xref: /openbmc/linux/drivers/mmc/core/block.c (revision 9aa2cba7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43 
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49 
50 #include <linux/uaccess.h>
51 
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62 
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68 
69 /*
70  * Set a 10 second timeout for polling write request busy state. Note, mmc core
71  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72  * second software timer to timeout the whole request, so 10 seconds should be
73  * ample.
74  */
75 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78 
79 static DEFINE_MUTEX(block_mutex);
80 
81 /*
82  * The defaults come from config options but can be overriden by module
83  * or bootarg options.
84  */
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86 
87 /*
88  * We've only got one major, so number of mmcblk devices is
89  * limited to (1 << 20) / number of minors per device.  It is also
90  * limited by the MAX_DEVICES below.
91  */
92 static int max_devices;
93 
94 #define MAX_DEVICES 256
95 
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
98 
99 struct mmc_blk_busy_data {
100 	struct mmc_card *card;
101 	u32 status;
102 };
103 
104 /*
105  * There is one mmc_blk_data per slot.
106  */
107 struct mmc_blk_data {
108 	struct device	*parent;
109 	struct gendisk	*disk;
110 	struct mmc_queue queue;
111 	struct list_head part;
112 	struct list_head rpmbs;
113 
114 	unsigned int	flags;
115 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
116 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
117 
118 	struct kref	kref;
119 	unsigned int	read_only;
120 	unsigned int	part_type;
121 	unsigned int	reset_done;
122 #define MMC_BLK_READ		BIT(0)
123 #define MMC_BLK_WRITE		BIT(1)
124 #define MMC_BLK_DISCARD		BIT(2)
125 #define MMC_BLK_SECDISCARD	BIT(3)
126 #define MMC_BLK_CQE_RECOVERY	BIT(4)
127 #define MMC_BLK_TRIM		BIT(5)
128 
129 	/*
130 	 * Only set in main mmc_blk_data associated
131 	 * with mmc_card with dev_set_drvdata, and keeps
132 	 * track of the current selected device partition.
133 	 */
134 	unsigned int	part_curr;
135 #define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
136 	int	area_type;
137 
138 	/* debugfs files (only in main mmc_blk_data) */
139 	struct dentry *status_dentry;
140 	struct dentry *ext_csd_dentry;
141 };
142 
143 /* Device type for RPMB character devices */
144 static dev_t mmc_rpmb_devt;
145 
146 /* Bus type for RPMB character devices */
147 static struct bus_type mmc_rpmb_bus_type = {
148 	.name = "mmc_rpmb",
149 };
150 
151 /**
152  * struct mmc_rpmb_data - special RPMB device type for these areas
153  * @dev: the device for the RPMB area
154  * @chrdev: character device for the RPMB area
155  * @id: unique device ID number
156  * @part_index: partition index (0 on first)
157  * @md: parent MMC block device
158  * @node: list item, so we can put this device on a list
159  */
160 struct mmc_rpmb_data {
161 	struct device dev;
162 	struct cdev chrdev;
163 	int id;
164 	unsigned int part_index;
165 	struct mmc_blk_data *md;
166 	struct list_head node;
167 };
168 
169 static DEFINE_MUTEX(open_lock);
170 
171 module_param(perdev_minors, int, 0444);
172 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
173 
174 static inline int mmc_blk_part_switch(struct mmc_card *card,
175 				      unsigned int part_type);
176 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
177 			       struct mmc_card *card,
178 			       int recovery_mode,
179 			       struct mmc_queue *mq);
180 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
181 static int mmc_spi_err_check(struct mmc_card *card);
182 static int mmc_blk_busy_cb(void *cb_data, bool *busy);
183 
184 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
185 {
186 	struct mmc_blk_data *md;
187 
188 	mutex_lock(&open_lock);
189 	md = disk->private_data;
190 	if (md && !kref_get_unless_zero(&md->kref))
191 		md = NULL;
192 	mutex_unlock(&open_lock);
193 
194 	return md;
195 }
196 
197 static inline int mmc_get_devidx(struct gendisk *disk)
198 {
199 	int devidx = disk->first_minor / perdev_minors;
200 	return devidx;
201 }
202 
203 static void mmc_blk_kref_release(struct kref *ref)
204 {
205 	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
206 	int devidx;
207 
208 	devidx = mmc_get_devidx(md->disk);
209 	ida_simple_remove(&mmc_blk_ida, devidx);
210 
211 	mutex_lock(&open_lock);
212 	md->disk->private_data = NULL;
213 	mutex_unlock(&open_lock);
214 
215 	put_disk(md->disk);
216 	kfree(md);
217 }
218 
219 static void mmc_blk_put(struct mmc_blk_data *md)
220 {
221 	kref_put(&md->kref, mmc_blk_kref_release);
222 }
223 
224 static ssize_t power_ro_lock_show(struct device *dev,
225 		struct device_attribute *attr, char *buf)
226 {
227 	int ret;
228 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
229 	struct mmc_card *card = md->queue.card;
230 	int locked = 0;
231 
232 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
233 		locked = 2;
234 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
235 		locked = 1;
236 
237 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
238 
239 	mmc_blk_put(md);
240 
241 	return ret;
242 }
243 
244 static ssize_t power_ro_lock_store(struct device *dev,
245 		struct device_attribute *attr, const char *buf, size_t count)
246 {
247 	int ret;
248 	struct mmc_blk_data *md, *part_md;
249 	struct mmc_queue *mq;
250 	struct request *req;
251 	unsigned long set;
252 
253 	if (kstrtoul(buf, 0, &set))
254 		return -EINVAL;
255 
256 	if (set != 1)
257 		return count;
258 
259 	md = mmc_blk_get(dev_to_disk(dev));
260 	mq = &md->queue;
261 
262 	/* Dispatch locking to the block layer */
263 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
264 	if (IS_ERR(req)) {
265 		count = PTR_ERR(req);
266 		goto out_put;
267 	}
268 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
269 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
270 	blk_execute_rq(req, false);
271 	ret = req_to_mmc_queue_req(req)->drv_op_result;
272 	blk_mq_free_request(req);
273 
274 	if (!ret) {
275 		pr_info("%s: Locking boot partition ro until next power on\n",
276 			md->disk->disk_name);
277 		set_disk_ro(md->disk, 1);
278 
279 		list_for_each_entry(part_md, &md->part, part)
280 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
281 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
282 				set_disk_ro(part_md->disk, 1);
283 			}
284 	}
285 out_put:
286 	mmc_blk_put(md);
287 	return count;
288 }
289 
290 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
291 		power_ro_lock_show, power_ro_lock_store);
292 
293 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
294 			     char *buf)
295 {
296 	int ret;
297 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
298 
299 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
300 		       get_disk_ro(dev_to_disk(dev)) ^
301 		       md->read_only);
302 	mmc_blk_put(md);
303 	return ret;
304 }
305 
306 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
307 			      const char *buf, size_t count)
308 {
309 	int ret;
310 	char *end;
311 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
312 	unsigned long set = simple_strtoul(buf, &end, 0);
313 	if (end == buf) {
314 		ret = -EINVAL;
315 		goto out;
316 	}
317 
318 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
319 	ret = count;
320 out:
321 	mmc_blk_put(md);
322 	return ret;
323 }
324 
325 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
326 
327 static struct attribute *mmc_disk_attrs[] = {
328 	&dev_attr_force_ro.attr,
329 	&dev_attr_ro_lock_until_next_power_on.attr,
330 	NULL,
331 };
332 
333 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
334 		struct attribute *a, int n)
335 {
336 	struct device *dev = kobj_to_dev(kobj);
337 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
338 	umode_t mode = a->mode;
339 
340 	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
341 	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
342 	    md->queue.card->ext_csd.boot_ro_lockable) {
343 		mode = S_IRUGO;
344 		if (!(md->queue.card->ext_csd.boot_ro_lock &
345 				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
346 			mode |= S_IWUSR;
347 	}
348 
349 	mmc_blk_put(md);
350 	return mode;
351 }
352 
353 static const struct attribute_group mmc_disk_attr_group = {
354 	.is_visible	= mmc_disk_attrs_is_visible,
355 	.attrs		= mmc_disk_attrs,
356 };
357 
358 static const struct attribute_group *mmc_disk_attr_groups[] = {
359 	&mmc_disk_attr_group,
360 	NULL,
361 };
362 
363 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
364 {
365 	struct mmc_blk_data *md = mmc_blk_get(disk);
366 	int ret = -ENXIO;
367 
368 	mutex_lock(&block_mutex);
369 	if (md) {
370 		ret = 0;
371 		if ((mode & BLK_OPEN_WRITE) && md->read_only) {
372 			mmc_blk_put(md);
373 			ret = -EROFS;
374 		}
375 	}
376 	mutex_unlock(&block_mutex);
377 
378 	return ret;
379 }
380 
381 static void mmc_blk_release(struct gendisk *disk)
382 {
383 	struct mmc_blk_data *md = disk->private_data;
384 
385 	mutex_lock(&block_mutex);
386 	mmc_blk_put(md);
387 	mutex_unlock(&block_mutex);
388 }
389 
390 static int
391 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
392 {
393 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
394 	geo->heads = 4;
395 	geo->sectors = 16;
396 	return 0;
397 }
398 
399 struct mmc_blk_ioc_data {
400 	struct mmc_ioc_cmd ic;
401 	unsigned char *buf;
402 	u64 buf_bytes;
403 	unsigned int flags;
404 #define MMC_BLK_IOC_DROP	BIT(0)	/* drop this mrq */
405 #define MMC_BLK_IOC_SBC	BIT(1)	/* use mrq.sbc */
406 
407 	struct mmc_rpmb_data *rpmb;
408 };
409 
410 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
411 	struct mmc_ioc_cmd __user *user)
412 {
413 	struct mmc_blk_ioc_data *idata;
414 	int err;
415 
416 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
417 	if (!idata) {
418 		err = -ENOMEM;
419 		goto out;
420 	}
421 
422 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
423 		err = -EFAULT;
424 		goto idata_err;
425 	}
426 
427 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
428 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
429 		err = -EOVERFLOW;
430 		goto idata_err;
431 	}
432 
433 	if (!idata->buf_bytes) {
434 		idata->buf = NULL;
435 		return idata;
436 	}
437 
438 	idata->buf = memdup_user((void __user *)(unsigned long)
439 				 idata->ic.data_ptr, idata->buf_bytes);
440 	if (IS_ERR(idata->buf)) {
441 		err = PTR_ERR(idata->buf);
442 		goto idata_err;
443 	}
444 
445 	return idata;
446 
447 idata_err:
448 	kfree(idata);
449 out:
450 	return ERR_PTR(err);
451 }
452 
453 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
454 				      struct mmc_blk_ioc_data *idata)
455 {
456 	struct mmc_ioc_cmd *ic = &idata->ic;
457 
458 	if (copy_to_user(&(ic_ptr->response), ic->response,
459 			 sizeof(ic->response)))
460 		return -EFAULT;
461 
462 	if (!idata->ic.write_flag) {
463 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
464 				 idata->buf, idata->buf_bytes))
465 			return -EFAULT;
466 	}
467 
468 	return 0;
469 }
470 
471 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
472 			       struct mmc_blk_ioc_data **idatas, int i)
473 {
474 	struct mmc_command cmd = {}, sbc = {};
475 	struct mmc_data data = {};
476 	struct mmc_request mrq = {};
477 	struct scatterlist sg;
478 	bool r1b_resp;
479 	unsigned int busy_timeout_ms;
480 	int err;
481 	unsigned int target_part;
482 	struct mmc_blk_ioc_data *idata = idatas[i];
483 	struct mmc_blk_ioc_data *prev_idata = NULL;
484 
485 	if (!card || !md || !idata)
486 		return -EINVAL;
487 
488 	if (idata->flags & MMC_BLK_IOC_DROP)
489 		return 0;
490 
491 	if (idata->flags & MMC_BLK_IOC_SBC)
492 		prev_idata = idatas[i - 1];
493 
494 	/*
495 	 * The RPMB accesses comes in from the character device, so we
496 	 * need to target these explicitly. Else we just target the
497 	 * partition type for the block device the ioctl() was issued
498 	 * on.
