xref: /openbmc/linux/drivers/mmc/core/block.c (revision 9257bd80b917cc7908abd27ed5a5211964563f62)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41 
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47 
48 #include <linux/uaccess.h>
49 
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "crypto.h"
55 #include "host.h"
56 #include "bus.h"
57 #include "mmc_ops.h"
58 #include "quirks.h"
59 #include "sd_ops.h"
60 
61 MODULE_ALIAS("mmc:block");
62 #ifdef MODULE_PARAM_PREFIX
63 #undef MODULE_PARAM_PREFIX
64 #endif
65 #define MODULE_PARAM_PREFIX "mmcblk."
66 
67 /*
68  * Set a 10 second timeout for polling write request busy state. Note, mmc core
69  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
70  * second software timer to timeout the whole request, so 10 seconds should be
71  * ample.
72  */
73 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
76 
77 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
78 				  (rq_data_dir(req) == WRITE))
79 static DEFINE_MUTEX(block_mutex);
80 
81 /*
82  * The defaults come from config options but can be overriden by module
83  * or bootarg options.
84  */
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86 
87 /*
88  * We've only got one major, so number of mmcblk devices is
89  * limited to (1 << 20) / number of minors per device.  It is also
90  * limited by the MAX_DEVICES below.
91  */
92 static int max_devices;
93 
94 #define MAX_DEVICES 256
95 
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
98 
99 /*
100  * There is one mmc_blk_data per slot.
101  */
102 struct mmc_blk_data {
103 	struct device	*parent;
104 	struct gendisk	*disk;
105 	struct mmc_queue queue;
106 	struct list_head part;
107 	struct list_head rpmbs;
108 
109 	unsigned int	flags;
110 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
111 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
112 
113 	unsigned int	usage;
114 	unsigned int	read_only;
115 	unsigned int	part_type;
116 	unsigned int	reset_done;
117 #define MMC_BLK_READ		BIT(0)
118 #define MMC_BLK_WRITE		BIT(1)
119 #define MMC_BLK_DISCARD		BIT(2)
120 #define MMC_BLK_SECDISCARD	BIT(3)
121 #define MMC_BLK_CQE_RECOVERY	BIT(4)
122 
123 	/*
124 	 * Only set in main mmc_blk_data associated
125 	 * with mmc_card with dev_set_drvdata, and keeps
126 	 * track of the current selected device partition.
127 	 */
128 	unsigned int	part_curr;
129 	struct device_attribute force_ro;
130 	struct device_attribute power_ro_lock;
131 	int	area_type;
132 
133 	/* debugfs files (only in main mmc_blk_data) */
134 	struct dentry *status_dentry;
135 	struct dentry *ext_csd_dentry;
136 };
137 
138 /* Device type for RPMB character devices */
139 static dev_t mmc_rpmb_devt;
140 
141 /* Bus type for RPMB character devices */
142 static struct bus_type mmc_rpmb_bus_type = {
143 	.name = "mmc_rpmb",
144 };
145 
146 /**
147  * struct mmc_rpmb_data - special RPMB device type for these areas
148  * @dev: the device for the RPMB area
149  * @chrdev: character device for the RPMB area
150  * @id: unique device ID number
151  * @part_index: partition index (0 on first)
152  * @md: parent MMC block device
153  * @node: list item, so we can put this device on a list
154  */
155 struct mmc_rpmb_data {
156 	struct device dev;
157 	struct cdev chrdev;
158 	int id;
159 	unsigned int part_index;
160 	struct mmc_blk_data *md;
161 	struct list_head node;
162 };
163 
164 static DEFINE_MUTEX(open_lock);
165 
166 module_param(perdev_minors, int, 0444);
167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
168 
169 static inline int mmc_blk_part_switch(struct mmc_card *card,
170 				      unsigned int part_type);
171 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
172 			       struct mmc_card *card,
173 			       int disable_multi,
174 			       struct mmc_queue *mq);
175 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
176 
177 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
178 {
179 	struct mmc_blk_data *md;
180 
181 	mutex_lock(&open_lock);
182 	md = disk->private_data;
183 	if (md && md->usage == 0)
184 		md = NULL;
185 	if (md)
186 		md->usage++;
187 	mutex_unlock(&open_lock);
188 
189 	return md;
190 }
191 
192 static inline int mmc_get_devidx(struct gendisk *disk)
193 {
194 	int devidx = disk->first_minor / perdev_minors;
195 	return devidx;
196 }
197 
198 static void mmc_blk_put(struct mmc_blk_data *md)
199 {
200 	mutex_lock(&open_lock);
201 	md->usage--;
202 	if (md->usage == 0) {
203 		int devidx = mmc_get_devidx(md->disk);
204 		blk_put_queue(md->queue.queue);
205 		ida_simple_remove(&mmc_blk_ida, devidx);
206 		put_disk(md->disk);
207 		kfree(md);
208 	}
209 	mutex_unlock(&open_lock);
210 }
211 
212 static ssize_t power_ro_lock_show(struct device *dev,
213 		struct device_attribute *attr, char *buf)
214 {
215 	int ret;
216 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
217 	struct mmc_card *card = md->queue.card;
218 	int locked = 0;
219 
220 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
221 		locked = 2;
222 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
223 		locked = 1;
224 
225 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
226 
227 	mmc_blk_put(md);
228 
229 	return ret;
230 }
231 
232 static ssize_t power_ro_lock_store(struct device *dev,
233 		struct device_attribute *attr, const char *buf, size_t count)
234 {
235 	int ret;
236 	struct mmc_blk_data *md, *part_md;
237 	struct mmc_queue *mq;
238 	struct request *req;
239 	unsigned long set;
240 
241 	if (kstrtoul(buf, 0, &set))
242 		return -EINVAL;
243 
244 	if (set != 1)
245 		return count;
246 
247 	md = mmc_blk_get(dev_to_disk(dev));
248 	mq = &md->queue;
249 
250 	/* Dispatch locking to the block layer */
251 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
252 	if (IS_ERR(req)) {
253 		count = PTR_ERR(req);
254 		goto out_put;
255 	}
256 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
257 	blk_execute_rq(NULL, req, 0);
258 	ret = req_to_mmc_queue_req(req)->drv_op_result;
259 	blk_put_request(req);
260 
261 	if (!ret) {
262 		pr_info("%s: Locking boot partition ro until next power on\n",
263 			md->disk->disk_name);
264 		set_disk_ro(md->disk, 1);
265 
266 		list_for_each_entry(part_md, &md->part, part)
267 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
268 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
269 				set_disk_ro(part_md->disk, 1);
270 			}
271 	}
272 out_put:
273 	mmc_blk_put(md);
274 	return count;
275 }
276 
277 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
278 			     char *buf)
279 {
280 	int ret;
281 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
282 
283 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
284 		       get_disk_ro(dev_to_disk(dev)) ^
285 		       md->read_only);
286 	mmc_blk_put(md);
287 	return ret;
288 }
289 
290 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
291 			      const char *buf, size_t count)
292 {
293 	int ret;
294 	char *end;
295 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
296 	unsigned long set = simple_strtoul(buf, &end, 0);
297 	if (end == buf) {
298 		ret = -EINVAL;
299 		goto out;
300 	}
301 
302 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
303 	ret = count;
304 out:
305 	mmc_blk_put(md);
306 	return ret;
307 }
308 
309 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
310 {
311 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
312 	int ret = -ENXIO;
313 
314 	mutex_lock(&block_mutex);
315 	if (md) {
316 		ret = 0;
317 		if ((mode & FMODE_WRITE) && md->read_only) {
318 			mmc_blk_put(md);
319 			ret = -EROFS;
320 		}
321 	}
322 	mutex_unlock(&block_mutex);
323 
324 	return ret;
325 }
326 
327 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
328 {
329 	struct mmc_blk_data *md = disk->private_data;
330 
331 	mutex_lock(&block_mutex);
332 	mmc_blk_put(md);
333 	mutex_unlock(&block_mutex);
334 }
335 
336 static int
337 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
338 {
339 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
340 	geo->heads = 4;
341 	geo->sectors = 16;
342 	return 0;
343 }
344 
345 struct mmc_blk_ioc_data {
346 	struct mmc_ioc_cmd ic;
347 	unsigned char *buf;
348 	u64 buf_bytes;
349 	struct mmc_rpmb_data *rpmb;
350 };
351 
352 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
353 	struct mmc_ioc_cmd __user *user)
354 {
355 	struct mmc_blk_ioc_data *idata;
356 	int err;
357 
358 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
359 	if (!idata) {
360 		err = -ENOMEM;
361 		goto out;
362 	}
363 
364 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
365 		err = -EFAULT;
366 		goto idata_err;
367 	}
368 
369 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
370 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
371 		err = -EOVERFLOW;
372 		goto idata_err;
373 	}
374 
375 	if (!idata->buf_bytes) {
376 		idata->buf = NULL;
377 		return idata;
378 	}
379 
380 	idata->buf = memdup_user((void __user *)(unsigned long)
381 				 idata->ic.data_ptr, idata->buf_bytes);
382 	if (IS_ERR(idata->buf)) {
383 		err = PTR_ERR(idata->buf);
384 		goto idata_err;
385 	}
386 
387 	return idata;
388 
389 idata_err:
390 	kfree(idata);
391 out:
392 	return ERR_PTR(err);
393 }
394 
395 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
396 				      struct mmc_blk_ioc_data *idata)
397 {
398 	struct mmc_ioc_cmd *ic = &idata->ic;
399 
400 	if (copy_to_user(&(ic_ptr->response), ic->response,
401 			 sizeof(ic->response)))
402 		return -EFAULT;
403 
404 	if (!idata->ic.write_flag) {
405 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
406 				 idata->buf, idata->buf_bytes))
407 			return -EFAULT;
408 	}
409 
410 	return 0;
411 }
412 
413 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
414 			    u32 *resp_errs)
415 {
416 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
417 	int err = 0;
418 	u32 status;
419 
420 	do {
421 		bool done = time_after(jiffies, timeout);
422 
423 		err = __mmc_send_status(card, &status, 5);
424 		if (err) {
425 			dev_err(mmc_dev(card->host),
426 				"error %d requesting status\n", err);
427 			return err;
428 		}
429 
430 		/* Accumulate any response error bits seen */
431 		if (resp_errs)
432 			*resp_errs |= status;
433 
434 		/*
435 		 * Timeout if the device never becomes ready for data and never
436 		 * leaves the program state.
437 		 */
438 		if (done) {
439 			dev_err(mmc_dev(card->host),
440 				"Card stuck in wrong state! %s status: %#x\n",
441 				 __func__, status);
442 			return -ETIMEDOUT;
443 		}
444 	} while (!mmc_ready_for_data(status));
445 
446 	return err;
447 }
448 
449 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
450 			       struct mmc_blk_ioc_data *idata)
451 {
452 	struct mmc_command cmd = {}, sbc = {};
453 	struct mmc_data data = {};
454 	struct mmc_request mrq = {};
455 	struct scatterlist sg;
456 	int err;
457 	unsigned int target_part;
458 
459 	if (!card || !md || !idata)
460 		return -EINVAL;
461 
462 	/*
463 	 * The RPMB accesses comes in from the character device, so we
464 	 * need to target these explicitly. Else we just target the
465 	 * partition type for the block device the ioctl() was issued
466 	 * on.
