1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block driver for media (i.e., flash cards) 4 * 5 * Copyright 2002 Hewlett-Packard Company 6 * Copyright 2005-2008 Pierre Ossman 7 * 8 * Use consistent with the GNU GPL is permitted, 9 * provided that this copyright notice is 10 * preserved in its entirety in all copies and derived works. 11 * 12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 14 * FITNESS FOR ANY PARTICULAR PURPOSE. 15 * 16 * Many thanks to Alessandro Rubini and Jonathan Corbet! 17 * 18 * Author: Andrew Christian 19 * 28 May 2002 20 */ 21 #include <linux/moduleparam.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/errno.h> 29 #include <linux/hdreg.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kref.h> 32 #include <linux/blkdev.h> 33 #include <linux/cdev.h> 34 #include <linux/mutex.h> 35 #include <linux/scatterlist.h> 36 #include <linux/string_helpers.h> 37 #include <linux/delay.h> 38 #include <linux/capability.h> 39 #include <linux/compat.h> 40 #include <linux/pm_runtime.h> 41 #include <linux/idr.h> 42 #include <linux/debugfs.h> 43 44 #include <linux/mmc/ioctl.h> 45 #include <linux/mmc/card.h> 46 #include <linux/mmc/host.h> 47 #include <linux/mmc/mmc.h> 48 #include <linux/mmc/sd.h> 49 50 #include <linux/uaccess.h> 51 52 #include "queue.h" 53 #include "block.h" 54 #include "core.h" 55 #include "card.h" 56 #include "crypto.h" 57 #include "host.h" 58 #include "bus.h" 59 #include "mmc_ops.h" 60 #include "quirks.h" 61 #include "sd_ops.h" 62 63 MODULE_ALIAS("mmc:block"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "mmcblk." 68 69 /* 70 * Set a 10 second timeout for polling write request busy state. Note, mmc core 71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 72 * second software timer to timeout the whole request, so 10 seconds should be 73 * ample. 74 */ 75 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 78 79 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 80 (rq_data_dir(req) == WRITE)) 81 static DEFINE_MUTEX(block_mutex); 82 83 /* 84 * The defaults come from config options but can be overriden by module 85 * or bootarg options. 86 */ 87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 88 89 /* 90 * We've only got one major, so number of mmcblk devices is 91 * limited to (1 << 20) / number of minors per device. It is also 92 * limited by the MAX_DEVICES below. 93 */ 94 static int max_devices; 95 96 #define MAX_DEVICES 256 97 98 static DEFINE_IDA(mmc_blk_ida); 99 static DEFINE_IDA(mmc_rpmb_ida); 100 101 struct mmc_blk_busy_data { 102 struct mmc_card *card; 103 u32 status; 104 }; 105 106 /* 107 * There is one mmc_blk_data per slot. 108 */ 109 struct mmc_blk_data { 110 struct device *parent; 111 struct gendisk *disk; 112 struct mmc_queue queue; 113 struct list_head part; 114 struct list_head rpmbs; 115 116 unsigned int flags; 117 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 118 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 119 120 struct kref kref; 121 unsigned int read_only; 122 unsigned int part_type; 123 unsigned int reset_done; 124 #define MMC_BLK_READ BIT(0) 125 #define MMC_BLK_WRITE BIT(1) 126 #define MMC_BLK_DISCARD BIT(2) 127 #define MMC_BLK_SECDISCARD BIT(3) 128 #define MMC_BLK_CQE_RECOVERY BIT(4) 129 #define MMC_BLK_TRIM BIT(5) 130 131 /* 132 * Only set in main mmc_blk_data associated 133 * with mmc_card with dev_set_drvdata, and keeps 134 * track of the current selected device partition. 135 */ 136 unsigned int part_curr; 137 int area_type; 138 139 /* debugfs files (only in main mmc_blk_data) */ 140 struct dentry *status_dentry; 141 struct dentry *ext_csd_dentry; 142 }; 143 144 /* Device type for RPMB character devices */ 145 static dev_t mmc_rpmb_devt; 146 147 /* Bus type for RPMB character devices */ 148 static struct bus_type mmc_rpmb_bus_type = { 149 .name = "mmc_rpmb", 150 }; 151 152 /** 153 * struct mmc_rpmb_data - special RPMB device type for these areas 154 * @dev: the device for the RPMB area 155 * @chrdev: character device for the RPMB area 156 * @id: unique device ID number 157 * @part_index: partition index (0 on first) 158 * @md: parent MMC block device 159 * @node: list item, so we can put this device on a list 160 */ 161 struct mmc_rpmb_data { 162 struct device dev; 163 struct cdev chrdev; 164 int id; 165 unsigned int part_index; 166 struct mmc_blk_data *md; 167 struct list_head node; 168 }; 169 170 static DEFINE_MUTEX(open_lock); 171 172 module_param(perdev_minors, int, 0444); 173 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 174 175 static inline int mmc_blk_part_switch(struct mmc_card *card, 176 unsigned int part_type); 177 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 178 struct mmc_card *card, 179 int recovery_mode, 180 struct mmc_queue *mq); 181 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 182 183 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 184 { 185 struct mmc_blk_data *md; 186 187 mutex_lock(&open_lock); 188 md = disk->private_data; 189 if (md && !kref_get_unless_zero(&md->kref)) 190 md = NULL; 191 mutex_unlock(&open_lock); 192 193 return md; 194 } 195 196 static inline int mmc_get_devidx(struct gendisk *disk) 197 { 198 int devidx = disk->first_minor / perdev_minors; 199 return devidx; 200 } 201 202 static void mmc_blk_kref_release(struct kref *ref) 203 { 204 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref); 205 int devidx; 206 207 devidx = mmc_get_devidx(md->disk); 208 ida_simple_remove(&mmc_blk_ida, devidx); 209 210 mutex_lock(&open_lock); 211 md->disk->private_data = NULL; 212 mutex_unlock(&open_lock); 213 214 put_disk(md->disk); 215 kfree(md); 216 } 217 218 static void mmc_blk_put(struct mmc_blk_data *md) 219 { 220 kref_put(&md->kref, mmc_blk_kref_release); 221 } 222 223 static ssize_t power_ro_lock_show(struct device *dev, 224 struct device_attribute *attr, char *buf) 225 { 226 int ret; 227 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 228 struct mmc_card *card = md->queue.card; 229 int locked = 0; 230 231 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 232 locked = 2; 233 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 234 locked = 1; 235 236 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 237 238 mmc_blk_put(md); 239 240 return ret; 241 } 242 243 static ssize_t power_ro_lock_store(struct device *dev, 244 struct device_attribute *attr, const char *buf, size_t count) 245 { 246 int ret; 247 struct mmc_blk_data *md, *part_md; 248 struct mmc_queue *mq; 249 struct request *req; 250 unsigned long set; 251 252 if (kstrtoul(buf, 0, &set)) 253 return -EINVAL; 254 255 if (set != 1) 256 return count; 257 258 md = mmc_blk_get(dev_to_disk(dev)); 259 mq = &md->queue; 260 261 /* Dispatch locking to the block layer */ 262 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0); 263 if (IS_ERR(req)) { 264 count = PTR_ERR(req); 265 goto out_put; 266 } 267 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 268 blk_execute_rq(req, false); 269 ret = req_to_mmc_queue_req(req)->drv_op_result; 270 blk_mq_free_request(req); 271 272 if (!ret) { 273 pr_info("%s: Locking boot partition ro until next power on\n", 274 md->disk->disk_name); 275 set_disk_ro(md->disk, 1); 276 277 list_for_each_entry(part_md, &md->part, part) 278 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 279 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 280 set_disk_ro(part_md->disk, 1); 281 } 282 } 283 out_put: 284 mmc_blk_put(md); 285 return count; 286 } 287 288 static DEVICE_ATTR(ro_lock_until_next_power_on, 0, 289 power_ro_lock_show, power_ro_lock_store); 290 291 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 292 char *buf) 293 { 294 int ret; 295 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 296 297 ret = snprintf(buf, PAGE_SIZE, "%d\n", 298 get_disk_ro(dev_to_disk(dev)) ^ 299 md->read_only); 300 mmc_blk_put(md); 301 return ret; 302 } 303 304 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 305 const char *buf, size_t count) 306 { 307 int ret; 308 char *end; 309 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 310 unsigned long set = simple_strtoul(buf, &end, 0); 311 if (end == buf) { 312 ret = -EINVAL; 313 goto out; 314 } 315 316 set_disk_ro(dev_to_disk(dev), set || md->read_only); 317 ret = count; 318 out: 319 mmc_blk_put(md); 320 return ret; 321 } 322 323 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store); 324 325 static struct attribute *mmc_disk_attrs[] = { 326 &dev_attr_force_ro.attr, 327 &dev_attr_ro_lock_until_next_power_on.attr, 328 NULL, 329 }; 330 331 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj, 332 struct attribute *a, int n) 333 { 334 struct device *dev = kobj_to_dev(kobj); 335 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 336 umode_t mode = a->mode; 337 338 if (a == &dev_attr_ro_lock_until_next_power_on.attr && 339 (md->area_type & MMC_BLK_DATA_AREA_BOOT) && 340 md->queue.card->ext_csd.boot_ro_lockable) { 341 mode = S_IRUGO; 342 if (!(md->queue.card->ext_csd.boot_ro_lock & 343 EXT_CSD_BOOT_WP_B_PWR_WP_DIS)) 344 mode |= S_IWUSR; 345 } 346 347 mmc_blk_put(md); 348 return mode; 349 } 350 351 static const struct attribute_group mmc_disk_attr_group = { 352 .is_visible = mmc_disk_attrs_is_visible, 353 .attrs = mmc_disk_attrs, 354 }; 355 356 static const struct attribute_group *mmc_disk_attr_groups[] = { 357 &mmc_disk_attr_group, 358 NULL, 359 }; 360 361 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 362 { 363 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 364 int ret = -ENXIO; 365 366 mutex_lock(&block_mutex); 367 if (md) { 368 ret = 0; 369 if ((mode & FMODE_WRITE) && md->read_only) { 370 mmc_blk_put(md); 371 ret = -EROFS; 372 } 373 } 374 mutex_unlock(&block_mutex); 375 376 return ret; 377 } 378 379 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 380 { 381 struct mmc_blk_data *md = disk->private_data; 382 383 mutex_lock(&block_mutex); 384 mmc_blk_put(md); 385 mutex_unlock(&block_mutex); 386 } 387 388 static int 389 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 390 { 391 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 392 geo->heads = 4; 393 geo->sectors = 16; 394 return 0; 395 } 396 397 struct mmc_blk_ioc_data { 398 struct mmc_ioc_cmd ic; 399 unsigned char *buf; 400 u64 buf_bytes; 401 struct mmc_rpmb_data *rpmb; 402 }; 403 404 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 405 struct mmc_ioc_cmd __user *user) 406 { 407 struct mmc_blk_ioc_data *idata; 408 int err; 409 410 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 411 if (!idata) { 412 err = -ENOMEM; 413 goto out; 414 } 415 416 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 417 err = -EFAULT; 418 goto idata_err; 419 } 420 421 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 422 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 423 err = -EOVERFLOW; 424 goto idata_err; 425 } 426 427 if (!idata->buf_bytes) { 428 