1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/cdev.h> 32 #include <linux/mutex.h> 33 #include <linux/scatterlist.h> 34 #include <linux/string_helpers.h> 35 #include <linux/delay.h> 36 #include <linux/capability.h> 37 #include <linux/compat.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/idr.h> 40 #include <linux/debugfs.h> 41 42 #include <linux/mmc/ioctl.h> 43 #include <linux/mmc/card.h> 44 #include <linux/mmc/host.h> 45 #include <linux/mmc/mmc.h> 46 #include <linux/mmc/sd.h> 47 48 #include <linux/uaccess.h> 49 50 #include "queue.h" 51 #include "block.h" 52 #include "core.h" 53 #include "card.h" 54 #include "host.h" 55 #include "bus.h" 56 #include "mmc_ops.h" 57 #include "quirks.h" 58 #include "sd_ops.h" 59 60 MODULE_ALIAS("mmc:block"); 61 #ifdef MODULE_PARAM_PREFIX 62 #undef MODULE_PARAM_PREFIX 63 #endif 64 #define MODULE_PARAM_PREFIX "mmcblk." 65 66 /* 67 * Set a 10 second timeout for polling write request busy state. Note, mmc core 68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 69 * second software timer to timeout the whole request, so 10 seconds should be 70 * ample. 71 */ 72 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 73 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 74 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 75 76 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 77 (rq_data_dir(req) == WRITE)) 78 static DEFINE_MUTEX(block_mutex); 79 80 /* 81 * The defaults come from config options but can be overriden by module 82 * or bootarg options. 83 */ 84 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 85 86 /* 87 * We've only got one major, so number of mmcblk devices is 88 * limited to (1 << 20) / number of minors per device. It is also 89 * limited by the MAX_DEVICES below. 90 */ 91 static int max_devices; 92 93 #define MAX_DEVICES 256 94 95 static DEFINE_IDA(mmc_blk_ida); 96 static DEFINE_IDA(mmc_rpmb_ida); 97 98 /* 99 * There is one mmc_blk_data per slot. 100 */ 101 struct mmc_blk_data { 102 struct device *parent; 103 struct gendisk *disk; 104 struct mmc_queue queue; 105 struct list_head part; 106 struct list_head rpmbs; 107 108 unsigned int flags; 109 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 110 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 111 112 unsigned int usage; 113 unsigned int read_only; 114 unsigned int part_type; 115 unsigned int reset_done; 116 #define MMC_BLK_READ BIT(0) 117 #define MMC_BLK_WRITE BIT(1) 118 #define MMC_BLK_DISCARD BIT(2) 119 #define MMC_BLK_SECDISCARD BIT(3) 120 #define MMC_BLK_CQE_RECOVERY BIT(4) 121 122 /* 123 * Only set in main mmc_blk_data associated 124 * with mmc_card with dev_set_drvdata, and keeps 125 * track of the current selected device partition. 126 */ 127 unsigned int part_curr; 128 struct device_attribute force_ro; 129 struct device_attribute power_ro_lock; 130 int area_type; 131 132 /* debugfs files (only in main mmc_blk_data) */ 133 struct dentry *status_dentry; 134 struct dentry *ext_csd_dentry; 135 }; 136 137 /* Device type for RPMB character devices */ 138 static dev_t mmc_rpmb_devt; 139 140 /* Bus type for RPMB character devices */ 141 static struct bus_type mmc_rpmb_bus_type = { 142 .name = "mmc_rpmb", 143 }; 144 145 /** 146 * struct mmc_rpmb_data - special RPMB device type for these areas 147 * @dev: the device for the RPMB area 148 * @chrdev: character device for the RPMB area 149 * @id: unique device ID number 150 * @part_index: partition index (0 on first) 151 * @md: parent MMC block device 152 * @node: list item, so we can put this device on a list 153 */ 154 struct mmc_rpmb_data { 155 struct device dev; 156 struct cdev chrdev; 157 int id; 158 unsigned int part_index; 159 struct mmc_blk_data *md; 160 struct list_head node; 161 }; 162 163 static DEFINE_MUTEX(open_lock); 164 165 module_param(perdev_minors, int, 0444); 166 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 167 168 static inline int mmc_blk_part_switch(struct mmc_card *card, 169 unsigned int part_type); 170 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 171 struct mmc_card *card, 172 int disable_multi, 173 struct mmc_queue *mq); 174 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 175 176 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 177 { 178 struct mmc_blk_data *md; 179 180 mutex_lock(&open_lock); 181 md = disk->private_data; 182 if (md && md->usage == 0) 183 md = NULL; 184 if (md) 185 md->usage++; 186 mutex_unlock(&open_lock); 187 188 return md; 189 } 190 191 static inline int mmc_get_devidx(struct gendisk *disk) 192 { 193 int devidx = disk->first_minor / perdev_minors; 194 return devidx; 195 } 196 197 static void mmc_blk_put(struct mmc_blk_data *md) 198 { 199 mutex_lock(&open_lock); 200 md->usage--; 201 if (md->usage == 0) { 202 int devidx = mmc_get_devidx(md->disk); 203 blk_put_queue(md->queue.queue); 204 ida_simple_remove(&mmc_blk_ida, devidx); 205 put_disk(md->disk); 206 kfree(md); 207 } 208 mutex_unlock(&open_lock); 209 } 210 211 static ssize_t power_ro_lock_show(struct device *dev, 212 struct device_attribute *attr, char *buf) 213 { 214 int ret; 215 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 216 struct mmc_card *card = md->queue.card; 217 int locked = 0; 218 219 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 220 locked = 2; 221 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 222 locked = 1; 223 224 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 225 226 mmc_blk_put(md); 227 228 return ret; 229 } 230 231 static ssize_t power_ro_lock_store(struct device *dev, 232 struct device_attribute *attr, const char *buf, size_t count) 233 { 234 int ret; 235 struct mmc_blk_data *md, *part_md; 236 struct mmc_queue *mq; 237 struct request *req; 238 unsigned long set; 239 240 if (kstrtoul(buf, 0, &set)) 241 return -EINVAL; 242 243 if (set != 1) 244 return count; 245 246 md = mmc_blk_get(dev_to_disk(dev)); 247 mq = &md->queue; 248 249 /* Dispatch locking to the block layer */ 250 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0); 251 if (IS_ERR(req)) { 252 count = PTR_ERR(req); 253 goto out_put; 254 } 255 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 256 blk_execute_rq(mq->queue, NULL, req, 0); 257 ret = req_to_mmc_queue_req(req)->drv_op_result; 258 blk_put_request(req); 259 260 if (!ret) { 261 pr_info("%s: Locking boot partition ro until next power on\n", 262 md->disk->disk_name); 263 set_disk_ro(md->disk, 1); 264 265 list_for_each_entry(part_md, &md->part, part) 266 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 267 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 268 set_disk_ro(part_md->disk, 1); 269 } 270 } 271 out_put: 272 mmc_blk_put(md); 273 return count; 274 } 275 276 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 277 char *buf) 278 { 279 int ret; 280 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 281 282 ret = snprintf(buf, PAGE_SIZE, "%d\n", 283 get_disk_ro(dev_to_disk(dev)) ^ 284 md->read_only); 285 mmc_blk_put(md); 286 return ret; 287 } 288 289 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 290 const char *buf, size_t count) 291 { 292 int ret; 293 char *end; 294 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 295 unsigned long set = simple_strtoul(buf, &end, 0); 296 if (end == buf) { 297 ret = -EINVAL; 298 goto out; 299 } 300 301 set_disk_ro(dev_to_disk(dev), set || md->read_only); 302 ret = count; 303 out: 304 mmc_blk_put(md); 305 return ret; 306 } 307 308 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 309 { 310 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 311 int ret = -ENXIO; 312 313 mutex_lock(&block_mutex); 314 if (md) { 315 ret = 0; 316 if ((mode & FMODE_WRITE) && md->read_only) { 317 mmc_blk_put(md); 318 ret = -EROFS; 319 } 320 } 321 mutex_unlock(&block_mutex); 322 323 return ret; 324 } 325 326 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 327 { 328 struct mmc_blk_data *md = disk->private_data; 329 330 mutex_lock(&block_mutex); 331 mmc_blk_put(md); 332 mutex_unlock(&block_mutex); 333 } 334 335 static int 336 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 337 { 338 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 339 geo->heads = 4; 340 geo->sectors = 16; 341 return 0; 342 } 343 344 struct mmc_blk_ioc_data { 345 struct mmc_ioc_cmd ic; 346 unsigned char *buf; 347 u64 buf_bytes; 348 struct mmc_rpmb_data *rpmb; 349 }; 350 351 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 352 struct mmc_ioc_cmd __user *user) 353 { 354 struct mmc_blk_ioc_data *idata; 355 int err; 356 357 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 358 if (!idata) { 359 err = -ENOMEM; 360 goto out; 361 } 362 363 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 364 err = -EFAULT; 365 goto idata_err; 366 } 367 368 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 369 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 370 err = -EOVERFLOW; 371 goto idata_err; 372 } 373 374 if (!idata->buf_bytes) { 375 idata->buf = NULL; 376 return idata; 377 } 378 379 idata->buf = memdup_user((void __user *)(unsigned long) 380 idata->ic.data_ptr, idata->buf_bytes); 381 if (IS_ERR(idata->buf)) { 382 err = PTR_ERR(idata->buf); 383 goto idata_err; 384 } 385 386 return idata; 387 388 idata_err: 389 kfree(idata); 390 out: 391 return ERR_PTR(err); 392 } 393 394 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 395 struct mmc_blk_ioc_data *idata) 396 { 397 struct mmc_ioc_cmd *ic = &idata->ic; 398 399 if (copy_to_user(&(ic_ptr->response), ic->response, 400 sizeof(ic->response))) 401 return -EFAULT; 402 403 if (!idata->ic.write_flag) { 404 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 405 idata->buf, idata->buf_bytes)) 406 return -EFAULT; 407 } 408 409 return 0; 410 } 411 412 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 413 u32 *resp_errs) 414 { 415 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 416 int err = 0; 417 u32 status; 418 419 do { 420 bool done = time_after(jiffies, timeout); 421 422 err = __mmc_send_status(card, &status, 5); 423 if (err) { 424 dev_err(mmc_dev(card->host), 425 "error %d requesting status\n", err); 426 return err; 427 } 428 429 /* Accumulate any response error bits seen */ 430 if (resp_errs) 431 *resp_errs |= status; 432 433 /* 434 * Timeout if the device never becomes ready for data and never 435 * leaves the program state. 