499 	 */
500 	if (idata->rpmb) {
501 		/* Support multiple RPMB partitions */
502 		target_part = idata->rpmb->part_index;
503 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
504 	} else {
505 		target_part = md->part_type;
506 	}
507 
508 	cmd.opcode = idata->ic.opcode;
509 	cmd.arg = idata->ic.arg;
510 	cmd.flags = idata->ic.flags;
511 
512 	if (idata->buf_bytes) {
513 		data.sg = &sg;
514 		data.sg_len = 1;
515 		data.blksz = idata->ic.blksz;
516 		data.blocks = idata->ic.blocks;
517 
518 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
519 
520 		if (idata->ic.write_flag)
521 			data.flags = MMC_DATA_WRITE;
522 		else
523 			data.flags = MMC_DATA_READ;
524 
525 		/* data.flags must already be set before doing this. */
526 		mmc_set_data_timeout(&data, card);
527 
528 		/* Allow overriding the timeout_ns for empirical tuning. */
529 		if (idata->ic.data_timeout_ns)
530 			data.timeout_ns = idata->ic.data_timeout_ns;
531 
532 		mrq.data = &data;
533 	}
534 
535 	mrq.cmd = &cmd;
536 
537 	err = mmc_blk_part_switch(card, target_part);
538 	if (err)
539 		return err;
540 
541 	if (idata->ic.is_acmd) {
542 		err = mmc_app_cmd(card->host, card);
543 		if (err)
544 			return err;
545 	}
546 
547 	if (idata->rpmb || prev_idata) {
548 		sbc.opcode = MMC_SET_BLOCK_COUNT;
549 		/*
550 		 * We don't do any blockcount validation because the max size
551 		 * may be increased by a future standard. We just copy the
552 		 * 'Reliable Write' bit here.
553 		 */
554 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
555 		if (prev_idata)
556 			sbc.arg = prev_idata->ic.arg;
557 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
558 		mrq.sbc = &sbc;
559 	}
560 
561 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
562 	    (cmd.opcode == MMC_SWITCH))
563 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
564 
565 	/* If it's an R1B response we need some more preparations. */
566 	busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
567 	r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
568 	if (r1b_resp)
569 		mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
570 
571 	mmc_wait_for_req(card->host, &mrq);
572 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
573 
574 	if (prev_idata) {
575 		memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
576 		if (sbc.error) {
577 			dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
578 							__func__, sbc.error);
579 			return sbc.error;
580 		}
581 	}
582 
583 	if (cmd.error) {
584 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
585 						__func__, cmd.error);
586 		return cmd.error;
587 	}
588 	if (data.error) {
589 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
590 						__func__, data.error);
591 		return data.error;
592 	}
593 
594 	/*
595 	 * Make sure the cache of the PARTITION_CONFIG register and
596 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
597 	 * changed it successfully.
598 	 */
599 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
600 	    (cmd.opcode == MMC_SWITCH)) {
601 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
602 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
603 
604 		/*
605 		 * Update cache so the next mmc_blk_part_switch call operates
606 		 * on up-to-date data.
607 		 */
608 		card->ext_csd.part_config = value;
609 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
610 	}
611 
612 	/*
613 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
614 	 * will get turned back on if the card is re-initialized, e.g.
615 	 * suspend/resume or hw reset in recovery.
616 	 */
617 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
618 	    (cmd.opcode == MMC_SWITCH)) {
619 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
620 
621 		card->ext_csd.cache_ctrl = value;
622 	}
623 
624 	/*
625 	 * According to the SD specs, some commands require a delay after
626 	 * issuing the command.
627 	 */
628 	if (idata->ic.postsleep_min_us)
629 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
630 
631 	if (mmc_host_is_spi(card->host)) {
632 		if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
633 			return mmc_spi_err_check(card);
634 		return err;
635 	}
636 
637 	/*
638 	 * Ensure RPMB, writes and R1B responses are completed by polling with
639 	 * CMD13. Note that, usually we don't need to poll when using HW busy
640 	 * detection, but here it's needed since some commands may indicate the
641 	 * error through the R1 status bits.
642 	 */
643 	if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
644 		struct mmc_blk_busy_data cb_data = {
645 			.card = card,
646 		};
647 
648 		err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
649 					  &mmc_blk_busy_cb, &cb_data);
650 
651 		idata->ic.response[0] = cb_data.status;
652 	}
653 
654 	return err;
655 }
656 
657 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
658 			     struct mmc_ioc_cmd __user *ic_ptr,
659 			     struct mmc_rpmb_data *rpmb)
660 {
661 	struct mmc_blk_ioc_data *idata;
662 	struct mmc_blk_ioc_data *idatas[1];
663 	struct mmc_queue *mq;
664 	struct mmc_card *card;
665 	int err = 0, ioc_err = 0;
666 	struct request *req;
667 
668 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
669 	if (IS_ERR(idata))
670 		return PTR_ERR(idata);
671 	/* This will be NULL on non-RPMB ioctl():s */
672 	idata->rpmb = rpmb;
673 
674 	card = md->queue.card;
675 	if (IS_ERR(card)) {
676 		err = PTR_ERR(card);
677 		goto cmd_done;
678 	}
679 
680 	/*
681 	 * Dispatch the ioctl() into the block request queue.
682 	 */
683 	mq = &md->queue;
684 	req = blk_mq_alloc_request(mq->queue,
685 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
686 	if (IS_ERR(req)) {
687 		err = PTR_ERR(req);
688 		goto cmd_done;
689 	}
690 	idatas[0] = idata;
691 	req_to_mmc_queue_req(req)->drv_op =
692 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
693 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
694 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
695 	req_to_mmc_queue_req(req)->ioc_count = 1;
696 	blk_execute_rq(req, false);
697 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
698 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
699 	blk_mq_free_request(req);
700 
701 cmd_done:
702 	kfree(idata->buf);
703 	kfree(idata);
704 	return ioc_err ? ioc_err : err;
705 }
706 
707 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
708 				   struct mmc_ioc_multi_cmd __user *user,
709 				   struct mmc_rpmb_data *rpmb)
710 {
711 	struct mmc_blk_ioc_data **idata = NULL;
712 	struct mmc_ioc_cmd __user *cmds = user->cmds;
713 	struct mmc_card *card;
714 	struct mmc_queue *mq;
715 	int err = 0, ioc_err = 0;
716 	__u64 num_of_cmds;
717 	unsigned int i, n;
718 	struct request *req;
719 
720 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
721 			   sizeof(num_of_cmds)))
722 		return -EFAULT;
723 
724 	if (!num_of_cmds)
725 		return 0;
726 
727 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
728 		return -EINVAL;
729 
730 	n = num_of_cmds;
731 	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
732 	if (!idata)
733 		return -ENOMEM;
734 
735 	for (i = 0; i < n; i++) {
736 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
737 		if (IS_ERR(idata[i])) {
738 			err = PTR_ERR(idata[i]);
739 			n = i;
740 			goto cmd_err;
741 		}
742 		/* This will be NULL on non-RPMB ioctl():s */
743 		idata[i]->rpmb = rpmb;
744 	}
745 
746 	card = md->queue.card;
747 	if (IS_ERR(card)) {
748 		err = PTR_ERR(card);
749 		goto cmd_err;
750 	}
751 
752 
753 	/*
754 	 * Dispatch the ioctl()s into the block request queue.
755 	 */
756 	mq = &md->queue;
757 	req = blk_mq_alloc_request(mq->queue,
758 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
759 	if (IS_ERR(req)) {
760 		err = PTR_ERR(req);
761 		goto cmd_err;
762 	}
763 	req_to_mmc_queue_req(req)->drv_op =
764 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
765 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
766 	req_to_mmc_queue_req(req)->drv_op_data = idata;
767 	req_to_mmc_queue_req(req)->ioc_count = n;
768 	blk_execute_rq(req, false);
769 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
770 
771 	/* copy to user if data and response */
772 	for (i = 0; i < n && !err; i++)
773 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
774 
775 	blk_mq_free_request(req);
776 
777 cmd_err:
778 	for (i = 0; i < n; i++) {
779 		kfree(idata[i]->buf);
780 		kfree(idata[i]);
781 	}
782 	kfree(idata);
783 	return ioc_err ? ioc_err : err;
784 }
785 
786 static int mmc_blk_check_blkdev(struct block_device *bdev)
787 {
788 	/*
789 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
790 	 * whole block device, not on a partition.  This prevents overspray
791 	 * between sibling partitions.
