687 do { 1688 u32 status; 1689 int err; 1690 1691 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1692 1693 mmc_wait_for_req(host, mrq); 1694 1695 err = mmc_send_status(card, &status); 1696 if (err) 1697 goto error_exit; 1698 1699 if (!mmc_host_is_spi(host) && 1700 !mmc_blk_in_tran_state(status)) { 1701 err = mmc_blk_fix_state(card, req); 1702 if (err) 1703 goto error_exit; 1704 } 1705 1706 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES) 1707 continue; 1708 1709 retries = 0; 1710 1711 if (mrq->cmd->error || 1712 mrq->data->error || 1713 (!mmc_host_is_spi(host) && 1714 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1715 error = BLK_STS_IOERR; 1716 else 1717 error = BLK_STS_OK; 1718 1719 } while (blk_update_request(req, error, 512)); 1720 1721 return; 1722 1723 error_exit: 1724 mrq->data->bytes_xfered = 0; 1725 blk_update_request(req, BLK_STS_IOERR, 512); 1726 /* Let it try the remaining request again */ 1727 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1728 mqrq->retries = MMC_MAX_RETRIES - 1; 1729 } 1730 1731 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1732 { 1733 return !!brq->mrq.sbc; 1734 } 1735 1736 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1737 { 1738 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1739 } 1740 1741 /* 1742 * Check for errors the host controller driver might not have seen such as 1743 * response mode errors or invalid card state. 1744 */ 1745 static bool mmc_blk_status_error(struct request *req, u32 status) 1746 { 1747 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1748 struct mmc_blk_request *brq = &mqrq->brq; 1749 struct mmc_queue *mq = req->q->queuedata; 1750 u32 stop_err_bits; 1751 1752 if (mmc_host_is_spi(mq->card->host)) 1753 return false; 1754 1755 stop_err_bits = mmc_blk_stop_err_bits(brq); 1756 1757 return brq->cmd.resp[0] & CMD_ERRORS || 1758 brq->stop.resp[0] & stop_err_bits || 1759 status & stop_err_bits || 1760 (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status)); 1761 } 1762 1763 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1764 { 1765 return !brq->sbc.error && !brq->cmd.error && 1766 !(brq->cmd.resp[0] & CMD_ERRORS); 1767 } 1768 1769 /* 1770 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1771 * policy: 1772 * 1. A request that has transferred at least some data is considered 1773 * successful and will be requeued if there is remaining data to 1774 * transfer. 1775 * 2. Otherwise the number of retries is incremented and the request 1776 * will be requeued if there are remaining retries. 1777 * 3. Otherwise the request will be errored out. 1778 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1779 * mqrq->retries. So there are only 4 possible actions here: 1780 * 1. do not accept the bytes_xfered value i.e. set it to zero 1781 * 2. change mqrq->retries to determine the number of retries 1782 * 3. try to reset the card 1783 * 4. read one sector at a time 1784 */ 1785 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1786 { 1787 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1788 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1789 struct mmc_blk_request *brq = &mqrq->brq; 1790 struct mmc_blk_data *md = mq->blkdata; 1791 struct mmc_card *card = mq->card; 1792 u32 status; 1793 u32 blocks; 1794 int err; 1795 1796 /* 1797 * Some errors the host driver might not have seen. Set the number of 1798 * bytes transferred to zero in that case. 1799 */ 1800 err = __mmc_send_status(card, &status, 0); 1801 if (err || mmc_blk_status_error(req, status)) 1802 brq->data.bytes_xfered = 0; 1803 1804 mmc_retune_release(card->host); 1805 1806 /* 1807 * Try again to get the status. This also provides an opportunity for 1808 * re-tuning. 1809 */ 1810 if (err) 1811 err = __mmc_send_status(card, &status, 0); 1812 1813 /* 1814 * Nothing more to do after the number of bytes transferred has been 1815 * updated and there is no card. 1816 */ 1817 if (err && mmc_detect_card_removed(card->host)) 1818 return; 1819 1820 /* Try to get back to "tran" state */ 1821 if (!mmc_host_is_spi(mq->card->host) && 1822 (err || !mmc_blk_in_tran_state(status))) 1823 err = mmc_blk_fix_state(mq->card, req); 1824 1825 /* 1826 * Special case for SD cards where the card might record the number of 1827 * blocks written. 1828 */ 1829 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1830 rq_data_dir(req) == WRITE) { 1831 if (mmc_sd_num_wr_blocks(card, &blocks)) 1832 brq->data.bytes_xfered = 0; 1833 else 1834 brq->data.bytes_xfered = blocks << 9; 1835 } 1836 1837 /* Reset if the card is in a bad state */ 1838 if (!mmc_host_is_spi(mq->card->host) && 1839 err && mmc_blk_reset(md, card->host, type)) { 1840 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name); 1841 mqrq->retries = MMC_NO_RETRIES; 1842 return; 1843 } 1844 1845 /* 1846 * If anything was done, just return and if there is anything remaining 1847 * on the request it will get requeued. 