436 */ 437 if (done) { 438 dev_err(mmc_dev(card->host), 439 "Card stuck in wrong state! %s status: %#x\n", 440 __func__, status); 441 return -ETIMEDOUT; 442 } 443 } while (!mmc_ready_for_data(status)); 444 445 return err; 446 } 447 448 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 449 struct mmc_blk_ioc_data *idata) 450 { 451 struct mmc_command cmd = {}, sbc = {}; 452 struct mmc_data data = {}; 453 struct mmc_request mrq = {}; 454 struct scatterlist sg; 455 int err; 456 unsigned int target_part; 457 458 if (!card || !md || !idata) 459 return -EINVAL; 460 461 /* 462 * The RPMB accesses comes in from the character device, so we 463 * need to target these explicitly. Else we just target the 464 * partition type for the block device the ioctl() was issued 465 * on. 466 */ 467 if (idata->rpmb) { 468 /* Support multiple RPMB partitions */ 469 target_part = idata->rpmb->part_index; 470 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 471 } else { 472 target_part = md->part_type; 473 } 474 475 cmd.opcode = idata->ic.opcode; 476 cmd.arg = idata->ic.arg; 477 cmd.flags = idata->ic.flags; 478 479 if (idata->buf_bytes) { 480 data.sg = &sg; 481 data.sg_len = 1; 482 data.blksz = idata->ic.blksz; 483 data.blocks = idata->ic.blocks; 484 485 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 486 487 if (idata->ic.write_flag) 488 data.flags = MMC_DATA_WRITE; 489 else 490 data.flags = MMC_DATA_READ; 491 492 /* data.flags must already be set before doing this. */ 493 mmc_set_data_timeout(&data, card); 494 495 /* Allow overriding the timeout_ns for empirical tuning. */ 496 if (idata->ic.data_timeout_ns) 497 data.timeout_ns = idata->ic.data_timeout_ns; 498 499 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 500 /* 501 * Pretend this is a data transfer and rely on the 502 * host driver to compute timeout. When all host 503 * drivers support cmd.cmd_timeout for R1B, this 504 * can be changed to: 505 * 506 * mrq.data = NULL; 507 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 508 */ 509 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 510 } 511 512 mrq.data = &data; 513 } 514 515 mrq.cmd = &cmd; 516 517 err = mmc_blk_part_switch(card, target_part); 518 if (err) 519 return err; 520 521 if (idata->ic.is_acmd) { 522 err = mmc_app_cmd(card->host, card); 523 if (err) 524 return err; 525 } 526 527 if (idata->rpmb) { 528 sbc.opcode = MMC_SET_BLOCK_COUNT; 529 /* 530 * We don't do any blockcount validation because the max size 531 * may be increased by a future standard. We just copy the 532 * 'Reliable Write' bit here. 533 */ 534 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 535 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 536 mrq.sbc = &sbc; 537 } 538 539 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 540 (cmd.opcode == MMC_SWITCH)) 541 return mmc_sanitize(card); 542 543 mmc_wait_for_req(card->host, &mrq); 544 545 if (cmd.error) { 546 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 547 __func__, cmd.error); 548 return cmd.error; 549 } 550 if (data.error) { 551 dev_err(mmc_dev(card->host), "%s: data error %d\n", 552 __func__, data.error); 553 return data.error; 554 } 555 556 /* 557 * Make sure the cache of the PARTITION_CONFIG register and 558 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 559 * changed it successfully. 560 */ 561 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 562 (cmd.opcode == MMC_SWITCH)) { 563 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 564 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 565 566 /* 567 * Update cache so the next mmc_blk_part_switch call operates 568 * on up-to-date data. 569 */ 570 card->ext_csd.part_config = value; 571 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 572 } 573 574 /* 575 * According to the SD specs, some commands require a delay after 576 * issuing the command. 577 */ 578 if (idata->ic.postsleep_min_us) 579 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 580 581 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 582 583 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 584 /* 585 * Ensure RPMB/R1B command has completed by polling CMD13 586 * "Send Status". 587 */ 588 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL); 589 } 590 591 return err; 592 } 593 594 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 595 struct mmc_ioc_cmd __user *ic_ptr, 596 struct mmc_rpmb_data *rpmb) 597 { 598 struct mmc_blk_ioc_data *idata; 599 struct mmc_blk_ioc_data *idatas[1]; 600 struct mmc_queue *mq; 601 struct mmc_card *card; 602 int err = 0, ioc_err = 0; 603 struct request *req; 604 605 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 606 if (IS_ERR(idata)) 607 return PTR_ERR(idata); 608 /* This will be NULL on non-RPMB ioctl():s */ 609 idata->rpmb = rpmb; 610 611 card = md->queue.card; 612 if (IS_ERR(card)) { 613 err = PTR_ERR(card); 614 goto cmd_done; 615 } 616 617 /* 618 * Dispatch the ioctl() into the block request queue. 619 */ 620 mq = &md->queue; 621 req = blk_get_request(mq->queue, 622 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 623 if (IS_ERR(req)) { 624 err = PTR_ERR(req); 625 goto cmd_done; 626 } 627 idatas[0] = idata; 628 req_to_mmc_queue_req(req)->drv_op = 629 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 630 req_to_mmc_queue_req(req)->drv_op_data = idatas; 631 req_to_mmc_queue_req(req)->ioc_count = 1; 632 blk_execute_rq(mq->queue, NULL, req, 0); 633 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 634 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 635 blk_put_request(req); 636 637 cmd_done: 638 kfree(idata->buf); 639 kfree(idata); 640 return ioc_err ? ioc_err : err; 641 } 642 643 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 644 struct mmc_ioc_multi_cmd __user *user, 645 struct mmc_rpmb_data *rpmb) 646 { 647 struct mmc_blk_ioc_data **idata = NULL; 648 struct mmc_ioc_cmd __user *cmds = user->cmds; 649 struct mmc_card *card; 650 struct mmc_queue *mq; 651 int i, err = 0, ioc_err = 0; 652 __u64 num_of_cmds; 653 struct request *req; 654 655 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 656 sizeof(num_of_cmds))) 657 return -EFAULT; 658 659 if (!num_of_cmds) 660 return 0; 661 662 if (num_of_cmds > MMC_IOC_MAX_CMDS) 663 return -EINVAL; 664 665 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 666 if (!idata) 667 return -ENOMEM; 668 669 for (i = 0; i < num_of_cmds; i++) { 670 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 671 if (IS_ERR(idata[i])) { 672 err = PTR_ERR(idata[i]); 673 num_of_cmds = i; 674 goto cmd_err; 675 } 676 /* This will be NULL on non-RPMB ioctl():s */ 677 idata[i]->rpmb = rpmb; 678 } 679 680 card = md->queue.card; 681 if (IS_ERR(card)) { 682 err = PTR_ERR(card); 683 goto cmd_err; 684 } 685 686 687 /* 688 * Dispatch the ioctl()s into the block request queue. 689 */ 690 mq = &md->queue; 691 req = blk_get_request(mq->queue, 692 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 693 if (IS_ERR(req)) { 694 err = PTR_ERR(req); 695 goto cmd_err; 696 } 697 req_to_mmc_queue_req(req)->drv_op = 698 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 699 req_to_mmc_queue_req(req)->drv_op_data = idata; 700 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 701 blk_execute_rq(mq->queue, NULL, req, 0); 702 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 703 704 /* copy to user if data and response */ 705 for (i = 0; i < num_of_cmds && !err; i++) 706 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 707 708 blk_put_request(req); 709 710 cmd_err: 711 for (i = 0; i < num_of_cmds; i++) { 712 kfree(idata[i]->buf); 713 kfree(idata[i]); 714 } 715 kfree(idata); 716 return ioc_err ? ioc_err : err; 717 } 718 719 static int mmc_blk_check_blkdev(struct block_device *bdev) 720 { 721 /* 722 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 723 * whole block device, not on a partition. This prevents overspray 724 * between sibling partitions. 725 */ 726 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 727 return -EPERM; 728 return 0; 729 } 730 731 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 732 unsigned int cmd, unsigned long arg) 733 { 734 struct mmc_blk_data *md; 735 int ret; 736 737 switch (cmd) { 738 case MMC_IOC_CMD: 739 ret = mmc_blk_check_blkdev(bdev); 740 if (ret) 741 return ret; 742 md = mmc_blk_get(bdev->bd_disk); 743 if (!md) 744 return -EINVAL; 745 ret = mmc_blk_ioctl_cmd(md, 746 (struct mmc_ioc_cmd __user *)arg, 747 NULL); 748 mmc_blk_put(md); 749 return ret; 750 case MMC_IOC_MULTI_CMD: 751 ret = mmc_blk_check_blkdev(bdev); 752 if (ret) 753 return ret; 754 md = mmc_blk_get(bdev->bd_disk); 755 if (!md) 756 return -EINVAL; 757 ret = mmc_blk_ioctl_multi_cmd(md, 758 (struct mmc_ioc_multi_cmd __user *)arg, 759 NULL); 760 mmc_blk_put(md); 761 return ret; 762 default: 763 return -EINVAL; 764 } 765 } 766 767 #ifdef CONFIG_COMPAT 768 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 769 unsigned int cmd, unsigned long arg) 770 { 771 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 772 } 773 #endif 774 775 static const struct block_device_operations mmc_bdops = { 776 .open = mmc_blk_open, 777 .release = mmc_blk_release, 778 .getgeo = mmc_blk_getgeo, 779 .owner = THIS_MODULE, 780 .ioctl = mmc_blk_ioctl, 781 #ifdef CONFIG_COMPAT 782 .compat_ioctl = mmc_blk_compat_ioctl, 783 #endif 784 }; 785 786 static int mmc_blk_part_switch_pre(struct mmc_card *card, 787 unsigned int part_type) 788 { 789 int ret = 0; 790 791 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 792 if (card->ext_csd.cmdq_en) { 793 ret = mmc_cmdq_disable(card); 794 if (ret) 795 return ret; 796 } 797 mmc_retune_pause(card->host); 798 } 799 800 return ret; 801 } 802 803 static int mmc_blk_part_switch_post(struct mmc_card *card, 804 unsigned int part_type) 805 { 806 int ret = 0; 807 808 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 809 mmc_retune_unpause(card->host); 810 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 811 ret = mmc_cmdq_enable(card); 812 } 813 814 return ret; 815 } 816 817 static inline int mmc_blk_part_switch(struct mmc_card *card, 818 unsigned int part_type) 819 { 820 int ret = 0; 821 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 822 823 if (main_md->part_curr == part_type) 824 return 0; 825 826 if (mmc_card_mmc(card)) { 827 u8 part_config = card->ext_csd.part_config; 828 829 ret = mmc_blk_part_switch_pre(card, part_type); 830 if (ret) 831 return ret; 832 833 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 834 part_config |= part_type; 835 836 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 837 EXT_CSD_PART_CONFIG, part_config, 838 card->ext_csd.part_time); 839 if (ret) { 840 mmc_blk_part_switch_post(card, part_type); 841 return ret; 842 } 843 844 card->ext_csd.part_config = part_config; 