idata->buf = NULL; 429 return idata; 430 } 431 432 idata->buf = memdup_user((void __user *)(unsigned long) 433 idata->ic.data_ptr, idata->buf_bytes); 434 if (IS_ERR(idata->buf)) { 435 err = PTR_ERR(idata->buf); 436 goto idata_err; 437 } 438 439 return idata; 440 441 idata_err: 442 kfree(idata); 443 out: 444 return ERR_PTR(err); 445 } 446 447 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 448 struct mmc_blk_ioc_data *idata) 449 { 450 struct mmc_ioc_cmd *ic = &idata->ic; 451 452 if (copy_to_user(&(ic_ptr->response), ic->response, 453 sizeof(ic->response))) 454 return -EFAULT; 455 456 if (!idata->ic.write_flag) { 457 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 458 idata->buf, idata->buf_bytes)) 459 return -EFAULT; 460 } 461 462 return 0; 463 } 464 465 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 466 struct mmc_blk_ioc_data *idata) 467 { 468 struct mmc_command cmd = {}, sbc = {}; 469 struct mmc_data data = {}; 470 struct mmc_request mrq = {}; 471 struct scatterlist sg; 472 int err; 473 unsigned int target_part; 474 475 if (!card || !md || !idata) 476 return -EINVAL; 477 478 /* 479 * The RPMB accesses comes in from the character device, so we 480 * need to target these explicitly. Else we just target the 481 * partition type for the block device the ioctl() was issued 482 * on. 483 */ 484 if (idata->rpmb) { 485 /* Support multiple RPMB partitions */ 486 target_part = idata->rpmb->part_index; 487 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 488 } else { 489 target_part = md->part_type; 490 } 491 492 cmd.opcode = idata->ic.opcode; 493 cmd.arg = idata->ic.arg; 494 cmd.flags = idata->ic.flags; 495 496 if (idata->buf_bytes) { 497 data.sg = &sg; 498 data.sg_len = 1; 499 data.blksz = idata->ic.blksz; 500 data.blocks = idata->ic.blocks; 501 502 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 503 504 if (idata->ic.write_flag) 505 data.flags = MMC_DATA_WRITE; 506 else 507 data.flags = MMC_DATA_READ; 508 509 /* data.flags must already be set before doing this. */ 510 mmc_set_data_timeout(&data, card); 511 512 /* Allow overriding the timeout_ns for empirical tuning. */ 513 if (idata->ic.data_timeout_ns) 514 data.timeout_ns = idata->ic.data_timeout_ns; 515 516 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 517 /* 518 * Pretend this is a data transfer and rely on the 519 * host driver to compute timeout. When all host 520 * drivers support cmd.cmd_timeout for R1B, this 521 * can be changed to: 522 * 523 * mrq.data = NULL; 524 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 525 */ 526 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 527 } 528 529 mrq.data = &data; 530 } 531 532 mrq.cmd = &cmd; 533 534 err = mmc_blk_part_switch(card, target_part); 535 if (err) 536 return err; 537 538 if (idata->ic.is_acmd) { 539 err = mmc_app_cmd(card->host, card); 540 if (err) 541 return err; 542 } 543 544 if (idata->rpmb) { 545 sbc.opcode = MMC_SET_BLOCK_COUNT; 546 /* 547 * We don't do any blockcount validation because the max size 548 * may be increased by a future standard. We just copy the 549 * 'Reliable Write' bit here. 550 */ 551 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 552 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 553 mrq.sbc = &sbc; 554 } 555 556 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 557 (cmd.opcode == MMC_SWITCH)) 558 return mmc_sanitize(card, idata->ic.cmd_timeout_ms); 559 560 mmc_wait_for_req(card->host, &mrq); 561 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp)); 562 563 if (cmd.error) { 564 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 565 __func__, cmd.error); 566 return cmd.error; 567 } 568 if (data.error) { 569 dev_err(mmc_dev(card->host), "%s: data error %d\n", 570 __func__, data.error); 571 return data.error; 572 } 573 574 /* 575 * Make sure the cache of the PARTITION_CONFIG register and 576 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 577 * changed it successfully. 578 */ 579 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 580 (cmd.opcode == MMC_SWITCH)) { 581 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 582 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 583 584 /* 585 * Update cache so the next mmc_blk_part_switch call operates 586 * on up-to-date data. 587 */ 588 card->ext_csd.part_config = value; 589 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 590 } 591 592 /* 593 * Make sure to update CACHE_CTRL in case it was changed. The cache 594 * will get turned back on if the card is re-initialized, e.g. 595 * suspend/resume or hw reset in recovery. 596 */ 597 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && 598 (cmd.opcode == MMC_SWITCH)) { 599 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; 600 601 card->ext_csd.cache_ctrl = value; 602 } 603 604 /* 605 * According to the SD specs, some commands require a delay after 606 * issuing the command. 607 */ 608 if (idata->ic.postsleep_min_us) 609 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 610 611 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 612 /* 613 * Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we 614 * allow to override the default timeout value if a custom timeout is specified. 615 */ 616 err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS, 617 false, MMC_BUSY_IO); 618 } 619 620 return err; 621 } 622 623 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 624 struct mmc_ioc_cmd __user *ic_ptr, 625 struct mmc_rpmb_data *rpmb) 626 { 627 struct mmc_blk_ioc_data *idata; 628 struct mmc_blk_ioc_data *idatas[1]; 629 struct mmc_queue *mq; 630 struct mmc_card *card; 631 int err = 0, ioc_err = 0; 632 struct request *req; 633 634 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 635 if (IS_ERR(idata)) 636 return PTR_ERR(idata); 637 /* This will be NULL on non-RPMB ioctl():s */ 638 idata->rpmb = rpmb; 639 640 card = md->queue.card; 641 if (IS_ERR(card)) { 642 err = PTR_ERR(card); 643 goto cmd_done; 644 } 645 646 /* 647 * Dispatch the ioctl() into the block request queue. 648 */ 649 mq = &md->queue; 650 req = blk_mq_alloc_request(mq->queue, 651 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 652 if (IS_ERR(req)) { 653 err = PTR_ERR(req); 654 goto cmd_done; 655 } 656 idatas[0] = idata; 657 req_to_mmc_queue_req(req)->drv_op = 658 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 659 req_to_mmc_queue_req(req)->drv_op_data = idatas; 660 req_to_mmc_queue_req(req)->ioc_count = 1; 661 blk_execute_rq(req, false); 662 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 663 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 664 blk_mq_free_request(req); 665 666 cmd_done: 667 kfree(idata->buf); 668 kfree(idata); 669 return ioc_err ? ioc_err : err; 670 } 671 672 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 673 struct mmc_ioc_multi_cmd __user *user, 674 struct mmc_rpmb_data *rpmb) 675 { 676 struct mmc_blk_ioc_data **idata = NULL; 677 struct mmc_ioc_cmd __user *cmds = user->cmds; 678 struct mmc_card *card; 679 struct mmc_queue *mq; 680 int err = 0, ioc_err = 0; 681 __u64 num_of_cmds; 682 unsigned int i, n; 683 struct request *req; 684 685 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 686 sizeof(num_of_cmds))) 687 return -EFAULT; 688 689 if (!num_of_cmds) 690 return 0; 691 692 if (num_of_cmds > MMC_IOC_MAX_CMDS) 693 return -EINVAL; 694 695 n = num_of_cmds; 696 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL); 697 if (!idata) 698 return -ENOMEM; 699 700 for (i = 0; i < n; i++) { 701 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 702 if (IS_ERR(idata[i])) { 703 err = PTR_ERR(idata[i]); 704 n = i; 705 goto cmd_err; 706 } 707 /* This will be NULL on non-RPMB ioctl():s */ 708 idata[i]->rpmb = rpmb; 709 } 710 711 card = md->queue.card; 712 if (IS_ERR(card)) { 713 err = PTR_ERR(card); 714 goto cmd_err; 715 } 716 717 718 /* 719 * Dispatch the ioctl()s into the block request queue. 720 */ 721 mq = &md->queue; 722 req = blk_mq_alloc_request(mq->queue, 723 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 724 if (IS_ERR(req)) { 725 err = PTR_ERR(req); 726 goto cmd_err; 727 } 728 req_to_mmc_queue_req(req)->drv_op = 729 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 730 req_to_mmc_queue_req(req)->drv_op_data = idata; 731 req_to_mmc_queue_req(req)->ioc_count = n; 732 blk_execute_rq(req, false); 733 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 734 735 /* copy to user if data and response */ 736 for (i = 0; i < n && !err; i++) 737 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 738 739 blk_mq_free_request(req); 740 741 cmd_err: 742 for (i = 0; i < n; i++) { 743 kfree(idata[i]->buf); 744 kfree(idata[i]); 745 } 746 kfree(idata); 747 return ioc_err ? ioc_err : err; 748 } 749 750 static int mmc_blk_check_blkdev(struct block_device *bdev) 751 { 752 /* 753 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 754 * whole block device, not on a partition. This prevents overspray 755 * between sibling partitions. 756 */ 757 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 758 return -EPERM; 759 return 0; 760 } 761 762 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 763 unsigned int cmd, unsigned long arg) 764 { 765 struct mmc_blk_data *md; 766 int ret; 767 768 switch (cmd) { 769 case MMC_IOC_CMD: 770 ret = mmc_blk_check_blkdev(bdev); 771 if (ret) 772 return ret; 773 md = mmc_blk_get(bdev->bd_disk); 774 if (!md) 775 return -EINVAL; 776 ret = mmc_blk_ioctl_cmd(md, 777 (struct mmc_ioc_cmd __user *)arg, 778 NULL); 779 mmc_blk_put(md); 780 return ret; 781 case MMC_IOC_MULTI_CMD: 782 ret = mmc_blk_check_blkdev(bdev); 783 if (ret) 784 return ret; 785 md = mmc_blk_get(bdev->bd_disk); 786 if (!md) 787 return -EINVAL; 788 ret = mmc_blk_ioctl_multi_cmd(md, 789 (struct mmc_ioc_multi_cmd __user *)arg, 790 NULL); 791 mmc_blk_put(md); 792 return ret; 793 default: 794 return -EINVAL; 795 } 796 } 797 798 #ifdef CONFIG_COMPAT 799 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 800 unsigned int cmd, unsigned long arg) 801 { 802 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 803 } 804 #endif 805 806 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk, 807 sector_t *sector) 808 { 809 struct mmc_blk_data *md; 810 int ret; 811 812 md = mmc_blk_get(disk); 813 if (!md) 814 return -EINVAL; 815 816 if (md->queue.card) 817 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector); 818 else 819 ret = -ENODEV; 820 821 mmc_blk_put(md); 822 823 return ret; 824 } 825 826 static const struct block_device_operations mmc_bdops = { 827 .open = mmc_blk_open, 828 .release = mmc_blk_release, 829 .getgeo = mmc_blk_getgeo, 830 .owner = THIS_MODULE, 831 .ioctl = mmc_blk_ioctl, 832 #ifdef CONFIG_COMPAT 833 .compat_ioctl = mmc_blk_compat_ioctl, 834 #endif 835 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector, 836 }; 837 838 static int mmc_blk_part_switch_pre(struct mmc_card *card, 839 