1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block driver for media (i.e., flash cards) 4 * 5 * Copyright 2002 Hewlett-Packard Company 6 * Copyright 2005-2008 Pierre Ossman 7 * 8 * Use consistent with the GNU GPL is permitted, 9 * provided that this copyright notice is 10 * preserved in its entirety in all copies and derived works. 11 * 12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 14 * FITNESS FOR ANY PARTICULAR PURPOSE. 15 * 16 * Many thanks to Alessandro Rubini and Jonathan Corbet! 17 * 18 * Author: Andrew Christian 19 * 28 May 2002 20 */ 21 #include <linux/moduleparam.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/errno.h> 29 #include <linux/hdreg.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kref.h> 32 #include <linux/blkdev.h> 33 #include <linux/cdev.h> 34 #include <linux/mutex.h> 35 #include <linux/scatterlist.h> 36 #include <linux/string_helpers.h> 37 #include <linux/delay.h> 38 #include <linux/capability.h> 39 #include <linux/compat.h> 40 #include <linux/pm_runtime.h> 41 #include <linux/idr.h> 42 #include <linux/debugfs.h> 43 44 #include <linux/mmc/ioctl.h> 45 #include <linux/mmc/card.h> 46 #include <linux/mmc/host.h> 47 #include <linux/mmc/mmc.h> 48 #include <linux/mmc/sd.h> 49 50 #include <linux/uaccess.h> 51 52 #include "queue.h" 53 #include "block.h" 54 #include "core.h" 55 #include "card.h" 56 #include "crypto.h" 57 #include "host.h" 58 #include "bus.h" 59 #include "mmc_ops.h" 60 #include "quirks.h" 61 #include "sd_ops.h" 62 63 MODULE_ALIAS("mmc:block"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "mmcblk." 68 69 /* 70 * Set a 10 second timeout for polling write request busy state. Note, mmc core 71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 72 * second software timer to timeout the whole request, so 10 seconds should be 73 * ample. 74 */ 75 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 78 79 static DEFINE_MUTEX(block_mutex); 80 81 /* 82 * The defaults come from config options but can be overriden by module 83 * or bootarg options. 84 */ 85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 86 87 /* 88 * We've only got one major, so number of mmcblk devices is 89 * limited to (1 << 20) / number of minors per device. It is also 90 * limited by the MAX_DEVICES below. 91 */ 92 static int max_devices; 93 94 #define MAX_DEVICES 256 95 96 static DEFINE_IDA(mmc_blk_ida); 97 static DEFINE_IDA(mmc_rpmb_ida); 98 99 struct mmc_blk_busy_data { 100 struct mmc_card *card; 101 u32 status; 102 }; 103 104 /* 105 * There is one mmc_blk_data per slot. 106 */ 107 struct mmc_blk_data { 108 struct device *parent; 109 struct gendisk *disk; 110 struct mmc_queue queue; 111 struct list_head part; 112 struct list_head rpmbs; 113 114 unsigned int flags; 115 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 116 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 117 118 struct kref kref; 119 unsigned int read_only; 120 unsigned int part_type; 121 unsigned int reset_done; 122 #define MMC_BLK_READ BIT(0) 123 #define MMC_BLK_WRITE BIT(1) 124 #define MMC_BLK_DISCARD BIT(2) 125 #define MMC_BLK_SECDISCARD BIT(3) 126 #define MMC_BLK_CQE_RECOVERY BIT(4) 127 #define MMC_BLK_TRIM BIT(5) 128 129 /* 130 * Only set in main mmc_blk_data associated 131 * with mmc_card with dev_set_drvdata, and keeps 132 * track of the current selected device partition. 133 */ 134 unsigned int part_curr; 135 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */ 136 int area_type; 137 138 /* debugfs files (only in main mmc_blk_data) */ 139 struct dentry *status_dentry; 140 struct dentry *ext_csd_dentry; 141 }; 142 143 /* Device type for RPMB character devices */ 144 static dev_t mmc_rpmb_devt; 145 146 /* Bus type for RPMB character devices */ 147 static struct bus_type mmc_rpmb_bus_type = { 148 .name = "mmc_rpmb", 149 }; 150 151 /** 152 * struct mmc_rpmb_data - special RPMB device type for these areas 153 * @dev: the device for the RPMB area 154 * @chrdev: character device for the RPMB area 155 * @id: unique device ID number 