845 846 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 847 } 848 849 main_md->part_curr = part_type; 850 return ret; 851 } 852 853 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 854 { 855 int err; 856 u32 result; 857 __be32 *blocks; 858 859 struct mmc_request mrq = {}; 860 struct mmc_command cmd = {}; 861 struct mmc_data data = {}; 862 863 struct scatterlist sg; 864 865 cmd.opcode = MMC_APP_CMD; 866 cmd.arg = card->rca << 16; 867 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 868 869 err = mmc_wait_for_cmd(card->host, &cmd, 0); 870 if (err) 871 return err; 872 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 873 return -EIO; 874 875 memset(&cmd, 0, sizeof(struct mmc_command)); 876 877 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 878 cmd.arg = 0; 879 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 880 881 data.blksz = 4; 882 data.blocks = 1; 883 data.flags = MMC_DATA_READ; 884 data.sg = &sg; 885 data.sg_len = 1; 886 mmc_set_data_timeout(&data, card); 887 888 mrq.cmd = &cmd; 889 mrq.data = &data; 890 891 blocks = kmalloc(4, GFP_KERNEL); 892 if (!blocks) 893 return -ENOMEM; 894 895 sg_init_one(&sg, blocks, 4); 896 897 mmc_wait_for_req(card->host, &mrq); 898 899 result = ntohl(*blocks); 900 kfree(blocks); 901 902 if (cmd.error || data.error) 903 return -EIO; 904 905 *written_blocks = result; 906 907 return 0; 908 } 909 910 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 911 { 912 if (host->actual_clock) 913 return host->actual_clock / 1000; 914 915 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 916 if (host->ios.clock) 917 return host->ios.clock / 2000; 918 919 /* How can there be no clock */ 920 WARN_ON_ONCE(1); 921 return 100; /* 100 kHz is minimum possible value */ 922 } 923 924 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 925 struct mmc_data *data) 926 { 927 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 928 unsigned int khz; 929 930 if (data->timeout_clks) { 931 khz = mmc_blk_clock_khz(host); 932 ms += DIV_ROUND_UP(data->timeout_clks, khz); 933 } 934 935 return ms; 936 } 937 938 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 939 int type) 940 { 941 int err; 942 943 if (md->reset_done & type) 944 return -EEXIST; 945 946 md->reset_done |= type; 947 err = mmc_hw_reset(host); 948 /* Ensure we switch back to the correct partition */ 949 if (err != -EOPNOTSUPP) { 950 struct mmc_blk_data *main_md = 951 dev_get_drvdata(&host->card->dev); 952 int part_err; 953 954 main_md->part_curr = main_md->part_type; 955 part_err = mmc_blk_part_switch(host->card, md->part_type); 956 if (part_err) { 957 /* 958 * We have failed to get back into the correct 959 * partition, so we need to abort the whole request. 960 */ 961 return -ENODEV; 962 } 963 } 964 return err; 965 } 966 967 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 968 { 969 md->reset_done &= ~type; 970 } 971 972 /* 973 * The non-block commands come back from the block layer after it queued it and 974 * processed it with all other requests and then they get issued in this 975 * function. 976 */ 977 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 978 { 979 struct mmc_queue_req *mq_rq; 980 struct mmc_card *card = mq->card; 981 struct mmc_blk_data *md = mq->blkdata; 982 struct mmc_blk_ioc_data **idata; 983 bool rpmb_ioctl; 984 u8 **ext_csd; 985 u32 status; 986 int ret; 987 int i; 988 989 mq_rq = req_to_mmc_queue_req(req); 990 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 991 992 switch (mq_rq->drv_op) { 993 case MMC_DRV_OP_IOCTL: 994 case MMC_DRV_OP_IOCTL_RPMB: 995 idata = mq_rq->drv_op_data; 996 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 997 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 998 if (ret) 999 break; 1000 } 1001 /* Always switch back to main area after RPMB access */ 1002 if (rpmb_ioctl) 1003 mmc_blk_part_switch(card, 0); 1004 break; 1005 case MMC_DRV_OP_BOOT_WP: 1006 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1007 card->ext_csd.boot_ro_lock | 1008 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1009 card->ext_csd.part_time); 1010 if (ret) 1011 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1012 md->disk->disk_name, ret); 1013 else 1014 card->ext_csd.boot_ro_lock |= 1015 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1016 break; 1017 case MMC_DRV_OP_GET_CARD_STATUS: 1018 ret = mmc_send_status(card, &status); 1019 if (!ret) 1020 ret = status; 1021 break; 1022 case MMC_DRV_OP_GET_EXT_CSD: 1023 ext_csd = mq_rq->drv_op_data; 1024 ret = mmc_get_ext_csd(card, ext_csd); 1025 break; 1026 default: 1027 pr_err("%s: unknown driver specific operation\n", 1028 md->disk->disk_name); 1029 ret = -EINVAL; 1030 break; 1031 } 1032 mq_rq->drv_op_result = ret; 1033 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1034 } 1035 1036 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1037 { 1038 struct mmc_blk_data *md = mq->blkdata; 1039 struct mmc_card *card = md->queue.card; 1040 unsigned int from, nr; 1041 int err = 0, type = MMC_BLK_DISCARD; 1042 blk_status_t status = BLK_STS_OK; 1043 1044 if (!mmc_can_erase(card)) { 1045 status = BLK_STS_NOTSUPP; 1046 goto fail; 1047 } 1048 1049 from = blk_rq_pos(req); 1050 nr = blk_rq_sectors(req); 1051 1052 do { 1053 err = 0; 1054 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1055 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1056 INAND_CMD38_ARG_EXT_CSD, 1057 card->erase_arg == MMC_TRIM_ARG ? 1058 INAND_CMD38_ARG_TRIM : 1059 INAND_CMD38_ARG_ERASE, 1060 card->ext_csd.generic_cmd6_time); 1061 } 1062 if (!err) 1063 err = mmc_erase(card, from, nr, card->erase_arg); 1064 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1065 if (err) 1066 status = BLK_STS_IOERR; 1067 else 1068 mmc_blk_reset_success(md, type); 1069 fail: 1070 blk_mq_end_request(req, status); 1071 } 1072 1073 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1074 struct request *req) 1075 { 1076 struct mmc_blk_data *md = mq->blkdata; 1077 struct mmc_card *card = md->queue.card; 1078 unsigned int from, nr, arg; 1079 int err = 0, type = MMC_BLK_SECDISCARD; 1080 blk_status_t status = BLK_STS_OK; 1081 1082 if (!(mmc_can_secure_erase_trim(card))) { 1083 status = BLK_STS_NOTSUPP; 1084 goto out; 1085 } 1086 1087 from = blk_rq_pos(req); 1088 nr = blk_rq_sectors(req); 1089 1090 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1091 arg = MMC_SECURE_TRIM1_ARG; 1092 else 1093 arg = MMC_SECURE_ERASE_ARG; 1094 1095 retry: 1096 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1097 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1098 INAND_CMD38_ARG_EXT_CSD, 1099 arg == MMC_SECURE_TRIM1_ARG ? 1100 INAND_CMD38_ARG_SECTRIM1 : 1101 INAND_CMD38_ARG_SECERASE, 1102 card->ext_csd.generic_cmd6_time); 1103 if (err) 1104 goto out_retry; 1105 } 1106 1107 err = mmc_erase(card, from, nr, arg); 1108 if (err == -EIO) 1109 goto out_retry; 1110 if (err) { 1111 status = BLK_STS_IOERR; 1112 goto out; 1113 } 1114 1115 if (arg == MMC_SECURE_TRIM1_ARG) { 1116 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1117 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1118 INAND_CMD38_ARG_EXT_CSD, 1119 INAND_CMD38_ARG_SECTRIM2, 1120 card->ext_csd.generic_cmd6_time); 1121 if (err) 1122 goto out_retry; 1123 } 1124 1125 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1126 if (err == -EIO) 1127 goto out_retry; 1128 if (err) { 1129 status = BLK_STS_IOERR; 1130 goto out; 1131 } 1132 } 1133 1134 out_retry: 1135 if (err && !mmc_blk_reset(md, card->host, type)) 1136 goto retry; 1137 if (!err) 1138 mmc_blk_reset_success(md, type); 1139 out: 1140 blk_mq_end_request(req, status); 1141 } 1142 1143 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1144 { 1145 struct mmc_blk_data *md = mq->blkdata; 1146 struct mmc_card *card = md->queue.card; 1147 int ret = 0; 1148 1149 ret = mmc_flush_cache(card); 1150 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1151 } 1152 1153 /* 1154 * Reformat current write as a reliable write, supporting 1155 * both legacy and the enhanced reliable write MMC cards. 1156 * In each transfer we'll handle only as much as a single 1157 * reliable write can handle, thus finish the request in 1158 * partial completions. 1159 */ 1160 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1161 struct mmc_card *card, 1162 struct request *req) 1163 { 1164 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1165 /* Legacy mode imposes restrictions on transfers. */ 1166 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1167 brq->data.blocks = 1; 1168 1169 if (brq->data.blocks > card->ext_csd.rel_sectors) 1170 brq->data.blocks = card->ext_csd.rel_sectors; 1171 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1172 brq->data.blocks = 1; 1173 } 1174 } 1175 1176 #define CMD_ERRORS_EXCL_OOR \ 1177 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1178 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1179 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1180 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1181 R1_CC_ERROR | /* Card controller error */ \ 1182 R1_ERROR) /* General/unknown error */ 1183 1184 #define CMD_ERRORS \ 1185 (CMD_ERRORS_EXCL_OOR | \ 1186 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1187 1188 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1189 { 1190 u32 val; 1191 1192 /* 1193 * Per the SD specification(physical layer version 4.10)[1], 1194 * section 4.3.3, it explicitly states that "When the last 1195 * block of user area is read using CMD18, the host should 1196 * ignore OUT_OF_RANGE error that may occur even the sequence 1197 * is correct". And JESD84-B51 for eMMC also has a similar 1198 * statement on section 6.8.3. 