unsigned int part_type) 840 { 841 int ret = 0; 842 843 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 844 if (card->ext_csd.cmdq_en) { 845 ret = mmc_cmdq_disable(card); 846 if (ret) 847 return ret; 848 } 849 mmc_retune_pause(card->host); 850 } 851 852 return ret; 853 } 854 855 static int mmc_blk_part_switch_post(struct mmc_card *card, 856 unsigned int part_type) 857 { 858 int ret = 0; 859 860 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 861 mmc_retune_unpause(card->host); 862 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 863 ret = mmc_cmdq_enable(card); 864 } 865 866 return ret; 867 } 868 869 static inline int mmc_blk_part_switch(struct mmc_card *card, 870 unsigned int part_type) 871 { 872 int ret = 0; 873 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 874 875 if (main_md->part_curr == part_type) 876 return 0; 877 878 if (mmc_card_mmc(card)) { 879 u8 part_config = card->ext_csd.part_config; 880 881 ret = mmc_blk_part_switch_pre(card, part_type); 882 if (ret) 883 return ret; 884 885 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 886 part_config |= part_type; 887 888 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 889 EXT_CSD_PART_CONFIG, part_config, 890 card->ext_csd.part_time); 891 if (ret) { 892 mmc_blk_part_switch_post(card, part_type); 893 return ret; 894 } 895 896 card->ext_csd.part_config = part_config; 897 898 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 899 } 900 901 main_md->part_curr = part_type; 902 return ret; 903 } 904 905 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 906 { 907 int err; 908 u32 result; 909 __be32 *blocks; 910 911 struct mmc_request mrq = {}; 912 struct mmc_command cmd = {}; 913 struct mmc_data data = {}; 914 915 struct scatterlist sg; 916 917 cmd.opcode = MMC_APP_CMD; 918 cmd.arg = card->rca << 16; 919 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 920 921 err = mmc_wait_for_cmd(card->host, &cmd, 0); 922 if (err) 923 return err; 924 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 925 return -EIO; 926 927 memset(&cmd, 0, sizeof(struct mmc_command)); 928 929 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 930 cmd.arg = 0; 931 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 932 933 data.blksz = 4; 934 data.blocks = 1; 935 data.flags = MMC_DATA_READ; 936 data.sg = &sg; 937 data.sg_len = 1; 938 mmc_set_data_timeout(&data, card); 939 940 mrq.cmd = &cmd; 941 mrq.data = &data; 942 943 blocks = kmalloc(4, GFP_KERNEL); 944 if (!blocks) 945 return -ENOMEM; 946 947 sg_init_one(&sg, blocks, 4); 948 949 mmc_wait_for_req(card->host, &mrq); 950 951 result = ntohl(*blocks); 952 kfree(blocks); 953 954 if (cmd.error || data.error) 955 return -EIO; 956 957 *written_blocks = result; 958 959 return 0; 960 } 961 962 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 963 { 964 if (host->actual_clock) 965 return host->actual_clock / 1000; 966 967 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 968 if (host->ios.clock) 969 return host->ios.clock / 2000; 970 971 /* How can there be no clock */ 972 WARN_ON_ONCE(1); 973 return 100; /* 100 kHz is minimum possible value */ 974 } 975 976 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 977 struct mmc_data *data) 978 { 979 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 980 unsigned int khz; 981 982 if (data->timeout_clks) { 983 khz = mmc_blk_clock_khz(host); 984 ms += DIV_ROUND_UP(data->timeout_clks, khz); 985 } 986 987 return ms; 988 } 989 990 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 991 int type) 992 { 993 int err; 994 995 if (md->reset_done & type) 996 return -EEXIST; 997 998 md->reset_done |= type; 999 err = mmc_hw_reset(host->card); 1000 /* Ensure we switch back to the correct partition */ 1001 if (err) { 1002 struct mmc_blk_data *main_md = 1003 dev_get_drvdata(&host->card->dev); 1004 int part_err; 1005 1006 main_md->part_curr = main_md->part_type; 1007 part_err = mmc_blk_part_switch(host->card, md->part_type); 1008 if (part_err) { 1009 /* 1010 * We have failed to get back into the correct 1011 * partition, so we need to abort the whole request. 1012 */ 1013 return -ENODEV; 1014 } 1015 } 1016 return err; 1017 } 1018 1019 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1020 { 1021 md->reset_done &= ~type; 1022 } 1023 1024 /* 1025 * The non-block commands come back from the block layer after it queued it and 1026 * processed it with all other requests and then they get issued in this 1027 * function. 1028 */ 1029 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1030 { 1031 struct mmc_queue_req *mq_rq; 1032 struct mmc_card *card = mq->card; 1033 struct mmc_blk_data *md = mq->blkdata; 1034 struct mmc_blk_ioc_data **idata; 1035 bool rpmb_ioctl; 1036 u8 **ext_csd; 1037 u32 status; 1038 int ret; 1039 int i; 1040 1041 mq_rq = req_to_mmc_queue_req(req); 1042 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1043 1044 switch (mq_rq->drv_op) { 1045 case MMC_DRV_OP_IOCTL: 1046 if (card->ext_csd.cmdq_en) { 1047 ret = mmc_cmdq_disable(card); 1048 if (ret) 1049 break; 1050 } 1051 fallthrough; 1052 case MMC_DRV_OP_IOCTL_RPMB: 1053 idata = mq_rq->drv_op_data; 1054 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1055 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1056 if (ret) 1057 break; 1058 } 1059 /* Always switch back to main area after RPMB access */ 1060 if (rpmb_ioctl) 1061 mmc_blk_part_switch(card, 0); 1062 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 1063 mmc_cmdq_enable(card); 1064 break; 1065 case MMC_DRV_OP_BOOT_WP: 1066 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1067 card->ext_csd.boot_ro_lock | 1068 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1069 card->ext_csd.part_time); 1070 if (ret) 1071 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1072 md->disk->disk_name, ret); 1073 else 1074 card->ext_csd.boot_ro_lock |= 1075 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1076 break; 1077 case MMC_DRV_OP_GET_CARD_STATUS: 1078 ret = mmc_send_status(card, &status); 1079 if (!ret) 1080 ret = status; 1081 break; 1082 case MMC_DRV_OP_GET_EXT_CSD: 1083 ext_csd = mq_rq->drv_op_data; 1084 ret = mmc_get_ext_csd(card, ext_csd); 1085 break; 1086 default: 1087 pr_err("%s: unknown driver specific operation\n", 1088 md->disk->disk_name); 1089 ret = -EINVAL; 1090 break; 1091 } 1092 mq_rq->drv_op_result = ret; 1093 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1094 } 1095 1096 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req, 1097 int type, unsigned int erase_arg) 1098 { 1099 struct mmc_blk_data *md = mq->blkdata; 1100 struct mmc_card *card = md->queue.card; 1101 unsigned int from, nr; 1102 int err = 0; 1103 blk_status_t status = BLK_STS_OK; 1104 1105 if (!mmc_can_erase(card)) { 1106 status = BLK_STS_NOTSUPP; 1107 goto fail; 1108 } 1109 1110 from = blk_rq_pos(req); 1111 nr = blk_rq_sectors(req); 1112 1113 do { 1114 err = 0; 1115 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1116 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1117 INAND_CMD38_ARG_EXT_CSD, 1118 erase_arg == MMC_TRIM_ARG ? 1119 INAND_CMD38_ARG_TRIM : 1120 INAND_CMD38_ARG_ERASE, 1121 card->ext_csd.generic_cmd6_time); 1122 } 1123 if (!err) 1124 err = mmc_erase(card, from, nr, erase_arg); 1125 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1126 if (err) 1127 status = BLK_STS_IOERR; 1128 else 1129 mmc_blk_reset_success(md, type); 1130 fail: 1131 blk_mq_end_request(req, status); 1132 } 1133 1134 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req) 1135 { 1136 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG); 1137 } 1138 1139 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1140 { 1141 struct mmc_blk_data *md = mq->blkdata; 1142 struct mmc_card *card = md->queue.card; 1143 unsigned int arg = card->erase_arg; 1144 1145 if (mmc_card_broken_sd_discard(card)) 1146 arg = SD_ERASE_ARG; 1147 1148 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg); 1149 } 1150 1151 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1152 struct request *req) 1153 { 1154 struct mmc_blk_data *md = mq->blkdata; 1155 struct mmc_card *card = md->queue.card; 1156 unsigned int from, nr, arg; 1157 int err = 0, type = MMC_BLK_SECDISCARD; 1158 blk_status_t status = BLK_STS_OK; 1159 1160 if (!(mmc_can_secure_erase_trim(card))) { 1161 status = BLK_STS_NOTSUPP; 1162 goto out; 1163 } 1164 1165 from = blk_rq_pos(req); 1166 nr = blk_rq_sectors(req); 1167 1168 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1169 arg = MMC_SECURE_TRIM1_ARG; 1170 else 1171 arg = MMC_SECURE_ERASE_ARG; 1172 1173 retry: 1174 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1175 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1176 INAND_CMD38_ARG_EXT_CSD, 1177 arg == MMC_SECURE_TRIM1_ARG ? 1178 INAND_CMD38_ARG_SECTRIM1 : 1179 INAND_CMD38_ARG_SECERASE, 1180 card->ext_csd.generic_cmd6_time); 1181 if (err) 1182 goto out_retry; 1183 } 1184 1185 err = mmc_erase(card, from, nr, arg); 1186 if (err == -EIO) 1187 goto out_retry; 1188 if (err) { 1189 status = BLK_STS_IOERR; 1190 goto out; 1191 } 1192 1193 if (arg == MMC_SECURE_TRIM1_ARG) { 1194 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1195 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1196 INAND_CMD38_ARG_EXT_CSD, 1197 INAND_CMD38_ARG_SECTRIM2, 1198 card->ext_csd.generic_cmd6_time); 1199 if (err) 1200 goto out_retry; 1201 } 1202 1203 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1204 if (err == -EIO) 1205 goto out_retry; 1206 if (err) { 1207 status = BLK_STS_IOERR; 1208 goto out; 1209 } 1210 } 1211 1212 out_retry: 1213 if (err && !mmc_blk_reset(md, card->host, type)) 1214 goto retry; 1215 if (!err) 1216 mmc_blk_reset_success(md, type); 1217 out: 1218 blk_mq_end_request(req, status); 1219 } 1220 1221 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1222 { 1223 struct mmc_blk_data *md = mq->blkdata; 1224 struct mmc_card *card = md->queue.card; 1225 int ret = 0; 1226 1227 ret = mmc_flush_cache(card->host); 1228 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1229 } 1230 1231 /* 1232 * Reformat current write as a reliable write, supporting 1233 * both legacy and the enhanced reliable write MMC cards. 1234 * In each transfer we'll handle only as much as a single 1235 * reliable write can handle, thus finish the request in 1236 * partial completions. 