1848 */ 1849 if (brq->data.bytes_xfered) 1850 return; 1851 1852 /* Reset before last retry */ 1853 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1854 mmc_blk_reset(md, card->host, type); 1855 1856 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1857 if (brq->sbc.error || brq->cmd.error) 1858 return; 1859 1860 /* Reduce the remaining retries for data errors */ 1861 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1862 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1863 return; 1864 } 1865 1866 /* FIXME: Missing single sector read for large sector size */ 1867 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1868 brq->data.blocks > 1) { 1869 /* Read one sector at a time */ 1870 mmc_blk_read_single(mq, req); 1871 return; 1872 } 1873 } 1874 1875 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1876 { 1877 mmc_blk_eval_resp_error(brq); 1878 1879 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1880 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1881 } 1882 1883 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1884 { 1885 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1886 u32 status = 0; 1887 int err; 1888 1889 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) 1890 return 0; 1891 1892 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status); 1893 1894 /* 1895 * Do not assume data transferred correctly if there are any error bits 1896 * set. 1897 */ 1898 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1899 mqrq->brq.data.bytes_xfered = 0; 1900 err = err ? err : -EIO; 1901 } 1902 1903 /* Copy the exception bit so it will be seen later on */ 1904 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT) 1905 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1906 1907 return err; 1908 } 1909 1910 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1911 struct request *req) 1912 { 1913 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1914 1915 mmc_blk_reset_success(mq->blkdata, type); 1916 } 1917 1918 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1919 { 1920 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1921 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1922 1923 if (nr_bytes) { 1924 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1925 blk_mq_requeue_request(req, true); 1926 else 1927 __blk_mq_end_request(req, BLK_STS_OK); 1928 } else if (!blk_rq_bytes(req)) { 1929 __blk_mq_end_request(req, BLK_STS_IOERR); 1930 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1931 blk_mq_requeue_request(req, true); 1932 } else { 1933 if (mmc_card_removed(mq->card)) 1934 req->rq_flags |= RQF_QUIET; 1935 blk_mq_end_request(req, BLK_STS_IOERR); 1936 } 1937 } 1938 1939 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1940 struct mmc_queue_req *mqrq) 1941 { 1942 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1943 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1944 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1945 } 1946 1947 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 1948 struct mmc_queue_req *mqrq) 1949 { 1950 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 1951 mmc_start_bkops(mq->card, true); 1952 } 1953 1954 void mmc_blk_mq_complete(struct request *req) 1955 { 1956 struct mmc_queue *mq = req->q->queuedata; 1957 1958 if (mq->use_cqe) 1959 mmc_blk_cqe_complete_rq(mq, req); 1960 else 1961 mmc_blk_mq_complete_rq(mq, req); 1962 } 1963 1964 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 1965 struct request *req) 1966 { 1967 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1968 struct mmc_host *host = mq->card->host; 1969 1970 if (mmc_blk_rq_error(&mqrq->brq) || 1971 mmc_blk_card_busy(mq->card, req)) { 1972 mmc_blk_mq_rw_recovery(mq, req); 1973 } else { 1974 mmc_blk_rw_reset_success(mq, req); 1975 mmc_retune_release(host); 1976 } 1977 1978 mmc_blk_urgent_bkops(mq, mqrq); 1979 } 1980 1981 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 1982 { 1983 struct request_queue *q = req->q; 1984 unsigned long flags; 1985 bool put_card; 1986 1987 spin_lock_irqsave(q->queue_lock, flags); 1988 1989 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1990 1991 put_card = (mmc_tot_in_flight(mq) == 0); 1992 1993 spin_unlock_irqrestore(q->queue_lock, flags); 1994 1995 if (put_card) 1996 mmc_put_card(mq->card, &mq->ctx); 1997 } 1998 1999 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req) 2000 { 2001 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2002 struct mmc_request *mrq = &mqrq->brq.mrq; 2003 struct mmc_host *host = mq->card->host; 2004 2005 mmc_post_req(host, mrq, 0); 2006 2007 /* 2008 * Block layer timeouts race with completions which means the normal 2009 * completion path cannot be used during recovery. 