1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/cdev.h> 32 #include <linux/mutex.h> 33 #include <linux/scatterlist.h> 34 #include <linux/string_helpers.h> 35 #include <linux/delay.h> 36 #include <linux/capability.h> 37 #include <linux/compat.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/idr.h> 40 #include <linux/debugfs.h> 41 42 #include <linux/mmc/ioctl.h> 43 #include <linux/mmc/card.h> 44 #include <linux/mmc/host.h> 45 #include <linux/mmc/mmc.h> 46 #include <linux/mmc/sd.h> 47 48 #include <linux/uaccess.h> 49 50 #include "queue.h" 51 #include "block.h" 52 #include "core.h" 53 #include "card.h" 54 #include "host.h" 55 #include "bus.h" 56 #include "mmc_ops.h" 57 #include "quirks.h" 58 #include "sd_ops.h" 59 60 MODULE_ALIAS("mmc:block"); 61 #ifdef MODULE_PARAM_PREFIX 62 #undef MODULE_PARAM_PREFIX 63 #endif 64 #define MODULE_PARAM_PREFIX "mmcblk." 65 66 /* 67 * Set a 10 second timeout for polling write request busy state. Note, mmc core 68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 69 * second software timer to timeout the whole request, so 10 seconds should be 70 * ample. 71 */ 72 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 73 #define MMC_SANITIZE_REQ_TIMEOUT 240000 74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 76 77 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 78 (rq_data_dir(req) == WRITE)) 79 static DEFINE_MUTEX(block_mutex); 80 81 /* 82 * The defaults come from config options but can be overriden by module 83 * or bootarg options. 84 */ 85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 86 87 /* 88 * We've only got one major, so number of mmcblk devices is 89 * limited to (1 << 20) / number of minors per device. It is also 90 * limited by the MAX_DEVICES below. 91 */ 92 static int max_devices; 93 94 #define MAX_DEVICES 256 95 96 static DEFINE_IDA(mmc_blk_ida); 97 static DEFINE_IDA(mmc_rpmb_ida); 98 99 /* 100 * There is one mmc_blk_data per slot. 101 */ 102 struct mmc_blk_data { 103 struct device *parent; 104 struct gendisk *disk; 105 struct mmc_queue queue; 106 struct list_head part; 107 struct list_head rpmbs; 108 109 unsigned int flags; 110 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 111 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 112 113 unsigned int usage; 114 unsigned int read_only; 115 unsigned int part_type; 116 unsigned int reset_done; 117 #define MMC_BLK_READ BIT(0) 118 #define MMC_BLK_WRITE BIT(1) 119 #define MMC_BLK_DISCARD BIT(2) 120 #define MMC_BLK_SECDISCARD BIT(3) 121 #define MMC_BLK_CQE_RECOVERY BIT(4) 122 123 /* 124 * Only set in main mmc_blk_data associated 125 * with mmc_card with dev_set_drvdata, and keeps 126 * track of the current selected device partition. 127 */ 128 unsigned int part_curr; 129 struct device_attribute force_ro; 130 struct device_attribute power_ro_lock; 131 int area_type; 132 133 /* debugfs files (only in main mmc_blk_data) */ 134 struct dentry *status_dentry; 135 struct dentry *ext_csd_dentry; 136 }; 137 138 /* Device type for RPMB character devices */ 139 static dev_t mmc_rpmb_devt; 140 141 /* Bus type for RPMB character devices */ 142 static struct bus_type mmc_rpmb_bus_type = { 143 .name = "mmc_rpmb", 144 }; 145 146 /** 147 * struct mmc_rpmb_data - special RPMB device type for these areas 148 * @dev: the device for the RPMB area 149 * @chrdev: character device for the RPMB area 150 * @id: unique device ID number 151 * @part_index: partition index (0 on first) 152 * @md: parent MMC block device 153 * @node: list item, so we can put this device on a list 154 */ 155 struct mmc_rpmb_data { 156 struct device dev; 157 struct cdev chrdev; 158 int id; 159 unsigned int part_index; 160 struct mmc_blk_data *md; 161 struct list_head node; 162 }; 163 164 static DEFINE_MUTEX(open_lock); 165 166 module_param(perdev_minors, int, 0444); 167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 168 169 static inline int mmc_blk_part_switch(struct mmc_card *card, 170 unsigned int part_type); 171 172 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 173 { 174 struct mmc_blk_data *md; 175 176 mutex_lock(&open_lock); 177 md = disk->private_data; 178 if (md && md->usage == 0) 179 md = NULL; 180 if (md) 181 md->usage++; 182 mutex_unlock(&open_lock); 183 184 return md; 185 } 186 187 static inline int mmc_get_devidx(struct gendisk *disk) 188 { 189 int devidx = disk->first_minor / perdev_minors; 190 return devidx; 191 } 192 193 static void mmc_blk_put(struct mmc_blk_data *md) 194 { 195 mutex_lock(&open_lock); 196 md->usage--; 197 if (md->usage == 0) { 198 int devidx = mmc_get_devidx(md->disk); 199 blk_put_queue(md->queue.queue); 200 ida_simple_remove(&mmc_blk_ida, devidx); 201 put_disk(md->disk); 202 kfree(md); 203 } 204 mutex_unlock(&open_lock); 205 } 206 207 static ssize_t power_ro_lock_show(struct device *dev, 208 struct device_attribute *attr, char *buf) 209 { 210 int ret; 211 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 212 struct mmc_card *card = md->queue.card; 213 int locked = 0; 214 215 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 216 locked = 2; 217 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 218 locked = 1; 219 220 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 221 222 mmc_blk_put(md); 223 224 return ret; 225 } 226 227 static ssize_t power_ro_lock_store(struct device *dev, 228 struct device_attribute *attr, const char *buf, size_t count) 229 { 230 int ret; 231 struct mmc_blk_data *md, *part_md; 232 struct mmc_queue *mq; 233 struct request *req; 234 unsigned long set; 235 236 if (kstrtoul(buf, 0, &set)) 237 return -EINVAL; 238 239 if (set != 1) 240 return count; 241 242 md = mmc_blk_get(dev_to_disk(dev)); 243 mq = &md->queue; 244 245 /* Dispatch locking to the block layer */ 246 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0); 247 if (IS_ERR(req)) { 248 count = PTR_ERR(req); 249 goto out_put; 250 } 251 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 252 blk_execute_rq(mq->queue, NULL, req, 0); 253 ret = req_to_mmc_queue_req(req)->drv_op_result; 254 blk_put_request(req); 255 256 if (!ret) { 257 pr_info("%s: Locking boot partition ro until next power on\n", 258 md->disk->disk_name); 259 set_disk_ro(md->disk, 1); 260 261 list_for_each_entry(part_md, &md->part, part) 262 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 263 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 264 set_disk_ro(part_md->disk, 1); 265 } 266 } 267 out_put: 268 mmc_blk_put(md); 269 return count; 270 } 271 272 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 273 char *buf) 274 { 275 int ret; 276 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 277 278 ret = snprintf(buf, PAGE_SIZE, "%d\n", 279 get_disk_ro(dev_to_disk(dev)) ^ 280 md->read_only); 281 mmc_blk_put(md); 282 return ret; 283 } 284 285 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 286 const char *buf, size_t count) 287 { 288 int ret; 289 char *end; 290 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 291 unsigned long set = simple_strtoul(buf, &end, 0); 292 if (end == buf) { 293 ret = -EINVAL; 294 goto out; 295 } 296 297 set_disk_ro(dev_to_disk(dev), set || md->read_only); 298 ret = count; 299 out: 300 mmc_blk_put(md); 301 return ret; 302 } 303 304 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 305 { 306 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 307 int ret = -ENXIO; 308 309 mutex_lock(&block_mutex); 310 if (md) { 311 if (md->usage == 2) 312 check_disk_change(bdev); 313 ret = 0; 314 315 if ((mode & FMODE_WRITE) && md->read_only) { 316 mmc_blk_put(md); 317 ret = -EROFS; 318 } 319 } 320 mutex_unlock(&block_mutex); 321 322 return ret; 323 } 324 325 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 326 { 327 struct mmc_blk_data *md = disk->private_data; 328 329 mutex_lock(&block_mutex); 330 mmc_blk_put(md); 331 mutex_unlock(&block_mutex); 332 } 333 334 static int 335 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 336 { 337 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 338 geo->heads = 4; 339 geo->sectors = 16; 340 return 0; 341 } 342 343 struct mmc_blk_ioc_data { 344 struct mmc_ioc_cmd ic; 345 unsigned char *buf; 346 u64 buf_bytes; 347 struct mmc_rpmb_data *rpmb; 348 }; 349 350 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 351 struct mmc_ioc_cmd __user *user) 352 { 353 struct mmc_blk_ioc_data *idata; 354 int err; 355 356 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 357 if (!idata) { 358 err = -ENOMEM; 359 goto out; 360 } 361 362 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 363 err = -EFAULT; 364 goto idata_err; 365 } 366 367 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 368 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 369 err = -EOVERFLOW; 370 goto idata_err; 371 } 372 373 if (!idata->buf_bytes) { 374 idata->buf = NULL; 375 return idata; 376 } 377 378 idata->buf = memdup_user((void __user *)(unsigned long) 379 idata->ic.data_ptr, idata->buf_bytes); 380 if (IS_ERR(idata->buf)) { 381 err = PTR_ERR(idata->buf); 382 goto idata_err; 383 } 384 385 return idata; 386 387 idata_err: 388 kfree(idata); 389 out: 390 return ERR_PTR(err); 391 } 392 393 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 394 struct mmc_blk_ioc_data *idata) 395 { 396 struct mmc_ioc_cmd *ic = &idata->ic; 397 398 if (copy_to_user(&(ic_ptr->response), ic->response, 399 sizeof(ic->response))) 400 return -EFAULT; 401 402 if (!idata->ic.write_flag) { 403 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 404 idata->buf, idata->buf_bytes)) 405 return -EFAULT; 406 } 407 408 return 0; 409 } 410 411 static int ioctl_do_sanitize(struct mmc_card *card) 412 { 413 int err; 414 415 if (!mmc_can_sanitize(card)) { 416 pr_warn("%s: %s - SANITIZE is not supported\n", 417 mmc_hostname(card->host), __func__); 418 err = -EOPNOTSUPP; 419 goto out; 420 } 421 422 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n", 423 mmc_hostname(card->host), __func__); 424 425 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 426 EXT_CSD_SANITIZE_START, 1, 427 MMC_SANITIZE_REQ_TIMEOUT); 428 429 if (err) 430 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n", 431 mmc_hostname(card->host), __func__, err); 432 433 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host), 434 __func__); 435 out: 436 return err; 437 } 438 439 static inline bool mmc_blk_in_tran_state(u32 status) 440 { 441 /* 442 * Some cards mishandle the status bits, so make sure to check both the 443 * busy indication and the card state. 