467 	 */
468 	if (idata->rpmb) {
469 		/* Support multiple RPMB partitions */
470 		target_part = idata->rpmb->part_index;
471 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
472 	} else {
473 		target_part = md->part_type;
474 	}
475 
476 	cmd.opcode = idata->ic.opcode;
477 	cmd.arg = idata->ic.arg;
478 	cmd.flags = idata->ic.flags;
479 
480 	if (idata->buf_bytes) {
481 		data.sg = &sg;
482 		data.sg_len = 1;
483 		data.blksz = idata->ic.blksz;
484 		data.blocks = idata->ic.blocks;
485 
486 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
487 
488 		if (idata->ic.write_flag)
489 			data.flags = MMC_DATA_WRITE;
490 		else
491 			data.flags = MMC_DATA_READ;
492 
493 		/* data.flags must already be set before doing this. */
494 		mmc_set_data_timeout(&data, card);
495 
496 		/* Allow overriding the timeout_ns for empirical tuning. */
497 		if (idata->ic.data_timeout_ns)
498 			data.timeout_ns = idata->ic.data_timeout_ns;
499 
500 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
501 			/*
502 			 * Pretend this is a data transfer and rely on the
503 			 * host driver to compute timeout.  When all host
504 			 * drivers support cmd.cmd_timeout for R1B, this
505 			 * can be changed to:
506 			 *
507 			 *     mrq.data = NULL;
508 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
509 			 */
510 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
511 		}
512 
513 		mrq.data = &data;
514 	}
515 
516 	mrq.cmd = &cmd;
517 
518 	err = mmc_blk_part_switch(card, target_part);
519 	if (err)
520 		return err;
521 
522 	if (idata->ic.is_acmd) {
523 		err = mmc_app_cmd(card->host, card);
524 		if (err)
525 			return err;
526 	}
527 
528 	if (idata->rpmb) {
529 		sbc.opcode = MMC_SET_BLOCK_COUNT;
530 		/*
531 		 * We don't do any blockcount validation because the max size
532 		 * may be increased by a future standard. We just copy the
533 		 * 'Reliable Write' bit here.
534 		 */
535 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
536 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
537 		mrq.sbc = &sbc;
538 	}
539 
540 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
541 	    (cmd.opcode == MMC_SWITCH))
542 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
543 
544 	mmc_wait_for_req(card->host, &mrq);
545 
546 	if (cmd.error) {
547 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
548 						__func__, cmd.error);
549 		return cmd.error;
550 	}
551 	if (data.error) {
552 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
553 						__func__, data.error);
554 		return data.error;
555 	}
556 
557 	/*
558 	 * Make sure the cache of the PARTITION_CONFIG register and
559 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
560 	 * changed it successfully.
561 	 */
562 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
563 	    (cmd.opcode == MMC_SWITCH)) {
564 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
565 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
566 
567 		/*
568 		 * Update cache so the next mmc_blk_part_switch call operates
569 		 * on up-to-date data.
570 		 */
571 		card->ext_csd.part_config = value;
572 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
573 	}
574 
575 	/*
576 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
577 	 * will get turned back on if the card is re-initialized, e.g.
578 	 * suspend/resume or hw reset in recovery.
579 	 */
580 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
581 	    (cmd.opcode == MMC_SWITCH)) {
582 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
583 
584 		card->ext_csd.cache_ctrl = value;
585 	}
586 
587 	/*
588 	 * According to the SD specs, some commands require a delay after
589 	 * issuing the command.
590 	 */
591 	if (idata->ic.postsleep_min_us)
592 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
593 
594 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
595 
596 	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
597 		/*
598 		 * Ensure RPMB/R1B command has completed by polling CMD13
599 		 * "Send Status".
600 		 */
601 		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
602 	}
603 
604 	return err;
605 }
606 
607 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
608 			     struct mmc_ioc_cmd __user *ic_ptr,
609 			     struct mmc_rpmb_data *rpmb)
610 {
611 	struct mmc_blk_ioc_data *idata;
612 	struct mmc_blk_ioc_data *idatas[1];
613 	struct mmc_queue *mq;
614 	struct mmc_card *card;
615 	int err = 0, ioc_err = 0;
616 	struct request *req;
617 
618 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
619 	if (IS_ERR(idata))
620 		return PTR_ERR(idata);
621 	/* This will be NULL on non-RPMB ioctl():s */
622 	idata->rpmb = rpmb;
623 
624 	card = md->queue.card;
625 	if (IS_ERR(card)) {
626 		err = PTR_ERR(card);
627 		goto cmd_done;
628 	}
629 
630 	/*
631 	 * Dispatch the ioctl() into the block request queue.
632 	 */
633 	mq = &md->queue;
634 	req = blk_get_request(mq->queue,
635 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
636 	if (IS_ERR(req)) {
637 		err = PTR_ERR(req);
638 		goto cmd_done;
639 	}
640 	idatas[0] = idata;
641 	req_to_mmc_queue_req(req)->drv_op =
642 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
643 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
644 	req_to_mmc_queue_req(req)->ioc_count = 1;
645 	blk_execute_rq(NULL, req, 0);
646 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
647 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
648 	blk_put_request(req);
649 
650 cmd_done:
651 	kfree(idata->buf);
652 	kfree(idata);
653 	return ioc_err ? ioc_err : err;
654 }
655 
656 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
657 				   struct mmc_ioc_multi_cmd __user *user,
658 				   struct mmc_rpmb_data *rpmb)
659 {
660 	struct mmc_blk_ioc_data **idata = NULL;
661 	struct mmc_ioc_cmd __user *cmds = user->cmds;
662 	struct mmc_card *card;
663 	struct mmc_queue *mq;
664 	int i, err = 0, ioc_err = 0;
665 	__u64 num_of_cmds;
666 	struct request *req;
667 
668 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
669 			   sizeof(num_of_cmds)))
670 		return -EFAULT;
671 
672 	if (!num_of_cmds)
673 		return 0;
674 
675 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
676 		return -EINVAL;
677 
678 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
679 	if (!idata)
680 		return -ENOMEM;
681 
682 	for (i = 0; i < num_of_cmds; i++) {
683 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
684 		if (IS_ERR(idata[i])) {
685 			err = PTR_ERR(idata[i]);
686 			num_of_cmds = i;
687 			goto cmd_err;
688 		}
689 		/* This will be NULL on non-RPMB ioctl():s */
690 		idata[i]->rpmb = rpmb;
691 	}
692 
693 	card = md->queue.card;
694 	if (IS_ERR(card)) {
695 		err = PTR_ERR(card);
696 		goto cmd_err;
697 	}
698 
699 
700 	/*
701 	 * Dispatch the ioctl()s into the block request queue.
702 	 */
703 	mq = &md->queue;
704 	req = blk_get_request(mq->queue,
705 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
706 	if (IS_ERR(req)) {
707 		err = PTR_ERR(req);
708 		goto cmd_err;
709 	}
710 	req_to_mmc_queue_req(req)->drv_op =
711 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
712 	req_to_mmc_queue_req(req)->drv_op_data = idata;
713 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
714 	blk_execute_rq(NULL, req, 0);
715 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
716 
717 	/* copy to user if data and response */
718 	for (i = 0; i < num_of_cmds && !err; i++)
719 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
720 
721 	blk_put_request(req);
722 
723 cmd_err:
724 	for (i = 0; i < num_of_cmds; i++) {
725 		kfree(idata[i]->buf);
726 		kfree(idata[i]);
727 	}
728 	kfree(idata);
729 	return ioc_err ? ioc_err : err;
730 }
731 
732 static int mmc_blk_check_blkdev(struct block_device *bdev)
733 {
734 	/*
735 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
736 	 * whole block device, not on a partition.  This prevents overspray
737 	 * between sibling partitions.
738 	 */
739 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
740 		return -EPERM;
741 	return 0;
742 }
743 
744 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
745 	unsigned int cmd, unsigned long arg)
746 {
747 	struct mmc_blk_data *md;
748 	int ret;
749 
750 	switch (cmd) {
751 	case MMC_IOC_CMD:
752 		ret = mmc_blk_check_blkdev(bdev);
753 		if (ret)
754 			return ret;
755 		md = mmc_blk_get(bdev->bd_disk);
756 		if (!md)
757 			return -EINVAL;
758 		ret = mmc_blk_ioctl_cmd(md,
759 					(struct mmc_ioc_cmd __user *)arg,
760 					NULL);
761 		mmc_blk_put(md);
762 		return ret;
763 	case MMC_IOC_MULTI_CMD:
764 		ret = mmc_blk_check_blkdev(bdev);
765 		if (ret)
766 			return ret;
767 		md = mmc_blk_get(bdev->bd_disk);
768 		if (!md)
769 			return -EINVAL;
770 		ret = mmc_blk_ioctl_multi_cmd(md,
771 					(struct mmc_ioc_multi_cmd __user *)arg,
772 					NULL);
773 		mmc_blk_put(md);
774 		return ret;
775 	default:
776 		return -EINVAL;
777 	}
778 }
779 
780 #ifdef CONFIG_COMPAT
781 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
782 	unsigned int cmd, unsigned long arg)
783 {
784 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
785 }
786 #endif
787 
788 static const struct block_device_operations mmc_bdops = {
789 	.open			= mmc_blk_open,
790 	.release		= mmc_blk_release,
791 	.getgeo			= mmc_blk_getgeo,
792 	.owner			= THIS_MODULE,
793 	.ioctl			= mmc_blk_ioctl,
794 #ifdef CONFIG_COMPAT
795 	.compat_ioctl		= mmc_blk_compat_ioctl,
796 #endif
797 };
798 
799 static int mmc_blk_part_switch_pre(struct mmc_card *card,
800 				   unsigned int part_type)
801 {
802 	int ret = 0;
803 
804 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
805 		if (card->ext_csd.cmdq_en) {
806 			ret = mmc_cmdq_disable(card);
807 			if (ret)
808 				return ret;
809 		}
810 		mmc_retune_pause(card->host);
811 	}
812 
813 	return ret;
814 }
815 
816 static int mmc_blk_part_switch_post(struct mmc_card *card,
817 				    unsigned int part_type)
818 {
819 	int ret = 0;
820 
821 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
822 		mmc_retune_unpause(card->host);
823 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
824 			ret = mmc_cmdq_enable(card);
825 	}
826 
827 	return ret;
828 }
829 
830 static inline int mmc_blk_part_switch(struct mmc_card *card,
831 				      unsigned int part_type)
832 {
833 	int ret = 0;
834 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
835 
836 	if (main_md->part_curr == part_type)
837 		return 0;
838 
839 	if (mmc_card_mmc(card)) {
840 		u8 part_config = card->ext_csd.part_config;
841 
842 		ret = mmc_blk_part_switch_pre(card, part_type);
843 		if (ret)
844 			return ret;
845 
846 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
847 		part_config |= part_type;
848 
849 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
850 				 EXT_CSD_PART_CONFIG, part_config,
851 				 card->ext_csd.part_time);
852 		if (ret) {
853 			mmc_blk_part_switch_post(card, part_type);
854 			return ret;
855 		}
856 
857 		card->ext_csd.part_config = part_config;
858 
859 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
860 	}
861 
862 	main_md->part_curr = part_type;
863 	return ret;
864 }
865 
866 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
867 {
868 	int err;
869 	u32 result;
870 	__be32 *blocks;
871 
872 	struct mmc_request mrq = {};
873 	struct mmc_command cmd = {};
874 	struct mmc_data data = {};
875 
876 	struct scatterlist sg;
877 
878 	cmd.opcode = MMC_APP_CMD;
879 	cmd.arg = card->rca << 16;
880 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
881 
882 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
883 	if (err)
884 		return err;
885 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
886 		return -EIO;
887 
888 	memset(&cmd, 0, sizeof(struct mmc_command));
889 
890 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
891 	cmd.arg = 0;
892 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
893 
894 	data.blksz = 4;
895 	data.blocks = 1;
896 	data.flags = MMC_DATA_READ;
897 	data.sg = &sg;
898 	data.sg_len = 1;
899 	mmc_set_data_timeout(&data, card);
900 
901 	mrq.cmd = &cmd;
902 	mrq.data = &data;
903 
904 	blocks = kmalloc(4, GFP_KERNEL);
905 	if (!blocks)
906 		return -ENOMEM;
907 
908 	sg_init_one(&sg, blocks, 4);
909 
910 	mmc_wait_for_req(card->host, &mrq);
911 
912 	result = ntohl(*blocks);
913 	kfree(blocks);
914 
915 	if (cmd.error || data.error)
916 		return -EIO;
917 
918 	*written_blocks = result;
919 
920 	return 0;
921 }
922 
923 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
924 {
925 	if (host->actual_clock)
926 		return host->actual_clock / 1000;
927 
928 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
929 	if (host->ios.clock)
930 		return host->ios.clock / 2000;
931 
932 	/* How can there be no clock */
933 	WARN_ON_ONCE(1);
934 	return 100; /* 100 kHz is minimum possible value */
935 }
936 
937 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
938 					    struct mmc_data *data)
939 {
940 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
941 	unsigned int khz;
942 
943 	if (data->timeout_clks) {
944 		khz = mmc_blk_clock_khz(host);
945 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
946 	}
947 
948 	return ms;
949 }
950 
951 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
952 			 int type)
953 {
954 	int err;
955 
956 	if (md->reset_done & type)
957 		return -EEXIST;
958 
959 	md->reset_done |= type;
960 	err = mmc_hw_reset(host);
961 	/* Ensure we switch back to the correct partition */
962 	if (err) {
963 		struct mmc_blk_data *main_md =
964 			dev_get_drvdata(&host->card->dev);
965 		int part_err;
966 
967 		main_md->part_curr = main_md->part_type;
968 		part_err = mmc_blk_part_switch(host->card, md->part_type);
969 		if (part_err) {
970 			/*
971 			 * We have failed to get back into the correct
972 			 * partition, so we need to abort the whole request.
