1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/cdev.h> 32 #include <linux/mutex.h> 33 #include <linux/scatterlist.h> 34 #include <linux/string_helpers.h> 35 #include <linux/delay.h> 36 #include <linux/capability.h> 37 #include <linux/compat.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/idr.h> 40 #include <linux/debugfs.h> 41 42 #include <linux/mmc/ioctl.h> 43 #include <linux/mmc/card.h> 44 #include <linux/mmc/host.h> 45 #include <linux/mmc/mmc.h> 46 #include <linux/mmc/sd.h> 47 48 #include <linux/uaccess.h> 49 50 #include "queue.h" 51 #include "block.h" 52 #include "core.h" 53 #include "card.h" 54 #include "crypto.h" 55 #include "host.h" 56 #include "bus.h" 57 #include "mmc_ops.h" 58 #include "quirks.h" 59 #include "sd_ops.h" 60 61 MODULE_ALIAS("mmc:block"); 62 #ifdef MODULE_PARAM_PREFIX 63 #undef MODULE_PARAM_PREFIX 64 #endif 65 #define MODULE_PARAM_PREFIX "mmcblk." 66 67 /* 68 * Set a 10 second timeout for polling write request busy state. Note, mmc core 69 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 70 * second software timer to timeout the whole request, so 10 seconds should be 71 * ample. 72 */ 73 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 76 77 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 78 (rq_data_dir(req) == WRITE)) 79 static DEFINE_MUTEX(block_mutex); 80 81 /* 82 * The defaults come from config options but can be overriden by module 83 * or bootarg options. 84 */ 85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 86 87 /* 88 * We've only got one major, so number of mmcblk devices is 89 * limited to (1 << 20) / number of minors per device. It is also 90 * limited by the MAX_DEVICES below. 91 */ 92 static int max_devices; 93 94 #define MAX_DEVICES 256 95 96 static DEFINE_IDA(mmc_blk_ida); 97 static DEFINE_IDA(mmc_rpmb_ida); 98 99 /* 100 * There is one mmc_blk_data per slot. 101 */ 102 struct mmc_blk_data { 103 struct device *parent; 104 struct gendisk *disk; 105 struct mmc_queue queue; 106 struct list_head part; 107 struct list_head rpmbs; 108 109 unsigned int flags; 110 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 111 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 112 113 unsigned int usage; 114 unsigned int read_only; 115 unsigned int part_type; 116 unsigned int reset_done; 117 #define MMC_BLK_READ BIT(0) 118 #define MMC_BLK_WRITE BIT(1) 119 #define MMC_BLK_DISCARD BIT(2) 120 #define MMC_BLK_SECDISCARD BIT(3) 121 #define MMC_BLK_CQE_RECOVERY BIT(4) 122 123 /* 124 * Only set in main mmc_blk_data associated 125 * with mmc_card with dev_set_drvdata, and keeps 126 * track of the current selected device partition. 127 */ 128 unsigned int part_curr; 129 struct device_attribute force_ro; 130 struct device_attribute power_ro_lock; 131 int area_type; 132 133 /* debugfs files (only in main mmc_blk_data) */ 134 struct dentry *status_dentry; 135 struct dentry *ext_csd_dentry; 136 }; 137 138 /* Device type for RPMB character devices */ 139 static dev_t mmc_rpmb_devt; 140 141 /* Bus type for RPMB character devices */ 142 static struct bus_type mmc_rpmb_bus_type = { 143 .name = "mmc_rpmb", 144 }; 145 146 /** 147 * struct mmc_rpmb_data - special RPMB device type for these areas 148 * @dev: the device for the RPMB area 149 * @chrdev: character device for the RPMB area 150 * @id: unique device ID number 151 * @part_index: partition index (0 on first) 152 * @md: parent MMC block device 153 * @node: list item, so we can put this device on a list 154 */ 155 struct mmc_rpmb_data { 156 struct device dev; 157 struct cdev chrdev; 158 int id; 159 unsigned int part_index; 160 struct mmc_blk_data *md; 161 struct list_head node; 162 }; 163 164 static DEFINE_MUTEX(open_lock); 165 166 module_param(perdev_minors, int, 0444); 167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 168 169 static inline int mmc_blk_part_switch(struct mmc_card *card, 170 unsigned int part_type); 171 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 172 struct mmc_card *card, 173 int disable_multi, 174 struct mmc_queue *mq); 175 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 176 177 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 178 { 179 struct mmc_blk_data *md; 180 181 mutex_lock(&open_lock); 182 md = disk->private_data; 183 if (md && md->usage == 0) 184 md = NULL; 185 if (md) 186 md->usage++; 187 mutex_unlock(&open_lock); 188 189 return md; 190 } 191 192 static inline int mmc_get_devidx(struct gendisk *disk) 193 { 194 int devidx = disk->first_minor / perdev_minors; 195 return devidx; 196 } 197 198 static void mmc_blk_put(struct mmc_blk_data *md) 199 { 200 mutex_lock(&open_lock); 201 md->usage--; 202 if (md->usage == 0) { 203 int devidx = mmc_get_devidx(md->disk); 204 blk_put_queue(md->queue.queue); 205 ida_simple_remove(&mmc_blk_ida, devidx); 206 put_disk(md->disk); 207 kfree(md); 208 } 209 mutex_unlock(&open_lock); 210 } 211 212 static ssize_t power_ro_lock_show(struct device *dev, 213 struct device_attribute *attr, char *buf) 214 { 215 int ret; 216 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 217 struct mmc_card *card = md->queue.card; 218 int locked = 0; 219 220 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 221 locked = 2; 222 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 223 locked = 1; 224 225 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 226 227 mmc_blk_put(md); 228 229 return ret; 230 } 231 232 static ssize_t power_ro_lock_store(struct device *dev, 233 struct device_attribute *attr, const char *buf, size_t count) 234 { 235 int ret; 236 struct mmc_blk_data *md, *part_md; 237 struct mmc_queue *mq; 238 struct request *req; 239 unsigned long set; 240 241 if (kstrtoul(buf, 0, &set)) 242 return -EINVAL; 243 244 if (set != 1) 245 return count; 246 247 md = mmc_blk_get(dev_to_disk(dev)); 248 mq = &md->queue; 249 250 /* Dispatch locking to the block layer */ 251 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0); 252 if (IS_ERR(req)) { 253 count = PTR_ERR(req); 254 goto out_put; 255 } 256 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 257 blk_execute_rq(NULL, req, 0); 258 ret = req_to_mmc_queue_req(req)->drv_op_result; 259 blk_put_request(req); 260 261 if (!ret) { 262 pr_info("%s: Locking boot partition ro until next power on\n", 263 md->disk->disk_name); 264 set_disk_ro(md->disk, 1); 265 266 list_for_each_entry(part_md, &md->part, part) 267 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 268 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 269 set_disk_ro(part_md->disk, 1); 270 } 271 } 272 out_put: 273 mmc_blk_put(md); 274 return count; 275 } 276 277 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 278 char *buf) 279 { 280 int ret; 281 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 282 283 ret = snprintf(buf, PAGE_SIZE, "%d\n", 284 get_disk_ro(dev_to_disk(dev)) ^ 285 md->read_only); 286 mmc_blk_put(md); 287 return ret; 288 } 289 290 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 291 const char *buf, size_t count) 292 { 293 int ret; 294 char *end; 295 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 296 unsigned long set = simple_strtoul(buf, &end, 0); 297 if (end == buf) { 298 ret = -EINVAL; 299 goto out; 300 } 301 302 set_disk_ro(dev_to_disk(dev), set || md->read_only); 303 ret = count; 304 out: 305 mmc_blk_put(md); 306 return ret; 307 } 308 309 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 310 { 311 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 312 int ret = -ENXIO; 313 314 mutex_lock(&block_mutex); 315 if (md) { 316 ret = 0; 317 if ((mode & FMODE_WRITE) && md->read_only) { 318 mmc_blk_put(md); 319 ret = -EROFS; 320 } 321 } 322 mutex_unlock(&block_mutex); 323 324 return ret; 325 } 326 327 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 328 { 329 struct mmc_blk_data *md = disk->private_data; 330 331 mutex_lock(&block_mutex); 332 mmc_blk_put(md); 333 mutex_unlock(&block_mutex); 334 } 335 336 static int 337 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 338 { 339 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 340 geo->heads = 4; 341 geo->sectors = 16; 342 return 0; 343 } 344 345 struct mmc_blk_ioc_data { 346 struct mmc_ioc_cmd ic; 347 unsigned char *buf; 348 u64 buf_bytes; 349 struct mmc_rpmb_data *rpmb; 350 }; 351 352 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 353 struct mmc_ioc_cmd __user *user) 354 { 355 struct mmc_blk_ioc_data *idata; 356 int err; 357 358 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 359 if (!idata) { 360 err = -ENOMEM; 361 goto out; 362 } 363 364 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 365 err = -EFAULT; 366 goto idata_err; 367 } 368 369 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 370 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 371 err = -EOVERFLOW; 372 goto idata_err; 373 } 374 375 if (!idata->buf_bytes) { 376 idata->buf = NULL; 377 return idata; 378 } 379 380 idata->buf = memdup_user((void __user *)(unsigned long) 381 idata->ic.data_ptr, idata->buf_bytes); 382 if (IS_ERR(idata->buf)) { 383 err = PTR_ERR(idata->buf); 384 goto idata_err; 385 } 386 387 return idata; 388 389 idata_err: 390 kfree(idata); 391 out: 392 return ERR_PTR(err); 393 } 394 395 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 396 struct mmc_blk_ioc_data *idata) 397 { 398 struct mmc_ioc_cmd *ic = &idata->ic; 399 400 if (copy_to_user(&(ic_ptr->response), ic->response, 401 sizeof(ic->response))) 402 return -EFAULT; 403 404 if (!idata->ic.write_flag) { 405 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 406 idata->buf, idata->buf_bytes)) 407 return -EFAULT; 408 } 409 410 return 0; 411 } 412 413 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 414 u32 *resp_errs) 415 { 416 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 417 int err = 0; 418 u32 status; 419 420 do { 421 bool done = time_after(jiffies, timeout); 422 423 err = __mmc_send_status(card, &status, 5); 424 if (err) { 425 dev_err(mmc_dev(card->host), 426 "error %d requesting status\n", err); 427 return err; 428 } 429 430 /* Accumulate any response error bits seen */ 431 if (resp_errs) 432 *resp_errs |= status; 433 434 /* 435 * Timeout if the device never becomes ready for data and never 436 * leaves the program state. 