xref: /openbmc/linux/drivers/mmc/core/block.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/blkdev.h>
32 #include <linux/cdev.h>
33 #include <linux/mutex.h>
34 #include <linux/scatterlist.h>
35 #include <linux/string_helpers.h>
36 #include <linux/delay.h>
37 #include <linux/capability.h>
38 #include <linux/compat.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/idr.h>
41 #include <linux/debugfs.h>
42 
43 #include <linux/mmc/ioctl.h>
44 #include <linux/mmc/card.h>
45 #include <linux/mmc/host.h>
46 #include <linux/mmc/mmc.h>
47 #include <linux/mmc/sd.h>
48 
49 #include <linux/uaccess.h>
50 
51 #include "queue.h"
52 #include "block.h"
53 #include "core.h"
54 #include "card.h"
55 #include "crypto.h"
56 #include "host.h"
57 #include "bus.h"
58 #include "mmc_ops.h"
59 #include "quirks.h"
60 #include "sd_ops.h"
61 
62 MODULE_ALIAS("mmc:block");
63 #ifdef MODULE_PARAM_PREFIX
64 #undef MODULE_PARAM_PREFIX
65 #endif
66 #define MODULE_PARAM_PREFIX "mmcblk."
67 
68 /*
69  * Set a 10 second timeout for polling write request busy state. Note, mmc core
70  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
71  * second software timer to timeout the whole request, so 10 seconds should be
72  * ample.
73  */
74 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
75 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
76 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
77 
78 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
79 				  (rq_data_dir(req) == WRITE))
80 static DEFINE_MUTEX(block_mutex);
81 
82 /*
83  * The defaults come from config options but can be overriden by module
84  * or bootarg options.
85  */
86 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
87 
88 /*
89  * We've only got one major, so number of mmcblk devices is
90  * limited to (1 << 20) / number of minors per device.  It is also
91  * limited by the MAX_DEVICES below.
92  */
93 static int max_devices;
94 
95 #define MAX_DEVICES 256
96 
97 static DEFINE_IDA(mmc_blk_ida);
98 static DEFINE_IDA(mmc_rpmb_ida);
99 
100 /*
101  * There is one mmc_blk_data per slot.
102  */
103 struct mmc_blk_data {
104 	struct device	*parent;
105 	struct gendisk	*disk;
106 	struct mmc_queue queue;
107 	struct list_head part;
108 	struct list_head rpmbs;
109 
110 	unsigned int	flags;
111 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
112 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
113 
114 	unsigned int	usage;
115 	unsigned int	read_only;
116 	unsigned int	part_type;
117 	unsigned int	reset_done;
118 #define MMC_BLK_READ		BIT(0)
119 #define MMC_BLK_WRITE		BIT(1)
120 #define MMC_BLK_DISCARD		BIT(2)
121 #define MMC_BLK_SECDISCARD	BIT(3)
122 #define MMC_BLK_CQE_RECOVERY	BIT(4)
123 
124 	/*
125 	 * Only set in main mmc_blk_data associated
126 	 * with mmc_card with dev_set_drvdata, and keeps
127 	 * track of the current selected device partition.
128 	 */
129 	unsigned int	part_curr;
130 	struct device_attribute force_ro;
131 	struct device_attribute power_ro_lock;
132 	int	area_type;
133 
134 	/* debugfs files (only in main mmc_blk_data) */
135 	struct dentry *status_dentry;
136 	struct dentry *ext_csd_dentry;
137 };
138 
139 /* Device type for RPMB character devices */
140 static dev_t mmc_rpmb_devt;
141 
142 /* Bus type for RPMB character devices */
143 static struct bus_type mmc_rpmb_bus_type = {
144 	.name = "mmc_rpmb",
145 };
146 
147 /**
148  * struct mmc_rpmb_data - special RPMB device type for these areas
149  * @dev: the device for the RPMB area
150  * @chrdev: character device for the RPMB area
151  * @id: unique device ID number
152  * @part_index: partition index (0 on first)
153  * @md: parent MMC block device
154  * @node: list item, so we can put this device on a list
155  */
156 struct mmc_rpmb_data {
157 	struct device dev;
158 	struct cdev chrdev;
159 	int id;
160 	unsigned int part_index;
161 	struct mmc_blk_data *md;
162 	struct list_head node;
163 };
164 
165 static DEFINE_MUTEX(open_lock);
166 
167 module_param(perdev_minors, int, 0444);
168 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
169 
170 static inline int mmc_blk_part_switch(struct mmc_card *card,
171 				      unsigned int part_type);
172 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
173 			       struct mmc_card *card,
174 			       int disable_multi,
175 			       struct mmc_queue *mq);
176 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
177 
178 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
179 {
180 	struct mmc_blk_data *md;
181 
182 	mutex_lock(&open_lock);
183 	md = disk->private_data;
184 	if (md && md->usage == 0)
185 		md = NULL;
186 	if (md)
187 		md->usage++;
188 	mutex_unlock(&open_lock);
189 
190 	return md;
191 }
192 
193 static inline int mmc_get_devidx(struct gendisk *disk)
194 {
195 	int devidx = disk->first_minor / perdev_minors;
196 	return devidx;
197 }
198 
199 static void mmc_blk_put(struct mmc_blk_data *md)
200 {
201 	mutex_lock(&open_lock);
202 	md->usage--;
203 	if (md->usage == 0) {
204 		int devidx = mmc_get_devidx(md->disk);
205 
206 		ida_simple_remove(&mmc_blk_ida, devidx);
207 		put_disk(md->disk);
208 		kfree(md);
209 	}
210 	mutex_unlock(&open_lock);
211 }
212 
213 static ssize_t power_ro_lock_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	int ret;
217 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
218 	struct mmc_card *card = md->queue.card;
219 	int locked = 0;
220 
221 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
222 		locked = 2;
223 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
224 		locked = 1;
225 
226 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
227 
228 	mmc_blk_put(md);
229 
230 	return ret;
231 }
232 
233 static ssize_t power_ro_lock_store(struct device *dev,
234 		struct device_attribute *attr, const char *buf, size_t count)
235 {
236 	int ret;
237 	struct mmc_blk_data *md, *part_md;
238 	struct mmc_queue *mq;
239 	struct request *req;
240 	unsigned long set;
241 
242 	if (kstrtoul(buf, 0, &set))
243 		return -EINVAL;
244 
245 	if (set != 1)
246 		return count;
247 
248 	md = mmc_blk_get(dev_to_disk(dev));
249 	mq = &md->queue;
250 
251 	/* Dispatch locking to the block layer */
252 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
253 	if (IS_ERR(req)) {
254 		count = PTR_ERR(req);
255 		goto out_put;
256 	}
257 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
258 	blk_execute_rq(NULL, req, 0);
259 	ret = req_to_mmc_queue_req(req)->drv_op_result;
260 	blk_put_request(req);
261 
262 	if (!ret) {
263 		pr_info("%s: Locking boot partition ro until next power on\n",
264 			md->disk->disk_name);
265 		set_disk_ro(md->disk, 1);
266 
267 		list_for_each_entry(part_md, &md->part, part)
268 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
269 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
270 				set_disk_ro(part_md->disk, 1);
271 			}
272 	}
273 out_put:
274 	mmc_blk_put(md);
275 	return count;
276 }
277 
278 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
279 			     char *buf)
280 {
281 	int ret;
282 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
283 
284 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
285 		       get_disk_ro(dev_to_disk(dev)) ^
286 		       md->read_only);
287 	mmc_blk_put(md);
288 	return ret;
289 }
290 
291 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
292 			      const char *buf, size_t count)
293 {
294 	int ret;
295 	char *end;
296 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
297 	unsigned long set = simple_strtoul(buf, &end, 0);
298 	if (end == buf) {
299 		ret = -EINVAL;
300 		goto out;
301 	}
302 
303 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
304 	ret = count;
305 out:
306 	mmc_blk_put(md);
307 	return ret;
308 }
309 
310 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
311 {
312 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
313 	int ret = -ENXIO;
314 
315 	mutex_lock(&block_mutex);
316 	if (md) {
317 		ret = 0;
318 		if ((mode & FMODE_WRITE) && md->read_only) {
319 			mmc_blk_put(md);
320 			ret = -EROFS;
321 		}
322 	}
323 	mutex_unlock(&block_mutex);
324 
325 	return ret;
326 }
327 
328 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
329 {
330 	struct mmc_blk_data *md = disk->private_data;
331 
332 	mutex_lock(&block_mutex);
333 	mmc_blk_put(md);
334 	mutex_unlock(&block_mutex);
335 }
336 
337 static int
338 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
339 {
340 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
341 	geo->heads = 4;
342 	geo->sectors = 16;
343 	return 0;
344 }
345 
346 struct mmc_blk_ioc_data {
347 	struct mmc_ioc_cmd ic;
348 	unsigned char *buf;
349 	u64 buf_bytes;
350 	struct mmc_rpmb_data *rpmb;
351 };
352 
353 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
354 	struct mmc_ioc_cmd __user *user)
355 {
356 	struct mmc_blk_ioc_data *idata;
357 	int err;
358 
359 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
360 	if (!idata) {
361 		err = -ENOMEM;
362 		goto out;
363 	}
364 
365 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
366 		err = -EFAULT;
367 		goto idata_err;
368 	}
369 
370 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
371 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
372 		err = -EOVERFLOW;
373 		goto idata_err;
374 	}
375 
376 	if (!idata->buf_bytes) {
377 		idata->buf = NULL;
378 		return idata;
379 	}
380 
381 	idata->buf = memdup_user((void __user *)(unsigned long)
382 				 idata->ic.data_ptr, idata->buf_bytes);
383 	if (IS_ERR(idata->buf)) {
384 		err = PTR_ERR(idata->buf);
385 		goto idata_err;
386 	}
387 
388 	return idata;
389 
390 idata_err:
391 	kfree(idata);
392 out:
393 	return ERR_PTR(err);
394 }
395 
396 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
397 				      struct mmc_blk_ioc_data *idata)
398 {
399 	struct mmc_ioc_cmd *ic = &idata->ic;
400 
401 	if (copy_to_user(&(ic_ptr->response), ic->response,
402 			 sizeof(ic->response)))
403 		return -EFAULT;
404 
405 	if (!idata->ic.write_flag) {
406 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
407 				 idata->buf, idata->buf_bytes))
408 			return -EFAULT;
409 	}
410 
411 	return 0;
412 }
413 
414 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
415 			    u32 *resp_errs)
416 {
417 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
418 	int err = 0;
419 	u32 status;
420 
421 	do {
422 		bool done = time_after(jiffies, timeout);
423 
424 		err = __mmc_send_status(card, &status, 5);
425 		if (err) {
426 			dev_err(mmc_dev(card->host),
427 				"error %d requesting status\n", err);
428 			return err;
429 		}
430 
431 		/* Accumulate any response error bits seen */
432 		if (resp_errs)
433 			*resp_errs |= status;
434 
435 		/*
436 		 * Timeout if the device never becomes ready for data and never
437 		 * leaves the program state.