444 */ 445 return status & R1_READY_FOR_DATA && 446 (R1_CURRENT_STATE(status) == R1_STATE_TRAN); 447 } 448 449 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 450 u32 *resp_errs) 451 { 452 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 453 int err = 0; 454 u32 status; 455 456 do { 457 bool done = time_after(jiffies, timeout); 458 459 err = __mmc_send_status(card, &status, 5); 460 if (err) { 461 dev_err(mmc_dev(card->host), 462 "error %d requesting status\n", err); 463 return err; 464 } 465 466 /* Accumulate any response error bits seen */ 467 if (resp_errs) 468 *resp_errs |= status; 469 470 /* 471 * Timeout if the device never becomes ready for data and never 472 * leaves the program state. 473 */ 474 if (done) { 475 dev_err(mmc_dev(card->host), 476 "Card stuck in wrong state! %s status: %#x\n", 477 __func__, status); 478 return -ETIMEDOUT; 479 } 480 481 /* 482 * Some cards mishandle the status bits, 483 * so make sure to check both the busy 484 * indication and the card state. 485 */ 486 } while (!mmc_blk_in_tran_state(status)); 487 488 return err; 489 } 490 491 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 492 struct mmc_blk_ioc_data *idata) 493 { 494 struct mmc_command cmd = {}, sbc = {}; 495 struct mmc_data data = {}; 496 struct mmc_request mrq = {}; 497 struct scatterlist sg; 498 int err; 499 unsigned int target_part; 500 501 if (!card || !md || !idata) 502 return -EINVAL; 503 504 /* 505 * The RPMB accesses comes in from the character device, so we 506 * need to target these explicitly. Else we just target the 507 * partition type for the block device the ioctl() was issued 508 * on. 509 */ 510 if (idata->rpmb) { 511 /* Support multiple RPMB partitions */ 512 target_part = idata->rpmb->part_index; 513 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 514 } else { 515 target_part = md->part_type; 516 } 517 518 cmd.opcode = idata->ic.opcode; 519 cmd.arg = idata->ic.arg; 520 cmd.flags = idata->ic.flags; 521 522 if (idata->buf_bytes) { 523 data.sg = &sg; 524 data.sg_len = 1; 525 data.blksz = idata->ic.blksz; 526 data.blocks = idata->ic.blocks; 527 528 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 529 530 if (idata->ic.write_flag) 531 data.flags = MMC_DATA_WRITE; 532 else 533 data.flags = MMC_DATA_READ; 534 535 /* data.flags must already be set before doing this. */ 536 mmc_set_data_timeout(&data, card); 537 538 /* Allow overriding the timeout_ns for empirical tuning. */ 539 if (idata->ic.data_timeout_ns) 540 data.timeout_ns = idata->ic.data_timeout_ns; 541 542 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 543 /* 544 * Pretend this is a data transfer and rely on the 545 * host driver to compute timeout. When all host 546 * drivers support cmd.cmd_timeout for R1B, this 547 * can be changed to: 548 * 549 * mrq.data = NULL; 550 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 551 */ 552 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 553 } 554 555 mrq.data = &data; 556 } 557 558 mrq.cmd = &cmd; 559 560 err = mmc_blk_part_switch(card, target_part); 561 if (err) 562 return err; 563 564 if (idata->ic.is_acmd) { 565 err = mmc_app_cmd(card->host, card); 566 if (err) 567 return err; 568 } 569 570 if (idata->rpmb) { 571 sbc.opcode = MMC_SET_BLOCK_COUNT; 572 /* 573 * We don't do any blockcount validation because the max size 574 * may be increased by a future standard. We just copy the 575 * 'Reliable Write' bit here. 576 */ 577 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 578 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 579 mrq.sbc = &sbc; 580 } 581 582 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 583 (cmd.opcode == MMC_SWITCH)) { 584 err = ioctl_do_sanitize(card); 585 586 if (err) 587 pr_err("%s: ioctl_do_sanitize() failed. err = %d", 588 __func__, err); 589 590 return err; 591 } 592 593 mmc_wait_for_req(card->host, &mrq); 594 595 if (cmd.error) { 596 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 597 __func__, cmd.error); 598 return cmd.error; 599 } 600 if (data.error) { 601 dev_err(mmc_dev(card->host), "%s: data error %d\n", 602 __func__, data.error); 603 return data.error; 604 } 605 606 /* 607 * Make sure the cache of the PARTITION_CONFIG register and 608 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 609 * changed it successfully. 610 */ 611 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 612 (cmd.opcode == MMC_SWITCH)) { 613 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 614 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 615 616 /* 617 * Update cache so the next mmc_blk_part_switch call operates 618 * on up-to-date data. 619 */ 620 card->ext_csd.part_config = value; 621 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 622 } 623 624 /* 625 * According to the SD specs, some commands require a delay after 626 * issuing the command. 627 */ 628 if (idata->ic.postsleep_min_us) 629 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 630 631 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 632 633 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B)) { 634 /* 635 * Ensure RPMB/R1B command has completed by polling CMD13 636 * "Send Status". 637 */ 638 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL); 639 } 640 641 return err; 642 } 643 644 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 645 struct mmc_ioc_cmd __user *ic_ptr, 646 struct mmc_rpmb_data *rpmb) 647 { 648 struct mmc_blk_ioc_data *idata; 649 struct mmc_blk_ioc_data *idatas[1]; 650 struct mmc_queue *mq; 651 struct mmc_card *card; 652 int err = 0, ioc_err = 0; 653 struct request *req; 654 655 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 656 if (IS_ERR(idata)) 657 return PTR_ERR(idata); 658 /* This will be NULL on non-RPMB ioctl():s */ 659 idata->rpmb = rpmb; 660 661 card = md->queue.card; 662 if (IS_ERR(card)) { 663 err = PTR_ERR(card); 664 goto cmd_done; 665 } 666 667 /* 668 * Dispatch the ioctl() into the block request queue. 669 */ 670 mq = &md->queue; 671 req = blk_get_request(mq->queue, 672 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 673 if (IS_ERR(req)) { 674 err = PTR_ERR(req); 675 goto cmd_done; 676 } 677 idatas[0] = idata; 678 req_to_mmc_queue_req(req)->drv_op = 679 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 680 req_to_mmc_queue_req(req)->drv_op_data = idatas; 681 req_to_mmc_queue_req(req)->ioc_count = 1; 682 blk_execute_rq(mq->queue, NULL, req, 0); 683 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 684 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 685 blk_put_request(req); 686 687 cmd_done: 688 kfree(idata->buf); 689 kfree(idata); 690 return ioc_err ? ioc_err : err; 691 } 692 693 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 694 struct mmc_ioc_multi_cmd __user *user, 695 struct mmc_rpmb_data *rpmb) 696 { 697 struct mmc_blk_ioc_data **idata = NULL; 698 struct mmc_ioc_cmd __user *cmds = user->cmds; 699 struct mmc_card *card; 700 struct mmc_queue *mq; 701 int i, err = 0, ioc_err = 0; 702 __u64 num_of_cmds; 703 struct request *req; 704 705 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 706 sizeof(num_of_cmds))) 707 return -EFAULT; 708 709 if (!num_of_cmds) 710 return 0; 711 712 if (num_of_cmds > MMC_IOC_MAX_CMDS) 713 return -EINVAL; 714 715 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 716 if (!idata) 717 return -ENOMEM; 718 719 for (i = 0; i < num_of_cmds; i++) { 720 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 721 if (IS_ERR(idata[i])) { 722 err = PTR_ERR(idata[i]); 723 num_of_cmds = i; 724 goto cmd_err; 725 } 726 /* This will be NULL on non-RPMB ioctl():s */ 727 idata[i]->rpmb = rpmb; 728 } 729 730 card = md->queue.card; 731 if (IS_ERR(card)) { 732 err = PTR_ERR(card); 733 goto cmd_err; 734 } 735 736 737 /* 738 * Dispatch the ioctl()s into the block request queue. 739 */ 740 mq = &md->queue; 741 req = blk_get_request(mq->queue, 742 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 743 if (IS_ERR(req)) { 744 err = PTR_ERR(req); 745 goto cmd_err; 746 } 747 req_to_mmc_queue_req(req)->drv_op = 748 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 749 req_to_mmc_queue_req(req)->drv_op_data = idata; 750 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 751 blk_execute_rq(mq->queue, NULL, req, 0); 752 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 753 754 /* copy to user if data and response */ 755 for (i = 0; i < num_of_cmds && !err; i++) 756 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 757 758 blk_put_request(req); 759 760 cmd_err: 761 for (i = 0; i < num_of_cmds; i++) { 762 kfree(idata[i]->buf); 763 kfree(idata[i]); 764 } 765 kfree(idata); 766 return ioc_err ? ioc_err : err; 767 } 768 769 static int mmc_blk_check_blkdev(struct block_device *bdev) 770 { 771 /* 772 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 773 * whole block device, not on a partition. This prevents overspray 774 * between sibling partitions. 