437 */ 438 if (done) { 439 dev_err(mmc_dev(card->host), 440 "Card stuck in wrong state! %s status: %#x\n", 441 __func__, status); 442 return -ETIMEDOUT; 443 } 444 } while (!mmc_ready_for_data(status)); 445 446 return err; 447 } 448 449 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 450 struct mmc_blk_ioc_data *idata) 451 { 452 struct mmc_command cmd = {}, sbc = {}; 453 struct mmc_data data = {}; 454 struct mmc_request mrq = {}; 455 struct scatterlist sg; 456 int err; 457 unsigned int target_part; 458 459 if (!card || !md || !idata) 460 return -EINVAL; 461 462 /* 463 * The RPMB accesses comes in from the character device, so we 464 * need to target these explicitly. Else we just target the 465 * partition type for the block device the ioctl() was issued 466 * on. 467 */ 468 if (idata->rpmb) { 469 /* Support multiple RPMB partitions */ 470 target_part = idata->rpmb->part_index; 471 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 472 } else { 473 target_part = md->part_type; 474 } 475 476 cmd.opcode = idata->ic.opcode; 477 cmd.arg = idata->ic.arg; 478 cmd.flags = idata->ic.flags; 479 480 if (idata->buf_bytes) { 481 data.sg = &sg; 482 data.sg_len = 1; 483 data.blksz = idata->ic.blksz; 484 data.blocks = idata->ic.blocks; 485 486 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 487 488 if (idata->ic.write_flag) 489 data.flags = MMC_DATA_WRITE; 490 else 491 data.flags = MMC_DATA_READ; 492 493 /* data.flags must already be set before doing this. */ 494 mmc_set_data_timeout(&data, card); 495 496 /* Allow overriding the timeout_ns for empirical tuning. */ 497 if (idata->ic.data_timeout_ns) 498 data.timeout_ns = idata->ic.data_timeout_ns; 499 500 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 501 /* 502 * Pretend this is a data transfer and rely on the 503 * host driver to compute timeout. When all host 504 * drivers support cmd.cmd_timeout for R1B, this 505 * can be changed to: 506 * 507 * mrq.data = NULL; 508 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 509 */ 510 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 511 } 512 513 mrq.data = &data; 514 } 515 516 mrq.cmd = &cmd; 517 518 err = mmc_blk_part_switch(card, target_part); 519 if (err) 520 return err; 521 522 if (idata->ic.is_acmd) { 523 err = mmc_app_cmd(card->host, card); 524 if (err) 525 return err; 526 } 527 528 if (idata->rpmb) { 529 sbc.opcode = MMC_SET_BLOCK_COUNT; 530 /* 531 * We don't do any blockcount validation because the max size 532 * may be increased by a future standard. We just copy the 533 * 'Reliable Write' bit here. 534 */ 535 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 536 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 537 mrq.sbc = &sbc; 538 } 539 540 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 541 (cmd.opcode == MMC_SWITCH)) 542 return mmc_sanitize(card); 543 544 mmc_wait_for_req(card->host, &mrq); 545 546 if (cmd.error) { 547 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 548 __func__, cmd.error); 549 return cmd.error; 550 } 551 if (data.error) { 552 dev_err(mmc_dev(card->host), "%s: data error %d\n", 553 __func__, data.error); 554 return data.error; 555 } 556 557 /* 558 * Make sure the cache of the PARTITION_CONFIG register and 559 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 560 * changed it successfully. 561 */ 562 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 563 (cmd.opcode == MMC_SWITCH)) { 564 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 565 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 566 567 /* 568 * Update cache so the next mmc_blk_part_switch call operates 569 * on up-to-date data. 570 */ 571 card->ext_csd.part_config = value; 572 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 573 } 574 575 /* 576 * According to the SD specs, some commands require a delay after 577 * issuing the command. 578 */ 579 if (idata->ic.postsleep_min_us) 580 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 581 582 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 583 584 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 585 /* 586 * Ensure RPMB/R1B command has completed by polling CMD13 587 * "Send Status". 588 */ 589 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL); 590 } 591 592 return err; 593 } 594 595 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 596 struct mmc_ioc_cmd __user *ic_ptr, 597 struct mmc_rpmb_data *rpmb) 598 { 599 struct mmc_blk_ioc_data *idata; 600 struct mmc_blk_ioc_data *idatas[1]; 601 struct mmc_queue *mq; 602 struct mmc_card *card; 603 int err = 0, ioc_err = 0; 604 struct request *req; 605 606 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 607 if (IS_ERR(idata)) 608 return PTR_ERR(idata); 609 /* This will be NULL on non-RPMB ioctl():s */ 610 idata->rpmb = rpmb; 611 612 card = md->queue.card; 613 if (IS_ERR(card)) { 614 err = PTR_ERR(card); 615 goto cmd_done; 616 } 617 618 /* 619 * Dispatch the ioctl() into the block request queue. 620 */ 621 mq = &md->queue; 622 req = blk_get_request(mq->queue, 623 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 624 if (IS_ERR(req)) { 625 err = PTR_ERR(req); 626 goto cmd_done; 627 } 628 idatas[0] = idata; 629 req_to_mmc_queue_req(req)->drv_op = 630 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 631 req_to_mmc_queue_req(req)->drv_op_data = idatas; 632 req_to_mmc_queue_req(req)->ioc_count = 1; 633 blk_execute_rq(NULL, req, 0); 634 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 635 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 636 blk_put_request(req); 637 638 cmd_done: 639 kfree(idata->buf); 640 kfree(idata); 641 return ioc_err ? ioc_err : err; 642 } 643 644 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 645 struct mmc_ioc_multi_cmd __user *user, 646 struct mmc_rpmb_data *rpmb) 647 { 648 struct mmc_blk_ioc_data **idata = NULL; 649 struct mmc_ioc_cmd __user *cmds = user->cmds; 650 struct mmc_card *card; 651 struct mmc_queue *mq; 652 int i, err = 0, ioc_err = 0; 653 __u64 num_of_cmds; 654 struct request *req; 655 656 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 657 sizeof(num_of_cmds))) 658 return -EFAULT; 659 660 if (!num_of_cmds) 661 return 0; 662 663 if (num_of_cmds > MMC_IOC_MAX_CMDS) 664 return -EINVAL; 665 666 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 667 if (!idata) 668 return -ENOMEM; 669 670 for (i = 0; i < num_of_cmds; i++) { 671 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 672 if (IS_ERR(idata[i])) { 673 err = PTR_ERR(idata[i]); 674 num_of_cmds = i; 675 goto cmd_err; 676 } 677 /* This will be NULL on non-RPMB ioctl():s */ 678 idata[i]->rpmb = rpmb; 679 } 680 681 card = md->queue.card; 682 if (IS_ERR(card)) { 683 err = PTR_ERR(card); 684 goto cmd_err; 685 } 686 687 688 /* 689 * Dispatch the ioctl()s into the block request queue. 690 */ 691 mq = &md->queue; 692 req = blk_get_request(mq->queue, 693 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 694 if (IS_ERR(req)) { 695 err = PTR_ERR(req); 696 goto cmd_err; 697 } 698 req_to_mmc_queue_req(req)->drv_op = 699 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 700 req_to_mmc_queue_req(req)->drv_op_data = idata; 701 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 702 blk_execute_rq(NULL, req, 0); 703 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 704 705 /* copy to user if data and response */ 706 for (i = 0; i < num_of_cmds && !err; i++) 707 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 708 709 blk_put_request(req); 710 711 cmd_err: 712 for (i = 0; i < num_of_cmds; i++) { 713 kfree(idata[i]->buf); 714 kfree(idata[i]); 715 } 716 kfree(idata); 717 return ioc_err ? ioc_err : err; 718 } 719 720 static int mmc_blk_check_blkdev(struct block_device *bdev) 721 { 722 /* 723 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 724 * whole block device, not on a partition. This prevents overspray 725 * between sibling partitions. 726 */ 727 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 728 return -EPERM; 729 return 0; 730 } 731 732 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 733 unsigned int cmd, unsigned long arg) 734 { 735 struct mmc_blk_data *md; 736 int ret; 737 738 switch (cmd) { 739 case MMC_IOC_CMD: 740 ret = mmc_blk_check_blkdev(bdev); 741 if (ret) 742 return ret; 743 md = mmc_blk_get(bdev->bd_disk); 744 if (!md) 745 return -EINVAL; 746 ret = mmc_blk_ioctl_cmd(md, 747 (struct mmc_ioc_cmd __user *)arg, 748 NULL); 749 mmc_blk_put(md); 750 return ret; 751 case MMC_IOC_MULTI_CMD: 752 ret = mmc_blk_check_blkdev(bdev); 753 if (ret) 754 return ret; 755 md = mmc_blk_get(bdev->bd_disk); 756 if (!md) 757 return -EINVAL; 758 ret = mmc_blk_ioctl_multi_cmd(md, 759 (struct mmc_ioc_multi_cmd __user *)arg, 760 NULL); 761 mmc_blk_put(md); 762 return ret; 763 default: 764 return -EINVAL; 765 } 766 } 767 768 #ifdef CONFIG_COMPAT 769 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 770 unsigned int cmd, unsigned long arg) 771 { 772 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 773 } 774 #endif 775 776 static const struct block_device_operations mmc_bdops = { 777 .open = mmc_blk_open, 778 .release = mmc_blk_release, 779 .getgeo = mmc_blk_getgeo, 780 .owner = THIS_MODULE, 781 .ioctl = mmc_blk_ioctl, 782 #ifdef CONFIG_COMPAT 783 .compat_ioctl = mmc_blk_compat_ioctl, 784 #endif 785 }; 786 787 static int mmc_blk_part_switch_pre(struct mmc_card *card, 788 unsigned int part_type) 789 { 790 int ret = 0; 791 792 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 793 if (card->ext_csd.cmdq_en) { 794 ret = mmc_cmdq_disable(card); 795 if (ret) 796 return ret; 797 } 798 mmc_retune_pause(card->host); 799 } 800 801 return ret; 802 } 803 804 static int mmc_blk_part_switch_post(struct mmc_card *card, 805 unsigned int part_type) 806 { 807 int ret = 0; 808 809 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 810 mmc_retune_unpause(card->host); 811 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 812 ret = mmc_cmdq_enable(card); 813 } 814 815 return ret; 816 } 817 818 static inline int mmc_blk_part_switch(struct mmc_card *card, 819 unsigned int part_type) 820 { 821 int ret = 0; 822 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 823 824 if (main_md->part_curr == part_type) 825 return 0; 826 827 if (mmc_card_mmc(card)) { 828 u8 part_config = card->ext_csd.part_config; 829 830 ret = mmc_blk_part_switch_pre(card, part_type); 831 if (ret) 832 return ret; 833 834 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 835 part_config |= part_type; 836 837 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 838 EXT_CSD_PART_CONFIG, part_config, 839 card->ext_csd.part_time); 840 if (ret) { 841 mmc_blk_part_switch_post(card, part_type); 842 return ret; 843 } 844 845 card->ext_csd.part_config = part_config; 846 847 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 848 } 849 850 main_md->part_curr = part_type; 851 return ret; 852 } 853 854 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 855 { 856 int err; 857 u32 result; 858 __be32 *blocks; 859 860 struct mmc_request mrq = {}; 861 struct mmc_command cmd = {}; 862 struct mmc_data data = {}; 863 864 struct scatterlist sg; 865 866 cmd.opcode = MMC_APP_CMD; 867 cmd.arg = card->rca << 16; 868 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 869 870 err = mmc_wait_for_cmd(card->host, &cmd, 0); 871 if (err) 872 return err; 873 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 874 return -EIO; 875 876 memset(&cmd, 0, sizeof(struct mmc_command)); 877 878 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 879 cmd.arg = 0; 880 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 881 882 data.blksz = 4; 883 data.blocks = 1; 884 data.flags = MMC_DATA_READ; 885 data.sg = &sg; 886 data.sg_len = 1; 887 mmc_set_data_timeout(&data, card); 888 889 mrq.cmd = &cmd; 890 mrq.data = &data; 891 892 blocks = kmalloc(4, GFP_KERNEL); 893 if (!blocks) 894 return -ENOMEM; 895 896 sg_init_one(&sg, blocks, 4); 897 898 mmc_wait_for_req(card->host, &mrq); 899 900 result = ntohl(*blocks); 901 kfree(blocks); 902 903 if (cmd.error || data.error) 904 return -EIO; 905 906 *written_blocks = result; 907 908 return 0; 909 } 910 911 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 912 { 913 if (host->actual_clock) 914 return host->actual_clock / 1000; 915 916 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 917 if (host->ios.clock) 918 return host->ios.clock / 2000; 919 920 /* How can there be no clock */ 921 WARN_ON_ONCE(1); 922 return 100; /* 100 kHz is minimum possible value */ 923 } 924 925 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 926 struct mmc_data *data) 927 { 928 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 929 unsigned int khz; 930 931 if (data->timeout_clks) { 932 khz = mmc_blk_clock_khz(host); 933 ms += DIV_ROUND_UP(data->timeout_clks, khz); 934 } 935 936 return ms; 937 } 938 939 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 940 int type) 941 { 942 int err; 943 944 if (md->reset_done & type) 945 return -EEXIST; 946 947 md->reset_done |= type; 948 err = mmc_hw_reset(host); 949 /* Ensure we switch back to the correct partition */ 950 if (err != -EOPNOTSUPP) { 951 struct mmc_blk_data *main_md = 952 dev_get_drvdata(&host->card->dev); 953 int part_err; 954 955 main_md->part_curr = main_md->part_type; 956 part_err = mmc_blk_part_switch(host->card, md->part_type); 957 if (part_err) { 958 /* 959 * We have failed to get back into the correct 960 * partition, so we need to abort the whole request. 961 */ 962 return -ENODEV; 963 } 964 } 965 return err; 966 } 967 968 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 969 { 970 md->reset_done &= ~type; 971 } 972 973 /* 974 * The non-block commands come back from the block layer after it queued it and 975 * processed it with all other requests and then they get issued in this 976 * function. 977 */ 978 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 979 { 980 struct mmc_queue_req *mq_rq; 981 struct mmc_card *card = mq->card; 982 struct mmc_blk_data *md = mq->blkdata; 983 struct mmc_blk_ioc_data **idata; 984 bool rpmb_ioctl; 985 u8 **ext_csd; 986 u32 status; 987 int ret; 988 int i; 989 990 mq_rq = req_to_mmc_queue_req(req); 991 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 992 993 switch (mq_rq->drv_op) { 994 case MMC_DRV_OP_IOCTL: 995 case MMC_DRV_OP_IOCTL_RPMB: 996 idata = mq_rq->drv_op_data; 997 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 998 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 999 if (ret) 1000 break; 1001 } 1002 /* Always switch back to main area after RPMB access */ 1003 if (rpmb_ioctl) 1004 mmc_blk_part_switch(card, 0); 1005 break; 1006 case MMC_DRV_OP_BOOT_WP: 1007 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1008 card->ext_csd.boot_ro_lock | 1009 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1010 card->ext_csd.part_time); 1011 if (ret) 1012 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1013 md->disk->disk_name, ret); 1014 else 1015 card->ext_csd.boot_ro_lock |= 1016 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1017 break; 1018 case MMC_DRV_OP_GET_CARD_STATUS: 1019 ret = mmc_send_status(card, &status); 1020 if (!ret) 1021 ret = status; 1022 break; 1023 case MMC_DRV_OP_GET_EXT_CSD: 1024 ext_csd = mq_rq->drv_op_data; 1025 ret = mmc_get_ext_csd(card, ext_csd); 1026 break; 1027 default: 1028 pr_err("%s: unknown driver specific operation\n", 1029 md->disk->disk_name); 1030 ret = -EINVAL; 1031 break; 1032 } 1033 mq_rq->drv_op_result = ret; 1034 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1035 } 1036 1037 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1038 { 1039 struct mmc_blk_data *md = mq->blkdata; 1040 struct mmc_card *card = md->queue.card; 1041 unsigned int from, nr; 1042 int err = 0, type = MMC_BLK_DISCARD; 1043 blk_status_t status = BLK_STS_OK; 1044 1045 if (!mmc_can_erase(card)) { 1046 status = BLK_STS_NOTSUPP; 1047 goto fail; 1048 } 1049 1050 from = blk_rq_pos(req); 1051 nr = blk_rq_sectors(req); 1052 1053 do { 1054 err = 0; 1055 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1056 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1057 INAND_CMD38_ARG_EXT_CSD, 1058 card->erase_arg == MMC_TRIM_ARG ? 1059 INAND_CMD38_ARG_TRIM : 1060 INAND_CMD38_ARG_ERASE, 1061 card->ext_csd.generic_cmd6_time); 1062 } 1063 if (!err) 1064 err = mmc_erase(card, from, nr, card->erase_arg); 1065 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1066 if (err) 1067 status = BLK_STS_IOERR; 1068 else 1069 mmc_blk_reset_success(md, type); 1070 fail: 1071 blk_mq_end_request(req, status); 1072 } 1073 1074 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1075 struct request *req) 1076 { 1077 struct mmc_blk_data *md = mq->blkdata; 1078 struct mmc_card *card = md->queue.card; 1079 unsigned int from, nr, arg; 1080 int err = 0, type = MMC_BLK_SECDISCARD; 1081 blk_status_t status = BLK_STS_OK; 1082 1083 if (!(mmc_can_secure_erase_trim(card))) { 1084 status = BLK_STS_NOTSUPP; 1085 goto out; 1086 } 1087 1088 from = blk_rq_pos(req); 1089 nr = blk_rq_sectors(req); 1090 1091 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1092 arg = MMC_SECURE_TRIM1_ARG; 1093 else 1094 arg = MMC_SECURE_ERASE_ARG; 1095 1096 retry: 1097 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1098 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1099 INAND_CMD38_ARG_EXT_CSD, 1100 arg == MMC_SECURE_TRIM1_ARG ? 1101 INAND_CMD38_ARG_SECTRIM1 : 1102 INAND_CMD38_ARG_SECERASE, 1103 card->ext_csd.generic_cmd6_time); 1104 if (err) 1105 goto out_retry; 1106 } 1107 1108 err = mmc_erase(card, from, nr, arg); 1109 if (err == -EIO) 1110 goto out_retry; 1111 if (err) { 1112 status = BLK_STS_IOERR; 1113 goto out; 1114 } 1115 1116 if (arg == MMC_SECURE_TRIM1_ARG) { 1117 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1118 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1119 INAND_CMD38_ARG_EXT_CSD, 1120 INAND_CMD38_ARG_SECTRIM2, 1121 card->ext_csd.generic_cmd6_time); 1122 if (err) 1123 goto out_retry; 1124 } 1125 1126 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1127 if (err == -EIO) 1128 goto out_retry; 1129 if (err) { 1130 status = BLK_STS_IOERR; 1131 goto out; 1132 } 1133 } 1134 1135 out_retry: 1136 if (err && !mmc_blk_reset(md, card->host, type)) 1137 goto retry; 1138 if (!err) 1139 mmc_blk_reset_success(md, type); 1140 out: 1141 blk_mq_end_request(req, status); 1142 } 1143 1144 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1145 { 1146 struct mmc_blk_data *md = mq->blkdata; 1147 struct mmc_card *card = md->queue.card; 1148 int ret = 0; 1149 1150 ret = mmc_flush_cache(card); 1151 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1152 } 1153 1154 /* 1155 * Reformat current write as a reliable write, supporting 1156 * both legacy and the enhanced reliable write MMC cards. 1157 * In each transfer we'll handle only as much as a single 1158 * reliable write can handle, thus finish the request in 1159 * partial completions. 1160 */ 1161 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1162 struct mmc_card *card, 1163 struct request *req) 1164 { 1165 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1166 /* Legacy mode imposes restrictions on transfers. */ 1167 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1168 brq->data.blocks = 1; 1169 1170 if (brq->data.blocks > card->ext_csd.rel_sectors) 1171 brq->data.blocks = card->ext_csd.rel_sectors; 1172 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1173 brq->data.blocks = 1; 1174 } 1175 } 1176 1177 #define CMD_ERRORS_EXCL_OOR \ 1178 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1179 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1180 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1181 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1182 R1_CC_ERROR | /* Card controller error */ \ 1183 R1_ERROR) /* General/unknown error */ 1184 1185 #define CMD_ERRORS \ 1186 (CMD_ERRORS_EXCL_OOR | \ 1187 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1188 1189 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1190 { 1191 u32 val; 1192 1193 /* 1194 * Per the SD specification(physical layer version 4.10)[1], 1195 * section 4.3.3, it explicitly states that "When the last 1196 * block of user area is read using CMD18, the host should 1197 * ignore OUT_OF_RANGE error that may occur even the sequence 1198 * is correct". And JESD84-B51 for eMMC also has a similar 1199 * statement on section 6.8.3. 