438 		 */
439 		if (done) {
440 			dev_err(mmc_dev(card->host),
441 				"Card stuck in wrong state! %s status: %#x\n",
442 				 __func__, status);
443 			return -ETIMEDOUT;
444 		}
445 	} while (!mmc_ready_for_data(status));
446 
447 	return err;
448 }
449 
450 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
451 			       struct mmc_blk_ioc_data *idata)
452 {
453 	struct mmc_command cmd = {}, sbc = {};
454 	struct mmc_data data = {};
455 	struct mmc_request mrq = {};
456 	struct scatterlist sg;
457 	int err;
458 	unsigned int target_part;
459 
460 	if (!card || !md || !idata)
461 		return -EINVAL;
462 
463 	/*
464 	 * The RPMB accesses comes in from the character device, so we
465 	 * need to target these explicitly. Else we just target the
466 	 * partition type for the block device the ioctl() was issued
467 	 * on.
468 	 */
469 	if (idata->rpmb) {
470 		/* Support multiple RPMB partitions */
471 		target_part = idata->rpmb->part_index;
472 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
473 	} else {
474 		target_part = md->part_type;
475 	}
476 
477 	cmd.opcode = idata->ic.opcode;
478 	cmd.arg = idata->ic.arg;
479 	cmd.flags = idata->ic.flags;
480 
481 	if (idata->buf_bytes) {
482 		data.sg = &sg;
483 		data.sg_len = 1;
484 		data.blksz = idata->ic.blksz;
485 		data.blocks = idata->ic.blocks;
486 
487 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
488 
489 		if (idata->ic.write_flag)
490 			data.flags = MMC_DATA_WRITE;
491 		else
492 			data.flags = MMC_DATA_READ;
493 
494 		/* data.flags must already be set before doing this. */
495 		mmc_set_data_timeout(&data, card);
496 
497 		/* Allow overriding the timeout_ns for empirical tuning. */
498 		if (idata->ic.data_timeout_ns)
499 			data.timeout_ns = idata->ic.data_timeout_ns;
500 
501 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
502 			/*
503 			 * Pretend this is a data transfer and rely on the
504 			 * host driver to compute timeout.  When all host
505 			 * drivers support cmd.cmd_timeout for R1B, this
506 			 * can be changed to:
507 			 *
508 			 *     mrq.data = NULL;
509 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
510 			 */
511 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
512 		}
513 
514 		mrq.data = &data;
515 	}
516 
517 	mrq.cmd = &cmd;
518 
519 	err = mmc_blk_part_switch(card, target_part);
520 	if (err)
521 		return err;
522 
523 	if (idata->ic.is_acmd) {
524 		err = mmc_app_cmd(card->host, card);
525 		if (err)
526 			return err;
527 	}
528 
529 	if (idata->rpmb) {
530 		sbc.opcode = MMC_SET_BLOCK_COUNT;
531 		/*
532 		 * We don't do any blockcount validation because the max size
533 		 * may be increased by a future standard. We just copy the
534 		 * 'Reliable Write' bit here.
535 		 */
536 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
537 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
538 		mrq.sbc = &sbc;
539 	}
540 
541 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
542 	    (cmd.opcode == MMC_SWITCH))
543 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
544 
545 	mmc_wait_for_req(card->host, &mrq);
546 
547 	if (cmd.error) {
548 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
549 						__func__, cmd.error);
550 		return cmd.error;
551 	}
552 	if (data.error) {
553 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
554 						__func__, data.error);
555 		return data.error;
556 	}
557 
558 	/*
559 	 * Make sure the cache of the PARTITION_CONFIG register and
560 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
561 	 * changed it successfully.
562 	 */
563 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
564 	    (cmd.opcode == MMC_SWITCH)) {
565 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
566 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
567 
568 		/*
569 		 * Update cache so the next mmc_blk_part_switch call operates
570 		 * on up-to-date data.
571 		 */
572 		card->ext_csd.part_config = value;
573 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
574 	}
575 
576 	/*
577 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
578 	 * will get turned back on if the card is re-initialized, e.g.
579 	 * suspend/resume or hw reset in recovery.
580 	 */
581 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
582 	    (cmd.opcode == MMC_SWITCH)) {
583 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
584 
585 		card->ext_csd.cache_ctrl = value;
586 	}
587 
588 	/*
589 	 * According to the SD specs, some commands require a delay after
590 	 * issuing the command.
591 	 */
592 	if (idata->ic.postsleep_min_us)
593 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
594 
595 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
596 
597 	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
598 		/*
599 		 * Ensure RPMB/R1B command has completed by polling CMD13
600 		 * "Send Status".
601 		 */
602 		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
603 	}
604 
605 	return err;
606 }
607 
608 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
609 			     struct mmc_ioc_cmd __user *ic_ptr,
610 			     struct mmc_rpmb_data *rpmb)
611 {
612 	struct mmc_blk_ioc_data *idata;
613 	struct mmc_blk_ioc_data *idatas[1];
614 	struct mmc_queue *mq;
615 	struct mmc_card *card;
616 	int err = 0, ioc_err = 0;
617 	struct request *req;
618 
619 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
620 	if (IS_ERR(idata))
621 		return PTR_ERR(idata);
622 	/* This will be NULL on non-RPMB ioctl():s */
623 	idata->rpmb = rpmb;
624 
625 	card = md->queue.card;
626 	if (IS_ERR(card)) {
627 		err = PTR_ERR(card);
628 		goto cmd_done;
629 	}
630 
631 	/*
632 	 * Dispatch the ioctl() into the block request queue.
633 	 */
634 	mq = &md->queue;
635 	req = blk_get_request(mq->queue,
636 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
637 	if (IS_ERR(req)) {
638 		err = PTR_ERR(req);
639 		goto cmd_done;
640 	}
641 	idatas[0] = idata;
642 	req_to_mmc_queue_req(req)->drv_op =
643 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
644 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
645 	req_to_mmc_queue_req(req)->ioc_count = 1;
646 	blk_execute_rq(NULL, req, 0);
647 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
648 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
649 	blk_put_request(req);
650 
651 cmd_done:
652 	kfree(idata->buf);
653 	kfree(idata);
654 	return ioc_err ? ioc_err : err;
655 }
656 
657 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
658 				   struct mmc_ioc_multi_cmd __user *user,
659 				   struct mmc_rpmb_data *rpmb)
660 {
661 	struct mmc_blk_ioc_data **idata = NULL;
662 	struct mmc_ioc_cmd __user *cmds = user->cmds;
663 	struct mmc_card *card;
664 	struct mmc_queue *mq;
665 	int i, err = 0, ioc_err = 0;
666 	__u64 num_of_cmds;
667 	struct request *req;
668 
669 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
670 			   sizeof(num_of_cmds)))
671 		return -EFAULT;
672 
673 	if (!num_of_cmds)
674 		return 0;
675 
676 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
677 		return -EINVAL;
678 
679 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
680 	if (!idata)
681 		return -ENOMEM;
682 
683 	for (i = 0; i < num_of_cmds; i++) {
684 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
685 		if (IS_ERR(idata[i])) {
686 			err = PTR_ERR(idata[i]);
687 			num_of_cmds = i;
688 			goto cmd_err;
689 		}
690 		/* This will be NULL on non-RPMB ioctl():s */
691 		idata[i]->rpmb = rpmb;
692 	}
693 
694 	card = md->queue.card;
695 	if (IS_ERR(card)) {
696 		err = PTR_ERR(card);
697 		goto cmd_err;
698 	}
699 
700 
701 	/*
702 	 * Dispatch the ioctl()s into the block request queue.
703 	 */
704 	mq = &md->queue;
705 	req = blk_get_request(mq->queue,
706 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
707 	if (IS_ERR(req)) {
708 		err = PTR_ERR(req);
709 		goto cmd_err;
710 	}
711 	req_to_mmc_queue_req(req)->drv_op =
712 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
713 	req_to_mmc_queue_req(req)->drv_op_data = idata;
714 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
715 	blk_execute_rq(NULL, req, 0);
716 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
717 
718 	/* copy to user if data and response */
719 	for (i = 0; i < num_of_cmds && !err; i++)
720 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
721 
722 	blk_put_request(req);
723 
724 cmd_err:
725 	for (i = 0; i < num_of_cmds; i++) {
726 		kfree(idata[i]->buf);
727 		kfree(idata[i]);
728 	}
729 	kfree(idata);
730 	return ioc_err ? ioc_err : err;
731 }
732 
733 static int mmc_blk_check_blkdev(struct block_device *bdev)
734 {
735 	/*
736 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
737 	 * whole block device, not on a partition.  This prevents overspray
738 	 * between sibling partitions.