775 */ 776 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 777 return -EPERM; 778 return 0; 779 } 780 781 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 782 unsigned int cmd, unsigned long arg) 783 { 784 struct mmc_blk_data *md; 785 int ret; 786 787 switch (cmd) { 788 case MMC_IOC_CMD: 789 ret = mmc_blk_check_blkdev(bdev); 790 if (ret) 791 return ret; 792 md = mmc_blk_get(bdev->bd_disk); 793 if (!md) 794 return -EINVAL; 795 ret = mmc_blk_ioctl_cmd(md, 796 (struct mmc_ioc_cmd __user *)arg, 797 NULL); 798 mmc_blk_put(md); 799 return ret; 800 case MMC_IOC_MULTI_CMD: 801 ret = mmc_blk_check_blkdev(bdev); 802 if (ret) 803 return ret; 804 md = mmc_blk_get(bdev->bd_disk); 805 if (!md) 806 return -EINVAL; 807 ret = mmc_blk_ioctl_multi_cmd(md, 808 (struct mmc_ioc_multi_cmd __user *)arg, 809 NULL); 810 mmc_blk_put(md); 811 return ret; 812 default: 813 return -EINVAL; 814 } 815 } 816 817 #ifdef CONFIG_COMPAT 818 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 819 unsigned int cmd, unsigned long arg) 820 { 821 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 822 } 823 #endif 824 825 static const struct block_device_operations mmc_bdops = { 826 .open = mmc_blk_open, 827 .release = mmc_blk_release, 828 .getgeo = mmc_blk_getgeo, 829 .owner = THIS_MODULE, 830 .ioctl = mmc_blk_ioctl, 831 #ifdef CONFIG_COMPAT 832 .compat_ioctl = mmc_blk_compat_ioctl, 833 #endif 834 }; 835 836 static int mmc_blk_part_switch_pre(struct mmc_card *card, 837 unsigned int part_type) 838 { 839 int ret = 0; 840 841 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 842 if (card->ext_csd.cmdq_en) { 843 ret = mmc_cmdq_disable(card); 844 if (ret) 845 return ret; 846 } 847 mmc_retune_pause(card->host); 848 } 849 850 return ret; 851 } 852 853 static int mmc_blk_part_switch_post(struct mmc_card *card, 854 unsigned int part_type) 855 { 856 int ret = 0; 857 858 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 859 mmc_retune_unpause(card->host); 860 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 861 ret = mmc_cmdq_enable(card); 862 } 863 864 return ret; 865 } 866 867 static inline int mmc_blk_part_switch(struct mmc_card *card, 868 unsigned int part_type) 869 { 870 int ret = 0; 871 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 872 873 if (main_md->part_curr == part_type) 874 return 0; 875 876 if (mmc_card_mmc(card)) { 877 u8 part_config = card->ext_csd.part_config; 878 879 ret = mmc_blk_part_switch_pre(card, part_type); 880 if (ret) 881 return ret; 882 883 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 884 part_config |= part_type; 885 886 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 887 EXT_CSD_PART_CONFIG, part_config, 888 card->ext_csd.part_time); 889 if (ret) { 890 mmc_blk_part_switch_post(card, part_type); 891 return ret; 892 } 893 894 card->ext_csd.part_config = part_config; 895 896 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 897 } 898 899 main_md->part_curr = part_type; 900 return ret; 901 } 902 903 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 904 { 905 int err; 906 u32 result; 907 __be32 *blocks; 908 909 struct mmc_request mrq = {}; 910 struct mmc_command cmd = {}; 911 struct mmc_data data = {}; 912 913 struct scatterlist sg; 914 915 cmd.opcode = MMC_APP_CMD; 916 cmd.arg = card->rca << 16; 917 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 918 919 err = mmc_wait_for_cmd(card->host, &cmd, 0); 920 if (err) 921 return err; 922 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 923 return -EIO; 924 925 memset(&cmd, 0, sizeof(struct mmc_command)); 926 927 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 928 cmd.arg = 0; 929 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 930 931 data.blksz = 4; 932 data.blocks = 1; 933 data.flags = MMC_DATA_READ; 934 data.sg = &sg; 935 data.sg_len = 1; 936 mmc_set_data_timeout(&data, card); 937 938 mrq.cmd = &cmd; 939 mrq.data = &data; 940 941 blocks = kmalloc(4, GFP_KERNEL); 942 if (!blocks) 943 return -ENOMEM; 944 945 sg_init_one(&sg, blocks, 4); 946 947 mmc_wait_for_req(card->host, &mrq); 948 949 result = ntohl(*blocks); 950 kfree(blocks); 951 952 if (cmd.error || data.error) 953 return -EIO; 954 955 *written_blocks = result; 956 957 return 0; 958 } 959 960 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 961 { 962 if (host->actual_clock) 963 return host->actual_clock / 1000; 964 965 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 966 if (host->ios.clock) 967 return host->ios.clock / 2000; 968 969 /* How can there be no clock */ 970 WARN_ON_ONCE(1); 971 return 100; /* 100 kHz is minimum possible value */ 972 } 973 974 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 975 struct mmc_data *data) 976 { 977 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 978 unsigned int khz; 979 980 if (data->timeout_clks) { 981 khz = mmc_blk_clock_khz(host); 982 ms += DIV_ROUND_UP(data->timeout_clks, khz); 983 } 984 985 return ms; 986 } 987 988 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 989 int type) 990 { 991 int err; 992 993 if (md->reset_done & type) 994 return -EEXIST; 995 996 md->reset_done |= type; 997 err = mmc_hw_reset(host); 998 /* Ensure we switch back to the correct partition */ 999 if (err != -EOPNOTSUPP) { 1000 struct mmc_blk_data *main_md = 1001 dev_get_drvdata(&host->card->dev); 1002 int part_err; 1003 1004 main_md->part_curr = main_md->part_type; 1005 part_err = mmc_blk_part_switch(host->card, md->part_type); 1006 if (part_err) { 1007 /* 1008 * We have failed to get back into the correct 1009 * partition, so we need to abort the whole request. 1010 */ 1011 return -ENODEV; 1012 } 1013 } 1014 return err; 1015 } 1016 1017 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1018 { 1019 md->reset_done &= ~type; 1020 } 1021 1022 /* 1023 * The non-block commands come back from the block layer after it queued it and 1024 * processed it with all other requests and then they get issued in this 1025 * function. 1026 */ 1027 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1028 { 1029 struct mmc_queue_req *mq_rq; 1030 struct mmc_card *card = mq->card; 1031 struct mmc_blk_data *md = mq->blkdata; 1032 struct mmc_blk_ioc_data **idata; 1033 bool rpmb_ioctl; 1034 u8 **ext_csd; 1035 u32 status; 1036 int ret; 1037 int i; 1038 1039 mq_rq = req_to_mmc_queue_req(req); 1040 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1041 1042 switch (mq_rq->drv_op) { 1043 case MMC_DRV_OP_IOCTL: 1044 case MMC_DRV_OP_IOCTL_RPMB: 1045 idata = mq_rq->drv_op_data; 1046 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1047 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1048 if (ret) 1049 break; 1050 } 1051 /* Always switch back to main area after RPMB access */ 1052 if (rpmb_ioctl) 1053 mmc_blk_part_switch(card, 0); 1054 break; 1055 case MMC_DRV_OP_BOOT_WP: 1056 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1057 card->ext_csd.boot_ro_lock | 1058 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1059 card->ext_csd.part_time); 1060 if (ret) 1061 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1062 md->disk->disk_name, ret); 1063 else 1064 card->ext_csd.boot_ro_lock |= 1065 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1066 break; 1067 case MMC_DRV_OP_GET_CARD_STATUS: 1068 ret = mmc_send_status(card, &status); 1069 if (!ret) 1070 ret = status; 1071 break; 1072 case MMC_DRV_OP_GET_EXT_CSD: 1073 ext_csd = mq_rq->drv_op_data; 1074 ret = mmc_get_ext_csd(card, ext_csd); 1075 break; 1076 default: 1077 pr_err("%s: unknown driver specific operation\n", 1078 md->disk->disk_name); 1079 ret = -EINVAL; 1080 break; 1081 } 1082 mq_rq->drv_op_result = ret; 1083 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1084 } 1085 1086 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1087 { 1088 struct mmc_blk_data *md = mq->blkdata; 1089 struct mmc_card *card = md->queue.card; 1090 unsigned int from, nr; 1091 int err = 0, type = MMC_BLK_DISCARD; 1092 blk_status_t status = BLK_STS_OK; 1093 1094 if (!mmc_can_erase(card)) { 1095 status = BLK_STS_NOTSUPP; 1096 goto fail; 1097 } 1098 1099 from = blk_rq_pos(req); 1100 nr = blk_rq_sectors(req); 1101 1102 do { 1103 err = 0; 1104 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1105 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1106 INAND_CMD38_ARG_EXT_CSD, 1107 card->erase_arg == MMC_TRIM_ARG ? 1108 INAND_CMD38_ARG_TRIM : 1109 INAND_CMD38_ARG_ERASE, 1110 card->ext_csd.generic_cmd6_time); 1111 } 1112 if (!err) 1113 err = mmc_erase(card, from, nr, card->erase_arg); 1114 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1115 if (err) 1116 status = BLK_STS_IOERR; 1117 else 1118 mmc_blk_reset_success(md, type); 1119 fail: 1120 blk_mq_end_request(req, status); 1121 } 1122 1123 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1124 struct request *req) 1125 { 1126 struct mmc_blk_data *md = mq->blkdata; 1127 struct mmc_card *card = md->queue.card; 1128 unsigned int from, nr, arg; 1129 int err = 0, type = MMC_BLK_SECDISCARD; 1130 blk_status_t status = BLK_STS_OK; 1131 1132 if (!(mmc_can_secure_erase_trim(card))) { 1133 status = BLK_STS_NOTSUPP; 1134 goto out; 1135 } 1136 1137 from = blk_rq_pos(req); 1138 nr = blk_rq_sectors(req); 1139 1140 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1141 arg = MMC_SECURE_TRIM1_ARG; 1142 else 1143 arg = MMC_SECURE_ERASE_ARG; 1144 1145 retry: 1146 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1147 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1148 INAND_CMD38_ARG_EXT_CSD, 1149 arg == MMC_SECURE_TRIM1_ARG ? 1150 INAND_CMD38_ARG_SECTRIM1 : 1151 INAND_CMD38_ARG_SECERASE, 1152 card->ext_csd.generic_cmd6_time); 1153 if (err) 1154 goto out_retry; 1155 } 1156 1157 err = mmc_erase(card, from, nr, arg); 1158 if (err == -EIO) 1159 goto out_retry; 1160 if (err) { 1161 status = BLK_STS_IOERR; 1162 goto out; 1163 } 1164 1165 if (arg == MMC_SECURE_TRIM1_ARG) { 1166 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1167 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1168 INAND_CMD38_ARG_EXT_CSD, 1169 INAND_CMD38_ARG_SECTRIM2, 1170 card->ext_csd.generic_cmd6_time); 1171 if (err) 1172 goto out_retry; 1173 } 1174 1175 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1176 if (err == -EIO) 1177 goto out_retry; 1178 if (err) { 1179 status = BLK_STS_IOERR; 1180 goto out; 1181 } 1182 } 1183 1184 out_retry: 1185 if (err && !mmc_blk_reset(md, card->host, type)) 1186 goto retry; 1187 if (!err) 1188 mmc_blk_reset_success(md, type); 1189 out: 1190 blk_mq_end_request(req, status); 1191 } 1192 1193 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1194 { 1195 struct mmc_blk_data *md = mq->blkdata; 1196 struct mmc_card *card = md->queue.card; 1197 int ret = 0; 1198 1199 ret = mmc_flush_cache(card); 1200 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1201 } 1202 1203 /* 1204 * Reformat current write as a reliable write, supporting 1205 * both legacy and the enhanced reliable write MMC cards. 1206 * In each transfer we'll handle only as much as a single 1207 * reliable write can handle, thus finish the request in 1208 * partial completions. 1209 */ 1210 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1211 struct mmc_card *card, 1212 struct request *req) 1213 { 1214 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1215 /* Legacy mode imposes restrictions on transfers. */ 1216 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1217 brq->data.blocks = 1; 1218 1219 if (brq->data.blocks > card->ext_csd.rel_sectors) 1220 brq->data.blocks = card->ext_csd.rel_sectors; 1221 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1222 brq->data.blocks = 1; 1223 } 1224 } 1225 1226 #define CMD_ERRORS_EXCL_OOR \ 1227 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1228 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1229 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1230 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1231 R1_CC_ERROR | /* Card controller error */ \ 1232 R1_ERROR) /* General/unknown error */ 1233 1234 #define CMD_ERRORS \ 1235 (CMD_ERRORS_EXCL_OOR | \ 1236 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1237 1238 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1239 { 1240 u32 val; 1241 1242 /* 1243 * Per the SD specification(physical layer version 4.10)[1], 1244 * section 4.3.3, it explicitly states that "When the last 1245 * block of user area is read using CMD18, the host should 1246 * ignore OUT_OF_RANGE error that may occur even the sequence 1247 * is correct". And JESD84-B51 for eMMC also has a similar 1248 * statement on section 6.8.3. 