xref: /openbmc/linux/drivers/mmc/core/block.c (revision 8e7ae8ba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43 
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49 
50 #include <linux/uaccess.h>
51 
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62 
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68 
69 /*
70  * Set a 10 second timeout for polling write request busy state. Note, mmc core
71  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72  * second software timer to timeout the whole request, so 10 seconds should be
73  * ample.
74  */
75 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78 
79 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
80 				  (rq_data_dir(req) == WRITE))
81 static DEFINE_MUTEX(block_mutex);
82 
83 /*
84  * The defaults come from config options but can be overriden by module
85  * or bootarg options.
86  */
87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88 
89 /*
90  * We've only got one major, so number of mmcblk devices is
91  * limited to (1 << 20) / number of minors per device.  It is also
92  * limited by the MAX_DEVICES below.
93  */
94 static int max_devices;
95 
96 #define MAX_DEVICES 256
97 
98 static DEFINE_IDA(mmc_blk_ida);
99 static DEFINE_IDA(mmc_rpmb_ida);
100 
101 struct mmc_blk_busy_data {
102 	struct mmc_card *card;
103 	u32 status;
104 };
105 
106 /*
107  * There is one mmc_blk_data per slot.
108  */
109 struct mmc_blk_data {
110 	struct device	*parent;
111 	struct gendisk	*disk;
112 	struct mmc_queue queue;
113 	struct list_head part;
114 	struct list_head rpmbs;
115 
116 	unsigned int	flags;
117 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
118 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
119 
120 	struct kref	kref;
121 	unsigned int	read_only;
122 	unsigned int	part_type;
123 	unsigned int	reset_done;
124 #define MMC_BLK_READ		BIT(0)
125 #define MMC_BLK_WRITE		BIT(1)
126 #define MMC_BLK_DISCARD		BIT(2)
127 #define MMC_BLK_SECDISCARD	BIT(3)
128 #define MMC_BLK_CQE_RECOVERY	BIT(4)
129 #define MMC_BLK_TRIM		BIT(5)
130 
131 	/*
132 	 * Only set in main mmc_blk_data associated
133 	 * with mmc_card with dev_set_drvdata, and keeps
134 	 * track of the current selected device partition.
135 	 */
136 	unsigned int	part_curr;
137 	int	area_type;
138 
139 	/* debugfs files (only in main mmc_blk_data) */
140 	struct dentry *status_dentry;
141 	struct dentry *ext_csd_dentry;
142 };
143 
144 /* Device type for RPMB character devices */
145 static dev_t mmc_rpmb_devt;
146 
147 /* Bus type for RPMB character devices */
148 static struct bus_type mmc_rpmb_bus_type = {
149 	.name = "mmc_rpmb",
150 };
151 
152 /**
153  * struct mmc_rpmb_data - special RPMB device type for these areas
154  * @dev: the device for the RPMB area
155  * @chrdev: character device for the RPMB area
156  * @id: unique device ID number
157  * @part_index: partition index (0 on first)
158  * @md: parent MMC block device
159  * @node: list item, so we can put this device on a list
160  */
161 struct mmc_rpmb_data {
162 	struct device dev;
163 	struct cdev chrdev;
164 	int id;
165 	unsigned int part_index;
166 	struct mmc_blk_data *md;
167 	struct list_head node;
168 };
169 
170 static DEFINE_MUTEX(open_lock);
171 
172 module_param(perdev_minors, int, 0444);
173 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
174 
175 static inline int mmc_blk_part_switch(struct mmc_card *card,
176 				      unsigned int part_type);
177 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
178 			       struct mmc_card *card,
179 			       int disable_multi,
180 			       struct mmc_queue *mq);
181 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
182 
183 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
184 {
185 	struct mmc_blk_data *md;
186 
187 	mutex_lock(&open_lock);
188 	md = disk->private_data;
189 	if (md && !kref_get_unless_zero(&md->kref))
190 		md = NULL;
191 	mutex_unlock(&open_lock);
192 
193 	return md;
194 }
195 
196 static inline int mmc_get_devidx(struct gendisk *disk)
197 {
198 	int devidx = disk->first_minor / perdev_minors;
199 	return devidx;
200 }
201 
202 static void mmc_blk_kref_release(struct kref *ref)
203 {
204 	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
205 	int devidx;
206 
207 	devidx = mmc_get_devidx(md->disk);
208 	ida_simple_remove(&mmc_blk_ida, devidx);
209 
210 	mutex_lock(&open_lock);
211 	md->disk->private_data = NULL;
212 	mutex_unlock(&open_lock);
213 
214 	put_disk(md->disk);
215 	kfree(md);
216 }
217 
218 static void mmc_blk_put(struct mmc_blk_data *md)
219 {
220 	kref_put(&md->kref, mmc_blk_kref_release);
221 }
222 
223 static ssize_t power_ro_lock_show(struct device *dev,
224 		struct device_attribute *attr, char *buf)
225 {
226 	int ret;
227 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
228 	struct mmc_card *card = md->queue.card;
229 	int locked = 0;
230 
231 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
232 		locked = 2;
233 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
234 		locked = 1;
235 
236 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
237 
238 	mmc_blk_put(md);
239 
240 	return ret;
241 }
242 
243 static ssize_t power_ro_lock_store(struct device *dev,
244 		struct device_attribute *attr, const char *buf, size_t count)
245 {
246 	int ret;
247 	struct mmc_blk_data *md, *part_md;
248 	struct mmc_queue *mq;
249 	struct request *req;
250 	unsigned long set;
251 
252 	if (kstrtoul(buf, 0, &set))
253 		return -EINVAL;
254 
255 	if (set != 1)
256 		return count;
257 
258 	md = mmc_blk_get(dev_to_disk(dev));
259 	mq = &md->queue;
260 
261 	/* Dispatch locking to the block layer */
262 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
263 	if (IS_ERR(req)) {
264 		count = PTR_ERR(req);
265 		goto out_put;
266 	}
267 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
268 	blk_execute_rq(req, false);
269 	ret = req_to_mmc_queue_req(req)->drv_op_result;
270 	blk_mq_free_request(req);
271 
272 	if (!ret) {
273 		pr_info("%s: Locking boot partition ro until next power on\n",
274 			md->disk->disk_name);
275 		set_disk_ro(md->disk, 1);
276 
277 		list_for_each_entry(part_md, &md->part, part)
278 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
279 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
280 				set_disk_ro(part_md->disk, 1);
281 			}
282 	}
283 out_put:
284 	mmc_blk_put(md);
285 	return count;
286 }
287 
288 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
289 		power_ro_lock_show, power_ro_lock_store);
290 
291 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
292 			     char *buf)
293 {
294 	int ret;
295 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
296 
297 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
298 		       get_disk_ro(dev_to_disk(dev)) ^
299 		       md->read_only);
300 	mmc_blk_put(md);
301 	return ret;
302 }
303 
304 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
305 			      const char *buf, size_t count)
306 {
307 	int ret;
308 	char *end;
309 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
310 	unsigned long set = simple_strtoul(buf, &end, 0);
311 	if (end == buf) {
312 		ret = -EINVAL;
313 		goto out;
314 	}
315 
316 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
317 	ret = count;
318 out:
319 	mmc_blk_put(md);
320 	return ret;
321 }
322 
323 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
324 
325 static struct attribute *mmc_disk_attrs[] = {
326 	&dev_attr_force_ro.attr,
327 	&dev_attr_ro_lock_until_next_power_on.attr,
328 	NULL,
329 };
330 
331 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
332 		struct attribute *a, int n)
333 {
334 	struct device *dev = kobj_to_dev(kobj);
335 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
336 	umode_t mode = a->mode;
337 
338 	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
339 	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
340 	    md->queue.card->ext_csd.boot_ro_lockable) {
341 		mode = S_IRUGO;
342 		if (!(md->queue.card->ext_csd.boot_ro_lock &
343 				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
344 			mode |= S_IWUSR;
345 	}
346 
347 	mmc_blk_put(md);
348 	return mode;
349 }
350 
351 static const struct attribute_group mmc_disk_attr_group = {
352 	.is_visible	= mmc_disk_attrs_is_visible,
353 	.attrs		= mmc_disk_attrs,
354 };
355 
356 static const struct attribute_group *mmc_disk_attr_groups[] = {
357 	&mmc_disk_attr_group,
358 	NULL,
359 };
360 
361 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
362 {
363 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
364 	int ret = -ENXIO;
365 
366 	mutex_lock(&block_mutex);
367 	if (md) {
368 		ret = 0;
369 		if ((mode & FMODE_WRITE) && md->read_only) {
370 			mmc_blk_put(md);
371 			ret = -EROFS;
372 		}
373 	}
374 	mutex_unlock(&block_mutex);
375 
376 	return ret;
377 }
378 
379 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
380 {
381 	struct mmc_blk_data *md = disk->private_data;
382 
383 	mutex_lock(&block_mutex);
384 	mmc_blk_put(md);
385 	mutex_unlock(&block_mutex);
386 }
387 
388 static int
389 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
390 {
391 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
392 	geo->heads = 4;
393 	geo->sectors = 16;
394 	return 0;
395 }
396 
397 struct mmc_blk_ioc_data {
398 	struct mmc_ioc_cmd ic;
399 	unsigned char *buf;
400 	u64 buf_bytes;
401 	struct mmc_rpmb_data *rpmb;
402 };
403 
404 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
405 	struct mmc_ioc_cmd __user *user)
406 {
407 	struct mmc_blk_ioc_data *idata;
408 	int err;
409 
410 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
411 	if (!idata) {
412 		err = -ENOMEM;
413 		goto out;
414 	}
415 
416 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
417 		err = -EFAULT;
418 		goto idata_err;
419 	}
420 
421 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
422 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
423 		err = -EOVERFLOW;
424 		goto idata_err;
425 	}
426 
427 	if (!idata->buf_bytes) {
428 		idata->buf = NULL;
429 		return idata;
430 	}
431 
432 	idata->buf = memdup_user((void __user *)(unsigned long)
433 				 idata->ic.data_ptr, idata->buf_bytes);
434 	if (IS_ERR(idata->buf)) {
435 		err = PTR_ERR(idata->buf);
436 		goto idata_err;
437 	}
438 
439 	return idata;
440 
441 idata_err:
442 	kfree(idata);
443 out:
444 	return ERR_PTR(err);
445 }
446 
447 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
448 				      struct mmc_blk_ioc_data *idata)
449 {
450 	struct mmc_ioc_cmd *ic = &idata->ic;
451 
452 	if (copy_to_user(&(ic_ptr->response), ic->response,
453 			 sizeof(ic->response)))
454 		return -EFAULT;
455 
456 	if (!idata->ic.write_flag) {
457 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
458 				 idata->buf, idata->buf_bytes))
459 			return -EFAULT;
460 	}
461 
462 	return 0;
463 }
464 
465 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
466 			       struct mmc_blk_ioc_data *idata)
467 {
468 	struct mmc_command cmd = {}, sbc = {};
469 	struct mmc_data data = {};
470 	struct mmc_request mrq = {};
471 	struct scatterlist sg;
472 	int err;
473 	unsigned int target_part;
474 
475 	if (!card || !md || !idata)
476 		return -EINVAL;
477 
478 	/*
479 	 * The RPMB accesses comes in from the character device, so we
480 	 * need to target these explicitly. Else we just target the
481 	 * partition type for the block device the ioctl() was issued
482 	 * on.