739 	 */
740 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
741 		return -EPERM;
742 	return 0;
743 }
744 
745 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
746 	unsigned int cmd, unsigned long arg)
747 {
748 	struct mmc_blk_data *md;
749 	int ret;
750 
751 	switch (cmd) {
752 	case MMC_IOC_CMD:
753 		ret = mmc_blk_check_blkdev(bdev);
754 		if (ret)
755 			return ret;
756 		md = mmc_blk_get(bdev->bd_disk);
757 		if (!md)
758 			return -EINVAL;
759 		ret = mmc_blk_ioctl_cmd(md,
760 					(struct mmc_ioc_cmd __user *)arg,
761 					NULL);
762 		mmc_blk_put(md);
763 		return ret;
764 	case MMC_IOC_MULTI_CMD:
765 		ret = mmc_blk_check_blkdev(bdev);
766 		if (ret)
767 			return ret;
768 		md = mmc_blk_get(bdev->bd_disk);
769 		if (!md)
770 			return -EINVAL;
771 		ret = mmc_blk_ioctl_multi_cmd(md,
772 					(struct mmc_ioc_multi_cmd __user *)arg,
773 					NULL);
774 		mmc_blk_put(md);
775 		return ret;
776 	default:
777 		return -EINVAL;
778 	}
779 }
780 
781 #ifdef CONFIG_COMPAT
782 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
783 	unsigned int cmd, unsigned long arg)
784 {
785 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
786 }
787 #endif
788 
789 static const struct block_device_operations mmc_bdops = {
790 	.open			= mmc_blk_open,
791 	.release		= mmc_blk_release,
792 	.getgeo			= mmc_blk_getgeo,
793 	.owner			= THIS_MODULE,
794 	.ioctl			= mmc_blk_ioctl,
795 #ifdef CONFIG_COMPAT
796 	.compat_ioctl		= mmc_blk_compat_ioctl,
797 #endif
798 };
799 
800 static int mmc_blk_part_switch_pre(struct mmc_card *card,
801 				   unsigned int part_type)
802 {
803 	int ret = 0;
804 
805 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
806 		if (card->ext_csd.cmdq_en) {
807 			ret = mmc_cmdq_disable(card);
808 			if (ret)
809 				return ret;
810 		}
811 		mmc_retune_pause(card->host);
812 	}
813 
814 	return ret;
815 }
816 
817 static int mmc_blk_part_switch_post(struct mmc_card *card,
818 				    unsigned int part_type)
819 {
820 	int ret = 0;
821 
822 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
823 		mmc_retune_unpause(card->host);
824 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
825 			ret = mmc_cmdq_enable(card);
826 	}
827 
828 	return ret;
829 }
830 
831 static inline int mmc_blk_part_switch(struct mmc_card *card,
832 				      unsigned int part_type)
833 {
834 	int ret = 0;
835 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
836 
837 	if (main_md->part_curr == part_type)
838 		return 0;
839 
840 	if (mmc_card_mmc(card)) {
841 		u8 part_config = card->ext_csd.part_config;
842 
843 		ret = mmc_blk_part_switch_pre(card, part_type);
844 		if (ret)
845 			return ret;
846 
847 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
848 		part_config |= part_type;
849 
850 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
851 				 EXT_CSD_PART_CONFIG, part_config,
852 				 card->ext_csd.part_time);
853 		if (ret) {
854 			mmc_blk_part_switch_post(card, part_type);
855 			return ret;
856 		}
857 
858 		card->ext_csd.part_config = part_config;
859 
860 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
861 	}
862 
863 	main_md->part_curr = part_type;
864 	return ret;
865 }
866 
867 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
868 {
869 	int err;
870 	u32 result;
871 	__be32 *blocks;
872 
873 	struct mmc_request mrq = {};
874 	struct mmc_command cmd = {};
875 	struct mmc_data data = {};
876 
877 	struct scatterlist sg;
878 
879 	cmd.opcode = MMC_APP_CMD;
880 	cmd.arg = card->rca << 16;
881 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
882 
883 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
884 	if (err)
885 		return err;
886 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
887 		return -EIO;
888 
889 	memset(&cmd, 0, sizeof(struct mmc_command));
890 
891 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
892 	cmd.arg = 0;
893 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
894 
895 	data.blksz = 4;
896 	data.blocks = 1;
897 	data.flags = MMC_DATA_READ;
898 	data.sg = &sg;
899 	data.sg_len = 1;
900 	mmc_set_data_timeout(&data, card);
901 
902 	mrq.cmd = &cmd;
903 	mrq.data = &data;
904 
905 	blocks = kmalloc(4, GFP_KERNEL);
906 	if (!blocks)
907 		return -ENOMEM;
908 
909 	sg_init_one(&sg, blocks, 4);
910 
911 	mmc_wait_for_req(card->host, &mrq);
912 
913 	result = ntohl(*blocks);
914 	kfree(blocks);
915 
916 	if (cmd.error || data.error)
917 		return -EIO;
918 
919 	*written_blocks = result;
920 
921 	return 0;
922 }
923 
924 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
925 {
926 	if (host->actual_clock)
927 		return host->actual_clock / 1000;
928 
929 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
930 	if (host->ios.clock)
931 		return host->ios.clock / 2000;
932 
933 	/* How can there be no clock */
934 	WARN_ON_ONCE(1);
935 	return 100; /* 100 kHz is minimum possible value */
936 }
937 
938 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
939 					    struct mmc_data *data)
940 {
941 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
942 	unsigned int khz;
943 
944 	if (data->timeout_clks) {
945 		khz = mmc_blk_clock_khz(host);
946 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
947 	}
948 
949 	return ms;
950 }
951 
952 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
953 			 int type)
954 {
955 	int err;
956 
957 	if (md->reset_done & type)
958 		return -EEXIST;
959 
960 	md->reset_done |= type;
961 	err = mmc_hw_reset(host);
962 	/* Ensure we switch back to the correct partition */
963 	if (err) {
964 		struct mmc_blk_data *main_md =
965 			dev_get_drvdata(&host->card->dev);
966 		int part_err;
967 
968 		main_md->part_curr = main_md->part_type;
969 		part_err = mmc_blk_part_switch(host->card, md->part_type);
970 		if (part_err) {
971 			/*
972 			 * We have failed to get back into the correct
973 			 * partition, so we need to abort the whole request.
974 			 */
975 			return -ENODEV;
976 		}
977 	}
978 	return err;
979 }
980 
981 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
982 {
983 	md->reset_done &= ~type;
984 }
985 
986 /*
987  * The non-block commands come back from the block layer after it queued it and
988  * processed it with all other requests and then they get issued in this
989  * function.
990  */
991 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
992 {
993 	struct mmc_queue_req *mq_rq;
994 	struct mmc_card *card = mq->card;
995 	struct mmc_blk_data *md = mq->blkdata;
996 	struct mmc_blk_ioc_data **idata;
997 	bool rpmb_ioctl;
998 	u8 **ext_csd;
999 	u32 status;
1000 	int ret;
1001 	int i;
1002 
1003 	mq_rq = req_to_mmc_queue_req(req);
1004 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1005 
1006 	switch (mq_rq->drv_op) {
1007 	case MMC_DRV_OP_IOCTL:
1008 		if (card->ext_csd.cmdq_en) {
1009 			ret = mmc_cmdq_disable(card);
1010 			if (ret)
1011 				break;
1012 		}
1013 		fallthrough;
1014 	case MMC_DRV_OP_IOCTL_RPMB:
1015 		idata = mq_rq->drv_op_data;
1016 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1017 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1018 			if (ret)
1019 				break;
1020 		}
1021 		/* Always switch back to main area after RPMB access */
1022 		if (rpmb_ioctl)
1023 			mmc_blk_part_switch(card, 0);
1024 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1025 			mmc_cmdq_enable(card);
1026 		break;
1027 	case MMC_DRV_OP_BOOT_WP:
1028 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1029 				 card->ext_csd.boot_ro_lock |
1030 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1031 				 card->ext_csd.part_time);
1032 		if (ret)
1033 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1034 			       md->disk->disk_name, ret);
1035 		else
1036 			card->ext_csd.boot_ro_lock |=
1037 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1038 		break;
1039 	case MMC_DRV_OP_GET_CARD_STATUS:
1040 		ret = mmc_send_status(card, &status);
1041 		if (!ret)
1042 			ret = status;
1043 		break;
1044 	case MMC_DRV_OP_GET_EXT_CSD:
1045 		ext_csd = mq_rq->drv_op_data;
1046 		ret = mmc_get_ext_csd(card, ext_csd);
1047 		break;
1048 	default:
1049 		pr_err("%s: unknown driver specific operation\n",
1050 		       md->disk->disk_name);
1051 		ret = -EINVAL;
1052 		break;
1053 	}
1054 	mq_rq->drv_op_result = ret;
1055 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1056 }
1057 
1058 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1059 {
1060 	struct mmc_blk_data *md = mq->blkdata;
1061 	struct mmc_card *card = md->queue.card;
1062 	unsigned int from, nr;
1063 	int err = 0, type = MMC_BLK_DISCARD;
1064 	blk_status_t status = BLK_STS_OK;
1065 
1066 	if (!mmc_can_erase(card)) {
1067 		status = BLK_STS_NOTSUPP;
1068 		goto fail;
1069 	}
1070 
1071 	from = blk_rq_pos(req);
1072 	nr = blk_rq_sectors(req);
1073 
1074 	do {
1075 		err = 0;
1076 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1077 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1078 					 INAND_CMD38_ARG_EXT_CSD,
1079 					 card->erase_arg == MMC_TRIM_ARG ?
1080 					 INAND_CMD38_ARG_TRIM :
1081 					 INAND_CMD38_ARG_ERASE,
1082 					 card->ext_csd.generic_cmd6_time);
1083 		}
1084 		if (!err)
1085 			err = mmc_erase(card, from, nr, card->erase_arg);
1086 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1087 	if (err)
1088 		status = BLK_STS_IOERR;
1089 	else
1090 		mmc_blk_reset_success(md, type);
1091 fail:
1092 	blk_mq_end_request(req, status);
1093 }
1094 
1095 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1096 				       struct request *req)
1097 {
1098 	struct mmc_blk_data *md = mq->blkdata;
1099 	struct mmc_card *card = md->queue.card;
1100 	unsigned int from, nr, arg;
1101 	int err = 0, type = MMC_BLK_SECDISCARD;
1102 	blk_status_t status = BLK_STS_OK;
1103 
1104 	if (!(mmc_can_secure_erase_trim(card))) {
1105 		status = BLK_STS_NOTSUPP;
1106 		goto out;
1107 	}
1108 
1109 	from = blk_rq_pos(req);
1110 	nr = blk_rq_sectors(req);
1111 
1112 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1113 		arg = MMC_SECURE_TRIM1_ARG;
1114 	else
1115 		arg = MMC_SECURE_ERASE_ARG;
1116 
1117 retry:
1118 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1119 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1120 				 INAND_CMD38_ARG_EXT_CSD,
1121 				 arg == MMC_SECURE_TRIM1_ARG ?
1122 				 INAND_CMD38_ARG_SECTRIM1 :
1123 				 INAND_CMD38_ARG_SECERASE,
1124 				 card->ext_csd.generic_cmd6_time);
1125 		if (err)
1126 			goto out_retry;
1127 	}
1128 
1129 	err = mmc_erase(card, from, nr, arg);
1130 	if (err == -EIO)
1131 		goto out_retry;
1132 	if (err) {
1133 		status = BLK_STS_IOERR;
1134 		goto out;
1135 	}
1136 
1137 	if (arg == MMC_SECURE_TRIM1_ARG) {
1138 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1139 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1140 					 INAND_CMD38_ARG_EXT_CSD,
1141 					 INAND_CMD38_ARG_SECTRIM2,
1142 					 card->ext_csd.generic_cmd6_time);
1143 			if (err)
1144 				goto out_retry;
1145 		}
1146 
1147 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1148 		if (err == -EIO)
1149 			goto out_retry;
1150 		if (err) {
1151 			status = BLK_STS_IOERR;
1152 			goto out;
1153 		}
1154 	}
1155 
1156 out_retry:
1157 	if (err && !mmc_blk_reset(md, card->host, type))
1158 		goto retry;
1159 	if (!err)
1160 		mmc_blk_reset_success(md, type);
1161 out:
1162 	blk_mq_end_request(req, status);
1163 }
1164 
1165 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1166 {
1167 	struct mmc_blk_data *md = mq->blkdata;
1168 	struct mmc_card *card = md->queue.card;
1169 	int ret = 0;
1170 
1171 	ret = mmc_flush_cache(card->host);
1172 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1173 }
1174 
1175 /*
1176  * Reformat current write as a reliable write, supporting
1177  * both legacy and the enhanced reliable write MMC cards.
1178  * In each transfer we'll handle only as much as a single
1179  * reliable write can handle, thus finish the request in
1180  * partial completions.
1181  */
1182 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1183 				    struct mmc_card *card,
1184 				    struct request *req)
1185 {
1186 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1187 		/* Legacy mode imposes restrictions on transfers. */
1188 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1189 			brq->data.blocks = 1;
1190 
1191 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1192 			brq->data.blocks = card->ext_csd.rel_sectors;
1193 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1194 			brq->data.blocks = 1;
1195 	}
1196 }
1197 
1198 #define CMD_ERRORS_EXCL_OOR						\
1199 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1200 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1201 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1202 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1203 	 R1_CC_ERROR |		/* Card controller error */		\
1204 	 R1_ERROR)		/* General/unknown error */
1205 
1206 #define CMD_ERRORS							\
1207 	(CMD_ERRORS_EXCL_OOR |						\
1208 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1209 
1210 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1211 {
1212 	u32 val;
1213 
1214 	/*
1215 	 * Per the SD specification(physical layer version 4.10)[1],
1216 	 * section 4.3.3, it explicitly states that "When the last
1217 	 * block of user area is read using CMD18, the host should
1218 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1219 	 * is correct". And JESD84-B51 for eMMC also has a similar
1220 	 * statement on section 6.8.3.