2010 */ 2011 if (mq->in_recovery) 2012 mmc_blk_mq_complete_rq(mq, req); 2013 else 2014 blk_mq_complete_request(req); 2015 2016 mmc_blk_mq_dec_in_flight(mq, req); 2017 } 2018 2019 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2020 { 2021 struct request *req = mq->recovery_req; 2022 struct mmc_host *host = mq->card->host; 2023 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2024 2025 mq->recovery_req = NULL; 2026 mq->rw_wait = false; 2027 2028 if (mmc_blk_rq_error(&mqrq->brq)) { 2029 mmc_retune_hold_now(host); 2030 mmc_blk_mq_rw_recovery(mq, req); 2031 } 2032 2033 mmc_blk_urgent_bkops(mq, mqrq); 2034 2035 mmc_blk_mq_post_req(mq, req); 2036 } 2037 2038 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2039 struct request **prev_req) 2040 { 2041 if (mmc_host_done_complete(mq->card->host)) 2042 return; 2043 2044 mutex_lock(&mq->complete_lock); 2045 2046 if (!mq->complete_req) 2047 goto out_unlock; 2048 2049 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2050 2051 if (prev_req) 2052 *prev_req = mq->complete_req; 2053 else 2054 mmc_blk_mq_post_req(mq, mq->complete_req); 2055 2056 mq->complete_req = NULL; 2057 2058 out_unlock: 2059 mutex_unlock(&mq->complete_lock); 2060 } 2061 2062 void mmc_blk_mq_complete_work(struct work_struct *work) 2063 { 2064 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2065 complete_work); 2066 2067 mmc_blk_mq_complete_prev_req(mq, NULL); 2068 } 2069 2070 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2071 { 2072 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2073 brq.mrq); 2074 struct request *req = mmc_queue_req_to_req(mqrq); 2075 struct request_queue *q = req->q; 2076 struct mmc_queue *mq = q->queuedata; 2077 struct mmc_host *host = mq->card->host; 2078 unsigned long flags; 2079 2080 if (!mmc_host_done_complete(host)) { 2081 bool waiting; 2082 2083 /* 2084 * We cannot complete the request in this context, so record 2085 * that there is a request to complete, and that a following 2086 * request does not need to wait (although it does need to 2087 * complete complete_req first). 2088 */ 2089 spin_lock_irqsave(q->queue_lock, flags); 2090 mq->complete_req = req; 2091 mq->rw_wait = false; 2092 waiting = mq->waiting; 2093 spin_unlock_irqrestore(q->queue_lock, flags); 2094 2095 /* 2096 * If 'waiting' then the waiting task will complete this 2097 * request, otherwise queue a work to do it. Note that 2098 * complete_work may still race with the dispatch of a following 2099 * request. 2100 */ 2101 if (waiting) 2102 wake_up(&mq->wait); 2103 else 2104 kblockd_schedule_work(&mq->complete_work); 2105 2106 return; 2107 } 2108 2109 /* Take the recovery path for errors or urgent background operations */ 2110 if (mmc_blk_rq_error(&mqrq->brq) || 2111 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2112 spin_lock_irqsave(q->queue_lock, flags); 2113 mq->recovery_needed = true; 2114 mq->recovery_req = req; 2115 spin_unlock_irqrestore(q->queue_lock, flags); 2116 wake_up(&mq->wait); 2117 schedule_work(&mq->recovery_work); 2118 return; 2119 } 2120 2121 mmc_blk_rw_reset_success(mq, req); 2122 2123 mq->rw_wait = false; 2124 wake_up(&mq->wait); 2125 2126 mmc_blk_mq_post_req(mq, req); 2127 } 2128 2129 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2130 { 2131 struct request_queue *q = mq->queue; 2132 unsigned long flags; 2133 bool done; 2134 2135 /* 2136 * Wait while there is another request in progress, but not if recovery 2137 * is needed. Also indicate whether there is a request waiting to start. 2138 */ 2139 spin_lock_irqsave(q->queue_lock, flags); 2140 if (mq->recovery_needed) { 2141 *err = -EBUSY; 2142 done = true; 2143 } else { 2144 done = !mq->rw_wait; 2145 } 2146 mq->waiting = !done; 2147 spin_unlock_irqrestore(q->queue_lock, flags); 2148 2149 return done; 2150 } 2151 2152 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2153 { 2154 int err = 0; 2155 2156 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2157 2158 /* Always complete the previous request if there is one */ 2159 mmc_blk_mq_complete_prev_req(mq, prev_req); 2160 2161 return err; 2162 } 2163 2164 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2165 struct request *req) 2166 { 2167 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2168 struct mmc_host *host = mq->card->host; 2169 struct request *prev_req = NULL; 2170 int err = 0; 2171 2172 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2173 2174 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2175 2176 mmc_pre_req(host, &mqrq->brq.mrq); 2177 2178 err = mmc_blk_rw_wait(mq, &prev_req); 2179 if (err) 2180 goto out_post_req; 2181 2182 mq->rw_wait = true; 2183 2184 err = mmc_start_request(host, &mqrq->brq.mrq); 2185 2186 if (prev_req) 2187 mmc_blk_mq_post_req(mq, prev_req); 2188 2189 if (err) 2190 mq->rw_wait = false; 2191 2192 /* Release re-tuning here where there is no synchronization required */ 2193 if (err || mmc_host_done_complete(host)) 2194 mmc_retune_release(host); 