1200 * 1201 * Multiple block read/write could be done by either predefined 1202 * method, namely CMD23, or open-ending mode. For open-ending mode, 1203 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1204 * 1205 * However the spec[1] doesn't tell us whether we should also 1206 * ignore that for predefined method. But per the spec[1], section 1207 * 4.15 Set Block Count Command, it says"If illegal block count 1208 * is set, out of range error will be indicated during read/write 1209 * operation (For example, data transfer is stopped at user area 1210 * boundary)." In another word, we could expect a out of range error 1211 * in the response for the following CMD18/25. And if argument of 1212 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1213 * we could also expect to get a -ETIMEDOUT or any error number from 1214 * the host drivers due to missing data response(for write)/data(for 1215 * read), as the cards will stop the data transfer by itself per the 1216 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1217 */ 1218 1219 if (!brq->stop.error) { 1220 bool oor_with_open_end; 1221 /* If there is no error yet, check R1 response */ 1222 1223 val = brq->stop.resp[0] & CMD_ERRORS; 1224 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1225 1226 if (val && !oor_with_open_end) 1227 brq->stop.error = -EIO; 1228 } 1229 } 1230 1231 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1232 int disable_multi, bool *do_rel_wr_p, 1233 bool *do_data_tag_p) 1234 { 1235 struct mmc_blk_data *md = mq->blkdata; 1236 struct mmc_card *card = md->queue.card; 1237 struct mmc_blk_request *brq = &mqrq->brq; 1238 struct request *req = mmc_queue_req_to_req(mqrq); 1239 bool do_rel_wr, do_data_tag; 1240 1241 /* 1242 * Reliable writes are used to implement Forced Unit Access and 1243 * are supported only on MMCs. 1244 */ 1245 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1246 rq_data_dir(req) == WRITE && 1247 (md->flags & MMC_BLK_REL_WR); 1248 1249 memset(brq, 0, sizeof(struct mmc_blk_request)); 1250 1251 mmc_crypto_prepare_req(mqrq); 1252 1253 brq->mrq.data = &brq->data; 1254 brq->mrq.tag = req->tag; 1255 1256 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1257 brq->stop.arg = 0; 1258 1259 if (rq_data_dir(req) == READ) { 1260 brq->data.flags = MMC_DATA_READ; 1261 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1262 } else { 1263 brq->data.flags = MMC_DATA_WRITE; 1264 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1265 } 1266 1267 brq->data.blksz = 512; 1268 brq->data.blocks = blk_rq_sectors(req); 1269 brq->data.blk_addr = blk_rq_pos(req); 1270 1271 /* 1272 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1273 * The eMMC will give "high" priority tasks priority over "simple" 1274 * priority tasks. Here we always set "simple" priority by not setting 1275 * MMC_DATA_PRIO. 1276 */ 1277 1278 /* 1279 * The block layer doesn't support all sector count 1280 * restrictions, so we need to be prepared for too big 1281 * requests. 1282 */ 1283 if (brq->data.blocks > card->host->max_blk_count) 1284 brq->data.blocks = card->host->max_blk_count; 1285 1286 if (brq->data.blocks > 1) { 1287 /* 1288 * Some SD cards in SPI mode return a CRC error or even lock up 1289 * completely when trying to read the last block using a 1290 * multiblock read command. 1291 */ 1292 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1293 (blk_rq_pos(req) + blk_rq_sectors(req) == 1294 get_capacity(md->disk))) 1295 brq->data.blocks--; 1296 1297 /* 1298 * After a read error, we redo the request one sector 1299 * at a time in order to accurately determine which 1300 * sectors can be read successfully. 1301 */ 1302 if (disable_multi) 1303 brq->data.blocks = 1; 1304 1305 /* 1306 * Some controllers have HW issues while operating 1307 * in multiple I/O mode 1308 */ 1309 if (card->host->ops->multi_io_quirk) 1310 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1311 (rq_data_dir(req) == READ) ? 1312 MMC_DATA_READ : MMC_DATA_WRITE, 1313 brq->data.blocks); 1314 } 1315 1316 if (do_rel_wr) { 1317 mmc_apply_rel_rw(brq, card, req); 1318 brq->data.flags |= MMC_DATA_REL_WR; 1319 } 1320 1321 /* 1322 * Data tag is used only during writing meta data to speed 1323 * up write and any subsequent read of this meta data 1324 */ 1325 do_data_tag = card->ext_csd.data_tag_unit_size && 1326 (req->cmd_flags & REQ_META) && 1327 (rq_data_dir(req) == WRITE) && 1328 ((brq->data.blocks * brq->data.blksz) >= 1329 card->ext_csd.data_tag_unit_size); 1330 1331 if (do_data_tag) 1332 brq->data.flags |= MMC_DATA_DAT_TAG; 1333 1334 mmc_set_data_timeout(&brq->data, card); 1335 1336 brq->data.sg = mqrq->sg; 1337 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1338 1339 /* 1340 * Adjust the sg list so it is the same size as the 1341 * request. 1342 */ 1343 if (brq->data.blocks != blk_rq_sectors(req)) { 1344 int i, data_size = brq->data.blocks << 9; 1345 struct scatterlist *sg; 1346 1347 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1348 data_size -= sg->length; 1349 if (data_size <= 0) { 1350 sg->length += data_size; 1351 i++; 1352 break; 1353 } 1354 } 1355 brq->data.sg_len = i; 1356 } 1357 1358 if (do_rel_wr_p) 1359 *do_rel_wr_p = do_rel_wr; 1360 1361 if (do_data_tag_p) 1362 *do_data_tag_p = do_data_tag; 1363 } 1364 1365 #define MMC_CQE_RETRIES 2 1366 1367 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1368 { 1369 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1370 struct mmc_request *mrq = &mqrq->brq.mrq; 1371 struct request_queue *q = req->q; 1372 struct mmc_host *host = mq->card->host; 1373 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1374 unsigned long flags; 1375 bool put_card; 1376 int err; 1377 1378 mmc_cqe_post_req(host, mrq); 1379 1380 if (mrq->cmd && mrq->cmd->error) 1381 err = mrq->cmd->error; 1382 else if (mrq->data && mrq->data->error) 1383 err = mrq->data->error; 1384 else 1385 err = 0; 1386 1387 if (err) { 1388 if (mqrq->retries++ < MMC_CQE_RETRIES) 1389 blk_mq_requeue_request(req, true); 1390 else 1391 blk_mq_end_request(req, BLK_STS_IOERR); 1392 } else if (mrq->data) { 1393 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1394 blk_mq_requeue_request(req, true); 1395 else 1396 __blk_mq_end_request(req, BLK_STS_OK); 1397 } else { 1398 blk_mq_end_request(req, BLK_STS_OK); 1399 } 1400 1401 spin_lock_irqsave(&mq->lock, flags); 1402 1403 mq->in_flight[issue_type] -= 1; 1404 1405 put_card = (mmc_tot_in_flight(mq) == 0); 1406 1407 mmc_cqe_check_busy(mq); 1408 1409 spin_unlock_irqrestore(&mq->lock, flags); 1410 1411 if (!mq->cqe_busy) 1412 blk_mq_run_hw_queues(q, true); 1413 1414 if (put_card) 1415 mmc_put_card(mq->card, &mq->ctx); 1416 } 1417 1418 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1419 { 1420 struct mmc_card *card = mq->card; 1421 struct mmc_host *host = card->host; 1422 int err; 1423 1424 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1425 1426 err = mmc_cqe_recovery(host); 1427 if (err) 1428 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1429 else 1430 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1431 1432 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1433 } 1434 1435 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1436 { 1437 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1438 brq.mrq); 1439 struct request *req = mmc_queue_req_to_req(mqrq); 1440 struct request_queue *q = req->q; 1441 struct mmc_queue *mq = q->queuedata; 1442 1443 /* 1444 * Block layer timeouts race with completions which means the normal 1445 * completion path cannot be used during recovery. 1446 */ 1447 if (mq->in_recovery) 1448 mmc_blk_cqe_complete_rq(mq, req); 1449 else if (likely(!blk_should_fake_timeout(req->q))) 1450 blk_mq_complete_request(req); 1451 } 1452 1453 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1454 { 1455 mrq->done = mmc_blk_cqe_req_done; 1456 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1457 1458 return mmc_cqe_start_req(host, mrq); 1459 } 1460 1461 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1462 struct request *req) 1463 { 1464 struct mmc_blk_request *brq = &mqrq->brq; 1465 1466 memset(brq, 0, sizeof(*brq)); 1467 1468 brq->mrq.cmd = &brq->cmd; 1469 brq->mrq.tag = req->tag; 1470 1471 return &brq->mrq; 1472 } 1473 1474 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1475 { 1476 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1477 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1478 1479 mrq->cmd->opcode = MMC_SWITCH; 1480 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1481 (EXT_CSD_FLUSH_CACHE << 16) | 1482 (1 << 8) | 1483 EXT_CSD_CMD_SET_NORMAL; 1484 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1485 1486 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1487 } 1488 1489 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1490 { 1491 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1492 struct mmc_host *host = mq->card->host; 1493 int err; 1494 1495 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1496 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1497 mmc_pre_req(host, &mqrq->brq.mrq); 1498 1499 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1500 if (err) 1501 mmc_post_req(host, &mqrq->brq.mrq, err); 1502 1503 return err; 1504 } 1505 1506 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1507 { 1508 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1509 struct mmc_host *host = mq->card->host; 1510 1511 if (host->hsq_enabled) 1512 return mmc_blk_hsq_issue_rw_rq(mq, req); 1513 1514 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1515 1516 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1517 } 1518 1519 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1520 struct mmc_card *card, 1521 int disable_multi, 1522 struct mmc_queue *mq) 1523 { 1524 u32 readcmd, writecmd; 1525 struct mmc_blk_request *brq = &mqrq->brq; 1526 struct request *req = mmc_queue_req_to_req(mqrq); 1527 struct mmc_blk_data *md = mq->blkdata; 1528 bool do_rel_wr, do_data_tag; 1529 1530 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1531 1532 brq->mrq.cmd = &brq->cmd; 1533 1534 brq->cmd.arg = blk_rq_pos(req); 1535 if (!mmc_card_blockaddr(card)) 1536 brq->cmd.arg <<= 9; 1537 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1538 1539 if (brq->data.blocks > 1 || do_rel_wr) { 1540 /* SPI multiblock writes terminate using a special 1541 * token, not a STOP_TRANSMISSION request. 1542 */ 1543 if (!mmc_host_is_spi(card->host) || 1544 rq_data_dir(req) == READ) 1545 brq->mrq.stop = &brq->stop; 1546 readcmd = MMC_READ_MULTIPLE_BLOCK; 1547 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1548 } else { 1549 brq->mrq.stop = NULL; 1550 readcmd = MMC_READ_SINGLE_BLOCK; 1551 writecmd = MMC_WRITE_BLOCK; 1552 } 1553 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1554 1555 /* 1556 * Pre-defined multi-block transfers are preferable to 1557 * open ended-ones (and necessary for reliable writes). 1558 * However, it is not sufficient to just send CMD23, 1559 * and avoid the final CMD12, as on an error condition 1560 * CMD12 (stop) needs to be sent anyway. This, coupled 1561 * with Auto-CMD23 enhancements provided by some 1562 * hosts, means that the complexity of dealing 1563 * with this is best left to the host. If CMD23 is 1564 * supported by card and host, we'll fill sbc in and let 1565 * the host deal with handling it correctly. This means 1566 * that for hosts that don't expose MMC_CAP_CMD23, no 1567 * change of behavior will be observed. 