1221 	 *
1222 	 * Multiple block read/write could be done by either predefined
1223 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1224 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1225 	 *
1226 	 * However the spec[1] doesn't tell us whether we should also
1227 	 * ignore that for predefined method. But per the spec[1], section
1228 	 * 4.15 Set Block Count Command, it says"If illegal block count
1229 	 * is set, out of range error will be indicated during read/write
1230 	 * operation (For example, data transfer is stopped at user area
1231 	 * boundary)." In another word, we could expect a out of range error
1232 	 * in the response for the following CMD18/25. And if argument of
1233 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1234 	 * we could also expect to get a -ETIMEDOUT or any error number from
1235 	 * the host drivers due to missing data response(for write)/data(for
1236 	 * read), as the cards will stop the data transfer by itself per the
1237 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1238 	 */
1239 
1240 	if (!brq->stop.error) {
1241 		bool oor_with_open_end;
1242 		/* If there is no error yet, check R1 response */
1243 
1244 		val = brq->stop.resp[0] & CMD_ERRORS;
1245 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1246 
1247 		if (val && !oor_with_open_end)
1248 			brq->stop.error = -EIO;
1249 	}
1250 }
1251 
1252 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1253 			      int disable_multi, bool *do_rel_wr_p,
1254 			      bool *do_data_tag_p)
1255 {
1256 	struct mmc_blk_data *md = mq->blkdata;
1257 	struct mmc_card *card = md->queue.card;
1258 	struct mmc_blk_request *brq = &mqrq->brq;
1259 	struct request *req = mmc_queue_req_to_req(mqrq);
1260 	bool do_rel_wr, do_data_tag;
1261 
1262 	/*
1263 	 * Reliable writes are used to implement Forced Unit Access and
1264 	 * are supported only on MMCs.
1265 	 */
1266 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1267 		    rq_data_dir(req) == WRITE &&
1268 		    (md->flags & MMC_BLK_REL_WR);
1269 
1270 	memset(brq, 0, sizeof(struct mmc_blk_request));
1271 
1272 	mmc_crypto_prepare_req(mqrq);
1273 
1274 	brq->mrq.data = &brq->data;
1275 	brq->mrq.tag = req->tag;
1276 
1277 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1278 	brq->stop.arg = 0;
1279 
1280 	if (rq_data_dir(req) == READ) {
1281 		brq->data.flags = MMC_DATA_READ;
1282 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1283 	} else {
1284 		brq->data.flags = MMC_DATA_WRITE;
1285 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1286 	}
1287 
1288 	brq->data.blksz = 512;
1289 	brq->data.blocks = blk_rq_sectors(req);
1290 	brq->data.blk_addr = blk_rq_pos(req);
1291 
1292 	/*
1293 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1294 	 * The eMMC will give "high" priority tasks priority over "simple"
1295 	 * priority tasks. Here we always set "simple" priority by not setting
1296 	 * MMC_DATA_PRIO.
1297 	 */
1298 
1299 	/*
1300 	 * The block layer doesn't support all sector count
1301 	 * restrictions, so we need to be prepared for too big
1302 	 * requests.
1303 	 */
1304 	if (brq->data.blocks > card->host->max_blk_count)
1305 		brq->data.blocks = card->host->max_blk_count;
1306 
1307 	if (brq->data.blocks > 1) {
1308 		/*
1309 		 * Some SD cards in SPI mode return a CRC error or even lock up
1310 		 * completely when trying to read the last block using a
1311 		 * multiblock read command.
1312 		 */
1313 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1314 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1315 		     get_capacity(md->disk)))
1316 			brq->data.blocks--;
1317 
1318 		/*
1319 		 * After a read error, we redo the request one sector
1320 		 * at a time in order to accurately determine which
1321 		 * sectors can be read successfully.
1322 		 */
1323 		if (disable_multi)
1324 			brq->data.blocks = 1;
1325 
1326 		/*
1327 		 * Some controllers have HW issues while operating
1328 		 * in multiple I/O mode
1329 		 */
1330 		if (card->host->ops->multi_io_quirk)
1331 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1332 						(rq_data_dir(req) == READ) ?
1333 						MMC_DATA_READ : MMC_DATA_WRITE,
1334 						brq->data.blocks);
1335 	}
1336 
1337 	if (do_rel_wr) {
1338 		mmc_apply_rel_rw(brq, card, req);
1339 		brq->data.flags |= MMC_DATA_REL_WR;
1340 	}
1341 
1342 	/*
1343 	 * Data tag is used only during writing meta data to speed
1344 	 * up write and any subsequent read of this meta data
1345 	 */
1346 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1347 		      (req->cmd_flags & REQ_META) &&
1348 		      (rq_data_dir(req) == WRITE) &&
1349 		      ((brq->data.blocks * brq->data.blksz) >=
1350 		       card->ext_csd.data_tag_unit_size);
1351 
1352 	if (do_data_tag)
1353 		brq->data.flags |= MMC_DATA_DAT_TAG;
1354 
1355 	mmc_set_data_timeout(&brq->data, card);
1356 
1357 	brq->data.sg = mqrq->sg;
1358 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1359 
1360 	/*
1361 	 * Adjust the sg list so it is the same size as the
1362 	 * request.
1363 	 */
1364 	if (brq->data.blocks != blk_rq_sectors(req)) {
1365 		int i, data_size = brq->data.blocks << 9;
1366 		struct scatterlist *sg;
1367 
1368 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1369 			data_size -= sg->length;
1370 			if (data_size <= 0) {
1371 				sg->length += data_size;
1372 				i++;
1373 				break;
1374 			}
1375 		}
1376 		brq->data.sg_len = i;
1377 	}
1378 
1379 	if (do_rel_wr_p)
1380 		*do_rel_wr_p = do_rel_wr;
1381 
1382 	if (do_data_tag_p)
1383 		*do_data_tag_p = do_data_tag;
1384 }
1385 
1386 #define MMC_CQE_RETRIES 2
1387 
1388 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1389 {
1390 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1391 	struct mmc_request *mrq = &mqrq->brq.mrq;
1392 	struct request_queue *q = req->q;
1393 	struct mmc_host *host = mq->card->host;
1394 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1395 	unsigned long flags;
1396 	bool put_card;
1397 	int err;
1398 
1399 	mmc_cqe_post_req(host, mrq);
1400 
1401 	if (mrq->cmd && mrq->cmd->error)
1402 		err = mrq->cmd->error;
1403 	else if (mrq->data && mrq->data->error)
1404 		err = mrq->data->error;
1405 	else
1406 		err = 0;
1407 
1408 	if (err) {
1409 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1410 			blk_mq_requeue_request(req, true);
1411 		else
1412 			blk_mq_end_request(req, BLK_STS_IOERR);
1413 	} else if (mrq->data) {
1414 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1415 			blk_mq_requeue_request(req, true);
1416 		else
1417 			__blk_mq_end_request(req, BLK_STS_OK);
1418 	} else {
1419 		blk_mq_end_request(req, BLK_STS_OK);
1420 	}
1421 
1422 	spin_lock_irqsave(&mq->lock, flags);
1423 
1424 	mq->in_flight[issue_type] -= 1;
1425 
1426 	put_card = (mmc_tot_in_flight(mq) == 0);
1427 
1428 	mmc_cqe_check_busy(mq);
1429 
1430 	spin_unlock_irqrestore(&mq->lock, flags);
1431 
1432 	if (!mq->cqe_busy)
1433 		blk_mq_run_hw_queues(q, true);
1434 
1435 	if (put_card)
1436 		mmc_put_card(mq->card, &mq->ctx);
1437 }
1438 
1439 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1440 {
1441 	struct mmc_card *card = mq->card;
1442 	struct mmc_host *host = card->host;
1443 	int err;
1444 
1445 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1446 
1447 	err = mmc_cqe_recovery(host);
1448 	if (err)
1449 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1450 	else
1451 		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1452 
1453 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1454 }
1455 
1456 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1457 {
1458 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1459 						  brq.mrq);
1460 	struct request *req = mmc_queue_req_to_req(mqrq);
1461 	struct request_queue *q = req->q;
1462 	struct mmc_queue *mq = q->queuedata;
1463 
1464 	/*
1465 	 * Block layer timeouts race with completions which means the normal
1466 	 * completion path cannot be used during recovery.
1467 	 */
1468 	if (mq->in_recovery)
1469 		mmc_blk_cqe_complete_rq(mq, req);
1470 	else if (likely(!blk_should_fake_timeout(req->q)))
1471 		blk_mq_complete_request(req);
1472 }
1473 
1474 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1475 {
1476 	mrq->done		= mmc_blk_cqe_req_done;
1477 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1478 
1479 	return mmc_cqe_start_req(host, mrq);
1480 }
1481 
1482 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1483 						 struct request *req)
1484 {
1485 	struct mmc_blk_request *brq = &mqrq->brq;
1486 
1487 	memset(brq, 0, sizeof(*brq));
1488 
1489 	brq->mrq.cmd = &brq->cmd;
1490 	brq->mrq.tag = req->tag;
1491 
1492 	return &brq->mrq;
1493 }
1494 
1495 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1496 {
1497 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1498 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1499 
1500 	mrq->cmd->opcode = MMC_SWITCH;
1501 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1502 			(EXT_CSD_FLUSH_CACHE << 16) |
1503 			(1 << 8) |
1504 			EXT_CSD_CMD_SET_NORMAL;
1505 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1506 
1507 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1508 }
1509 
1510 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1511 {
1512 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1513 	struct mmc_host *host = mq->card->host;
1514 	int err;
1515 
1516 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1517 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1518 	mmc_pre_req(host, &mqrq->brq.mrq);
1519 
1520 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1521 	if (err)
1522 		mmc_post_req(host, &mqrq->brq.mrq, err);
1523 
1524 	return err;
1525 }
1526 
1527 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1528 {
1529 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1530 	struct mmc_host *host = mq->card->host;
1531 
1532 	if (host->hsq_enabled)
1533 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1534 
1535 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1536 
1537 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1538 }
1539 
1540 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1541 			       struct mmc_card *card,
1542 			       int disable_multi,
1543 			       struct mmc_queue *mq)
1544 {
1545 	u32 readcmd, writecmd;
1546 	struct mmc_blk_request *brq = &mqrq->brq;
1547 	struct request *req = mmc_queue_req_to_req(mqrq);
1548 	struct mmc_blk_data *md = mq->blkdata;
1549 	bool do_rel_wr, do_data_tag;
1550 
1551 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1552 
1553 	brq->mrq.cmd = &brq->cmd;
1554 
1555 	brq->cmd.arg = blk_rq_pos(req);
1556 	if (!mmc_card_blockaddr(card))
1557 		brq->cmd.arg <<= 9;
1558 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1559 
1560 	if (brq->data.blocks > 1 || do_rel_wr) {
1561 		/* SPI multiblock writes terminate using a special
1562 		 * token, not a STOP_TRANSMISSION request.
1563 		 */
1564 		if (!mmc_host_is_spi(card->host) ||
1565 		    rq_data_dir(req) == READ)
1566 			brq->mrq.stop = &brq->stop;
1567 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1568 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1569 	} else {
1570 		brq->mrq.stop = NULL;
1571 		readcmd = MMC_READ_SINGLE_BLOCK;
1572 		writecmd = MMC_WRITE_BLOCK;
1573 	}
1574 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1575 
1576 	/*
1577 	 * Pre-defined multi-block transfers are preferable to
1578 	 * open ended-ones (and necessary for reliable writes).
1579 	 * However, it is not sufficient to just send CMD23,
1580 	 * and avoid the final CMD12, as on an error condition
1581 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1582 	 * with Auto-CMD23 enhancements provided by some
1583 	 * hosts, means that the complexity of dealing
1584 	 * with this is best left to the host. If CMD23 is
1585 	 * supported by card and host, we'll fill sbc in and let
1586 	 * the host deal with handling it correctly. This means
1587 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1588 	 * change of behavior will be observed.