1237 */ 1238 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1239 struct mmc_card *card, 1240 struct request *req) 1241 { 1242 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1243 /* Legacy mode imposes restrictions on transfers. */ 1244 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1245 brq->data.blocks = 1; 1246 1247 if (brq->data.blocks > card->ext_csd.rel_sectors) 1248 brq->data.blocks = card->ext_csd.rel_sectors; 1249 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1250 brq->data.blocks = 1; 1251 } 1252 } 1253 1254 #define CMD_ERRORS_EXCL_OOR \ 1255 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1256 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1257 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1258 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1259 R1_CC_ERROR | /* Card controller error */ \ 1260 R1_ERROR) /* General/unknown error */ 1261 1262 #define CMD_ERRORS \ 1263 (CMD_ERRORS_EXCL_OOR | \ 1264 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1265 1266 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1267 { 1268 u32 val; 1269 1270 /* 1271 * Per the SD specification(physical layer version 4.10)[1], 1272 * section 4.3.3, it explicitly states that "When the last 1273 * block of user area is read using CMD18, the host should 1274 * ignore OUT_OF_RANGE error that may occur even the sequence 1275 * is correct". And JESD84-B51 for eMMC also has a similar 1276 * statement on section 6.8.3. 1277 * 1278 * Multiple block read/write could be done by either predefined 1279 * method, namely CMD23, or open-ending mode. For open-ending mode, 1280 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1281 * 1282 * However the spec[1] doesn't tell us whether we should also 1283 * ignore that for predefined method. But per the spec[1], section 1284 * 4.15 Set Block Count Command, it says"If illegal block count 1285 * is set, out of range error will be indicated during read/write 1286 * operation (For example, data transfer is stopped at user area 1287 * boundary)." In another word, we could expect a out of range error 1288 * in the response for the following CMD18/25. And if argument of 1289 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1290 * we could also expect to get a -ETIMEDOUT or any error number from 1291 * the host drivers due to missing data response(for write)/data(for 1292 * read), as the cards will stop the data transfer by itself per the 1293 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1294 */ 1295 1296 if (!brq->stop.error) { 1297 bool oor_with_open_end; 1298 /* If there is no error yet, check R1 response */ 1299 1300 val = brq->stop.resp[0] & CMD_ERRORS; 1301 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1302 1303 if (val && !oor_with_open_end) 1304 brq->stop.error = -EIO; 1305 } 1306 } 1307 1308 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1309 int recovery_mode, bool *do_rel_wr_p, 1310 bool *do_data_tag_p) 1311 { 1312 struct mmc_blk_data *md = mq->blkdata; 1313 struct mmc_card *card = md->queue.card; 1314 struct mmc_blk_request *brq = &mqrq->brq; 1315 struct request *req = mmc_queue_req_to_req(mqrq); 1316 bool do_rel_wr, do_data_tag; 1317 1318 /* 1319 * Reliable writes are used to implement Forced Unit Access and 1320 * are supported only on MMCs. 1321 */ 1322 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1323 rq_data_dir(req) == WRITE && 1324 (md->flags & MMC_BLK_REL_WR); 1325 1326 memset(brq, 0, sizeof(struct mmc_blk_request)); 1327 1328 mmc_crypto_prepare_req(mqrq); 1329 1330 brq->mrq.data = &brq->data; 1331 brq->mrq.tag = req->tag; 1332 1333 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1334 brq->stop.arg = 0; 1335 1336 if (rq_data_dir(req) == READ) { 1337 brq->data.flags = MMC_DATA_READ; 1338 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1339 } else { 1340 brq->data.flags = MMC_DATA_WRITE; 1341 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1342 } 1343 1344 brq->data.blksz = 512; 1345 brq->data.blocks = blk_rq_sectors(req); 1346 brq->data.blk_addr = blk_rq_pos(req); 1347 1348 /* 1349 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1350 * The eMMC will give "high" priority tasks priority over "simple" 1351 * priority tasks. Here we always set "simple" priority by not setting 1352 * MMC_DATA_PRIO. 1353 */ 1354 1355 /* 1356 * The block layer doesn't support all sector count 1357 * restrictions, so we need to be prepared for too big 1358 * requests. 1359 */ 1360 if (brq->data.blocks > card->host->max_blk_count) 1361 brq->data.blocks = card->host->max_blk_count; 1362 1363 if (brq->data.blocks > 1) { 1364 /* 1365 * Some SD cards in SPI mode return a CRC error or even lock up 1366 * completely when trying to read the last block using a 1367 * multiblock read command. 1368 */ 1369 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1370 (blk_rq_pos(req) + blk_rq_sectors(req) == 1371 get_capacity(md->disk))) 1372 brq->data.blocks--; 1373 1374 /* 1375 * After a read error, we redo the request one (native) sector 1376 * at a time in order to accurately determine which 1377 * sectors can be read successfully. 1378 */ 1379 if (recovery_mode) 1380 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9; 1381 1382 /* 1383 * Some controllers have HW issues while operating 1384 * in multiple I/O mode 1385 */ 1386 if (card->host->ops->multi_io_quirk) 1387 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1388 (rq_data_dir(req) == READ) ? 1389 MMC_DATA_READ : MMC_DATA_WRITE, 1390 brq->data.blocks); 1391 } 1392 1393 if (do_rel_wr) { 1394 mmc_apply_rel_rw(brq, card, req); 1395 brq->data.flags |= MMC_DATA_REL_WR; 1396 } 1397 1398 /* 1399 * Data tag is used only during writing meta data to speed 1400 * up write and any subsequent read of this meta data 1401 */ 1402 do_data_tag = card->ext_csd.data_tag_unit_size && 1403 (req->cmd_flags & REQ_META) && 1404 (rq_data_dir(req) == WRITE) && 1405 ((brq->data.blocks * brq->data.blksz) >= 1406 card->ext_csd.data_tag_unit_size); 1407 1408 if (do_data_tag) 1409 brq->data.flags |= MMC_DATA_DAT_TAG; 1410 1411 mmc_set_data_timeout(&brq->data, card); 1412 1413 brq->data.sg = mqrq->sg; 1414 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1415 1416 /* 1417 * Adjust the sg list so it is the same size as the 1418 * request. 1419 */ 1420 if (brq->data.blocks != blk_rq_sectors(req)) { 1421 int i, data_size = brq->data.blocks << 9; 1422 struct scatterlist *sg; 1423 1424 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1425 data_size -= sg->length; 1426 if (data_size <= 0) { 1427 sg->length += data_size; 1428 i++; 1429 break; 1430 } 1431 } 1432 brq->data.sg_len = i; 1433 } 1434 1435 if (do_rel_wr_p) 1436 *do_rel_wr_p = do_rel_wr; 1437 1438 if (do_data_tag_p) 1439 *do_data_tag_p = do_data_tag; 1440 } 1441 1442 #define MMC_CQE_RETRIES 2 1443 1444 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1445 { 1446 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1447 struct mmc_request *mrq = &mqrq->brq.mrq; 1448 struct request_queue *q = req->q; 1449 struct mmc_host *host = mq->card->host; 1450 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1451 unsigned long flags; 1452 bool put_card; 1453 int err; 1454 1455 mmc_cqe_post_req(host, mrq); 1456 1457 if (mrq->cmd && mrq->cmd->error) 1458 err = mrq->cmd->error; 1459 else if (mrq->data && mrq->data->error) 1460 err = mrq->data->error; 1461 else 1462 err = 0; 1463 1464 if (err) { 1465 if (mqrq->retries++ < MMC_CQE_RETRIES) 1466 blk_mq_requeue_request(req, true); 1467 else 1468 blk_mq_end_request(req, BLK_STS_IOERR); 1469 } else if (mrq->data) { 1470 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1471 blk_mq_requeue_request(req, true); 1472 else 1473 __blk_mq_end_request(req, BLK_STS_OK); 1474 } else { 1475 blk_mq_end_request(req, BLK_STS_OK); 1476 } 1477 1478 spin_lock_irqsave(&mq->lock, flags); 1479 1480 mq->in_flight[issue_type] -= 1; 1481 1482 put_card = (mmc_tot_in_flight(mq) == 0); 1483 1484 mmc_cqe_check_busy(mq); 1485 1486 spin_unlock_irqrestore(&mq->lock, flags); 1487 1488 if (!mq->cqe_busy) 1489 blk_mq_run_hw_queues(q, true); 1490 1491 if (put_card) 1492 mmc_put_card(mq->card, &mq->ctx); 1493 } 1494 1495 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1496 { 1497 struct mmc_card *card = mq->card; 1498 struct mmc_host *host = card->host; 1499 int err; 1500 1501 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1502 1503 err = mmc_cqe_recovery(host); 1504 if (err) 1505 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1506 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1507 1508 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1509 } 1510 1511 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1512 { 1513 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1514 brq.mrq); 1515 struct request *req = mmc_queue_req_to_req(mqrq); 1516 struct request_queue *q = req->q; 1517 struct mmc_queue *mq = q->queuedata; 1518 1519 /* 1520 * Block layer timeouts race with completions which means the normal 1521 * completion path cannot be used during recovery. 1522 */ 1523 if (mq->in_recovery) 1524 mmc_blk_cqe_complete_rq(mq, req); 1525 else if (likely(!blk_should_fake_timeout(req->q))) 1526 blk_mq_complete_request(req); 1527 } 1528 1529 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1530 { 1531 mrq->done = mmc_blk_cqe_req_done; 1532 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1533 1534 return mmc_cqe_start_req(host, mrq); 1535 } 1536 1537 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1538 struct request *req) 1539 { 1540 struct mmc_blk_request *brq = &mqrq->brq; 1541 1542 memset(brq, 0, sizeof(*brq)); 1543 1544 brq->mrq.cmd = &brq->cmd; 1545 brq->mrq.tag = req->tag; 1546 1547 return &brq->mrq; 1548 } 1549 1550 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1551 { 1552 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1553 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1554 1555 mrq->cmd->opcode = MMC_SWITCH; 1556 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1557 (EXT_CSD_FLUSH_CACHE << 16) | 1558 (1 << 8) | 1559 EXT_CSD_CMD_SET_NORMAL; 1560 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1561 1562 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1563 } 1564 1565 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1566 { 1567 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1568 struct mmc_host *host = mq->card->host; 1569 int err; 1570 1571 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1572 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1573 mmc_pre_req(host, &mqrq->brq.mrq); 1574 1575 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1576 if (err) 1577 mmc_post_req(host, &mqrq->brq.mrq, err); 1578 1579 return err; 1580 } 1581 1582 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1583 { 1584 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1585 struct mmc_host *host = mq->card->host; 1586 1587 if (host->hsq_enabled) 1588 return mmc_blk_hsq_issue_rw_rq(mq, req); 1589 1590 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1591 1592 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1593 } 1594 1595 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1596 struct mmc_card *card, 1597 int recovery_mode, 1598 struct mmc_queue *mq) 1599 { 1600 u32 readcmd, writecmd; 1601 struct mmc_blk_request *brq = &mqrq->brq; 1602 struct request *req = mmc_queue_req_to_req(mqrq); 1603 struct mmc_blk_data *md = mq->blkdata; 1604 bool do_rel_wr, do_data_tag; 1605 1606 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag); 1607 1608 brq->mrq.cmd = &brq->cmd; 1609 1610 brq->cmd.arg = blk_rq_pos(req); 1611 if (!mmc_card_blockaddr(card)) 1612 brq->cmd.arg <<= 9; 1613 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1614 1615 if (brq->data.blocks > 1 || do_rel_wr) { 1616 /* SPI multiblock writes terminate using a special 1617 * token, not a STOP_TRANSMISSION request. 