1568 * 1569 * N.B: Some MMC cards experience perf degradation. 1570 * We'll avoid using CMD23-bounded multiblock writes for 1571 * these, while retaining features like reliable writes. 1572 */ 1573 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1574 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1575 do_data_tag)) { 1576 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1577 brq->sbc.arg = brq->data.blocks | 1578 (do_rel_wr ? (1 << 31) : 0) | 1579 (do_data_tag ? (1 << 29) : 0); 1580 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1581 brq->mrq.sbc = &brq->sbc; 1582 } 1583 } 1584 1585 #define MMC_MAX_RETRIES 5 1586 #define MMC_DATA_RETRIES 2 1587 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1588 1589 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1590 { 1591 struct mmc_command cmd = { 1592 .opcode = MMC_STOP_TRANSMISSION, 1593 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1594 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1595 .busy_timeout = timeout, 1596 }; 1597 1598 return mmc_wait_for_cmd(card->host, &cmd, 5); 1599 } 1600 1601 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1602 { 1603 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1604 struct mmc_blk_request *brq = &mqrq->brq; 1605 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1606 int err; 1607 1608 mmc_retune_hold_now(card->host); 1609 1610 mmc_blk_send_stop(card, timeout); 1611 1612 err = card_busy_detect(card, timeout, NULL); 1613 1614 mmc_retune_release(card->host); 1615 1616 return err; 1617 } 1618 1619 #define MMC_READ_SINGLE_RETRIES 2 1620 1621 /* Single sector read during recovery */ 1622 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1623 { 1624 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1625 struct mmc_request *mrq = &mqrq->brq.mrq; 1626 struct mmc_card *card = mq->card; 1627 struct mmc_host *host = card->host; 1628 blk_status_t error = BLK_STS_OK; 1629 int retries = 0; 1630 1631 do { 1632 u32 status; 1633 int err; 1634 1635 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1636 1637 mmc_wait_for_req(host, mrq); 1638 1639 err = mmc_send_status(card, &status); 1640 if (err) 1641 goto error_exit; 1642 1643 if (!mmc_host_is_spi(host) && 1644 !mmc_ready_for_data(status)) { 1645 err = mmc_blk_fix_state(card, req); 1646 if (err) 1647 goto error_exit; 1648 } 1649 1650 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES) 1651 continue; 1652 1653 retries = 0; 1654 1655 if (mrq->cmd->error || 1656 mrq->data->error || 1657 (!mmc_host_is_spi(host) && 1658 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1659 error = BLK_STS_IOERR; 1660 else 1661 error = BLK_STS_OK; 1662 1663 } while (blk_update_request(req, error, 512)); 1664 1665 return; 1666 1667 error_exit: 1668 mrq->data->bytes_xfered = 0; 1669 blk_update_request(req, BLK_STS_IOERR, 512); 1670 /* Let it try the remaining request again */ 1671 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1672 mqrq->retries = MMC_MAX_RETRIES - 1; 1673 } 1674 1675 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1676 { 1677 return !!brq->mrq.sbc; 1678 } 1679 1680 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1681 { 1682 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1683 } 1684 1685 /* 1686 * Check for errors the host controller driver might not have seen such as 1687 * response mode errors or invalid card state. 1688 */ 1689 static bool mmc_blk_status_error(struct request *req, u32 status) 1690 { 1691 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1692 struct mmc_blk_request *brq = &mqrq->brq; 1693 struct mmc_queue *mq = req->q->queuedata; 1694 u32 stop_err_bits; 1695 1696 if (mmc_host_is_spi(mq->card->host)) 1697 return false; 1698 1699 stop_err_bits = mmc_blk_stop_err_bits(brq); 1700 1701 return brq->cmd.resp[0] & CMD_ERRORS || 1702 brq->stop.resp[0] & stop_err_bits || 1703 status & stop_err_bits || 1704 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1705 } 1706 1707 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1708 { 1709 return !brq->sbc.error && !brq->cmd.error && 1710 !(brq->cmd.resp[0] & CMD_ERRORS); 1711 } 1712 1713 /* 1714 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1715 * policy: 1716 * 1. A request that has transferred at least some data is considered 1717 * successful and will be requeued if there is remaining data to 1718 * transfer. 1719 * 2. Otherwise the number of retries is incremented and the request 1720 * will be requeued if there are remaining retries. 1721 * 3. Otherwise the request will be errored out. 1722 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1723 * mqrq->retries. So there are only 4 possible actions here: 1724 * 1. do not accept the bytes_xfered value i.e. set it to zero 1725 * 2. change mqrq->retries to determine the number of retries 1726 * 3. try to reset the card 1727 * 4. read one sector at a time 1728 */ 1729 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1730 { 1731 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1732 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1733 struct mmc_blk_request *brq = &mqrq->brq; 1734 struct mmc_blk_data *md = mq->blkdata; 1735 struct mmc_card *card = mq->card; 1736 u32 status; 1737 u32 blocks; 1738 int err; 1739 1740 /* 1741 * Some errors the host driver might not have seen. Set the number of 1742 * bytes transferred to zero in that case. 1743 */ 1744 err = __mmc_send_status(card, &status, 0); 1745 if (err || mmc_blk_status_error(req, status)) 1746 brq->data.bytes_xfered = 0; 1747 1748 mmc_retune_release(card->host); 1749 1750 /* 1751 * Try again to get the status. This also provides an opportunity for 1752 * re-tuning. 1753 */ 1754 if (err) 1755 err = __mmc_send_status(card, &status, 0); 1756 1757 /* 1758 * Nothing more to do after the number of bytes transferred has been 1759 * updated and there is no card. 1760 */ 1761 if (err && mmc_detect_card_removed(card->host)) 1762 return; 1763 1764 /* Try to get back to "tran" state */ 1765 if (!mmc_host_is_spi(mq->card->host) && 1766 (err || !mmc_ready_for_data(status))) 1767 err = mmc_blk_fix_state(mq->card, req); 1768 1769 /* 1770 * Special case for SD cards where the card might record the number of 1771 * blocks written. 1772 */ 1773 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1774 rq_data_dir(req) == WRITE) { 1775 if (mmc_sd_num_wr_blocks(card, &blocks)) 1776 brq->data.bytes_xfered = 0; 1777 else 1778 brq->data.bytes_xfered = blocks << 9; 1779 } 1780 1781 /* Reset if the card is in a bad state */ 1782 if (!mmc_host_is_spi(mq->card->host) && 1783 err && mmc_blk_reset(md, card->host, type)) { 1784 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name); 1785 mqrq->retries = MMC_NO_RETRIES; 1786 return; 1787 } 1788 1789 /* 1790 * If anything was done, just return and if there is anything remaining 1791 * on the request it will get requeued. 1792 */ 1793 if (brq->data.bytes_xfered) 1794 return; 1795 1796 /* Reset before last retry */ 1797 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1798 mmc_blk_reset(md, card->host, type); 1799 1800 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1801 if (brq->sbc.error || brq->cmd.error) 1802 return; 1803 1804 /* Reduce the remaining retries for data errors */ 1805 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1806 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1807 return; 1808 } 1809 1810 /* FIXME: Missing single sector read for large sector size */ 1811 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1812 brq->data.blocks > 1) { 1813 /* Read one sector at a time */ 1814 mmc_blk_read_single(mq, req); 1815 return; 1816 } 1817 } 1818 1819 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1820 { 1821 mmc_blk_eval_resp_error(brq); 1822 1823 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1824 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1825 } 1826 1827 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1828 { 1829 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1830 u32 status = 0; 1831 int err; 1832 1833 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) 1834 return 0; 1835 1836 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status); 1837 1838 /* 1839 * Do not assume data transferred correctly if there are any error bits 1840 * set. 1841 */ 1842 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1843 mqrq->brq.data.bytes_xfered = 0; 1844 err = err ? err : -EIO; 1845 } 1846 1847 /* Copy the exception bit so it will be seen later on */ 1848 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT) 1849 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1850 1851 return err; 1852 } 1853 1854 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1855 struct request *req) 1856 { 1857 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1858 1859 mmc_blk_reset_success(mq->blkdata, type); 1860 } 1861 1862 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1863 { 1864 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1865 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1866 1867 if (nr_bytes) { 1868 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1869 blk_mq_requeue_request(req, true); 1870 else 1871 __blk_mq_end_request(req, BLK_STS_OK); 1872 } else if (!blk_rq_bytes(req)) { 1873 __blk_mq_end_request(req, BLK_STS_IOERR); 1874 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1875 blk_mq_requeue_request(req, true); 1876 } else { 1877 if (mmc_card_removed(mq->card)) 1878 req->rq_flags |= RQF_QUIET; 1879 blk_mq_end_request(req, BLK_STS_IOERR); 1880 } 1881 } 1882 1883 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1884 struct mmc_queue_req *mqrq) 1885 { 1886 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1887 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1888 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1889 } 1890 1891 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 1892 struct mmc_queue_req *mqrq) 1893 { 1894 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 1895 mmc_run_bkops(mq->card); 1896 } 1897 1898 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 1899 { 1900 struct mmc_queue_req *mqrq = 1901 container_of(mrq, struct mmc_queue_req, brq.mrq); 1902 struct request *req = mmc_queue_req_to_req(mqrq); 1903 struct request_queue *q = req->q; 1904 struct mmc_queue *mq = q->queuedata; 1905 struct mmc_host *host = mq->card->host; 1906 unsigned long flags; 1907 1908 if (mmc_blk_rq_error(&mqrq->brq) || 1909 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 1910 spin_lock_irqsave(&mq->lock, flags); 1911 mq->recovery_needed = true; 1912 mq->recovery_req = req; 1913 spin_unlock_irqrestore(&mq->lock, flags); 1914 1915 host->cqe_ops->cqe_recovery_start(host); 1916 1917 schedule_work(&mq->recovery_work); 1918 return; 1919 } 1920 1921 mmc_blk_rw_reset_success(mq, req); 1922 1923 /* 1924 * Block layer timeouts race with completions which means the normal 1925 * completion path cannot be used during recovery. 