156 * @part_index: partition index (0 on first) 157 * @md: parent MMC block device 158 * @node: list item, so we can put this device on a list 159 */ 160 struct mmc_rpmb_data { 161 struct device dev; 162 struct cdev chrdev; 163 int id; 164 unsigned int part_index; 165 struct mmc_blk_data *md; 166 struct list_head node; 167 }; 168 169 static DEFINE_MUTEX(open_lock); 170 171 module_param(perdev_minors, int, 0444); 172 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 173 174 static inline int mmc_blk_part_switch(struct mmc_card *card, 175 unsigned int part_type); 176 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 177 struct mmc_card *card, 178 int recovery_mode, 179 struct mmc_queue *mq); 180 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 181 182 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 183 { 184 struct mmc_blk_data *md; 185 186 mutex_lock(&open_lock); 187 md = disk->private_data; 188 if (md && !kref_get_unless_zero(&md->kref)) 189 md = NULL; 190 mutex_unlock(&open_lock); 191 192 return md; 193 } 194 195 static inline int mmc_get_devidx(struct gendisk *disk) 196 { 197 int devidx = disk->first_minor / perdev_minors; 198 return devidx; 199 } 200 201 static void mmc_blk_kref_release(struct kref *ref) 202 { 203 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref); 204 int devidx; 205 206 devidx = mmc_get_devidx(md->disk); 207 ida_simple_remove(&mmc_blk_ida, devidx); 208 209 mutex_lock(&open_lock); 210 md->disk->private_data = NULL; 211 mutex_unlock(&open_lock); 212 213 put_disk(md->disk); 214 kfree(md); 215 } 216 217 static void mmc_blk_put(struct mmc_blk_data *md) 218 { 219 kref_put(&md->kref, mmc_blk_kref_release); 220 } 221 222 static ssize_t power_ro_lock_show(struct device *dev, 223 struct device_attribute *attr, char *buf) 224 { 225 int ret; 226 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 227 struct mmc_card *card = md->queue.card; 228 int locked = 0; 229 230 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 231 locked = 2; 232 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 233 locked = 1; 234 235 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 236 237 mmc_blk_put(md); 238 239 return ret; 240 } 241 242 static ssize_t power_ro_lock_store(struct device *dev, 243 struct device_attribute *attr, const char *buf, size_t count) 244 { 245 int ret; 246 struct mmc_blk_data *md, *part_md; 247 struct mmc_queue *mq; 248 struct request *req; 249 unsigned long set; 250 251 if (kstrtoul(buf, 0, &set)) 252 return -EINVAL; 253 254 if (set != 1) 255 return count; 256 257 md = mmc_blk_get(dev_to_disk(dev)); 258 mq = &md->queue; 259 260 /* Dispatch locking to the block layer */ 261 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0); 262 if (IS_ERR(req)) { 263 count = PTR_ERR(req); 264 goto out_put; 265 } 266 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 267 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 268 blk_execute_rq(req, false); 269 ret = req_to_mmc_queue_req(req)->drv_op_result; 270 blk_mq_free_request(req); 271 272 if (!ret) { 273 pr_info("%s: Locking boot partition ro until next power on\n", 274 md->disk->disk_name); 275 set_disk_ro(md->disk, 1); 276 277 list_for_each_entry(part_md, &md->part, part) 278 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 279 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 280 set_disk_ro(part_md->disk, 1); 281 } 282 } 283 out_put: 284 mmc_blk_put(md); 285 return count; 286 } 287 288 static DEVICE_ATTR(ro_lock_until_next_power_on, 0, 289 power_ro_lock_show, power_ro_lock_store); 290 291 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 292 char *buf) 293 { 294 int ret; 295 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 296 297 ret = snprintf(buf, PAGE_SIZE, "%d\n", 298 get_disk_ro(dev_to_disk(dev)) ^ 299 md->read_only); 300 mmc_blk_put(md); 301 return ret; 302 } 303 304 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 305 const char *buf, size_t count) 306 { 307 int ret; 308 char *end; 309 