973 			 */
974 			return -ENODEV;
975 		}
976 	}
977 	return err;
978 }
979 
980 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
981 {
982 	md->reset_done &= ~type;
983 }
984 
985 /*
986  * The non-block commands come back from the block layer after it queued it and
987  * processed it with all other requests and then they get issued in this
988  * function.
989  */
990 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
991 {
992 	struct mmc_queue_req *mq_rq;
993 	struct mmc_card *card = mq->card;
994 	struct mmc_blk_data *md = mq->blkdata;
995 	struct mmc_blk_ioc_data **idata;
996 	bool rpmb_ioctl;
997 	u8 **ext_csd;
998 	u32 status;
999 	int ret;
1000 	int i;
1001 
1002 	mq_rq = req_to_mmc_queue_req(req);
1003 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1004 
1005 	switch (mq_rq->drv_op) {
1006 	case MMC_DRV_OP_IOCTL:
1007 	case MMC_DRV_OP_IOCTL_RPMB:
1008 		idata = mq_rq->drv_op_data;
1009 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1010 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1011 			if (ret)
1012 				break;
1013 		}
1014 		/* Always switch back to main area after RPMB access */
1015 		if (rpmb_ioctl)
1016 			mmc_blk_part_switch(card, 0);
1017 		break;
1018 	case MMC_DRV_OP_BOOT_WP:
1019 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1020 				 card->ext_csd.boot_ro_lock |
1021 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1022 				 card->ext_csd.part_time);
1023 		if (ret)
1024 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1025 			       md->disk->disk_name, ret);
1026 		else
1027 			card->ext_csd.boot_ro_lock |=
1028 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1029 		break;
1030 	case MMC_DRV_OP_GET_CARD_STATUS:
1031 		ret = mmc_send_status(card, &status);
1032 		if (!ret)
1033 			ret = status;
1034 		break;
1035 	case MMC_DRV_OP_GET_EXT_CSD:
1036 		ext_csd = mq_rq->drv_op_data;
1037 		ret = mmc_get_ext_csd(card, ext_csd);
1038 		break;
1039 	default:
1040 		pr_err("%s: unknown driver specific operation\n",
1041 		       md->disk->disk_name);
1042 		ret = -EINVAL;
1043 		break;
1044 	}
1045 	mq_rq->drv_op_result = ret;
1046 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1047 }
1048 
1049 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1050 {
1051 	struct mmc_blk_data *md = mq->blkdata;
1052 	struct mmc_card *card = md->queue.card;
1053 	unsigned int from, nr;
1054 	int err = 0, type = MMC_BLK_DISCARD;
1055 	blk_status_t status = BLK_STS_OK;
1056 
1057 	if (!mmc_can_erase(card)) {
1058 		status = BLK_STS_NOTSUPP;
1059 		goto fail;
1060 	}
1061 
1062 	from = blk_rq_pos(req);
1063 	nr = blk_rq_sectors(req);
1064 
1065 	do {
1066 		err = 0;
1067 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1068 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1069 					 INAND_CMD38_ARG_EXT_CSD,
1070 					 card->erase_arg == MMC_TRIM_ARG ?
1071 					 INAND_CMD38_ARG_TRIM :
1072 					 INAND_CMD38_ARG_ERASE,
1073 					 card->ext_csd.generic_cmd6_time);
1074 		}
1075 		if (!err)
1076 			err = mmc_erase(card, from, nr, card->erase_arg);
1077 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1078 	if (err)
1079 		status = BLK_STS_IOERR;
1080 	else
1081 		mmc_blk_reset_success(md, type);
1082 fail:
1083 	blk_mq_end_request(req, status);
1084 }
1085 
1086 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1087 				       struct request *req)
1088 {
1089 	struct mmc_blk_data *md = mq->blkdata;
1090 	struct mmc_card *card = md->queue.card;
1091 	unsigned int from, nr, arg;
1092 	int err = 0, type = MMC_BLK_SECDISCARD;
1093 	blk_status_t status = BLK_STS_OK;
1094 
1095 	if (!(mmc_can_secure_erase_trim(card))) {
1096 		status = BLK_STS_NOTSUPP;
1097 		goto out;
1098 	}
1099 
1100 	from = blk_rq_pos(req);
1101 	nr = blk_rq_sectors(req);
1102 
1103 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1104 		arg = MMC_SECURE_TRIM1_ARG;
1105 	else
1106 		arg = MMC_SECURE_ERASE_ARG;
1107 
1108 retry:
1109 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1110 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1111 				 INAND_CMD38_ARG_EXT_CSD,
1112 				 arg == MMC_SECURE_TRIM1_ARG ?
1113 				 INAND_CMD38_ARG_SECTRIM1 :
1114 				 INAND_CMD38_ARG_SECERASE,
1115 				 card->ext_csd.generic_cmd6_time);
1116 		if (err)
1117 			goto out_retry;
1118 	}
1119 
1120 	err = mmc_erase(card, from, nr, arg);
1121 	if (err == -EIO)
1122 		goto out_retry;
1123 	if (err) {
1124 		status = BLK_STS_IOERR;
1125 		goto out;
1126 	}
1127 
1128 	if (arg == MMC_SECURE_TRIM1_ARG) {
1129 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1130 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1131 					 INAND_CMD38_ARG_EXT_CSD,
1132 					 INAND_CMD38_ARG_SECTRIM2,
1133 					 card->ext_csd.generic_cmd6_time);
1134 			if (err)
1135 				goto out_retry;
1136 		}
1137 
1138 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1139 		if (err == -EIO)
1140 			goto out_retry;
1141 		if (err) {
1142 			status = BLK_STS_IOERR;
1143 			goto out;
1144 		}
1145 	}
1146 
1147 out_retry:
1148 	if (err && !mmc_blk_reset(md, card->host, type))
1149 		goto retry;
1150 	if (!err)
1151 		mmc_blk_reset_success(md, type);
1152 out:
1153 	blk_mq_end_request(req, status);
1154 }
1155 
1156 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1157 {
1158 	struct mmc_blk_data *md = mq->blkdata;
1159 	struct mmc_card *card = md->queue.card;
1160 	int ret = 0;
1161 
1162 	ret = mmc_flush_cache(card);
1163 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1164 }
1165 
1166 /*
1167  * Reformat current write as a reliable write, supporting
1168  * both legacy and the enhanced reliable write MMC cards.
1169  * In each transfer we'll handle only as much as a single
1170  * reliable write can handle, thus finish the request in
1171  * partial completions.
1172  */
1173 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1174 				    struct mmc_card *card,
1175 				    struct request *req)
1176 {
1177 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1178 		/* Legacy mode imposes restrictions on transfers. */
1179 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1180 			brq->data.blocks = 1;
1181 
1182 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1183 			brq->data.blocks = card->ext_csd.rel_sectors;
1184 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1185 			brq->data.blocks = 1;
1186 	}
1187 }
1188 
1189 #define CMD_ERRORS_EXCL_OOR						\
1190 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1191 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1192 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1193 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1194 	 R1_CC_ERROR |		/* Card controller error */		\
1195 	 R1_ERROR)		/* General/unknown error */
1196 
1197 #define CMD_ERRORS							\
1198 	(CMD_ERRORS_EXCL_OOR |						\
1199 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1200 
1201 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1202 {
1203 	u32 val;
1204 
1205 	/*
1206 	 * Per the SD specification(physical layer version 4.10)[1],
1207 	 * section 4.3.3, it explicitly states that "When the last
1208 	 * block of user area is read using CMD18, the host should
1209 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1210 	 * is correct". And JESD84-B51 for eMMC also has a similar
1211 	 * statement on section 6.8.3.
1212 	 *
1213 	 * Multiple block read/write could be done by either predefined
1214 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1215 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1216 	 *
1217 	 * However the spec[1] doesn't tell us whether we should also
1218 	 * ignore that for predefined method. But per the spec[1], section
1219 	 * 4.15 Set Block Count Command, it says"If illegal block count
1220 	 * is set, out of range error will be indicated during read/write
1221 	 * operation (For example, data transfer is stopped at user area
1222 	 * boundary)." In another word, we could expect a out of range error
1223 	 * in the response for the following CMD18/25. And if argument of
1224 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1225 	 * we could also expect to get a -ETIMEDOUT or any error number from
1226 	 * the host drivers due to missing data response(for write)/data(for
1227 	 * read), as the cards will stop the data transfer by itself per the
1228 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1229 	 */
1230 
1231 	if (!brq->stop.error) {
1232 		bool oor_with_open_end;
1233 		/* If there is no error yet, check R1 response */
1234 
1235 		val = brq->stop.resp[0] & CMD_ERRORS;
1236 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1237 
1238 		if (val && !oor_with_open_end)
1239 			brq->stop.error = -EIO;
1240 	}
1241 }
1242 
1243 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1244 			      int disable_multi, bool *do_rel_wr_p,
1245 			      bool *do_data_tag_p)
1246 {
1247 	struct mmc_blk_data *md = mq->blkdata;
1248 	struct mmc_card *card = md->queue.card;
1249 	struct mmc_blk_request *brq = &mqrq->brq;
1250 	struct request *req = mmc_queue_req_to_req(mqrq);
1251 	bool do_rel_wr, do_data_tag;
1252 
1253 	/*
1254 	 * Reliable writes are used to implement Forced Unit Access and
1255 	 * are supported only on MMCs.