2195 2196 out_post_req: 2197 if (err) 2198 mmc_post_req(host, &mqrq->brq.mrq, err); 2199 2200 return err; 2201 } 2202 2203 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2204 { 2205 if (mq->use_cqe) 2206 return host->cqe_ops->cqe_wait_for_idle(host); 2207 2208 return mmc_blk_rw_wait(mq, NULL); 2209 } 2210 2211 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2212 { 2213 struct mmc_blk_data *md = mq->blkdata; 2214 struct mmc_card *card = md->queue.card; 2215 struct mmc_host *host = card->host; 2216 int ret; 2217 2218 ret = mmc_blk_part_switch(card, md->part_type); 2219 if (ret) 2220 return MMC_REQ_FAILED_TO_START; 2221 2222 switch (mmc_issue_type(mq, req)) { 2223 case MMC_ISSUE_SYNC: 2224 ret = mmc_blk_wait_for_idle(mq, host); 2225 if (ret) 2226 return MMC_REQ_BUSY; 2227 switch (req_op(req)) { 2228 case REQ_OP_DRV_IN: 2229 case REQ_OP_DRV_OUT: 2230 mmc_blk_issue_drv_op(mq, req); 2231 break; 2232 case REQ_OP_DISCARD: 2233 mmc_blk_issue_discard_rq(mq, req); 2234 break; 2235 case REQ_OP_SECURE_ERASE: 2236 mmc_blk_issue_secdiscard_rq(mq, req); 2237 break; 2238 case REQ_OP_FLUSH: 2239 mmc_blk_issue_flush(mq, req); 2240 break; 2241 default: 2242 WARN_ON_ONCE(1); 2243 return MMC_REQ_FAILED_TO_START; 2244 } 2245 return MMC_REQ_FINISHED; 2246 case MMC_ISSUE_DCMD: 2247 case MMC_ISSUE_ASYNC: 2248 switch (req_op(req)) { 2249 case REQ_OP_FLUSH: 2250 ret = mmc_blk_cqe_issue_flush(mq, req); 2251 break; 2252 case REQ_OP_READ: 2253 case REQ_OP_WRITE: 2254 if (mq->use_cqe) 2255 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2256 else 2257 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2258 break; 2259 default: 2260 WARN_ON_ONCE(1); 2261 ret = -EINVAL; 2262 } 2263 if (!ret) 2264 return MMC_REQ_STARTED; 2265 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2266 default: 2267 WARN_ON_ONCE(1); 2268 return MMC_REQ_FAILED_TO_START; 2269 } 2270 } 2271 2272 static inline int mmc_blk_readonly(struct mmc_card *card) 2273 { 2274 return mmc_card_readonly(card) || 2275 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2276 } 2277 2278 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2279 struct device *parent, 2280 sector_t size, 2281 bool default_ro, 2282 const char *subname, 2283 int area_type) 2284 { 2285 struct mmc_blk_data *md; 2286 int devidx, ret; 2287 2288 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2289 if (devidx < 0) { 2290 /* 2291 * We get -ENOSPC because there are no more any available 2292 * devidx. The reason may be that, either userspace haven't yet 2293 * unmounted the partitions, which postpones mmc_blk_release() 2294 * from being called, or the device has more partitions than 2295 * what we support. 2296 */ 2297 if (devidx == -ENOSPC) 2298 dev_err(mmc_dev(card->host), 2299 "no more device IDs available\n"); 2300 2301 return ERR_PTR(devidx); 2302 } 2303 2304 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2305 if (!md) { 2306 ret = -ENOMEM; 2307 goto out; 2308 } 2309 2310 md->area_type = area_type; 2311 2312 /* 2313 * Set the read-only status based on the supported commands 2314 * and the write protect switch. 2315 */ 2316 md->read_only = mmc_blk_readonly(card); 2317 2318 md->disk = alloc_disk(perdev_minors); 2319 if (md->disk == NULL) { 2320 ret = -ENOMEM; 2321 goto err_kfree; 2322 } 2323 2324 spin_lock_init(&md->lock); 2325 INIT_LIST_HEAD(&md->part); 2326 INIT_LIST_HEAD(&md->rpmbs); 2327 md->usage = 1; 2328 2329 ret = mmc_init_queue(&md->queue, card, &md->lock, subname); 2330 if (ret) 2331 goto err_putdisk; 2332 2333 md->queue.blkdata = md; 2334 2335 /* 2336 * Keep an extra reference to the queue so that we can shutdown the 2337 * queue (i.e. call blk_cleanup_queue()) while there are still 2338 * references to the 'md'. The corresponding blk_put_queue() is in 2339 * mmc_blk_put(). 2340 */ 2341 if (!blk_get_queue(md->queue.queue)) { 2342 mmc_cleanup_queue(&md->queue); 2343 ret = -ENODEV; 2344 goto err_putdisk; 2345 } 2346 2347 md->disk->major = MMC_BLOCK_MAJOR; 2348 md->disk->first_minor = devidx * perdev_minors; 2349 md->disk->fops = &mmc_bdops; 2350 md->disk->private_data = md; 2351 md->disk->queue = md->queue.queue; 2352 md->parent = parent; 2353 set_disk_ro(md->disk, md->read_only || default_ro); 2354 md->disk->flags = GENHD_FL_EXT_DEVT; 2355 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2356 md->disk->flags |= GENHD_FL_NO_PART_SCAN; 2357 2358 /* 2359 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2360 * 2361 * - be set for removable media with permanent block devices 2362 * - be unset for removable block devices with permanent media 2363 * 2364 * Since MMC block devices clearly fall under the second 2365 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2366 * should use the block device creation/destruction hotplug 2367 * messages to tell when the card is present. 