1618 */ 1619 if (!mmc_host_is_spi(card->host) || 1620 rq_data_dir(req) == READ) 1621 brq->mrq.stop = &brq->stop; 1622 readcmd = MMC_READ_MULTIPLE_BLOCK; 1623 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1624 } else { 1625 brq->mrq.stop = NULL; 1626 readcmd = MMC_READ_SINGLE_BLOCK; 1627 writecmd = MMC_WRITE_BLOCK; 1628 } 1629 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1630 1631 /* 1632 * Pre-defined multi-block transfers are preferable to 1633 * open ended-ones (and necessary for reliable writes). 1634 * However, it is not sufficient to just send CMD23, 1635 * and avoid the final CMD12, as on an error condition 1636 * CMD12 (stop) needs to be sent anyway. This, coupled 1637 * with Auto-CMD23 enhancements provided by some 1638 * hosts, means that the complexity of dealing 1639 * with this is best left to the host. If CMD23 is 1640 * supported by card and host, we'll fill sbc in and let 1641 * the host deal with handling it correctly. This means 1642 * that for hosts that don't expose MMC_CAP_CMD23, no 1643 * change of behavior will be observed. 1644 * 1645 * N.B: Some MMC cards experience perf degradation. 1646 * We'll avoid using CMD23-bounded multiblock writes for 1647 * these, while retaining features like reliable writes. 1648 */ 1649 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1650 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1651 do_data_tag)) { 1652 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1653 brq->sbc.arg = brq->data.blocks | 1654 (do_rel_wr ? (1 << 31) : 0) | 1655 (do_data_tag ? (1 << 29) : 0); 1656 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1657 brq->mrq.sbc = &brq->sbc; 1658 } 1659 } 1660 1661 #define MMC_MAX_RETRIES 5 1662 #define MMC_DATA_RETRIES 2 1663 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1664 1665 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1666 { 1667 struct mmc_command cmd = { 1668 .opcode = MMC_STOP_TRANSMISSION, 1669 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1670 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1671 .busy_timeout = timeout, 1672 }; 1673 1674 return mmc_wait_for_cmd(card->host, &cmd, 5); 1675 } 1676 1677 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1678 { 1679 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1680 struct mmc_blk_request *brq = &mqrq->brq; 1681 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1682 int err; 1683 1684 mmc_retune_hold_now(card->host); 1685 1686 mmc_blk_send_stop(card, timeout); 1687 1688 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO); 1689 1690 mmc_retune_release(card->host); 1691 1692 return err; 1693 } 1694 1695 #define MMC_READ_SINGLE_RETRIES 2 1696 1697 /* Single (native) sector read during recovery */ 1698 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1699 { 1700 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1701 struct mmc_request *mrq = &mqrq->brq.mrq; 1702 struct mmc_card *card = mq->card; 1703 struct mmc_host *host = card->host; 1704 blk_status_t error = BLK_STS_OK; 1705 size_t bytes_per_read = queue_physical_block_size(mq->queue); 1706 1707 do { 1708 u32 status; 1709 int err; 1710 int retries = 0; 1711 1712 while (retries++ <= MMC_READ_SINGLE_RETRIES) { 1713 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1714 1715 mmc_wait_for_req(host, mrq); 1716 1717 err = mmc_send_status(card, &status); 1718 if (err) 1719 goto error_exit; 1720 1721 if (!mmc_host_is_spi(host) && 1722 !mmc_ready_for_data(status)) { 1723 err = mmc_blk_fix_state(card, req); 1724 if (err) 1725 goto error_exit; 1726 } 1727 1728 if (!mrq->cmd->error) 1729 break; 1730 } 1731 1732 if (mrq->cmd->error || 1733 mrq->data->error || 1734 (!mmc_host_is_spi(host) && 1735 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1736 error = BLK_STS_IOERR; 1737 else 1738 error = BLK_STS_OK; 1739 1740 } while (blk_update_request(req, error, bytes_per_read)); 1741 1742 return; 1743 1744 error_exit: 1745 mrq->data->bytes_xfered = 0; 1746 blk_update_request(req, BLK_STS_IOERR, bytes_per_read); 1747 /* Let it try the remaining request again */ 1748 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1749 mqrq->retries = MMC_MAX_RETRIES - 1; 1750 } 1751 1752 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1753 { 1754 return !!brq->mrq.sbc; 1755 } 1756 1757 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1758 { 1759 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1760 } 1761 1762 /* 1763 * Check for errors the host controller driver might not have seen such as 1764 * response mode errors or invalid card state. 1765 */ 1766 static bool mmc_blk_status_error(struct request *req, u32 status) 1767 { 1768 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1769 struct mmc_blk_request *brq = &mqrq->brq; 1770 struct mmc_queue *mq = req->q->queuedata; 1771 u32 stop_err_bits; 1772 1773 if (mmc_host_is_spi(mq->card->host)) 1774 return false; 1775 1776 stop_err_bits = mmc_blk_stop_err_bits(brq); 1777 1778 return brq->cmd.resp[0] & CMD_ERRORS || 1779 brq->stop.resp[0] & stop_err_bits || 1780 status & stop_err_bits || 1781 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1782 } 1783 1784 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1785 { 1786 return !brq->sbc.error && !brq->cmd.error && 1787 !(brq->cmd.resp[0] & CMD_ERRORS); 1788 } 1789 1790 /* 1791 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1792 * policy: 1793 * 1. A request that has transferred at least some data is considered 1794 * successful and will be requeued if there is remaining data to 1795 * transfer. 1796 * 2. Otherwise the number of retries is incremented and the request 1797 * will be requeued if there are remaining retries. 1798 * 3. Otherwise the request will be errored out. 1799 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1800 * mqrq->retries. So there are only 4 possible actions here: 1801 * 1. do not accept the bytes_xfered value i.e. set it to zero 1802 * 2. change mqrq->retries to determine the number of retries 1803 * 3. try to reset the card 1804 * 4. read one sector at a time 1805 */ 1806 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1807 { 1808 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1809 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1810 struct mmc_blk_request *brq = &mqrq->brq; 1811 struct mmc_blk_data *md = mq->blkdata; 1812 struct mmc_card *card = mq->card; 1813 u32 status; 1814 u32 blocks; 1815 int err; 1816 1817 /* 1818 * Some errors the host driver might not have seen. Set the number of 1819 * bytes transferred to zero in that case. 1820 */ 1821 err = __mmc_send_status(card, &status, 0); 1822 if (err || mmc_blk_status_error(req, status)) 1823 brq->data.bytes_xfered = 0; 1824 1825 mmc_retune_release(card->host); 1826 1827 /* 1828 * Try again to get the status. This also provides an opportunity for 1829 * re-tuning. 1830 */ 1831 if (err) 1832 err = __mmc_send_status(card, &status, 0); 1833 1834 /* 1835 * Nothing more to do after the number of bytes transferred has been 1836 * updated and there is no card. 1837 */ 1838 if (err && mmc_detect_card_removed(card->host)) 1839 return; 1840 1841 /* Try to get back to "tran" state */ 1842 if (!mmc_host_is_spi(mq->card->host) && 1843 (err || !mmc_ready_for_data(status))) 1844 err = mmc_blk_fix_state(mq->card, req); 1845 1846 /* 1847 * Special case for SD cards where the card might record the number of 1848 * blocks written. 1849 */ 1850 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1851 rq_data_dir(req) == WRITE) { 1852 if (mmc_sd_num_wr_blocks(card, &blocks)) 1853 brq->data.bytes_xfered = 0; 1854 else 1855 brq->data.bytes_xfered = blocks << 9; 1856 } 1857 1858 /* Reset if the card is in a bad state */ 1859 if (!mmc_host_is_spi(mq->card->host) && 1860 err && mmc_blk_reset(md, card->host, type)) { 1861 pr_err("%s: recovery failed!\n", req->q->disk->disk_name); 1862 mqrq->retries = MMC_NO_RETRIES; 1863 return; 1864 } 1865 1866 /* 1867 * If anything was done, just return and if there is anything remaining 1868 * on the request it will get requeued. 1869 */ 1870 if (brq->data.bytes_xfered) 1871 return; 1872 1873 /* Reset before last retry */ 1874 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1875 mmc_blk_reset(md, card->host, type); 1876 1877 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1878 if (brq->sbc.error || brq->cmd.error) 1879 return; 1880 1881 /* Reduce the remaining retries for data errors */ 1882 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1883 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1884 return; 1885 } 1886 1887 if (rq_data_dir(req) == READ && brq->data.blocks > 1888 queue_physical_block_size(mq->queue) >> 9) { 1889 /* Read one (native) sector at a time */ 1890 mmc_blk_read_single(mq, req); 1891 return; 1892 } 1893 } 1894 1895 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1896 { 1897 mmc_blk_eval_resp_error(brq); 1898 1899 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1900 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1901 } 1902 1903 static int mmc_spi_err_check(struct mmc_card *card) 1904 { 1905 u32 status = 0; 1906 int err; 1907 1908 /* 1909 * SPI does not have a TRAN state we have to wait on, instead the 1910 * card is ready again when it no longer holds the line LOW. 1911 * We still have to ensure two things here before we know the write 1912 * was successful: 1913 * 1. The card has not disconnected during busy and we actually read our 1914 * own pull-up, thinking it was still connected, so ensure it 1915 * still responds. 