1256 	 */
1257 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1258 		    rq_data_dir(req) == WRITE &&
1259 		    (md->flags & MMC_BLK_REL_WR);
1260 
1261 	memset(brq, 0, sizeof(struct mmc_blk_request));
1262 
1263 	mmc_crypto_prepare_req(mqrq);
1264 
1265 	brq->mrq.data = &brq->data;
1266 	brq->mrq.tag = req->tag;
1267 
1268 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1269 	brq->stop.arg = 0;
1270 
1271 	if (rq_data_dir(req) == READ) {
1272 		brq->data.flags = MMC_DATA_READ;
1273 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1274 	} else {
1275 		brq->data.flags = MMC_DATA_WRITE;
1276 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1277 	}
1278 
1279 	brq->data.blksz = 512;
1280 	brq->data.blocks = blk_rq_sectors(req);
1281 	brq->data.blk_addr = blk_rq_pos(req);
1282 
1283 	/*
1284 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1285 	 * The eMMC will give "high" priority tasks priority over "simple"
1286 	 * priority tasks. Here we always set "simple" priority by not setting
1287 	 * MMC_DATA_PRIO.
1288 	 */
1289 
1290 	/*
1291 	 * The block layer doesn't support all sector count
1292 	 * restrictions, so we need to be prepared for too big
1293 	 * requests.
1294 	 */
1295 	if (brq->data.blocks > card->host->max_blk_count)
1296 		brq->data.blocks = card->host->max_blk_count;
1297 
1298 	if (brq->data.blocks > 1) {
1299 		/*
1300 		 * Some SD cards in SPI mode return a CRC error or even lock up
1301 		 * completely when trying to read the last block using a
1302 		 * multiblock read command.
1303 		 */
1304 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1305 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1306 		     get_capacity(md->disk)))
1307 			brq->data.blocks--;
1308 
1309 		/*
1310 		 * After a read error, we redo the request one sector
1311 		 * at a time in order to accurately determine which
1312 		 * sectors can be read successfully.
1313 		 */
1314 		if (disable_multi)
1315 			brq->data.blocks = 1;
1316 
1317 		/*
1318 		 * Some controllers have HW issues while operating
1319 		 * in multiple I/O mode
1320 		 */
1321 		if (card->host->ops->multi_io_quirk)
1322 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1323 						(rq_data_dir(req) == READ) ?
1324 						MMC_DATA_READ : MMC_DATA_WRITE,
1325 						brq->data.blocks);
1326 	}
1327 
1328 	if (do_rel_wr) {
1329 		mmc_apply_rel_rw(brq, card, req);
1330 		brq->data.flags |= MMC_DATA_REL_WR;
1331 	}
1332 
1333 	/*
1334 	 * Data tag is used only during writing meta data to speed
1335 	 * up write and any subsequent read of this meta data
1336 	 */
1337 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1338 		      (req->cmd_flags & REQ_META) &&
1339 		      (rq_data_dir(req) == WRITE) &&
1340 		      ((brq->data.blocks * brq->data.blksz) >=
1341 		       card->ext_csd.data_tag_unit_size);
1342 
1343 	if (do_data_tag)
1344 		brq->data.flags |= MMC_DATA_DAT_TAG;
1345 
1346 	mmc_set_data_timeout(&brq->data, card);
1347 
1348 	brq->data.sg = mqrq->sg;
1349 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1350 
1351 	/*
1352 	 * Adjust the sg list so it is the same size as the
1353 	 * request.
1354 	 */
1355 	if (brq->data.blocks != blk_rq_sectors(req)) {
1356 		int i, data_size = brq->data.blocks << 9;
1357 		struct scatterlist *sg;
1358 
1359 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1360 			data_size -= sg->length;
1361 			if (data_size <= 0) {
1362 				sg->length += data_size;
1363 				i++;
1364 				break;
1365 			}
1366 		}
1367 		brq->data.sg_len = i;
1368 	}
1369 
1370 	if (do_rel_wr_p)
1371 		*do_rel_wr_p = do_rel_wr;
1372 
1373 	if (do_data_tag_p)
1374 		*do_data_tag_p = do_data_tag;
1375 }
1376 
1377 #define MMC_CQE_RETRIES 2
1378 
1379 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1380 {
1381 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1382 	struct mmc_request *mrq = &mqrq->brq.mrq;
1383 	struct request_queue *q = req->q;
1384 	struct mmc_host *host = mq->card->host;
1385 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1386 	unsigned long flags;
1387 	bool put_card;
1388 	int err;
1389 
1390 	mmc_cqe_post_req(host, mrq);
1391 
1392 	if (mrq->cmd && mrq->cmd->error)
1393 		err = mrq->cmd->error;
1394 	else if (mrq->data && mrq->data->error)
1395 		err = mrq->data->error;
1396 	else
1397 		err = 0;
1398 
1399 	if (err) {
1400 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1401 			blk_mq_requeue_request(req, true);
1402 		else
1403 			blk_mq_end_request(req, BLK_STS_IOERR);
1404 	} else if (mrq->data) {
1405 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1406 			blk_mq_requeue_request(req, true);
1407 		else
1408 			__blk_mq_end_request(req, BLK_STS_OK);
1409 	} else {
1410 		blk_mq_end_request(req, BLK_STS_OK);
1411 	}
1412 
1413 	spin_lock_irqsave(&mq->lock, flags);
1414 
1415 	mq->in_flight[issue_type] -= 1;
1416 
1417 	put_card = (mmc_tot_in_flight(mq) == 0);
1418 
1419 	mmc_cqe_check_busy(mq);
1420 
1421 	spin_unlock_irqrestore(&mq->lock, flags);
1422 
1423 	if (!mq->cqe_busy)
1424 		blk_mq_run_hw_queues(q, true);
1425 
1426 	if (put_card)
1427 		mmc_put_card(mq->card, &mq->ctx);
1428 }
1429 
1430 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1431 {
1432 	struct mmc_card *card = mq->card;
1433 	struct mmc_host *host = card->host;
1434 	int err;
1435 
1436 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1437 
1438 	err = mmc_cqe_recovery(host);
1439 	if (err)
1440 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1441 	else
1442 		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1443 
1444 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1445 }
1446 
1447 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1448 {
1449 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1450 						  brq.mrq);
1451 	struct request *req = mmc_queue_req_to_req(mqrq);
1452 	struct request_queue *q = req->q;
1453 	struct mmc_queue *mq = q->queuedata;
1454 
1455 	/*
1456 	 * Block layer timeouts race with completions which means the normal
1457 	 * completion path cannot be used during recovery.
1458 	 */
1459 	if (mq->in_recovery)
1460 		mmc_blk_cqe_complete_rq(mq, req);
1461 	else if (likely(!blk_should_fake_timeout(req->q)))
1462 		blk_mq_complete_request(req);
1463 }
1464 
1465 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1466 {
1467 	mrq->done		= mmc_blk_cqe_req_done;
1468 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1469 
1470 	return mmc_cqe_start_req(host, mrq);
1471 }
1472 
1473 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1474 						 struct request *req)
1475 {
1476 	struct mmc_blk_request *brq = &mqrq->brq;
1477 
1478 	memset(brq, 0, sizeof(*brq));
1479 
1480 	brq->mrq.cmd = &brq->cmd;
1481 	brq->mrq.tag = req->tag;
1482 
1483 	return &brq->mrq;
1484 }
1485 
1486 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1487 {
1488 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1489 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1490 
1491 	mrq->cmd->opcode = MMC_SWITCH;
1492 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1493 			(EXT_CSD_FLUSH_CACHE << 16) |
1494 			(1 << 8) |
1495 			EXT_CSD_CMD_SET_NORMAL;
1496 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1497 
1498 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1499 }
1500 
1501 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1502 {
1503 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1504 	struct mmc_host *host = mq->card->host;
1505 	int err;
1506 
1507 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1508 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1509 	mmc_pre_req(host, &mqrq->brq.mrq);
1510 
1511 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1512 	if (err)
1513 		mmc_post_req(host, &mqrq->brq.mrq, err);
1514 
1515 	return err;
1516 }
1517 
1518 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1519 {
1520 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1521 	struct mmc_host *host = mq->card->host;
1522 
1523 	if (host->hsq_enabled)
1524 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1525 
1526 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1527 
1528 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1529 }
1530 
1531 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1532 			       struct mmc_card *card,
1533 			       int disable_multi,
1534 			       struct mmc_queue *mq)
1535 {
1536 	u32 readcmd, writecmd;
1537 	struct mmc_blk_request *brq = &mqrq->brq;
1538 	struct request *req = mmc_queue_req_to_req(mqrq);
1539 	struct mmc_blk_data *md = mq->blkdata;
1540 	bool do_rel_wr, do_data_tag;
1541 
1542 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1543 
1544 	brq->mrq.cmd = &brq->cmd;
1545 
1546 	brq->cmd.arg = blk_rq_pos(req);
1547 	if (!mmc_card_blockaddr(card))
1548 		brq->cmd.arg <<= 9;
1549 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1550 
1551 	if (brq->data.blocks > 1 || do_rel_wr) {
1552 		/* SPI multiblock writes terminate using a special
1553 		 * token, not a STOP_TRANSMISSION request.
1554 		 */
1555 		if (!mmc_host_is_spi(card->host) ||
1556 		    rq_data_dir(req) == READ)
1557 			brq->mrq.stop = &brq->stop;
1558 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1559 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1560 	} else {
1561 		brq->mrq.stop = NULL;
1562 		readcmd = MMC_READ_SINGLE_BLOCK;
1563 		writecmd = MMC_WRITE_BLOCK;
1564 	}
1565 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1566 
1567 	/*
1568 	 * Pre-defined multi-block transfers are preferable to
1569 	 * open ended-ones (and necessary for reliable writes).
1570 	 * However, it is not sufficient to just send CMD23,
1571 	 * and avoid the final CMD12, as on an error condition
1572 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1573 	 * with Auto-CMD23 enhancements provided by some
1574 	 * hosts, means that the complexity of dealing
1575 	 * with this is best left to the host. If CMD23 is
1576 	 * supported by card and host, we'll fill sbc in and let
1577 	 * the host deal with handling it correctly. This means
1578 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1579 	 * change of behavior will be observed.
1580 	 *
1581 	 * N.B: Some MMC cards experience perf degradation.
1582 	 * We'll avoid using CMD23-bounded multiblock writes for
1583 	 * these, while retaining features like reliable writes.