792 	 */
793 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
794 		return -EPERM;
795 	return 0;
796 }
797 
798 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
799 	unsigned int cmd, unsigned long arg)
800 {
801 	struct mmc_blk_data *md;
802 	int ret;
803 
804 	switch (cmd) {
805 	case MMC_IOC_CMD:
806 		ret = mmc_blk_check_blkdev(bdev);
807 		if (ret)
808 			return ret;
809 		md = mmc_blk_get(bdev->bd_disk);
810 		if (!md)
811 			return -EINVAL;
812 		ret = mmc_blk_ioctl_cmd(md,
813 					(struct mmc_ioc_cmd __user *)arg,
814 					NULL);
815 		mmc_blk_put(md);
816 		return ret;
817 	case MMC_IOC_MULTI_CMD:
818 		ret = mmc_blk_check_blkdev(bdev);
819 		if (ret)
820 			return ret;
821 		md = mmc_blk_get(bdev->bd_disk);
822 		if (!md)
823 			return -EINVAL;
824 		ret = mmc_blk_ioctl_multi_cmd(md,
825 					(struct mmc_ioc_multi_cmd __user *)arg,
826 					NULL);
827 		mmc_blk_put(md);
828 		return ret;
829 	default:
830 		return -EINVAL;
831 	}
832 }
833 
834 #ifdef CONFIG_COMPAT
835 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
836 	unsigned int cmd, unsigned long arg)
837 {
838 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
839 }
840 #endif
841 
842 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
843 					  sector_t *sector)
844 {
845 	struct mmc_blk_data *md;
846 	int ret;
847 
848 	md = mmc_blk_get(disk);
849 	if (!md)
850 		return -EINVAL;
851 
852 	if (md->queue.card)
853 		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
854 	else
855 		ret = -ENODEV;
856 
857 	mmc_blk_put(md);
858 
859 	return ret;
860 }
861 
862 static const struct block_device_operations mmc_bdops = {
863 	.open			= mmc_blk_open,
864 	.release		= mmc_blk_release,
865 	.getgeo			= mmc_blk_getgeo,
866 	.owner			= THIS_MODULE,
867 	.ioctl			= mmc_blk_ioctl,
868 #ifdef CONFIG_COMPAT
869 	.compat_ioctl		= mmc_blk_compat_ioctl,
870 #endif
871 	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
872 };
873 
874 static int mmc_blk_part_switch_pre(struct mmc_card *card,
875 				   unsigned int part_type)
876 {
877 	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
878 	int ret = 0;
879 
880 	if ((part_type & mask) == mask) {
881 		if (card->ext_csd.cmdq_en) {
882 			ret = mmc_cmdq_disable(card);
883 			if (ret)
884 				return ret;
885 		}
886 		mmc_retune_pause(card->host);
887 	}
888 
889 	return ret;
890 }
891 
892 static int mmc_blk_part_switch_post(struct mmc_card *card,
893 				    unsigned int part_type)
894 {
895 	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
896 	int ret = 0;
897 
898 	if ((part_type & mask) == mask) {
899 		mmc_retune_unpause(card->host);
900 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
901 			ret = mmc_cmdq_enable(card);
902 	}
903 
904 	return ret;
905 }
906 
907 static inline int mmc_blk_part_switch(struct mmc_card *card,
908 				      unsigned int part_type)
909 {
910 	int ret = 0;
911 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
912 
913 	if (main_md->part_curr == part_type)
914 		return 0;
915 
916 	if (mmc_card_mmc(card)) {
917 		u8 part_config = card->ext_csd.part_config;
918 
919 		ret = mmc_blk_part_switch_pre(card, part_type);
920 		if (ret)
921 			return ret;
922 
923 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
924 		part_config |= part_type;
925 
926 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
927 				 EXT_CSD_PART_CONFIG, part_config,
928 				 card->ext_csd.part_time);
929 		if (ret) {
930 			mmc_blk_part_switch_post(card, part_type);
931 			return ret;
932 		}
933 
934 		card->ext_csd.part_config = part_config;
935 
936 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
937 	}
938 
939 	main_md->part_curr = part_type;
940 	return ret;
941 }
942 
943 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
944 {
945 	int err;
946 	u32 result;
947 	__be32 *blocks;
948 
949 	struct mmc_request mrq = {};
950 	struct mmc_command cmd = {};
951 	struct mmc_data data = {};
952 
953 	struct scatterlist sg;
954 
955 	err = mmc_app_cmd(card->host, card);
956 	if (err)
957 		return err;
958 
959 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
960 	cmd.arg = 0;
961 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
962 
963 	data.blksz = 4;
964 	data.blocks = 1;
965 	data.flags = MMC_DATA_READ;
966 	data.sg = &sg;
967 	data.sg_len = 1;
968 	mmc_set_data_timeout(&data, card);
969 
970 	mrq.cmd = &cmd;
971 	mrq.data = &data;
972 
973 	blocks = kmalloc(4, GFP_KERNEL);
974 	if (!blocks)
975 		return -ENOMEM;
976 
977 	sg_init_one(&sg, blocks, 4);
978 
979 	mmc_wait_for_req(card->host, &mrq);
980 
981 	result = ntohl(*blocks);
982 	kfree(blocks);
983 
984 	if (cmd.error || data.error)
985 		return -EIO;
986 
987 	*written_blocks = result;
988 
989 	return 0;
990 }
991 
992 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
993 {
994 	if (host->actual_clock)
995 		return host->actual_clock / 1000;
996 
997 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
998 	if (host->ios.clock)
999 		return host->ios.clock / 2000;
1000 
1001 	/* How can there be no clock */
1002 	WARN_ON_ONCE(1);
1003 	return 100; /* 100 kHz is minimum possible value */
1004 }
1005 
1006 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1007 					    struct mmc_data *data)
1008 {
1009 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1010 	unsigned int khz;
1011 
1012 	if (data->timeout_clks) {
1013 		khz = mmc_blk_clock_khz(host);
1014 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
1015 	}
1016 
1017 	return ms;
1018 }
1019 
1020 /*
1021  * Attempts to reset the card and get back to the requested partition.
1022  * Therefore any error here must result in cancelling the block layer
1023  * request, it must not be reattempted without going through the mmc_blk
1024  * partition sanity checks.
1025  */
1026 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1027 			 int type)
1028 {
1029 	int err;
1030 	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1031 
1032 	if (md->reset_done & type)
1033 		return -EEXIST;
1034 
1035 	md->reset_done |= type;
1036 	err = mmc_hw_reset(host->card);
1037 	/*
1038 	 * A successful reset will leave the card in the main partition, but
1039 	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1040 	 * in that case.
1041 	 */
1042 	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1043 	if (err)
1044 		return err;
1045 	/* Ensure we switch back to the correct partition */
1046 	if (mmc_blk_part_switch(host->card, md->part_type))
1047 		/*
1048 		 * We have failed to get back into the correct
1049 		 * partition, so we need to abort the whole request.
1050 		 */
1051 		return -ENODEV;
1052 	return 0;
1053 }
1054 
1055 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1056 {
1057 	md->reset_done &= ~type;
1058 }
1059 
1060 static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1061 {
1062 	struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1063 	int i;
1064 
1065 	for (i = 1; i < mq_rq->ioc_count; i++) {
1066 		if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1067 		    mmc_op_multi(idata[i]->ic.opcode)) {
1068 			idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1069 			idata[i]->flags |= MMC_BLK_IOC_SBC;
1070 		}
1071 	}
1072 }
1073 
1074 /*
1075  * The non-block commands come back from the block layer after it queued it and
1076  * processed it with all other requests and then they get issued in this
1077  * function.
1078  */
1079 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1080 {
1081 	struct mmc_queue_req *mq_rq;
1082 	struct mmc_card *card = mq->card;
1083 	struct mmc_blk_data *md = mq->blkdata;
1084 	struct mmc_blk_ioc_data **idata;
1085 	bool rpmb_ioctl;
1086 	u8 **ext_csd;
1087 	u32 status;
1088 	int ret;
1089 	int i;
1090 
1091 	mq_rq = req_to_mmc_queue_req(req);
1092 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1093 
1094 	switch (mq_rq->drv_op) {
1095 	case MMC_DRV_OP_IOCTL:
1096 		if (card->ext_csd.cmdq_en) {
1097 			ret = mmc_cmdq_disable(card);
1098 			if (ret)
1099 				break;
1100 		}
1101 
1102 		mmc_blk_check_sbc(mq_rq);
1103 
1104 		fallthrough;
1105 	case MMC_DRV_OP_IOCTL_RPMB:
1106 		idata = mq_rq->drv_op_data;
1107 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1108 			ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1109 			if (ret)
1110 				break;
1111 		}
1112 		/* Always switch back to main area after RPMB access */
1113 		if (rpmb_ioctl)
1114 			mmc_blk_part_switch(card, 0);
1115 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1116 			mmc_cmdq_enable(card);
1117 		break;
1118 	case MMC_DRV_OP_BOOT_WP:
1119 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1120 				 card->ext_csd.boot_ro_lock |
1121 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1122 				 card->ext_csd.part_time);
1123 		if (ret)
1124 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1125 			       md->disk->disk_name, ret);
1126 		else
1127 			card->ext_csd.boot_ro_lock |=
1128 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1129 		break;
1130 	case MMC_DRV_OP_GET_CARD_STATUS:
1131 		ret = mmc_send_status(card, &status);
1132 		if (!ret)
1133 			ret = status;
1134 		break;
1135 	case MMC_DRV_OP_GET_EXT_CSD:
1136 		ext_csd = mq_rq->drv_op_data;
1137 		ret = mmc_get_ext_csd(card, ext_csd);
1138 		break;
1139 	default:
1140 		pr_err("%s: unknown driver specific operation\n",
1141 		       md->disk->disk_name);
1142 		ret = -EINVAL;
1143 		break;
1144 	}
1145 	mq_rq->drv_op_result = ret;
1146 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1147 }
1148 
1149 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1150 				   int type, unsigned int erase_arg)
1151 {
1152 	struct mmc_blk_data *md = mq->blkdata;
1153 	struct mmc_card *card = md->queue.card;
1154 	unsigned int from, nr;
1155 	int err = 0;
1156 	blk_status_t status = BLK_STS_OK;
1157 
1158 	if (!mmc_can_erase(card)) {
1159 		status = BLK_STS_NOTSUPP;
1160 		goto fail;
1161 	}
1162 
1163 	from = blk_rq_pos(req);
1164 	nr = blk_rq_sectors(req);
1165 
1166 	do {
1167 		err = 0;
1168 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1169 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1170 					 INAND_CMD38_ARG_EXT_CSD,
1171 					 erase_arg == MMC_TRIM_ARG ?
1172 					 INAND_CMD38_ARG_TRIM :
1173 					 INAND_CMD38_ARG_ERASE,
1174 					 card->ext_csd.generic_cmd6_time);
1175 		}
1176 		if (!err)
1177 			err = mmc_erase(card, from, nr, erase_arg);
1178 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1179 	if (err)
1180 		status = BLK_STS_IOERR;
1181 	else
1182 		mmc_blk_reset_success(md, type);
1183 fail:
1184 	blk_mq_end_request(req, status);
1185 }
1186 
1187 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1188 {
1189 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1190 }
1191 
1192 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1193 {
1194 	struct mmc_blk_data *md = mq->blkdata;
1195 	struct mmc_card *card = md->queue.card;
1196 	unsigned int arg = card->erase_arg;
1197 
1198 	if (mmc_card_broken_sd_discard(card))
1199 		arg = SD_ERASE_ARG;
1200 
1201 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1202 }
1203 
1204 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1205 				       struct request *req)
1206 {
1207 	struct mmc_blk_data *md = mq->blkdata;
1208 	struct mmc_card *card = md->queue.card;
1209 	unsigned int from, nr, arg;
1210 	int err = 0, type = MMC_BLK_SECDISCARD;
1211 	blk_status_t status = BLK_STS_OK;
1212 
1213 	if (!(mmc_can_secure_erase_trim(card))) {
1214 		status = BLK_STS_NOTSUPP;
1215 		goto out;
1216 	}
1217 
1218 	from = blk_rq_pos(req);
1219 	nr = blk_rq_sectors(req);
1220 
1221 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1222 		arg = MMC_SECURE_TRIM1_ARG;
1223 	else
1224 		arg = MMC_SECURE_ERASE_ARG;
1225 
1226 retry:
1227 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1228 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1229 				 INAND_CMD38_ARG_EXT_CSD,
1230 				 arg == MMC_SECURE_TRIM1_ARG ?
1231 				 INAND_CMD38_ARG_SECTRIM1 :
1232 				 INAND_CMD38_ARG_SECERASE,
1233 				 card->ext_csd.generic_cmd6_time);
1234 		if (err)
1235 			goto out_retry;
1236 	}
1237 
1238 	err = mmc_erase(card, from, nr, arg);
1239 	if (err == -EIO)
1240 		goto out_retry;
1241 	if (err) {
1242 		status = BLK_STS_IOERR;
1243 		goto out;
1244 	}
1245 
1246 	if (arg == MMC_SECURE_TRIM1_ARG) {
1247 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1248 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1249 					 INAND_CMD38_ARG_EXT_CSD,
1250 					 INAND_CMD38_ARG_SECTRIM2,
1251 					 card->ext_csd.generic_cmd6_time);
1252 			if (err)
1253 				goto out_retry;
1254 		}
1255 
1256 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1257 		if (err == -EIO)
1258 			goto out_retry;
1259 		if (err) {
1260 			status = BLK_STS_IOERR;
1261 			goto out;
1262 		}
1263 	}
1264 
1265 out_retry:
1266 	if (err && !mmc_blk_reset(md, card->host, type))
1267 		goto retry;
1268 	if (!err)
1269 		mmc_blk_reset_success(md, type);
1270 out:
1271 	blk_mq_end_request(req, status);
1272 }
1273 
1274 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1275 {
1276 	struct mmc_blk_data *md = mq->blkdata;
1277 	struct mmc_card *card = md->queue.card;
1278 	int ret = 0;
1279 
1280 	ret = mmc_flush_cache(card->host);
1281 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1282 }
1283 
1284 /*
1285  * Reformat current write as a reliable write, supporting
1286  * both legacy and the enhanced reliable write MMC cards.
1287  * In each transfer we'll handle only as much as a single
1288  * reliable write can handle, thus finish the request in
1289  * partial completions.