1926 */ 1927 if (mq->in_recovery) 1928 mmc_blk_cqe_complete_rq(mq, req); 1929 else if (likely(!blk_should_fake_timeout(req->q))) 1930 blk_mq_complete_request(req); 1931 } 1932 1933 void mmc_blk_mq_complete(struct request *req) 1934 { 1935 struct mmc_queue *mq = req->q->queuedata; 1936 1937 if (mq->use_cqe) 1938 mmc_blk_cqe_complete_rq(mq, req); 1939 else if (likely(!blk_should_fake_timeout(req->q))) 1940 mmc_blk_mq_complete_rq(mq, req); 1941 } 1942 1943 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 1944 struct request *req) 1945 { 1946 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1947 struct mmc_host *host = mq->card->host; 1948 1949 if (mmc_blk_rq_error(&mqrq->brq) || 1950 mmc_blk_card_busy(mq->card, req)) { 1951 mmc_blk_mq_rw_recovery(mq, req); 1952 } else { 1953 mmc_blk_rw_reset_success(mq, req); 1954 mmc_retune_release(host); 1955 } 1956 1957 mmc_blk_urgent_bkops(mq, mqrq); 1958 } 1959 1960 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 1961 { 1962 unsigned long flags; 1963 bool put_card; 1964 1965 spin_lock_irqsave(&mq->lock, flags); 1966 1967 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1968 1969 put_card = (mmc_tot_in_flight(mq) == 0); 1970 1971 spin_unlock_irqrestore(&mq->lock, flags); 1972 1973 if (put_card) 1974 mmc_put_card(mq->card, &mq->ctx); 1975 } 1976 1977 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req) 1978 { 1979 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1980 struct mmc_request *mrq = &mqrq->brq.mrq; 1981 struct mmc_host *host = mq->card->host; 1982 1983 mmc_post_req(host, mrq, 0); 1984 1985 /* 1986 * Block layer timeouts race with completions which means the normal 1987 * completion path cannot be used during recovery. 1988 */ 1989 if (mq->in_recovery) 1990 mmc_blk_mq_complete_rq(mq, req); 1991 else if (likely(!blk_should_fake_timeout(req->q))) 1992 blk_mq_complete_request(req); 1993 1994 mmc_blk_mq_dec_in_flight(mq, req); 1995 } 1996 1997 void mmc_blk_mq_recovery(struct mmc_queue *mq) 1998 { 1999 struct request *req = mq->recovery_req; 2000 struct mmc_host *host = mq->card->host; 2001 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2002 2003 mq->recovery_req = NULL; 2004 mq->rw_wait = false; 2005 2006 if (mmc_blk_rq_error(&mqrq->brq)) { 2007 mmc_retune_hold_now(host); 2008 mmc_blk_mq_rw_recovery(mq, req); 2009 } 2010 2011 mmc_blk_urgent_bkops(mq, mqrq); 2012 2013 mmc_blk_mq_post_req(mq, req); 2014 } 2015 2016 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2017 struct request **prev_req) 2018 { 2019 if (mmc_host_done_complete(mq->card->host)) 2020 return; 2021 2022 mutex_lock(&mq->complete_lock); 2023 2024 if (!mq->complete_req) 2025 goto out_unlock; 2026 2027 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2028 2029 if (prev_req) 2030 *prev_req = mq->complete_req; 2031 else 2032 mmc_blk_mq_post_req(mq, mq->complete_req); 2033 2034 mq->complete_req = NULL; 2035 2036 out_unlock: 2037 mutex_unlock(&mq->complete_lock); 2038 } 2039 2040 void mmc_blk_mq_complete_work(struct work_struct *work) 2041 { 2042 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2043 complete_work); 2044 2045 mmc_blk_mq_complete_prev_req(mq, NULL); 2046 } 2047 2048 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2049 { 2050 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2051 brq.mrq); 2052 struct request *req = mmc_queue_req_to_req(mqrq); 2053 struct request_queue *q = req->q; 2054 struct mmc_queue *mq = q->queuedata; 2055 struct mmc_host *host = mq->card->host; 2056 unsigned long flags; 2057 2058 if (!mmc_host_done_complete(host)) { 2059 bool waiting; 2060 2061 /* 2062 * We cannot complete the request in this context, so record 2063 * that there is a request to complete, and that a following 2064 * request does not need to wait (although it does need to 2065 * complete complete_req first). 2066 */ 2067 spin_lock_irqsave(&mq->lock, flags); 2068 mq->complete_req = req; 2069 mq->rw_wait = false; 2070 waiting = mq->waiting; 2071 spin_unlock_irqrestore(&mq->lock, flags); 2072 2073 /* 2074 * If 'waiting' then the waiting task will complete this 2075 * request, otherwise queue a work to do it. Note that 2076 * complete_work may still race with the dispatch of a following 2077 * request. 2078 */ 2079 if (waiting) 2080 wake_up(&mq->wait); 2081 else 2082 queue_work(mq->card->complete_wq, &mq->complete_work); 2083 2084 return; 2085 } 2086 2087 /* Take the recovery path for errors or urgent background operations */ 2088 if (mmc_blk_rq_error(&mqrq->brq) || 2089 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2090 spin_lock_irqsave(&mq->lock, flags); 2091 mq->recovery_needed = true; 2092 mq->recovery_req = req; 2093 spin_unlock_irqrestore(&mq->lock, flags); 2094 wake_up(&mq->wait); 2095 schedule_work(&mq->recovery_work); 2096 return; 2097 } 2098 2099 mmc_blk_rw_reset_success(mq, req); 2100 2101 mq->rw_wait = false; 2102 wake_up(&mq->wait); 2103 2104 mmc_blk_mq_post_req(mq, req); 2105 } 2106 2107 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2108 { 2109 unsigned long flags; 2110 bool done; 2111 2112 /* 2113 * Wait while there is another request in progress, but not if recovery 2114 * is needed. Also indicate whether there is a request waiting to start. 2115 */ 2116 spin_lock_irqsave(&mq->lock, flags); 2117 if (mq->recovery_needed) { 2118 *err = -EBUSY; 2119 done = true; 2120 } else { 2121 done = !mq->rw_wait; 2122 } 2123 mq->waiting = !done; 2124 spin_unlock_irqrestore(&mq->lock, flags); 2125 2126 return done; 2127 } 2128 2129 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2130 { 2131 int err = 0; 2132 2133 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2134 2135 /* Always complete the previous request if there is one */ 2136 mmc_blk_mq_complete_prev_req(mq, prev_req); 2137 2138 return err; 2139 } 2140 2141 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2142 struct request *req) 2143 { 2144 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2145 struct mmc_host *host = mq->card->host; 2146 struct request *prev_req = NULL; 2147 int err = 0; 2148 2149 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2150 2151 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2152 2153 mmc_pre_req(host, &mqrq->brq.mrq); 2154 2155 err = mmc_blk_rw_wait(mq, &prev_req); 2156 if (err) 2157 goto out_post_req; 2158 2159 mq->rw_wait = true; 2160 2161 err = mmc_start_request(host, &mqrq->brq.mrq); 2162 2163 if (prev_req) 2164 mmc_blk_mq_post_req(mq, prev_req); 2165 2166 if (err) 2167 mq->rw_wait = false; 2168 2169 /* Release re-tuning here where there is no synchronization required */ 2170 if (err || mmc_host_done_complete(host)) 2171 mmc_retune_release(host); 2172 2173 out_post_req: 2174 if (err) 2175 mmc_post_req(host, &mqrq->brq.mrq, err); 2176 2177 return err; 2178 } 2179 2180 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2181 { 2182 if (mq->use_cqe) 2183 return host->cqe_ops->cqe_wait_for_idle(host); 2184 2185 return mmc_blk_rw_wait(mq, NULL); 2186 } 2187 2188 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2189 { 2190 struct mmc_blk_data *md = mq->blkdata; 2191 struct mmc_card *card = md->queue.card; 2192 struct mmc_host *host = card->host; 2193 int ret; 2194 2195 ret = mmc_blk_part_switch(card, md->part_type); 2196 if (ret) 2197 return MMC_REQ_FAILED_TO_START; 2198 2199 switch (mmc_issue_type(mq, req)) { 2200 case MMC_ISSUE_SYNC: 2201 ret = mmc_blk_wait_for_idle(mq, host); 2202 if (ret) 2203 return MMC_REQ_BUSY; 2204 switch (req_op(req)) { 2205 case REQ_OP_DRV_IN: 2206 case REQ_OP_DRV_OUT: 2207 mmc_blk_issue_drv_op(mq, req); 2208 break; 2209 case REQ_OP_DISCARD: 2210 mmc_blk_issue_discard_rq(mq, req); 2211 break; 2212 case REQ_OP_SECURE_ERASE: 2213 mmc_blk_issue_secdiscard_rq(mq, req); 2214 break; 2215 case REQ_OP_FLUSH: 2216 mmc_blk_issue_flush(mq, req); 2217 break; 2218 default: 2219 WARN_ON_ONCE(1); 2220 return MMC_REQ_FAILED_TO_START; 2221 } 2222 return MMC_REQ_FINISHED; 2223 case MMC_ISSUE_DCMD: 2224 case MMC_ISSUE_ASYNC: 2225 switch (req_op(req)) { 2226 case REQ_OP_FLUSH: 2227 ret = mmc_blk_cqe_issue_flush(mq, req); 2228 break; 2229 case REQ_OP_READ: 2230 case REQ_OP_WRITE: 2231 if (mq->use_cqe) 2232 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2233 else 2234 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2235 break; 2236 default: 2237 WARN_ON_ONCE(1); 2238 ret = -EINVAL; 2239 } 2240 if (!ret) 2241 return MMC_REQ_STARTED; 2242 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2243 default: 2244 WARN_ON_ONCE(1); 2245 return MMC_REQ_FAILED_TO_START; 2246 } 2247 } 2248 2249 static inline int mmc_blk_readonly(struct mmc_card *card) 2250 { 2251 return mmc_card_readonly(card) || 2252 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2253 } 2254 2255 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2256 struct device *parent, 2257 sector_t size, 2258 bool default_ro, 2259 const char *subname, 2260 int area_type) 2261 { 2262 struct mmc_blk_data *md; 2263 int devidx, ret; 2264 2265 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2266 if (devidx < 0) { 2267 /* 2268 * We get -ENOSPC because there are no more any available 2269 * devidx. The reason may be that, either userspace haven't yet 2270 * unmounted the partitions, which postpones mmc_blk_release() 2271 * from being called, or the device has more partitions than 2272 * what we support. 2273 */ 2274 if (devidx == -ENOSPC) 2275 dev_err(mmc_dev(card->host), 2276 "no more device IDs available\n"); 2277 2278 return ERR_PTR(devidx); 2279 } 2280 2281 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2282 if (!md) { 2283 ret = -ENOMEM; 2284 goto out; 2285 } 2286 2287 md->area_type = area_type; 2288 2289 /* 2290 * Set the read-only status based on the supported commands 2291 * and the write protect switch. 