1199 * 1200 * Multiple block read/write could be done by either predefined 1201 * method, namely CMD23, or open-ending mode. For open-ending mode, 1202 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1203 * 1204 * However the spec[1] doesn't tell us whether we should also 1205 * ignore that for predefined method. But per the spec[1], section 1206 * 4.15 Set Block Count Command, it says"If illegal block count 1207 * is set, out of range error will be indicated during read/write 1208 * operation (For example, data transfer is stopped at user area 1209 * boundary)." In another word, we could expect a out of range error 1210 * in the response for the following CMD18/25. And if argument of 1211 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1212 * we could also expect to get a -ETIMEDOUT or any error number from 1213 * the host drivers due to missing data response(for write)/data(for 1214 * read), as the cards will stop the data transfer by itself per the 1215 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1216 */ 1217 1218 if (!brq->stop.error) { 1219 bool oor_with_open_end; 1220 /* If there is no error yet, check R1 response */ 1221 1222 val = brq->stop.resp[0] & CMD_ERRORS; 1223 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1224 1225 if (val && !oor_with_open_end) 1226 brq->stop.error = -EIO; 1227 } 1228 } 1229 1230 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1231 int disable_multi, bool *do_rel_wr_p, 1232 bool *do_data_tag_p) 1233 { 1234 struct mmc_blk_data *md = mq->blkdata; 1235 struct mmc_card *card = md->queue.card; 1236 struct mmc_blk_request *brq = &mqrq->brq; 1237 struct request *req = mmc_queue_req_to_req(mqrq); 1238 bool do_rel_wr, do_data_tag; 1239 1240 /* 1241 * Reliable writes are used to implement Forced Unit Access and 1242 * are supported only on MMCs. 1243 */ 1244 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1245 rq_data_dir(req) == WRITE && 1246 (md->flags & MMC_BLK_REL_WR); 1247 1248 memset(brq, 0, sizeof(struct mmc_blk_request)); 1249 1250 brq->mrq.data = &brq->data; 1251 brq->mrq.tag = req->tag; 1252 1253 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1254 brq->stop.arg = 0; 1255 1256 if (rq_data_dir(req) == READ) { 1257 brq->data.flags = MMC_DATA_READ; 1258 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1259 } else { 1260 brq->data.flags = MMC_DATA_WRITE; 1261 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1262 } 1263 1264 brq->data.blksz = 512; 1265 brq->data.blocks = blk_rq_sectors(req); 1266 brq->data.blk_addr = blk_rq_pos(req); 1267 1268 /* 1269 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1270 * The eMMC will give "high" priority tasks priority over "simple" 1271 * priority tasks. Here we always set "simple" priority by not setting 1272 * MMC_DATA_PRIO. 1273 */ 1274 1275 /* 1276 * The block layer doesn't support all sector count 1277 * restrictions, so we need to be prepared for too big 1278 * requests. 1279 */ 1280 if (brq->data.blocks > card->host->max_blk_count) 1281 brq->data.blocks = card->host->max_blk_count; 1282 1283 if (brq->data.blocks > 1) { 1284 /* 1285 * Some SD cards in SPI mode return a CRC error or even lock up 1286 * completely when trying to read the last block using a 1287 * multiblock read command. 1288 */ 1289 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1290 (blk_rq_pos(req) + blk_rq_sectors(req) == 1291 get_capacity(md->disk))) 1292 brq->data.blocks--; 1293 1294 /* 1295 * After a read error, we redo the request one sector 1296 * at a time in order to accurately determine which 1297 * sectors can be read successfully. 1298 */ 1299 if (disable_multi) 1300 brq->data.blocks = 1; 1301 1302 /* 1303 * Some controllers have HW issues while operating 1304 * in multiple I/O mode 1305 */ 1306 if (card->host->ops->multi_io_quirk) 1307 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1308 (rq_data_dir(req) == READ) ? 1309 MMC_DATA_READ : MMC_DATA_WRITE, 1310 brq->data.blocks); 1311 } 1312 1313 if (do_rel_wr) { 1314 mmc_apply_rel_rw(brq, card, req); 1315 brq->data.flags |= MMC_DATA_REL_WR; 1316 } 1317 1318 /* 1319 * Data tag is used only during writing meta data to speed 1320 * up write and any subsequent read of this meta data 1321 */ 1322 do_data_tag = card->ext_csd.data_tag_unit_size && 1323 (req->cmd_flags & REQ_META) && 1324 (rq_data_dir(req) == WRITE) && 1325 ((brq->data.blocks * brq->data.blksz) >= 1326 card->ext_csd.data_tag_unit_size); 1327 1328 if (do_data_tag) 1329 brq->data.flags |= MMC_DATA_DAT_TAG; 1330 1331 mmc_set_data_timeout(&brq->data, card); 1332 1333 brq->data.sg = mqrq->sg; 1334 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1335 1336 /* 1337 * Adjust the sg list so it is the same size as the 1338 * request. 1339 */ 1340 if (brq->data.blocks != blk_rq_sectors(req)) { 1341 int i, data_size = brq->data.blocks << 9; 1342 struct scatterlist *sg; 1343 1344 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1345 data_size -= sg->length; 1346 if (data_size <= 0) { 1347 sg->length += data_size; 1348 i++; 1349 break; 1350 } 1351 } 1352 brq->data.sg_len = i; 1353 } 1354 1355 if (do_rel_wr_p) 1356 *do_rel_wr_p = do_rel_wr; 1357 1358 if (do_data_tag_p) 1359 *do_data_tag_p = do_data_tag; 1360 } 1361 1362 #define MMC_CQE_RETRIES 2 1363 1364 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1365 { 1366 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1367 struct mmc_request *mrq = &mqrq->brq.mrq; 1368 struct request_queue *q = req->q; 1369 struct mmc_host *host = mq->card->host; 1370 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1371 unsigned long flags; 1372 bool put_card; 1373 int err; 1374 1375 mmc_cqe_post_req(host, mrq); 1376 1377 if (mrq->cmd && mrq->cmd->error) 1378 err = mrq->cmd->error; 1379 else if (mrq->data && mrq->data->error) 1380 err = mrq->data->error; 1381 else 1382 err = 0; 1383 1384 if (err) { 1385 if (mqrq->retries++ < MMC_CQE_RETRIES) 1386 blk_mq_requeue_request(req, true); 1387 else 1388 blk_mq_end_request(req, BLK_STS_IOERR); 1389 } else if (mrq->data) { 1390 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1391 blk_mq_requeue_request(req, true); 1392 else 1393 __blk_mq_end_request(req, BLK_STS_OK); 1394 } else { 1395 blk_mq_end_request(req, BLK_STS_OK); 1396 } 1397 1398 spin_lock_irqsave(&mq->lock, flags); 1399 1400 mq->in_flight[issue_type] -= 1; 1401 1402 put_card = (mmc_tot_in_flight(mq) == 0); 1403 1404 mmc_cqe_check_busy(mq); 1405 1406 spin_unlock_irqrestore(&mq->lock, flags); 1407 1408 if (!mq->cqe_busy) 1409 blk_mq_run_hw_queues(q, true); 1410 1411 if (put_card) 1412 mmc_put_card(mq->card, &mq->ctx); 1413 } 1414 1415 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1416 { 1417 struct mmc_card *card = mq->card; 1418 struct mmc_host *host = card->host; 1419 int err; 1420 1421 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1422 1423 err = mmc_cqe_recovery(host); 1424 if (err) 1425 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1426 else 1427 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1428 1429 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1430 } 1431 1432 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1433 { 1434 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1435 brq.mrq); 1436 struct request *req = mmc_queue_req_to_req(mqrq); 1437 struct request_queue *q = req->q; 1438 struct mmc_queue *mq = q->queuedata; 1439 1440 /* 1441 * Block layer timeouts race with completions which means the normal 1442 * completion path cannot be used during recovery. 1443 */ 1444 if (mq->in_recovery) 1445 mmc_blk_cqe_complete_rq(mq, req); 1446 else if (likely(!blk_should_fake_timeout(req->q))) 1447 blk_mq_complete_request(req); 1448 } 1449 1450 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1451 { 1452 mrq->done = mmc_blk_cqe_req_done; 1453 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1454 1455 return mmc_cqe_start_req(host, mrq); 1456 } 1457 1458 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1459 struct request *req) 1460 { 1461 struct mmc_blk_request *brq = &mqrq->brq; 1462 1463 memset(brq, 0, sizeof(*brq)); 1464 1465 brq->mrq.cmd = &brq->cmd; 1466 brq->mrq.tag = req->tag; 1467 1468 return &brq->mrq; 1469 } 1470 1471 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1472 { 1473 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1474 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1475 1476 mrq->cmd->opcode = MMC_SWITCH; 1477 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1478 (EXT_CSD_FLUSH_CACHE << 16) | 1479 (1 << 8) | 1480 EXT_CSD_CMD_SET_NORMAL; 1481 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1482 1483 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1484 } 1485 1486 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1487 { 1488 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1489 struct mmc_host *host = mq->card->host; 1490 int err; 1491 1492 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1493 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1494 mmc_pre_req(host, &mqrq->brq.mrq); 1495 1496 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1497 if (err) 1498 mmc_post_req(host, &mqrq->brq.mrq, err); 1499 1500 return err; 1501 } 1502 1503 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1504 { 1505 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1506 struct mmc_host *host = mq->card->host; 1507 1508 if (host->hsq_enabled) 1509 return mmc_blk_hsq_issue_rw_rq(mq, req); 1510 1511 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1512 1513 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1514 } 1515 1516 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1517 struct mmc_card *card, 1518 int disable_multi, 1519 struct mmc_queue *mq) 1520 { 1521 u32 readcmd, writecmd; 1522 struct mmc_blk_request *brq = &mqrq->brq; 1523 struct request *req = mmc_queue_req_to_req(mqrq); 1524 struct mmc_blk_data *md = mq->blkdata; 1525 bool do_rel_wr, do_data_tag; 1526 1527 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1528 1529 brq->mrq.cmd = &brq->cmd; 1530 1531 brq->cmd.arg = blk_rq_pos(req); 1532 if (!mmc_card_blockaddr(card)) 1533 brq->cmd.arg <<= 9; 1534 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1535 1536 if (brq->data.blocks > 1 || do_rel_wr) { 1537 /* SPI multiblock writes terminate using a special 1538 * token, not a STOP_TRANSMISSION request. 1539 */ 1540 if (!mmc_host_is_spi(card->host) || 1541 rq_data_dir(req) == READ) 1542 brq->mrq.stop = &brq->stop; 1543 readcmd = MMC_READ_MULTIPLE_BLOCK; 1544 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1545 } else { 1546 brq->mrq.stop = NULL; 1547 readcmd = MMC_READ_SINGLE_BLOCK; 1548 writecmd = MMC_WRITE_BLOCK; 1549 } 1550 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1551 1552 /* 1553 * Pre-defined multi-block transfers are preferable to 1554 * open ended-ones (and necessary for reliable writes). 1555 * However, it is not sufficient to just send CMD23, 1556 * and avoid the final CMD12, as on an error condition 1557 * CMD12 (stop) needs to be sent anyway. This, coupled 1558 * with Auto-CMD23 enhancements provided by some 1559 * hosts, means that the complexity of dealing 1560 * with this is best left to the host. If CMD23 is 1561 * supported by card and host, we'll fill sbc in and let 1562 * the host deal with handling it correctly. This means 1563 * that for hosts that don't expose MMC_CAP_CMD23, no 1564 * change of behavior will be observed. 