1290  */
1291 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1292 				    struct mmc_card *card,
1293 				    struct request *req)
1294 {
1295 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1296 		/* Legacy mode imposes restrictions on transfers. */
1297 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1298 			brq->data.blocks = 1;
1299 
1300 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1301 			brq->data.blocks = card->ext_csd.rel_sectors;
1302 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1303 			brq->data.blocks = 1;
1304 	}
1305 }
1306 
1307 #define CMD_ERRORS_EXCL_OOR						\
1308 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1309 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1310 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1311 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1312 	 R1_CC_ERROR |		/* Card controller error */		\
1313 	 R1_ERROR)		/* General/unknown error */
1314 
1315 #define CMD_ERRORS							\
1316 	(CMD_ERRORS_EXCL_OOR |						\
1317 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1318 
1319 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1320 {
1321 	u32 val;
1322 
1323 	/*
1324 	 * Per the SD specification(physical layer version 4.10)[1],
1325 	 * section 4.3.3, it explicitly states that "When the last
1326 	 * block of user area is read using CMD18, the host should
1327 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1328 	 * is correct". And JESD84-B51 for eMMC also has a similar
1329 	 * statement on section 6.8.3.
1330 	 *
1331 	 * Multiple block read/write could be done by either predefined
1332 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1333 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1334 	 *
1335 	 * However the spec[1] doesn't tell us whether we should also
1336 	 * ignore that for predefined method. But per the spec[1], section
1337 	 * 4.15 Set Block Count Command, it says"If illegal block count
1338 	 * is set, out of range error will be indicated during read/write
1339 	 * operation (For example, data transfer is stopped at user area
1340 	 * boundary)." In another word, we could expect a out of range error
1341 	 * in the response for the following CMD18/25. And if argument of
1342 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1343 	 * we could also expect to get a -ETIMEDOUT or any error number from
1344 	 * the host drivers due to missing data response(for write)/data(for
1345 	 * read), as the cards will stop the data transfer by itself per the
1346 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1347 	 */
1348 
1349 	if (!brq->stop.error) {
1350 		bool oor_with_open_end;
1351 		/* If there is no error yet, check R1 response */
1352 
1353 		val = brq->stop.resp[0] & CMD_ERRORS;
1354 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1355 
1356 		if (val && !oor_with_open_end)
1357 			brq->stop.error = -EIO;
1358 	}
1359 }
1360 
1361 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1362 			      int recovery_mode, bool *do_rel_wr_p,
1363 			      bool *do_data_tag_p)
1364 {
1365 	struct mmc_blk_data *md = mq->blkdata;
1366 	struct mmc_card *card = md->queue.card;
1367 	struct mmc_blk_request *brq = &mqrq->brq;
1368 	struct request *req = mmc_queue_req_to_req(mqrq);
1369 	bool do_rel_wr, do_data_tag;
1370 
1371 	/*
1372 	 * Reliable writes are used to implement Forced Unit Access and
1373 	 * are supported only on MMCs.
1374 	 */
1375 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1376 		    rq_data_dir(req) == WRITE &&
1377 		    (md->flags & MMC_BLK_REL_WR);
1378 
1379 	memset(brq, 0, sizeof(struct mmc_blk_request));
1380 
1381 	mmc_crypto_prepare_req(mqrq);
1382 
1383 	brq->mrq.data = &brq->data;
1384 	brq->mrq.tag = req->tag;
1385 
1386 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1387 	brq->stop.arg = 0;
1388 
1389 	if (rq_data_dir(req) == READ) {
1390 		brq->data.flags = MMC_DATA_READ;
1391 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1392 	} else {
1393 		brq->data.flags = MMC_DATA_WRITE;
1394 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1395 	}
1396 
1397 	brq->data.blksz = 512;
1398 	brq->data.blocks = blk_rq_sectors(req);
1399 	brq->data.blk_addr = blk_rq_pos(req);
1400 
1401 	/*
1402 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1403 	 * The eMMC will give "high" priority tasks priority over "simple"
1404 	 * priority tasks. Here we always set "simple" priority by not setting
1405 	 * MMC_DATA_PRIO.
1406 	 */
1407 
1408 	/*
1409 	 * The block layer doesn't support all sector count
1410 	 * restrictions, so we need to be prepared for too big
1411 	 * requests.
1412 	 */
1413 	if (brq->data.blocks > card->host->max_blk_count)
1414 		brq->data.blocks = card->host->max_blk_count;
1415 
1416 	if (brq->data.blocks > 1) {
1417 		/*
1418 		 * Some SD cards in SPI mode return a CRC error or even lock up
1419 		 * completely when trying to read the last block using a
1420 		 * multiblock read command.
1421 		 */
1422 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1423 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1424 		     get_capacity(md->disk)))
1425 			brq->data.blocks--;
1426 
1427 		/*
1428 		 * After a read error, we redo the request one (native) sector
1429 		 * at a time in order to accurately determine which
1430 		 * sectors can be read successfully.
1431 		 */
1432 		if (recovery_mode)
1433 			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1434 
1435 		/*
1436 		 * Some controllers have HW issues while operating
1437 		 * in multiple I/O mode
1438 		 */
1439 		if (card->host->ops->multi_io_quirk)
1440 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1441 						(rq_data_dir(req) == READ) ?
1442 						MMC_DATA_READ : MMC_DATA_WRITE,
1443 						brq->data.blocks);
1444 	}
1445 
1446 	if (do_rel_wr) {
1447 		mmc_apply_rel_rw(brq, card, req);
1448 		brq->data.flags |= MMC_DATA_REL_WR;
1449 	}
1450 
1451 	/*
1452 	 * Data tag is used only during writing meta data to speed
1453 	 * up write and any subsequent read of this meta data
1454 	 */
1455 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1456 		      (req->cmd_flags & REQ_META) &&
1457 		      (rq_data_dir(req) == WRITE) &&
1458 		      ((brq->data.blocks * brq->data.blksz) >=
1459 		       card->ext_csd.data_tag_unit_size);
1460 
1461 	if (do_data_tag)
1462 		brq->data.flags |= MMC_DATA_DAT_TAG;
1463 
1464 	mmc_set_data_timeout(&brq->data, card);
1465 
1466 	brq->data.sg = mqrq->sg;
1467 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1468 
1469 	/*
1470 	 * Adjust the sg list so it is the same size as the
1471 	 * request.
1472 	 */
1473 	if (brq->data.blocks != blk_rq_sectors(req)) {
1474 		int i, data_size = brq->data.blocks << 9;
1475 		struct scatterlist *sg;
1476 
1477 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1478 			data_size -= sg->length;
1479 			if (data_size <= 0) {
1480 				sg->length += data_size;
1481 				i++;
1482 				break;
1483 			}
1484 		}
1485 		brq->data.sg_len = i;
1486 	}
1487 
1488 	if (do_rel_wr_p)
1489 		*do_rel_wr_p = do_rel_wr;
1490 
1491 	if (do_data_tag_p)
1492 		*do_data_tag_p = do_data_tag;
1493 }
1494 
1495 #define MMC_CQE_RETRIES 2
1496 
1497 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1498 {
1499 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1500 	struct mmc_request *mrq = &mqrq->brq.mrq;
1501 	struct request_queue *q = req->q;
1502 	struct mmc_host *host = mq->card->host;
1503 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1504 	unsigned long flags;
1505 	bool put_card;
1506 	int err;
1507 
1508 	mmc_cqe_post_req(host, mrq);
1509 
1510 	if (mrq->cmd && mrq->cmd->error)
1511 		err = mrq->cmd->error;
1512 	else if (mrq->data && mrq->data->error)
1513 		err = mrq->data->error;
1514 	else
1515 		err = 0;
1516 
1517 	if (err) {
1518 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1519 			blk_mq_requeue_request(req, true);
1520 		else
1521 			blk_mq_end_request(req, BLK_STS_IOERR);
1522 	} else if (mrq->data) {
1523 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1524 			blk_mq_requeue_request(req, true);
1525 		else
1526 			__blk_mq_end_request(req, BLK_STS_OK);
1527 	} else if (mq->in_recovery) {
1528 		blk_mq_requeue_request(req, true);
1529 	} else {
1530 		blk_mq_end_request(req, BLK_STS_OK);
1531 	}
1532 
1533 	spin_lock_irqsave(&mq->lock, flags);
1534 
1535 	mq->in_flight[issue_type] -= 1;
1536 
1537 	put_card = (mmc_tot_in_flight(mq) == 0);
1538 
1539 	mmc_cqe_check_busy(mq);
1540 
1541 	spin_unlock_irqrestore(&mq->lock, flags);
1542 
1543 	if (!mq->cqe_busy)
1544 		blk_mq_run_hw_queues(q, true);
1545 
1546 	if (put_card)
1547 		mmc_put_card(mq->card, &mq->ctx);
1548 }
1549 
1550 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1551 {
1552 	struct mmc_card *card = mq->card;
1553 	struct mmc_host *host = card->host;
1554 	int err;
1555 
1556 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1557 
1558 	err = mmc_cqe_recovery(host);
1559 	if (err)
1560 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1561 	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1562 
1563 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1564 }
1565 
1566 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1567 {
1568 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1569 						  brq.mrq);
1570 	struct request *req = mmc_queue_req_to_req(mqrq);
1571 	struct request_queue *q = req->q;
1572 	struct mmc_queue *mq = q->queuedata;
1573 
1574 	/*
1575 	 * Block layer timeouts race with completions which means the normal
1576 	 * completion path cannot be used during recovery.
1577 	 */
1578 	if (mq->in_recovery)
1579 		mmc_blk_cqe_complete_rq(mq, req);
1580 	else if (likely(!blk_should_fake_timeout(req->q)))
1581 		blk_mq_complete_request(req);
1582 }
1583 
1584 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1585 {
1586 	mrq->done		= mmc_blk_cqe_req_done;
1587 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1588 
1589 	return mmc_cqe_start_req(host, mrq);
1590 }
1591 
1592 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1593 						 struct request *req)
1594 {
1595 	struct mmc_blk_request *brq = &mqrq->brq;
1596 
1597 	memset(brq, 0, sizeof(*brq));
1598 
1599 	brq->mrq.cmd = &brq->cmd;
1600 	brq->mrq.tag = req->tag;
1601 
1602 	return &brq->mrq;
1603 }
1604 
1605 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1606 {
1607 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1608 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1609 
1610 	mrq->cmd->opcode = MMC_SWITCH;
1611 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1612 			(EXT_CSD_FLUSH_CACHE << 16) |
1613 			(1 << 8) |
1614 			EXT_CSD_CMD_SET_NORMAL;
1615 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1616 
1617 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1618 }
1619 
1620 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1621 {
1622 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1623 	struct mmc_host *host = mq->card->host;
1624 	int err;
1625 
1626 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1627 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1628 	mmc_pre_req(host, &mqrq->brq.mrq);
1629 
1630 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1631 	if (err)
1632 		mmc_post_req(host, &mqrq->brq.mrq, err);
1633 
1634 	return err;
1635 }
1636 
1637 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1638 {
1639 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1640 	struct mmc_host *host = mq->card->host;
1641 
1642 	if (host->hsq_enabled)
1643 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1644 
1645 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1646 
1647 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1648 }
1649 
1650 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1651 			       struct mmc_card *card,
1652 			       int recovery_mode,
1653 			       struct mmc_queue *mq)
1654 {
1655 	u32 readcmd, writecmd;
1656 	struct mmc_blk_request *brq = &mqrq->brq;
1657 	struct request *req = mmc_queue_req_to_req(mqrq);
1658 	struct mmc_blk_data *md = mq->blkdata;
1659 	bool do_rel_wr, do_data_tag;
1660 
1661 	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1662 
1663 	brq->mrq.cmd = &brq->cmd;
1664 
1665 	brq->cmd.arg = blk_rq_pos(req);
1666 	if (!mmc_card_blockaddr(card))
1667 		brq->cmd.arg <<= 9;
1668 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1669 
1670 	if (brq->data.blocks > 1 || do_rel_wr) {
1671 		/* SPI multiblock writes terminate using a special
1672 		 * token, not a STOP_TRANSMISSION request.