1589 	 *
1590 	 * N.B: Some MMC cards experience perf degradation.
1591 	 * We'll avoid using CMD23-bounded multiblock writes for
1592 	 * these, while retaining features like reliable writes.
1593 	 */
1594 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1595 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1596 	     do_data_tag)) {
1597 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1598 		brq->sbc.arg = brq->data.blocks |
1599 			(do_rel_wr ? (1 << 31) : 0) |
1600 			(do_data_tag ? (1 << 29) : 0);
1601 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1602 		brq->mrq.sbc = &brq->sbc;
1603 	}
1604 }
1605 
1606 #define MMC_MAX_RETRIES		5
1607 #define MMC_DATA_RETRIES	2
1608 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1609 
1610 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1611 {
1612 	struct mmc_command cmd = {
1613 		.opcode = MMC_STOP_TRANSMISSION,
1614 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1615 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1616 		.busy_timeout = timeout,
1617 	};
1618 
1619 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1620 }
1621 
1622 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1623 {
1624 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1625 	struct mmc_blk_request *brq = &mqrq->brq;
1626 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1627 	int err;
1628 
1629 	mmc_retune_hold_now(card->host);
1630 
1631 	mmc_blk_send_stop(card, timeout);
1632 
1633 	err = card_busy_detect(card, timeout, NULL);
1634 
1635 	mmc_retune_release(card->host);
1636 
1637 	return err;
1638 }
1639 
1640 #define MMC_READ_SINGLE_RETRIES	2
1641 
1642 /* Single sector read during recovery */
1643 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1644 {
1645 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1646 	struct mmc_request *mrq = &mqrq->brq.mrq;
1647 	struct mmc_card *card = mq->card;
1648 	struct mmc_host *host = card->host;
1649 	blk_status_t error = BLK_STS_OK;
1650 	int retries = 0;
1651 
1652 	do {
1653 		u32 status;
1654 		int err;
1655 
1656 		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1657 
1658 		mmc_wait_for_req(host, mrq);
1659 
1660 		err = mmc_send_status(card, &status);
1661 		if (err)
1662 			goto error_exit;
1663 
1664 		if (!mmc_host_is_spi(host) &&
1665 		    !mmc_ready_for_data(status)) {
1666 			err = mmc_blk_fix_state(card, req);
1667 			if (err)
1668 				goto error_exit;
1669 		}
1670 
1671 		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1672 			continue;
1673 
1674 		retries = 0;
1675 
1676 		if (mrq->cmd->error ||
1677 		    mrq->data->error ||
1678 		    (!mmc_host_is_spi(host) &&
1679 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1680 			error = BLK_STS_IOERR;
1681 		else
1682 			error = BLK_STS_OK;
1683 
1684 	} while (blk_update_request(req, error, 512));
1685 
1686 	return;
1687 
1688 error_exit:
1689 	mrq->data->bytes_xfered = 0;
1690 	blk_update_request(req, BLK_STS_IOERR, 512);
1691 	/* Let it try the remaining request again */
1692 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1693 		mqrq->retries = MMC_MAX_RETRIES - 1;
1694 }
1695 
1696 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1697 {
1698 	return !!brq->mrq.sbc;
1699 }
1700 
1701 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1702 {
1703 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1704 }
1705 
1706 /*
1707  * Check for errors the host controller driver might not have seen such as
1708  * response mode errors or invalid card state.
1709  */
1710 static bool mmc_blk_status_error(struct request *req, u32 status)
1711 {
1712 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1713 	struct mmc_blk_request *brq = &mqrq->brq;
1714 	struct mmc_queue *mq = req->q->queuedata;
1715 	u32 stop_err_bits;
1716 
1717 	if (mmc_host_is_spi(mq->card->host))
1718 		return false;
1719 
1720 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1721 
1722 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1723 	       brq->stop.resp[0] & stop_err_bits ||
1724 	       status            & stop_err_bits ||
1725 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1726 }
1727 
1728 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1729 {
1730 	return !brq->sbc.error && !brq->cmd.error &&
1731 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1732 }
1733 
1734 /*
1735  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1736  * policy:
1737  * 1. A request that has transferred at least some data is considered
1738  * successful and will be requeued if there is remaining data to
1739  * transfer.
1740  * 2. Otherwise the number of retries is incremented and the request
1741  * will be requeued if there are remaining retries.
1742  * 3. Otherwise the request will be errored out.
1743  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1744  * mqrq->retries. So there are only 4 possible actions here:
1745  *	1. do not accept the bytes_xfered value i.e. set it to zero
1746  *	2. change mqrq->retries to determine the number of retries
1747  *	3. try to reset the card
1748  *	4. read one sector at a time
1749  */
1750 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1751 {
1752 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1753 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1754 	struct mmc_blk_request *brq = &mqrq->brq;
1755 	struct mmc_blk_data *md = mq->blkdata;
1756 	struct mmc_card *card = mq->card;
1757 	u32 status;
1758 	u32 blocks;
1759 	int err;
1760 
1761 	/*
1762 	 * Some errors the host driver might not have seen. Set the number of
1763 	 * bytes transferred to zero in that case.
1764 	 */
1765 	err = __mmc_send_status(card, &status, 0);
1766 	if (err || mmc_blk_status_error(req, status))
1767 		brq->data.bytes_xfered = 0;
1768 
1769 	mmc_retune_release(card->host);
1770 
1771 	/*
1772 	 * Try again to get the status. This also provides an opportunity for
1773 	 * re-tuning.
1774 	 */
1775 	if (err)
1776 		err = __mmc_send_status(card, &status, 0);
1777 
1778 	/*
1779 	 * Nothing more to do after the number of bytes transferred has been
1780 	 * updated and there is no card.
1781 	 */
1782 	if (err && mmc_detect_card_removed(card->host))
1783 		return;
1784 
1785 	/* Try to get back to "tran" state */
1786 	if (!mmc_host_is_spi(mq->card->host) &&
1787 	    (err || !mmc_ready_for_data(status)))
1788 		err = mmc_blk_fix_state(mq->card, req);
1789 
1790 	/*
1791 	 * Special case for SD cards where the card might record the number of
1792 	 * blocks written.
1793 	 */
1794 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1795 	    rq_data_dir(req) == WRITE) {
1796 		if (mmc_sd_num_wr_blocks(card, &blocks))
1797 			brq->data.bytes_xfered = 0;
1798 		else
1799 			brq->data.bytes_xfered = blocks << 9;
1800 	}
1801 
1802 	/* Reset if the card is in a bad state */
1803 	if (!mmc_host_is_spi(mq->card->host) &&
1804 	    err && mmc_blk_reset(md, card->host, type)) {
1805 		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1806 		mqrq->retries = MMC_NO_RETRIES;
1807 		return;
1808 	}
1809 
1810 	/*
1811 	 * If anything was done, just return and if there is anything remaining
1812 	 * on the request it will get requeued.
1813 	 */
1814 	if (brq->data.bytes_xfered)
1815 		return;
1816 
1817 	/* Reset before last retry */
1818 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1819 		mmc_blk_reset(md, card->host, type);
1820 
1821 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1822 	if (brq->sbc.error || brq->cmd.error)
1823 		return;
1824 
1825 	/* Reduce the remaining retries for data errors */
1826 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1827 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1828 		return;
1829 	}
1830 
1831 	/* FIXME: Missing single sector read for large sector size */
1832 	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1833 	    brq->data.blocks > 1) {
1834 		/* Read one sector at a time */
1835 		mmc_blk_read_single(mq, req);
1836 		return;
1837 	}
1838 }
1839 
1840 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1841 {
1842 	mmc_blk_eval_resp_error(brq);
1843 
1844 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1845 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1846 }
1847 
1848 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1849 {
1850 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1851 	u32 status = 0;
1852 	int err;
1853 
1854 	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1855 		return 0;
1856 
1857 	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1858 
1859 	/*
1860 	 * Do not assume data transferred correctly if there are any error bits
1861 	 * set.
1862 	 */
1863 	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1864 		mqrq->brq.data.bytes_xfered = 0;
1865 		err = err ? err : -EIO;
1866 	}
1867 
1868 	/* Copy the exception bit so it will be seen later on */
1869 	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1870 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1871 
1872 	return err;
1873 }
1874 
1875 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1876 					    struct request *req)
1877 {
1878 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1879 
1880 	mmc_blk_reset_success(mq->blkdata, type);
1881 }
1882 
1883 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1884 {
1885 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1886 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1887 
1888 	if (nr_bytes) {
1889 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1890 			blk_mq_requeue_request(req, true);
1891 		else
1892 			__blk_mq_end_request(req, BLK_STS_OK);
1893 	} else if (!blk_rq_bytes(req)) {
1894 		__blk_mq_end_request(req, BLK_STS_IOERR);
1895 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1896 		blk_mq_requeue_request(req, true);
1897 	} else {
1898 		if (mmc_card_removed(mq->card))
1899 			req->rq_flags |= RQF_QUIET;
1900 		blk_mq_end_request(req, BLK_STS_IOERR);
1901 	}
1902 }
1903 
1904 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1905 					struct mmc_queue_req *mqrq)
1906 {
1907 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1908 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1909 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1910 }
1911 
1912 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1913 				 struct mmc_queue_req *mqrq)
1914 {
1915 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1916 		mmc_run_bkops(mq->card);
1917 }
1918 
1919 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1920 {
1921 	struct mmc_queue_req *mqrq =
1922 		container_of(mrq, struct mmc_queue_req, brq.mrq);
1923 	struct request *req = mmc_queue_req_to_req(mqrq);
1924 	struct request_queue *q = req->q;
1925 	struct mmc_queue *mq = q->queuedata;
1926 	struct mmc_host *host = mq->card->host;
1927 	unsigned long flags;
1928 
1929 	if (mmc_blk_rq_error(&mqrq->brq) ||
1930 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1931 		spin_lock_irqsave(&mq->lock, flags);
1932 		mq->recovery_needed = true;
1933 		mq->recovery_req = req;
1934 		spin_unlock_irqrestore(&mq->lock, flags);
1935 
1936 		host->cqe_ops->cqe_recovery_start(host);
1937 
1938 		schedule_work(&mq->recovery_work);
1939 		return;
1940 	}
1941 
1942 	mmc_blk_rw_reset_success(mq, req);
1943 
1944 	/*
1945 	 * Block layer timeouts race with completions which means the normal
1946 	 * completion path cannot be used during recovery.