2368 */ 2369 2370 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2371 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2372 2373 if (mmc_card_mmc(card)) 2374 blk_queue_logical_block_size(md->queue.queue, 2375 card->ext_csd.data_sector_size); 2376 else 2377 blk_queue_logical_block_size(md->queue.queue, 512); 2378 2379 set_capacity(md->disk, size); 2380 2381 if (mmc_host_cmd23(card->host)) { 2382 if ((mmc_card_mmc(card) && 2383 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2384 (mmc_card_sd(card) && 2385 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2386 md->flags |= MMC_BLK_CMD23; 2387 } 2388 2389 if (mmc_card_mmc(card) && 2390 md->flags & MMC_BLK_CMD23 && 2391 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2392 card->ext_csd.rel_sectors)) { 2393 md->flags |= MMC_BLK_REL_WR; 2394 blk_queue_write_cache(md->queue.queue, true, true); 2395 } 2396 2397 return md; 2398 2399 err_putdisk: 2400 put_disk(md->disk); 2401 err_kfree: 2402 kfree(md); 2403 out: 2404 ida_simple_remove(&mmc_blk_ida, devidx); 2405 return ERR_PTR(ret); 2406 } 2407 2408 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2409 { 2410 sector_t size; 2411 2412 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2413 /* 2414 * The EXT_CSD sector count is in number or 512 byte 2415 * sectors. 2416 */ 2417 size = card->ext_csd.sectors; 2418 } else { 2419 /* 2420 * The CSD capacity field is in units of read_blkbits. 2421 * set_capacity takes units of 512 bytes. 2422 */ 2423 size = (typeof(sector_t))card->csd.capacity 2424 << (card->csd.read_blkbits - 9); 2425 } 2426 2427 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2428 MMC_BLK_DATA_AREA_MAIN); 2429 } 2430 2431 static int mmc_blk_alloc_part(struct mmc_card *card, 2432 struct mmc_blk_data *md, 2433 unsigned int part_type, 2434 sector_t size, 2435 bool default_ro, 2436 const char *subname, 2437 int area_type) 2438 { 2439 char cap_str[10]; 2440 struct mmc_blk_data *part_md; 2441 2442 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2443 subname, area_type); 2444 if (IS_ERR(part_md)) 2445 return PTR_ERR(part_md); 2446 part_md->part_type = part_type; 2447 list_add(&part_md->part, &md->part); 2448 2449 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2450 cap_str, sizeof(cap_str)); 2451 pr_info("%s: %s %s partition %u %s\n", 2452 part_md->disk->disk_name, mmc_card_id(card), 2453 mmc_card_name(card), part_md->part_type, cap_str); 2454 return 0; 2455 } 2456 2457 /** 2458 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2459 * @filp: the character device file 2460 * @cmd: the ioctl() command 2461 * @arg: the argument from userspace 2462 * 2463 * This will essentially just redirect the ioctl()s coming in over to 2464 * the main block device spawning the RPMB character device. 2465 */ 2466 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2467 unsigned long arg) 2468 { 2469 struct mmc_rpmb_data *rpmb = filp->private_data; 2470 int ret; 2471 2472 switch (cmd) { 2473 case MMC_IOC_CMD: 2474 ret = mmc_blk_ioctl_cmd(rpmb->md, 2475 (struct mmc_ioc_cmd __user *)arg, 2476 rpmb); 2477 break; 2478 case MMC_IOC_MULTI_CMD: 2479 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2480 (struct mmc_ioc_multi_cmd __user *)arg, 2481 rpmb); 2482 break; 2483 default: 2484 ret = -EINVAL; 2485 break; 2486 } 2487 2488 return ret; 2489 } 2490 2491 #ifdef CONFIG_COMPAT 2492 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2493 unsigned long arg) 2494 { 2495 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2496 } 2497 #endif 2498 2499 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2500 { 2501 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2502 struct mmc_rpmb_data, chrdev); 2503 2504 get_device(&rpmb->dev); 2505 filp->private_data = rpmb; 2506 mmc_blk_get(rpmb->md->disk); 2507 2508 return nonseekable_open(inode, filp); 2509 } 2510 2511 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2512 { 2513 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2514 struct mmc_rpmb_data, chrdev); 2515 2516 put_device(&rpmb->dev); 2517 mmc_blk_put(rpmb->md); 2518 2519 return 0; 2520 } 2521 2522 static const struct file_operations mmc_rpmb_fileops = { 2523 .release = mmc_rpmb_chrdev_release, 2524 .open = mmc_rpmb_chrdev_open, 2525 .owner = THIS_MODULE, 2526 .llseek = no_llseek, 2527 .unlocked_ioctl = mmc_rpmb_ioctl, 2528 #ifdef CONFIG_COMPAT 2529 .compat_ioctl = mmc_rpmb_ioctl_compat, 2530 #endif 2531 }; 2532 2533 static void mmc_blk_rpmb_device_release(struct device *dev) 2534 { 2535 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2536 2537 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2538 kfree(rpmb); 2539 } 2540 2541 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2542 struct mmc_blk_data *md, 2543 unsigned int part_index, 2544 sector_t size, 2545 const char *subname) 2546 { 2547 int devidx, ret; 2548 char rpmb_name[DISK_NAME_LEN]; 2549 char cap_str[10]; 