2292 */ 2293 md->read_only = mmc_blk_readonly(card); 2294 2295 md->disk = alloc_disk(perdev_minors); 2296 if (md->disk == NULL) { 2297 ret = -ENOMEM; 2298 goto err_kfree; 2299 } 2300 2301 INIT_LIST_HEAD(&md->part); 2302 INIT_LIST_HEAD(&md->rpmbs); 2303 md->usage = 1; 2304 2305 ret = mmc_init_queue(&md->queue, card); 2306 if (ret) 2307 goto err_putdisk; 2308 2309 md->queue.blkdata = md; 2310 2311 /* 2312 * Keep an extra reference to the queue so that we can shutdown the 2313 * queue (i.e. call blk_cleanup_queue()) while there are still 2314 * references to the 'md'. The corresponding blk_put_queue() is in 2315 * mmc_blk_put(). 2316 */ 2317 if (!blk_get_queue(md->queue.queue)) { 2318 mmc_cleanup_queue(&md->queue); 2319 ret = -ENODEV; 2320 goto err_putdisk; 2321 } 2322 2323 md->disk->major = MMC_BLOCK_MAJOR; 2324 md->disk->first_minor = devidx * perdev_minors; 2325 md->disk->fops = &mmc_bdops; 2326 md->disk->private_data = md; 2327 md->disk->queue = md->queue.queue; 2328 md->parent = parent; 2329 set_disk_ro(md->disk, md->read_only || default_ro); 2330 md->disk->flags = GENHD_FL_EXT_DEVT; 2331 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2332 md->disk->flags |= GENHD_FL_NO_PART_SCAN 2333 | GENHD_FL_SUPPRESS_PARTITION_INFO; 2334 2335 /* 2336 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2337 * 2338 * - be set for removable media with permanent block devices 2339 * - be unset for removable block devices with permanent media 2340 * 2341 * Since MMC block devices clearly fall under the second 2342 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2343 * should use the block device creation/destruction hotplug 2344 * messages to tell when the card is present. 2345 */ 2346 2347 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2348 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2349 2350 set_capacity(md->disk, size); 2351 2352 if (mmc_host_cmd23(card->host)) { 2353 if ((mmc_card_mmc(card) && 2354 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2355 (mmc_card_sd(card) && 2356 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2357 md->flags |= MMC_BLK_CMD23; 2358 } 2359 2360 if (mmc_card_mmc(card) && 2361 md->flags & MMC_BLK_CMD23 && 2362 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2363 card->ext_csd.rel_sectors)) { 2364 md->flags |= MMC_BLK_REL_WR; 2365 blk_queue_write_cache(md->queue.queue, true, true); 2366 } 2367 2368 return md; 2369 2370 err_putdisk: 2371 put_disk(md->disk); 2372 err_kfree: 2373 kfree(md); 2374 out: 2375 ida_simple_remove(&mmc_blk_ida, devidx); 2376 return ERR_PTR(ret); 2377 } 2378 2379 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2380 { 2381 sector_t size; 2382 2383 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2384 /* 2385 * The EXT_CSD sector count is in number or 512 byte 2386 * sectors. 2387 */ 2388 size = card->ext_csd.sectors; 2389 } else { 2390 /* 2391 * The CSD capacity field is in units of read_blkbits. 2392 * set_capacity takes units of 512 bytes. 2393 */ 2394 size = (typeof(sector_t))card->csd.capacity 2395 << (card->csd.read_blkbits - 9); 2396 } 2397 2398 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2399 MMC_BLK_DATA_AREA_MAIN); 2400 } 2401 2402 static int mmc_blk_alloc_part(struct mmc_card *card, 2403 struct mmc_blk_data *md, 2404 unsigned int part_type, 2405 sector_t size, 2406 bool default_ro, 2407 const char *subname, 2408 int area_type) 2409 { 2410 char cap_str[10]; 2411 struct mmc_blk_data *part_md; 2412 2413 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2414 subname, area_type); 2415 if (IS_ERR(part_md)) 2416 return PTR_ERR(part_md); 2417 part_md->part_type = part_type; 2418 list_add(&part_md->part, &md->part); 2419 2420 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2421 cap_str, sizeof(cap_str)); 2422 pr_info("%s: %s %s partition %u %s\n", 2423 part_md->disk->disk_name, mmc_card_id(card), 2424 mmc_card_name(card), part_md->part_type, cap_str); 2425 return 0; 2426 } 2427 2428 /** 2429 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2430 * @filp: the character device file 2431 * @cmd: the ioctl() command 2432 * @arg: the argument from userspace 2433 * 2434 * This will essentially just redirect the ioctl()s coming in over to 2435 * the main block device spawning the RPMB character device. 2436 */ 2437 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2438 unsigned long arg) 2439 { 2440 struct mmc_rpmb_data *rpmb = filp->private_data; 2441 int ret; 2442 2443 switch (cmd) { 2444 case MMC_IOC_CMD: 2445 ret = mmc_blk_ioctl_cmd(rpmb->md, 2446 (struct mmc_ioc_cmd __user *)arg, 2447 rpmb); 2448 break; 2449 case MMC_IOC_MULTI_CMD: 2450 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2451 (struct mmc_ioc_multi_cmd __user *)arg, 2452 rpmb); 2453 break; 2454 default: 2455 ret = -EINVAL; 2456 break; 2457 } 2458 2459 return ret; 2460 } 2461 2462 #ifdef CONFIG_COMPAT 2463 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2464 unsigned long arg) 2465 { 2466 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2467 } 2468 #endif 2469 2470 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2471 { 2472 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2473 struct mmc_rpmb_data, chrdev); 2474 2475 get_device(&rpmb->dev); 2476 filp->private_data = rpmb; 2477 mmc_blk_get(rpmb->md->disk); 2478 2479 return nonseekable_open(inode, filp); 2480 } 2481 2482 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2483 { 2484 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2485 struct mmc_rpmb_data, chrdev); 2486 2487 mmc_blk_put(rpmb->md); 2488 put_device(&rpmb->dev); 2489 2490 return 0; 2491 } 2492 2493 static const struct file_operations mmc_rpmb_fileops = { 2494 .release = mmc_rpmb_chrdev_release, 2495 .open = mmc_rpmb_chrdev_open, 2496 .owner = THIS_MODULE, 2497 .llseek = no_llseek, 2498 .unlocked_ioctl = mmc_rpmb_ioctl, 2499 #ifdef CONFIG_COMPAT 2500 .compat_ioctl = mmc_rpmb_ioctl_compat, 2501 #endif 2502 }; 2503 2504 static void mmc_blk_rpmb_device_release(struct device *dev) 2505 { 2506 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2507 2508 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2509 kfree(rpmb); 2510 } 2511 2512 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2513 struct mmc_blk_data *md, 2514 unsigned int part_index, 2515 sector_t size, 2516 const char *subname) 2517 { 2518 int devidx, ret; 2519 char rpmb_name[DISK_NAME_LEN]; 2520 char cap_str[10]; 2521 struct mmc_rpmb_data *rpmb; 2522 2523 /* This creates the minor number for the RPMB char device */ 2524 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2525 if (devidx < 0) 2526 return devidx; 2527 2528 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2529 if (!rpmb) { 2530 ida_simple_remove(&mmc_rpmb_ida, devidx); 2531 return -ENOMEM; 2532 } 2533 2534 snprintf(rpmb_name, sizeof(rpmb_name), 2535 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2536 2537 rpmb->id = devidx; 2538 rpmb->part_index = part_index; 2539 rpmb->dev.init_name = rpmb_name; 2540 rpmb->dev.bus = &mmc_rpmb_bus_type; 2541 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2542 rpmb->dev.parent = &card->dev; 2543 rpmb->dev.release = mmc_blk_rpmb_device_release; 2544 device_initialize(&rpmb->dev); 2545 dev_set_drvdata(&rpmb->dev, rpmb); 2546 rpmb->md = md; 2547 2548 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2549 rpmb->chrdev.owner = THIS_MODULE; 2550 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2551 if (ret) { 2552 pr_err("%s: could not add character device\n", rpmb_name); 2553 goto out_put_device; 2554 } 2555 2556 list_add(&rpmb->node, &md->rpmbs); 2557 2558 string_get_size((u64)size, 512, STRING_UNITS_2, 2559 cap_str, sizeof(cap_str)); 2560 2561 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n", 2562 rpmb_name, mmc_card_id(card), 2563 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str, 2564 MAJOR(mmc_rpmb_devt), rpmb->id); 2565 2566 return 0; 2567 2568 out_put_device: 2569 put_device(&rpmb->dev); 2570 return ret; 2571 } 2572 2573 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2574 2575 { 2576 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2577 put_device(&rpmb->dev); 2578 } 2579 2580 /* MMC Physical partitions consist of two boot partitions and 2581 * up to four general purpose partitions. 2582 * For each partition enabled in EXT_CSD a block device will be allocatedi 2583 * to provide access to the partition. 2584 */ 2585 2586 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2587 { 2588 int idx, ret; 2589 2590 if (!mmc_card_mmc(card)) 2591 return 0; 2592 2593 for (idx = 0; idx < card->nr_parts; idx++) { 2594 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2595 /* 2596 * RPMB partitions does not provide block access, they 2597 * are only accessed using ioctl():s. Thus create 2598 * special RPMB block devices that do not have a 2599 * backing block queue for these. 2600 */ 2601 ret = mmc_blk_alloc_rpmb_part(card, md, 2602 card->part[idx].part_cfg, 2603 card->part[idx].size >> 9, 2604 card->part[idx].name); 2605 if (ret) 2606 return ret; 2607 } else if (card->part[idx].size) { 2608 ret = mmc_blk_alloc_part(card, md, 2609 card->part[idx].part_cfg, 2610 card->part[idx].size >> 9, 2611 card->part[idx].force_ro, 2612 card->part[idx].name, 2613 card->part[idx].area_type); 2614 if (ret) 2615 return ret; 2616 } 2617 } 2618 2619 return 0; 2620 } 2621 2622 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2623 { 2624 struct mmc_card *card; 2625 2626 if (md) { 2627 /* 2628 * Flush remaining requests and free queues. It 2629 * is freeing the queue that stops new requests 2630 * from being accepted. 