1947 	 */
1948 	if (mq->in_recovery)
1949 		mmc_blk_cqe_complete_rq(mq, req);
1950 	else if (likely(!blk_should_fake_timeout(req->q)))
1951 		blk_mq_complete_request(req);
1952 }
1953 
1954 void mmc_blk_mq_complete(struct request *req)
1955 {
1956 	struct mmc_queue *mq = req->q->queuedata;
1957 	struct mmc_host *host = mq->card->host;
1958 
1959 	if (host->cqe_enabled)
1960 		mmc_blk_cqe_complete_rq(mq, req);
1961 	else if (likely(!blk_should_fake_timeout(req->q)))
1962 		mmc_blk_mq_complete_rq(mq, req);
1963 }
1964 
1965 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1966 				       struct request *req)
1967 {
1968 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1969 	struct mmc_host *host = mq->card->host;
1970 
1971 	if (mmc_blk_rq_error(&mqrq->brq) ||
1972 	    mmc_blk_card_busy(mq->card, req)) {
1973 		mmc_blk_mq_rw_recovery(mq, req);
1974 	} else {
1975 		mmc_blk_rw_reset_success(mq, req);
1976 		mmc_retune_release(host);
1977 	}
1978 
1979 	mmc_blk_urgent_bkops(mq, mqrq);
1980 }
1981 
1982 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1983 {
1984 	unsigned long flags;
1985 	bool put_card;
1986 
1987 	spin_lock_irqsave(&mq->lock, flags);
1988 
1989 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1990 
1991 	put_card = (mmc_tot_in_flight(mq) == 0);
1992 
1993 	spin_unlock_irqrestore(&mq->lock, flags);
1994 
1995 	if (put_card)
1996 		mmc_put_card(mq->card, &mq->ctx);
1997 }
1998 
1999 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2000 {
2001 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2002 	struct mmc_request *mrq = &mqrq->brq.mrq;
2003 	struct mmc_host *host = mq->card->host;
2004 
2005 	mmc_post_req(host, mrq, 0);
2006 
2007 	/*
2008 	 * Block layer timeouts race with completions which means the normal
2009 	 * completion path cannot be used during recovery.
2010 	 */
2011 	if (mq->in_recovery)
2012 		mmc_blk_mq_complete_rq(mq, req);
2013 	else if (likely(!blk_should_fake_timeout(req->q)))
2014 		blk_mq_complete_request(req);
2015 
2016 	mmc_blk_mq_dec_in_flight(mq, req);
2017 }
2018 
2019 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2020 {
2021 	struct request *req = mq->recovery_req;
2022 	struct mmc_host *host = mq->card->host;
2023 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2024 
2025 	mq->recovery_req = NULL;
2026 	mq->rw_wait = false;
2027 
2028 	if (mmc_blk_rq_error(&mqrq->brq)) {
2029 		mmc_retune_hold_now(host);
2030 		mmc_blk_mq_rw_recovery(mq, req);
2031 	}
2032 
2033 	mmc_blk_urgent_bkops(mq, mqrq);
2034 
2035 	mmc_blk_mq_post_req(mq, req);
2036 }
2037 
2038 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2039 					 struct request **prev_req)
2040 {
2041 	if (mmc_host_done_complete(mq->card->host))
2042 		return;
2043 
2044 	mutex_lock(&mq->complete_lock);
2045 
2046 	if (!mq->complete_req)
2047 		goto out_unlock;
2048 
2049 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2050 
2051 	if (prev_req)
2052 		*prev_req = mq->complete_req;
2053 	else
2054 		mmc_blk_mq_post_req(mq, mq->complete_req);
2055 
2056 	mq->complete_req = NULL;
2057 
2058 out_unlock:
2059 	mutex_unlock(&mq->complete_lock);
2060 }
2061 
2062 void mmc_blk_mq_complete_work(struct work_struct *work)
2063 {
2064 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2065 					    complete_work);
2066 
2067 	mmc_blk_mq_complete_prev_req(mq, NULL);
2068 }
2069 
2070 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2071 {
2072 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2073 						  brq.mrq);
2074 	struct request *req = mmc_queue_req_to_req(mqrq);
2075 	struct request_queue *q = req->q;
2076 	struct mmc_queue *mq = q->queuedata;
2077 	struct mmc_host *host = mq->card->host;
2078 	unsigned long flags;
2079 
2080 	if (!mmc_host_done_complete(host)) {
2081 		bool waiting;
2082 
2083 		/*
2084 		 * We cannot complete the request in this context, so record
2085 		 * that there is a request to complete, and that a following
2086 		 * request does not need to wait (although it does need to
2087 		 * complete complete_req first).
2088 		 */
2089 		spin_lock_irqsave(&mq->lock, flags);
2090 		mq->complete_req = req;
2091 		mq->rw_wait = false;
2092 		waiting = mq->waiting;
2093 		spin_unlock_irqrestore(&mq->lock, flags);
2094 
2095 		/*
2096 		 * If 'waiting' then the waiting task will complete this
2097 		 * request, otherwise queue a work to do it. Note that
2098 		 * complete_work may still race with the dispatch of a following
2099 		 * request.
2100 		 */
2101 		if (waiting)
2102 			wake_up(&mq->wait);
2103 		else
2104 			queue_work(mq->card->complete_wq, &mq->complete_work);
2105 
2106 		return;
2107 	}
2108 
2109 	/* Take the recovery path for errors or urgent background operations */
2110 	if (mmc_blk_rq_error(&mqrq->brq) ||
2111 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2112 		spin_lock_irqsave(&mq->lock, flags);
2113 		mq->recovery_needed = true;
2114 		mq->recovery_req = req;
2115 		spin_unlock_irqrestore(&mq->lock, flags);
2116 		wake_up(&mq->wait);
2117 		schedule_work(&mq->recovery_work);
2118 		return;
2119 	}
2120 
2121 	mmc_blk_rw_reset_success(mq, req);
2122 
2123 	mq->rw_wait = false;
2124 	wake_up(&mq->wait);
2125 
2126 	mmc_blk_mq_post_req(mq, req);
2127 }
2128 
2129 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2130 {
2131 	unsigned long flags;
2132 	bool done;
2133 
2134 	/*
2135 	 * Wait while there is another request in progress, but not if recovery
2136 	 * is needed. Also indicate whether there is a request waiting to start.
2137 	 */
2138 	spin_lock_irqsave(&mq->lock, flags);
2139 	if (mq->recovery_needed) {
2140 		*err = -EBUSY;
2141 		done = true;
2142 	} else {
2143 		done = !mq->rw_wait;
2144 	}
2145 	mq->waiting = !done;
2146 	spin_unlock_irqrestore(&mq->lock, flags);
2147 
2148 	return done;
2149 }
2150 
2151 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2152 {
2153 	int err = 0;
2154 
2155 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2156 
2157 	/* Always complete the previous request if there is one */
2158 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2159 
2160 	return err;
2161 }
2162 
2163 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2164 				  struct request *req)
2165 {
2166 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2167 	struct mmc_host *host = mq->card->host;
2168 	struct request *prev_req = NULL;
2169 	int err = 0;
2170 
2171 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2172 
2173 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2174 
2175 	mmc_pre_req(host, &mqrq->brq.mrq);
2176 
2177 	err = mmc_blk_rw_wait(mq, &prev_req);
2178 	if (err)
2179 		goto out_post_req;
2180 
2181 	mq->rw_wait = true;
2182 
2183 	err = mmc_start_request(host, &mqrq->brq.mrq);
2184 
2185 	if (prev_req)
2186 		mmc_blk_mq_post_req(mq, prev_req);
2187 
2188 	if (err)
2189 		mq->rw_wait = false;
2190 
2191 	/* Release re-tuning here where there is no synchronization required */
2192 	if (err || mmc_host_done_complete(host))
2193 		mmc_retune_release(host);
2194 
2195 out_post_req:
2196 	if (err)
2197 		mmc_post_req(host, &mqrq->brq.mrq, err);
2198 
2199 	return err;
2200 }
2201 
2202 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2203 {
2204 	if (host->cqe_enabled)
2205 		return host->cqe_ops->cqe_wait_for_idle(host);
2206 
2207 	return mmc_blk_rw_wait(mq, NULL);
2208 }
2209 
2210 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2211 {
2212 	struct mmc_blk_data *md = mq->blkdata;
2213 	struct mmc_card *card = md->queue.card;
2214 	struct mmc_host *host = card->host;
2215 	int ret;
2216 
2217 	ret = mmc_blk_part_switch(card, md->part_type);
2218 	if (ret)
2219 		return MMC_REQ_FAILED_TO_START;
2220 
2221 	switch (mmc_issue_type(mq, req)) {
2222 	case MMC_ISSUE_SYNC:
2223 		ret = mmc_blk_wait_for_idle(mq, host);
2224 		if (ret)
2225 			return MMC_REQ_BUSY;
2226 		switch (req_op(req)) {
2227 		case REQ_OP_DRV_IN:
2228 		case REQ_OP_DRV_OUT:
2229 			mmc_blk_issue_drv_op(mq, req);
2230 			break;
2231 		case REQ_OP_DISCARD:
2232 			mmc_blk_issue_discard_rq(mq, req);
2233 			break;
2234 		case REQ_OP_SECURE_ERASE:
2235 			mmc_blk_issue_secdiscard_rq(mq, req);
2236 			break;
2237 		case REQ_OP_FLUSH:
2238 			mmc_blk_issue_flush(mq, req);
2239 			break;
2240 		default:
2241 			WARN_ON_ONCE(1);
2242 			return MMC_REQ_FAILED_TO_START;
2243 		}
2244 		return MMC_REQ_FINISHED;
2245 	case MMC_ISSUE_DCMD:
2246 	case MMC_ISSUE_ASYNC:
2247 		switch (req_op(req)) {
2248 		case REQ_OP_FLUSH:
2249 			if (!mmc_cache_enabled(host)) {
2250 				blk_mq_end_request(req, BLK_STS_OK);
2251 				return MMC_REQ_FINISHED;
2252 			}
2253 			ret = mmc_blk_cqe_issue_flush(mq, req);
2254 			break;
2255 		case REQ_OP_READ:
2256 		case REQ_OP_WRITE:
2257 			if (host->cqe_enabled)
2258 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2259 			else
2260 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2261 			break;
2262 		default:
2263 			WARN_ON_ONCE(1);
2264 			ret = -EINVAL;
2265 		}
2266 		if (!ret)
2267 			return MMC_REQ_STARTED;
2268 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2269 	default:
2270 		WARN_ON_ONCE(1);
2271 		return MMC_REQ_FAILED_TO_START;
2272 	}
2273 }
2274 
2275 static inline int mmc_blk_readonly(struct mmc_card *card)
2276 {
2277 	return mmc_card_readonly(card) ||
2278 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2279 }
2280 
2281 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2282 					      struct device *parent,
2283 					      sector_t size,
2284 					      bool default_ro,
2285 					      const char *subname,
2286 					      int area_type)
2287 {
2288 	struct mmc_blk_data *md;
2289 	int devidx, ret;
2290 	char cap_str[10];
2291 
2292 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2293 	if (devidx < 0) {
2294 		/*
2295 		 * We get -ENOSPC because there are no more any available
2296 		 * devidx. The reason may be that, either userspace haven't yet
2297 		 * unmounted the partitions, which postpones mmc_blk_release()
2298 		 * from being called, or the device has more partitions than
2299 		 * what we support.
2300 		 */
2301 		if (devidx == -ENOSPC)
2302 			dev_err(mmc_dev(card->host),
2303 				"no more device IDs available\n");
2304 
2305 		return ERR_PTR(devidx);
2306 	}
2307 
2308 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2309 	if (!md) {
2310 		ret = -ENOMEM;
2311 		goto out;
2312 	}
2313 
2314 	md->area_type = area_type;
2315 
2316 	/*
2317 	 * Set the read-only status based on the supported commands
2318 	 * and the write protect switch.