2550 struct mmc_rpmb_data *rpmb; 2551 2552 /* This creates the minor number for the RPMB char device */ 2553 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2554 if (devidx < 0) 2555 return devidx; 2556 2557 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2558 if (!rpmb) { 2559 ida_simple_remove(&mmc_rpmb_ida, devidx); 2560 return -ENOMEM; 2561 } 2562 2563 snprintf(rpmb_name, sizeof(rpmb_name), 2564 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2565 2566 rpmb->id = devidx; 2567 rpmb->part_index = part_index; 2568 rpmb->dev.init_name = rpmb_name; 2569 rpmb->dev.bus = &mmc_rpmb_bus_type; 2570 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2571 rpmb->dev.parent = &card->dev; 2572 rpmb->dev.release = mmc_blk_rpmb_device_release; 2573 device_initialize(&rpmb->dev); 2574 dev_set_drvdata(&rpmb->dev, rpmb); 2575 rpmb->md = md; 2576 2577 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2578 rpmb->chrdev.owner = THIS_MODULE; 2579 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2580 if (ret) { 2581 pr_err("%s: could not add character device\n", rpmb_name); 2582 goto out_put_device; 2583 } 2584 2585 list_add(&rpmb->node, &md->rpmbs); 2586 2587 string_get_size((u64)size, 512, STRING_UNITS_2, 2588 cap_str, sizeof(cap_str)); 2589 2590 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n", 2591 rpmb_name, mmc_card_id(card), 2592 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str, 2593 MAJOR(mmc_rpmb_devt), rpmb->id); 2594 2595 return 0; 2596 2597 out_put_device: 2598 put_device(&rpmb->dev); 2599 return ret; 2600 } 2601 2602 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2603 2604 { 2605 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2606 put_device(&rpmb->dev); 2607 } 2608 2609 /* MMC Physical partitions consist of two boot partitions and 2610 * up to four general purpose partitions. 2611 * For each partition enabled in EXT_CSD a block device will be allocatedi 2612 * to provide access to the partition. 2613 */ 2614 2615 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2616 { 2617 int idx, ret; 2618 2619 if (!mmc_card_mmc(card)) 2620 return 0; 2621 2622 for (idx = 0; idx < card->nr_parts; idx++) { 2623 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2624 /* 2625 * RPMB partitions does not provide block access, they 2626 * are only accessed using ioctl():s. Thus create 2627 * special RPMB block devices that do not have a 2628 * backing block queue for these. 2629 */ 2630 ret = mmc_blk_alloc_rpmb_part(card, md, 2631 card->part[idx].part_cfg, 2632 card->part[idx].size >> 9, 2633 card->part[idx].name); 2634 if (ret) 2635 return ret; 2636 } else if (card->part[idx].size) { 2637 ret = mmc_blk_alloc_part(card, md, 2638 card->part[idx].part_cfg, 2639 card->part[idx].size >> 9, 2640 card->part[idx].force_ro, 2641 card->part[idx].name, 2642 card->part[idx].area_type); 2643 if (ret) 2644 return ret; 2645 } 2646 } 2647 2648 return 0; 2649 } 2650 2651 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2652 { 2653 struct mmc_card *card; 2654 2655 if (md) { 2656 /* 2657 * Flush remaining requests and free queues. It 2658 * is freeing the queue that stops new requests 2659 * from being accepted. 2660 */ 2661 card = md->queue.card; 2662 if (md->disk->flags & GENHD_FL_UP) { 2663 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2664 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2665 card->ext_csd.boot_ro_lockable) 2666 device_remove_file(disk_to_dev(md->disk), 2667 &md->power_ro_lock); 2668 2669 del_gendisk(md->disk); 2670 } 2671 mmc_cleanup_queue(&md->queue); 2672 mmc_blk_put(md); 2673 } 2674 } 2675 2676 static void mmc_blk_remove_parts(struct mmc_card *card, 2677 struct mmc_blk_data *md) 2678 { 2679 struct list_head *pos, *q; 2680 struct mmc_blk_data *part_md; 2681 struct mmc_rpmb_data *rpmb; 2682 2683 /* Remove RPMB partitions */ 2684 list_for_each_safe(pos, q, &md->rpmbs) { 2685 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2686 list_del(pos); 2687 mmc_blk_remove_rpmb_part(rpmb); 2688 } 2689 /* Remove block partitions */ 2690 list_for_each_safe(pos, q, &md->part) { 2691 part_md = list_entry(pos, struct mmc_blk_data, part); 2692 list_del(pos); 2693 mmc_blk_remove_req(part_md); 2694 } 2695 } 2696 2697 static int mmc_add_disk(struct mmc_blk_data *md) 2698 { 2699 int ret; 2700 struct mmc_card *card = md->queue.card; 2701 2702 device_add_disk(md->parent, md->disk); 2703 md->force_ro.show = force_ro_show; 2704 md->force_ro.store = force_ro_store; 2705 sysfs_attr_init(&md->force_ro.attr); 2706 md->force_ro.attr.name = "force_ro"; 2707 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2708 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2709 if (ret) 2710 goto force_ro_fail; 2711 2712 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2713 card->ext_csd.boot_ro_lockable) { 2714 umode_t mode; 2715 2716 