1916 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a 1917 * just reconnected card after being disconnected during busy. 1918 */ 1919 err = __mmc_send_status(card, &status, 0); 1920 if (err) 1921 return err; 1922 /* All R1 and R2 bits of SPI are errors in our case */ 1923 if (status) 1924 return -EIO; 1925 return 0; 1926 } 1927 1928 static int mmc_blk_busy_cb(void *cb_data, bool *busy) 1929 { 1930 struct mmc_blk_busy_data *data = cb_data; 1931 u32 status = 0; 1932 int err; 1933 1934 err = mmc_send_status(data->card, &status); 1935 if (err) 1936 return err; 1937 1938 /* Accumulate response error bits. */ 1939 data->status |= status; 1940 1941 *busy = !mmc_ready_for_data(status); 1942 return 0; 1943 } 1944 1945 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1946 { 1947 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1948 struct mmc_blk_busy_data cb_data; 1949 int err; 1950 1951 if (rq_data_dir(req) == READ) 1952 return 0; 1953 1954 if (mmc_host_is_spi(card->host)) { 1955 err = mmc_spi_err_check(card); 1956 if (err) 1957 mqrq->brq.data.bytes_xfered = 0; 1958 return err; 1959 } 1960 1961 cb_data.card = card; 1962 cb_data.status = 0; 1963 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS, 1964 &mmc_blk_busy_cb, &cb_data); 1965 1966 /* 1967 * Do not assume data transferred correctly if there are any error bits 1968 * set. 1969 */ 1970 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1971 mqrq->brq.data.bytes_xfered = 0; 1972 err = err ? err : -EIO; 1973 } 1974 1975 /* Copy the exception bit so it will be seen later on */ 1976 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT) 1977 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1978 1979 return err; 1980 } 1981 1982 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1983 struct request *req) 1984 { 1985 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1986 1987 mmc_blk_reset_success(mq->blkdata, type); 1988 } 1989 1990 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1991 { 1992 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1993 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1994 1995 if (nr_bytes) { 1996 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1997 blk_mq_requeue_request(req, true); 1998 else 1999 __blk_mq_end_request(req, BLK_STS_OK); 2000 } else if (!blk_rq_bytes(req)) { 2001 __blk_mq_end_request(req, BLK_STS_IOERR); 2002 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 2003 blk_mq_requeue_request(req, true); 2004 } else { 2005 if (mmc_card_removed(mq->card)) 2006 req->rq_flags |= RQF_QUIET; 2007 blk_mq_end_request(req, BLK_STS_IOERR); 2008 } 2009 } 2010 2011 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 2012 struct mmc_queue_req *mqrq) 2013 { 2014 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 2015 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 2016 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 2017 } 2018 2019 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 2020 struct mmc_queue_req *mqrq) 2021 { 2022 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 2023 mmc_run_bkops(mq->card); 2024 } 2025 2026 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 2027 { 2028 struct mmc_queue_req *mqrq = 2029 container_of(mrq, struct mmc_queue_req, brq.mrq); 2030 struct request *req = mmc_queue_req_to_req(mqrq); 2031 struct request_queue *q = req->q; 2032 struct mmc_queue *mq = q->queuedata; 2033 struct mmc_host *host = mq->card->host; 2034 unsigned long flags; 2035 2036 if (mmc_blk_rq_error(&mqrq->brq) || 2037 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2038 spin_lock_irqsave(&mq->lock, flags); 2039 mq->recovery_needed = true; 2040 mq->recovery_req = req; 2041 spin_unlock_irqrestore(&mq->lock, flags); 2042 2043 host->cqe_ops->cqe_recovery_start(host); 2044 2045 schedule_work(&mq->recovery_work); 2046 return; 2047 } 2048 2049 mmc_blk_rw_reset_success(mq, req); 2050 2051 /* 2052 * Block layer timeouts race with completions which means the normal 2053 * completion path cannot be used during recovery. 2054 */ 2055 if (mq->in_recovery) 2056 mmc_blk_cqe_complete_rq(mq, req); 2057 else if (likely(!blk_should_fake_timeout(req->q))) 2058 blk_mq_complete_request(req); 2059 } 2060 2061 void mmc_blk_mq_complete(struct request *req) 2062 { 2063 struct mmc_queue *mq = req->q->queuedata; 2064 struct mmc_host *host = mq->card->host; 2065 2066 if (host->cqe_enabled) 2067 mmc_blk_cqe_complete_rq(mq, req); 2068 else if (likely(!blk_should_fake_timeout(req->q))) 2069 mmc_blk_mq_complete_rq(mq, req); 2070 } 2071 2072 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 2073 struct request *req) 2074 { 2075 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2076 struct mmc_host *host = mq->card->host; 2077 2078 if (mmc_blk_rq_error(&mqrq->brq) || 2079 mmc_blk_card_busy(mq->card, req)) { 2080 mmc_blk_mq_rw_recovery(mq, req); 2081 } else { 2082 mmc_blk_rw_reset_success(mq, req); 2083 mmc_retune_release(host); 2084 } 2085 2086 mmc_blk_urgent_bkops(mq, mqrq); 2087 } 2088 2089 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 2090 { 2091 unsigned long flags; 2092 bool put_card; 2093 2094 spin_lock_irqsave(&mq->lock, flags); 2095 2096 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 2097 2098 put_card = (mmc_tot_in_flight(mq) == 0); 2099 2100 spin_unlock_irqrestore(&mq->lock, flags); 2101 2102 if (put_card) 2103 mmc_put_card(mq->card, &mq->ctx); 2104 } 2105 2106 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req, 2107 bool can_sleep) 2108 { 2109 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2110 struct mmc_request *mrq = &mqrq->brq.mrq; 2111 struct mmc_host *host = mq->card->host; 2112 2113 mmc_post_req(host, mrq, 0); 2114 2115 /* 2116 * Block layer timeouts race with completions which means the normal 2117 * completion path cannot be used during recovery. 2118 */ 2119 if (mq->in_recovery) { 2120 mmc_blk_mq_complete_rq(mq, req); 2121 } else if (likely(!blk_should_fake_timeout(req->q))) { 2122 if (can_sleep) 2123 blk_mq_complete_request_direct(req, mmc_blk_mq_complete); 2124 else 2125 blk_mq_complete_request(req); 2126 } 2127 2128 mmc_blk_mq_dec_in_flight(mq, req); 2129 } 2130 2131 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2132 { 2133 struct request *req = mq->recovery_req; 2134 struct mmc_host *host = mq->card->host; 2135 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2136 2137 mq->recovery_req = NULL; 2138 mq->rw_wait = false; 2139 2140 if (mmc_blk_rq_error(&mqrq->brq)) { 2141 mmc_retune_hold_now(host); 2142 mmc_blk_mq_rw_recovery(mq, req); 2143 } 2144 2145 mmc_blk_urgent_bkops(mq, mqrq); 2146 2147 mmc_blk_mq_post_req(mq, req, true); 2148 } 2149 2150 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2151 struct request **prev_req) 2152 { 2153 if (mmc_host_done_complete(mq->card->host)) 2154 return; 2155 2156 mutex_lock(&mq->complete_lock); 2157 2158 if (!mq->complete_req) 2159 goto out_unlock; 2160 2161 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2162 2163 if (prev_req) 2164 *prev_req = mq->complete_req; 2165 else 2166 mmc_blk_mq_post_req(mq, mq->complete_req, true); 2167 2168 mq->complete_req = NULL; 2169 2170 out_unlock: 2171 mutex_unlock(&mq->complete_lock); 2172 } 2173 2174 void mmc_blk_mq_complete_work(struct work_struct *work) 2175 { 2176 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2177 complete_work); 2178 2179 mmc_blk_mq_complete_prev_req(mq, NULL); 2180 } 2181 2182 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2183 { 2184 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2185 brq.mrq); 2186 struct request *req = mmc_queue_req_to_req(mqrq); 2187 struct request_queue *q = req->q; 2188 struct mmc_queue *mq = q->queuedata; 2189 struct mmc_host *host = mq->card->host; 2190 unsigned long flags; 2191 2192 if (!mmc_host_done_complete(host)) { 2193 bool waiting; 2194 2195 /* 2196 * We cannot complete the request in this context, so record 2197 * that there is a request to complete, and that a following 2198 * request does not need to wait (although it does need to 2199 * complete complete_req first). 2200 */ 2201 spin_lock_irqsave(&mq->lock, flags); 2202 mq->complete_req = req; 2203 mq->rw_wait = false; 2204 waiting = mq->waiting; 2205 spin_unlock_irqrestore(&mq->lock, flags); 2206 2207 /* 2208 * If 'waiting' then the waiting task will complete this 2209 * request, otherwise queue a work to do it. Note that 2210 * complete_work may still race with the dispatch of a following 2211 * request. 2212 */ 2213 if (waiting) 2214 wake_up(&mq->wait); 2215 else 2216 queue_work(mq->card->complete_wq, &mq->complete_work); 2217 2218 return; 2219 } 2220 2221 /* Take the recovery path for errors or urgent background operations */ 2222 if (mmc_blk_rq_error(&mqrq->brq) || 2223 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2224 spin_lock_irqsave(&mq->lock, flags); 2225 mq->recovery_needed = true; 2226 mq->recovery_req = req; 2227 spin_unlock_irqrestore(&mq->lock, flags); 2228 wake_up(&mq->wait); 2229 schedule_work(&mq->recovery_work); 2230 return; 2231 } 2232 2233 mmc_blk_rw_reset_success(mq, req); 2234 2235 mq->rw_wait = false; 2236 wake_up(&mq->wait); 2237 2238 /* context unknown */ 2239 mmc_blk_mq_post_req(mq, req, false); 2240 } 2241 2242 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2243 { 2244 unsigned long flags; 2245 bool done; 2246 2247 /* 2248 * Wait while there is another request in progress, but not if recovery 2249 * is needed. Also indicate whether there is a request waiting to start. 2250 */ 2251 spin_lock_irqsave(&mq->lock, flags); 2252 if (mq->recovery_needed) { 2253 *err = -EBUSY; 2254 done = true; 2255 } else { 2256 done = !mq->rw_wait; 2257 } 2258 mq->waiting = !done; 2259 spin_unlock_irqrestore(&mq->lock, flags); 2260 2261 return done; 2262 } 2263 2264 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2265 { 2266 int err = 0; 2267 2268 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2269 2270 /* Always complete the previous request if there is one */ 2271 mmc_blk_mq_complete_prev_req(mq, prev_req); 2272 2273 return err; 2274 } 2275 2276 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2277 struct request *req) 2278 { 2279 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2280 struct mmc_host *host = mq->card->host; 2281 struct request *prev_req = NULL; 2282 int err = 0; 2283 2284 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2285 2286 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2287 2288 mmc_pre_req(host, &mqrq->brq.mrq); 2289 2290 err = mmc_blk_rw_wait(mq, &prev_req); 2291 if (err) 2292 goto out_post_req; 2293 2294 mq->rw_wait = true; 2295 2296 err = mmc_start_request(host, &mqrq->brq.mrq); 2297 2298 if (prev_req) 2299 mmc_blk_mq_post_req(mq, prev_req, true); 2300 2301 if (err) 2302 mq->rw_wait = false; 2303 2304 /* Release re-tuning here where there is no synchronization required */ 2305 if (err || mmc_host_done_complete(host)) 2306 mmc_retune_release(host); 2307 2308 out_post_req: 2309 if (err) 2310 mmc_post_req(host, &mqrq->brq.mrq, err); 2311 2312 return err; 2313 } 2314 2315 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2316 { 2317 if (host->cqe_enabled) 2318 return host->cqe_ops->cqe_wait_for_idle(host); 2319 2320 return mmc_blk_rw_wait(mq, NULL); 2321 } 2322 2323 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2324 { 2325 struct mmc_blk_data *md = mq->blkdata; 2326 struct mmc_card *card = md->queue.card; 2327 struct mmc_host *host = card->host; 2328 int ret; 2329 2330 ret = mmc_blk_part_switch(card, md->part_type); 2331 if (ret) 2332 return MMC_REQ_FAILED_TO_START; 2333 2334 switch (mmc_issue_type(mq, req)) { 2335 case MMC_ISSUE_SYNC: 2336 ret = mmc_blk_wait_for_idle(mq, host); 2337 if (ret) 2338 