1249 * 1250 * Multiple block read/write could be done by either predefined 1251 * method, namely CMD23, or open-ending mode. For open-ending mode, 1252 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1253 * 1254 * However the spec[1] doesn't tell us whether we should also 1255 * ignore that for predefined method. But per the spec[1], section 1256 * 4.15 Set Block Count Command, it says"If illegal block count 1257 * is set, out of range error will be indicated during read/write 1258 * operation (For example, data transfer is stopped at user area 1259 * boundary)." In another word, we could expect a out of range error 1260 * in the response for the following CMD18/25. And if argument of 1261 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1262 * we could also expect to get a -ETIMEDOUT or any error number from 1263 * the host drivers due to missing data response(for write)/data(for 1264 * read), as the cards will stop the data transfer by itself per the 1265 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1266 */ 1267 1268 if (!brq->stop.error) { 1269 bool oor_with_open_end; 1270 /* If there is no error yet, check R1 response */ 1271 1272 val = brq->stop.resp[0] & CMD_ERRORS; 1273 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1274 1275 if (val && !oor_with_open_end) 1276 brq->stop.error = -EIO; 1277 } 1278 } 1279 1280 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1281 int disable_multi, bool *do_rel_wr_p, 1282 bool *do_data_tag_p) 1283 { 1284 struct mmc_blk_data *md = mq->blkdata; 1285 struct mmc_card *card = md->queue.card; 1286 struct mmc_blk_request *brq = &mqrq->brq; 1287 struct request *req = mmc_queue_req_to_req(mqrq); 1288 bool do_rel_wr, do_data_tag; 1289 1290 /* 1291 * Reliable writes are used to implement Forced Unit Access and 1292 * are supported only on MMCs. 1293 */ 1294 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1295 rq_data_dir(req) == WRITE && 1296 (md->flags & MMC_BLK_REL_WR); 1297 1298 memset(brq, 0, sizeof(struct mmc_blk_request)); 1299 1300 brq->mrq.data = &brq->data; 1301 brq->mrq.tag = req->tag; 1302 1303 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1304 brq->stop.arg = 0; 1305 1306 if (rq_data_dir(req) == READ) { 1307 brq->data.flags = MMC_DATA_READ; 1308 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1309 } else { 1310 brq->data.flags = MMC_DATA_WRITE; 1311 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1312 } 1313 1314 brq->data.blksz = 512; 1315 brq->data.blocks = blk_rq_sectors(req); 1316 brq->data.blk_addr = blk_rq_pos(req); 1317 1318 /* 1319 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1320 * The eMMC will give "high" priority tasks priority over "simple" 1321 * priority tasks. Here we always set "simple" priority by not setting 1322 * MMC_DATA_PRIO. 1323 */ 1324 1325 /* 1326 * The block layer doesn't support all sector count 1327 * restrictions, so we need to be prepared for too big 1328 * requests. 1329 */ 1330 if (brq->data.blocks > card->host->max_blk_count) 1331 brq->data.blocks = card->host->max_blk_count; 1332 1333 if (brq->data.blocks > 1) { 1334 /* 1335 * Some SD cards in SPI mode return a CRC error or even lock up 1336 * completely when trying to read the last block using a 1337 * multiblock read command. 1338 */ 1339 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1340 (blk_rq_pos(req) + blk_rq_sectors(req) == 1341 get_capacity(md->disk))) 1342 brq->data.blocks--; 1343 1344 /* 1345 * After a read error, we redo the request one sector 1346 * at a time in order to accurately determine which 1347 * sectors can be read successfully. 1348 */ 1349 if (disable_multi) 1350 brq->data.blocks = 1; 1351 1352 /* 1353 * Some controllers have HW issues while operating 1354 * in multiple I/O mode 1355 */ 1356 if (card->host->ops->multi_io_quirk) 1357 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1358 (rq_data_dir(req) == READ) ? 1359 MMC_DATA_READ : MMC_DATA_WRITE, 1360 brq->data.blocks); 1361 } 1362 1363 if (do_rel_wr) { 1364 mmc_apply_rel_rw(brq, card, req); 1365 brq->data.flags |= MMC_DATA_REL_WR; 1366 } 1367 1368 /* 1369 * Data tag is used only during writing meta data to speed 1370 * up write and any subsequent read of this meta data 1371 */ 1372 do_data_tag = card->ext_csd.data_tag_unit_size && 1373 (req->cmd_flags & REQ_META) && 1374 (rq_data_dir(req) == WRITE) && 1375 ((brq->data.blocks * brq->data.blksz) >= 1376 card->ext_csd.data_tag_unit_size); 1377 1378 if (do_data_tag) 1379 brq->data.flags |= MMC_DATA_DAT_TAG; 1380 1381 mmc_set_data_timeout(&brq->data, card); 1382 1383 brq->data.sg = mqrq->sg; 1384 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1385 1386 /* 1387 * Adjust the sg list so it is the same size as the 1388 * request. 1389 */ 1390 if (brq->data.blocks != blk_rq_sectors(req)) { 1391 int i, data_size = brq->data.blocks << 9; 1392 struct scatterlist *sg; 1393 1394 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1395 data_size -= sg->length; 1396 if (data_size <= 0) { 1397 sg->length += data_size; 1398 i++; 1399 break; 1400 } 1401 } 1402 brq->data.sg_len = i; 1403 } 1404 1405 if (do_rel_wr_p) 1406 *do_rel_wr_p = do_rel_wr; 1407 1408 if (do_data_tag_p) 1409 *do_data_tag_p = do_data_tag; 1410 } 1411 1412 #define MMC_CQE_RETRIES 2 1413 1414 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1415 { 1416 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1417 struct mmc_request *mrq = &mqrq->brq.mrq; 1418 struct request_queue *q = req->q; 1419 struct mmc_host *host = mq->card->host; 1420 unsigned long flags; 1421 bool put_card; 1422 int err; 1423 1424 mmc_cqe_post_req(host, mrq); 1425 1426 if (mrq->cmd && mrq->cmd->error) 1427 err = mrq->cmd->error; 1428 else if (mrq->data && mrq->data->error) 1429 err = mrq->data->error; 1430 else 1431 err = 0; 1432 1433 if (err) { 1434 if (mqrq->retries++ < MMC_CQE_RETRIES) 1435 blk_mq_requeue_request(req, true); 1436 else 1437 blk_mq_end_request(req, BLK_STS_IOERR); 1438 } else if (mrq->data) { 1439 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1440 blk_mq_requeue_request(req, true); 1441 else 1442 __blk_mq_end_request(req, BLK_STS_OK); 1443 } else { 1444 blk_mq_end_request(req, BLK_STS_OK); 1445 } 1446 1447 spin_lock_irqsave(&mq->lock, flags); 1448 1449 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1450 1451 put_card = (mmc_tot_in_flight(mq) == 0); 1452 1453 mmc_cqe_check_busy(mq); 1454 1455 spin_unlock_irqrestore(&mq->lock, flags); 1456 1457 if (!mq->cqe_busy) 1458 blk_mq_run_hw_queues(q, true); 1459 1460 if (put_card) 1461 mmc_put_card(mq->card, &mq->ctx); 1462 } 1463 1464 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1465 { 1466 struct mmc_card *card = mq->card; 1467 struct mmc_host *host = card->host; 1468 int err; 1469 1470 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1471 1472 err = mmc_cqe_recovery(host); 1473 if (err) 1474 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1475 else 1476 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1477 1478 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1479 } 1480 1481 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1482 { 1483 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1484 brq.mrq); 1485 struct request *req = mmc_queue_req_to_req(mqrq); 1486 struct request_queue *q = req->q; 1487 struct mmc_queue *mq = q->queuedata; 1488 1489 /* 1490 * Block layer timeouts race with completions which means the normal 1491 * completion path cannot be used during recovery. 1492 */ 1493 if (mq->in_recovery) 1494 mmc_blk_cqe_complete_rq(mq, req); 1495 else 1496 blk_mq_complete_request(req); 1497 } 1498 1499 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1500 { 1501 mrq->done = mmc_blk_cqe_req_done; 1502 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1503 1504 return mmc_cqe_start_req(host, mrq); 1505 } 1506 1507 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1508 struct request *req) 1509 { 1510 struct mmc_blk_request *brq = &mqrq->brq; 1511 1512 memset(brq, 0, sizeof(*brq)); 1513 1514 brq->mrq.cmd = &brq->cmd; 1515 brq->mrq.tag = req->tag; 1516 1517 return &brq->mrq; 1518 } 1519 1520 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1521 { 1522 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1523 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1524 1525 mrq->cmd->opcode = MMC_SWITCH; 1526 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1527 (EXT_CSD_FLUSH_CACHE << 16) | 1528 (1 << 8) | 1529 EXT_CSD_CMD_SET_NORMAL; 1530 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1531 1532 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1533 } 1534 1535 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1536 { 1537 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1538 1539 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1540 1541 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1542 } 1543 1544 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1545 struct mmc_card *card, 1546 int disable_multi, 1547 struct mmc_queue *mq) 1548 { 1549 u32 readcmd, writecmd; 1550 struct mmc_blk_request *brq = &mqrq->brq; 1551 struct request *req = mmc_queue_req_to_req(mqrq); 1552 struct mmc_blk_data *md = mq->blkdata; 1553 bool do_rel_wr, do_data_tag; 1554 1555 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1556 1557 brq->mrq.cmd = &brq->cmd; 1558 1559 brq->cmd.arg = blk_rq_pos(req); 1560 if (!mmc_card_blockaddr(card)) 1561 brq->cmd.arg <<= 9; 1562 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1563 1564 if (brq->data.blocks > 1 || do_rel_wr) { 1565 /* SPI multiblock writes terminate using a special 1566 * token, not a STOP_TRANSMISSION request. 