2319 	 */
2320 	md->read_only = mmc_blk_readonly(card);
2321 
2322 	md->disk = mmc_init_queue(&md->queue, card);
2323 	if (IS_ERR(md->disk)) {
2324 		ret = PTR_ERR(md->disk);
2325 		goto err_kfree;
2326 	}
2327 
2328 	INIT_LIST_HEAD(&md->part);
2329 	INIT_LIST_HEAD(&md->rpmbs);
2330 	md->usage = 1;
2331 	md->queue.blkdata = md;
2332 
2333 	md->disk->major	= MMC_BLOCK_MAJOR;
2334 	md->disk->minors = perdev_minors;
2335 	md->disk->first_minor = devidx * perdev_minors;
2336 	md->disk->fops = &mmc_bdops;
2337 	md->disk->private_data = md;
2338 	md->parent = parent;
2339 	set_disk_ro(md->disk, md->read_only || default_ro);
2340 	md->disk->flags = GENHD_FL_EXT_DEVT;
2341 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2342 		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2343 				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2344 
2345 	/*
2346 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2347 	 *
2348 	 * - be set for removable media with permanent block devices
2349 	 * - be unset for removable block devices with permanent media
2350 	 *
2351 	 * Since MMC block devices clearly fall under the second
2352 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2353 	 * should use the block device creation/destruction hotplug
2354 	 * messages to tell when the card is present.
2355 	 */
2356 
2357 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2358 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2359 
2360 	set_capacity(md->disk, size);
2361 
2362 	if (mmc_host_cmd23(card->host)) {
2363 		if ((mmc_card_mmc(card) &&
2364 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2365 		    (mmc_card_sd(card) &&
2366 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2367 			md->flags |= MMC_BLK_CMD23;
2368 	}
2369 
2370 	if (mmc_card_mmc(card) &&
2371 	    md->flags & MMC_BLK_CMD23 &&
2372 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2373 	     card->ext_csd.rel_sectors)) {
2374 		md->flags |= MMC_BLK_REL_WR;
2375 		blk_queue_write_cache(md->queue.queue, true, true);
2376 	}
2377 
2378 	string_get_size((u64)size, 512, STRING_UNITS_2,
2379 			cap_str, sizeof(cap_str));
2380 	pr_info("%s: %s %s %s %s\n",
2381 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2382 		cap_str, md->read_only ? "(ro)" : "");
2383 
2384 	return md;
2385 
2386  err_kfree:
2387 	kfree(md);
2388  out:
2389 	ida_simple_remove(&mmc_blk_ida, devidx);
2390 	return ERR_PTR(ret);
2391 }
2392 
2393 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2394 {
2395 	sector_t size;
2396 
2397 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2398 		/*
2399 		 * The EXT_CSD sector count is in number or 512 byte
2400 		 * sectors.
2401 		 */
2402 		size = card->ext_csd.sectors;
2403 	} else {
2404 		/*
2405 		 * The CSD capacity field is in units of read_blkbits.
2406 		 * set_capacity takes units of 512 bytes.
2407 		 */
2408 		size = (typeof(sector_t))card->csd.capacity
2409 			<< (card->csd.read_blkbits - 9);
2410 	}
2411 
2412 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2413 					MMC_BLK_DATA_AREA_MAIN);
2414 }
2415 
2416 static int mmc_blk_alloc_part(struct mmc_card *card,
2417 			      struct mmc_blk_data *md,
2418 			      unsigned int part_type,
2419 			      sector_t size,
2420 			      bool default_ro,
2421 			      const char *subname,
2422 			      int area_type)
2423 {
2424 	struct mmc_blk_data *part_md;
2425 
2426 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2427 				    subname, area_type);
2428 	if (IS_ERR(part_md))
2429 		return PTR_ERR(part_md);
2430 	part_md->part_type = part_type;
2431 	list_add(&part_md->part, &md->part);
2432 
2433 	return 0;
2434 }
2435 
2436 /**
2437  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2438  * @filp: the character device file
2439  * @cmd: the ioctl() command
2440  * @arg: the argument from userspace
2441  *
2442  * This will essentially just redirect the ioctl()s coming in over to
2443  * the main block device spawning the RPMB character device.
2444  */
2445 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2446 			   unsigned long arg)
2447 {
2448 	struct mmc_rpmb_data *rpmb = filp->private_data;
2449 	int ret;
2450 
2451 	switch (cmd) {
2452 	case MMC_IOC_CMD:
2453 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2454 					(struct mmc_ioc_cmd __user *)arg,
2455 					rpmb);
2456 		break;
2457 	case MMC_IOC_MULTI_CMD:
2458 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2459 					(struct mmc_ioc_multi_cmd __user *)arg,
2460 					rpmb);
2461 		break;
2462 	default:
2463 		ret = -EINVAL;
2464 		break;
2465 	}
2466 
2467 	return ret;
2468 }
2469 
2470 #ifdef CONFIG_COMPAT
2471 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2472 			      unsigned long arg)
2473 {
2474 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2475 }
2476 #endif
2477 
2478 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2479 {
2480 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2481 						  struct mmc_rpmb_data, chrdev);
2482 
2483 	get_device(&rpmb->dev);
2484 	filp->private_data = rpmb;
2485 	mmc_blk_get(rpmb->md->disk);
2486 
2487 	return nonseekable_open(inode, filp);
2488 }
2489 
2490 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2491 {
2492 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2493 						  struct mmc_rpmb_data, chrdev);
2494 
2495 	mmc_blk_put(rpmb->md);
2496 	put_device(&rpmb->dev);
2497 
2498 	return 0;
2499 }
2500 
2501 static const struct file_operations mmc_rpmb_fileops = {
2502 	.release = mmc_rpmb_chrdev_release,
2503 	.open = mmc_rpmb_chrdev_open,
2504 	.owner = THIS_MODULE,
2505 	.llseek = no_llseek,
2506 	.unlocked_ioctl = mmc_rpmb_ioctl,
2507 #ifdef CONFIG_COMPAT
2508 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2509 #endif
2510 };
2511 
2512 static void mmc_blk_rpmb_device_release(struct device *dev)
2513 {
2514 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2515 
2516 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2517 	kfree(rpmb);
2518 }
2519 
2520 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2521 				   struct mmc_blk_data *md,
2522 				   unsigned int part_index,
2523 				   sector_t size,
2524 				   const char *subname)
2525 {
2526 	int devidx, ret;
2527 	char rpmb_name[DISK_NAME_LEN];
2528 	char cap_str[10];
2529 	struct mmc_rpmb_data *rpmb;
2530 
2531 	/* This creates the minor number for the RPMB char device */
2532 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2533 	if (devidx < 0)
2534 		return devidx;
2535 
2536 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2537 	if (!rpmb) {
2538 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2539 		return -ENOMEM;
2540 	}
2541 
2542 	snprintf(rpmb_name, sizeof(rpmb_name),
2543 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2544 
2545 	rpmb->id = devidx;
2546 	rpmb->part_index = part_index;
2547 	rpmb->dev.init_name = rpmb_name;
2548 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2549 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2550 	rpmb->dev.parent = &card->dev;
2551 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2552 	device_initialize(&rpmb->dev);
2553 	dev_set_drvdata(&rpmb->dev, rpmb);
2554 	rpmb->md = md;
2555 
2556 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2557 	rpmb->chrdev.owner = THIS_MODULE;
2558 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2559 	if (ret) {
2560 		pr_err("%s: could not add character device\n", rpmb_name);
2561 		goto out_put_device;
2562 	}
2563 
2564 	list_add(&rpmb->node, &md->rpmbs);
2565 
2566 	string_get_size((u64)size, 512, STRING_UNITS_2,
2567 			cap_str, sizeof(cap_str));
2568 
2569 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2570 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2571 		MAJOR(mmc_rpmb_devt), rpmb->id);
2572 
2573 	return 0;
2574 
2575 out_put_device:
2576 	put_device(&rpmb->dev);
2577 	return ret;
2578 }
2579 
2580 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2581 
2582 {
2583 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2584 	put_device(&rpmb->dev);
2585 }
2586 
2587 /* MMC Physical partitions consist of two boot partitions and
2588  * up to four general purpose partitions.
2589  * For each partition enabled in EXT_CSD a block device will be allocatedi
2590  * to provide access to the partition.
2591  */
2592 
2593 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2594 {
2595 	int idx, ret;
2596 
2597 	if (!mmc_card_mmc(card))
2598 		return 0;
2599 
2600 	for (idx = 0; idx < card->nr_parts; idx++) {
2601 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2602 			/*
2603 			 * RPMB partitions does not provide block access, they
2604 			 * are only accessed using ioctl():s. Thus create
2605 			 * special RPMB block devices that do not have a
2606 			 * backing block queue for these.
2607 			 */
2608 			ret = mmc_blk_alloc_rpmb_part(card, md,
2609 				card->part[idx].part_cfg,
2610 				card->part[idx].size >> 9,
2611 				card->part[idx].name);
2612 			if (ret)
2613 				return ret;
2614 		} else if (card->part[idx].size) {
2615 			ret = mmc_blk_alloc_part(card, md,
2616 				card->part[idx].part_cfg,
2617 				card->part[idx].size >> 9,
2618 				card->part[idx].force_ro,
2619 				card->part[idx].name,
2620 				card->part[idx].area_type);
2621 			if (ret)
2622 				return ret;
2623 		}
2624 	}
2625 
2626 	return 0;
2627 }
2628 
2629 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2630 {
2631 	struct mmc_card *card;
2632 
2633 	if (md) {
2634 		/*
2635 		 * Flush remaining requests and free queues. It
2636 		 * is freeing the queue that stops new requests
2637 		 * from being accepted.