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 310 unsigned long set = simple_strtoul(buf, &end, 0); 311 if (end == buf) { 312 ret = -EINVAL; 313 goto out; 314 } 315 316 set_disk_ro(dev_to_disk(dev), set || md->read_only); 317 ret = count; 318 out: 319 mmc_blk_put(md); 320 return ret; 321 } 322 323 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store); 324 325 static struct attribute *mmc_disk_attrs[] = { 326 &dev_attr_force_ro.attr, 327 &dev_attr_ro_lock_until_next_power_on.attr, 328 NULL, 329 }; 330 331 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj, 332 struct attribute *a, int n) 333 { 334 struct device *dev = kobj_to_dev(kobj); 335 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 336 umode_t mode = a->mode; 337 338 if (a == &dev_attr_ro_lock_until_next_power_on.attr && 339 (md->area_type & MMC_BLK_DATA_AREA_BOOT) && 340 md->queue.card->ext_csd.boot_ro_lockable) { 341 mode = S_IRUGO; 342 if (!(md->queue.card->ext_csd.boot_ro_lock & 343 EXT_CSD_BOOT_WP_B_PWR_WP_DIS)) 344 mode |= S_IWUSR; 345 } 346 347 mmc_blk_put(md); 348 return mode; 349 } 350 351 static const struct attribute_group mmc_disk_attr_group = { 352 .is_visible = mmc_disk_attrs_is_visible, 353 .attrs = mmc_disk_attrs, 354 }; 355 356 static const struct attribute_group *mmc_disk_attr_groups[] = { 357 &mmc_disk_attr_group, 358 NULL, 359 }; 360 361 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode) 362 { 363 struct mmc_blk_data *md = mmc_blk_get(disk); 364 int ret = -ENXIO; 365 366 mutex_lock(&block_mutex); 367 if (md) { 368 ret = 0; 369 if ((mode & BLK_OPEN_WRITE) && md->read_only) { 370 mmc_blk_put(md); 371 ret = -EROFS; 372 } 373 } 374 mutex_unlock(&block_mutex); 375 376 return ret; 377 } 378 379 static void mmc_blk_release(struct gendisk *disk) 380 { 381 struct mmc_blk_data *md = disk->private_data; 382 383 mutex_lock(&block_mutex); 384 mmc_blk_put(md); 385 mutex_unlock(&block_mutex); 386 } 387 388 static int 389 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 390 { 391 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 392 geo->heads = 4; 393 geo->sectors = 16; 394 return 0; 395 } 396 397 struct mmc_blk_ioc_data { 398 struct mmc_ioc_cmd ic; 399 unsigned char *buf; 400 u64 buf_bytes; 401 struct mmc_rpmb_data *rpmb; 402 }; 403 404 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 405 struct mmc_ioc_cmd __user *user) 406 { 407 struct mmc_blk_ioc_data *idata; 408 int err; 409 410 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 411 if (!idata) { 412 err = -ENOMEM; 413 goto out; 414 } 415 416 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 417 err = -EFAULT; 418 goto idata_err; 419 } 420 421 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 422 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 423 err = -EOVERFLOW; 424 goto idata_err; 425 } 426 427 if (!idata->buf_bytes) { 428 idata->buf = NULL; 429 return idata; 430 } 431 432 idata->buf = memdup_user((void __user *)(unsigned long) 433 idata->ic.data_ptr, idata->buf_bytes); 434 if (IS_ERR(idata->buf)) { 435 err = PTR_ERR(idata->buf); 436 goto idata_err; 437 } 438 439 return idata; 440 441 idata_err: 442 kfree(idata); 443 out: 444 return ERR_PTR(err); 445 } 446 447 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 448 struct mmc_blk_ioc_data *idata) 449 { 450 struct mmc_ioc_cmd *ic = &idata->ic; 451 452 if (copy_to_user(&(ic_ptr->response), ic->response, 453 sizeof(ic->response))) 454 return -EFAULT; 455 456 if (!idata->ic.write_flag) { 457 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 458 idata->buf, idata->buf_bytes)) 459 return -EFAULT; 460 } 461 462 return 0; 463 } 464 465 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 466 struct mmc_blk_ioc_data *idata) 467 { 468 struct mmc_command cmd = {}, sbc = {}; 469 struct mmc_data data = {}; 470 struct mmc_request mrq = {}; 471 struct scatterlist sg; 472 bool r1b_resp, use_r1b_resp = false; 473 unsigned int busy_timeout_ms; 474 int err; 475 unsigned int target_part; 476 477 if (!card || !md || !idata) 478 return -EINVAL; 479 