1567 */ 1568 if (!mmc_host_is_spi(card->host) || 1569 rq_data_dir(req) == READ) 1570 brq->mrq.stop = &brq->stop; 1571 readcmd = MMC_READ_MULTIPLE_BLOCK; 1572 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1573 } else { 1574 brq->mrq.stop = NULL; 1575 readcmd = MMC_READ_SINGLE_BLOCK; 1576 writecmd = MMC_WRITE_BLOCK; 1577 } 1578 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1579 1580 /* 1581 * Pre-defined multi-block transfers are preferable to 1582 * open ended-ones (and necessary for reliable writes). 1583 * However, it is not sufficient to just send CMD23, 1584 * and avoid the final CMD12, as on an error condition 1585 * CMD12 (stop) needs to be sent anyway. This, coupled 1586 * with Auto-CMD23 enhancements provided by some 1587 * hosts, means that the complexity of dealing 1588 * with this is best left to the host. If CMD23 is 1589 * supported by card and host, we'll fill sbc in and let 1590 * the host deal with handling it correctly. This means 1591 * that for hosts that don't expose MMC_CAP_CMD23, no 1592 * change of behavior will be observed. 1593 * 1594 * N.B: Some MMC cards experience perf degradation. 1595 * We'll avoid using CMD23-bounded multiblock writes for 1596 * these, while retaining features like reliable writes. 1597 */ 1598 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1599 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1600 do_data_tag)) { 1601 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1602 brq->sbc.arg = brq->data.blocks | 1603 (do_rel_wr ? (1 << 31) : 0) | 1604 (do_data_tag ? (1 << 29) : 0); 1605 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1606 brq->mrq.sbc = &brq->sbc; 1607 } 1608 } 1609 1610 #define MMC_MAX_RETRIES 5 1611 #define MMC_DATA_RETRIES 2 1612 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1613 1614 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1615 { 1616 struct mmc_command cmd = { 1617 .opcode = MMC_STOP_TRANSMISSION, 1618 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1619 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1620 .busy_timeout = timeout, 1621 }; 1622 1623 return mmc_wait_for_cmd(card->host, &cmd, 5); 1624 } 1625 1626 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1627 { 1628 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1629 struct mmc_blk_request *brq = &mqrq->brq; 1630 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1631 int err; 1632 1633 mmc_retune_hold_now(card->host); 1634 1635 mmc_blk_send_stop(card, timeout); 1636 1637 err = card_busy_detect(card, timeout, NULL); 1638 1639 mmc_retune_release(card->host); 1640 1641 return err; 1642 } 1643 1644 #define MMC_READ_SINGLE_RETRIES 2 1645 1646 /* Single sector read during recovery */ 1647 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1648 { 1649 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1650 struct mmc_request *mrq = &mqrq->brq.mrq; 1651 struct mmc_card *card = mq->card; 1652 struct mmc_host *host = card->host; 1653 blk_status_t error = BLK_STS_OK; 1654 int retries = 0; 1655 1656 do { 1657 u32 status; 1658 int err; 1659 1660 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1661 1662 mmc_wait_for_req(host, mrq); 1663 1664 err = mmc_send_status(card, &status); 1665 if (err) 1666 goto error_exit; 1667 1668 if (!mmc_host_is_spi(host) && 1669 !mmc_blk_in_tran_state(status)) { 1670 err = mmc_blk_fix_state(card, req); 1671 if (err) 1672 goto error_exit; 1673 } 1674 1675 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES) 1676 continue; 1677 1678 retries = 0; 1679 1680 if (mrq->cmd->error || 1681 mrq->data->error || 1682 (!mmc_host_is_spi(host) && 1683 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1684 error = BLK_STS_IOERR; 1685 else 1686 error = BLK_STS_OK; 1687 1688 } while (blk_update_request(req, error, 512)); 1689 1690 return; 1691 1692 error_exit: 1693 mrq->data->bytes_xfered = 0; 1694 blk_update_request(req, BLK_STS_IOERR, 512); 1695 /* Let it try the remaining request again */ 1696 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1697 mqrq->retries = MMC_MAX_RETRIES - 1; 1698 } 1699 1700 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1701 { 1702 return !!brq->mrq.sbc; 1703 } 1704 1705 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1706 { 1707 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1708 } 1709 1710 /* 1711 * Check for errors the host controller driver might not have seen such as 1712 * response mode errors or invalid card state. 1713 */ 1714 static bool mmc_blk_status_error(struct request *req, u32 status) 1715 { 1716 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1717 struct mmc_blk_request *brq = &mqrq->brq; 1718 struct mmc_queue *mq = req->q->queuedata; 1719 u32 stop_err_bits; 1720 1721 if (mmc_host_is_spi(mq->card->host)) 1722 return false; 1723 1724 stop_err_bits = mmc_blk_stop_err_bits(brq); 1725 1726 return brq->cmd.resp[0] & CMD_ERRORS || 1727 brq->stop.resp[0] & stop_err_bits || 1728 status & stop_err_bits || 1729 (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status)); 1730 } 1731 1732 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1733 { 1734 return !brq->sbc.error && !brq->cmd.error && 1735 !(brq->cmd.resp[0] & CMD_ERRORS); 1736 } 1737 1738 /* 1739 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1740 * policy: 1741 * 1. A request that has transferred at least some data is considered 1742 * successful and will be requeued if there is remaining data to 1743 * transfer. 1744 * 2. Otherwise the number of retries is incremented and the request 1745 * will be requeued if there are remaining retries. 1746 * 3. Otherwise the request will be errored out. 1747 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1748 * mqrq->retries. So there are only 4 possible actions here: 1749 * 1. do not accept the bytes_xfered value i.e. set it to zero 1750 * 2. change mqrq->retries to determine the number of retries 1751 * 3. try to reset the card 1752 * 4. read one sector at a time 1753 */ 1754 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1755 { 1756 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1757 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1758 struct mmc_blk_request *brq = &mqrq->brq; 1759 struct mmc_blk_data *md = mq->blkdata; 1760 struct mmc_card *card = mq->card; 1761 u32 status; 1762 u32 blocks; 1763 int err; 1764 1765 /* 1766 * Some errors the host driver might not have seen. Set the number of 1767 * bytes transferred to zero in that case. 1768 */ 1769 err = __mmc_send_status(card, &status, 0); 1770 if (err || mmc_blk_status_error(req, status)) 1771 brq->data.bytes_xfered = 0; 1772 1773 mmc_retune_release(card->host); 1774 1775 /* 1776 * Try again to get the status. This also provides an opportunity for 1777 * re-tuning. 1778 */ 1779 if (err) 1780 err = __mmc_send_status(card, &status, 0); 1781 1782 /* 1783 * Nothing more to do after the number of bytes transferred has been 1784 * updated and there is no card. 1785 */ 1786 if (err && mmc_detect_card_removed(card->host)) 1787 return; 1788 1789 /* Try to get back to "tran" state */ 1790 if (!mmc_host_is_spi(mq->card->host) && 1791 (err || !mmc_blk_in_tran_state(status))) 1792 err = mmc_blk_fix_state(mq->card, req); 1793 1794 /* 1795 * Special case for SD cards where the card might record the number of 1796 * blocks written. 1797 */ 1798 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1799 rq_data_dir(req) == WRITE) { 1800 if (mmc_sd_num_wr_blocks(card, &blocks)) 1801 brq->data.bytes_xfered = 0; 1802 else 1803 brq->data.bytes_xfered = blocks << 9; 1804 } 1805 1806 /* Reset if the card is in a bad state */ 1807 if (!mmc_host_is_spi(mq->card->host) && 1808 err && mmc_blk_reset(md, card->host, type)) { 1809 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name); 1810 mqrq->retries = MMC_NO_RETRIES; 1811 return; 1812 } 1813 1814 /* 1815 * If anything was done, just return and if there is anything remaining 1816 * on the request it will get requeued. 1817 */ 1818 if (brq->data.bytes_xfered) 1819 return; 1820 1821 /* Reset before last retry */ 1822 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1823 mmc_blk_reset(md, card->host, type); 1824 1825 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1826 if (brq->sbc.error || brq->cmd.error) 1827 return; 1828 1829 /* Reduce the remaining retries for data errors */ 1830 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1831 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1832 return; 1833 } 1834 1835 /* FIXME: Missing single sector read for large sector size */ 1836 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1837 brq->data.blocks > 1) { 1838 /* Read one sector at a time */ 1839 mmc_blk_read_single(mq, req); 1840 return; 1841 } 1842 } 1843 1844 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1845 { 1846 mmc_blk_eval_resp_error(brq); 1847 1848 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1849 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1850 } 1851 1852 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1853 { 1854 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1855 u32 status = 0; 1856 int err; 1857 1858 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) 1859 return 0; 1860 1861 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status); 1862 1863 /* 1864 * Do not assume data transferred correctly if there are any error bits 1865 * set. 1866 */ 1867 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1868 mqrq->brq.data.bytes_xfered = 0; 1869 err = err ? err : -EIO; 1870 } 1871 1872 /* Copy the exception bit so it will be seen later on */ 1873 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT) 1874 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1875 1876 return err; 1877 } 1878 1879 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1880 struct request *req) 1881 { 1882 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1883 1884 mmc_blk_reset_success(mq->blkdata, type); 1885 } 1886 1887 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1888 { 1889 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1890 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1891 1892 if (nr_bytes) { 1893 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1894 blk_mq_requeue_request(req, true); 1895 else 1896 __blk_mq_end_request(req, BLK_STS_OK); 1897 } else if (!blk_rq_bytes(req)) { 1898 __blk_mq_end_request(req, BLK_STS_IOERR); 1899 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1900 blk_mq_requeue_request(req, true); 1901 } else { 1902 if (mmc_card_removed(mq->card)) 1903 req->rq_flags |= RQF_QUIET; 1904 blk_mq_end_request(req, BLK_STS_IOERR); 1905 } 1906 } 1907 1908 