1565 * 1566 * N.B: Some MMC cards experience perf degradation. 1567 * We'll avoid using CMD23-bounded multiblock writes for 1568 * these, while retaining features like reliable writes. 1569 */ 1570 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1571 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1572 do_data_tag)) { 1573 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1574 brq->sbc.arg = brq->data.blocks | 1575 (do_rel_wr ? (1 << 31) : 0) | 1576 (do_data_tag ? (1 << 29) : 0); 1577 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1578 brq->mrq.sbc = &brq->sbc; 1579 } 1580 } 1581 1582 #define MMC_MAX_RETRIES 5 1583 #define MMC_DATA_RETRIES 2 1584 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1585 1586 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1587 { 1588 struct mmc_command cmd = { 1589 .opcode = MMC_STOP_TRANSMISSION, 1590 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1591 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1592 .busy_timeout = timeout, 1593 }; 1594 1595 return mmc_wait_for_cmd(card->host, &cmd, 5); 1596 } 1597 1598 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1599 { 1600 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1601 struct mmc_blk_request *brq = &mqrq->brq; 1602 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1603 int err; 1604 1605 mmc_retune_hold_now(card->host); 1606 1607 mmc_blk_send_stop(card, timeout); 1608 1609 err = card_busy_detect(card, timeout, NULL); 1610 1611 mmc_retune_release(card->host); 1612 1613 return err; 1614 } 1615 1616 #define MMC_READ_SINGLE_RETRIES 2 1617 1618 /* Single sector read during recovery */ 1619 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1620 { 1621 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1622 struct mmc_request *mrq = &mqrq->brq.mrq; 1623 struct mmc_card *card = mq->card; 1624 struct mmc_host *host = card->host; 1625 blk_status_t error = BLK_STS_OK; 1626 int retries = 0; 1627 1628 do { 1629 u32 status; 1630 int err; 1631 1632 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1633 1634 mmc_wait_for_req(host, mrq); 1635 1636 err = mmc_send_status(card, &status); 1637 if (err) 1638 goto error_exit; 1639 1640 if (!mmc_host_is_spi(host) && 1641 !mmc_ready_for_data(status)) { 1642 err = mmc_blk_fix_state(card, req); 1643 if (err) 1644 goto error_exit; 1645 } 1646 1647 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES) 1648 continue; 1649 1650 retries = 0; 1651 1652 if (mrq->cmd->error || 1653 mrq->data->error || 1654 (!mmc_host_is_spi(host) && 1655 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1656 error = BLK_STS_IOERR; 1657 else 1658 error = BLK_STS_OK; 1659 1660 } while (blk_update_request(req, error, 512)); 1661 1662 return; 1663 1664 error_exit: 1665 mrq->data->bytes_xfered = 0; 1666 blk_update_request(req, BLK_STS_IOERR, 512); 1667 /* Let it try the remaining request again */ 1668 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1669 mqrq->retries = MMC_MAX_RETRIES - 1; 1670 } 1671 1672 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1673 { 1674 return !!brq->mrq.sbc; 1675 } 1676 1677 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1678 { 1679 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1680 } 1681 1682 /* 1683 * Check for errors the host controller driver might not have seen such as 1684 * response mode errors or invalid card state. 1685 */ 1686 static bool mmc_blk_status_error(struct request *req, u32 status) 1687 { 1688 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1689 struct mmc_blk_request *brq = &mqrq->brq; 1690 struct mmc_queue *mq = req->q->queuedata; 1691 u32 stop_err_bits; 1692 1693 if (mmc_host_is_spi(mq->card->host)) 1694 return false; 1695 1696 stop_err_bits = mmc_blk_stop_err_bits(brq); 1697 1698 return brq->cmd.resp[0] & CMD_ERRORS || 1699 brq->stop.resp[0] & stop_err_bits || 1700 status & stop_err_bits || 1701 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1702 } 1703 1704 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1705 { 1706 return !brq->sbc.error && !brq->cmd.error && 1707 !(brq->cmd.resp[0] & CMD_ERRORS); 1708 } 1709 1710 /* 1711 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1712 * policy: 1713 * 1. A request that has transferred at least some data is considered 1714 * successful and will be requeued if there is remaining data to 1715 * transfer. 1716 * 2. Otherwise the number of retries is incremented and the request 1717 * will be requeued if there are remaining retries. 1718 * 3. Otherwise the request will be errored out. 1719 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1720 * mqrq->retries. So there are only 4 possible actions here: 1721 * 1. do not accept the bytes_xfered value i.e. set it to zero 1722 * 2. change mqrq->retries to determine the number of retries 1723 * 3. try to reset the card 1724 * 4. read one sector at a time 1725 */ 1726 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1727 { 1728 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1729 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1730 struct mmc_blk_request *brq = &mqrq->brq; 1731 struct mmc_blk_data *md = mq->blkdata; 1732 struct mmc_card *card = mq->card; 1733 u32 status; 1734 u32 blocks; 1735 int err; 1736 1737 /* 1738 * Some errors the host driver might not have seen. Set the number of 1739 * bytes transferred to zero in that case. 1740 */ 1741 err = __mmc_send_status(card, &status, 0); 1742 if (err || mmc_blk_status_error(req, status)) 1743 brq->data.bytes_xfered = 0; 1744 1745 mmc_retune_release(card->host); 1746 1747 /* 1748 * Try again to get the status. This also provides an opportunity for 1749 * re-tuning. 1750 */ 1751 if (err) 1752 err = __mmc_send_status(card, &status, 0); 1753 1754 /* 1755 * Nothing more to do after the number of bytes transferred has been 1756 * updated and there is no card. 1757 */ 1758 if (err && mmc_detect_card_removed(card->host)) 1759 return; 1760 1761 /* Try to get back to "tran" state */ 1762 if (!mmc_host_is_spi(mq->card->host) && 1763 (err || !mmc_ready_for_data(status))) 1764 err = mmc_blk_fix_state(mq->card, req); 1765 1766 /* 1767 * Special case for SD cards where the card might record the number of 1768 * blocks written. 1769 */ 1770 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1771 rq_data_dir(req) == WRITE) { 1772 if (mmc_sd_num_wr_blocks(card, &blocks)) 1773 brq->data.bytes_xfered = 0; 1774 else 1775 brq->data.bytes_xfered = blocks << 9; 1776 } 1777 1778 /* Reset if the card is in a bad state */ 1779 if (!mmc_host_is_spi(mq->card->host) && 1780 err && mmc_blk_reset(md, card->host, type)) { 1781 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name); 1782 mqrq->retries = MMC_NO_RETRIES; 1783 return; 1784 } 1785 1786 /* 1787 * If anything was done, just return and if there is anything remaining 1788 * on the request it will get requeued. 1789 */ 1790 if (brq->data.bytes_xfered) 1791 return; 1792 1793 /* Reset before last retry */ 1794 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1795 mmc_blk_reset(md, card->host, type); 1796 1797 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1798 if (brq->sbc.error || brq->cmd.error) 1799 return; 1800 1801 /* Reduce the remaining retries for data errors */ 1802 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1803 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1804 return; 1805 } 1806 1807 /* FIXME: Missing single sector read for large sector size */ 1808 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1809 brq->data.blocks > 1) { 1810 /* Read one sector at a time */ 1811 mmc_blk_read_single(mq, req); 1812 return; 1813 } 1814 } 1815 1816 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1817 { 1818 mmc_blk_eval_resp_error(brq); 1819 1820 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1821 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1822 } 1823 1824 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1825 { 1826 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1827 u32 status = 0; 1828 int err; 1829 1830 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) 1831 return 0; 1832 1833 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status); 1834 1835 /* 1836 * Do not assume data transferred correctly if there are any error bits 1837 * set. 1838 */ 1839 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1840 mqrq->brq.data.bytes_xfered = 0; 1841 err = err ? err : -EIO; 1842 } 1843 1844 /* Copy the exception bit so it will be seen later on */ 1845 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT) 1846 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1847 1848 return err; 1849 } 1850 1851 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1852 struct request *req) 1853 { 1854 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1855 1856 mmc_blk_reset_success(mq->blkdata, type); 1857 } 1858 1859 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1860 { 1861 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1862 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1863 1864 if (nr_bytes) { 1865 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1866 blk_mq_requeue_request(req, true); 1867 else 1868 __blk_mq_end_request(req, BLK_STS_OK); 1869 } else if (!blk_rq_bytes(req)) { 1870 __blk_mq_end_request(req, BLK_STS_IOERR); 1871 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1872 blk_mq_requeue_request(req, true); 1873 } else { 1874 if (mmc_card_removed(mq->card)) 1875 req->rq_flags |= RQF_QUIET; 1876 blk_mq_end_request(req, BLK_STS_IOERR); 1877 } 1878 } 1879 1880 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1881 struct mmc_queue_req *mqrq) 1882 { 1883 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1884 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1885 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1886 } 1887 1888 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 1889 struct mmc_queue_req *mqrq) 1890 { 1891 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 1892 mmc_run_bkops(mq->card); 1893 } 1894 1895 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 1896 { 1897 struct mmc_queue_req *mqrq = 1898 container_of(mrq, struct mmc_queue_req, brq.mrq); 1899 struct request *req = mmc_queue_req_to_req(mqrq); 1900 struct request_queue *q = req->q; 1901 struct mmc_queue *mq = q->queuedata; 1902 struct mmc_host *host = mq->card->host; 1903 unsigned long flags; 1904 1905 if (mmc_blk_rq_error(&mqrq->brq) || 1906 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 1907 spin_lock_irqsave(&mq->lock, flags); 1908 mq->recovery_needed = true; 1909 mq->recovery_req = req; 1910 spin_unlock_irqrestore(&mq->lock, flags); 1911 1912 host->cqe_ops->cqe_recovery_start(host); 1913 1914 schedule_work(&mq->recovery_work); 1915 return; 1916 } 1917 1918 mmc_blk_rw_reset_success(mq, req); 1919 1920 /* 1921 * Block layer timeouts race with completions which means the normal 1922 * completion path cannot be used during recovery. 