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2717 mode = S_IRUGO; 2718 else 2719 mode = S_IRUGO | S_IWUSR; 2720 2721 md->power_ro_lock.show = power_ro_lock_show; 2722 md->power_ro_lock.store = power_ro_lock_store; 2723 sysfs_attr_init(&md->power_ro_lock.attr); 2724 md->power_ro_lock.attr.mode = mode; 2725 md->power_ro_lock.attr.name = 2726 "ro_lock_until_next_power_on"; 2727 ret = device_create_file(disk_to_dev(md->disk), 2728 &md->power_ro_lock); 2729 if (ret) 2730 goto power_ro_lock_fail; 2731 } 2732 return ret; 2733 2734 power_ro_lock_fail: 2735 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2736 force_ro_fail: 2737 del_gendisk(md->disk); 2738 2739 return ret; 2740 } 2741 2742 #ifdef CONFIG_DEBUG_FS 2743 2744 static int mmc_dbg_card_status_get(void *data, u64 *val) 2745 { 2746 struct mmc_card *card = data; 2747 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2748 struct mmc_queue *mq = &md->queue; 2749 struct request *req; 2750 int ret; 2751 2752 /* Ask the block layer about the card status */ 2753 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM); 2754 if (IS_ERR(req)) 2755 return PTR_ERR(req); 2756 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2757 blk_execute_rq(mq->queue, NULL, req, 0); 2758 ret = req_to_mmc_queue_req(req)->drv_op_result; 2759 if (ret >= 0) { 2760 *val = ret; 2761 ret = 0; 2762 } 2763 blk_put_request(req); 2764 2765 return ret; 2766 } 2767 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2768 NULL, "%08llx\n"); 2769 2770 /* That is two digits * 512 + 1 for newline */ 2771 #define EXT_CSD_STR_LEN 1025 2772 2773 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2774 { 2775 struct mmc_card *card = inode->i_private; 2776 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2777 struct mmc_queue *mq = &md->queue; 2778 struct request *req; 2779 char *buf; 2780 ssize_t n = 0; 2781 u8 *ext_csd; 2782 int err, i; 2783 2784 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2785 if (!buf) 2786 return -ENOMEM; 2787 2788 /* Ask the block layer for the EXT CSD */ 2789 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM); 2790 if (IS_ERR(req)) { 2791 err = PTR_ERR(req); 2792 goto out_free; 2793 } 2794 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2795 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2796 blk_execute_rq(mq->queue, NULL, req, 0); 2797 err = req_to_mmc_queue_req(req)->drv_op_result; 2798 blk_put_request(req); 2799 if (err) { 2800 pr_err("FAILED %d\n", err); 2801 goto out_free; 2802 } 2803 2804 for (i = 0; i < 512; i++) 2805 n += sprintf(buf + n, "%02x", ext_csd[i]); 2806 n += sprintf(buf + n, "\n"); 2807 2808 if (n != EXT_CSD_STR_LEN) { 2809 err = -EINVAL; 2810 kfree(ext_csd); 2811 goto out_free; 2812 } 2813 2814 filp->private_data = buf; 2815 kfree(ext_csd); 2816 return 0; 2817 2818 out_free: 2819 kfree(buf); 2820 return err; 2821 } 2822 2823 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2824 size_t cnt, loff_t *ppos) 2825 { 2826 char *buf = filp->private_data; 2827 2828 return simple_read_from_buffer(ubuf, cnt, ppos, 2829 buf, EXT_CSD_STR_LEN); 2830 } 2831 2832 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2833 { 2834 kfree(file->private_data); 2835 return 0; 2836 } 2837 2838 static const struct file_operations mmc_dbg_ext_csd_fops = { 2839 .open = mmc_ext_csd_open, 2840 .read = mmc_ext_csd_read, 2841 .release = mmc_ext_csd_release, 2842 .llseek = default_llseek, 2843 }; 2844 2845 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2846 { 2847 struct dentry *root; 2848 2849 if (!card->debugfs_root) 2850 return 0; 2851 2852 root = card->debugfs_root; 2853 2854 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2855 md->status_dentry = 2856 debugfs_create_file("status", S_IRUSR, root, card, 2857 &mmc_dbg_card_status_fops); 2858 if (!md->status_dentry) 2859 return -EIO; 2860 } 2861 2862 if (mmc_card_mmc(card)) { 2863 md->ext_csd_dentry = 2864 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2865 &mmc_dbg_ext_csd_fops); 2866 if (!md->ext_csd_dentry) 2867 return -EIO; 2868 } 2869 2870 return 0; 2871 } 2872 2873 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2874 struct mmc_blk_data *md) 2875 { 2876 if (!card->debugfs_root) 2877 return; 2878 2879 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2880 debugfs_remove(md->status_dentry); 2881 md->status_dentry = NULL; 2882 } 2883 2884 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2885 debugfs_remove(md->ext_csd_dentry); 2886 md->ext_csd_dentry = NULL; 2887 } 2888 } 2889 2890 #else 2891 2892 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2893 { 2894 return 0; 2895 } 2896 2897 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2898 struct mmc_blk_data *md) 2899 { 2900 } 2901 2902 #endif /* CONFIG_DEBUG_FS */ 2903 2904 static int mmc_blk_probe(struct mmc_card *card) 2905 { 2906 struct mmc_blk_data *md, *part_md; 2907 char