1584 	 */
1585 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1586 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1587 	     do_data_tag)) {
1588 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1589 		brq->sbc.arg = brq->data.blocks |
1590 			(do_rel_wr ? (1 << 31) : 0) |
1591 			(do_data_tag ? (1 << 29) : 0);
1592 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1593 		brq->mrq.sbc = &brq->sbc;
1594 	}
1595 }
1596 
1597 #define MMC_MAX_RETRIES		5
1598 #define MMC_DATA_RETRIES	2
1599 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1600 
1601 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1602 {
1603 	struct mmc_command cmd = {
1604 		.opcode = MMC_STOP_TRANSMISSION,
1605 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1606 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1607 		.busy_timeout = timeout,
1608 	};
1609 
1610 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1611 }
1612 
1613 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1614 {
1615 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1616 	struct mmc_blk_request *brq = &mqrq->brq;
1617 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1618 	int err;
1619 
1620 	mmc_retune_hold_now(card->host);
1621 
1622 	mmc_blk_send_stop(card, timeout);
1623 
1624 	err = card_busy_detect(card, timeout, NULL);
1625 
1626 	mmc_retune_release(card->host);
1627 
1628 	return err;
1629 }
1630 
1631 #define MMC_READ_SINGLE_RETRIES	2
1632 
1633 /* Single sector read during recovery */
1634 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1635 {
1636 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1637 	struct mmc_request *mrq = &mqrq->brq.mrq;
1638 	struct mmc_card *card = mq->card;
1639 	struct mmc_host *host = card->host;
1640 	blk_status_t error = BLK_STS_OK;
1641 	int retries = 0;
1642 
1643 	do {
1644 		u32 status;
1645 		int err;
1646 
1647 		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1648 
1649 		mmc_wait_for_req(host, mrq);
1650 
1651 		err = mmc_send_status(card, &status);
1652 		if (err)
1653 			goto error_exit;
1654 
1655 		if (!mmc_host_is_spi(host) &&
1656 		    !mmc_ready_for_data(status)) {
1657 			err = mmc_blk_fix_state(card, req);
1658 			if (err)
1659 				goto error_exit;
1660 		}
1661 
1662 		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1663 			continue;
1664 
1665 		retries = 0;
1666 
1667 		if (mrq->cmd->error ||
1668 		    mrq->data->error ||
1669 		    (!mmc_host_is_spi(host) &&
1670 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1671 			error = BLK_STS_IOERR;
1672 		else
1673 			error = BLK_STS_OK;
1674 
1675 	} while (blk_update_request(req, error, 512));
1676 
1677 	return;
1678 
1679 error_exit:
1680 	mrq->data->bytes_xfered = 0;
1681 	blk_update_request(req, BLK_STS_IOERR, 512);
1682 	/* Let it try the remaining request again */
1683 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1684 		mqrq->retries = MMC_MAX_RETRIES - 1;
1685 }
1686 
1687 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1688 {
1689 	return !!brq->mrq.sbc;
1690 }
1691 
1692 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1693 {
1694 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1695 }
1696 
1697 /*
1698  * Check for errors the host controller driver might not have seen such as
1699  * response mode errors or invalid card state.
1700  */
1701 static bool mmc_blk_status_error(struct request *req, u32 status)
1702 {
1703 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1704 	struct mmc_blk_request *brq = &mqrq->brq;
1705 	struct mmc_queue *mq = req->q->queuedata;
1706 	u32 stop_err_bits;
1707 
1708 	if (mmc_host_is_spi(mq->card->host))
1709 		return false;
1710 
1711 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1712 
1713 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1714 	       brq->stop.resp[0] & stop_err_bits ||
1715 	       status            & stop_err_bits ||
1716 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1717 }
1718 
1719 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1720 {
1721 	return !brq->sbc.error && !brq->cmd.error &&
1722 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1723 }
1724 
1725 /*
1726  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1727  * policy:
1728  * 1. A request that has transferred at least some data is considered
1729  * successful and will be requeued if there is remaining data to
1730  * transfer.
1731  * 2. Otherwise the number of retries is incremented and the request
1732  * will be requeued if there are remaining retries.
1733  * 3. Otherwise the request will be errored out.
1734  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1735  * mqrq->retries. So there are only 4 possible actions here:
1736  *	1. do not accept the bytes_xfered value i.e. set it to zero
1737  *	2. change mqrq->retries to determine the number of retries
1738  *	3. try to reset the card
1739  *	4. read one sector at a time
1740  */
1741 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1742 {
1743 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1744 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1745 	struct mmc_blk_request *brq = &mqrq->brq;
1746 	struct mmc_blk_data *md = mq->blkdata;
1747 	struct mmc_card *card = mq->card;
1748 	u32 status;
1749 	u32 blocks;
1750 	int err;
1751 
1752 	/*
1753 	 * Some errors the host driver might not have seen. Set the number of
1754 	 * bytes transferred to zero in that case.
1755 	 */
1756 	err = __mmc_send_status(card, &status, 0);
1757 	if (err || mmc_blk_status_error(req, status))
1758 		brq->data.bytes_xfered = 0;
1759 
1760 	mmc_retune_release(card->host);
1761 
1762 	/*
1763 	 * Try again to get the status. This also provides an opportunity for
1764 	 * re-tuning.
1765 	 */
1766 	if (err)
1767 		err = __mmc_send_status(card, &status, 0);
1768 
1769 	/*
1770 	 * Nothing more to do after the number of bytes transferred has been
1771 	 * updated and there is no card.
1772 	 */
1773 	if (err && mmc_detect_card_removed(card->host))
1774 		return;
1775 
1776 	/* Try to get back to "tran" state */
1777 	if (!mmc_host_is_spi(mq->card->host) &&
1778 	    (err || !mmc_ready_for_data(status)))
1779 		err = mmc_blk_fix_state(mq->card, req);
1780 
1781 	/*
1782 	 * Special case for SD cards where the card might record the number of
1783 	 * blocks written.
1784 	 */
1785 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1786 	    rq_data_dir(req) == WRITE) {
1787 		if (mmc_sd_num_wr_blocks(card, &blocks))
1788 			brq->data.bytes_xfered = 0;
1789 		else
1790 			brq->data.bytes_xfered = blocks << 9;
1791 	}
1792 
1793 	/* Reset if the card is in a bad state */
1794 	if (!mmc_host_is_spi(mq->card->host) &&
1795 	    err && mmc_blk_reset(md, card->host, type)) {
1796 		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1797 		mqrq->retries = MMC_NO_RETRIES;
1798 		return;
1799 	}
1800 
1801 	/*
1802 	 * If anything was done, just return and if there is anything remaining
1803 	 * on the request it will get requeued.
1804 	 */
1805 	if (brq->data.bytes_xfered)
1806 		return;
1807 
1808 	/* Reset before last retry */
1809 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1810 		mmc_blk_reset(md, card->host, type);
1811 
1812 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1813 	if (brq->sbc.error || brq->cmd.error)
1814 		return;
1815 
1816 	/* Reduce the remaining retries for data errors */
1817 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1818 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1819 		return;
1820 	}
1821 
1822 	/* FIXME: Missing single sector read for large sector size */
1823 	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1824 	    brq->data.blocks > 1) {
1825 		/* Read one sector at a time */
1826 		mmc_blk_read_single(mq, req);
1827 		return;
1828 	}
1829 }
1830 
1831 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1832 {
1833 	mmc_blk_eval_resp_error(brq);
1834 
1835 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1836 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1837 }
1838 
1839 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1840 {
1841 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1842 	u32 status = 0;
1843 	int err;
1844 
1845 	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1846 		return 0;
1847 
1848 	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1849 
1850 	/*
1851 	 * Do not assume data transferred correctly if there are any error bits
1852 	 * set.
1853 	 */
1854 	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1855 		mqrq->brq.data.bytes_xfered = 0;
1856 		err = err ? err : -EIO;
1857 	}
1858 
1859 	/* Copy the exception bit so it will be seen later on */
1860 	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1861 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1862 
1863 	return err;
1864 }
1865 
1866 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1867 					    struct request *req)
1868 {
1869 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1870 
1871 	mmc_blk_reset_success(mq->blkdata, type);
1872 }
1873 
1874 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1875 {
1876 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1877 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1878 
1879 	if (nr_bytes) {
1880 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1881 			blk_mq_requeue_request(req, true);
1882 		else
1883 			__blk_mq_end_request(req, BLK_STS_OK);
1884 	} else if (!blk_rq_bytes(req)) {
1885 		__blk_mq_end_request(req, BLK_STS_IOERR);
1886 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1887 		blk_mq_requeue_request(req, true);
1888 	} else {
1889 		if (mmc_card_removed(mq->card))
1890 			req->rq_flags |= RQF_QUIET;
1891 		blk_mq_end_request(req, BLK_STS_IOERR);
1892 	}
1893 }
1894 
1895 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1896 					struct mmc_queue_req *mqrq)
1897 {
1898 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1899 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1900 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1901 }
1902 
1903 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1904 				 struct mmc_queue_req *mqrq)
1905 {
1906 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1907 		mmc_run_bkops(mq->card);
1908 }
1909 
1910 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1911 {
1912 	struct mmc_queue_req *mqrq =
1913 		container_of(mrq, struct mmc_queue_req, brq.mrq);
1914 	struct request *req = mmc_queue_req_to_req(mqrq);
1915 	struct request_queue *q = req->q;
1916 	struct mmc_queue *mq = q->queuedata;
1917 	struct mmc_host *host = mq->card->host;
1918 	unsigned long flags;
1919 
1920 	if (mmc_blk_rq_error(&mqrq->brq) ||
1921 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1922 		spin_lock_irqsave(&mq->lock, flags);
1923 		mq->recovery_needed = true;
1924 		mq->recovery_req = req;
1925 		spin_unlock_irqrestore(&mq->lock, flags);
1926 
1927 		host->cqe_ops->cqe_recovery_start(host);
1928 
1929 		schedule_work(&mq->recovery_work);
1930 		return;
1931 	}
1932 
1933 	mmc_blk_rw_reset_success(mq, req);
1934 
1935 	/*
1936 	 * Block layer timeouts race with completions which means the normal
1937 	 * completion path cannot be used during recovery.
1938 	 */
1939 	if (mq->in_recovery)
1940 		mmc_blk_cqe_complete_rq(mq, req);
1941 	else if (likely(!blk_should_fake_timeout(req->q)))
1942 		blk_mq_complete_request(req);
1943 }
1944 
1945 void mmc_blk_mq_complete(struct request *req)
1946 {
1947 	struct mmc_queue *mq = req->q->queuedata;
1948 	struct mmc_host *host = mq->card->host;
1949 
1950 	if (host->cqe_enabled)
1951 		mmc_blk_cqe_complete_rq(mq, req);
1952 	else if (likely(!blk_should_fake_timeout(req->q)))
1953 		mmc_blk_mq_complete_rq(mq, req);
1954 }
1955 
1956 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1957 				       struct request *req)
1958 {
1959 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1960 	struct mmc_host *host = mq->card->host;
1961 
1962 	if (mmc_blk_rq_error(&mqrq->brq) ||
1963 	    mmc_blk_card_busy(mq->card, req)) {
1964 		mmc_blk_mq_rw_recovery(mq, req);
1965 	} else {
1966 		mmc_blk_rw_reset_success(mq, req);
1967 		mmc_retune_release(host);
1968 	}
1969 
1970 	mmc_blk_urgent_bkops(mq, mqrq);
1971 }
1972 
1973 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1974 {
1975 	unsigned long flags;
1976 	bool put_card;
1977 
1978 	spin_lock_irqsave(&mq->lock, flags);
1979 
1980 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1981 
1982 	put_card = (mmc_tot_in_flight(mq) == 0);
1983 
1984 	spin_unlock_irqrestore(&mq->lock, flags);
1985 
1986 	if (put_card)
1987 		mmc_put_card(mq->card, &mq->ctx);
1988 }
1989 
1990 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1991 {
1992 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1993 	struct mmc_request *mrq = &mqrq->brq.mrq;
1994 	struct mmc_host *host = mq->card->host;
1995 
1996 	mmc_post_req(host, mrq, 0);
1997 
1998 	/*
1999 	 * Block layer timeouts race with completions which means the normal
2000 	 * completion path cannot be used during recovery.