483 	 */
484 	if (idata->rpmb) {
485 		/* Support multiple RPMB partitions */
486 		target_part = idata->rpmb->part_index;
487 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
488 	} else {
489 		target_part = md->part_type;
490 	}
491 
492 	cmd.opcode = idata->ic.opcode;
493 	cmd.arg = idata->ic.arg;
494 	cmd.flags = idata->ic.flags;
495 
496 	if (idata->buf_bytes) {
497 		data.sg = &sg;
498 		data.sg_len = 1;
499 		data.blksz = idata->ic.blksz;
500 		data.blocks = idata->ic.blocks;
501 
502 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
503 
504 		if (idata->ic.write_flag)
505 			data.flags = MMC_DATA_WRITE;
506 		else
507 			data.flags = MMC_DATA_READ;
508 
509 		/* data.flags must already be set before doing this. */
510 		mmc_set_data_timeout(&data, card);
511 
512 		/* Allow overriding the timeout_ns for empirical tuning. */
513 		if (idata->ic.data_timeout_ns)
514 			data.timeout_ns = idata->ic.data_timeout_ns;
515 
516 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
517 			/*
518 			 * Pretend this is a data transfer and rely on the
519 			 * host driver to compute timeout.  When all host
520 			 * drivers support cmd.cmd_timeout for R1B, this
521 			 * can be changed to:
522 			 *
523 			 *     mrq.data = NULL;
524 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
525 			 */
526 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
527 		}
528 
529 		mrq.data = &data;
530 	}
531 
532 	mrq.cmd = &cmd;
533 
534 	err = mmc_blk_part_switch(card, target_part);
535 	if (err)
536 		return err;
537 
538 	if (idata->ic.is_acmd) {
539 		err = mmc_app_cmd(card->host, card);
540 		if (err)
541 			return err;
542 	}
543 
544 	if (idata->rpmb) {
545 		sbc.opcode = MMC_SET_BLOCK_COUNT;
546 		/*
547 		 * We don't do any blockcount validation because the max size
548 		 * may be increased by a future standard. We just copy the
549 		 * 'Reliable Write' bit here.
550 		 */
551 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
552 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
553 		mrq.sbc = &sbc;
554 	}
555 
556 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
557 	    (cmd.opcode == MMC_SWITCH))
558 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
559 
560 	mmc_wait_for_req(card->host, &mrq);
561 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
562 
563 	if (cmd.error) {
564 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
565 						__func__, cmd.error);
566 		return cmd.error;
567 	}
568 	if (data.error) {
569 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
570 						__func__, data.error);
571 		return data.error;
572 	}
573 
574 	/*
575 	 * Make sure the cache of the PARTITION_CONFIG register and
576 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
577 	 * changed it successfully.
578 	 */
579 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
580 	    (cmd.opcode == MMC_SWITCH)) {
581 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
582 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
583 
584 		/*
585 		 * Update cache so the next mmc_blk_part_switch call operates
586 		 * on up-to-date data.
587 		 */
588 		card->ext_csd.part_config = value;
589 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
590 	}
591 
592 	/*
593 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
594 	 * will get turned back on if the card is re-initialized, e.g.
595 	 * suspend/resume or hw reset in recovery.
596 	 */
597 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
598 	    (cmd.opcode == MMC_SWITCH)) {
599 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
600 
601 		card->ext_csd.cache_ctrl = value;
602 	}
603 
604 	/*
605 	 * According to the SD specs, some commands require a delay after
606 	 * issuing the command.
607 	 */
608 	if (idata->ic.postsleep_min_us)
609 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
610 
611 	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
612 		/*
613 		 * Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we
614 		 * allow to override the default timeout value if a custom timeout is specified.
615 		 */
616 		err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS,
617 					false, MMC_BUSY_IO);
618 	}
619 
620 	return err;
621 }
622 
623 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
624 			     struct mmc_ioc_cmd __user *ic_ptr,
625 			     struct mmc_rpmb_data *rpmb)
626 {
627 	struct mmc_blk_ioc_data *idata;
628 	struct mmc_blk_ioc_data *idatas[1];
629 	struct mmc_queue *mq;
630 	struct mmc_card *card;
631 	int err = 0, ioc_err = 0;
632 	struct request *req;
633 
634 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
635 	if (IS_ERR(idata))
636 		return PTR_ERR(idata);
637 	/* This will be NULL on non-RPMB ioctl():s */
638 	idata->rpmb = rpmb;
639 
640 	card = md->queue.card;
641 	if (IS_ERR(card)) {
642 		err = PTR_ERR(card);
643 		goto cmd_done;
644 	}
645 
646 	/*
647 	 * Dispatch the ioctl() into the block request queue.
648 	 */
649 	mq = &md->queue;
650 	req = blk_mq_alloc_request(mq->queue,
651 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
652 	if (IS_ERR(req)) {
653 		err = PTR_ERR(req);
654 		goto cmd_done;
655 	}
656 	idatas[0] = idata;
657 	req_to_mmc_queue_req(req)->drv_op =
658 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
659 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
660 	req_to_mmc_queue_req(req)->ioc_count = 1;
661 	blk_execute_rq(req, false);
662 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
663 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
664 	blk_mq_free_request(req);
665 
666 cmd_done:
667 	kfree(idata->buf);
668 	kfree(idata);
669 	return ioc_err ? ioc_err : err;
670 }
671 
672 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
673 				   struct mmc_ioc_multi_cmd __user *user,
674 				   struct mmc_rpmb_data *rpmb)
675 {
676 	struct mmc_blk_ioc_data **idata = NULL;
677 	struct mmc_ioc_cmd __user *cmds = user->cmds;
678 	struct mmc_card *card;
679 	struct mmc_queue *mq;
680 	int err = 0, ioc_err = 0;
681 	__u64 num_of_cmds;
682 	unsigned int i, n;
683 	struct request *req;
684 
685 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
686 			   sizeof(num_of_cmds)))
687 		return -EFAULT;
688 
689 	if (!num_of_cmds)
690 		return 0;
691 
692 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
693 		return -EINVAL;
694 
695 	n = num_of_cmds;
696 	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
697 	if (!idata)
698 		return -ENOMEM;
699 
700 	for (i = 0; i < n; i++) {
701 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
702 		if (IS_ERR(idata[i])) {
703 			err = PTR_ERR(idata[i]);
704 			n = i;
705 			goto cmd_err;
706 		}
707 		/* This will be NULL on non-RPMB ioctl():s */
708 		idata[i]->rpmb = rpmb;
709 	}
710 
711 	card = md->queue.card;
712 	if (IS_ERR(card)) {
713 		err = PTR_ERR(card);
714 		goto cmd_err;
715 	}
716 
717 
718 	/*
719 	 * Dispatch the ioctl()s into the block request queue.
720 	 */
721 	mq = &md->queue;
722 	req = blk_mq_alloc_request(mq->queue,
723 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
724 	if (IS_ERR(req)) {
725 		err = PTR_ERR(req);
726 		goto cmd_err;
727 	}
728 	req_to_mmc_queue_req(req)->drv_op =
729 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
730 	req_to_mmc_queue_req(req)->drv_op_data = idata;
731 	req_to_mmc_queue_req(req)->ioc_count = n;
732 	blk_execute_rq(req, false);
733 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
734 
735 	/* copy to user if data and response */
736 	for (i = 0; i < n && !err; i++)
737 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
738 
739 	blk_mq_free_request(req);
740 
741 cmd_err:
742 	for (i = 0; i < n; i++) {
743 		kfree(idata[i]->buf);
744 		kfree(idata[i]);
745 	}
746 	kfree(idata);
747 	return ioc_err ? ioc_err : err;
748 }
749 
750 static int mmc_blk_check_blkdev(struct block_device *bdev)
751 {
752 	/*
753 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
754 	 * whole block device, not on a partition.  This prevents overspray
755 	 * between sibling partitions.
756 	 */
757 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
758 		return -EPERM;
759 	return 0;
760 }
761 
762 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
763 	unsigned int cmd, unsigned long arg)
764 {
765 	struct mmc_blk_data *md;
766 	int ret;
767 
768 	switch (cmd) {
769 	case MMC_IOC_CMD:
770 		ret = mmc_blk_check_blkdev(bdev);
771 		if (ret)
772 			return ret;
773 		md = mmc_blk_get(bdev->bd_disk);
774 		if (!md)
775 			return -EINVAL;
776 		ret = mmc_blk_ioctl_cmd(md,
777 					(struct mmc_ioc_cmd __user *)arg,
778 					NULL);
779 		mmc_blk_put(md);
780 		return ret;
781 	case MMC_IOC_MULTI_CMD:
782 		ret = mmc_blk_check_blkdev(bdev);
783 		if (ret)
784 			return ret;
785 		md = mmc_blk_get(bdev->bd_disk);
786 		if (!md)
787 			return -EINVAL;
788 		ret = mmc_blk_ioctl_multi_cmd(md,
789 					(struct mmc_ioc_multi_cmd __user *)arg,
790 					NULL);
791 		mmc_blk_put(md);
792 		return ret;
793 	default:
794 		return -EINVAL;
795 	}
796 }
797 
798 #ifdef CONFIG_COMPAT
799 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
800 	unsigned int cmd, unsigned long arg)
801 {
802 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
803 }
804 #endif
805 
806 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
807 					  sector_t *sector)
808 {
809 	struct mmc_blk_data *md;
810 	int ret;
811 
812 	md = mmc_blk_get(disk);
813 	if (!md)
814 		return -EINVAL;
815 
816 	if (md->queue.card)
817 		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
818 	else
819 		ret = -ENODEV;
820 
821 	mmc_blk_put(md);
822 
823 	return ret;
824 }
825 
826 static const struct block_device_operations mmc_bdops = {
827 	.open			= mmc_blk_open,
828 	.release		= mmc_blk_release,
829 	.getgeo			= mmc_blk_getgeo,
830 	.owner			= THIS_MODULE,
831 	.ioctl			= mmc_blk_ioctl,
832 #ifdef CONFIG_COMPAT
833 	.compat_ioctl		= mmc_blk_compat_ioctl,
834 #endif
835 	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
836 };
837 
838 static int mmc_blk_part_switch_pre(struct mmc_card *card,
839 				   unsigned int part_type)
840 {
841 	int ret = 0;
842 
843 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
844 		if (card->ext_csd.cmdq_en) {
845 			ret = mmc_cmdq_disable(card);
846 			if (ret)
847 				return ret;
848 		}
849 		mmc_retune_pause(card->host);
850 	}
851 
852 	return ret;
853 }
854 
855 static int mmc_blk_part_switch_post(struct mmc_card *card,
856 				    unsigned int part_type)
857 {
858 	int ret = 0;
859 
860 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
861 		mmc_retune_unpause(card->host);
862 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
863 			ret = mmc_cmdq_enable(card);
864 	}
865 
866 	return ret;
867 }
868 
869 static inline int mmc_blk_part_switch(struct mmc_card *card,
870 				      unsigned int part_type)
871 {
872 	int ret = 0;
873 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
874 
875 	if (main_md->part_curr == part_type)
876 		return 0;
877 
878 	if (mmc_card_mmc(card)) {
879 		u8 part_config = card->ext_csd.part_config;
880 
881 		ret = mmc_blk_part_switch_pre(card, part_type);
882 		if (ret)
883 			return ret;
884 
885 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
886 		part_config |= part_type;
887 
888 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
889 				 EXT_CSD_PART_CONFIG, part_config,
890 				 card->ext_csd.part_time);
891 		if (ret) {
892 			mmc_blk_part_switch_post(card, part_type);
893 			return ret;
894 		}
895 
896 		card->ext_csd.part_config = part_config;
897 
898 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
899 	}
900 
901 	main_md->part_curr = part_type;
902 	return ret;
903 }
904 
905 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
906 {
907 	int err;
908 	u32 result;
909 	__be32 *blocks;
910 
911 	struct mmc_request mrq = {};
912 	struct mmc_command cmd = {};
913 	struct mmc_data data = {};
914 
915 	struct scatterlist sg;
916 
917 	cmd.opcode = MMC_APP_CMD;
918 	cmd.arg = card->rca << 16;
919 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
920 
921 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
922 	if (err)
923 		return err;
924 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
925 		return -EIO;
926 
927 	memset(&cmd, 0, sizeof(struct mmc_command));
928 
929 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
930 	cmd.arg = 0;
931 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
932 
933 	data.blksz = 4;
934 	data.blocks = 1;
935 	data.flags = MMC_DATA_READ;
936 	data.sg = &sg;
937 	data.sg_len = 1;
938 	mmc_set_data_timeout(&data, card);
939 
940 	mrq.cmd = &cmd;
941 	mrq.data = &data;
942 
943 	blocks = kmalloc(4, GFP_KERNEL);
944 	if (!blocks)
945 		return -ENOMEM;
946 
947 	sg_init_one(&sg, blocks, 4);
948 
949 	mmc_wait_for_req(card->host, &mrq);
950 
951 	result = ntohl(*blocks);
952 	kfree(blocks);
953 
954 	if (cmd.error || data.error)
955 		return -EIO;
956 
957 	*written_blocks = result;
958 
959 	return 0;
960 }
961 
962 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
963 {
964 	if (host->actual_clock)
965 		return host->actual_clock / 1000;
966 
967 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
968 	if (host->ios.clock)
969 		return host->ios.clock / 2000;
970 
971 	/* How can there be no clock */
972 	WARN_ON_ONCE(1);
973 	return 100; /* 100 kHz is minimum possible value */
974 }
975 
976 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
977 					    struct mmc_data *data)
978 {
979 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
980 	unsigned int khz;
981 
982 	if (data->timeout_clks) {
983 		khz = mmc_blk_clock_khz(host);
984 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
985 	}
986 
987 	return ms;
988 }
989 
990 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
991 			 int type)
992 {
993 	int err;
994 
995 	if (md->reset_done & type)
996 		return -EEXIST;
997 
998 	md->reset_done |= type;
999 	err = mmc_hw_reset(host->card);
1000 	/* Ensure we switch back to the correct partition */
1001 	if (err) {
1002 		struct mmc_blk_data *main_md =
1003 			dev_get_drvdata(&host->card->dev);
1004 		int part_err;
1005 
1006 		main_md->part_curr = main_md->part_type;
1007 		part_err = mmc_blk_part_switch(host->card, md->part_type);
1008 		if (part_err) {
1009 			/*
1010 			 * We have failed to get back into the correct
1011 			 * partition, so we need to abort the whole request.