1923 */ 1924 if (mq->in_recovery) 1925 mmc_blk_cqe_complete_rq(mq, req); 1926 else if (likely(!blk_should_fake_timeout(req->q))) 1927 blk_mq_complete_request(req); 1928 } 1929 1930 void mmc_blk_mq_complete(struct request *req) 1931 { 1932 struct mmc_queue *mq = req->q->queuedata; 1933 1934 if (mq->use_cqe) 1935 mmc_blk_cqe_complete_rq(mq, req); 1936 else if (likely(!blk_should_fake_timeout(req->q))) 1937 mmc_blk_mq_complete_rq(mq, req); 1938 } 1939 1940 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 1941 struct request *req) 1942 { 1943 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1944 struct mmc_host *host = mq->card->host; 1945 1946 if (mmc_blk_rq_error(&mqrq->brq) || 1947 mmc_blk_card_busy(mq->card, req)) { 1948 mmc_blk_mq_rw_recovery(mq, req); 1949 } else { 1950 mmc_blk_rw_reset_success(mq, req); 1951 mmc_retune_release(host); 1952 } 1953 1954 mmc_blk_urgent_bkops(mq, mqrq); 1955 } 1956 1957 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 1958 { 1959 unsigned long flags; 1960 bool put_card; 1961 1962 spin_lock_irqsave(&mq->lock, flags); 1963 1964 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1965 1966 put_card = (mmc_tot_in_flight(mq) == 0); 1967 1968 spin_unlock_irqrestore(&mq->lock, flags); 1969 1970 if (put_card) 1971 mmc_put_card(mq->card, &mq->ctx); 1972 } 1973 1974 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req) 1975 { 1976 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1977 struct mmc_request *mrq = &mqrq->brq.mrq; 1978 struct mmc_host *host = mq->card->host; 1979 1980 mmc_post_req(host, mrq, 0); 1981 1982 /* 1983 * Block layer timeouts race with completions which means the normal 1984 * completion path cannot be used during recovery. 1985 */ 1986 if (mq->in_recovery) 1987 mmc_blk_mq_complete_rq(mq, req); 1988 else if (likely(!blk_should_fake_timeout(req->q))) 1989 blk_mq_complete_request(req); 1990 1991 mmc_blk_mq_dec_in_flight(mq, req); 1992 } 1993 1994 void mmc_blk_mq_recovery(struct mmc_queue *mq) 1995 { 1996 struct request *req = mq->recovery_req; 1997 struct mmc_host *host = mq->card->host; 1998 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1999 2000 mq->recovery_req = NULL; 2001 mq->rw_wait = false; 2002 2003 if (mmc_blk_rq_error(&mqrq->brq)) { 2004 mmc_retune_hold_now(host); 2005 mmc_blk_mq_rw_recovery(mq, req); 2006 } 2007 2008 mmc_blk_urgent_bkops(mq, mqrq); 2009 2010 mmc_blk_mq_post_req(mq, req); 2011 } 2012 2013 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2014 struct request **prev_req) 2015 { 2016 if (mmc_host_done_complete(mq->card->host)) 2017 return; 2018 2019 mutex_lock(&mq->complete_lock); 2020 2021 if (!mq->complete_req) 2022 goto out_unlock; 2023 2024 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2025 2026 if (prev_req) 2027 *prev_req = mq->complete_req; 2028 else 2029 mmc_blk_mq_post_req(mq, mq->complete_req); 2030 2031 mq->complete_req = NULL; 2032 2033 out_unlock: 2034 mutex_unlock(&mq->complete_lock); 2035 } 2036 2037 void mmc_blk_mq_complete_work(struct work_struct *work) 2038 { 2039 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2040 complete_work); 2041 2042 mmc_blk_mq_complete_prev_req(mq, NULL); 2043 } 2044 2045 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2046 { 2047 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2048 brq.mrq); 2049 struct request *req = mmc_queue_req_to_req(mqrq); 2050 struct request_queue *q = req->q; 2051 struct mmc_queue *mq = q->queuedata; 2052 struct mmc_host *host = mq->card->host; 2053 unsigned long flags; 2054 2055 if (!mmc_host_done_complete(host)) { 2056 bool waiting; 2057 2058 /* 2059 * We cannot complete the request in this context, so record 2060 * that there is a request to complete, and that a following 2061 * request does not need to wait (although it does need to 2062 * complete complete_req first). 2063 */ 2064 spin_lock_irqsave(&mq->lock, flags); 2065 mq->complete_req = req; 2066 mq->rw_wait = false; 2067 waiting = mq->waiting; 2068 spin_unlock_irqrestore(&mq->lock, flags); 2069 2070 /* 2071 * If 'waiting' then the waiting task will complete this 2072 * request, otherwise queue a work to do it. Note that 2073 * complete_work may still race with the dispatch of a following 2074 * request. 2075 */ 2076 if (waiting) 2077 wake_up(&mq->wait); 2078 else 2079 queue_work(mq->card->complete_wq, &mq->complete_work); 2080 2081 return; 2082 } 2083 2084 /* Take the recovery path for errors or urgent background operations */ 2085 if (mmc_blk_rq_error(&mqrq->brq) || 2086 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2087 spin_lock_irqsave(&mq->lock, flags); 2088 mq->recovery_needed = true; 2089 mq->recovery_req = req; 2090 spin_unlock_irqrestore(&mq->lock, flags); 2091 wake_up(&mq->wait); 2092 schedule_work(&mq->recovery_work); 2093 return; 2094 } 2095 2096 mmc_blk_rw_reset_success(mq, req); 2097 2098 mq->rw_wait = false; 2099 wake_up(&mq->wait); 2100 2101 mmc_blk_mq_post_req(mq, req); 2102 } 2103 2104 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2105 { 2106 unsigned long flags; 2107 bool done; 2108 2109 /* 2110 * Wait while there is another request in progress, but not if recovery 2111 * is needed. Also indicate whether there is a request waiting to start. 2112 */ 2113 spin_lock_irqsave(&mq->lock, flags); 2114 if (mq->recovery_needed) { 2115 *err = -EBUSY; 2116 done = true; 2117 } else { 2118 done = !mq->rw_wait; 2119 } 2120 mq->waiting = !done; 2121 spin_unlock_irqrestore(&mq->lock, flags); 2122 2123 return done; 2124 } 2125 2126 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2127 { 2128 int err = 0; 2129 2130 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2131 2132 /* Always complete the previous request if there is one */ 2133 mmc_blk_mq_complete_prev_req(mq, prev_req); 2134 2135 return err; 2136 } 2137 2138 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2139 struct request *req) 2140 { 2141 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2142 struct mmc_host *host = mq->card->host; 2143 struct request *prev_req = NULL; 2144 int err = 0; 2145 2146 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2147 2148 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2149 2150 mmc_pre_req(host, &mqrq->brq.mrq); 2151 2152 err = mmc_blk_rw_wait(mq, &prev_req); 2153 if (err) 2154 goto out_post_req; 2155 2156 mq->rw_wait = true; 2157 2158 err = mmc_start_request(host, &mqrq->brq.mrq); 2159 2160 if (prev_req) 2161 mmc_blk_mq_post_req(mq, prev_req); 2162 2163 if (err) 2164 mq->rw_wait = false; 2165 2166 /* Release re-tuning here where there is no synchronization required */ 2167 if (err || mmc_host_done_complete(host)) 2168 mmc_retune_release(host); 2169 2170 out_post_req: 2171 if (err) 2172 mmc_post_req(host, &mqrq->brq.mrq, err); 2173 2174 return err; 2175 } 2176 2177 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2178 { 2179 if (mq->use_cqe) 2180 return host->cqe_ops->cqe_wait_for_idle(host); 2181 2182 return mmc_blk_rw_wait(mq, NULL); 2183 } 2184 2185 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2186 { 2187 struct mmc_blk_data *md = mq->blkdata; 2188 struct mmc_card *card = md->queue.card; 2189 struct mmc_host *host = card->host; 2190 int ret; 2191 2192 ret = mmc_blk_part_switch(card, md->part_type); 2193 if (ret) 2194 return MMC_REQ_FAILED_TO_START; 2195 2196 switch (mmc_issue_type(mq, req)) { 2197 case MMC_ISSUE_SYNC: 2198 ret = mmc_blk_wait_for_idle(mq, host); 2199 if (ret) 2200 return MMC_REQ_BUSY; 2201 switch (req_op(req)) { 2202 case REQ_OP_DRV_IN: 2203 case REQ_OP_DRV_OUT: 2204 mmc_blk_issue_drv_op(mq, req); 2205 break; 2206 case REQ_OP_DISCARD: 2207 mmc_blk_issue_discard_rq(mq, req); 2208 break; 2209 case REQ_OP_SECURE_ERASE: 2210 mmc_blk_issue_secdiscard_rq(mq, req); 2211 break; 2212 case REQ_OP_FLUSH: 2213 mmc_blk_issue_flush(mq, req); 2214 break; 2215 default: 2216 WARN_ON_ONCE(1); 2217 return MMC_REQ_FAILED_TO_START; 2218 } 2219 return MMC_REQ_FINISHED; 2220 case MMC_ISSUE_DCMD: 2221 case MMC_ISSUE_ASYNC: 2222 switch (req_op(req)) { 2223 case REQ_OP_FLUSH: 2224 ret = mmc_blk_cqe_issue_flush(mq, req); 2225 break; 2226 case REQ_OP_READ: 2227 case REQ_OP_WRITE: 2228 if (mq->use_cqe) 2229 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2230 else 2231 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2232 break; 2233 default: 2234 WARN_ON_ONCE(1); 2235 ret = -EINVAL; 2236 } 2237 if (!ret) 2238 return MMC_REQ_STARTED; 2239 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2240 default: 2241 WARN_ON_ONCE(1); 2242 return MMC_REQ_FAILED_TO_START; 2243 } 2244 } 2245 2246 static inline int mmc_blk_readonly(struct mmc_card *card) 2247 { 2248 return mmc_card_readonly(card) || 2249 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2250 } 2251 2252 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2253 struct device *parent, 2254 sector_t size, 2255 bool default_ro, 2256 const char *subname, 2257 int area_type) 2258 { 2259 struct mmc_blk_data *md; 2260 int devidx, ret; 2261 2262 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2263 if (devidx < 0) { 2264 /* 2265 * We get -ENOSPC because there are no more any available 2266 * devidx. The reason may be that, either userspace haven't yet 2267 * unmounted the partitions, which postpones mmc_blk_release() 2268 * from being called, or the device has more partitions than 2269 * what we support. 2270 */ 2271 if (devidx == -ENOSPC) 2272 dev_err(mmc_dev(card->host), 2273 "no more device IDs available\n"); 2274 2275 return ERR_PTR(devidx); 2276 } 2277 2278 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2279 if (!md) { 2280 ret = -ENOMEM; 2281 goto out; 2282 } 2283 2284 md->area_type = area_type; 2285 2286 /* 2287 * Set the read-only status based on the supported commands 2288 * and the write protect switch. 