2001 	 */
2002 	if (mq->in_recovery)
2003 		mmc_blk_mq_complete_rq(mq, req);
2004 	else if (likely(!blk_should_fake_timeout(req->q)))
2005 		blk_mq_complete_request(req);
2006 
2007 	mmc_blk_mq_dec_in_flight(mq, req);
2008 }
2009 
2010 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2011 {
2012 	struct request *req = mq->recovery_req;
2013 	struct mmc_host *host = mq->card->host;
2014 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2015 
2016 	mq->recovery_req = NULL;
2017 	mq->rw_wait = false;
2018 
2019 	if (mmc_blk_rq_error(&mqrq->brq)) {
2020 		mmc_retune_hold_now(host);
2021 		mmc_blk_mq_rw_recovery(mq, req);
2022 	}
2023 
2024 	mmc_blk_urgent_bkops(mq, mqrq);
2025 
2026 	mmc_blk_mq_post_req(mq, req);
2027 }
2028 
2029 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2030 					 struct request **prev_req)
2031 {
2032 	if (mmc_host_done_complete(mq->card->host))
2033 		return;
2034 
2035 	mutex_lock(&mq->complete_lock);
2036 
2037 	if (!mq->complete_req)
2038 		goto out_unlock;
2039 
2040 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2041 
2042 	if (prev_req)
2043 		*prev_req = mq->complete_req;
2044 	else
2045 		mmc_blk_mq_post_req(mq, mq->complete_req);
2046 
2047 	mq->complete_req = NULL;
2048 
2049 out_unlock:
2050 	mutex_unlock(&mq->complete_lock);
2051 }
2052 
2053 void mmc_blk_mq_complete_work(struct work_struct *work)
2054 {
2055 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2056 					    complete_work);
2057 
2058 	mmc_blk_mq_complete_prev_req(mq, NULL);
2059 }
2060 
2061 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2062 {
2063 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2064 						  brq.mrq);
2065 	struct request *req = mmc_queue_req_to_req(mqrq);
2066 	struct request_queue *q = req->q;
2067 	struct mmc_queue *mq = q->queuedata;
2068 	struct mmc_host *host = mq->card->host;
2069 	unsigned long flags;
2070 
2071 	if (!mmc_host_done_complete(host)) {
2072 		bool waiting;
2073 
2074 		/*
2075 		 * We cannot complete the request in this context, so record
2076 		 * that there is a request to complete, and that a following
2077 		 * request does not need to wait (although it does need to
2078 		 * complete complete_req first).
2079 		 */
2080 		spin_lock_irqsave(&mq->lock, flags);
2081 		mq->complete_req = req;
2082 		mq->rw_wait = false;
2083 		waiting = mq->waiting;
2084 		spin_unlock_irqrestore(&mq->lock, flags);
2085 
2086 		/*
2087 		 * If 'waiting' then the waiting task will complete this
2088 		 * request, otherwise queue a work to do it. Note that
2089 		 * complete_work may still race with the dispatch of a following
2090 		 * request.
2091 		 */
2092 		if (waiting)
2093 			wake_up(&mq->wait);
2094 		else
2095 			queue_work(mq->card->complete_wq, &mq->complete_work);
2096 
2097 		return;
2098 	}
2099 
2100 	/* Take the recovery path for errors or urgent background operations */
2101 	if (mmc_blk_rq_error(&mqrq->brq) ||
2102 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2103 		spin_lock_irqsave(&mq->lock, flags);
2104 		mq->recovery_needed = true;
2105 		mq->recovery_req = req;
2106 		spin_unlock_irqrestore(&mq->lock, flags);
2107 		wake_up(&mq->wait);
2108 		schedule_work(&mq->recovery_work);
2109 		return;
2110 	}
2111 
2112 	mmc_blk_rw_reset_success(mq, req);
2113 
2114 	mq->rw_wait = false;
2115 	wake_up(&mq->wait);
2116 
2117 	mmc_blk_mq_post_req(mq, req);
2118 }
2119 
2120 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2121 {
2122 	unsigned long flags;
2123 	bool done;
2124 
2125 	/*
2126 	 * Wait while there is another request in progress, but not if recovery
2127 	 * is needed. Also indicate whether there is a request waiting to start.
2128 	 */
2129 	spin_lock_irqsave(&mq->lock, flags);
2130 	if (mq->recovery_needed) {
2131 		*err = -EBUSY;
2132 		done = true;
2133 	} else {
2134 		done = !mq->rw_wait;
2135 	}
2136 	mq->waiting = !done;
2137 	spin_unlock_irqrestore(&mq->lock, flags);
2138 
2139 	return done;
2140 }
2141 
2142 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2143 {
2144 	int err = 0;
2145 
2146 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2147 
2148 	/* Always complete the previous request if there is one */
2149 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2150 
2151 	return err;
2152 }
2153 
2154 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2155 				  struct request *req)
2156 {
2157 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2158 	struct mmc_host *host = mq->card->host;
2159 	struct request *prev_req = NULL;
2160 	int err = 0;
2161 
2162 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2163 
2164 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2165 
2166 	mmc_pre_req(host, &mqrq->brq.mrq);
2167 
2168 	err = mmc_blk_rw_wait(mq, &prev_req);
2169 	if (err)
2170 		goto out_post_req;
2171 
2172 	mq->rw_wait = true;
2173 
2174 	err = mmc_start_request(host, &mqrq->brq.mrq);
2175 
2176 	if (prev_req)
2177 		mmc_blk_mq_post_req(mq, prev_req);
2178 
2179 	if (err)
2180 		mq->rw_wait = false;
2181 
2182 	/* Release re-tuning here where there is no synchronization required */
2183 	if (err || mmc_host_done_complete(host))
2184 		mmc_retune_release(host);
2185 
2186 out_post_req:
2187 	if (err)
2188 		mmc_post_req(host, &mqrq->brq.mrq, err);
2189 
2190 	return err;
2191 }
2192 
2193 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2194 {
2195 	if (host->cqe_enabled)
2196 		return host->cqe_ops->cqe_wait_for_idle(host);
2197 
2198 	return mmc_blk_rw_wait(mq, NULL);
2199 }
2200 
2201 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2202 {
2203 	struct mmc_blk_data *md = mq->blkdata;
2204 	struct mmc_card *card = md->queue.card;
2205 	struct mmc_host *host = card->host;
2206 	int ret;
2207 
2208 	ret = mmc_blk_part_switch(card, md->part_type);
2209 	if (ret)
2210 		return MMC_REQ_FAILED_TO_START;
2211 
2212 	switch (mmc_issue_type(mq, req)) {
2213 	case MMC_ISSUE_SYNC:
2214 		ret = mmc_blk_wait_for_idle(mq, host);
2215 		if (ret)
2216 			return MMC_REQ_BUSY;
2217 		switch (req_op(req)) {
2218 		case REQ_OP_DRV_IN:
2219 		case REQ_OP_DRV_OUT:
2220 			mmc_blk_issue_drv_op(mq, req);
2221 			break;
2222 		case REQ_OP_DISCARD:
2223 			mmc_blk_issue_discard_rq(mq, req);
2224 			break;
2225 		case REQ_OP_SECURE_ERASE:
2226 			mmc_blk_issue_secdiscard_rq(mq, req);
2227 			break;
2228 		case REQ_OP_FLUSH:
2229 			mmc_blk_issue_flush(mq, req);
2230 			break;
2231 		default:
2232 			WARN_ON_ONCE(1);
2233 			return MMC_REQ_FAILED_TO_START;
2234 		}
2235 		return MMC_REQ_FINISHED;
2236 	case MMC_ISSUE_DCMD:
2237 	case MMC_ISSUE_ASYNC:
2238 		switch (req_op(req)) {
2239 		case REQ_OP_FLUSH:
2240 			if (!mmc_cache_enabled(host)) {
2241 				blk_mq_end_request(req, BLK_STS_OK);
2242 				return MMC_REQ_FINISHED;
2243 			}
2244 			ret = mmc_blk_cqe_issue_flush(mq, req);
2245 			break;
2246 		case REQ_OP_READ:
2247 		case REQ_OP_WRITE:
2248 			if (host->cqe_enabled)
2249 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2250 			else
2251 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2252 			break;
2253 		default:
2254 			WARN_ON_ONCE(1);
2255 			ret = -EINVAL;
2256 		}
2257 		if (!ret)
2258 			return MMC_REQ_STARTED;
2259 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2260 	default:
2261 		WARN_ON_ONCE(1);
2262 		return MMC_REQ_FAILED_TO_START;
2263 	}
2264 }
2265 
2266 static inline int mmc_blk_readonly(struct mmc_card *card)
2267 {
2268 	return mmc_card_readonly(card) ||
2269 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2270 }
2271 
2272 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2273 					      struct device *parent,
2274 					      sector_t size,
2275 					      bool default_ro,
2276 					      const char *subname,
2277 					      int area_type)
2278 {
2279 	struct mmc_blk_data *md;
2280 	int devidx, ret;
2281 	char cap_str[10];
2282 
2283 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2284 	if (devidx < 0) {
2285 		/*
2286 		 * We get -ENOSPC because there are no more any available
2287 		 * devidx. The reason may be that, either userspace haven't yet
2288 		 * unmounted the partitions, which postpones mmc_blk_release()
2289 		 * from being called, or the device has more partitions than
2290 		 * what we support.
2291 		 */
2292 		if (devidx == -ENOSPC)
2293 			dev_err(mmc_dev(card->host),
2294 				"no more device IDs available\n");
2295 
2296 		return ERR_PTR(devidx);
2297 	}
2298 
2299 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2300 	if (!md) {
2301 		ret = -ENOMEM;
2302 		goto out;
2303 	}
2304 
2305 	md->area_type = area_type;
2306 
2307 	/*
2308 	 * Set the read-only status based on the supported commands
2309 	 * and the write protect switch.
2310 	 */
2311 	md->read_only = mmc_blk_readonly(card);
2312 
2313 	md->disk = alloc_disk(perdev_minors);
2314 	if (md->disk == NULL) {
2315 		ret = -ENOMEM;
2316 		goto err_kfree;
2317 	}
2318 
2319 	INIT_LIST_HEAD(&md->part);
2320 	INIT_LIST_HEAD(&md->rpmbs);
2321 	md->usage = 1;
2322 
2323 	ret = mmc_init_queue(&md->queue, card);
2324 	if (ret)
2325 		goto err_putdisk;
2326 
2327 	md->queue.blkdata = md;
2328 
2329 	/*
2330 	 * Keep an extra reference to the queue so that we can shutdown the
2331 	 * queue (i.e. call blk_cleanup_queue()) while there are still
2332 	 * references to the 'md'. The corresponding blk_put_queue() is in
2333 	 * mmc_blk_put().