1012 			 */
1013 			return -ENODEV;
1014 		}
1015 	}
1016 	return err;
1017 }
1018 
1019 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1020 {
1021 	md->reset_done &= ~type;
1022 }
1023 
1024 /*
1025  * The non-block commands come back from the block layer after it queued it and
1026  * processed it with all other requests and then they get issued in this
1027  * function.
1028  */
1029 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1030 {
1031 	struct mmc_queue_req *mq_rq;
1032 	struct mmc_card *card = mq->card;
1033 	struct mmc_blk_data *md = mq->blkdata;
1034 	struct mmc_blk_ioc_data **idata;
1035 	bool rpmb_ioctl;
1036 	u8 **ext_csd;
1037 	u32 status;
1038 	int ret;
1039 	int i;
1040 
1041 	mq_rq = req_to_mmc_queue_req(req);
1042 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1043 
1044 	switch (mq_rq->drv_op) {
1045 	case MMC_DRV_OP_IOCTL:
1046 		if (card->ext_csd.cmdq_en) {
1047 			ret = mmc_cmdq_disable(card);
1048 			if (ret)
1049 				break;
1050 		}
1051 		fallthrough;
1052 	case MMC_DRV_OP_IOCTL_RPMB:
1053 		idata = mq_rq->drv_op_data;
1054 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1055 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1056 			if (ret)
1057 				break;
1058 		}
1059 		/* Always switch back to main area after RPMB access */
1060 		if (rpmb_ioctl)
1061 			mmc_blk_part_switch(card, 0);
1062 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1063 			mmc_cmdq_enable(card);
1064 		break;
1065 	case MMC_DRV_OP_BOOT_WP:
1066 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1067 				 card->ext_csd.boot_ro_lock |
1068 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1069 				 card->ext_csd.part_time);
1070 		if (ret)
1071 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1072 			       md->disk->disk_name, ret);
1073 		else
1074 			card->ext_csd.boot_ro_lock |=
1075 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1076 		break;
1077 	case MMC_DRV_OP_GET_CARD_STATUS:
1078 		ret = mmc_send_status(card, &status);
1079 		if (!ret)
1080 			ret = status;
1081 		break;
1082 	case MMC_DRV_OP_GET_EXT_CSD:
1083 		ext_csd = mq_rq->drv_op_data;
1084 		ret = mmc_get_ext_csd(card, ext_csd);
1085 		break;
1086 	default:
1087 		pr_err("%s: unknown driver specific operation\n",
1088 		       md->disk->disk_name);
1089 		ret = -EINVAL;
1090 		break;
1091 	}
1092 	mq_rq->drv_op_result = ret;
1093 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1094 }
1095 
1096 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1097 				   int type, unsigned int erase_arg)
1098 {
1099 	struct mmc_blk_data *md = mq->blkdata;
1100 	struct mmc_card *card = md->queue.card;
1101 	unsigned int from, nr;
1102 	int err = 0;
1103 	blk_status_t status = BLK_STS_OK;
1104 
1105 	if (!mmc_can_erase(card)) {
1106 		status = BLK_STS_NOTSUPP;
1107 		goto fail;
1108 	}
1109 
1110 	from = blk_rq_pos(req);
1111 	nr = blk_rq_sectors(req);
1112 
1113 	do {
1114 		err = 0;
1115 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1116 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1117 					 INAND_CMD38_ARG_EXT_CSD,
1118 					 erase_arg == MMC_TRIM_ARG ?
1119 					 INAND_CMD38_ARG_TRIM :
1120 					 INAND_CMD38_ARG_ERASE,
1121 					 card->ext_csd.generic_cmd6_time);
1122 		}
1123 		if (!err)
1124 			err = mmc_erase(card, from, nr, erase_arg);
1125 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1126 	if (err)
1127 		status = BLK_STS_IOERR;
1128 	else
1129 		mmc_blk_reset_success(md, type);
1130 fail:
1131 	blk_mq_end_request(req, status);
1132 }
1133 
1134 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1135 {
1136 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1137 }
1138 
1139 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1140 {
1141 	struct mmc_blk_data *md = mq->blkdata;
1142 	struct mmc_card *card = md->queue.card;
1143 
1144 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, card->erase_arg);
1145 }
1146 
1147 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1148 				       struct request *req)
1149 {
1150 	struct mmc_blk_data *md = mq->blkdata;
1151 	struct mmc_card *card = md->queue.card;
1152 	unsigned int from, nr, arg;
1153 	int err = 0, type = MMC_BLK_SECDISCARD;
1154 	blk_status_t status = BLK_STS_OK;
1155 
1156 	if (!(mmc_can_secure_erase_trim(card))) {
1157 		status = BLK_STS_NOTSUPP;
1158 		goto out;
1159 	}
1160 
1161 	from = blk_rq_pos(req);
1162 	nr = blk_rq_sectors(req);
1163 
1164 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1165 		arg = MMC_SECURE_TRIM1_ARG;
1166 	else
1167 		arg = MMC_SECURE_ERASE_ARG;
1168 
1169 retry:
1170 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1171 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1172 				 INAND_CMD38_ARG_EXT_CSD,
1173 				 arg == MMC_SECURE_TRIM1_ARG ?
1174 				 INAND_CMD38_ARG_SECTRIM1 :
1175 				 INAND_CMD38_ARG_SECERASE,
1176 				 card->ext_csd.generic_cmd6_time);
1177 		if (err)
1178 			goto out_retry;
1179 	}
1180 
1181 	err = mmc_erase(card, from, nr, arg);
1182 	if (err == -EIO)
1183 		goto out_retry;
1184 	if (err) {
1185 		status = BLK_STS_IOERR;
1186 		goto out;
1187 	}
1188 
1189 	if (arg == MMC_SECURE_TRIM1_ARG) {
1190 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1191 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1192 					 INAND_CMD38_ARG_EXT_CSD,
1193 					 INAND_CMD38_ARG_SECTRIM2,
1194 					 card->ext_csd.generic_cmd6_time);
1195 			if (err)
1196 				goto out_retry;
1197 		}
1198 
1199 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1200 		if (err == -EIO)
1201 			goto out_retry;
1202 		if (err) {
1203 			status = BLK_STS_IOERR;
1204 			goto out;
1205 		}
1206 	}
1207 
1208 out_retry:
1209 	if (err && !mmc_blk_reset(md, card->host, type))
1210 		goto retry;
1211 	if (!err)
1212 		mmc_blk_reset_success(md, type);
1213 out:
1214 	blk_mq_end_request(req, status);
1215 }
1216 
1217 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1218 {
1219 	struct mmc_blk_data *md = mq->blkdata;
1220 	struct mmc_card *card = md->queue.card;
1221 	int ret = 0;
1222 
1223 	ret = mmc_flush_cache(card->host);
1224 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1225 }
1226 
1227 /*
1228  * Reformat current write as a reliable write, supporting
1229  * both legacy and the enhanced reliable write MMC cards.
1230  * In each transfer we'll handle only as much as a single
1231  * reliable write can handle, thus finish the request in
1232  * partial completions.
1233  */
1234 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1235 				    struct mmc_card *card,
1236 				    struct request *req)
1237 {
1238 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1239 		/* Legacy mode imposes restrictions on transfers. */
1240 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1241 			brq->data.blocks = 1;
1242 
1243 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1244 			brq->data.blocks = card->ext_csd.rel_sectors;
1245 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1246 			brq->data.blocks = 1;
1247 	}
1248 }
1249 
1250 #define CMD_ERRORS_EXCL_OOR						\
1251 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1252 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1253 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1254 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1255 	 R1_CC_ERROR |		/* Card controller error */		\
1256 	 R1_ERROR)		/* General/unknown error */
1257 
1258 #define CMD_ERRORS							\
1259 	(CMD_ERRORS_EXCL_OOR |						\
1260 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1261 
1262 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1263 {
1264 	u32 val;
1265 
1266 	/*
1267 	 * Per the SD specification(physical layer version 4.10)[1],
1268 	 * section 4.3.3, it explicitly states that "When the last
1269 	 * block of user area is read using CMD18, the host should
1270 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1271 	 * is correct". And JESD84-B51 for eMMC also has a similar
1272 	 * statement on section 6.8.3.