1673 		 */
1674 		if (!mmc_host_is_spi(card->host) ||
1675 		    rq_data_dir(req) == READ)
1676 			brq->mrq.stop = &brq->stop;
1677 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1678 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1679 	} else {
1680 		brq->mrq.stop = NULL;
1681 		readcmd = MMC_READ_SINGLE_BLOCK;
1682 		writecmd = MMC_WRITE_BLOCK;
1683 	}
1684 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1685 
1686 	/*
1687 	 * Pre-defined multi-block transfers are preferable to
1688 	 * open ended-ones (and necessary for reliable writes).
1689 	 * However, it is not sufficient to just send CMD23,
1690 	 * and avoid the final CMD12, as on an error condition
1691 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1692 	 * with Auto-CMD23 enhancements provided by some
1693 	 * hosts, means that the complexity of dealing
1694 	 * with this is best left to the host. If CMD23 is
1695 	 * supported by card and host, we'll fill sbc in and let
1696 	 * the host deal with handling it correctly. This means
1697 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1698 	 * change of behavior will be observed.
1699 	 *
1700 	 * N.B: Some MMC cards experience perf degradation.
1701 	 * We'll avoid using CMD23-bounded multiblock writes for
1702 	 * these, while retaining features like reliable writes.
1703 	 */
1704 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1705 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1706 	     do_data_tag)) {
1707 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1708 		brq->sbc.arg = brq->data.blocks |
1709 			(do_rel_wr ? (1 << 31) : 0) |
1710 			(do_data_tag ? (1 << 29) : 0);
1711 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1712 		brq->mrq.sbc = &brq->sbc;
1713 	}
1714 }
1715 
1716 #define MMC_MAX_RETRIES		5
1717 #define MMC_DATA_RETRIES	2
1718 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1719 
1720 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1721 {
1722 	struct mmc_command cmd = {
1723 		.opcode = MMC_STOP_TRANSMISSION,
1724 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1725 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1726 		.busy_timeout = timeout,
1727 	};
1728 
1729 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1730 }
1731 
1732 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1733 {
1734 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1735 	struct mmc_blk_request *brq = &mqrq->brq;
1736 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1737 	int err;
1738 
1739 	mmc_retune_hold_now(card->host);
1740 
1741 	mmc_blk_send_stop(card, timeout);
1742 
1743 	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1744 
1745 	mmc_retune_release(card->host);
1746 
1747 	return err;
1748 }
1749 
1750 #define MMC_READ_SINGLE_RETRIES	2
1751 
1752 /* Single (native) sector read during recovery */
1753 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1754 {
1755 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1756 	struct mmc_request *mrq = &mqrq->brq.mrq;
1757 	struct mmc_card *card = mq->card;
1758 	struct mmc_host *host = card->host;
1759 	blk_status_t error = BLK_STS_OK;
1760 	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1761 
1762 	do {
1763 		u32 status;
1764 		int err;
1765 		int retries = 0;
1766 
1767 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1768 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1769 
1770 			mmc_wait_for_req(host, mrq);
1771 
1772 			err = mmc_send_status(card, &status);
1773 			if (err)
1774 				goto error_exit;
1775 
1776 			if (!mmc_host_is_spi(host) &&
1777 			    !mmc_ready_for_data(status)) {
1778 				err = mmc_blk_fix_state(card, req);
1779 				if (err)
1780 					goto error_exit;
1781 			}
1782 
1783 			if (!mrq->cmd->error)
1784 				break;
1785 		}
1786 
1787 		if (mrq->cmd->error ||
1788 		    mrq->data->error ||
1789 		    (!mmc_host_is_spi(host) &&
1790 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1791 			error = BLK_STS_IOERR;
1792 		else
1793 			error = BLK_STS_OK;
1794 
1795 	} while (blk_update_request(req, error, bytes_per_read));
1796 
1797 	return;
1798 
1799 error_exit:
1800 	mrq->data->bytes_xfered = 0;
1801 	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1802 	/* Let it try the remaining request again */
1803 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1804 		mqrq->retries = MMC_MAX_RETRIES - 1;
1805 }
1806 
1807 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1808 {
1809 	return !!brq->mrq.sbc;
1810 }
1811 
1812 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1813 {
1814 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1815 }
1816 
1817 /*
1818  * Check for errors the host controller driver might not have seen such as
1819  * response mode errors or invalid card state.
1820  */
1821 static bool mmc_blk_status_error(struct request *req, u32 status)
1822 {
1823 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1824 	struct mmc_blk_request *brq = &mqrq->brq;
1825 	struct mmc_queue *mq = req->q->queuedata;
1826 	u32 stop_err_bits;
1827 
1828 	if (mmc_host_is_spi(mq->card->host))
1829 		return false;
1830 
1831 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1832 
1833 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1834 	       brq->stop.resp[0] & stop_err_bits ||
1835 	       status            & stop_err_bits ||
1836 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1837 }
1838 
1839 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1840 {
1841 	return !brq->sbc.error && !brq->cmd.error &&
1842 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1843 }
1844 
1845 /*
1846  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1847  * policy:
1848  * 1. A request that has transferred at least some data is considered
1849  * successful and will be requeued if there is remaining data to
1850  * transfer.
1851  * 2. Otherwise the number of retries is incremented and the request
1852  * will be requeued if there are remaining retries.
1853  * 3. Otherwise the request will be errored out.
1854  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1855  * mqrq->retries. So there are only 4 possible actions here:
1856  *	1. do not accept the bytes_xfered value i.e. set it to zero
1857  *	2. change mqrq->retries to determine the number of retries
1858  *	3. try to reset the card
1859  *	4. read one sector at a time
1860  */
1861 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1862 {
1863 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1864 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1865 	struct mmc_blk_request *brq = &mqrq->brq;
1866 	struct mmc_blk_data *md = mq->blkdata;
1867 	struct mmc_card *card = mq->card;
1868 	u32 status;
1869 	u32 blocks;
1870 	int err;
1871 
1872 	/*
1873 	 * Some errors the host driver might not have seen. Set the number of
1874 	 * bytes transferred to zero in that case.
1875 	 */
1876 	err = __mmc_send_status(card, &status, 0);
1877 	if (err || mmc_blk_status_error(req, status))
1878 		brq->data.bytes_xfered = 0;
1879 
1880 	mmc_retune_release(card->host);
1881 
1882 	/*
1883 	 * Try again to get the status. This also provides an opportunity for
1884 	 * re-tuning.
1885 	 */
1886 	if (err)
1887 		err = __mmc_send_status(card, &status, 0);
1888 
1889 	/*
1890 	 * Nothing more to do after the number of bytes transferred has been
1891 	 * updated and there is no card.
1892 	 */
1893 	if (err && mmc_detect_card_removed(card->host))
1894 		return;
1895 
1896 	/* Try to get back to "tran" state */
1897 	if (!mmc_host_is_spi(mq->card->host) &&
1898 	    (err || !mmc_ready_for_data(status)))
1899 		err = mmc_blk_fix_state(mq->card, req);
1900 
1901 	/*
1902 	 * Special case for SD cards where the card might record the number of
1903 	 * blocks written.
1904 	 */
1905 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1906 	    rq_data_dir(req) == WRITE) {
1907 		if (mmc_sd_num_wr_blocks(card, &blocks))
1908 			brq->data.bytes_xfered = 0;
1909 		else
1910 			brq->data.bytes_xfered = blocks << 9;
1911 	}
1912 
1913 	/* Reset if the card is in a bad state */
1914 	if (!mmc_host_is_spi(mq->card->host) &&
1915 	    err && mmc_blk_reset(md, card->host, type)) {
1916 		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1917 		mqrq->retries = MMC_NO_RETRIES;
1918 		return;
1919 	}
1920 
1921 	/*
1922 	 * If anything was done, just return and if there is anything remaining
1923 	 * on the request it will get requeued.
1924 	 */
1925 	if (brq->data.bytes_xfered)
1926 		return;
1927 
1928 	/* Reset before last retry */
1929 	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1930 	    mmc_blk_reset(md, card->host, type))
1931 		return;
1932 
1933 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1934 	if (brq->sbc.error || brq->cmd.error)
1935 		return;
1936 
1937 	/* Reduce the remaining retries for data errors */
1938 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1939 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1940 		return;
1941 	}
1942 
1943 	if (rq_data_dir(req) == READ && brq->data.blocks >
1944 			queue_physical_block_size(mq->queue) >> 9) {
1945 		/* Read one (native) sector at a time */
1946 		mmc_blk_read_single(mq, req);
1947 		return;
1948 	}
1949 }
1950 
1951 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1952 {
1953 	mmc_blk_eval_resp_error(brq);
1954 
1955 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1956 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1957 }
1958 
1959 static int mmc_spi_err_check(struct mmc_card *card)
1960 {
1961 	u32 status = 0;
1962 	int err;
1963 
1964 	/*
1965 	 * SPI does not have a TRAN state we have to wait on, instead the
1966 	 * card is ready again when it no longer holds the line LOW.
1967 	 * We still have to ensure two things here before we know the write
1968 	 * was successful:
1969 	 * 1. The card has not disconnected during busy and we actually read our
1970 	 * own pull-up, thinking it was still connected, so ensure it
1971 	 * still responds.
1972 	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1973 	 * just reconnected card after being disconnected during busy.
1974 	 */
1975 	err = __mmc_send_status(card, &status, 0);
1976 	if (err)
1977 		return err;
1978 	/* All R1 and R2 bits of SPI are errors in our case */
1979 	if (status)
1980 		return -EIO;
1981 	return 0;
1982 }
1983 
1984 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1985 {
1986 	struct mmc_blk_busy_data *data = cb_data;
1987 	u32 status = 0;
1988 	int err;
1989 
1990 	err = mmc_send_status(data->card, &status);
1991 	if (err)
1992 		return err;
1993 
1994 	/* Accumulate response error bits. */
1995 	data->status |= status;
1996 
1997 	*busy = !mmc_ready_for_data(status);
1998 	return 0;
1999 }
2000 
2001 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2002 {
2003 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2004 	struct mmc_blk_busy_data cb_data;
2005 	int err;
2006 
2007 	if (rq_data_dir(req) == READ)
2008 		return 0;
2009 
2010 	if (mmc_host_is_spi(card->host)) {
2011 		err = mmc_spi_err_check(card);
2012 		if (err)
2013 			mqrq->brq.data.bytes_xfered = 0;
2014 		return err;
2015 	}
2016 
2017 	cb_data.card = card;
2018 	cb_data.status = 0;
2019 	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2020 				  &mmc_blk_busy_cb, &cb_data);
2021 
2022 	/*
2023 	 * Do not assume data transferred correctly if there are any error bits
2024 	 * set.