cap_str[10]; 2908 2909 /* 2910 * Check that the card supports the command class(es) we need. 2911 */ 2912 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2913 return -ENODEV; 2914 2915 mmc_fixup_device(card, mmc_blk_fixups); 2916 2917 md = mmc_blk_alloc(card); 2918 if (IS_ERR(md)) 2919 return PTR_ERR(md); 2920 2921 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2922 cap_str, sizeof(cap_str)); 2923 pr_info("%s: %s %s %s %s\n", 2924 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2925 cap_str, md->read_only ? "(ro)" : ""); 2926 2927 if (mmc_blk_alloc_parts(card, md)) 2928 goto out; 2929 2930 dev_set_drvdata(&card->dev, md); 2931 2932 if (mmc_add_disk(md)) 2933 goto out; 2934 2935 list_for_each_entry(part_md, &md->part, part) { 2936 if (mmc_add_disk(part_md)) 2937 goto out; 2938 } 2939 2940 /* Add two debugfs entries */ 2941 mmc_blk_add_debugfs(card, md); 2942 2943 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2944 pm_runtime_use_autosuspend(&card->dev); 2945 2946 /* 2947 * Don't enable runtime PM for SD-combo cards here. Leave that 2948 * decision to be taken during the SDIO init sequence instead. 2949 */ 2950 if (card->type != MMC_TYPE_SD_COMBO) { 2951 pm_runtime_set_active(&card->dev); 2952 pm_runtime_enable(&card->dev); 2953 } 2954 2955 return 0; 2956 2957 out: 2958 mmc_blk_remove_parts(card, md); 2959 mmc_blk_remove_req(md); 2960 return 0; 2961 } 2962 2963 static void mmc_blk_remove(struct mmc_card *card) 2964 { 2965 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2966 2967 mmc_blk_remove_debugfs(card, md); 2968 mmc_blk_remove_parts(card, md); 2969 pm_runtime_get_sync(&card->dev); 2970 mmc_claim_host(card->host); 2971 mmc_blk_part_switch(card, md->part_type); 2972 mmc_release_host(card->host); 2973 if (card->type != MMC_TYPE_SD_COMBO) 2974 pm_runtime_disable(&card->dev); 2975 pm_runtime_put_noidle(&card->dev); 2976 mmc_blk_remove_req(md); 2977 dev_set_drvdata(&card->dev, NULL); 2978 } 2979 2980 static int _mmc_blk_suspend(struct mmc_card *card) 2981 { 2982 struct mmc_blk_data *part_md; 2983 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2984 2985 if (md) { 2986 mmc_queue_suspend(&md->queue); 2987 list_for_each_entry(part_md, &md->part, part) { 2988 mmc_queue_suspend(&part_md->queue); 2989 } 2990 } 2991 return 0; 2992 } 2993 2994 static void mmc_blk_shutdown(struct mmc_card *card) 2995 { 2996 _mmc_blk_suspend(card); 2997 } 2998 2999 #ifdef CONFIG_PM_SLEEP 3000 static int mmc_blk_suspend(struct device *dev) 3001 { 3002 struct mmc_card *card = mmc_dev_to_card(dev); 3003 3004 return _mmc_blk_suspend(card); 3005 } 3006 3007 static int mmc_blk_resume(struct device *dev) 3008 { 3009 struct mmc_blk_data *part_md; 3010 struct mmc_blk_data *md = dev_get_drvdata(dev); 3011 3012 if (md) { 3013 /* 3014 * Resume involves the card going into idle state, 3015 * so current partition is always the main one. 3016 */ 3017 md->part_curr = md->part_type; 3018 mmc_queue_resume(&md->queue); 3019 list_for_each_entry(part_md, &md->part, part) { 3020 mmc_queue_resume(&part_md->queue); 3021 } 3022 } 3023 return 0; 3024 } 3025 #endif 3026 3027 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3028 3029 static struct mmc_driver mmc_driver = { 3030 .drv = { 3031 .name = "mmcblk", 3032 .pm = &mmc_blk_pm_ops, 3033 }, 3034 .probe = mmc_blk_probe, 3035 .remove = mmc_blk_remove, 3036 .shutdown = mmc_blk_shutdown, 3037 }; 3038 3039 static int __init mmc_blk_init(void) 3040 { 3041 int res; 3042 3043 res = bus_register(&mmc_rpmb_bus_type); 3044 if (res < 0) { 3045 pr_err("mmcblk: could not register RPMB bus type\n"); 3046 return res; 3047 } 3048 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3049 if (res < 0) { 3050 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3051 goto out_bus_unreg; 3052 } 3053 3054 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3055 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3056 3057 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3058 3059 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3060 if (res) 3061 goto out_chrdev_unreg; 3062 3063 res = mmc_register_driver(&mmc_driver); 3064 if (res) 3065 goto out_blkdev_unreg; 3066 3067 return 0; 3068 3069 out_blkdev_unreg: 3070 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3071 out_chrdev_unreg: 3072 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3073 out_bus_unreg: 3074 bus_unregister(&mmc_rpmb_bus_type); 3075 return res; 3076 } 3077 3078 static void __exit mmc_blk_exit(void) 3079 { 3080 mmc_unregister_driver(&mmc_driver); 3081 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3082 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3083 bus_unregister(&mmc_rpmb_bus_type); 3084 } 3085 3086 module_init(mmc_blk_init); 3087 module_exit(mmc_blk_exit); 3088 3089 MODULE_LICENSE("GPL"); 3090 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3091 3092