1273 	 *
1274 	 * Multiple block read/write could be done by either predefined
1275 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1276 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1277 	 *
1278 	 * However the spec[1] doesn't tell us whether we should also
1279 	 * ignore that for predefined method. But per the spec[1], section
1280 	 * 4.15 Set Block Count Command, it says"If illegal block count
1281 	 * is set, out of range error will be indicated during read/write
1282 	 * operation (For example, data transfer is stopped at user area
1283 	 * boundary)." In another word, we could expect a out of range error
1284 	 * in the response for the following CMD18/25. And if argument of
1285 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1286 	 * we could also expect to get a -ETIMEDOUT or any error number from
1287 	 * the host drivers due to missing data response(for write)/data(for
1288 	 * read), as the cards will stop the data transfer by itself per the
1289 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1290 	 */
1291 
1292 	if (!brq->stop.error) {
1293 		bool oor_with_open_end;
1294 		/* If there is no error yet, check R1 response */
1295 
1296 		val = brq->stop.resp[0] & CMD_ERRORS;
1297 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1298 
1299 		if (val && !oor_with_open_end)
1300 			brq->stop.error = -EIO;
1301 	}
1302 }
1303 
1304 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1305 			      int disable_multi, bool *do_rel_wr_p,
1306 			      bool *do_data_tag_p)
1307 {
1308 	struct mmc_blk_data *md = mq->blkdata;
1309 	struct mmc_card *card = md->queue.card;
1310 	struct mmc_blk_request *brq = &mqrq->brq;
1311 	struct request *req = mmc_queue_req_to_req(mqrq);
1312 	bool do_rel_wr, do_data_tag;
1313 
1314 	/*
1315 	 * Reliable writes are used to implement Forced Unit Access and
1316 	 * are supported only on MMCs.
1317 	 */
1318 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1319 		    rq_data_dir(req) == WRITE &&
1320 		    (md->flags & MMC_BLK_REL_WR);
1321 
1322 	memset(brq, 0, sizeof(struct mmc_blk_request));
1323 
1324 	mmc_crypto_prepare_req(mqrq);
1325 
1326 	brq->mrq.data = &brq->data;
1327 	brq->mrq.tag = req->tag;
1328 
1329 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1330 	brq->stop.arg = 0;
1331 
1332 	if (rq_data_dir(req) == READ) {
1333 		brq->data.flags = MMC_DATA_READ;
1334 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1335 	} else {
1336 		brq->data.flags = MMC_DATA_WRITE;
1337 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1338 	}
1339 
1340 	brq->data.blksz = 512;
1341 	brq->data.blocks = blk_rq_sectors(req);
1342 	brq->data.blk_addr = blk_rq_pos(req);
1343 
1344 	/*
1345 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1346 	 * The eMMC will give "high" priority tasks priority over "simple"
1347 	 * priority tasks. Here we always set "simple" priority by not setting
1348 	 * MMC_DATA_PRIO.
1349 	 */
1350 
1351 	/*
1352 	 * The block layer doesn't support all sector count
1353 	 * restrictions, so we need to be prepared for too big
1354 	 * requests.
1355 	 */
1356 	if (brq->data.blocks > card->host->max_blk_count)
1357 		brq->data.blocks = card->host->max_blk_count;
1358 
1359 	if (brq->data.blocks > 1) {
1360 		/*
1361 		 * Some SD cards in SPI mode return a CRC error or even lock up
1362 		 * completely when trying to read the last block using a
1363 		 * multiblock read command.
1364 		 */
1365 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1366 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1367 		     get_capacity(md->disk)))
1368 			brq->data.blocks--;
1369 
1370 		/*
1371 		 * After a read error, we redo the request one sector
1372 		 * at a time in order to accurately determine which
1373 		 * sectors can be read successfully.
1374 		 */
1375 		if (disable_multi)
1376 			brq->data.blocks = 1;
1377 
1378 		/*
1379 		 * Some controllers have HW issues while operating
1380 		 * in multiple I/O mode
1381 		 */
1382 		if (card->host->ops->multi_io_quirk)
1383 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1384 						(rq_data_dir(req) == READ) ?
1385 						MMC_DATA_READ : MMC_DATA_WRITE,
1386 						brq->data.blocks);
1387 	}
1388 
1389 	if (do_rel_wr) {
1390 		mmc_apply_rel_rw(brq, card, req);
1391 		brq->data.flags |= MMC_DATA_REL_WR;
1392 	}
1393 
1394 	/*
1395 	 * Data tag is used only during writing meta data to speed
1396 	 * up write and any subsequent read of this meta data
1397 	 */
1398 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1399 		      (req->cmd_flags & REQ_META) &&
1400 		      (rq_data_dir(req) == WRITE) &&
1401 		      ((brq->data.blocks * brq->data.blksz) >=
1402 		       card->ext_csd.data_tag_unit_size);
1403 
1404 	if (do_data_tag)
1405 		brq->data.flags |= MMC_DATA_DAT_TAG;
1406 
1407 	mmc_set_data_timeout(&brq->data, card);
1408 
1409 	brq->data.sg = mqrq->sg;
1410 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1411 
1412 	/*
1413 	 * Adjust the sg list so it is the same size as the
1414 	 * request.
1415 	 */
1416 	if (brq->data.blocks != blk_rq_sectors(req)) {
1417 		int i, data_size = brq->data.blocks << 9;
1418 		struct scatterlist *sg;
1419 
1420 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1421 			data_size -= sg->length;
1422 			if (data_size <= 0) {
1423 				sg->length += data_size;
1424 				i++;
1425 				break;
1426 			}
1427 		}
1428 		brq->data.sg_len = i;
1429 	}
1430 
1431 	if (do_rel_wr_p)
1432 		*do_rel_wr_p = do_rel_wr;
1433 
1434 	if (do_data_tag_p)
1435 		*do_data_tag_p = do_data_tag;
1436 }
1437 
1438 #define MMC_CQE_RETRIES 2
1439 
1440 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1441 {
1442 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1443 	struct mmc_request *mrq = &mqrq->brq.mrq;
1444 	struct request_queue *q = req->q;
1445 	struct mmc_host *host = mq->card->host;
1446 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1447 	unsigned long flags;
1448 	bool put_card;
1449 	int err;
1450 
1451 	mmc_cqe_post_req(host, mrq);
1452 
1453 	if (mrq->cmd && mrq->cmd->error)
1454 		err = mrq->cmd->error;
1455 	else if (mrq->data && mrq->data->error)
1456 		err = mrq->data->error;
1457 	else
1458 		err = 0;
1459 
1460 	if (err) {
1461 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1462 			blk_mq_requeue_request(req, true);
1463 		else
1464 			blk_mq_end_request(req, BLK_STS_IOERR);
1465 	} else if (mrq->data) {
1466 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1467 			blk_mq_requeue_request(req, true);
1468 		else
1469 			__blk_mq_end_request(req, BLK_STS_OK);
1470 	} else {
1471 		blk_mq_end_request(req, BLK_STS_OK);
1472 	}
1473 
1474 	spin_lock_irqsave(&mq->lock, flags);
1475 
1476 	mq->in_flight[issue_type] -= 1;
1477 
1478 	put_card = (mmc_tot_in_flight(mq) == 0);
1479 
1480 	mmc_cqe_check_busy(mq);
1481 
1482 	spin_unlock_irqrestore(&mq->lock, flags);
1483 
1484 	if (!mq->cqe_busy)
1485 		blk_mq_run_hw_queues(q, true);
1486 
1487 	if (put_card)
1488 		mmc_put_card(mq->card, &mq->ctx);
1489 }
1490 
1491 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1492 {
1493 	struct mmc_card *card = mq->card;
1494 	struct mmc_host *host = card->host;
1495 	int err;
1496 
1497 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1498 
1499 	err = mmc_cqe_recovery(host);
1500 	if (err)
1501 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1502 	else
1503 		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1504 
1505 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1506 }
1507 
1508 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1509 {
1510 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1511 						  brq.mrq);
1512 	struct request *req = mmc_queue_req_to_req(mqrq);
1513 	struct request_queue *q = req->q;
1514 	struct mmc_queue *mq = q->queuedata;
1515 
1516 	/*
1517 	 * Block layer timeouts race with completions which means the normal
1518 	 * completion path cannot be used during recovery.
1519 	 */
1520 	if (mq->in_recovery)
1521 		mmc_blk_cqe_complete_rq(mq, req);
1522 	else if (likely(!blk_should_fake_timeout(req->q)))
1523 		blk_mq_complete_request(req);
1524 }
1525 
1526 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1527 {
1528 	mrq->done		= mmc_blk_cqe_req_done;
1529 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1530 
1531 	return mmc_cqe_start_req(host, mrq);
1532 }
1533 
1534 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1535 						 struct request *req)
1536 {
1537 	struct mmc_blk_request *brq = &mqrq->brq;
1538 
1539 	memset(brq, 0, sizeof(*brq));
1540 
1541 	brq->mrq.cmd = &brq->cmd;
1542 	brq->mrq.tag = req->tag;
1543 
1544 	return &brq->mrq;
1545 }
1546 
1547 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1548 {
1549 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1550 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1551 
1552 	mrq->cmd->opcode = MMC_SWITCH;
1553 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1554 			(EXT_CSD_FLUSH_CACHE << 16) |
1555 			(1 << 8) |
1556 			EXT_CSD_CMD_SET_NORMAL;
1557 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1558 
1559 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1560 }
1561 
1562 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1563 {
1564 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1565 	struct mmc_host *host = mq->card->host;
1566 	int err;
1567 
1568 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1569 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1570 	mmc_pre_req(host, &mqrq->brq.mrq);
1571 
1572 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1573 	if (err)
1574 		mmc_post_req(host, &mqrq->brq.mrq, err);
1575 
1576 	return err;
1577 }
1578 
1579 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1580 {
1581 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1582 	struct mmc_host *host = mq->card->host;
1583 
1584 	if (host->hsq_enabled)
1585 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1586 
1587 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1588 
1589 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1590 }
1591 
1592 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1593 			       struct mmc_card *card,
1594 			       int disable_multi,
1595 			       struct mmc_queue *mq)
1596 {
1597 	u32 readcmd, writecmd;
1598 	struct mmc_blk_request *brq = &mqrq->brq;
1599 	struct request *req = mmc_queue_req_to_req(mqrq);
1600 	struct mmc_blk_data *md = mq->blkdata;
1601 	bool do_rel_wr, do_data_tag;
1602 
1603 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1604 
1605 	brq->mrq.cmd = &brq->cmd;
1606 
1607 	brq->cmd.arg = blk_rq_pos(req);
1608 	if (!mmc_card_blockaddr(card))
1609 		brq->cmd.arg <<= 9;
1610 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1611 
1612 	if (brq->data.blocks > 1 || do_rel_wr) {
1613 		/* SPI multiblock writes terminate using a special
1614 		 * token, not a STOP_TRANSMISSION request.
1615 		 */
1616 		if (!mmc_host_is_spi(card->host) ||
1617 		    rq_data_dir(req) == READ)
1618 			brq->mrq.stop = &brq->stop;
1619 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1620 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1621 	} else {
1622 		brq->mrq.stop = NULL;
1623 		readcmd = MMC_READ_SINGLE_BLOCK;
1624 		writecmd = MMC_WRITE_BLOCK;
1625 	}
1626 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1627 
1628 	/*
1629 	 * Pre-defined multi-block transfers are preferable to
1630 	 * open ended-ones (and necessary for reliable writes).