2025 	 */
2026 	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2027 		mqrq->brq.data.bytes_xfered = 0;
2028 		err = err ? err : -EIO;
2029 	}
2030 
2031 	/* Copy the exception bit so it will be seen later on */
2032 	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2033 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2034 
2035 	return err;
2036 }
2037 
2038 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2039 					    struct request *req)
2040 {
2041 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2042 
2043 	mmc_blk_reset_success(mq->blkdata, type);
2044 }
2045 
2046 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2047 {
2048 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2049 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2050 
2051 	if (nr_bytes) {
2052 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2053 			blk_mq_requeue_request(req, true);
2054 		else
2055 			__blk_mq_end_request(req, BLK_STS_OK);
2056 	} else if (!blk_rq_bytes(req)) {
2057 		__blk_mq_end_request(req, BLK_STS_IOERR);
2058 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2059 		blk_mq_requeue_request(req, true);
2060 	} else {
2061 		if (mmc_card_removed(mq->card))
2062 			req->rq_flags |= RQF_QUIET;
2063 		blk_mq_end_request(req, BLK_STS_IOERR);
2064 	}
2065 }
2066 
2067 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2068 					struct mmc_queue_req *mqrq)
2069 {
2070 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2071 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2072 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2073 }
2074 
2075 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2076 				 struct mmc_queue_req *mqrq)
2077 {
2078 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2079 		mmc_run_bkops(mq->card);
2080 }
2081 
2082 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2083 {
2084 	struct mmc_queue_req *mqrq =
2085 		container_of(mrq, struct mmc_queue_req, brq.mrq);
2086 	struct request *req = mmc_queue_req_to_req(mqrq);
2087 	struct request_queue *q = req->q;
2088 	struct mmc_queue *mq = q->queuedata;
2089 	struct mmc_host *host = mq->card->host;
2090 	unsigned long flags;
2091 
2092 	if (mmc_blk_rq_error(&mqrq->brq) ||
2093 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2094 		spin_lock_irqsave(&mq->lock, flags);
2095 		mq->recovery_needed = true;
2096 		mq->recovery_req = req;
2097 		spin_unlock_irqrestore(&mq->lock, flags);
2098 
2099 		host->cqe_ops->cqe_recovery_start(host);
2100 
2101 		schedule_work(&mq->recovery_work);
2102 		return;
2103 	}
2104 
2105 	mmc_blk_rw_reset_success(mq, req);
2106 
2107 	/*
2108 	 * Block layer timeouts race with completions which means the normal
2109 	 * completion path cannot be used during recovery.
2110 	 */
2111 	if (mq->in_recovery)
2112 		mmc_blk_cqe_complete_rq(mq, req);
2113 	else if (likely(!blk_should_fake_timeout(req->q)))
2114 		blk_mq_complete_request(req);
2115 }
2116 
2117 void mmc_blk_mq_complete(struct request *req)
2118 {
2119 	struct mmc_queue *mq = req->q->queuedata;
2120 	struct mmc_host *host = mq->card->host;
2121 
2122 	if (host->cqe_enabled)
2123 		mmc_blk_cqe_complete_rq(mq, req);
2124 	else if (likely(!blk_should_fake_timeout(req->q)))
2125 		mmc_blk_mq_complete_rq(mq, req);
2126 }
2127 
2128 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2129 				       struct request *req)
2130 {
2131 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2132 	struct mmc_host *host = mq->card->host;
2133 
2134 	if (mmc_blk_rq_error(&mqrq->brq) ||
2135 	    mmc_blk_card_busy(mq->card, req)) {
2136 		mmc_blk_mq_rw_recovery(mq, req);
2137 	} else {
2138 		mmc_blk_rw_reset_success(mq, req);
2139 		mmc_retune_release(host);
2140 	}
2141 
2142 	mmc_blk_urgent_bkops(mq, mqrq);
2143 }
2144 
2145 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2146 {
2147 	unsigned long flags;
2148 	bool put_card;
2149 
2150 	spin_lock_irqsave(&mq->lock, flags);
2151 
2152 	mq->in_flight[issue_type] -= 1;
2153 
2154 	put_card = (mmc_tot_in_flight(mq) == 0);
2155 
2156 	spin_unlock_irqrestore(&mq->lock, flags);
2157 
2158 	if (put_card)
2159 		mmc_put_card(mq->card, &mq->ctx);
2160 }
2161 
2162 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2163 				bool can_sleep)
2164 {
2165 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2166 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2167 	struct mmc_request *mrq = &mqrq->brq.mrq;
2168 	struct mmc_host *host = mq->card->host;
2169 
2170 	mmc_post_req(host, mrq, 0);
2171 
2172 	/*
2173 	 * Block layer timeouts race with completions which means the normal
2174 	 * completion path cannot be used during recovery.
2175 	 */
2176 	if (mq->in_recovery) {
2177 		mmc_blk_mq_complete_rq(mq, req);
2178 	} else if (likely(!blk_should_fake_timeout(req->q))) {
2179 		if (can_sleep)
2180 			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2181 		else
2182 			blk_mq_complete_request(req);
2183 	}
2184 
2185 	mmc_blk_mq_dec_in_flight(mq, issue_type);
2186 }
2187 
2188 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2189 {
2190 	struct request *req = mq->recovery_req;
2191 	struct mmc_host *host = mq->card->host;
2192 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2193 
2194 	mq->recovery_req = NULL;
2195 	mq->rw_wait = false;
2196 
2197 	if (mmc_blk_rq_error(&mqrq->brq)) {
2198 		mmc_retune_hold_now(host);
2199 		mmc_blk_mq_rw_recovery(mq, req);
2200 	}
2201 
2202 	mmc_blk_urgent_bkops(mq, mqrq);
2203 
2204 	mmc_blk_mq_post_req(mq, req, true);
2205 }
2206 
2207 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2208 					 struct request **prev_req)
2209 {
2210 	if (mmc_host_done_complete(mq->card->host))
2211 		return;
2212 
2213 	mutex_lock(&mq->complete_lock);
2214 
2215 	if (!mq->complete_req)
2216 		goto out_unlock;
2217 
2218 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2219 
2220 	if (prev_req)
2221 		*prev_req = mq->complete_req;
2222 	else
2223 		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2224 
2225 	mq->complete_req = NULL;
2226 
2227 out_unlock:
2228 	mutex_unlock(&mq->complete_lock);
2229 }
2230 
2231 void mmc_blk_mq_complete_work(struct work_struct *work)
2232 {
2233 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2234 					    complete_work);
2235 
2236 	mmc_blk_mq_complete_prev_req(mq, NULL);
2237 }
2238 
2239 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2240 {
2241 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2242 						  brq.mrq);
2243 	struct request *req = mmc_queue_req_to_req(mqrq);
2244 	struct request_queue *q = req->q;
2245 	struct mmc_queue *mq = q->queuedata;
2246 	struct mmc_host *host = mq->card->host;
2247 	unsigned long flags;
2248 
2249 	if (!mmc_host_done_complete(host)) {
2250 		bool waiting;
2251 
2252 		/*
2253 		 * We cannot complete the request in this context, so record
2254 		 * that there is a request to complete, and that a following
2255 		 * request does not need to wait (although it does need to
2256 		 * complete complete_req first).
2257 		 */
2258 		spin_lock_irqsave(&mq->lock, flags);
2259 		mq->complete_req = req;
2260 		mq->rw_wait = false;
2261 		waiting = mq->waiting;
2262 		spin_unlock_irqrestore(&mq->lock, flags);
2263 
2264 		/*
2265 		 * If 'waiting' then the waiting task will complete this
2266 		 * request, otherwise queue a work to do it. Note that
2267 		 * complete_work may still race with the dispatch of a following
2268 		 * request.
2269 		 */
2270 		if (waiting)
2271 			wake_up(&mq->wait);
2272 		else
2273 			queue_work(mq->card->complete_wq, &mq->complete_work);
2274 
2275 		return;
2276 	}
2277 
2278 	/* Take the recovery path for errors or urgent background operations */
2279 	if (mmc_blk_rq_error(&mqrq->brq) ||
2280 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2281 		spin_lock_irqsave(&mq->lock, flags);
2282 		mq->recovery_needed = true;
2283 		mq->recovery_req = req;
2284 		spin_unlock_irqrestore(&mq->lock, flags);
2285 		wake_up(&mq->wait);
2286 		schedule_work(&mq->recovery_work);
2287 		return;
2288 	}
2289 
2290 	mmc_blk_rw_reset_success(mq, req);
2291 
2292 	mq->rw_wait = false;
2293 	wake_up(&mq->wait);
2294 
2295 	/* context unknown */
2296 	mmc_blk_mq_post_req(mq, req, false);
2297 }
2298 
2299 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2300 {
2301 	unsigned long flags;
2302 	bool done;
2303 
2304 	/*
2305 	 * Wait while there is another request in progress, but not if recovery
2306 	 * is needed. Also indicate whether there is a request waiting to start.
2307 	 */
2308 	spin_lock_irqsave(&mq->lock, flags);
2309 	if (mq->recovery_needed) {
2310 		*err = -EBUSY;
2311 		done = true;
2312 	} else {
2313 		done = !mq->rw_wait;
2314 	}
2315 	mq->waiting = !done;
2316 	spin_unlock_irqrestore(&mq->lock, flags);
2317 
2318 	return done;
2319 }
2320 
2321 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2322 {
2323 	int err = 0;
2324 
2325 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2326 
2327 	/* Always complete the previous request if there is one */
2328 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2329 
2330 	return err;
2331 }
2332 
2333 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2334 				  struct request *req)
2335 {
2336 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2337 	struct mmc_host *host = mq->card->host;
2338 	struct request *prev_req = NULL;
2339 	int err = 0;
2340 
2341 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2342 
2343 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2344 
2345 	mmc_pre_req(host, &mqrq->brq.mrq);
2346 
2347 	err = mmc_blk_rw_wait(mq, &prev_req);
2348 	if (err)
2349 		goto out_post_req;
2350 
2351 	mq->rw_wait = true;
2352 
2353 	err = mmc_start_request(host, &mqrq->brq.mrq);
2354 
2355 	if (prev_req)
2356 		mmc_blk_mq_post_req(mq, prev_req, true);
2357 
2358 	if (err)
2359 		mq->rw_wait = false;
2360 
2361 	/* Release re-tuning here where there is no synchronization required */
2362 	if (err || mmc_host_done_complete(host))
2363 		mmc_retune_release(host);
2364 
2365 out_post_req:
2366 	if (err)
2367 		mmc_post_req(host, &mqrq->brq.mrq, err);
2368 
2369 	return err;
2370 }
2371 
2372 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2373 {
2374 	if (host->cqe_enabled)
2375 		return host->cqe_ops->cqe_wait_for_idle(host);
2376 
2377 	return mmc_blk_rw_wait(mq, NULL);
2378 }
2379 
2380 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2381 {
2382 	struct mmc_blk_data *md = mq->blkdata;
2383 	struct mmc_card *card = md->queue.card;
2384 	struct mmc_host *host = card->host;
2385 	int ret;
2386 
2387 	ret = mmc_blk_part_switch(card, md->part_type);
2388 	if (ret)
2389 		return MMC_REQ_FAILED_TO_START;
2390 
2391 	switch (mmc_issue_type(mq, req)) {
2392 	case MMC_ISSUE_SYNC:
2393 		ret = mmc_blk_wait_for_idle(mq, host);
2394 		if (ret)
2395 			return MMC_REQ_BUSY;
2396 		switch (req_op(req)) {
2397 		case REQ_OP_DRV_IN:
2398 		case REQ_OP_DRV_OUT:
2399 			mmc_blk_issue_drv_op(mq, req);
2400 			break;
2401 		case REQ_OP_DISCARD:
2402 			mmc_blk_issue_discard_rq(mq, req);
2403 			break;
2404 		case REQ_OP_SECURE_ERASE:
2405 			mmc_blk_issue_secdiscard_rq(mq, req);
2406 			break;
2407 		case REQ_OP_WRITE_ZEROES:
2408 			mmc_blk_issue_trim_rq(mq, req);
2409 			break;
2410 		case REQ_OP_FLUSH:
2411 			mmc_blk_issue_flush(mq, req);
2412 			break;
2413 		default:
2414 			WARN_ON_ONCE(1);
2415 			return MMC_REQ_FAILED_TO_START;
2416 		}
2417 		return MMC_REQ_FINISHED;
2418 	case MMC_ISSUE_DCMD:
2419 	case MMC_ISSUE_ASYNC:
2420 		switch (req_op(req)) {
2421 		case REQ_OP_FLUSH:
2422 			if (!mmc_cache_enabled(host)) {
2423 				blk_mq_end_request(req, BLK_STS_OK);
2424 				return MMC_REQ_FINISHED;
2425 			}
2426 			ret = mmc_blk_cqe_issue_flush(mq, req);
2427 			break;
2428 		case REQ_OP_WRITE:
2429 			card->written_flag = true;
2430 			fallthrough;
2431 		case REQ_OP_READ:
2432 			if (host->cqe_enabled)
2433 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2434 			else
2435 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2436 			break;
2437 		default:
2438 			WARN_ON_ONCE(1);
2439 			ret = -EINVAL;
2440 		}
2441 		if (!ret)
2442 			return MMC_REQ_STARTED;
2443 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2444 	default:
2445 		WARN_ON_ONCE(1);
2446 		return MMC_REQ_FAILED_TO_START;
2447 	}
2448 }
2449 
2450 static inline int mmc_blk_readonly(struct mmc_card *card)
2451 {
2452 	return mmc_card_readonly(card) ||
2453 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2454 }
2455 
2456 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2457 					      struct device *parent,
2458 					      sector_t size,
2459 					      bool default_ro,
2460 					      const char *subname,
2461 					      int area_type,
2462 					      unsigned int part_type)
2463 {
2464 	struct mmc_blk_data *md;
2465 	int devidx, ret;
2466 	char cap_str[10];
2467 	bool cache_enabled = false;
2468 	bool fua_enabled = false;
2469 
2470 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2471 	if (devidx < 0) {
2472 		/*
2473 		 * We get -ENOSPC because there are no more any available
2474 		 * devidx. The reason may be that, either userspace haven't yet
2475 		 * unmounted the partitions, which postpones mmc_blk_release()
2476 		 * from being called, or the device has more partitions than
2477 		 * what we support.