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1909 struct mmc_queue_req *mqrq) 1910 { 1911 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1912 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1913 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1914 } 1915 1916 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 1917 struct mmc_queue_req *mqrq) 1918 { 1919 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 1920 mmc_run_bkops(mq->card); 1921 } 1922 1923 void mmc_blk_mq_complete(struct request *req) 1924 { 1925 struct mmc_queue *mq = req->q->queuedata; 1926 1927 if (mq->use_cqe) 1928 mmc_blk_cqe_complete_rq(mq, req); 1929 else 1930 mmc_blk_mq_complete_rq(mq, req); 1931 } 1932 1933 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 1934 struct request *req) 1935 { 1936 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1937 struct mmc_host *host = mq->card->host; 1938 1939 if (mmc_blk_rq_error(&mqrq->brq) || 1940 mmc_blk_card_busy(mq->card, req)) { 1941 mmc_blk_mq_rw_recovery(mq, req); 1942 } else { 1943 mmc_blk_rw_reset_success(mq, req); 1944 mmc_retune_release(host); 1945 } 1946 1947 mmc_blk_urgent_bkops(mq, mqrq); 1948 } 1949 1950 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 1951 { 1952 unsigned long flags; 1953 bool put_card; 1954 1955 spin_lock_irqsave(&mq->lock, flags); 1956 1957 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1958 1959 put_card = (mmc_tot_in_flight(mq) == 0); 1960 1961 spin_unlock_irqrestore(&mq->lock, flags); 1962 1963 if (put_card) 1964 mmc_put_card(mq->card, &mq->ctx); 1965 } 1966 1967 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req) 1968 { 1969 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1970 struct mmc_request *mrq = &mqrq->brq.mrq; 1971 struct mmc_host *host = mq->card->host; 1972 1973 mmc_post_req(host, mrq, 0); 1974 1975 /* 1976 * Block layer timeouts race with completions which means the normal 1977 * completion path cannot be used during recovery. 1978 */ 1979 if (mq->in_recovery) 1980 mmc_blk_mq_complete_rq(mq, req); 1981 else 1982 blk_mq_complete_request(req); 1983 1984 mmc_blk_mq_dec_in_flight(mq, req); 1985 } 1986 1987 void mmc_blk_mq_recovery(struct mmc_queue *mq) 1988 { 1989 struct request *req = mq->recovery_req; 1990 struct mmc_host *host = mq->card->host; 1991 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1992 1993 mq->recovery_req = NULL; 1994 mq->rw_wait = false; 1995 1996 if (mmc_blk_rq_error(&mqrq->brq)) { 1997 mmc_retune_hold_now(host); 1998 mmc_blk_mq_rw_recovery(mq, req); 1999 } 2000 2001 mmc_blk_urgent_bkops(mq, mqrq); 2002 2003 mmc_blk_mq_post_req(mq, req); 2004 } 2005 2006 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2007 struct request **prev_req) 2008 { 2009 if (mmc_host_done_complete(mq->card->host)) 2010 return; 2011 2012 mutex_lock(&mq->complete_lock); 2013 2014 if (!mq->complete_req) 2015 goto out_unlock; 2016 2017 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2018 2019 if (prev_req) 2020 *prev_req = mq->complete_req; 2021 else 2022 mmc_blk_mq_post_req(mq, mq->complete_req); 2023 2024 mq->complete_req = NULL; 2025 2026 out_unlock: 2027 mutex_unlock(&mq->complete_lock); 2028 } 2029 2030 void mmc_blk_mq_complete_work(struct work_struct *work) 2031 { 2032 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2033 complete_work); 2034 2035 mmc_blk_mq_complete_prev_req(mq, NULL); 2036 } 2037 2038 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2039 { 2040 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2041 brq.mrq); 2042 struct request *req = mmc_queue_req_to_req(mqrq); 2043 struct request_queue *q = req->q; 2044 struct mmc_queue *mq = q->queuedata; 2045 struct mmc_host *host = mq->card->host; 2046 unsigned long flags; 2047 2048 if (!mmc_host_done_complete(host)) { 2049 bool waiting; 2050 2051 /* 2052 * We cannot complete the request in this context, so record 2053 * that there is a request to complete, and that a following 2054 * request does not need to wait (although it does need to 2055 * complete complete_req first). 2056 */ 2057 spin_lock_irqsave(&mq->lock, flags); 2058 mq->complete_req = req; 2059 mq->rw_wait = false; 2060 waiting = mq->waiting; 2061 spin_unlock_irqrestore(&mq->lock, flags); 2062 2063 /* 2064 * If 'waiting' then the waiting task will complete this 2065 * request, otherwise queue a work to do it. Note that 2066 * complete_work may still race with the dispatch of a following 2067 * request. 2068 */ 2069 if (waiting) 2070 wake_up(&mq->wait); 2071 else 2072 queue_work(mq->card->complete_wq, &mq->complete_work); 2073 2074 return; 2075 } 2076 2077 /* Take the recovery path for errors or urgent background operations */ 2078 if (mmc_blk_rq_error(&mqrq->brq) || 2079 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2080 spin_lock_irqsave(&mq->lock, flags); 2081 mq->recovery_needed = true; 2082 mq->recovery_req = req; 2083 spin_unlock_irqrestore(&mq->lock, flags); 2084 wake_up(&mq->wait); 2085 schedule_work(&mq->recovery_work); 2086 return; 2087 } 2088 2089 mmc_blk_rw_reset_success(mq, req); 2090 2091 mq->rw_wait = false; 2092 wake_up(&mq->wait); 2093 2094 mmc_blk_mq_post_req(mq, req); 2095 } 2096 2097 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2098 { 2099 unsigned long flags; 2100 bool done; 2101 2102 /* 2103 * Wait while there is another request in progress, but not if recovery 2104 * is needed. Also indicate whether there is a request waiting to start. 2105 */ 2106 spin_lock_irqsave(&mq->lock, flags); 2107 if (mq->recovery_needed) { 2108 *err = -EBUSY; 2109 done = true; 2110 } else { 2111 done = !mq->rw_wait; 2112 } 2113 mq->waiting = !done; 2114 spin_unlock_irqrestore(&mq->lock, flags); 2115 2116 return done; 2117 } 2118 2119 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2120 { 2121 int err = 0; 2122 2123 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2124 2125 /* Always complete the previous request if there is one */ 2126 mmc_blk_mq_complete_prev_req(mq, prev_req); 2127 2128 return err; 2129 } 2130 2131 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2132 struct request *req) 2133 { 2134 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2135 struct mmc_host *host = mq->card->host; 2136 struct request *prev_req = NULL; 2137 int err = 0; 2138 2139 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2140 2141 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2142 2143 mmc_pre_req(host, &mqrq->brq.mrq); 2144 2145 err = mmc_blk_rw_wait(mq, &prev_req); 2146 if (err) 2147 goto out_post_req; 2148 2149 mq->rw_wait = true; 2150 2151 err = mmc_start_request(host, &mqrq->brq.mrq); 2152 2153 if (prev_req) 2154 mmc_blk_mq_post_req(mq, prev_req); 2155 2156 if (err) 2157 mq->rw_wait = false; 2158 2159 /* Release re-tuning here where there is no synchronization required */ 2160 if (err || mmc_host_done_complete(host)) 2161 mmc_retune_release(host); 2162 2163 out_post_req: 2164 if (err) 2165 mmc_post_req(host, &mqrq->brq.mrq, err); 2166 2167 return err; 2168 } 2169 2170 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2171 { 2172 if (mq->use_cqe) 2173 return host->cqe_ops->cqe_wait_for_idle(host); 2174 2175 return mmc_blk_rw_wait(mq, NULL); 2176 } 2177 2178 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2179 { 2180 struct mmc_blk_data *md = mq->blkdata; 2181 struct mmc_card *card = md->queue.card; 2182 struct mmc_host *host = card->host; 2183 int ret; 2184 2185 ret = mmc_blk_part_switch(card, md->part_type); 2186 if (ret) 2187 return MMC_REQ_FAILED_TO_START; 2188 2189 switch (mmc_issue_type(mq, req)) { 2190 case MMC_ISSUE_SYNC: 2191 ret = mmc_blk_wait_for_idle(mq, host); 2192 if (ret) 2193 return MMC_REQ_BUSY; 2194 switch (req_op(req)) { 2195 case REQ_OP_DRV_IN: 2196 case REQ_OP_DRV_OUT: 2197 mmc_blk_issue_drv_op(mq, req); 2198 break; 2199 case REQ_OP_DISCARD: 2200 mmc_blk_issue_discard_rq(mq, req); 2201 break; 2202 case REQ_OP_SECURE_ERASE: 2203 mmc_blk_issue_secdiscard_rq(mq, req); 2204 break; 2205 case REQ_OP_FLUSH: 2206 mmc_blk_issue_flush(mq, req); 2207 break; 2208 default: 2209 WARN_ON_ONCE(1); 2210 return MMC_REQ_FAILED_TO_START; 2211 } 2212 return MMC_REQ_FINISHED; 2213 case MMC_ISSUE_DCMD: 2214 case MMC_ISSUE_ASYNC: 2215 switch (req_op(req)) { 2216 case REQ_OP_FLUSH: 2217 ret = mmc_blk_cqe_issue_flush(mq, req); 2218 break; 2219 case REQ_OP_READ: 2220 case REQ_OP_WRITE: 2221 if (mq->use_cqe) 2222 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2223 else 2224 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2225 break; 2226 default: 2227 WARN_ON_ONCE(1); 2228 ret = -EINVAL; 2229 } 2230 if (!ret) 2231 return MMC_REQ_STARTED; 2232 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2233 default: 2234 WARN_ON_ONCE(1); 2235 return MMC_REQ_FAILED_TO_START; 2236 } 2237 } 2238 2239 static inline int mmc_blk_readonly(struct mmc_card *card) 2240 { 2241 return mmc_card_readonly(card) || 2242 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2243 } 2244 2245 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2246 struct device *parent, 2247 sector_t size, 2248 bool default_ro, 2249 const char *subname, 2250 int area_type) 2251 { 2252 struct mmc_blk_data *md; 2253 int devidx, ret; 2254 2255 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2256 if (devidx < 0) { 2257 /* 2258 * We get -ENOSPC because there are no more any available 2259 * devidx. The reason may be that, either userspace haven't yet 2260 * unmounted the partitions, which postpones mmc_blk_release() 2261 * from being called, or the device has more partitions than 2262 * what we support. 2263 */ 2264 if (devidx == -ENOSPC) 2265 dev_err(mmc_dev(card->host), 2266 "no more device IDs available\n"); 2267 2268 return ERR_PTR(devidx); 2269 } 2270 2271 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2272 if (!md) { 2273 ret = -ENOMEM; 2274 goto out; 2275 } 2276 2277 md->area_type = area_type; 2278 2279 /* 2280 * Set the read-only status based on the supported commands 2281 * and the write protect switch. 2282 */ 2283 md->read_only = mmc_blk_readonly(card); 2284 2285 md->disk = alloc_disk(perdev_minors); 2286 if (md->disk == NULL) { 2287 ret = -ENOMEM; 2288 goto err_kfree; 2289 } 2290 2291 INIT_LIST_HEAD(&md->part); 2292 INIT_LIST_HEAD(&md->rpmbs); 2293 md->usage = 1; 2294 2295 ret = mmc_init_queue(&md->queue, card); 2296 if (ret) 2297 goto err_putdisk; 2298 2299 md->queue.blkdata = md; 2300 2301 /* 2302 * Keep an extra reference to the queue so that we can shutdown the 2303 * queue (i.e. call blk_cleanup_queue()) while there are still 2304 * references to the 'md'. The corresponding blk_put_queue() is in 2305 * mmc_blk_put(). 