1631 	 * However, it is not sufficient to just send CMD23,
1632 	 * and avoid the final CMD12, as on an error condition
1633 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1634 	 * with Auto-CMD23 enhancements provided by some
1635 	 * hosts, means that the complexity of dealing
1636 	 * with this is best left to the host. If CMD23 is
1637 	 * supported by card and host, we'll fill sbc in and let
1638 	 * the host deal with handling it correctly. This means
1639 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1640 	 * change of behavior will be observed.
1641 	 *
1642 	 * N.B: Some MMC cards experience perf degradation.
1643 	 * We'll avoid using CMD23-bounded multiblock writes for
1644 	 * these, while retaining features like reliable writes.
1645 	 */
1646 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1647 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1648 	     do_data_tag)) {
1649 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1650 		brq->sbc.arg = brq->data.blocks |
1651 			(do_rel_wr ? (1 << 31) : 0) |
1652 			(do_data_tag ? (1 << 29) : 0);
1653 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1654 		brq->mrq.sbc = &brq->sbc;
1655 	}
1656 }
1657 
1658 #define MMC_MAX_RETRIES		5
1659 #define MMC_DATA_RETRIES	2
1660 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1661 
1662 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1663 {
1664 	struct mmc_command cmd = {
1665 		.opcode = MMC_STOP_TRANSMISSION,
1666 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1667 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1668 		.busy_timeout = timeout,
1669 	};
1670 
1671 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1672 }
1673 
1674 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1675 {
1676 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1677 	struct mmc_blk_request *brq = &mqrq->brq;
1678 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1679 	int err;
1680 
1681 	mmc_retune_hold_now(card->host);
1682 
1683 	mmc_blk_send_stop(card, timeout);
1684 
1685 	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1686 
1687 	mmc_retune_release(card->host);
1688 
1689 	return err;
1690 }
1691 
1692 #define MMC_READ_SINGLE_RETRIES	2
1693 
1694 /* Single sector read during recovery */
1695 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1696 {
1697 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1698 	struct mmc_request *mrq = &mqrq->brq.mrq;
1699 	struct mmc_card *card = mq->card;
1700 	struct mmc_host *host = card->host;
1701 	blk_status_t error = BLK_STS_OK;
1702 
1703 	do {
1704 		u32 status;
1705 		int err;
1706 		int retries = 0;
1707 
1708 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1709 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1710 
1711 			mmc_wait_for_req(host, mrq);
1712 
1713 			err = mmc_send_status(card, &status);
1714 			if (err)
1715 				goto error_exit;
1716 
1717 			if (!mmc_host_is_spi(host) &&
1718 			    !mmc_ready_for_data(status)) {
1719 				err = mmc_blk_fix_state(card, req);
1720 				if (err)
1721 					goto error_exit;
1722 			}
1723 
1724 			if (!mrq->cmd->error)
1725 				break;
1726 		}
1727 
1728 		if (mrq->cmd->error ||
1729 		    mrq->data->error ||
1730 		    (!mmc_host_is_spi(host) &&
1731 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1732 			error = BLK_STS_IOERR;
1733 		else
1734 			error = BLK_STS_OK;
1735 
1736 	} while (blk_update_request(req, error, 512));
1737 
1738 	return;
1739 
1740 error_exit:
1741 	mrq->data->bytes_xfered = 0;
1742 	blk_update_request(req, BLK_STS_IOERR, 512);
1743 	/* Let it try the remaining request again */
1744 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1745 		mqrq->retries = MMC_MAX_RETRIES - 1;
1746 }
1747 
1748 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1749 {
1750 	return !!brq->mrq.sbc;
1751 }
1752 
1753 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1754 {
1755 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1756 }
1757 
1758 /*
1759  * Check for errors the host controller driver might not have seen such as
1760  * response mode errors or invalid card state.
1761  */
1762 static bool mmc_blk_status_error(struct request *req, u32 status)
1763 {
1764 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1765 	struct mmc_blk_request *brq = &mqrq->brq;
1766 	struct mmc_queue *mq = req->q->queuedata;
1767 	u32 stop_err_bits;
1768 
1769 	if (mmc_host_is_spi(mq->card->host))
1770 		return false;
1771 
1772 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1773 
1774 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1775 	       brq->stop.resp[0] & stop_err_bits ||
1776 	       status            & stop_err_bits ||
1777 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1778 }
1779 
1780 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1781 {
1782 	return !brq->sbc.error && !brq->cmd.error &&
1783 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1784 }
1785 
1786 /*
1787  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1788  * policy:
1789  * 1. A request that has transferred at least some data is considered
1790  * successful and will be requeued if there is remaining data to
1791  * transfer.
1792  * 2. Otherwise the number of retries is incremented and the request
1793  * will be requeued if there are remaining retries.
1794  * 3. Otherwise the request will be errored out.
1795  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1796  * mqrq->retries. So there are only 4 possible actions here:
1797  *	1. do not accept the bytes_xfered value i.e. set it to zero
1798  *	2. change mqrq->retries to determine the number of retries
1799  *	3. try to reset the card
1800  *	4. read one sector at a time
1801  */
1802 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1803 {
1804 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1805 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1806 	struct mmc_blk_request *brq = &mqrq->brq;
1807 	struct mmc_blk_data *md = mq->blkdata;
1808 	struct mmc_card *card = mq->card;
1809 	u32 status;
1810 	u32 blocks;
1811 	int err;
1812 
1813 	/*
1814 	 * Some errors the host driver might not have seen. Set the number of
1815 	 * bytes transferred to zero in that case.
1816 	 */
1817 	err = __mmc_send_status(card, &status, 0);
1818 	if (err || mmc_blk_status_error(req, status))
1819 		brq->data.bytes_xfered = 0;
1820 
1821 	mmc_retune_release(card->host);
1822 
1823 	/*
1824 	 * Try again to get the status. This also provides an opportunity for
1825 	 * re-tuning.
1826 	 */
1827 	if (err)
1828 		err = __mmc_send_status(card, &status, 0);
1829 
1830 	/*
1831 	 * Nothing more to do after the number of bytes transferred has been
1832 	 * updated and there is no card.
1833 	 */
1834 	if (err && mmc_detect_card_removed(card->host))
1835 		return;
1836 
1837 	/* Try to get back to "tran" state */
1838 	if (!mmc_host_is_spi(mq->card->host) &&
1839 	    (err || !mmc_ready_for_data(status)))
1840 		err = mmc_blk_fix_state(mq->card, req);
1841 
1842 	/*
1843 	 * Special case for SD cards where the card might record the number of
1844 	 * blocks written.
1845 	 */
1846 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1847 	    rq_data_dir(req) == WRITE) {
1848 		if (mmc_sd_num_wr_blocks(card, &blocks))
1849 			brq->data.bytes_xfered = 0;
1850 		else
1851 			brq->data.bytes_xfered = blocks << 9;
1852 	}
1853 
1854 	/* Reset if the card is in a bad state */
1855 	if (!mmc_host_is_spi(mq->card->host) &&
1856 	    err && mmc_blk_reset(md, card->host, type)) {
1857 		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1858 		mqrq->retries = MMC_NO_RETRIES;
1859 		return;
1860 	}
1861 
1862 	/*
1863 	 * If anything was done, just return and if there is anything remaining
1864 	 * on the request it will get requeued.
1865 	 */
1866 	if (brq->data.bytes_xfered)
1867 		return;
1868 
1869 	/* Reset before last retry */
1870 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1871 		mmc_blk_reset(md, card->host, type);
1872 
1873 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1874 	if (brq->sbc.error || brq->cmd.error)
1875 		return;
1876 
1877 	/* Reduce the remaining retries for data errors */
1878 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1879 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1880 		return;
1881 	}
1882 
1883 	/* FIXME: Missing single sector read for large sector size */
1884 	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1885 	    brq->data.blocks > 1) {
1886 		/* Read one sector at a time */
1887 		mmc_blk_read_single(mq, req);
1888 		return;
1889 	}
1890 }
1891 
1892 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1893 {
1894 	mmc_blk_eval_resp_error(brq);
1895 
1896 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1897 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1898 }
1899 
1900 static int mmc_spi_err_check(struct mmc_card *card)
1901 {
1902 	u32 status = 0;
1903 	int err;
1904 
1905 	/*
1906 	 * SPI does not have a TRAN state we have to wait on, instead the
1907 	 * card is ready again when it no longer holds the line LOW.
1908 	 * We still have to ensure two things here before we know the write
1909 	 * was successful:
1910 	 * 1. The card has not disconnected during busy and we actually read our
1911 	 * own pull-up, thinking it was still connected, so ensure it
1912 	 * still responds.
1913 	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1914 	 * just reconnected card after being disconnected during busy.
1915 	 */
1916 	err = __mmc_send_status(card, &status, 0);
1917 	if (err)
1918 		return err;
1919 	/* All R1 and R2 bits of SPI are errors in our case */
1920 	if (status)
1921 		return -EIO;
1922 	return 0;
1923 }
1924 
1925 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1926 {
1927 	struct mmc_blk_busy_data *data = cb_data;
1928 	u32 status = 0;
1929 	int err;
1930 
1931 	err = mmc_send_status(data->card, &status);
1932 	if (err)
1933 		return err;
1934 
1935 	/* Accumulate response error bits. */
1936 	data->status |= status;
1937 
1938 	*busy = !mmc_ready_for_data(status);
1939 	return 0;
1940 }
1941 
1942 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1943 {
1944 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1945 	struct mmc_blk_busy_data cb_data;
1946 	int err;
1947 
1948 	if (rq_data_dir(req) == READ)
1949 		return 0;
1950 
1951 	if (mmc_host_is_spi(card->host)) {
1952 		err = mmc_spi_err_check(card);
1953 		if (err)
1954 			mqrq->brq.data.bytes_xfered = 0;
1955 		return err;
1956 	}
1957 
1958 	cb_data.card = card;
1959 	cb_data.status = 0;
1960 	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1961 				  &mmc_blk_busy_cb, &cb_data);
1962 
1963 	/*
1964 	 * Do not assume data transferred correctly if there are any error bits
1965 	 * set.
1966 	 */
1967 	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1968 		mqrq->brq.data.bytes_xfered = 0;
1969 		err = err ? err : -EIO;
1970 	}
1971 
1972 	/* Copy the exception bit so it will be seen later on */
1973 	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1974 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1975 
1976 	return err;
1977 }
1978 
1979 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1980 					    struct request *req)
1981 {
1982 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1983 
1984 	mmc_blk_reset_success(mq->blkdata, type);
1985 }
1986 
1987 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1988 {
1989 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1990 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1991 
1992 	if (nr_bytes) {
1993 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1994 			blk_mq_requeue_request(req, true);
1995 		else
1996 			__blk_mq_end_request(req, BLK_STS_OK);
1997 	} else if (!blk_rq_bytes(req)) {
1998 		__blk_mq_end_request(req, BLK_STS_IOERR);
1999 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2000 		blk_mq_requeue_request(req, true);
2001 	} else {
2002 		if (mmc_card_removed(mq->card))
2003 			req->rq_flags |= RQF_QUIET;
2004 		blk_mq_end_request(req, BLK_STS_IOERR);
2005 	}
2006 }
2007 
2008 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2009 					struct mmc_queue_req *mqrq)
2010 {
2011 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2012 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2013 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2014 }
2015 
2016 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2017 				 struct mmc_queue_req *mqrq)
2018 {
2019 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2020 		mmc_run_bkops(mq->card);
2021 }
2022 
2023 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2024 {
2025 	struct mmc_queue_req *mqrq =
2026 		container_of(mrq, struct mmc_queue_req, brq.mrq);
2027 	struct request *req = mmc_queue_req_to_req(mqrq);
2028 	struct request_queue *q = req->q;
2029 	struct mmc_queue *mq = q->queuedata;
2030 	struct mmc_host *host = mq->card->host;
2031 	unsigned long flags;
2032 
2033 	if (mmc_blk_rq_error(&mqrq->brq) ||
2034 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2035 		spin_lock_irqsave(&mq->lock, flags);
2036 		mq->recovery_needed = true;
2037 		mq->recovery_req = req;
2038 		spin_unlock_irqrestore(&mq->lock, flags);
2039 
2040 		host->cqe_ops->cqe_recovery_start(host);
2041 
2042 		schedule_work(&mq->recovery_work);
2043 		return;
2044 	}
2045 
2046 	mmc_blk_rw_reset_success(mq, req);
2047 
2048 	/*
2049 	 * Block layer timeouts race with completions which means the normal
2050 	 * completion path cannot be used during recovery.