2289 */ 2290 md->read_only = mmc_blk_readonly(card); 2291 2292 md->disk = alloc_disk(perdev_minors); 2293 if (md->disk == NULL) { 2294 ret = -ENOMEM; 2295 goto err_kfree; 2296 } 2297 2298 INIT_LIST_HEAD(&md->part); 2299 INIT_LIST_HEAD(&md->rpmbs); 2300 md->usage = 1; 2301 2302 ret = mmc_init_queue(&md->queue, card); 2303 if (ret) 2304 goto err_putdisk; 2305 2306 md->queue.blkdata = md; 2307 2308 /* 2309 * Keep an extra reference to the queue so that we can shutdown the 2310 * queue (i.e. call blk_cleanup_queue()) while there are still 2311 * references to the 'md'. The corresponding blk_put_queue() is in 2312 * mmc_blk_put(). 2313 */ 2314 if (!blk_get_queue(md->queue.queue)) { 2315 mmc_cleanup_queue(&md->queue); 2316 ret = -ENODEV; 2317 goto err_putdisk; 2318 } 2319 2320 md->disk->major = MMC_BLOCK_MAJOR; 2321 md->disk->first_minor = devidx * perdev_minors; 2322 md->disk->fops = &mmc_bdops; 2323 md->disk->private_data = md; 2324 md->disk->queue = md->queue.queue; 2325 md->parent = parent; 2326 set_disk_ro(md->disk, md->read_only || default_ro); 2327 md->disk->flags = GENHD_FL_EXT_DEVT; 2328 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2329 md->disk->flags |= GENHD_FL_NO_PART_SCAN 2330 | GENHD_FL_SUPPRESS_PARTITION_INFO; 2331 2332 /* 2333 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2334 * 2335 * - be set for removable media with permanent block devices 2336 * - be unset for removable block devices with permanent media 2337 * 2338 * Since MMC block devices clearly fall under the second 2339 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2340 * should use the block device creation/destruction hotplug 2341 * messages to tell when the card is present. 2342 */ 2343 2344 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2345 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2346 2347 set_capacity(md->disk, size); 2348 2349 if (mmc_host_cmd23(card->host)) { 2350 if ((mmc_card_mmc(card) && 2351 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2352 (mmc_card_sd(card) && 2353 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2354 md->flags |= MMC_BLK_CMD23; 2355 } 2356 2357 if (mmc_card_mmc(card) && 2358 md->flags & MMC_BLK_CMD23 && 2359 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2360 card->ext_csd.rel_sectors)) { 2361 md->flags |= MMC_BLK_REL_WR; 2362 blk_queue_write_cache(md->queue.queue, true, true); 2363 } 2364 2365 return md; 2366 2367 err_putdisk: 2368 put_disk(md->disk); 2369 err_kfree: 2370 kfree(md); 2371 out: 2372 ida_simple_remove(&mmc_blk_ida, devidx); 2373 return ERR_PTR(ret); 2374 } 2375 2376 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2377 { 2378 sector_t size; 2379 2380 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2381 /* 2382 * The EXT_CSD sector count is in number or 512 byte 2383 * sectors. 2384 */ 2385 size = card->ext_csd.sectors; 2386 } else { 2387 /* 2388 * The CSD capacity field is in units of read_blkbits. 2389 * set_capacity takes units of 512 bytes. 2390 */ 2391 size = (typeof(sector_t))card->csd.capacity 2392 << (card->csd.read_blkbits - 9); 2393 } 2394 2395 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2396 MMC_BLK_DATA_AREA_MAIN); 2397 } 2398 2399 static int mmc_blk_alloc_part(struct mmc_card *card, 2400 struct mmc_blk_data *md, 2401 unsigned int part_type, 2402 sector_t size, 2403 bool default_ro, 2404 const char *subname, 2405 int area_type) 2406 { 2407 char cap_str[10]; 2408 struct mmc_blk_data *part_md; 2409 2410 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2411 subname, area_type); 2412 if (IS_ERR(part_md)) 2413 return PTR_ERR(part_md); 2414 part_md->part_type = part_type; 2415 list_add(&part_md->part, &md->part); 2416 2417 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2418 cap_str, sizeof(cap_str)); 2419 pr_info("%s: %s %s partition %u %s\n", 2420 part_md->disk->disk_name, mmc_card_id(card), 2421 mmc_card_name(card), part_md->part_type, cap_str); 2422 return 0; 2423 } 2424 2425 /** 2426 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2427 * @filp: the character device file 2428 * @cmd: the ioctl() command 2429 * @arg: the argument from userspace 2430 * 2431 * This will essentially just redirect the ioctl()s coming in over to 2432 * the main block device spawning the RPMB character device. 2433 */ 2434 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2435 unsigned long arg) 2436 { 2437 struct mmc_rpmb_data *rpmb = filp->private_data; 2438 int ret; 2439 2440 switch (cmd) { 2441 case MMC_IOC_CMD: 2442 ret = mmc_blk_ioctl_cmd(rpmb->md, 2443 (struct mmc_ioc_cmd __user *)arg, 2444 rpmb); 2445 break; 2446 case MMC_IOC_MULTI_CMD: 2447 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2448 (struct mmc_ioc_multi_cmd __user *)arg, 2449 rpmb); 2450 break; 2451 default: 2452 ret = -EINVAL; 2453 break; 2454 } 2455 2456 return ret; 2457 } 2458 2459 #ifdef CONFIG_COMPAT 2460 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2461 unsigned long arg) 2462 { 2463 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2464 } 2465 #endif 2466 2467 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2468 { 2469 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2470 struct mmc_rpmb_data, chrdev); 2471 2472 get_device(&rpmb->dev); 2473 filp->private_data = rpmb; 2474 mmc_blk_get(rpmb->md->disk); 2475 2476 return nonseekable_open(inode, filp); 2477 } 2478 2479 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2480 { 2481 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2482 struct mmc_rpmb_data, chrdev); 2483 2484 mmc_blk_put(rpmb->md); 2485 put_device(&rpmb->dev); 2486 2487 return 0; 2488 } 2489 2490 static const struct file_operations mmc_rpmb_fileops = { 2491 .release = mmc_rpmb_chrdev_release, 2492 .open = mmc_rpmb_chrdev_open, 2493 .owner = THIS_MODULE, 2494 .llseek = no_llseek, 2495 .unlocked_ioctl = mmc_rpmb_ioctl, 2496 #ifdef CONFIG_COMPAT 2497 .compat_ioctl = mmc_rpmb_ioctl_compat, 2498 #endif 2499 }; 2500 2501 static void mmc_blk_rpmb_device_release(struct device *dev) 2502 { 2503 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2504 2505 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2506 kfree(rpmb); 2507 } 2508 2509 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2510 struct mmc_blk_data *md, 2511 unsigned int part_index, 2512 sector_t size, 2513 const char *subname) 2514 { 2515 int devidx, ret; 2516 char rpmb_name[DISK_NAME_LEN]; 2517 char cap_str[10]; 2518 struct mmc_rpmb_data *rpmb; 2519 2520 /* This creates the minor number for the RPMB char device */ 2521 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2522 if (devidx < 0) 2523 return devidx; 2524 2525 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2526 if (!rpmb) { 2527 ida_simple_remove(&mmc_rpmb_ida, devidx); 2528 return -ENOMEM; 2529 } 2530 2531 snprintf(rpmb_name, sizeof(rpmb_name), 2532 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2533 2534 rpmb->id = devidx; 2535 rpmb->part_index = part_index; 2536 rpmb->dev.init_name = rpmb_name; 2537 rpmb->dev.bus = &mmc_rpmb_bus_type; 2538 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2539 rpmb->dev.parent = &card->dev; 2540 rpmb->dev.release = mmc_blk_rpmb_device_release; 2541 device_initialize(&rpmb->dev); 2542 dev_set_drvdata(&rpmb->dev, rpmb); 2543 rpmb->md = md; 2544 2545 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2546 rpmb->chrdev.owner = THIS_MODULE; 2547 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2548 if (ret) { 2549 pr_err("%s: could not add character device\n", rpmb_name); 2550 goto out_put_device; 2551 } 2552 2553 list_add(&rpmb->node, &md->rpmbs); 2554 2555 string_get_size((u64)size, 512, STRING_UNITS_2, 2556 cap_str, sizeof(cap_str)); 2557 2558 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n", 2559 rpmb_name, mmc_card_id(card), 2560 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str, 2561 MAJOR(mmc_rpmb_devt), rpmb->id); 2562 2563 return 0; 2564 2565 out_put_device: 2566 put_device(&rpmb->dev); 2567 return ret; 2568 } 2569 2570 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2571 2572 { 2573 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2574 put_device(&rpmb->dev); 2575 } 2576 2577 /* MMC Physical partitions consist of two boot partitions and 2578 * up to four general purpose partitions. 2579 * For each partition enabled in EXT_CSD a block device will be allocatedi 2580 * to provide access to the partition. 2581 */ 2582 2583 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2584 { 2585 int idx, ret; 2586 2587 if (!mmc_card_mmc(card)) 2588 return 0; 2589 2590 for (idx = 0; idx < card->nr_parts; idx++) { 2591 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2592 /* 2593 * RPMB partitions does not provide block access, they 2594 * are only accessed using ioctl():s. Thus create 2595 * special RPMB block devices that do not have a 2596 * backing block queue for these. 2597 */ 2598 ret = mmc_blk_alloc_rpmb_part(card, md, 2599 card->part[idx].part_cfg, 2600 card->part[idx].size >> 9, 2601 card->part[idx].name); 2602 if (ret) 2603 return ret; 2604 } else if (card->part[idx].size) { 2605 ret = mmc_blk_alloc_part(card, md, 2606 card->part[idx].part_cfg, 2607 card->part[idx].size >> 9, 2608 card->part[idx].force_ro, 2609 card->part[idx].name, 2610 card->part[idx].area_type); 2611 if (ret) 2612 return ret; 2613 } 2614 } 2615 2616 return 0; 2617 } 2618 2619 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2620 { 2621 struct mmc_card *card; 2622 2623 if (md) { 2624 /* 2625 * Flush remaining requests and free queues. It 2626 * is freeing the queue that stops new requests 2627 * from being accepted. 