2631 */ 2632 card = md->queue.card; 2633 if (md->disk->flags & GENHD_FL_UP) { 2634 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2635 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2636 card->ext_csd.boot_ro_lockable) 2637 device_remove_file(disk_to_dev(md->disk), 2638 &md->power_ro_lock); 2639 2640 del_gendisk(md->disk); 2641 } 2642 mmc_cleanup_queue(&md->queue); 2643 mmc_blk_put(md); 2644 } 2645 } 2646 2647 static void mmc_blk_remove_parts(struct mmc_card *card, 2648 struct mmc_blk_data *md) 2649 { 2650 struct list_head *pos, *q; 2651 struct mmc_blk_data *part_md; 2652 struct mmc_rpmb_data *rpmb; 2653 2654 /* Remove RPMB partitions */ 2655 list_for_each_safe(pos, q, &md->rpmbs) { 2656 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2657 list_del(pos); 2658 mmc_blk_remove_rpmb_part(rpmb); 2659 } 2660 /* Remove block partitions */ 2661 list_for_each_safe(pos, q, &md->part) { 2662 part_md = list_entry(pos, struct mmc_blk_data, part); 2663 list_del(pos); 2664 mmc_blk_remove_req(part_md); 2665 } 2666 } 2667 2668 static int mmc_add_disk(struct mmc_blk_data *md) 2669 { 2670 int ret; 2671 struct mmc_card *card = md->queue.card; 2672 2673 device_add_disk(md->parent, md->disk, NULL); 2674 md->force_ro.show = force_ro_show; 2675 md->force_ro.store = force_ro_store; 2676 sysfs_attr_init(&md->force_ro.attr); 2677 md->force_ro.attr.name = "force_ro"; 2678 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2679 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2680 if (ret) 2681 goto force_ro_fail; 2682 2683 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2684 card->ext_csd.boot_ro_lockable) { 2685 umode_t mode; 2686 2687 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2688 mode = S_IRUGO; 2689 else 2690 mode = S_IRUGO | S_IWUSR; 2691 2692 md->power_ro_lock.show = power_ro_lock_show; 2693 md->power_ro_lock.store = power_ro_lock_store; 2694 sysfs_attr_init(&md->power_ro_lock.attr); 2695 md->power_ro_lock.attr.mode = mode; 2696 md->power_ro_lock.attr.name = 2697 "ro_lock_until_next_power_on"; 2698 ret = device_create_file(disk_to_dev(md->disk), 2699 &md->power_ro_lock); 2700 if (ret) 2701 goto power_ro_lock_fail; 2702 } 2703 return ret; 2704 2705 power_ro_lock_fail: 2706 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2707 force_ro_fail: 2708 del_gendisk(md->disk); 2709 2710 return ret; 2711 } 2712 2713 #ifdef CONFIG_DEBUG_FS 2714 2715 static int mmc_dbg_card_status_get(void *data, u64 *val) 2716 { 2717 struct mmc_card *card = data; 2718 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2719 struct mmc_queue *mq = &md->queue; 2720 struct request *req; 2721 int ret; 2722 2723 /* Ask the block layer about the card status */ 2724 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2725 if (IS_ERR(req)) 2726 return PTR_ERR(req); 2727 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2728 blk_execute_rq(NULL, req, 0); 2729 ret = req_to_mmc_queue_req(req)->drv_op_result; 2730 if (ret >= 0) { 2731 *val = ret; 2732 ret = 0; 2733 } 2734 blk_put_request(req); 2735 2736 return ret; 2737 } 2738 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2739 NULL, "%08llx\n"); 2740 2741 /* That is two digits * 512 + 1 for newline */ 2742 #define EXT_CSD_STR_LEN 1025 2743 2744 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2745 { 2746 struct mmc_card *card = inode->i_private; 2747 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2748 struct mmc_queue *mq = &md->queue; 2749 struct request *req; 2750 char *buf; 2751 ssize_t n = 0; 2752 u8 *ext_csd; 2753 int err, i; 2754 2755 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2756 if (!buf) 2757 return -ENOMEM; 2758 2759 /* Ask the block layer for the EXT CSD */ 2760 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2761 if (IS_ERR(req)) { 2762 err = PTR_ERR(req); 2763 goto out_free; 2764 } 2765 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2766 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2767 blk_execute_rq(NULL, req, 0); 2768 err = req_to_mmc_queue_req(req)->drv_op_result; 2769 blk_put_request(req); 2770 if (err) { 2771 pr_err("FAILED %d\n", err); 2772 goto out_free; 2773 } 2774 2775 for (i = 0; i < 512; i++) 2776 n += sprintf(buf + n, "%02x", ext_csd[i]); 2777 n += sprintf(buf + n, "\n"); 2778 2779 if (n != EXT_CSD_STR_LEN) { 2780 err = -EINVAL; 2781 kfree(ext_csd); 2782 goto out_free; 2783 } 2784 2785 filp->private_data = buf; 2786 kfree(ext_csd); 2787 return 0; 2788 2789 out_free: 2790 kfree(buf); 2791 return err; 2792 } 2793 2794 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2795 size_t cnt, loff_t *ppos) 2796 { 2797 char *buf = filp->private_data; 2798 2799 return simple_read_from_buffer(ubuf, cnt, ppos, 2800 buf, EXT_CSD_STR_LEN); 2801 } 2802 2803 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2804 { 2805 kfree(file->private_data); 2806 return 0; 2807 } 2808 2809 static const struct file_operations mmc_dbg_ext_csd_fops = { 2810 .open = mmc_ext_csd_open, 2811 .read = mmc_ext_csd_read, 2812 .release = mmc_ext_csd_release, 2813 .llseek = default_llseek, 2814 }; 2815 2816 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2817 { 2818 struct dentry *root; 2819 2820 if (!card->debugfs_root) 2821 return 0; 2822 2823 root = card->debugfs_root; 2824 2825 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2826 md->status_dentry = 2827 debugfs_create_file_unsafe("status", 0400, root, 2828 card, 2829 &mmc_dbg_card_status_fops); 2830 if (!md->status_dentry) 2831 return -EIO; 2832 } 2833 2834 if (mmc_card_mmc(card)) { 2835 md->ext_csd_dentry = 2836 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2837 &mmc_dbg_ext_csd_fops); 2838 if (!md->ext_csd_dentry) 2839 return -EIO; 2840 } 2841 2842 return 0; 2843 } 2844 2845 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2846 struct mmc_blk_data *md) 2847 { 2848 if (!card->debugfs_root) 2849 return; 2850 2851 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2852 debugfs_remove(md->status_dentry); 2853 md->status_dentry = NULL; 2854 } 2855 2856 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2857 debugfs_remove(md->ext_csd_dentry); 2858 md->ext_csd_dentry = NULL; 2859 } 2860 } 2861 2862 #else 2863 2864 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2865 { 2866 return 0; 2867 } 2868 2869 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2870 struct mmc_blk_data *md) 2871 { 2872 } 2873 2874 #endif /* CONFIG_DEBUG_FS */ 2875 2876 static int mmc_blk_probe(struct mmc_card *card) 2877 { 2878 struct mmc_blk_data *md, *part_md; 2879 char cap_str[10]; 2880 2881 /* 2882 * Check that the card supports the command class(es) we need. 2883 */ 2884 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2885 return -ENODEV; 2886 2887 mmc_fixup_device(card, mmc_blk_fixups); 2888 2889 card->complete_wq = alloc_workqueue("mmc_complete", 2890 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2891 if (unlikely(!card->complete_wq)) { 2892 pr_err("Failed to create mmc completion workqueue"); 2893 return -ENOMEM; 2894 } 2895 2896 md = mmc_blk_alloc(card); 2897 if (IS_ERR(md)) 2898 return PTR_ERR(md); 2899 2900 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2901 cap_str, sizeof(cap_str)); 2902 pr_info("%s: %s %s %s %s\n", 2903 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2904 cap_str, md->read_only ? "(ro)" : ""); 2905 2906 if (mmc_blk_alloc_parts(card, md)) 2907 goto out; 2908 2909 dev_set_drvdata(&card->dev, md); 2910 2911 if (mmc_add_disk(md)) 2912 goto out; 2913 2914 list_for_each_entry(part_md, &md->part, part) { 2915 if (mmc_add_disk(part_md)) 2916 goto out; 2917 } 2918 2919 /* Add two debugfs entries */ 2920 mmc_blk_add_debugfs(card, md); 2921 2922 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2923 pm_runtime_use_autosuspend(&card->dev); 2924 2925 /* 2926 * Don't enable runtime PM for SD-combo cards here. Leave that 2927 * decision to be taken during the SDIO init sequence instead. 2928 */ 2929 if (card->type != MMC_TYPE_SD_COMBO) { 2930 pm_runtime_set_active(&card->dev); 2931 pm_runtime_enable(&card->dev); 2932 } 2933 2934 return 0; 2935 2936 out: 2937 mmc_blk_remove_parts(card, md); 2938 mmc_blk_remove_req(md); 2939 return 0; 2940 } 2941 2942 static void mmc_blk_remove(struct mmc_card *card) 2943 { 2944 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2945 2946 mmc_blk_remove_debugfs(card, md); 2947 mmc_blk_remove_parts(card, md); 2948 pm_runtime_get_sync(&card->dev); 2949 if (md->part_curr != md->part_type) { 2950 mmc_claim_host(card->host); 2951 mmc_blk_part_switch(card, md->part_type); 2952 mmc_release_host(card->host); 2953 } 2954 if (card->type != MMC_TYPE_SD_COMBO) 2955 pm_runtime_disable(&card->dev); 2956 pm_runtime_put_noidle(&card->dev); 2957 mmc_blk_remove_req(md); 2958 dev_set_drvdata(&card->dev, NULL); 2959 destroy_workqueue(card->complete_wq); 2960 } 2961 2962 static int _mmc_blk_suspend(struct mmc_card *card) 2963 { 2964 struct mmc_blk_data *part_md; 2965 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2966 2967 if (md) { 2968 mmc_queue_suspend(&md->queue); 2969 list_for_each_entry(part_md, &md->part, part) { 2970 mmc_queue_suspend(&part_md->queue); 2971 } 2972 } 2973 return 0; 2974 } 2975 2976 static void mmc_blk_shutdown(struct mmc_card *card) 2977 { 2978 _mmc_blk_suspend(card); 2979 } 2980 2981 #ifdef CONFIG_PM_SLEEP 2982 static int mmc_blk_suspend(struct device *dev) 2983 { 2984 struct mmc_card *card = mmc_dev_to_card(dev); 2985 2986 return _mmc_blk_suspend(card); 2987 } 2988 2989 static int mmc_blk_resume(struct device *dev) 2990 { 2991 struct mmc_blk_data *part_md; 2992 struct mmc_blk_data *md = dev_get_drvdata(dev); 2993 2994 if (md) { 2995 /* 2996 * Resume involves the card going into idle state, 2997 * so current partition is always the main one. 2998 */ 2999 md->part_curr = md->part_type; 3000 mmc_queue_resume(&md->queue); 3001 list_for_each_entry(part_md, &md->part, part) { 3002 mmc_queue_resume(&part_md->queue); 3003 } 3004 } 3005 return 0; 3006 } 3007 #endif 3008 3009 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3010 3011 static struct mmc_driver mmc_driver = { 3012 .drv = { 3013 .name = "mmcblk", 3014 .pm = &mmc_blk_pm_ops, 3015 }, 3016 .probe = mmc_blk_probe, 3017 .remove = mmc_blk_remove, 3018 .shutdown = mmc_blk_shutdown, 3019 }; 3020 3021 static int __init mmc_blk_init(void) 3022 { 3023 int res; 3024 3025 res = bus_register(&mmc_rpmb_bus_type); 3026 if (res < 0) { 3027 pr_err("mmcblk: could not register RPMB bus type\n"); 3028 return res; 3029 } 3030 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3031 if (res < 0) { 3032 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3033 goto out_bus_unreg; 3034 } 3035 3036 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3037 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3038 3039 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3040 3041 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3042 if (res) 3043 goto out_chrdev_unreg; 3044 3045 res = mmc_register_driver(&mmc_driver); 3046 if (res) 3047 goto out_blkdev_unreg; 3048 3049 return 0; 3050 3051 out_blkdev_unreg: 3052 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3053 out_chrdev_unreg: 3054 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3055 out_bus_unreg: 3056 bus_unregister(&mmc_rpmb_bus_type); 3057 return res; 3058 } 3059 3060 static void __exit mmc_blk_exit(void) 3061 { 3062 mmc_unregister_driver(&mmc_driver); 3063 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3064 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3065 bus_unregister(&mmc_rpmb_bus_type); 3066 } 3067 3068 module_init(mmc_blk_init); 3069 module_exit(mmc_blk_exit); 3070 3071 MODULE_LICENSE("GPL"); 3072 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3073 3074