2051 	 */
2052 	if (mq->in_recovery)
2053 		mmc_blk_cqe_complete_rq(mq, req);
2054 	else if (likely(!blk_should_fake_timeout(req->q)))
2055 		blk_mq_complete_request(req);
2056 }
2057 
2058 void mmc_blk_mq_complete(struct request *req)
2059 {
2060 	struct mmc_queue *mq = req->q->queuedata;
2061 	struct mmc_host *host = mq->card->host;
2062 
2063 	if (host->cqe_enabled)
2064 		mmc_blk_cqe_complete_rq(mq, req);
2065 	else if (likely(!blk_should_fake_timeout(req->q)))
2066 		mmc_blk_mq_complete_rq(mq, req);
2067 }
2068 
2069 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2070 				       struct request *req)
2071 {
2072 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2073 	struct mmc_host *host = mq->card->host;
2074 
2075 	if (mmc_blk_rq_error(&mqrq->brq) ||
2076 	    mmc_blk_card_busy(mq->card, req)) {
2077 		mmc_blk_mq_rw_recovery(mq, req);
2078 	} else {
2079 		mmc_blk_rw_reset_success(mq, req);
2080 		mmc_retune_release(host);
2081 	}
2082 
2083 	mmc_blk_urgent_bkops(mq, mqrq);
2084 }
2085 
2086 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
2087 {
2088 	unsigned long flags;
2089 	bool put_card;
2090 
2091 	spin_lock_irqsave(&mq->lock, flags);
2092 
2093 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2094 
2095 	put_card = (mmc_tot_in_flight(mq) == 0);
2096 
2097 	spin_unlock_irqrestore(&mq->lock, flags);
2098 
2099 	if (put_card)
2100 		mmc_put_card(mq->card, &mq->ctx);
2101 }
2102 
2103 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2104 				bool can_sleep)
2105 {
2106 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2107 	struct mmc_request *mrq = &mqrq->brq.mrq;
2108 	struct mmc_host *host = mq->card->host;
2109 
2110 	mmc_post_req(host, mrq, 0);
2111 
2112 	/*
2113 	 * Block layer timeouts race with completions which means the normal
2114 	 * completion path cannot be used during recovery.
2115 	 */
2116 	if (mq->in_recovery) {
2117 		mmc_blk_mq_complete_rq(mq, req);
2118 	} else if (likely(!blk_should_fake_timeout(req->q))) {
2119 		if (can_sleep)
2120 			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2121 		else
2122 			blk_mq_complete_request(req);
2123 	}
2124 
2125 	mmc_blk_mq_dec_in_flight(mq, req);
2126 }
2127 
2128 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2129 {
2130 	struct request *req = mq->recovery_req;
2131 	struct mmc_host *host = mq->card->host;
2132 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2133 
2134 	mq->recovery_req = NULL;
2135 	mq->rw_wait = false;
2136 
2137 	if (mmc_blk_rq_error(&mqrq->brq)) {
2138 		mmc_retune_hold_now(host);
2139 		mmc_blk_mq_rw_recovery(mq, req);
2140 	}
2141 
2142 	mmc_blk_urgent_bkops(mq, mqrq);
2143 
2144 	mmc_blk_mq_post_req(mq, req, true);
2145 }
2146 
2147 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2148 					 struct request **prev_req)
2149 {
2150 	if (mmc_host_done_complete(mq->card->host))
2151 		return;
2152 
2153 	mutex_lock(&mq->complete_lock);
2154 
2155 	if (!mq->complete_req)
2156 		goto out_unlock;
2157 
2158 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2159 
2160 	if (prev_req)
2161 		*prev_req = mq->complete_req;
2162 	else
2163 		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2164 
2165 	mq->complete_req = NULL;
2166 
2167 out_unlock:
2168 	mutex_unlock(&mq->complete_lock);
2169 }
2170 
2171 void mmc_blk_mq_complete_work(struct work_struct *work)
2172 {
2173 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2174 					    complete_work);
2175 
2176 	mmc_blk_mq_complete_prev_req(mq, NULL);
2177 }
2178 
2179 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2180 {
2181 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2182 						  brq.mrq);
2183 	struct request *req = mmc_queue_req_to_req(mqrq);
2184 	struct request_queue *q = req->q;
2185 	struct mmc_queue *mq = q->queuedata;
2186 	struct mmc_host *host = mq->card->host;
2187 	unsigned long flags;
2188 
2189 	if (!mmc_host_done_complete(host)) {
2190 		bool waiting;
2191 
2192 		/*
2193 		 * We cannot complete the request in this context, so record
2194 		 * that there is a request to complete, and that a following
2195 		 * request does not need to wait (although it does need to
2196 		 * complete complete_req first).
2197 		 */
2198 		spin_lock_irqsave(&mq->lock, flags);
2199 		mq->complete_req = req;
2200 		mq->rw_wait = false;
2201 		waiting = mq->waiting;
2202 		spin_unlock_irqrestore(&mq->lock, flags);
2203 
2204 		/*
2205 		 * If 'waiting' then the waiting task will complete this
2206 		 * request, otherwise queue a work to do it. Note that
2207 		 * complete_work may still race with the dispatch of a following
2208 		 * request.
2209 		 */
2210 		if (waiting)
2211 			wake_up(&mq->wait);
2212 		else
2213 			queue_work(mq->card->complete_wq, &mq->complete_work);
2214 
2215 		return;
2216 	}
2217 
2218 	/* Take the recovery path for errors or urgent background operations */
2219 	if (mmc_blk_rq_error(&mqrq->brq) ||
2220 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2221 		spin_lock_irqsave(&mq->lock, flags);
2222 		mq->recovery_needed = true;
2223 		mq->recovery_req = req;
2224 		spin_unlock_irqrestore(&mq->lock, flags);
2225 		wake_up(&mq->wait);
2226 		schedule_work(&mq->recovery_work);
2227 		return;
2228 	}
2229 
2230 	mmc_blk_rw_reset_success(mq, req);
2231 
2232 	mq->rw_wait = false;
2233 	wake_up(&mq->wait);
2234 
2235 	/* context unknown */
2236 	mmc_blk_mq_post_req(mq, req, false);
2237 }
2238 
2239 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2240 {
2241 	unsigned long flags;
2242 	bool done;
2243 
2244 	/*
2245 	 * Wait while there is another request in progress, but not if recovery
2246 	 * is needed. Also indicate whether there is a request waiting to start.
2247 	 */
2248 	spin_lock_irqsave(&mq->lock, flags);
2249 	if (mq->recovery_needed) {
2250 		*err = -EBUSY;
2251 		done = true;
2252 	} else {
2253 		done = !mq->rw_wait;
2254 	}
2255 	mq->waiting = !done;
2256 	spin_unlock_irqrestore(&mq->lock, flags);
2257 
2258 	return done;
2259 }
2260 
2261 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2262 {
2263 	int err = 0;
2264 
2265 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2266 
2267 	/* Always complete the previous request if there is one */
2268 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2269 
2270 	return err;
2271 }
2272 
2273 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2274 				  struct request *req)
2275 {
2276 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2277 	struct mmc_host *host = mq->card->host;
2278 	struct request *prev_req = NULL;
2279 	int err = 0;
2280 
2281 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2282 
2283 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2284 
2285 	mmc_pre_req(host, &mqrq->brq.mrq);
2286 
2287 	err = mmc_blk_rw_wait(mq, &prev_req);
2288 	if (err)
2289 		goto out_post_req;
2290 
2291 	mq->rw_wait = true;
2292 
2293 	err = mmc_start_request(host, &mqrq->brq.mrq);
2294 
2295 	if (prev_req)
2296 		mmc_blk_mq_post_req(mq, prev_req, true);
2297 
2298 	if (err)
2299 		mq->rw_wait = false;
2300 
2301 	/* Release re-tuning here where there is no synchronization required */
2302 	if (err || mmc_host_done_complete(host))
2303 		mmc_retune_release(host);
2304 
2305 out_post_req:
2306 	if (err)
2307 		mmc_post_req(host, &mqrq->brq.mrq, err);
2308 
2309 	return err;
2310 }
2311 
2312 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2313 {
2314 	if (host->cqe_enabled)
2315 		return host->cqe_ops->cqe_wait_for_idle(host);
2316 
2317 	return mmc_blk_rw_wait(mq, NULL);
2318 }
2319 
2320 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2321 {
2322 	struct mmc_blk_data *md = mq->blkdata;
2323 	struct mmc_card *card = md->queue.card;
2324 	struct mmc_host *host = card->host;
2325 	int ret;
2326 
2327 	ret = mmc_blk_part_switch(card, md->part_type);
2328 	if (ret)
2329 		return MMC_REQ_FAILED_TO_START;
2330 
2331 	switch (mmc_issue_type(mq, req)) {
2332 	case MMC_ISSUE_SYNC:
2333 		ret = mmc_blk_wait_for_idle(mq, host);
2334 		if (ret)
2335 			return MMC_REQ_BUSY;
2336 		switch (req_op(req)) {
2337 		case REQ_OP_DRV_IN:
2338 		case REQ_OP_DRV_OUT:
2339 			mmc_blk_issue_drv_op(mq, req);
2340 			break;
2341 		case REQ_OP_DISCARD:
2342 			mmc_blk_issue_discard_rq(mq, req);
2343 			break;
2344 		case REQ_OP_SECURE_ERASE:
2345 			mmc_blk_issue_secdiscard_rq(mq, req);
2346 			break;
2347 		case REQ_OP_WRITE_ZEROES:
2348 			mmc_blk_issue_trim_rq(mq, req);
2349 			break;
2350 		case REQ_OP_FLUSH:
2351 			mmc_blk_issue_flush(mq, req);
2352 			break;
2353 		default:
2354 			WARN_ON_ONCE(1);
2355 			return MMC_REQ_FAILED_TO_START;
2356 		}
2357 		return MMC_REQ_FINISHED;
2358 	case MMC_ISSUE_DCMD:
2359 	case MMC_ISSUE_ASYNC:
2360 		switch (req_op(req)) {
2361 		case REQ_OP_FLUSH:
2362 			if (!mmc_cache_enabled(host)) {
2363 				blk_mq_end_request(req, BLK_STS_OK);
2364 				return MMC_REQ_FINISHED;
2365 			}
2366 			ret = mmc_blk_cqe_issue_flush(mq, req);
2367 			break;
2368 		case REQ_OP_READ:
2369 		case REQ_OP_WRITE:
2370 			if (host->cqe_enabled)
2371 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2372 			else
2373 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2374 			break;
2375 		default:
2376 			WARN_ON_ONCE(1);
2377 			ret = -EINVAL;
2378 		}
2379 		if (!ret)
2380 			return MMC_REQ_STARTED;
2381 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2382 	default:
2383 		WARN_ON_ONCE(1);
2384 		return MMC_REQ_FAILED_TO_START;
2385 	}
2386 }
2387 
2388 static inline int mmc_blk_readonly(struct mmc_card *card)
2389 {
2390 	return mmc_card_readonly(card) ||
2391 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2392 }
2393 
2394 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2395 					      struct device *parent,
2396 					      sector_t size,
2397 					      bool default_ro,
2398 					      const char *subname,
2399 					      int area_type,
2400 					      unsigned int part_type)
2401 {
2402 	struct mmc_blk_data *md;
2403 	int devidx, ret;
2404 	char cap_str[10];
2405 	bool cache_enabled = false;
2406 	bool fua_enabled = false;
2407 
2408 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2409 	if (devidx < 0) {
2410 		/*
2411 		 * We get -ENOSPC because there are no more any available
2412 		 * devidx. The reason may be that, either userspace haven't yet
2413 		 * unmounted the partitions, which postpones mmc_blk_release()
2414 		 * from being called, or the device has more partitions than
2415 		 * what we support.