return MMC_REQ_BUSY; 2339 switch (req_op(req)) { 2340 case REQ_OP_DRV_IN: 2341 case REQ_OP_DRV_OUT: 2342 mmc_blk_issue_drv_op(mq, req); 2343 break; 2344 case REQ_OP_DISCARD: 2345 mmc_blk_issue_discard_rq(mq, req); 2346 break; 2347 case REQ_OP_SECURE_ERASE: 2348 mmc_blk_issue_secdiscard_rq(mq, req); 2349 break; 2350 case REQ_OP_WRITE_ZEROES: 2351 mmc_blk_issue_trim_rq(mq, req); 2352 break; 2353 case REQ_OP_FLUSH: 2354 mmc_blk_issue_flush(mq, req); 2355 break; 2356 default: 2357 WARN_ON_ONCE(1); 2358 return MMC_REQ_FAILED_TO_START; 2359 } 2360 return MMC_REQ_FINISHED; 2361 case MMC_ISSUE_DCMD: 2362 case MMC_ISSUE_ASYNC: 2363 switch (req_op(req)) { 2364 case REQ_OP_FLUSH: 2365 if (!mmc_cache_enabled(host)) { 2366 blk_mq_end_request(req, BLK_STS_OK); 2367 return MMC_REQ_FINISHED; 2368 } 2369 ret = mmc_blk_cqe_issue_flush(mq, req); 2370 break; 2371 case REQ_OP_READ: 2372 case REQ_OP_WRITE: 2373 if (host->cqe_enabled) 2374 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2375 else 2376 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2377 break; 2378 default: 2379 WARN_ON_ONCE(1); 2380 ret = -EINVAL; 2381 } 2382 if (!ret) 2383 return MMC_REQ_STARTED; 2384 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2385 default: 2386 WARN_ON_ONCE(1); 2387 return MMC_REQ_FAILED_TO_START; 2388 } 2389 } 2390 2391 static inline int mmc_blk_readonly(struct mmc_card *card) 2392 { 2393 return mmc_card_readonly(card) || 2394 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2395 } 2396 2397 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2398 struct device *parent, 2399 sector_t size, 2400 bool default_ro, 2401 const char *subname, 2402 int area_type, 2403 unsigned int part_type) 2404 { 2405 struct mmc_blk_data *md; 2406 int devidx, ret; 2407 char cap_str[10]; 2408 bool cache_enabled = false; 2409 bool fua_enabled = false; 2410 2411 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2412 if (devidx < 0) { 2413 /* 2414 * We get -ENOSPC because there are no more any available 2415 * devidx. The reason may be that, either userspace haven't yet 2416 * unmounted the partitions, which postpones mmc_blk_release() 2417 * from being called, or the device has more partitions than 2418 * what we support. 2419 */ 2420 if (devidx == -ENOSPC) 2421 dev_err(mmc_dev(card->host), 2422 "no more device IDs available\n"); 2423 2424 return ERR_PTR(devidx); 2425 } 2426 2427 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2428 if (!md) { 2429 ret = -ENOMEM; 2430 goto out; 2431 } 2432 2433 md->area_type = area_type; 2434 2435 /* 2436 * Set the read-only status based on the supported commands 2437 * and the write protect switch. 2438 */ 2439 md->read_only = mmc_blk_readonly(card); 2440 2441 md->disk = mmc_init_queue(&md->queue, card); 2442 if (IS_ERR(md->disk)) { 2443 ret = PTR_ERR(md->disk); 2444 goto err_kfree; 2445 } 2446 2447 INIT_LIST_HEAD(&md->part); 2448 INIT_LIST_HEAD(&md->rpmbs); 2449 kref_init(&md->kref); 2450 2451 md->queue.blkdata = md; 2452 md->part_type = part_type; 2453 2454 md->disk->major = MMC_BLOCK_MAJOR; 2455 md->disk->minors = perdev_minors; 2456 md->disk->first_minor = devidx * perdev_minors; 2457 md->disk->fops = &mmc_bdops; 2458 md->disk->private_data = md; 2459 md->parent = parent; 2460 set_disk_ro(md->disk, md->read_only || default_ro); 2461 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2462 md->disk->flags |= GENHD_FL_NO_PART; 2463 2464 /* 2465 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2466 * 2467 * - be set for removable media with permanent block devices 2468 * - be unset for removable block devices with permanent media 2469 * 2470 * Since MMC block devices clearly fall under the second 2471 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2472 * should use the block device creation/destruction hotplug 2473 * messages to tell when the card is present. 2474 */ 2475 2476 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2477 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2478 2479 set_capacity(md->disk, size); 2480 2481 if (mmc_host_cmd23(card->host)) { 2482 if ((mmc_card_mmc(card) && 2483 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2484 (mmc_card_sd(card) && 2485 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2486 md->flags |= MMC_BLK_CMD23; 2487 } 2488 2489 if (md->flags & MMC_BLK_CMD23 && 2490 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2491 card->ext_csd.rel_sectors)) { 2492 md->flags |= MMC_BLK_REL_WR; 2493 fua_enabled = true; 2494 cache_enabled = true; 2495 } 2496 if (mmc_cache_enabled(card->host)) 2497 cache_enabled = true; 2498 2499 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled); 2500 2501 string_get_size((u64)size, 512, STRING_UNITS_2, 2502 cap_str, sizeof(cap_str)); 2503 pr_info("%s: %s %s %s %s\n", 2504 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2505 cap_str, md->read_only ? "(ro)" : ""); 2506 2507 /* used in ->open, must be set before add_disk: */ 2508 if (area_type == MMC_BLK_DATA_AREA_MAIN) 2509 dev_set_drvdata(&card->dev, md); 2510 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups); 2511 if (ret) 2512 goto err_put_disk; 2513 return md; 2514 2515 err_put_disk: 2516 put_disk(md->disk); 2517 blk_mq_free_tag_set(&md->queue.tag_set); 2518 err_kfree: 2519 kfree(md); 2520 out: 2521 ida_simple_remove(&mmc_blk_ida, devidx); 2522 return ERR_PTR(ret); 2523 } 2524 2525 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2526 { 2527 sector_t size; 2528 2529 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2530 /* 2531 * The EXT_CSD sector count is in number or 512 byte 2532 * sectors. 2533 */ 2534 size = card->ext_csd.sectors; 2535 } else { 2536 /* 2537 * The CSD capacity field is in units of read_blkbits. 2538 * set_capacity takes units of 512 bytes. 2539 */ 2540 size = (typeof(sector_t))card->csd.capacity 2541 << (card->csd.read_blkbits - 9); 2542 } 2543 2544 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2545 MMC_BLK_DATA_AREA_MAIN, 0); 2546 } 2547 2548 static int mmc_blk_alloc_part(struct mmc_card *card, 2549 struct mmc_blk_data *md, 2550 unsigned int part_type, 2551 sector_t size, 2552 bool default_ro, 2553 const char *subname, 2554 int area_type) 2555 { 2556 struct mmc_blk_data *part_md; 2557 2558 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2559 subname, area_type, part_type); 2560 if (IS_ERR(part_md)) 2561 return PTR_ERR(part_md); 2562 list_add(&part_md->part, &md->part); 2563 2564 return 0; 2565 } 2566 2567 /** 2568 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2569 * @filp: the character device file 2570 * @cmd: the ioctl() command 2571 * @arg: the argument from userspace 2572 * 2573 * This will essentially just redirect the ioctl()s coming in over to 2574 * the main block device spawning the RPMB character device. 2575 */ 2576 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2577 unsigned long arg) 2578 { 2579 struct mmc_rpmb_data *rpmb = filp->private_data; 2580 int ret; 2581 2582 switch (cmd) { 2583 case MMC_IOC_CMD: 2584 ret = mmc_blk_ioctl_cmd(rpmb->md, 2585 (struct mmc_ioc_cmd __user *)arg, 2586 rpmb); 2587 break; 2588 case MMC_IOC_MULTI_CMD: 2589 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2590 (struct mmc_ioc_multi_cmd __user *)arg, 2591 rpmb); 2592 break; 2593 default: 2594 ret = -EINVAL; 2595 break; 2596 } 2597 2598 return ret; 2599 } 2600 2601 #ifdef CONFIG_COMPAT 2602 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2603 unsigned long arg) 2604 { 2605 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2606 } 2607 #endif 2608 2609 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2610 { 2611 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2612 struct mmc_rpmb_data, chrdev); 2613 2614 get_device(&rpmb->dev); 2615 filp->private_data = rpmb; 2616 mmc_blk_get(rpmb->md->disk); 2617 2618 return nonseekable_open(inode, filp); 2619 } 2620 2621 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2622 { 2623 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2624 struct mmc_rpmb_data, chrdev); 2625 2626 mmc_blk_put(rpmb->md); 2627 put_device(&rpmb->dev); 2628 2629 return 0; 2630 } 2631 2632 static const struct file_operations mmc_rpmb_fileops = { 2633 .release = mmc_rpmb_chrdev_release, 2634 .open = mmc_rpmb_chrdev_open, 2635 .owner = THIS_MODULE, 2636 .llseek = no_llseek, 2637 .unlocked_ioctl = mmc_rpmb_ioctl, 2638 #ifdef CONFIG_COMPAT 2639 .compat_ioctl = mmc_rpmb_ioctl_compat, 2640 #endif 2641 }; 2642 2643 static void mmc_blk_rpmb_device_release(struct device *dev) 2644 { 2645 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2646 2647 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2648 kfree(rpmb); 2649 } 2650 2651 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2652 struct mmc_blk_data *md, 2653 unsigned int part_index, 2654 sector_t size, 2655 const char *subname) 2656 { 2657 int devidx, ret; 2658 char rpmb_name[DISK_NAME_LEN]; 2659 char cap_str[10]; 2660 struct mmc_rpmb_data *rpmb; 2661 2662 /* This creates the minor number for the RPMB char device */ 2663 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2664 if (devidx < 0) 2665 return devidx; 2666 2667 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2668 if (!rpmb) { 2669 ida_simple_remove(&mmc_rpmb_ida, devidx); 2670 return -ENOMEM; 2671 } 2672 2673 snprintf(rpmb_name, sizeof(rpmb_name), 2674 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2675 2676 rpmb->id = devidx; 2677 rpmb->part_index = part_index; 2678 rpmb->dev.init_name = rpmb_name; 2679 rpmb->dev.bus = &mmc_rpmb_bus_type; 2680 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2681 rpmb->dev.parent = &card->dev; 2682 rpmb->dev.release = mmc_blk_rpmb_device_release; 2683 device_initialize(&rpmb->dev); 2684 dev_set_drvdata(&rpmb->dev, rpmb); 2685 rpmb->md = md; 2686 2687 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2688 rpmb->chrdev.owner = THIS_MODULE; 2689 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2690 if (ret) { 2691 pr_err("%s: could not add character device\n", rpmb_name); 2692 goto out_put_device; 2693 } 2694 2695 list_add(&rpmb->node, &md->rpmbs); 2696 2697 string_get_size((u64)size, 512, STRING_UNITS_2, 2698 cap_str, sizeof(cap_str)); 2699 2700 pr_info("%s: %s %s %s, chardev (%d:%d)\n", 2701 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, 2702 MAJOR(mmc_rpmb_devt), rpmb->id); 2703 2704 return 0; 2705 2706 out_put_device: 2707 put_device(&rpmb->dev); 2708 return ret; 2709 } 2710 2711 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2712 2713 { 2714 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2715 put_device(&rpmb->dev); 2716 } 2717 2718 /* MMC Physical partitions consist of two boot partitions and 2719 * up to four general purpose partitions. 2720 * For each partition enabled in EXT_CSD a block device will be allocatedi 2721 * to provide access to the partition. 