2628 */ 2629 card = md->queue.card; 2630 if (md->disk->flags & GENHD_FL_UP) { 2631 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2632 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2633 card->ext_csd.boot_ro_lockable) 2634 device_remove_file(disk_to_dev(md->disk), 2635 &md->power_ro_lock); 2636 2637 del_gendisk(md->disk); 2638 } 2639 mmc_cleanup_queue(&md->queue); 2640 mmc_blk_put(md); 2641 } 2642 } 2643 2644 static void mmc_blk_remove_parts(struct mmc_card *card, 2645 struct mmc_blk_data *md) 2646 { 2647 struct list_head *pos, *q; 2648 struct mmc_blk_data *part_md; 2649 struct mmc_rpmb_data *rpmb; 2650 2651 /* Remove RPMB partitions */ 2652 list_for_each_safe(pos, q, &md->rpmbs) { 2653 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2654 list_del(pos); 2655 mmc_blk_remove_rpmb_part(rpmb); 2656 } 2657 /* Remove block partitions */ 2658 list_for_each_safe(pos, q, &md->part) { 2659 part_md = list_entry(pos, struct mmc_blk_data, part); 2660 list_del(pos); 2661 mmc_blk_remove_req(part_md); 2662 } 2663 } 2664 2665 static int mmc_add_disk(struct mmc_blk_data *md) 2666 { 2667 int ret; 2668 struct mmc_card *card = md->queue.card; 2669 2670 device_add_disk(md->parent, md->disk, NULL); 2671 md->force_ro.show = force_ro_show; 2672 md->force_ro.store = force_ro_store; 2673 sysfs_attr_init(&md->force_ro.attr); 2674 md->force_ro.attr.name = "force_ro"; 2675 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2676 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2677 if (ret) 2678 goto force_ro_fail; 2679 2680 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2681 card->ext_csd.boot_ro_lockable) { 2682 umode_t mode; 2683 2684 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2685 mode = S_IRUGO; 2686 else 2687 mode = S_IRUGO | S_IWUSR; 2688 2689 md->power_ro_lock.show = power_ro_lock_show; 2690 md->power_ro_lock.store = power_ro_lock_store; 2691 sysfs_attr_init(&md->power_ro_lock.attr); 2692 md->power_ro_lock.attr.mode = mode; 2693 md->power_ro_lock.attr.name = 2694 "ro_lock_until_next_power_on"; 2695 ret = device_create_file(disk_to_dev(md->disk), 2696 &md->power_ro_lock); 2697 if (ret) 2698 goto power_ro_lock_fail; 2699 } 2700 return ret; 2701 2702 power_ro_lock_fail: 2703 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2704 force_ro_fail: 2705 del_gendisk(md->disk); 2706 2707 return ret; 2708 } 2709 2710 #ifdef CONFIG_DEBUG_FS 2711 2712 static int mmc_dbg_card_status_get(void *data, u64 *val) 2713 { 2714 struct mmc_card *card = data; 2715 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2716 struct mmc_queue *mq = &md->queue; 2717 struct request *req; 2718 int ret; 2719 2720 /* Ask the block layer about the card status */ 2721 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2722 if (IS_ERR(req)) 2723 return PTR_ERR(req); 2724 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2725 blk_execute_rq(mq->queue, NULL, req, 0); 2726 ret = req_to_mmc_queue_req(req)->drv_op_result; 2727 if (ret >= 0) { 2728 *val = ret; 2729 ret = 0; 2730 } 2731 blk_put_request(req); 2732 2733 return ret; 2734 } 2735 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2736 NULL, "%08llx\n"); 2737 2738 /* That is two digits * 512 + 1 for newline */ 2739 #define EXT_CSD_STR_LEN 1025 2740 2741 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2742 { 2743 struct mmc_card *card = inode->i_private; 2744 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2745 struct mmc_queue *mq = &md->queue; 2746 struct request *req; 2747 char *buf; 2748 ssize_t n = 0; 2749 u8 *ext_csd; 2750 int err, i; 2751 2752 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2753 if (!buf) 2754 return -ENOMEM; 2755 2756 /* Ask the block layer for the EXT CSD */ 2757 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2758 if (IS_ERR(req)) { 2759 err = PTR_ERR(req); 2760 goto out_free; 2761 } 2762 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2763 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2764 blk_execute_rq(mq->queue, NULL, req, 0); 2765 err = req_to_mmc_queue_req(req)->drv_op_result; 2766 blk_put_request(req); 2767 if (err) { 2768 pr_err("FAILED %d\n", err); 2769 goto out_free; 2770 } 2771 2772 for (i = 0; i < 512; i++) 2773 n += sprintf(buf + n, "%02x", ext_csd[i]); 2774 n += sprintf(buf + n, "\n"); 2775 2776 if (n != EXT_CSD_STR_LEN) { 2777 err = -EINVAL; 2778 kfree(ext_csd); 2779 goto out_free; 2780 } 2781 2782 filp->private_data = buf; 2783 kfree(ext_csd); 2784 return 0; 2785 2786 out_free: 2787 kfree(buf); 2788 return err; 2789 } 2790 2791 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2792 size_t cnt, loff_t *ppos) 2793 { 2794 char *buf = filp->private_data; 2795 2796 return simple_read_from_buffer(ubuf, cnt, ppos, 2797 buf, EXT_CSD_STR_LEN); 2798 } 2799 2800 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2801 { 2802 kfree(file->private_data); 2803 return 0; 2804 } 2805 2806 static const struct file_operations mmc_dbg_ext_csd_fops = { 2807 .open = mmc_ext_csd_open, 2808 .read = mmc_ext_csd_read, 2809 .release = mmc_ext_csd_release, 2810 .llseek = default_llseek, 2811 }; 2812 2813 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2814 { 2815 struct dentry *root; 2816 2817 if (!card->debugfs_root) 2818 return 0; 2819 2820 root = card->debugfs_root; 2821 2822 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2823 md->status_dentry = 2824 debugfs_create_file_unsafe("status", 0400, root, 2825 card, 2826 &mmc_dbg_card_status_fops); 2827 if (!md->status_dentry) 2828 return -EIO; 2829 } 2830 2831 if (mmc_card_mmc(card)) { 2832 md->ext_csd_dentry = 2833 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2834 &mmc_dbg_ext_csd_fops); 2835 if (!md->ext_csd_dentry) 2836 return -EIO; 2837 } 2838 2839 return 0; 2840 } 2841 2842 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2843 struct mmc_blk_data *md) 2844 { 2845 if (!card->debugfs_root) 2846 return; 2847 2848 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2849 debugfs_remove(md->status_dentry); 2850 md->status_dentry = NULL; 2851 } 2852 2853 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2854 debugfs_remove(md->ext_csd_dentry); 2855 md->ext_csd_dentry = NULL; 2856 } 2857 } 2858 2859 #else 2860 2861 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2862 { 2863 return 0; 2864 } 2865 2866 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2867 struct mmc_blk_data *md) 2868 { 2869 } 2870 2871 #endif /* CONFIG_DEBUG_FS */ 2872 2873 static int mmc_blk_probe(struct mmc_card *card) 2874 { 2875 struct mmc_blk_data *md, *part_md; 2876 char cap_str[10]; 2877 2878 /* 2879 * Check that the card supports the command class(es) we need. 2880 */ 2881 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2882 return -ENODEV; 2883 2884 mmc_fixup_device(card, mmc_blk_fixups); 2885 2886 card->complete_wq = alloc_workqueue("mmc_complete", 2887 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2888 if (unlikely(!card->complete_wq)) { 2889 pr_err("Failed to create mmc completion workqueue"); 2890 return -ENOMEM; 2891 } 2892 2893 md = mmc_blk_alloc(card); 2894 if (IS_ERR(md)) 2895 return PTR_ERR(md); 2896 2897 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2898 cap_str, sizeof(cap_str)); 2899 pr_info("%s: %s %s %s %s\n", 2900 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2901 cap_str, md->read_only ? "(ro)" : ""); 2902 2903 if (mmc_blk_alloc_parts(card, md)) 2904 goto out; 2905 2906 dev_set_drvdata(&card->dev, md); 2907 2908 if (mmc_add_disk(md)) 2909 goto out; 2910 2911 list_for_each_entry(part_md, &md->part, part) { 2912 if (mmc_add_disk(part_md)) 2913 goto out; 2914 } 2915 2916 /* Add two debugfs entries */ 2917 mmc_blk_add_debugfs(card, md); 2918 2919 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2920 pm_runtime_use_autosuspend(&card->dev); 2921 2922 /* 2923 * Don't enable runtime PM for SD-combo cards here. Leave that 2924 * decision to be taken during the SDIO init sequence instead. 2925 */ 2926 if (card->type != MMC_TYPE_SD_COMBO) { 2927 pm_runtime_set_active(&card->dev); 2928 pm_runtime_enable(&card->dev); 2929 } 2930 2931 return 0; 2932 2933 out: 2934 mmc_blk_remove_parts(card, md); 2935 mmc_blk_remove_req(md); 2936 return 0; 2937 } 2938 2939 static void mmc_blk_remove(struct mmc_card *card) 2940 { 2941 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2942 2943 mmc_blk_remove_debugfs(card, md); 2944 mmc_blk_remove_parts(card, md); 2945 pm_runtime_get_sync(&card->dev); 2946 if (md->part_curr != md->part_type) { 2947 mmc_claim_host(card->host); 2948 mmc_blk_part_switch(card, md->part_type); 2949 mmc_release_host(card->host); 2950 } 2951 if (card->type != MMC_TYPE_SD_COMBO) 2952 pm_runtime_disable(&card->dev); 2953 pm_runtime_put_noidle(&card->dev); 2954 mmc_blk_remove_req(md); 2955 dev_set_drvdata(&card->dev, NULL); 2956 destroy_workqueue(card->complete_wq); 2957 } 2958 2959 static int _mmc_blk_suspend(struct mmc_card *card) 2960 { 2961 struct mmc_blk_data *part_md; 2962 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2963 2964 if (md) { 2965 mmc_queue_suspend(&md->queue); 2966 list_for_each_entry(part_md, &md->part, part) { 2967 mmc_queue_suspend(&part_md->queue); 2968 } 2969 } 2970 return 0; 2971 } 2972 2973 static void mmc_blk_shutdown(struct mmc_card *card) 2974 { 2975 _mmc_blk_suspend(card); 2976 } 2977 2978 #ifdef CONFIG_PM_SLEEP 2979 static int mmc_blk_suspend(struct device *dev) 2980 { 2981 struct mmc_card *card = mmc_dev_to_card(dev); 2982 2983 return _mmc_blk_suspend(card); 2984 } 2985 2986 static int mmc_blk_resume(struct device *dev) 2987 { 2988 struct mmc_blk_data *part_md; 2989 struct mmc_blk_data *md = dev_get_drvdata(dev); 2990 2991 if (md) { 2992 /* 2993 * Resume involves the card going into idle state, 2994 * so current partition is always the main one. 2995 */ 2996 md->part_curr = md->part_type; 2997 mmc_queue_resume(&md->queue); 2998 list_for_each_entry(part_md, &md->part, part) { 2999 mmc_queue_resume(&part_md->queue); 3000 } 3001 } 3002 return 0; 3003 } 3004 #endif 3005 3006 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3007 3008 static struct mmc_driver mmc_driver = { 3009 .drv = { 3010 .name = "mmcblk", 3011 .pm = &mmc_blk_pm_ops, 3012 }, 3013 .probe = mmc_blk_probe, 3014 .remove = mmc_blk_remove, 3015 .shutdown = mmc_blk_shutdown, 3016 }; 3017 3018 static int __init mmc_blk_init(void) 3019 { 3020 int res; 3021 3022 res = bus_register(&mmc_rpmb_bus_type); 3023 if (res < 0) { 3024 pr_err("mmcblk: could not register RPMB bus type\n"); 3025 return res; 3026 } 3027 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3028 if (res < 0) { 3029 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3030 goto out_bus_unreg; 3031 } 3032 3033 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3034 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3035 3036 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3037 3038 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3039 if (res) 3040 goto out_chrdev_unreg; 3041 3042 res = mmc_register_driver(&mmc_driver); 3043 if (res) 3044 goto out_blkdev_unreg; 3045 3046 return 0; 3047 3048 out_blkdev_unreg: 3049 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3050 out_chrdev_unreg: 3051 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3052 out_bus_unreg: 3053 bus_unregister(&mmc_rpmb_bus_type); 3054 return res; 3055 } 3056 3057 static void __exit mmc_blk_exit(void) 3058 { 3059 mmc_unregister_driver(&mmc_driver); 3060 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3061 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3062 bus_unregister(&mmc_rpmb_bus_type); 3063 } 3064 3065 module_init(mmc_blk_init); 3066 module_exit(mmc_blk_exit); 3067 3068 MODULE_LICENSE("GPL"); 3069 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3070 3071