2478 		 */
2479 		if (devidx == -ENOSPC)
2480 			dev_err(mmc_dev(card->host),
2481 				"no more device IDs available\n");
2482 
2483 		return ERR_PTR(devidx);
2484 	}
2485 
2486 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2487 	if (!md) {
2488 		ret = -ENOMEM;
2489 		goto out;
2490 	}
2491 
2492 	md->area_type = area_type;
2493 
2494 	/*
2495 	 * Set the read-only status based on the supported commands
2496 	 * and the write protect switch.
2497 	 */
2498 	md->read_only = mmc_blk_readonly(card);
2499 
2500 	md->disk = mmc_init_queue(&md->queue, card);
2501 	if (IS_ERR(md->disk)) {
2502 		ret = PTR_ERR(md->disk);
2503 		goto err_kfree;
2504 	}
2505 
2506 	INIT_LIST_HEAD(&md->part);
2507 	INIT_LIST_HEAD(&md->rpmbs);
2508 	kref_init(&md->kref);
2509 
2510 	md->queue.blkdata = md;
2511 	md->part_type = part_type;
2512 
2513 	md->disk->major	= MMC_BLOCK_MAJOR;
2514 	md->disk->minors = perdev_minors;
2515 	md->disk->first_minor = devidx * perdev_minors;
2516 	md->disk->fops = &mmc_bdops;
2517 	md->disk->private_data = md;
2518 	md->parent = parent;
2519 	set_disk_ro(md->disk, md->read_only || default_ro);
2520 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2521 		md->disk->flags |= GENHD_FL_NO_PART;
2522 
2523 	/*
2524 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2525 	 *
2526 	 * - be set for removable media with permanent block devices
2527 	 * - be unset for removable block devices with permanent media
2528 	 *
2529 	 * Since MMC block devices clearly fall under the second
2530 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2531 	 * should use the block device creation/destruction hotplug
2532 	 * messages to tell when the card is present.
2533 	 */
2534 
2535 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2536 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2537 
2538 	set_capacity(md->disk, size);
2539 
2540 	if (mmc_host_cmd23(card->host)) {
2541 		if ((mmc_card_mmc(card) &&
2542 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2543 		    (mmc_card_sd(card) &&
2544 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2545 			md->flags |= MMC_BLK_CMD23;
2546 	}
2547 
2548 	if (md->flags & MMC_BLK_CMD23 &&
2549 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2550 	     card->ext_csd.rel_sectors)) {
2551 		md->flags |= MMC_BLK_REL_WR;
2552 		fua_enabled = true;
2553 		cache_enabled = true;
2554 	}
2555 	if (mmc_cache_enabled(card->host))
2556 		cache_enabled  = true;
2557 
2558 	blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2559 
2560 	string_get_size((u64)size, 512, STRING_UNITS_2,
2561 			cap_str, sizeof(cap_str));
2562 	pr_info("%s: %s %s %s%s\n",
2563 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2564 		cap_str, md->read_only ? " (ro)" : "");
2565 
2566 	/* used in ->open, must be set before add_disk: */
2567 	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2568 		dev_set_drvdata(&card->dev, md);
2569 	ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2570 	if (ret)
2571 		goto err_put_disk;
2572 	return md;
2573 
2574  err_put_disk:
2575 	put_disk(md->disk);
2576 	blk_mq_free_tag_set(&md->queue.tag_set);
2577  err_kfree:
2578 	kfree(md);
2579  out:
2580 	ida_simple_remove(&mmc_blk_ida, devidx);
2581 	return ERR_PTR(ret);
2582 }
2583 
2584 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2585 {
2586 	sector_t size;
2587 
2588 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2589 		/*
2590 		 * The EXT_CSD sector count is in number or 512 byte
2591 		 * sectors.
2592 		 */
2593 		size = card->ext_csd.sectors;
2594 	} else {
2595 		/*
2596 		 * The CSD capacity field is in units of read_blkbits.
2597 		 * set_capacity takes units of 512 bytes.
2598 		 */
2599 		size = (typeof(sector_t))card->csd.capacity
2600 			<< (card->csd.read_blkbits - 9);
2601 	}
2602 
2603 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2604 					MMC_BLK_DATA_AREA_MAIN, 0);
2605 }
2606 
2607 static int mmc_blk_alloc_part(struct mmc_card *card,
2608 			      struct mmc_blk_data *md,
2609 			      unsigned int part_type,
2610 			      sector_t size,
2611 			      bool default_ro,
2612 			      const char *subname,
2613 			      int area_type)
2614 {
2615 	struct mmc_blk_data *part_md;
2616 
2617 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2618 				    subname, area_type, part_type);
2619 	if (IS_ERR(part_md))
2620 		return PTR_ERR(part_md);
2621 	list_add(&part_md->part, &md->part);
2622 
2623 	return 0;
2624 }
2625 
2626 /**
2627  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2628  * @filp: the character device file
2629  * @cmd: the ioctl() command
2630  * @arg: the argument from userspace
2631  *
2632  * This will essentially just redirect the ioctl()s coming in over to
2633  * the main block device spawning the RPMB character device.
2634  */
2635 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2636 			   unsigned long arg)
2637 {
2638 	struct mmc_rpmb_data *rpmb = filp->private_data;
2639 	int ret;
2640 
2641 	switch (cmd) {
2642 	case MMC_IOC_CMD:
2643 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2644 					(struct mmc_ioc_cmd __user *)arg,
2645 					rpmb);
2646 		break;
2647 	case MMC_IOC_MULTI_CMD:
2648 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2649 					(struct mmc_ioc_multi_cmd __user *)arg,
2650 					rpmb);
2651 		break;
2652 	default:
2653 		ret = -EINVAL;
2654 		break;
2655 	}
2656 
2657 	return ret;
2658 }
2659 
2660 #ifdef CONFIG_COMPAT
2661 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2662 			      unsigned long arg)
2663 {
2664 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2665 }
2666 #endif
2667 
2668 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2669 {
2670 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2671 						  struct mmc_rpmb_data, chrdev);
2672 
2673 	get_device(&rpmb->dev);
2674 	filp->private_data = rpmb;
2675 	mmc_blk_get(rpmb->md->disk);
2676 
2677 	return nonseekable_open(inode, filp);
2678 }
2679 
2680 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2681 {
2682 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2683 						  struct mmc_rpmb_data, chrdev);
2684 
2685 	mmc_blk_put(rpmb->md);
2686 	put_device(&rpmb->dev);
2687 
2688 	return 0;
2689 }
2690 
2691 static const struct file_operations mmc_rpmb_fileops = {
2692 	.release = mmc_rpmb_chrdev_release,
2693 	.open = mmc_rpmb_chrdev_open,
2694 	.owner = THIS_MODULE,
2695 	.llseek = no_llseek,
2696 	.unlocked_ioctl = mmc_rpmb_ioctl,
2697 #ifdef CONFIG_COMPAT
2698 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2699 #endif
2700 };
2701 
2702 static void mmc_blk_rpmb_device_release(struct device *dev)
2703 {
2704 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2705 
2706 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2707 	kfree(rpmb);
2708 }
2709 
2710 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2711 				   struct mmc_blk_data *md,
2712 				   unsigned int part_index,
2713 				   sector_t size,
2714 				   const char *subname)
2715 {
2716 	int devidx, ret;
2717 	char rpmb_name[DISK_NAME_LEN];
2718 	char cap_str[10];
2719 	struct mmc_rpmb_data *rpmb;
2720 
2721 	/* This creates the minor number for the RPMB char device */
2722 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2723 	if (devidx < 0)
2724 		return devidx;
2725 
2726 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2727 	if (!rpmb) {
2728 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2729 		return -ENOMEM;
2730 	}
2731 
2732 	snprintf(rpmb_name, sizeof(rpmb_name),
2733 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2734 
2735 	rpmb->id = devidx;
2736 	rpmb->part_index = part_index;
2737 	rpmb->dev.init_name = rpmb_name;
2738 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2739 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2740 	rpmb->dev.parent = &card->dev;
2741 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2742 	device_initialize(&rpmb->dev);
2743 	dev_set_drvdata(&rpmb->dev, rpmb);
2744 	rpmb->md = md;
2745 
2746 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2747 	rpmb->chrdev.owner = THIS_MODULE;
2748 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2749 	if (ret) {
2750 		pr_err("%s: could not add character device\n", rpmb_name);
2751 		goto out_put_device;
2752 	}
2753 
2754 	list_add(&rpmb->node, &md->rpmbs);
2755 
2756 	string_get_size((u64)size, 512, STRING_UNITS_2,
2757 			cap_str, sizeof(cap_str));
2758 
2759 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2760 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2761 		MAJOR(mmc_rpmb_devt), rpmb->id);
2762 
2763 	return 0;
2764 
2765 out_put_device:
2766 	put_device(&rpmb->dev);
2767 	return ret;
2768 }
2769 
2770 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2771 
2772 {
2773 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2774 	put_device(&rpmb->dev);
2775 }
2776 
2777 /* MMC Physical partitions consist of two boot partitions and
2778  * up to four general purpose partitions.
2779  * For each partition enabled in EXT_CSD a block device will be allocatedi
2780  * to provide access to the partition.
2781  */
2782 
2783 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2784 {
2785 	int idx, ret;
2786 
2787 	if (!mmc_card_mmc(card))
2788 		return 0;
2789 
2790 	for (idx = 0; idx < card->nr_parts; idx++) {
2791 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2792 			/*
2793 			 * RPMB partitions does not provide block access, they
2794 			 * are only accessed using ioctl():s. Thus create
2795 			 * special RPMB block devices that do not have a
2796 			 * backing block queue for these.