2416 		 */
2417 		if (devidx == -ENOSPC)
2418 			dev_err(mmc_dev(card->host),
2419 				"no more device IDs available\n");
2420 
2421 		return ERR_PTR(devidx);
2422 	}
2423 
2424 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2425 	if (!md) {
2426 		ret = -ENOMEM;
2427 		goto out;
2428 	}
2429 
2430 	md->area_type = area_type;
2431 
2432 	/*
2433 	 * Set the read-only status based on the supported commands
2434 	 * and the write protect switch.
2435 	 */
2436 	md->read_only = mmc_blk_readonly(card);
2437 
2438 	md->disk = mmc_init_queue(&md->queue, card);
2439 	if (IS_ERR(md->disk)) {
2440 		ret = PTR_ERR(md->disk);
2441 		goto err_kfree;
2442 	}
2443 
2444 	INIT_LIST_HEAD(&md->part);
2445 	INIT_LIST_HEAD(&md->rpmbs);
2446 	kref_init(&md->kref);
2447 
2448 	md->queue.blkdata = md;
2449 	md->part_type = part_type;
2450 
2451 	md->disk->major	= MMC_BLOCK_MAJOR;
2452 	md->disk->minors = perdev_minors;
2453 	md->disk->first_minor = devidx * perdev_minors;
2454 	md->disk->fops = &mmc_bdops;
2455 	md->disk->private_data = md;
2456 	md->parent = parent;
2457 	set_disk_ro(md->disk, md->read_only || default_ro);
2458 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2459 		md->disk->flags |= GENHD_FL_NO_PART;
2460 
2461 	/*
2462 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2463 	 *
2464 	 * - be set for removable media with permanent block devices
2465 	 * - be unset for removable block devices with permanent media
2466 	 *
2467 	 * Since MMC block devices clearly fall under the second
2468 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2469 	 * should use the block device creation/destruction hotplug
2470 	 * messages to tell when the card is present.
2471 	 */
2472 
2473 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2474 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2475 
2476 	set_capacity(md->disk, size);
2477 
2478 	if (mmc_host_cmd23(card->host)) {
2479 		if ((mmc_card_mmc(card) &&
2480 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2481 		    (mmc_card_sd(card) &&
2482 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2483 			md->flags |= MMC_BLK_CMD23;
2484 	}
2485 
2486 	if (md->flags & MMC_BLK_CMD23 &&
2487 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2488 	     card->ext_csd.rel_sectors)) {
2489 		md->flags |= MMC_BLK_REL_WR;
2490 		fua_enabled = true;
2491 		cache_enabled = true;
2492 	}
2493 	if (mmc_cache_enabled(card->host))
2494 		cache_enabled  = true;
2495 
2496 	blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2497 
2498 	string_get_size((u64)size, 512, STRING_UNITS_2,
2499 			cap_str, sizeof(cap_str));
2500 	pr_info("%s: %s %s %s %s\n",
2501 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2502 		cap_str, md->read_only ? "(ro)" : "");
2503 
2504 	/* used in ->open, must be set before add_disk: */
2505 	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2506 		dev_set_drvdata(&card->dev, md);
2507 	ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2508 	if (ret)
2509 		goto err_cleanup_queue;
2510 	return md;
2511 
2512  err_cleanup_queue:
2513 	blk_cleanup_queue(md->disk->queue);
2514 	blk_mq_free_tag_set(&md->queue.tag_set);
2515  err_kfree:
2516 	kfree(md);
2517  out:
2518 	ida_simple_remove(&mmc_blk_ida, devidx);
2519 	return ERR_PTR(ret);
2520 }
2521 
2522 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2523 {
2524 	sector_t size;
2525 
2526 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2527 		/*
2528 		 * The EXT_CSD sector count is in number or 512 byte
2529 		 * sectors.
2530 		 */
2531 		size = card->ext_csd.sectors;
2532 	} else {
2533 		/*
2534 		 * The CSD capacity field is in units of read_blkbits.
2535 		 * set_capacity takes units of 512 bytes.
2536 		 */
2537 		size = (typeof(sector_t))card->csd.capacity
2538 			<< (card->csd.read_blkbits - 9);
2539 	}
2540 
2541 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2542 					MMC_BLK_DATA_AREA_MAIN, 0);
2543 }
2544 
2545 static int mmc_blk_alloc_part(struct mmc_card *card,
2546 			      struct mmc_blk_data *md,
2547 			      unsigned int part_type,
2548 			      sector_t size,
2549 			      bool default_ro,
2550 			      const char *subname,
2551 			      int area_type)
2552 {
2553 	struct mmc_blk_data *part_md;
2554 
2555 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2556 				    subname, area_type, part_type);
2557 	if (IS_ERR(part_md))
2558 		return PTR_ERR(part_md);
2559 	list_add(&part_md->part, &md->part);
2560 
2561 	return 0;
2562 }
2563 
2564 /**
2565  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2566  * @filp: the character device file
2567  * @cmd: the ioctl() command
2568  * @arg: the argument from userspace
2569  *
2570  * This will essentially just redirect the ioctl()s coming in over to
2571  * the main block device spawning the RPMB character device.
2572  */
2573 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2574 			   unsigned long arg)
2575 {
2576 	struct mmc_rpmb_data *rpmb = filp->private_data;
2577 	int ret;
2578 
2579 	switch (cmd) {
2580 	case MMC_IOC_CMD:
2581 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2582 					(struct mmc_ioc_cmd __user *)arg,
2583 					rpmb);
2584 		break;
2585 	case MMC_IOC_MULTI_CMD:
2586 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2587 					(struct mmc_ioc_multi_cmd __user *)arg,
2588 					rpmb);
2589 		break;
2590 	default:
2591 		ret = -EINVAL;
2592 		break;
2593 	}
2594 
2595 	return ret;
2596 }
2597 
2598 #ifdef CONFIG_COMPAT
2599 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2600 			      unsigned long arg)
2601 {
2602 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2603 }
2604 #endif
2605 
2606 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2607 {
2608 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2609 						  struct mmc_rpmb_data, chrdev);
2610 
2611 	get_device(&rpmb->dev);
2612 	filp->private_data = rpmb;
2613 	mmc_blk_get(rpmb->md->disk);
2614 
2615 	return nonseekable_open(inode, filp);
2616 }
2617 
2618 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2619 {
2620 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2621 						  struct mmc_rpmb_data, chrdev);
2622 
2623 	mmc_blk_put(rpmb->md);
2624 	put_device(&rpmb->dev);
2625 
2626 	return 0;
2627 }
2628 
2629 static const struct file_operations mmc_rpmb_fileops = {
2630 	.release = mmc_rpmb_chrdev_release,
2631 	.open = mmc_rpmb_chrdev_open,
2632 	.owner = THIS_MODULE,
2633 	.llseek = no_llseek,
2634 	.unlocked_ioctl = mmc_rpmb_ioctl,
2635 #ifdef CONFIG_COMPAT
2636 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2637 #endif
2638 };
2639 
2640 static void mmc_blk_rpmb_device_release(struct device *dev)
2641 {
2642 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2643 
2644 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2645 	kfree(rpmb);
2646 }
2647 
2648 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2649 				   struct mmc_blk_data *md,
2650 				   unsigned int part_index,
2651 				   sector_t size,
2652 				   const char *subname)
2653 {
2654 	int devidx, ret;
2655 	char rpmb_name[DISK_NAME_LEN];
2656 	char cap_str[10];
2657 	struct mmc_rpmb_data *rpmb;
2658 
2659 	/* This creates the minor number for the RPMB char device */
2660 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2661 	if (devidx < 0)
2662 		return devidx;
2663 
2664 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2665 	if (!rpmb) {
2666 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2667 		return -ENOMEM;
2668 	}
2669 
2670 	snprintf(rpmb_name, sizeof(rpmb_name),
2671 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2672 
2673 	rpmb->id = devidx;
2674 	rpmb->part_index = part_index;
2675 	rpmb->dev.init_name = rpmb_name;
2676 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2677 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2678 	rpmb->dev.parent = &card->dev;
2679 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2680 	device_initialize(&rpmb->dev);
2681 	dev_set_drvdata(&rpmb->dev, rpmb);
2682 	rpmb->md = md;
2683 
2684 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2685 	rpmb->chrdev.owner = THIS_MODULE;
2686 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2687 	if (ret) {
2688 		pr_err("%s: could not add character device\n", rpmb_name);
2689 		goto out_put_device;
2690 	}
2691 
2692 	list_add(&rpmb->node, &md->rpmbs);
2693 
2694 	string_get_size((u64)size, 512, STRING_UNITS_2,
2695 			cap_str, sizeof(cap_str));
2696 
2697 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2698 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2699 		MAJOR(mmc_rpmb_devt), rpmb->id);
2700 
2701 	return 0;
2702 
2703 out_put_device:
2704 	put_device(&rpmb->dev);
2705 	return ret;
2706 }
2707 
2708 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2709 
2710 {
2711 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2712 	put_device(&rpmb->dev);
2713 }
2714 
2715 /* MMC Physical partitions consist of two boot partitions and
2716  * up to four general purpose partitions.
2717  * For each partition enabled in EXT_CSD a block device will be allocatedi
2718  * to provide access to the partition.
2719  */
2720 
2721 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2722 {
2723 	int idx, ret;
2724 
2725 	if (!mmc_card_mmc(card))
2726 		return 0;
2727 
2728 	for (idx = 0; idx < card->nr_parts; idx++) {
2729 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2730 			/*
2731 			 * RPMB partitions does not provide block access, they
2732 			 * are only accessed using ioctl():s. Thus create
2733 			 * special RPMB block devices that do not have a
2734 			 * backing block queue for these.
2735 			 */
2736 			ret = mmc_blk_alloc_rpmb_part(card, md,
2737 				card->part[idx].part_cfg,
2738 				card->part[idx].size >> 9,
2739 				card->part[idx].name);
2740 			if (ret)
2741 				return ret;
2742 		} else if (card->part[idx].size) {
2743 			ret = mmc_blk_alloc_part(card, md,
2744 				card->part[idx].part_cfg,
2745 				card->part[idx].size >> 9,
2746 				card->part[idx].force_ro,
2747 				card->part[idx].name,
2748 				card->part[idx].area_type);
2749 			if (ret)
2750 				return ret;
2751 		}
2752 	}
2753 
2754 	return 0;
2755 }
2756 
2757 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2758 {
2759 	/*
2760 	 * Flush remaining requests and free queues. It is freeing the queue
2761 	 * that stops new requests from being accepted.