2306 */ 2307 if (!blk_get_queue(md->queue.queue)) { 2308 mmc_cleanup_queue(&md->queue); 2309 ret = -ENODEV; 2310 goto err_putdisk; 2311 } 2312 2313 md->disk->major = MMC_BLOCK_MAJOR; 2314 md->disk->first_minor = devidx * perdev_minors; 2315 md->disk->fops = &mmc_bdops; 2316 md->disk->private_data = md; 2317 md->disk->queue = md->queue.queue; 2318 md->parent = parent; 2319 set_disk_ro(md->disk, md->read_only || default_ro); 2320 md->disk->flags = GENHD_FL_EXT_DEVT; 2321 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2322 md->disk->flags |= GENHD_FL_NO_PART_SCAN 2323 | GENHD_FL_SUPPRESS_PARTITION_INFO; 2324 2325 /* 2326 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2327 * 2328 * - be set for removable media with permanent block devices 2329 * - be unset for removable block devices with permanent media 2330 * 2331 * Since MMC block devices clearly fall under the second 2332 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2333 * should use the block device creation/destruction hotplug 2334 * messages to tell when the card is present. 2335 */ 2336 2337 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2338 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2339 2340 set_capacity(md->disk, size); 2341 2342 if (mmc_host_cmd23(card->host)) { 2343 if ((mmc_card_mmc(card) && 2344 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2345 (mmc_card_sd(card) && 2346 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2347 md->flags |= MMC_BLK_CMD23; 2348 } 2349 2350 if (mmc_card_mmc(card) && 2351 md->flags & MMC_BLK_CMD23 && 2352 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2353 card->ext_csd.rel_sectors)) { 2354 md->flags |= MMC_BLK_REL_WR; 2355 blk_queue_write_cache(md->queue.queue, true, true); 2356 } 2357 2358 return md; 2359 2360 err_putdisk: 2361 put_disk(md->disk); 2362 err_kfree: 2363 kfree(md); 2364 out: 2365 ida_simple_remove(&mmc_blk_ida, devidx); 2366 return ERR_PTR(ret); 2367 } 2368 2369 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2370 { 2371 sector_t size; 2372 2373 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2374 /* 2375 * The EXT_CSD sector count is in number or 512 byte 2376 * sectors. 2377 */ 2378 size = card->ext_csd.sectors; 2379 } else { 2380 /* 2381 * The CSD capacity field is in units of read_blkbits. 2382 * set_capacity takes units of 512 bytes. 2383 */ 2384 size = (typeof(sector_t))card->csd.capacity 2385 << (card->csd.read_blkbits - 9); 2386 } 2387 2388 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2389 MMC_BLK_DATA_AREA_MAIN); 2390 } 2391 2392 static int mmc_blk_alloc_part(struct mmc_card *card, 2393 struct mmc_blk_data *md, 2394 unsigned int part_type, 2395 sector_t size, 2396 bool default_ro, 2397 const char *subname, 2398 int area_type) 2399 { 2400 char cap_str[10]; 2401 struct mmc_blk_data *part_md; 2402 2403 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2404 subname, area_type); 2405 if (IS_ERR(part_md)) 2406 return PTR_ERR(part_md); 2407 part_md->part_type = part_type; 2408 list_add(&part_md->part, &md->part); 2409 2410 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2411 cap_str, sizeof(cap_str)); 2412 pr_info("%s: %s %s partition %u %s\n", 2413 part_md->disk->disk_name, mmc_card_id(card), 2414 mmc_card_name(card), part_md->part_type, cap_str); 2415 return 0; 2416 } 2417 2418 /** 2419 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2420 * @filp: the character device file 2421 * @cmd: the ioctl() command 2422 * @arg: the argument from userspace 2423 * 2424 * This will essentially just redirect the ioctl()s coming in over to 2425 * the main block device spawning the RPMB character device. 2426 */ 2427 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2428 unsigned long arg) 2429 { 2430 struct mmc_rpmb_data *rpmb = filp->private_data; 2431 int ret; 2432 2433 switch (cmd) { 2434 case MMC_IOC_CMD: 2435 ret = mmc_blk_ioctl_cmd(rpmb->md, 2436 (struct mmc_ioc_cmd __user *)arg, 2437 rpmb); 2438 break; 2439 case MMC_IOC_MULTI_CMD: 2440 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2441 (struct mmc_ioc_multi_cmd __user *)arg, 2442 rpmb); 2443 break; 2444 default: 2445 ret = -EINVAL; 2446 break; 2447 } 2448 2449 return ret; 2450 } 2451 2452 #ifdef CONFIG_COMPAT 2453 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2454 unsigned long arg) 2455 { 2456 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2457 } 2458 #endif 2459 2460 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2461 { 2462 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2463 struct mmc_rpmb_data, chrdev); 2464 2465 get_device(&rpmb->dev); 2466 filp->private_data = rpmb; 2467 mmc_blk_get(rpmb->md->disk); 2468 2469 return nonseekable_open(inode, filp); 2470 } 2471 2472 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2473 { 2474 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2475 struct mmc_rpmb_data, chrdev); 2476 2477 put_device(&rpmb->dev); 2478 mmc_blk_put(rpmb->md); 2479 2480 return 0; 2481 } 2482 2483 static const struct file_operations mmc_rpmb_fileops = { 2484 .release = mmc_rpmb_chrdev_release, 2485 .open = mmc_rpmb_chrdev_open, 2486 .owner = THIS_MODULE, 2487 .llseek = no_llseek, 2488 .unlocked_ioctl = mmc_rpmb_ioctl, 2489 #ifdef CONFIG_COMPAT 2490 .compat_ioctl = mmc_rpmb_ioctl_compat, 2491 #endif 2492 }; 2493 2494 static void mmc_blk_rpmb_device_release(struct device *dev) 2495 { 2496 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2497 2498 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2499 kfree(rpmb); 2500 } 2501 2502 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2503 struct mmc_blk_data *md, 2504 unsigned int part_index, 2505 sector_t size, 2506 const char *subname) 2507 { 2508 int devidx, ret; 2509 char rpmb_name[DISK_NAME_LEN]; 2510 char cap_str[10]; 2511 struct mmc_rpmb_data *rpmb; 2512 2513 /* This creates the minor number for the RPMB char device */ 2514 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2515 if (devidx < 0) 2516 return devidx; 2517 2518 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2519 if (!rpmb) { 2520 ida_simple_remove(&mmc_rpmb_ida, devidx); 2521 return -ENOMEM; 2522 } 2523 2524 snprintf(rpmb_name, sizeof(rpmb_name), 2525 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2526 2527 rpmb->id = devidx; 2528 rpmb->part_index = part_index; 2529 rpmb->dev.init_name = rpmb_name; 2530 rpmb->dev.bus = &mmc_rpmb_bus_type; 2531 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2532 rpmb->dev.parent = &card->dev; 2533 rpmb->dev.release = mmc_blk_rpmb_device_release; 2534 device_initialize(&rpmb->dev); 2535 dev_set_drvdata(&rpmb->dev, rpmb); 2536 rpmb->md = md; 2537 2538 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2539 rpmb->chrdev.owner = THIS_MODULE; 2540 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2541 if (ret) { 2542 pr_err("%s: could not add character device\n", rpmb_name); 2543 goto out_put_device; 2544 } 2545 2546 list_add(&rpmb->node, &md->rpmbs); 2547 2548 string_get_size((u64)size, 512, STRING_UNITS_2, 2549 cap_str, sizeof(cap_str)); 2550 2551 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n", 2552 rpmb_name, mmc_card_id(card), 2553 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str, 2554 MAJOR(mmc_rpmb_devt), rpmb->id); 2555 2556 return 0; 2557 2558 out_put_device: 2559 put_device(&rpmb->dev); 2560 return ret; 2561 } 2562 2563 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2564 2565 { 2566 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2567 put_device(&rpmb->dev); 2568 } 2569 2570 /* MMC Physical partitions consist of two boot partitions and 2571 * up to four general purpose partitions. 2572 * For each partition enabled in EXT_CSD a block device will be allocatedi 2573 * to provide access to the partition. 2574 */ 2575 2576 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2577 { 2578 int idx, ret; 2579 2580 if (!mmc_card_mmc(card)) 2581 return 0; 2582 2583 for (idx = 0; idx < card->nr_parts; idx++) { 2584 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2585 /* 2586 * RPMB partitions does not provide block access, they 2587 * are only accessed using ioctl():s. Thus create 2588 * special RPMB block devices that do not have a 2589 * backing block queue for these. 2590 */ 2591 ret = mmc_blk_alloc_rpmb_part(card, md, 2592 card->part[idx].part_cfg, 2593 card->part[idx].size >> 9, 2594 card->part[idx].name); 2595 if (ret) 2596 return ret; 2597 } else if (card->part[idx].size) { 2598 ret = mmc_blk_alloc_part(card, md, 2599 card->part[idx].part_cfg, 2600 card->part[idx].size >> 9, 2601 card->part[idx].force_ro, 2602 card->part[idx].name, 2603 card->part[idx].area_type); 2604 if (ret) 2605 return ret; 2606 } 2607 } 2608 2609 return 0; 2610 } 2611 2612 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2613 { 2614 struct mmc_card *card; 2615 2616 if (md) { 2617 /* 2618 * Flush remaining requests and free queues. It 2619 * is freeing the queue that stops new requests 2620 * from being accepted. 