2638 		 */
2639 		card = md->queue.card;
2640 		if (md->disk->flags & GENHD_FL_UP) {
2641 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2642 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2643 					card->ext_csd.boot_ro_lockable)
2644 				device_remove_file(disk_to_dev(md->disk),
2645 					&md->power_ro_lock);
2646 
2647 			del_gendisk(md->disk);
2648 		}
2649 		mmc_cleanup_queue(&md->queue);
2650 		mmc_blk_put(md);
2651 	}
2652 }
2653 
2654 static void mmc_blk_remove_parts(struct mmc_card *card,
2655 				 struct mmc_blk_data *md)
2656 {
2657 	struct list_head *pos, *q;
2658 	struct mmc_blk_data *part_md;
2659 	struct mmc_rpmb_data *rpmb;
2660 
2661 	/* Remove RPMB partitions */
2662 	list_for_each_safe(pos, q, &md->rpmbs) {
2663 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2664 		list_del(pos);
2665 		mmc_blk_remove_rpmb_part(rpmb);
2666 	}
2667 	/* Remove block partitions */
2668 	list_for_each_safe(pos, q, &md->part) {
2669 		part_md = list_entry(pos, struct mmc_blk_data, part);
2670 		list_del(pos);
2671 		mmc_blk_remove_req(part_md);
2672 	}
2673 }
2674 
2675 static int mmc_add_disk(struct mmc_blk_data *md)
2676 {
2677 	int ret;
2678 	struct mmc_card *card = md->queue.card;
2679 
2680 	device_add_disk(md->parent, md->disk, NULL);
2681 	md->force_ro.show = force_ro_show;
2682 	md->force_ro.store = force_ro_store;
2683 	sysfs_attr_init(&md->force_ro.attr);
2684 	md->force_ro.attr.name = "force_ro";
2685 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2686 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2687 	if (ret)
2688 		goto force_ro_fail;
2689 
2690 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2691 	     card->ext_csd.boot_ro_lockable) {
2692 		umode_t mode;
2693 
2694 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2695 			mode = S_IRUGO;
2696 		else
2697 			mode = S_IRUGO | S_IWUSR;
2698 
2699 		md->power_ro_lock.show = power_ro_lock_show;
2700 		md->power_ro_lock.store = power_ro_lock_store;
2701 		sysfs_attr_init(&md->power_ro_lock.attr);
2702 		md->power_ro_lock.attr.mode = mode;
2703 		md->power_ro_lock.attr.name =
2704 					"ro_lock_until_next_power_on";
2705 		ret = device_create_file(disk_to_dev(md->disk),
2706 				&md->power_ro_lock);
2707 		if (ret)
2708 			goto power_ro_lock_fail;
2709 	}
2710 	return ret;
2711 
2712 power_ro_lock_fail:
2713 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2714 force_ro_fail:
2715 	del_gendisk(md->disk);
2716 
2717 	return ret;
2718 }
2719 
2720 #ifdef CONFIG_DEBUG_FS
2721 
2722 static int mmc_dbg_card_status_get(void *data, u64 *val)
2723 {
2724 	struct mmc_card *card = data;
2725 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2726 	struct mmc_queue *mq = &md->queue;
2727 	struct request *req;
2728 	int ret;
2729 
2730 	/* Ask the block layer about the card status */
2731 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2732 	if (IS_ERR(req))
2733 		return PTR_ERR(req);
2734 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2735 	blk_execute_rq(NULL, req, 0);
2736 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2737 	if (ret >= 0) {
2738 		*val = ret;
2739 		ret = 0;
2740 	}
2741 	blk_put_request(req);
2742 
2743 	return ret;
2744 }
2745 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2746 			 NULL, "%08llx\n");
2747 
2748 /* That is two digits * 512 + 1 for newline */
2749 #define EXT_CSD_STR_LEN 1025
2750 
2751 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2752 {
2753 	struct mmc_card *card = inode->i_private;
2754 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2755 	struct mmc_queue *mq = &md->queue;
2756 	struct request *req;
2757 	char *buf;
2758 	ssize_t n = 0;
2759 	u8 *ext_csd;
2760 	int err, i;
2761 
2762 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2763 	if (!buf)
2764 		return -ENOMEM;
2765 
2766 	/* Ask the block layer for the EXT CSD */
2767 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2768 	if (IS_ERR(req)) {
2769 		err = PTR_ERR(req);
2770 		goto out_free;
2771 	}
2772 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2773 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2774 	blk_execute_rq(NULL, req, 0);
2775 	err = req_to_mmc_queue_req(req)->drv_op_result;
2776 	blk_put_request(req);
2777 	if (err) {
2778 		pr_err("FAILED %d\n", err);
2779 		goto out_free;
2780 	}
2781 
2782 	for (i = 0; i < 512; i++)
2783 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2784 	n += sprintf(buf + n, "\n");
2785 
2786 	if (n != EXT_CSD_STR_LEN) {
2787 		err = -EINVAL;
2788 		kfree(ext_csd);
2789 		goto out_free;
2790 	}
2791 
2792 	filp->private_data = buf;
2793 	kfree(ext_csd);
2794 	return 0;
2795 
2796 out_free:
2797 	kfree(buf);
2798 	return err;
2799 }
2800 
2801 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2802 				size_t cnt, loff_t *ppos)
2803 {
2804 	char *buf = filp->private_data;
2805 
2806 	return simple_read_from_buffer(ubuf, cnt, ppos,
2807 				       buf, EXT_CSD_STR_LEN);
2808 }
2809 
2810 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2811 {
2812 	kfree(file->private_data);
2813 	return 0;
2814 }
2815 
2816 static const struct file_operations mmc_dbg_ext_csd_fops = {
2817 	.open		= mmc_ext_csd_open,
2818 	.read		= mmc_ext_csd_read,
2819 	.release	= mmc_ext_csd_release,
2820 	.llseek		= default_llseek,
2821 };
2822 
2823 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2824 {
2825 	struct dentry *root;
2826 
2827 	if (!card->debugfs_root)
2828 		return 0;
2829 
2830 	root = card->debugfs_root;
2831 
2832 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2833 		md->status_dentry =
2834 			debugfs_create_file_unsafe("status", 0400, root,
2835 						   card,
2836 						   &mmc_dbg_card_status_fops);
2837 		if (!md->status_dentry)
2838 			return -EIO;
2839 	}
2840 
2841 	if (mmc_card_mmc(card)) {
2842 		md->ext_csd_dentry =
2843 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2844 					    &mmc_dbg_ext_csd_fops);
2845 		if (!md->ext_csd_dentry)
2846 			return -EIO;
2847 	}
2848 
2849 	return 0;
2850 }
2851 
2852 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2853 				   struct mmc_blk_data *md)
2854 {
2855 	if (!card->debugfs_root)
2856 		return;
2857 
2858 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2859 		debugfs_remove(md->status_dentry);
2860 		md->status_dentry = NULL;
2861 	}
2862 
2863 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2864 		debugfs_remove(md->ext_csd_dentry);
2865 		md->ext_csd_dentry = NULL;
2866 	}
2867 }
2868 
2869 #else
2870 
2871 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2872 {
2873 	return 0;
2874 }
2875 
2876 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2877 				   struct mmc_blk_data *md)
2878 {
2879 }
2880 
2881 #endif /* CONFIG_DEBUG_FS */
2882 
2883 static int mmc_blk_probe(struct mmc_card *card)
2884 {
2885 	struct mmc_blk_data *md, *part_md;
2886 	int ret = 0;
2887 
2888 	/*
2889 	 * Check that the card supports the command class(es) we need.
2890 	 */
2891 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2892 		return -ENODEV;
2893 
2894 	mmc_fixup_device(card, mmc_blk_fixups);
2895 
2896 	card->complete_wq = alloc_workqueue("mmc_complete",
2897 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2898 	if (!card->complete_wq) {
2899 		pr_err("Failed to create mmc completion workqueue");
2900 		return -ENOMEM;
2901 	}
2902 
2903 	md = mmc_blk_alloc(card);
2904 	if (IS_ERR(md)) {
2905 		ret = PTR_ERR(md);
2906 		goto out_free;
2907 	}
2908 
2909 	ret = mmc_blk_alloc_parts(card, md);
2910 	if (ret)
2911 		goto out;
2912 
2913 	dev_set_drvdata(&card->dev, md);
2914 
2915 	ret = mmc_add_disk(md);
2916 	if (ret)
2917 		goto out;
2918 
2919 	list_for_each_entry(part_md, &md->part, part) {
2920 		ret = mmc_add_disk(part_md);
2921 		if (ret)
2922 			goto out;
2923 	}
2924 
2925 	/* Add two debugfs entries */
2926 	mmc_blk_add_debugfs(card, md);
2927 
2928 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2929 	pm_runtime_use_autosuspend(&card->dev);
2930 
2931 	/*
2932 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2933 	 * decision to be taken during the SDIO init sequence instead.
2934 	 */
2935 	if (card->type != MMC_TYPE_SD_COMBO) {
2936 		pm_runtime_set_active(&card->dev);
2937 		pm_runtime_enable(&card->dev);
2938 	}
2939 
2940 	return 0;
2941 
2942 out:
2943 	mmc_blk_remove_parts(card, md);
2944 	mmc_blk_remove_req(md);
2945 out_free:
2946 	destroy_workqueue(card->complete_wq);
2947 	return ret;
2948 }
2949 
2950 static void mmc_blk_remove(struct mmc_card *card)
2951 {
2952 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2953 
2954 	mmc_blk_remove_debugfs(card, md);
2955 	mmc_blk_remove_parts(card, md);
2956 	pm_runtime_get_sync(&card->dev);
2957 	if (md->part_curr != md->part_type) {
2958 		mmc_claim_host(card->host);
2959 		mmc_blk_part_switch(card, md->part_type);
2960 		mmc_release_host(card->host);
2961 	}
2962 	if (card->type != MMC_TYPE_SD_COMBO)
2963 		pm_runtime_disable(&card->dev);
2964 	pm_runtime_put_noidle(&card->dev);
2965 	mmc_blk_remove_req(md);
2966 	dev_set_drvdata(&card->dev, NULL);
2967 	destroy_workqueue(card->complete_wq);
2968 }
2969 
2970 static int _mmc_blk_suspend(struct mmc_card *card)
2971 {
2972 	struct mmc_blk_data *part_md;
2973 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2974 
2975 	if (md) {
2976 		mmc_queue_suspend(&md->queue);
2977 		list_for_each_entry(part_md, &md->part, part) {
2978 			mmc_queue_suspend(&part_md->queue);
2979 		}
2980 	}
2981 	return 0;
2982 }
2983 
2984 static void mmc_blk_shutdown(struct mmc_card *card)
2985 {
2986 	_mmc_blk_suspend(card);
2987 }
2988 
2989 #ifdef CONFIG_PM_SLEEP
2990 static int mmc_blk_suspend(struct device *dev)
2991 {
2992 	struct mmc_card *card = mmc_dev_to_card(dev);
2993 
2994 	return _mmc_blk_suspend(card);
2995 }
2996 
2997 static int mmc_blk_resume(struct device *dev)
2998 {
2999 	struct mmc_blk_data *part_md;
3000 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3001 
3002 	if (md) {
3003 		/*
3004 		 * Resume involves the card going into idle state,
3005 		 * so current partition is always the main one.
3006 		 */
3007 		md->part_curr = md->part_type;
3008 		mmc_queue_resume(&md->queue);
3009 		list_for_each_entry(part_md, &md->part, part) {
3010 			mmc_queue_resume(&part_md->queue);
3011 		}
3012 	}
3013 	return 0;
3014 }
3015 #endif
3016 
3017 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3018 
3019 static struct mmc_driver mmc_driver = {
3020 	.drv		= {
3021 		.name	= "mmcblk",
3022 		.pm	= &mmc_blk_pm_ops,
3023 	},
3024 	.probe		= mmc_blk_probe,
3025 	.remove		= mmc_blk_remove,
3026 	.shutdown	= mmc_blk_shutdown,
3027 };
3028 
3029 static int __init mmc_blk_init(void)
3030 {
3031 	int res;
3032 
3033 	res  = bus_register(&mmc_rpmb_bus_type);
3034 	if (res < 0) {
3035 		pr_err("mmcblk: could not register RPMB bus type\n");
3036 		return res;
3037 	}
3038 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3039 	if (res < 0) {
3040 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3041 		goto out_bus_unreg;
3042 	}
3043 
3044 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3045 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3046 
3047 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3048 
3049 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3050 	if (res)
3051 		goto out_chrdev_unreg;
3052 
3053 	res = mmc_register_driver(&mmc_driver);
3054 	if (res)
3055 		goto out_blkdev_unreg;
3056 
3057 	return 0;
3058 
3059 out_blkdev_unreg:
3060 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3061 out_chrdev_unreg:
3062 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3063 out_bus_unreg:
3064 	bus_unregister(&mmc_rpmb_bus_type);
3065 	return res;
3066 }
3067 
3068 static void __exit mmc_blk_exit(void)
3069 {
3070 	mmc_unregister_driver(&mmc_driver);
3071 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3072 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3073 	bus_unregister(&mmc_rpmb_bus_type);
3074 }
3075 
3076 module_init(mmc_blk_init);
3077 module_exit(mmc_blk_exit);
3078 
3079 MODULE_LICENSE("GPL");
3080 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3081 
3082