2762 	 */
2763 	del_gendisk(md->disk);
2764 	mmc_cleanup_queue(&md->queue);
2765 	mmc_blk_put(md);
2766 }
2767 
2768 static void mmc_blk_remove_parts(struct mmc_card *card,
2769 				 struct mmc_blk_data *md)
2770 {
2771 	struct list_head *pos, *q;
2772 	struct mmc_blk_data *part_md;
2773 	struct mmc_rpmb_data *rpmb;
2774 
2775 	/* Remove RPMB partitions */
2776 	list_for_each_safe(pos, q, &md->rpmbs) {
2777 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2778 		list_del(pos);
2779 		mmc_blk_remove_rpmb_part(rpmb);
2780 	}
2781 	/* Remove block partitions */
2782 	list_for_each_safe(pos, q, &md->part) {
2783 		part_md = list_entry(pos, struct mmc_blk_data, part);
2784 		list_del(pos);
2785 		mmc_blk_remove_req(part_md);
2786 	}
2787 }
2788 
2789 #ifdef CONFIG_DEBUG_FS
2790 
2791 static int mmc_dbg_card_status_get(void *data, u64 *val)
2792 {
2793 	struct mmc_card *card = data;
2794 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2795 	struct mmc_queue *mq = &md->queue;
2796 	struct request *req;
2797 	int ret;
2798 
2799 	/* Ask the block layer about the card status */
2800 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2801 	if (IS_ERR(req))
2802 		return PTR_ERR(req);
2803 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2804 	blk_execute_rq(req, false);
2805 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2806 	if (ret >= 0) {
2807 		*val = ret;
2808 		ret = 0;
2809 	}
2810 	blk_mq_free_request(req);
2811 
2812 	return ret;
2813 }
2814 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2815 			 NULL, "%08llx\n");
2816 
2817 /* That is two digits * 512 + 1 for newline */
2818 #define EXT_CSD_STR_LEN 1025
2819 
2820 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2821 {
2822 	struct mmc_card *card = inode->i_private;
2823 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2824 	struct mmc_queue *mq = &md->queue;
2825 	struct request *req;
2826 	char *buf;
2827 	ssize_t n = 0;
2828 	u8 *ext_csd;
2829 	int err, i;
2830 
2831 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2832 	if (!buf)
2833 		return -ENOMEM;
2834 
2835 	/* Ask the block layer for the EXT CSD */
2836 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2837 	if (IS_ERR(req)) {
2838 		err = PTR_ERR(req);
2839 		goto out_free;
2840 	}
2841 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2842 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2843 	blk_execute_rq(req, false);
2844 	err = req_to_mmc_queue_req(req)->drv_op_result;
2845 	blk_mq_free_request(req);
2846 	if (err) {
2847 		pr_err("FAILED %d\n", err);
2848 		goto out_free;
2849 	}
2850 
2851 	for (i = 0; i < 512; i++)
2852 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2853 	n += sprintf(buf + n, "\n");
2854 
2855 	if (n != EXT_CSD_STR_LEN) {
2856 		err = -EINVAL;
2857 		kfree(ext_csd);
2858 		goto out_free;
2859 	}
2860 
2861 	filp->private_data = buf;
2862 	kfree(ext_csd);
2863 	return 0;
2864 
2865 out_free:
2866 	kfree(buf);
2867 	return err;
2868 }
2869 
2870 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2871 				size_t cnt, loff_t *ppos)
2872 {
2873 	char *buf = filp->private_data;
2874 
2875 	return simple_read_from_buffer(ubuf, cnt, ppos,
2876 				       buf, EXT_CSD_STR_LEN);
2877 }
2878 
2879 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2880 {
2881 	kfree(file->private_data);
2882 	return 0;
2883 }
2884 
2885 static const struct file_operations mmc_dbg_ext_csd_fops = {
2886 	.open		= mmc_ext_csd_open,
2887 	.read		= mmc_ext_csd_read,
2888 	.release	= mmc_ext_csd_release,
2889 	.llseek		= default_llseek,
2890 };
2891 
2892 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2893 {
2894 	struct dentry *root;
2895 
2896 	if (!card->debugfs_root)
2897 		return 0;
2898 
2899 	root = card->debugfs_root;
2900 
2901 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2902 		md->status_dentry =
2903 			debugfs_create_file_unsafe("status", 0400, root,
2904 						   card,
2905 						   &mmc_dbg_card_status_fops);
2906 		if (!md->status_dentry)
2907 			return -EIO;
2908 	}
2909 
2910 	if (mmc_card_mmc(card)) {
2911 		md->ext_csd_dentry =
2912 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2913 					    &mmc_dbg_ext_csd_fops);
2914 		if (!md->ext_csd_dentry)
2915 			return -EIO;
2916 	}
2917 
2918 	return 0;
2919 }
2920 
2921 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2922 				   struct mmc_blk_data *md)
2923 {
2924 	if (!card->debugfs_root)
2925 		return;
2926 
2927 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2928 		debugfs_remove(md->status_dentry);
2929 		md->status_dentry = NULL;
2930 	}
2931 
2932 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2933 		debugfs_remove(md->ext_csd_dentry);
2934 		md->ext_csd_dentry = NULL;
2935 	}
2936 }
2937 
2938 #else
2939 
2940 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2941 {
2942 	return 0;
2943 }
2944 
2945 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2946 				   struct mmc_blk_data *md)
2947 {
2948 }
2949 
2950 #endif /* CONFIG_DEBUG_FS */
2951 
2952 static int mmc_blk_probe(struct mmc_card *card)
2953 {
2954 	struct mmc_blk_data *md;
2955 	int ret = 0;
2956 
2957 	/*
2958 	 * Check that the card supports the command class(es) we need.
2959 	 */
2960 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2961 		return -ENODEV;
2962 
2963 	mmc_fixup_device(card, mmc_blk_fixups);
2964 
2965 	card->complete_wq = alloc_workqueue("mmc_complete",
2966 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2967 	if (!card->complete_wq) {
2968 		pr_err("Failed to create mmc completion workqueue");
2969 		return -ENOMEM;
2970 	}
2971 
2972 	md = mmc_blk_alloc(card);
2973 	if (IS_ERR(md)) {
2974 		ret = PTR_ERR(md);
2975 		goto out_free;
2976 	}
2977 
2978 	ret = mmc_blk_alloc_parts(card, md);
2979 	if (ret)
2980 		goto out;
2981 
2982 	/* Add two debugfs entries */
2983 	mmc_blk_add_debugfs(card, md);
2984 
2985 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2986 	pm_runtime_use_autosuspend(&card->dev);
2987 
2988 	/*
2989 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2990 	 * decision to be taken during the SDIO init sequence instead.
2991 	 */
2992 	if (card->type != MMC_TYPE_SD_COMBO) {
2993 		pm_runtime_set_active(&card->dev);
2994 		pm_runtime_enable(&card->dev);
2995 	}
2996 
2997 	return 0;
2998 
2999 out:
3000 	mmc_blk_remove_parts(card, md);
3001 	mmc_blk_remove_req(md);
3002 out_free:
3003 	destroy_workqueue(card->complete_wq);
3004 	return ret;
3005 }
3006 
3007 static void mmc_blk_remove(struct mmc_card *card)
3008 {
3009 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3010 
3011 	mmc_blk_remove_debugfs(card, md);
3012 	mmc_blk_remove_parts(card, md);
3013 	pm_runtime_get_sync(&card->dev);
3014 	if (md->part_curr != md->part_type) {
3015 		mmc_claim_host(card->host);
3016 		mmc_blk_part_switch(card, md->part_type);
3017 		mmc_release_host(card->host);
3018 	}
3019 	if (card->type != MMC_TYPE_SD_COMBO)
3020 		pm_runtime_disable(&card->dev);
3021 	pm_runtime_put_noidle(&card->dev);
3022 	mmc_blk_remove_req(md);
3023 	dev_set_drvdata(&card->dev, NULL);
3024 	destroy_workqueue(card->complete_wq);
3025 }
3026 
3027 static int _mmc_blk_suspend(struct mmc_card *card)
3028 {
3029 	struct mmc_blk_data *part_md;
3030 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3031 
3032 	if (md) {
3033 		mmc_queue_suspend(&md->queue);
3034 		list_for_each_entry(part_md, &md->part, part) {
3035 			mmc_queue_suspend(&part_md->queue);
3036 		}
3037 	}
3038 	return 0;
3039 }
3040 
3041 static void mmc_blk_shutdown(struct mmc_card *card)
3042 {
3043 	_mmc_blk_suspend(card);
3044 }
3045 
3046 #ifdef CONFIG_PM_SLEEP
3047 static int mmc_blk_suspend(struct device *dev)
3048 {
3049 	struct mmc_card *card = mmc_dev_to_card(dev);
3050 
3051 	return _mmc_blk_suspend(card);
3052 }
3053 
3054 static int mmc_blk_resume(struct device *dev)
3055 {
3056 	struct mmc_blk_data *part_md;
3057 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3058 
3059 	if (md) {
3060 		/*
3061 		 * Resume involves the card going into idle state,
3062 		 * so current partition is always the main one.
3063 		 */
3064 		md->part_curr = md->part_type;
3065 		mmc_queue_resume(&md->queue);
3066 		list_for_each_entry(part_md, &md->part, part) {
3067 			mmc_queue_resume(&part_md->queue);
3068 		}
3069 	}
3070 	return 0;
3071 }
3072 #endif
3073 
3074 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3075 
3076 static struct mmc_driver mmc_driver = {
3077 	.drv		= {
3078 		.name	= "mmcblk",
3079 		.pm	= &mmc_blk_pm_ops,
3080 	},
3081 	.probe		= mmc_blk_probe,
3082 	.remove		= mmc_blk_remove,
3083 	.shutdown	= mmc_blk_shutdown,
3084 };
3085 
3086 static int __init mmc_blk_init(void)
3087 {
3088 	int res;
3089 
3090 	res  = bus_register(&mmc_rpmb_bus_type);
3091 	if (res < 0) {
3092 		pr_err("mmcblk: could not register RPMB bus type\n");
3093 		return res;
3094 	}
3095 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3096 	if (res < 0) {
3097 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3098 		goto out_bus_unreg;
3099 	}
3100 
3101 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3102 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3103 
3104 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3105 
3106 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3107 	if (res)
3108 		goto out_chrdev_unreg;
3109 
3110 	res = mmc_register_driver(&mmc_driver);
3111 	if (res)
3112 		goto out_blkdev_unreg;
3113 
3114 	return 0;
3115 
3116 out_blkdev_unreg:
3117 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3118 out_chrdev_unreg:
3119 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3120 out_bus_unreg:
3121 	bus_unregister(&mmc_rpmb_bus_type);
3122 	return res;
3123 }
3124 
3125 static void __exit mmc_blk_exit(void)
3126 {
3127 	mmc_unregister_driver(&mmc_driver);
3128 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3129 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3130 	bus_unregister(&mmc_rpmb_bus_type);
3131 }
3132 
3133 module_init(mmc_blk_init);
3134 module_exit(mmc_blk_exit);
3135 
3136 MODULE_LICENSE("GPL");
3137 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3138 
3139