2334 	 */
2335 	if (!blk_get_queue(md->queue.queue)) {
2336 		mmc_cleanup_queue(&md->queue);
2337 		ret = -ENODEV;
2338 		goto err_putdisk;
2339 	}
2340 
2341 	md->disk->major	= MMC_BLOCK_MAJOR;
2342 	md->disk->first_minor = devidx * perdev_minors;
2343 	md->disk->fops = &mmc_bdops;
2344 	md->disk->private_data = md;
2345 	md->disk->queue = md->queue.queue;
2346 	md->parent = parent;
2347 	set_disk_ro(md->disk, md->read_only || default_ro);
2348 	md->disk->flags = GENHD_FL_EXT_DEVT;
2349 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2350 		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2351 				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2352 
2353 	/*
2354 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2355 	 *
2356 	 * - be set for removable media with permanent block devices
2357 	 * - be unset for removable block devices with permanent media
2358 	 *
2359 	 * Since MMC block devices clearly fall under the second
2360 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2361 	 * should use the block device creation/destruction hotplug
2362 	 * messages to tell when the card is present.
2363 	 */
2364 
2365 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2366 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2367 
2368 	set_capacity(md->disk, size);
2369 
2370 	if (mmc_host_cmd23(card->host)) {
2371 		if ((mmc_card_mmc(card) &&
2372 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2373 		    (mmc_card_sd(card) &&
2374 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2375 			md->flags |= MMC_BLK_CMD23;
2376 	}
2377 
2378 	if (mmc_card_mmc(card) &&
2379 	    md->flags & MMC_BLK_CMD23 &&
2380 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2381 	     card->ext_csd.rel_sectors)) {
2382 		md->flags |= MMC_BLK_REL_WR;
2383 		blk_queue_write_cache(md->queue.queue, true, true);
2384 	}
2385 
2386 	string_get_size((u64)size, 512, STRING_UNITS_2,
2387 			cap_str, sizeof(cap_str));
2388 	pr_info("%s: %s %s %s %s\n",
2389 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2390 		cap_str, md->read_only ? "(ro)" : "");
2391 
2392 	return md;
2393 
2394  err_putdisk:
2395 	put_disk(md->disk);
2396  err_kfree:
2397 	kfree(md);
2398  out:
2399 	ida_simple_remove(&mmc_blk_ida, devidx);
2400 	return ERR_PTR(ret);
2401 }
2402 
2403 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2404 {
2405 	sector_t size;
2406 
2407 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2408 		/*
2409 		 * The EXT_CSD sector count is in number or 512 byte
2410 		 * sectors.
2411 		 */
2412 		size = card->ext_csd.sectors;
2413 	} else {
2414 		/*
2415 		 * The CSD capacity field is in units of read_blkbits.
2416 		 * set_capacity takes units of 512 bytes.
2417 		 */
2418 		size = (typeof(sector_t))card->csd.capacity
2419 			<< (card->csd.read_blkbits - 9);
2420 	}
2421 
2422 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2423 					MMC_BLK_DATA_AREA_MAIN);
2424 }
2425 
2426 static int mmc_blk_alloc_part(struct mmc_card *card,
2427 			      struct mmc_blk_data *md,
2428 			      unsigned int part_type,
2429 			      sector_t size,
2430 			      bool default_ro,
2431 			      const char *subname,
2432 			      int area_type)
2433 {
2434 	struct mmc_blk_data *part_md;
2435 
2436 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2437 				    subname, area_type);
2438 	if (IS_ERR(part_md))
2439 		return PTR_ERR(part_md);
2440 	part_md->part_type = part_type;
2441 	list_add(&part_md->part, &md->part);
2442 
2443 	return 0;
2444 }
2445 
2446 /**
2447  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2448  * @filp: the character device file
2449  * @cmd: the ioctl() command
2450  * @arg: the argument from userspace
2451  *
2452  * This will essentially just redirect the ioctl()s coming in over to
2453  * the main block device spawning the RPMB character device.
2454  */
2455 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2456 			   unsigned long arg)
2457 {
2458 	struct mmc_rpmb_data *rpmb = filp->private_data;
2459 	int ret;
2460 
2461 	switch (cmd) {
2462 	case MMC_IOC_CMD:
2463 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2464 					(struct mmc_ioc_cmd __user *)arg,
2465 					rpmb);
2466 		break;
2467 	case MMC_IOC_MULTI_CMD:
2468 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2469 					(struct mmc_ioc_multi_cmd __user *)arg,
2470 					rpmb);
2471 		break;
2472 	default:
2473 		ret = -EINVAL;
2474 		break;
2475 	}
2476 
2477 	return ret;
2478 }
2479 
2480 #ifdef CONFIG_COMPAT
2481 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2482 			      unsigned long arg)
2483 {
2484 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2485 }
2486 #endif
2487 
2488 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2489 {
2490 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2491 						  struct mmc_rpmb_data, chrdev);
2492 
2493 	get_device(&rpmb->dev);
2494 	filp->private_data = rpmb;
2495 	mmc_blk_get(rpmb->md->disk);
2496 
2497 	return nonseekable_open(inode, filp);
2498 }
2499 
2500 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2501 {
2502 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2503 						  struct mmc_rpmb_data, chrdev);
2504 
2505 	mmc_blk_put(rpmb->md);
2506 	put_device(&rpmb->dev);
2507 
2508 	return 0;
2509 }
2510 
2511 static const struct file_operations mmc_rpmb_fileops = {
2512 	.release = mmc_rpmb_chrdev_release,
2513 	.open = mmc_rpmb_chrdev_open,
2514 	.owner = THIS_MODULE,
2515 	.llseek = no_llseek,
2516 	.unlocked_ioctl = mmc_rpmb_ioctl,
2517 #ifdef CONFIG_COMPAT
2518 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2519 #endif
2520 };
2521 
2522 static void mmc_blk_rpmb_device_release(struct device *dev)
2523 {
2524 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2525 
2526 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2527 	kfree(rpmb);
2528 }
2529 
2530 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2531 				   struct mmc_blk_data *md,
2532 				   unsigned int part_index,
2533 				   sector_t size,
2534 				   const char *subname)
2535 {
2536 	int devidx, ret;
2537 	char rpmb_name[DISK_NAME_LEN];
2538 	char cap_str[10];
2539 	struct mmc_rpmb_data *rpmb;
2540 
2541 	/* This creates the minor number for the RPMB char device */
2542 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2543 	if (devidx < 0)
2544 		return devidx;
2545 
2546 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2547 	if (!rpmb) {
2548 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2549 		return -ENOMEM;
2550 	}
2551 
2552 	snprintf(rpmb_name, sizeof(rpmb_name),
2553 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2554 
2555 	rpmb->id = devidx;
2556 	rpmb->part_index = part_index;
2557 	rpmb->dev.init_name = rpmb_name;
2558 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2559 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2560 	rpmb->dev.parent = &card->dev;
2561 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2562 	device_initialize(&rpmb->dev);
2563 	dev_set_drvdata(&rpmb->dev, rpmb);
2564 	rpmb->md = md;
2565 
2566 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2567 	rpmb->chrdev.owner = THIS_MODULE;
2568 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2569 	if (ret) {
2570 		pr_err("%s: could not add character device\n", rpmb_name);
2571 		goto out_put_device;
2572 	}
2573 
2574 	list_add(&rpmb->node, &md->rpmbs);
2575 
2576 	string_get_size((u64)size, 512, STRING_UNITS_2,
2577 			cap_str, sizeof(cap_str));
2578 
2579 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2580 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2581 		MAJOR(mmc_rpmb_devt), rpmb->id);
2582 
2583 	return 0;
2584 
2585 out_put_device:
2586 	put_device(&rpmb->dev);
2587 	return ret;
2588 }
2589 
2590 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2591 
2592 {
2593 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2594 	put_device(&rpmb->dev);
2595 }
2596 
2597 /* MMC Physical partitions consist of two boot partitions and
2598  * up to four general purpose partitions.
2599  * For each partition enabled in EXT_CSD a block device will be allocatedi
2600  * to provide access to the partition.
2601  */
2602 
2603 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2604 {
2605 	int idx, ret;
2606 
2607 	if (!mmc_card_mmc(card))
2608 		return 0;
2609 
2610 	for (idx = 0; idx < card->nr_parts; idx++) {
2611 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2612 			/*
2613 			 * RPMB partitions does not provide block access, they
2614 			 * are only accessed using ioctl():s. Thus create
2615 			 * special RPMB block devices that do not have a
2616 			 * backing block queue for these.
2617 			 */
2618 			ret = mmc_blk_alloc_rpmb_part(card, md,
2619 				card->part[idx].part_cfg,
2620 				card->part[idx].size >> 9,
2621 				card->part[idx].name);
2622 			if (ret)
2623 				return ret;
2624 		} else if (card->part[idx].size) {
2625 			ret = mmc_blk_alloc_part(card, md,
2626 				card->part[idx].part_cfg,
2627 				card->part[idx].size >> 9,
2628 				card->part[idx].force_ro,
2629 				card->part[idx].name,
2630 				card->part[idx].area_type);
2631 			if (ret)
2632 				return ret;
2633 		}
2634 	}
2635 
2636 	return 0;
2637 }
2638 
2639 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2640 {
2641 	struct mmc_card *card;
2642 
2643 	if (md) {
2644 		/*
2645 		 * Flush remaining requests and free queues. It
2646 		 * is freeing the queue that stops new requests
2647 		 * from being accepted.