2797 			 */
2798 			ret = mmc_blk_alloc_rpmb_part(card, md,
2799 				card->part[idx].part_cfg,
2800 				card->part[idx].size >> 9,
2801 				card->part[idx].name);
2802 			if (ret)
2803 				return ret;
2804 		} else if (card->part[idx].size) {
2805 			ret = mmc_blk_alloc_part(card, md,
2806 				card->part[idx].part_cfg,
2807 				card->part[idx].size >> 9,
2808 				card->part[idx].force_ro,
2809 				card->part[idx].name,
2810 				card->part[idx].area_type);
2811 			if (ret)
2812 				return ret;
2813 		}
2814 	}
2815 
2816 	return 0;
2817 }
2818 
2819 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2820 {
2821 	/*
2822 	 * Flush remaining requests and free queues. It is freeing the queue
2823 	 * that stops new requests from being accepted.
2824 	 */
2825 	del_gendisk(md->disk);
2826 	mmc_cleanup_queue(&md->queue);
2827 	mmc_blk_put(md);
2828 }
2829 
2830 static void mmc_blk_remove_parts(struct mmc_card *card,
2831 				 struct mmc_blk_data *md)
2832 {
2833 	struct list_head *pos, *q;
2834 	struct mmc_blk_data *part_md;
2835 	struct mmc_rpmb_data *rpmb;
2836 
2837 	/* Remove RPMB partitions */
2838 	list_for_each_safe(pos, q, &md->rpmbs) {
2839 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2840 		list_del(pos);
2841 		mmc_blk_remove_rpmb_part(rpmb);
2842 	}
2843 	/* Remove block partitions */
2844 	list_for_each_safe(pos, q, &md->part) {
2845 		part_md = list_entry(pos, struct mmc_blk_data, part);
2846 		list_del(pos);
2847 		mmc_blk_remove_req(part_md);
2848 	}
2849 }
2850 
2851 #ifdef CONFIG_DEBUG_FS
2852 
2853 static int mmc_dbg_card_status_get(void *data, u64 *val)
2854 {
2855 	struct mmc_card *card = data;
2856 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2857 	struct mmc_queue *mq = &md->queue;
2858 	struct request *req;
2859 	int ret;
2860 
2861 	/* Ask the block layer about the card status */
2862 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2863 	if (IS_ERR(req))
2864 		return PTR_ERR(req);
2865 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2866 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2867 	blk_execute_rq(req, false);
2868 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2869 	if (ret >= 0) {
2870 		*val = ret;
2871 		ret = 0;
2872 	}
2873 	blk_mq_free_request(req);
2874 
2875 	return ret;
2876 }
2877 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2878 			 NULL, "%08llx\n");
2879 
2880 /* That is two digits * 512 + 1 for newline */
2881 #define EXT_CSD_STR_LEN 1025
2882 
2883 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2884 {
2885 	struct mmc_card *card = inode->i_private;
2886 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2887 	struct mmc_queue *mq = &md->queue;
2888 	struct request *req;
2889 	char *buf;
2890 	ssize_t n = 0;
2891 	u8 *ext_csd;
2892 	int err, i;
2893 
2894 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2895 	if (!buf)
2896 		return -ENOMEM;
2897 
2898 	/* Ask the block layer for the EXT CSD */
2899 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2900 	if (IS_ERR(req)) {
2901 		err = PTR_ERR(req);
2902 		goto out_free;
2903 	}
2904 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2905 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2906 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2907 	blk_execute_rq(req, false);
2908 	err = req_to_mmc_queue_req(req)->drv_op_result;
2909 	blk_mq_free_request(req);
2910 	if (err) {
2911 		pr_err("FAILED %d\n", err);
2912 		goto out_free;
2913 	}
2914 
2915 	for (i = 0; i < 512; i++)
2916 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2917 	n += sprintf(buf + n, "\n");
2918 
2919 	if (n != EXT_CSD_STR_LEN) {
2920 		err = -EINVAL;
2921 		kfree(ext_csd);
2922 		goto out_free;
2923 	}
2924 
2925 	filp->private_data = buf;
2926 	kfree(ext_csd);
2927 	return 0;
2928 
2929 out_free:
2930 	kfree(buf);
2931 	return err;
2932 }
2933 
2934 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2935 				size_t cnt, loff_t *ppos)
2936 {
2937 	char *buf = filp->private_data;
2938 
2939 	return simple_read_from_buffer(ubuf, cnt, ppos,
2940 				       buf, EXT_CSD_STR_LEN);
2941 }
2942 
2943 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2944 {
2945 	kfree(file->private_data);
2946 	return 0;
2947 }
2948 
2949 static const struct file_operations mmc_dbg_ext_csd_fops = {
2950 	.open		= mmc_ext_csd_open,
2951 	.read		= mmc_ext_csd_read,
2952 	.release	= mmc_ext_csd_release,
2953 	.llseek		= default_llseek,
2954 };
2955 
2956 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2957 {
2958 	struct dentry *root;
2959 
2960 	if (!card->debugfs_root)
2961 		return;
2962 
2963 	root = card->debugfs_root;
2964 
2965 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2966 		md->status_dentry =
2967 			debugfs_create_file_unsafe("status", 0400, root,
2968 						   card,
2969 						   &mmc_dbg_card_status_fops);
2970 	}
2971 
2972 	if (mmc_card_mmc(card)) {
2973 		md->ext_csd_dentry =
2974 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2975 					    &mmc_dbg_ext_csd_fops);
2976 	}
2977 }
2978 
2979 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2980 				   struct mmc_blk_data *md)
2981 {
2982 	if (!card->debugfs_root)
2983 		return;
2984 
2985 	debugfs_remove(md->status_dentry);
2986 	md->status_dentry = NULL;
2987 
2988 	debugfs_remove(md->ext_csd_dentry);
2989 	md->ext_csd_dentry = NULL;
2990 }
2991 
2992 #else
2993 
2994 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2995 {
2996 }
2997 
2998 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2999 				   struct mmc_blk_data *md)
3000 {
3001 }
3002 
3003 #endif /* CONFIG_DEBUG_FS */
3004 
3005 static int mmc_blk_probe(struct mmc_card *card)
3006 {
3007 	struct mmc_blk_data *md;
3008 	int ret = 0;
3009 
3010 	/*
3011 	 * Check that the card supports the command class(es) we need.
3012 	 */
3013 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3014 		return -ENODEV;
3015 
3016 	mmc_fixup_device(card, mmc_blk_fixups);
3017 
3018 	card->complete_wq = alloc_workqueue("mmc_complete",
3019 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3020 	if (!card->complete_wq) {
3021 		pr_err("Failed to create mmc completion workqueue");
3022 		return -ENOMEM;
3023 	}
3024 
3025 	md = mmc_blk_alloc(card);
3026 	if (IS_ERR(md)) {
3027 		ret = PTR_ERR(md);
3028 		goto out_free;
3029 	}
3030 
3031 	ret = mmc_blk_alloc_parts(card, md);
3032 	if (ret)
3033 		goto out;
3034 
3035 	/* Add two debugfs entries */
3036 	mmc_blk_add_debugfs(card, md);
3037 
3038 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3039 	pm_runtime_use_autosuspend(&card->dev);
3040 
3041 	/*
3042 	 * Don't enable runtime PM for SD-combo cards here. Leave that
3043 	 * decision to be taken during the SDIO init sequence instead.
3044 	 */
3045 	if (!mmc_card_sd_combo(card)) {
3046 		pm_runtime_set_active(&card->dev);
3047 		pm_runtime_enable(&card->dev);
3048 	}
3049 
3050 	return 0;
3051 
3052 out:
3053 	mmc_blk_remove_parts(card, md);
3054 	mmc_blk_remove_req(md);
3055 out_free:
3056 	destroy_workqueue(card->complete_wq);
3057 	return ret;
3058 }
3059 
3060 static void mmc_blk_remove(struct mmc_card *card)
3061 {
3062 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3063 
3064 	mmc_blk_remove_debugfs(card, md);
3065 	mmc_blk_remove_parts(card, md);
3066 	pm_runtime_get_sync(&card->dev);
3067 	if (md->part_curr != md->part_type) {
3068 		mmc_claim_host(card->host);
3069 		mmc_blk_part_switch(card, md->part_type);
3070 		mmc_release_host(card->host);
3071 	}
3072 	if (!mmc_card_sd_combo(card))
3073 		pm_runtime_disable(&card->dev);
3074 	pm_runtime_put_noidle(&card->dev);
3075 	mmc_blk_remove_req(md);
3076 	destroy_workqueue(card->complete_wq);
3077 }
3078 
3079 static int _mmc_blk_suspend(struct mmc_card *card)
3080 {
3081 	struct mmc_blk_data *part_md;
3082 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3083 
3084 	if (md) {
3085 		mmc_queue_suspend(&md->queue);
3086 		list_for_each_entry(part_md, &md->part, part) {
3087 			mmc_queue_suspend(&part_md->queue);
3088 		}
3089 	}
3090 	return 0;
3091 }
3092 
3093 static void mmc_blk_shutdown(struct mmc_card *card)
3094 {
3095 	_mmc_blk_suspend(card);
3096 }
3097 
3098 #ifdef CONFIG_PM_SLEEP
3099 static int mmc_blk_suspend(struct device *dev)
3100 {
3101 	struct mmc_card *card = mmc_dev_to_card(dev);
3102 
3103 	return _mmc_blk_suspend(card);
3104 }
3105 
3106 static int mmc_blk_resume(struct device *dev)
3107 {
3108 	struct mmc_blk_data *part_md;
3109 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3110 
3111 	if (md) {
3112 		/*
3113 		 * Resume involves the card going into idle state,
3114 		 * so current partition is always the main one.
3115 		 */
3116 		md->part_curr = md->part_type;
3117 		mmc_queue_resume(&md->queue);
3118 		list_for_each_entry(part_md, &md->part, part) {
3119 			mmc_queue_resume(&part_md->queue);
3120 		}
3121 	}
3122 	return 0;
3123 }
3124 #endif
3125 
3126 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3127 
3128 static struct mmc_driver mmc_driver = {
3129 	.drv		= {
3130 		.name	= "mmcblk",
3131 		.pm	= &mmc_blk_pm_ops,
3132 	},
3133 	.probe		= mmc_blk_probe,
3134 	.remove		= mmc_blk_remove,
3135 	.shutdown	= mmc_blk_shutdown,
3136 };
3137 
3138 static int __init mmc_blk_init(void)
3139 {
3140 	int res;
3141 
3142 	res  = bus_register(&mmc_rpmb_bus_type);
3143 	if (res < 0) {
3144 		pr_err("mmcblk: could not register RPMB bus type\n");
3145 		return res;
3146 	}
3147 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3148 	if (res < 0) {
3149 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3150 		goto out_bus_unreg;
3151 	}
3152 
3153 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3154 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3155 
3156 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3157 
3158 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3159 	if (res)
3160 		goto out_chrdev_unreg;
3161 
3162 	res = mmc_register_driver(&mmc_driver);
3163 	if (res)
3164 		goto out_blkdev_unreg;
3165 
3166 	return 0;
3167 
3168 out_blkdev_unreg:
3169 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3170 out_chrdev_unreg:
3171 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3172 out_bus_unreg:
3173 	bus_unregister(&mmc_rpmb_bus_type);
3174 	return res;
3175 }
3176 
3177 static void __exit mmc_blk_exit(void)
3178 {
3179 	mmc_unregister_driver(&mmc_driver);
3180 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3181 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3182 	bus_unregister(&mmc_rpmb_bus_type);
3183 }
3184 
3185 module_init(mmc_blk_init);
3186 module_exit(mmc_blk_exit);
3187 
3188 MODULE_LICENSE("GPL");
3189 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3190