2621 */ 2622 card = md->queue.card; 2623 if (md->disk->flags & GENHD_FL_UP) { 2624 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2625 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2626 card->ext_csd.boot_ro_lockable) 2627 device_remove_file(disk_to_dev(md->disk), 2628 &md->power_ro_lock); 2629 2630 del_gendisk(md->disk); 2631 } 2632 mmc_cleanup_queue(&md->queue); 2633 mmc_blk_put(md); 2634 } 2635 } 2636 2637 static void mmc_blk_remove_parts(struct mmc_card *card, 2638 struct mmc_blk_data *md) 2639 { 2640 struct list_head *pos, *q; 2641 struct mmc_blk_data *part_md; 2642 struct mmc_rpmb_data *rpmb; 2643 2644 /* Remove RPMB partitions */ 2645 list_for_each_safe(pos, q, &md->rpmbs) { 2646 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2647 list_del(pos); 2648 mmc_blk_remove_rpmb_part(rpmb); 2649 } 2650 /* Remove block partitions */ 2651 list_for_each_safe(pos, q, &md->part) { 2652 part_md = list_entry(pos, struct mmc_blk_data, part); 2653 list_del(pos); 2654 mmc_blk_remove_req(part_md); 2655 } 2656 } 2657 2658 static int mmc_add_disk(struct mmc_blk_data *md) 2659 { 2660 int ret; 2661 struct mmc_card *card = md->queue.card; 2662 2663 device_add_disk(md->parent, md->disk, NULL); 2664 md->force_ro.show = force_ro_show; 2665 md->force_ro.store = force_ro_store; 2666 sysfs_attr_init(&md->force_ro.attr); 2667 md->force_ro.attr.name = "force_ro"; 2668 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2669 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2670 if (ret) 2671 goto force_ro_fail; 2672 2673 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2674 card->ext_csd.boot_ro_lockable) { 2675 umode_t mode; 2676 2677 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2678 mode = S_IRUGO; 2679 else 2680 mode = S_IRUGO | S_IWUSR; 2681 2682 md->power_ro_lock.show = power_ro_lock_show; 2683 md->power_ro_lock.store = power_ro_lock_store; 2684 sysfs_attr_init(&md->power_ro_lock.attr); 2685 md->power_ro_lock.attr.mode = mode; 2686 md->power_ro_lock.attr.name = 2687 "ro_lock_until_next_power_on"; 2688 ret = device_create_file(disk_to_dev(md->disk), 2689 &md->power_ro_lock); 2690 if (ret) 2691 goto power_ro_lock_fail; 2692 } 2693 return ret; 2694 2695 power_ro_lock_fail: 2696 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2697 force_ro_fail: 2698 del_gendisk(md->disk); 2699 2700 return ret; 2701 } 2702 2703 #ifdef CONFIG_DEBUG_FS 2704 2705 static int mmc_dbg_card_status_get(void *data, u64 *val) 2706 { 2707 struct mmc_card *card = data; 2708 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2709 struct mmc_queue *mq = &md->queue; 2710 struct request *req; 2711 int ret; 2712 2713 /* Ask the block layer about the card status */ 2714 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2715 if (IS_ERR(req)) 2716 return PTR_ERR(req); 2717 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2718 blk_execute_rq(mq->queue, NULL, req, 0); 2719 ret = req_to_mmc_queue_req(req)->drv_op_result; 2720 if (ret >= 0) { 2721 *val = ret; 2722 ret = 0; 2723 } 2724 blk_put_request(req); 2725 2726 return ret; 2727 } 2728 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2729 NULL, "%08llx\n"); 2730 2731 /* That is two digits * 512 + 1 for newline */ 2732 #define EXT_CSD_STR_LEN 1025 2733 2734 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2735 { 2736 struct mmc_card *card = inode->i_private; 2737 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2738 struct mmc_queue *mq = &md->queue; 2739 struct request *req; 2740 char *buf; 2741 ssize_t n = 0; 2742 u8 *ext_csd; 2743 int err, i; 2744 2745 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2746 if (!buf) 2747 return -ENOMEM; 2748 2749 /* Ask the block layer for the EXT CSD */ 2750 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2751 if (IS_ERR(req)) { 2752 err = PTR_ERR(req); 2753 goto out_free; 2754 } 2755 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2756 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2757 blk_execute_rq(mq->queue, NULL, req, 0); 2758 err = req_to_mmc_queue_req(req)->drv_op_result; 2759 blk_put_request(req); 2760 if (err) { 2761 pr_err("FAILED %d\n", err); 2762 goto out_free; 2763 } 2764 2765 for (i = 0; i < 512; i++) 2766 n += sprintf(buf + n, "%02x", ext_csd[i]); 2767 n += sprintf(buf + n, "\n"); 2768 2769 if (n != EXT_CSD_STR_LEN) { 2770 err = -EINVAL; 2771 kfree(ext_csd); 2772 goto out_free; 2773 } 2774 2775 filp->private_data = buf; 2776 kfree(ext_csd); 2777 return 0; 2778 2779 out_free: 2780 kfree(buf); 2781 return err; 2782 } 2783 2784 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2785 size_t cnt, loff_t *ppos) 2786 { 2787 char *buf = filp->private_data; 2788 2789 return simple_read_from_buffer(ubuf, cnt, ppos, 2790 buf, EXT_CSD_STR_LEN); 2791 } 2792 2793 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2794 { 2795 kfree(file->private_data); 2796 return 0; 2797 } 2798 2799 static const struct file_operations mmc_dbg_ext_csd_fops = { 2800 .open = mmc_ext_csd_open, 2801 .read = mmc_ext_csd_read, 2802 .release = mmc_ext_csd_release, 2803 .llseek = default_llseek, 2804 }; 2805 2806 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2807 { 2808 struct dentry *root; 2809 2810 if (!card->debugfs_root) 2811 return 0; 2812 2813 root = card->debugfs_root; 2814 2815 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2816 md->status_dentry = 2817 debugfs_create_file_unsafe("status", 0400, root, 2818 card, 2819 &mmc_dbg_card_status_fops); 2820 if (!md->status_dentry) 2821 return -EIO; 2822 } 2823 2824 if (mmc_card_mmc(card)) { 2825 md->ext_csd_dentry = 2826 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2827 &mmc_dbg_ext_csd_fops); 2828 if (!md->ext_csd_dentry) 2829 return -EIO; 2830 } 2831 2832 return 0; 2833 } 2834 2835 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2836 struct mmc_blk_data *md) 2837 { 2838 if (!card->debugfs_root) 2839 return; 2840 2841 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2842 debugfs_remove(md->status_dentry); 2843 md->status_dentry = NULL; 2844 } 2845 2846 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2847 debugfs_remove(md->ext_csd_dentry); 2848 md->ext_csd_dentry = NULL; 2849 } 2850 } 2851 2852 #else 2853 2854 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2855 { 2856 return 0; 2857 } 2858 2859 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2860 struct mmc_blk_data *md) 2861 { 2862 } 2863 2864 #endif /* CONFIG_DEBUG_FS */ 2865 2866 static int mmc_blk_probe(struct mmc_card *card) 2867 { 2868 struct mmc_blk_data *md, *part_md; 2869 char cap_str[10]; 2870 2871 /* 2872 * Check that the card supports the command class(es) we need. 2873 */ 2874 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2875 return -ENODEV; 2876 2877 mmc_fixup_device(card, mmc_blk_fixups); 2878 2879 card->complete_wq = alloc_workqueue("mmc_complete", 2880 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2881 if (unlikely(!card->complete_wq)) { 2882 pr_err("Failed to create mmc completion workqueue"); 2883 return -ENOMEM; 2884 } 2885 2886 md = mmc_blk_alloc(card); 2887 if (IS_ERR(md)) 2888 return PTR_ERR(md); 2889 2890 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2891 cap_str, sizeof(cap_str)); 2892 pr_info("%s: %s %s %s %s\n", 2893 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2894 cap_str, md->read_only ? "(ro)" : ""); 2895 2896 if (mmc_blk_alloc_parts(card, md)) 2897 goto out; 2898 2899 dev_set_drvdata(&card->dev, md); 2900 2901 if (mmc_add_disk(md)) 2902 goto out; 2903 2904 list_for_each_entry(part_md, &md->part, part) { 2905 if (mmc_add_disk(part_md)) 2906 goto out; 2907 } 2908 2909 /* Add two debugfs entries */ 2910 mmc_blk_add_debugfs(card, md); 2911 2912 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2913 pm_runtime_use_autosuspend(&card->dev); 2914 2915 /* 2916 * Don't enable runtime PM for SD-combo cards here. Leave that 2917 * decision to be taken during the SDIO init sequence instead. 2918 */ 2919 if (card->type != MMC_TYPE_SD_COMBO) { 2920 pm_runtime_set_active(&card->dev); 2921 pm_runtime_enable(&card->dev); 2922 } 2923 2924 return 0; 2925 2926 out: 2927 mmc_blk_remove_parts(card, md); 2928 mmc_blk_remove_req(md); 2929 return 0; 2930 } 2931 2932 static void mmc_blk_remove(struct mmc_card *card) 2933 { 2934 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2935 2936 mmc_blk_remove_debugfs(card, md); 2937 mmc_blk_remove_parts(card, md); 2938 pm_runtime_get_sync(&card->dev); 2939 if (md->part_curr != md->part_type) { 2940 mmc_claim_host(card->host); 2941 mmc_blk_part_switch(card, md->part_type); 2942 mmc_release_host(card->host); 2943 } 2944 if (card->type != MMC_TYPE_SD_COMBO) 2945 pm_runtime_disable(&card->dev); 2946 pm_runtime_put_noidle(&card->dev); 2947 mmc_blk_remove_req(md); 2948 dev_set_drvdata(&card->dev, NULL); 2949 destroy_workqueue(card->complete_wq); 2950 } 2951 2952 static int _mmc_blk_suspend(struct mmc_card *card) 2953 { 2954 struct mmc_blk_data *part_md; 2955 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2956 2957 if (md) { 2958 mmc_queue_suspend(&md->queue); 2959 list_for_each_entry(part_md, &md->part, part) { 2960 mmc_queue_suspend(&part_md->queue); 2961 } 2962 } 2963 return 0; 2964 } 2965 2966 static void mmc_blk_shutdown(struct mmc_card *card) 2967 { 2968 _mmc_blk_suspend(card); 2969 } 2970 2971 #ifdef CONFIG_PM_SLEEP 2972 static int mmc_blk_suspend(struct device *dev) 2973 { 2974 struct mmc_card *card = mmc_dev_to_card(dev); 2975 2976 return _mmc_blk_suspend(card); 2977 } 2978 2979 static int mmc_blk_resume(struct device *dev) 2980 { 2981 struct mmc_blk_data *part_md; 2982 struct mmc_blk_data *md = dev_get_drvdata(dev); 2983 2984 if (md) { 2985 /* 2986 * Resume involves the card going into idle state, 2987 * so current partition is always the main one. 2988 */ 2989 md->part_curr = md->part_type; 2990 mmc_queue_resume(&md->queue); 2991 list_for_each_entry(part_md, &md->part, part) { 2992 mmc_queue_resume(&part_md->queue); 2993 } 2994 } 2995 return 0; 2996 } 2997 #endif 2998 2999 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3000 3001 static struct mmc_driver mmc_driver = { 3002 .drv = { 3003 .name = "mmcblk", 3004 .pm = &mmc_blk_pm_ops, 3005 }, 3006 .probe = mmc_blk_probe, 3007 .remove = mmc_blk_remove, 3008 .shutdown = mmc_blk_shutdown, 3009 }; 3010 3011 static int __init mmc_blk_init(void) 3012 { 3013 int res; 3014 3015 res = bus_register(&mmc_rpmb_bus_type); 3016 if (res < 0) { 3017 pr_err("mmcblk: could not register RPMB bus type\n"); 3018 return res; 3019 } 3020 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3021 if (res < 0) { 3022 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3023 goto out_bus_unreg; 3024 } 3025 3026 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3027 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3028 3029 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3030 3031 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3032 if (res) 3033 goto out_chrdev_unreg; 3034 3035 res = mmc_register_driver(&mmc_driver); 3036 if (res) 3037 goto out_blkdev_unreg; 3038 3039 return 0; 3040 3041 out_blkdev_unreg: 3042 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3043 out_chrdev_unreg: 3044 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3045 out_bus_unreg: 3046 bus_unregister(&mmc_rpmb_bus_type); 3047 return res; 3048 } 3049 3050 static void __exit mmc_blk_exit(void) 3051 { 3052 mmc_unregister_driver(&mmc_driver); 3053 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3054 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3055 bus_unregister(&mmc_rpmb_bus_type); 3056 } 3057 3058 module_init(mmc_blk_init); 3059 module_exit(mmc_blk_exit); 3060 3061 MODULE_LICENSE("GPL"); 3062 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3063 3064