2648 		 */
2649 		card = md->queue.card;
2650 		if (md->disk->flags & GENHD_FL_UP) {
2651 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2652 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2653 					card->ext_csd.boot_ro_lockable)
2654 				device_remove_file(disk_to_dev(md->disk),
2655 					&md->power_ro_lock);
2656 
2657 			del_gendisk(md->disk);
2658 		}
2659 		mmc_cleanup_queue(&md->queue);
2660 		mmc_blk_put(md);
2661 	}
2662 }
2663 
2664 static void mmc_blk_remove_parts(struct mmc_card *card,
2665 				 struct mmc_blk_data *md)
2666 {
2667 	struct list_head *pos, *q;
2668 	struct mmc_blk_data *part_md;
2669 	struct mmc_rpmb_data *rpmb;
2670 
2671 	/* Remove RPMB partitions */
2672 	list_for_each_safe(pos, q, &md->rpmbs) {
2673 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2674 		list_del(pos);
2675 		mmc_blk_remove_rpmb_part(rpmb);
2676 	}
2677 	/* Remove block partitions */
2678 	list_for_each_safe(pos, q, &md->part) {
2679 		part_md = list_entry(pos, struct mmc_blk_data, part);
2680 		list_del(pos);
2681 		mmc_blk_remove_req(part_md);
2682 	}
2683 }
2684 
2685 static int mmc_add_disk(struct mmc_blk_data *md)
2686 {
2687 	int ret;
2688 	struct mmc_card *card = md->queue.card;
2689 
2690 	device_add_disk(md->parent, md->disk, NULL);
2691 	md->force_ro.show = force_ro_show;
2692 	md->force_ro.store = force_ro_store;
2693 	sysfs_attr_init(&md->force_ro.attr);
2694 	md->force_ro.attr.name = "force_ro";
2695 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2696 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2697 	if (ret)
2698 		goto force_ro_fail;
2699 
2700 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2701 	     card->ext_csd.boot_ro_lockable) {
2702 		umode_t mode;
2703 
2704 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2705 			mode = S_IRUGO;
2706 		else
2707 			mode = S_IRUGO | S_IWUSR;
2708 
2709 		md->power_ro_lock.show = power_ro_lock_show;
2710 		md->power_ro_lock.store = power_ro_lock_store;
2711 		sysfs_attr_init(&md->power_ro_lock.attr);
2712 		md->power_ro_lock.attr.mode = mode;
2713 		md->power_ro_lock.attr.name =
2714 					"ro_lock_until_next_power_on";
2715 		ret = device_create_file(disk_to_dev(md->disk),
2716 				&md->power_ro_lock);
2717 		if (ret)
2718 			goto power_ro_lock_fail;
2719 	}
2720 	return ret;
2721 
2722 power_ro_lock_fail:
2723 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2724 force_ro_fail:
2725 	del_gendisk(md->disk);
2726 
2727 	return ret;
2728 }
2729 
2730 #ifdef CONFIG_DEBUG_FS
2731 
2732 static int mmc_dbg_card_status_get(void *data, u64 *val)
2733 {
2734 	struct mmc_card *card = data;
2735 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2736 	struct mmc_queue *mq = &md->queue;
2737 	struct request *req;
2738 	int ret;
2739 
2740 	/* Ask the block layer about the card status */
2741 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2742 	if (IS_ERR(req))
2743 		return PTR_ERR(req);
2744 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2745 	blk_execute_rq(NULL, req, 0);
2746 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2747 	if (ret >= 0) {
2748 		*val = ret;
2749 		ret = 0;
2750 	}
2751 	blk_put_request(req);
2752 
2753 	return ret;
2754 }
2755 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2756 			 NULL, "%08llx\n");
2757 
2758 /* That is two digits * 512 + 1 for newline */
2759 #define EXT_CSD_STR_LEN 1025
2760 
2761 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2762 {
2763 	struct mmc_card *card = inode->i_private;
2764 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2765 	struct mmc_queue *mq = &md->queue;
2766 	struct request *req;
2767 	char *buf;
2768 	ssize_t n = 0;
2769 	u8 *ext_csd;
2770 	int err, i;
2771 
2772 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2773 	if (!buf)
2774 		return -ENOMEM;
2775 
2776 	/* Ask the block layer for the EXT CSD */
2777 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2778 	if (IS_ERR(req)) {
2779 		err = PTR_ERR(req);
2780 		goto out_free;
2781 	}
2782 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2783 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2784 	blk_execute_rq(NULL, req, 0);
2785 	err = req_to_mmc_queue_req(req)->drv_op_result;
2786 	blk_put_request(req);
2787 	if (err) {
2788 		pr_err("FAILED %d\n", err);
2789 		goto out_free;
2790 	}
2791 
2792 	for (i = 0; i < 512; i++)
2793 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2794 	n += sprintf(buf + n, "\n");
2795 
2796 	if (n != EXT_CSD_STR_LEN) {
2797 		err = -EINVAL;
2798 		kfree(ext_csd);
2799 		goto out_free;
2800 	}
2801 
2802 	filp->private_data = buf;
2803 	kfree(ext_csd);
2804 	return 0;
2805 
2806 out_free:
2807 	kfree(buf);
2808 	return err;
2809 }
2810 
2811 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2812 				size_t cnt, loff_t *ppos)
2813 {
2814 	char *buf = filp->private_data;
2815 
2816 	return simple_read_from_buffer(ubuf, cnt, ppos,
2817 				       buf, EXT_CSD_STR_LEN);
2818 }
2819 
2820 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2821 {
2822 	kfree(file->private_data);
2823 	return 0;
2824 }
2825 
2826 static const struct file_operations mmc_dbg_ext_csd_fops = {
2827 	.open		= mmc_ext_csd_open,
2828 	.read		= mmc_ext_csd_read,
2829 	.release	= mmc_ext_csd_release,
2830 	.llseek		= default_llseek,
2831 };
2832 
2833 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2834 {
2835 	struct dentry *root;
2836 
2837 	if (!card->debugfs_root)
2838 		return 0;
2839 
2840 	root = card->debugfs_root;
2841 
2842 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2843 		md->status_dentry =
2844 			debugfs_create_file_unsafe("status", 0400, root,
2845 						   card,
2846 						   &mmc_dbg_card_status_fops);
2847 		if (!md->status_dentry)
2848 			return -EIO;
2849 	}
2850 
2851 	if (mmc_card_mmc(card)) {
2852 		md->ext_csd_dentry =
2853 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2854 					    &mmc_dbg_ext_csd_fops);
2855 		if (!md->ext_csd_dentry)
2856 			return -EIO;
2857 	}
2858 
2859 	return 0;
2860 }
2861 
2862 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2863 				   struct mmc_blk_data *md)
2864 {
2865 	if (!card->debugfs_root)
2866 		return;
2867 
2868 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2869 		debugfs_remove(md->status_dentry);
2870 		md->status_dentry = NULL;
2871 	}
2872 
2873 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2874 		debugfs_remove(md->ext_csd_dentry);
2875 		md->ext_csd_dentry = NULL;
2876 	}
2877 }
2878 
2879 #else
2880 
2881 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2882 {
2883 	return 0;
2884 }
2885 
2886 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2887 				   struct mmc_blk_data *md)
2888 {
2889 }
2890 
2891 #endif /* CONFIG_DEBUG_FS */
2892 
2893 static int mmc_blk_probe(struct mmc_card *card)
2894 {
2895 	struct mmc_blk_data *md, *part_md;
2896 	int ret = 0;
2897 
2898 	/*
2899 	 * Check that the card supports the command class(es) we need.
2900 	 */
2901 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2902 		return -ENODEV;
2903 
2904 	mmc_fixup_device(card, mmc_blk_fixups);
2905 
2906 	card->complete_wq = alloc_workqueue("mmc_complete",
2907 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2908 	if (!card->complete_wq) {
2909 		pr_err("Failed to create mmc completion workqueue");
2910 		return -ENOMEM;
2911 	}
2912 
2913 	md = mmc_blk_alloc(card);
2914 	if (IS_ERR(md)) {
2915 		ret = PTR_ERR(md);
2916 		goto out_free;
2917 	}
2918 
2919 	ret = mmc_blk_alloc_parts(card, md);
2920 	if (ret)
2921 		goto out;
2922 
2923 	dev_set_drvdata(&card->dev, md);
2924 
2925 	ret = mmc_add_disk(md);
2926 	if (ret)
2927 		goto out;
2928 
2929 	list_for_each_entry(part_md, &md->part, part) {
2930 		ret = mmc_add_disk(part_md);
2931 		if (ret)
2932 			goto out;
2933 	}
2934 
2935 	/* Add two debugfs entries */
2936 	mmc_blk_add_debugfs(card, md);
2937 
2938 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2939 	pm_runtime_use_autosuspend(&card->dev);
2940 
2941 	/*
2942 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2943 	 * decision to be taken during the SDIO init sequence instead.
2944 	 */
2945 	if (card->type != MMC_TYPE_SD_COMBO) {
2946 		pm_runtime_set_active(&card->dev);
2947 		pm_runtime_enable(&card->dev);
2948 	}
2949 
2950 	return 0;
2951 
2952 out:
2953 	mmc_blk_remove_parts(card, md);
2954 	mmc_blk_remove_req(md);
2955 out_free:
2956 	destroy_workqueue(card->complete_wq);
2957 	return ret;
2958 }
2959 
2960 static void mmc_blk_remove(struct mmc_card *card)
2961 {
2962 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2963 
2964 	mmc_blk_remove_debugfs(card, md);
2965 	mmc_blk_remove_parts(card, md);
2966 	pm_runtime_get_sync(&card->dev);
2967 	if (md->part_curr != md->part_type) {
2968 		mmc_claim_host(card->host);
2969 		mmc_blk_part_switch(card, md->part_type);
2970 		mmc_release_host(card->host);
2971 	}
2972 	if (card->type != MMC_TYPE_SD_COMBO)
2973 		pm_runtime_disable(&card->dev);
2974 	pm_runtime_put_noidle(&card->dev);
2975 	mmc_blk_remove_req(md);
2976 	dev_set_drvdata(&card->dev, NULL);
2977 	destroy_workqueue(card->complete_wq);
2978 }
2979 
2980 static int _mmc_blk_suspend(struct mmc_card *card)
2981 {
2982 	struct mmc_blk_data *part_md;
2983 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2984 
2985 	if (md) {
2986 		mmc_queue_suspend(&md->queue);
2987 		list_for_each_entry(part_md, &md->part, part) {
2988 			mmc_queue_suspend(&part_md->queue);
2989 		}
2990 	}
2991 	return 0;
2992 }
2993 
2994 static void mmc_blk_shutdown(struct mmc_card *card)
2995 {
2996 	_mmc_blk_suspend(card);
2997 }
2998 
2999 #ifdef CONFIG_PM_SLEEP
3000 static int mmc_blk_suspend(struct device *dev)
3001 {
3002 	struct mmc_card *card = mmc_dev_to_card(dev);
3003 
3004 	return _mmc_blk_suspend(card);
3005 }
3006 
3007 static int mmc_blk_resume(struct device *dev)
3008 {
3009 	struct mmc_blk_data *part_md;
3010 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3011 
3012 	if (md) {
3013 		/*
3014 		 * Resume involves the card going into idle state,
3015 		 * so current partition is always the main one.
3016 		 */
3017 		md->part_curr = md->part_type;
3018 		mmc_queue_resume(&md->queue);
3019 		list_for_each_entry(part_md, &md->part, part) {
3020 			mmc_queue_resume(&part_md->queue);
3021 		}
3022 	}
3023 	return 0;
3024 }
3025 #endif
3026 
3027 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3028 
3029 static struct mmc_driver mmc_driver = {
3030 	.drv		= {
3031 		.name	= "mmcblk",
3032 		.pm	= &mmc_blk_pm_ops,
3033 	},
3034 	.probe		= mmc_blk_probe,
3035 	.remove		= mmc_blk_remove,
3036 	.shutdown	= mmc_blk_shutdown,
3037 };
3038 
3039 static int __init mmc_blk_init(void)
3040 {
3041 	int res;
3042 
3043 	res  = bus_register(&mmc_rpmb_bus_type);
3044 	if (res < 0) {
3045 		pr_err("mmcblk: could not register RPMB bus type\n");
3046 		return res;
3047 	}
3048 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3049 	if (res < 0) {
3050 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3051 		goto out_bus_unreg;
3052 	}
3053 
3054 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3055 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3056 
3057 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3058 
3059 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3060 	if (res)
3061 		goto out_chrdev_unreg;
3062 
3063 	res = mmc_register_driver(&mmc_driver);
3064 	if (res)
3065 		goto out_blkdev_unreg;
3066 
3067 	return 0;
3068 
3069 out_blkdev_unreg:
3070 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3071 out_chrdev_unreg:
3072 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3073 out_bus_unreg:
3074 	bus_unregister(&mmc_rpmb_bus_type);
3075 	return res;
3076 }
3077 
3078 static void __exit mmc_blk_exit(void)
3079 {
3080 	mmc_unregister_driver(&mmc_driver);
3081 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3082 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3083 	bus_unregister(&mmc_rpmb_bus_type);
3084 }
3085 
3086 module_init(mmc_blk_init);
3087 module_exit(mmc_blk_exit);
3088 
3089 MODULE_LICENSE("GPL");
3090 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3091 
3092