2722 */ 2723 2724 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2725 { 2726 int idx, ret; 2727 2728 if (!mmc_card_mmc(card)) 2729 return 0; 2730 2731 for (idx = 0; idx < card->nr_parts; idx++) { 2732 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2733 /* 2734 * RPMB partitions does not provide block access, they 2735 * are only accessed using ioctl():s. Thus create 2736 * special RPMB block devices that do not have a 2737 * backing block queue for these. 2738 */ 2739 ret = mmc_blk_alloc_rpmb_part(card, md, 2740 card->part[idx].part_cfg, 2741 card->part[idx].size >> 9, 2742 card->part[idx].name); 2743 if (ret) 2744 return ret; 2745 } else if (card->part[idx].size) { 2746 ret = mmc_blk_alloc_part(card, md, 2747 card->part[idx].part_cfg, 2748 card->part[idx].size >> 9, 2749 card->part[idx].force_ro, 2750 card->part[idx].name, 2751 card->part[idx].area_type); 2752 if (ret) 2753 return ret; 2754 } 2755 } 2756 2757 return 0; 2758 } 2759 2760 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2761 { 2762 /* 2763 * Flush remaining requests and free queues. It is freeing the queue 2764 * that stops new requests from being accepted. 2765 */ 2766 del_gendisk(md->disk); 2767 mmc_cleanup_queue(&md->queue); 2768 mmc_blk_put(md); 2769 } 2770 2771 static void mmc_blk_remove_parts(struct mmc_card *card, 2772 struct mmc_blk_data *md) 2773 { 2774 struct list_head *pos, *q; 2775 struct mmc_blk_data *part_md; 2776 struct mmc_rpmb_data *rpmb; 2777 2778 /* Remove RPMB partitions */ 2779 list_for_each_safe(pos, q, &md->rpmbs) { 2780 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2781 list_del(pos); 2782 mmc_blk_remove_rpmb_part(rpmb); 2783 } 2784 /* Remove block partitions */ 2785 list_for_each_safe(pos, q, &md->part) { 2786 part_md = list_entry(pos, struct mmc_blk_data, part); 2787 list_del(pos); 2788 mmc_blk_remove_req(part_md); 2789 } 2790 } 2791 2792 #ifdef CONFIG_DEBUG_FS 2793 2794 static int mmc_dbg_card_status_get(void *data, u64 *val) 2795 { 2796 struct mmc_card *card = data; 2797 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2798 struct mmc_queue *mq = &md->queue; 2799 struct request *req; 2800 int ret; 2801 2802 /* Ask the block layer about the card status */ 2803 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2804 if (IS_ERR(req)) 2805 return PTR_ERR(req); 2806 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2807 blk_execute_rq(req, false); 2808 ret = req_to_mmc_queue_req(req)->drv_op_result; 2809 if (ret >= 0) { 2810 *val = ret; 2811 ret = 0; 2812 } 2813 blk_mq_free_request(req); 2814 2815 return ret; 2816 } 2817 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2818 NULL, "%08llx\n"); 2819 2820 /* That is two digits * 512 + 1 for newline */ 2821 #define EXT_CSD_STR_LEN 1025 2822 2823 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2824 { 2825 struct mmc_card *card = inode->i_private; 2826 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2827 struct mmc_queue *mq = &md->queue; 2828 struct request *req; 2829 char *buf; 2830 ssize_t n = 0; 2831 u8 *ext_csd; 2832 int err, i; 2833 2834 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2835 if (!buf) 2836 return -ENOMEM; 2837 2838 /* Ask the block layer for the EXT CSD */ 2839 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2840 if (IS_ERR(req)) { 2841 err = PTR_ERR(req); 2842 goto out_free; 2843 } 2844 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2845 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2846 blk_execute_rq(req, false); 2847 err = req_to_mmc_queue_req(req)->drv_op_result; 2848 blk_mq_free_request(req); 2849 if (err) { 2850 pr_err("FAILED %d\n", err); 2851 goto out_free; 2852 } 2853 2854 for (i = 0; i < 512; i++) 2855 n += sprintf(buf + n, "%02x", ext_csd[i]); 2856 n += sprintf(buf + n, "\n"); 2857 2858 if (n != EXT_CSD_STR_LEN) { 2859 err = -EINVAL; 2860 kfree(ext_csd); 2861 goto out_free; 2862 } 2863 2864 filp->private_data = buf; 2865 kfree(ext_csd); 2866 return 0; 2867 2868 out_free: 2869 kfree(buf); 2870 return err; 2871 } 2872 2873 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2874 size_t cnt, loff_t *ppos) 2875 { 2876 char *buf = filp->private_data; 2877 2878 return simple_read_from_buffer(ubuf, cnt, ppos, 2879 buf, EXT_CSD_STR_LEN); 2880 } 2881 2882 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2883 { 2884 kfree(file->private_data); 2885 return 0; 2886 } 2887 2888 static const struct file_operations mmc_dbg_ext_csd_fops = { 2889 .open = mmc_ext_csd_open, 2890 .read = mmc_ext_csd_read, 2891 .release = mmc_ext_csd_release, 2892 .llseek = default_llseek, 2893 }; 2894 2895 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2896 { 2897 struct dentry *root; 2898 2899 if (!card->debugfs_root) 2900 return 0; 2901 2902 root = card->debugfs_root; 2903 2904 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2905 md->status_dentry = 2906 debugfs_create_file_unsafe("status", 0400, root, 2907 card, 2908 &mmc_dbg_card_status_fops); 2909 if (!md->status_dentry) 2910 return -EIO; 2911 } 2912 2913 if (mmc_card_mmc(card)) { 2914 md->ext_csd_dentry = 2915 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2916 &mmc_dbg_ext_csd_fops); 2917 if (!md->ext_csd_dentry) 2918 return -EIO; 2919 } 2920 2921 return 0; 2922 } 2923 2924 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2925 struct mmc_blk_data *md) 2926 { 2927 if (!card->debugfs_root) 2928 return; 2929 2930 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2931 debugfs_remove(md->status_dentry); 2932 md->status_dentry = NULL; 2933 } 2934 2935 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2936 debugfs_remove(md->ext_csd_dentry); 2937 md->ext_csd_dentry = NULL; 2938 } 2939 } 2940 2941 #else 2942 2943 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2944 { 2945 return 0; 2946 } 2947 2948 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2949 struct mmc_blk_data *md) 2950 { 2951 } 2952 2953 #endif /* CONFIG_DEBUG_FS */ 2954 2955 static int mmc_blk_probe(struct mmc_card *card) 2956 { 2957 struct mmc_blk_data *md; 2958 int ret = 0; 2959 2960 /* 2961 * Check that the card supports the command class(es) we need. 2962 */ 2963 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2964 return -ENODEV; 2965 2966 mmc_fixup_device(card, mmc_blk_fixups); 2967 2968 card->complete_wq = alloc_workqueue("mmc_complete", 2969 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2970 if (!card->complete_wq) { 2971 pr_err("Failed to create mmc completion workqueue"); 2972 return -ENOMEM; 2973 } 2974 2975 md = mmc_blk_alloc(card); 2976 if (IS_ERR(md)) { 2977 ret = PTR_ERR(md); 2978 goto out_free; 2979 } 2980 2981 ret = mmc_blk_alloc_parts(card, md); 2982 if (ret) 2983 goto out; 2984 2985 /* Add two debugfs entries */ 2986 mmc_blk_add_debugfs(card, md); 2987 2988 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2989 pm_runtime_use_autosuspend(&card->dev); 2990 2991 /* 2992 * Don't enable runtime PM for SD-combo cards here. Leave that 2993 * decision to be taken during the SDIO init sequence instead. 2994 */ 2995 if (!mmc_card_sd_combo(card)) { 2996 pm_runtime_set_active(&card->dev); 2997 pm_runtime_enable(&card->dev); 2998 } 2999 3000 return 0; 3001 3002 out: 3003 mmc_blk_remove_parts(card, md); 3004 mmc_blk_remove_req(md); 3005 out_free: 3006 destroy_workqueue(card->complete_wq); 3007 return ret; 3008 } 3009 3010 static void mmc_blk_remove(struct mmc_card *card) 3011 { 3012 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3013 3014 mmc_blk_remove_debugfs(card, md); 3015 mmc_blk_remove_parts(card, md); 3016 pm_runtime_get_sync(&card->dev); 3017 if (md->part_curr != md->part_type) { 3018 mmc_claim_host(card->host); 3019 mmc_blk_part_switch(card, md->part_type); 3020 mmc_release_host(card->host); 3021 } 3022 if (!mmc_card_sd_combo(card)) 3023 pm_runtime_disable(&card->dev); 3024 pm_runtime_put_noidle(&card->dev); 3025 mmc_blk_remove_req(md); 3026 dev_set_drvdata(&card->dev, NULL); 3027 destroy_workqueue(card->complete_wq); 3028 } 3029 3030 static int _mmc_blk_suspend(struct mmc_card *card) 3031 { 3032 struct mmc_blk_data *part_md; 3033 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3034 3035 if (md) { 3036 mmc_queue_suspend(&md->queue); 3037 list_for_each_entry(part_md, &md->part, part) { 3038 mmc_queue_suspend(&part_md->queue); 3039 } 3040 } 3041 return 0; 3042 } 3043 3044 static void mmc_blk_shutdown(struct mmc_card *card) 3045 { 3046 _mmc_blk_suspend(card); 3047 } 3048 3049 #ifdef CONFIG_PM_SLEEP 3050 static int mmc_blk_suspend(struct device *dev) 3051 { 3052 struct mmc_card *card = mmc_dev_to_card(dev); 3053 3054 return _mmc_blk_suspend(card); 3055 } 3056 3057 static int mmc_blk_resume(struct device *dev) 3058 { 3059 struct mmc_blk_data *part_md; 3060 struct mmc_blk_data *md = dev_get_drvdata(dev); 3061 3062 if (md) { 3063 /* 3064 * Resume involves the card going into idle state, 3065 * so current partition is always the main one. 3066 */ 3067 md->part_curr = md->part_type; 3068 mmc_queue_resume(&md->queue); 3069 list_for_each_entry(part_md, &md->part, part) { 3070 mmc_queue_resume(&part_md->queue); 3071 } 3072 } 3073 return 0; 3074 } 3075 #endif 3076 3077 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3078 3079 static struct mmc_driver mmc_driver = { 3080 .drv = { 3081 .name = "mmcblk", 3082 .pm = &mmc_blk_pm_ops, 3083 }, 3084 .probe = mmc_blk_probe, 3085 .remove = mmc_blk_remove, 3086 .shutdown = mmc_blk_shutdown, 3087 }; 3088 3089 static int __init mmc_blk_init(void) 3090 { 3091 int res; 3092 3093 res = bus_register(&mmc_rpmb_bus_type); 3094 if (res < 0) { 3095 pr_err("mmcblk: could not register RPMB bus type\n"); 3096 return res; 3097 } 3098 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3099 if (res < 0) { 3100 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3101 goto out_bus_unreg; 3102 } 3103 3104 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3105 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3106 3107 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3108 3109 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3110 if (res) 3111 goto out_chrdev_unreg; 3112 3113 res = mmc_register_driver(&mmc_driver); 3114 if (res) 3115 goto out_blkdev_unreg; 3116 3117 return 0; 3118 3119 out_blkdev_unreg: 3120 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3121 out_chrdev_unreg: 3122 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3123 out_bus_unreg: 3124 bus_unregister(&mmc_rpmb_bus_type); 3125 return res; 3126 } 3127 3128 static void __exit mmc_blk_exit(void) 3129 { 3130 mmc_unregister_driver(&mmc_driver); 3131 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3132 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3133 bus_unregister(&mmc_rpmb_bus_type); 3134 } 3135 3136 module_init(mmc_blk_init); 3137 module_exit(mmc_blk_exit); 3138 3139 MODULE_LICENSE("GPL"); 3140 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3141 3142