480 /* 481 * The RPMB accesses comes in from the character device, so we 482 * need to target these explicitly. Else we just target the 483 * partition type for the block device the ioctl() was issued 484 * on. 485 */ 486 if (idata->rpmb) { 487 /* Support multiple RPMB partitions */ 488 target_part = idata->rpmb->part_index; 489 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 490 } else { 491 target_part = md->part_type; 492 } 493 494 cmd.opcode = idata->ic.opcode; 495 cmd.arg = idata->ic.arg; 496 cmd.flags = idata->ic.flags; 497 498 if (idata->buf_bytes) { 499 data.sg = &sg; 500 data.sg_len = 1; 501 data.blksz = idata->ic.blksz; 502 data.blocks = idata->ic.blocks; 503 504 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 505 506 if (idata->ic.write_flag) 507 data.flags = MMC_DATA_WRITE; 508 else 509 data.flags = MMC_DATA_READ; 510 511 /* data.flags must already be set before doing this. */ 512 mmc_set_data_timeout(&data, card); 513 514 /* Allow overriding the timeout_ns for empirical tuning. */ 515 if (idata->ic.data_timeout_ns) 516 data.timeout_ns = idata->ic.data_timeout_ns; 517 518 mrq.data = &data; 519 } 520 521 mrq.cmd = &cmd; 522 523 err = mmc_blk_part_switch(card, target_part); 524 if (err) 525 return err; 526 527 if (idata->ic.is_acmd) { 528 err = mmc_app_cmd(card->host, card); 529 if (err) 530 return err; 531 } 532 533 if (idata->rpmb) { 534 sbc.opcode = MMC_SET_BLOCK_COUNT; 535 /* 536 * We don't do any blockcount validation because the max size 537 * may be increased by a future standard. We just copy the 538 * 'Reliable Write' bit here. 539 */ 540 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 541 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 542 mrq.sbc = &sbc; 543 } 544 545 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 546 (cmd.opcode == MMC_SWITCH)) 547 return mmc_sanitize(card, idata->ic.cmd_timeout_ms); 548 549 /* If it's an R1B response we need some more preparations. */ 550 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS; 551 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B; 552 if (r1b_resp) 553 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, 554 busy_timeout_ms); 555 556 mmc_wait_for_req(card->host, &mrq); 557 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp)); 558 559 if (cmd.error) { 560 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 561 __func__, cmd.error); 562 return cmd.error; 563 } 564 if (data.error) { 565 dev_err(mmc_dev(card->host), "%s: data error %d\n", 566 __func__, data.error); 567 return data.error; 568 } 569 570 /* 571 * Make sure the cache of the PARTITION_CONFIG register and 572 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 573 * changed it successfully. 574 */ 575 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 576 (cmd.opcode == MMC_SWITCH)) { 577 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 578 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 579 580 /* 581 * Update cache so the next mmc_blk_part_switch call operates 582 * on up-to-date data. 583 */ 584 card->ext_csd.part_config = value; 585 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 586 } 587 588 /* 589 * Make sure to update CACHE_CTRL in case it was changed. The cache 590 * will get turned back on if the card is re-initialized, e.g. 591 * suspend/resume or hw reset in recovery. 592 */ 593 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && 594 (cmd.opcode == MMC_SWITCH)) { 595 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; 596 597 card->ext_csd.cache_ctrl = value; 598 } 599 600 /* 601 * According to the SD specs, some commands require a delay after 602 * issuing the command. 603 */ 604 if (idata->ic.postsleep_min_us) 605 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 606 607 /* No need to poll when using HW busy detection. */ 608 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 609 return 0; 610 611 /* Ensure RPMB/R1B command has completed by polling with CMD13. */ 612 if (idata->rpmb || r1b_resp) 613 err = mmc_poll_for_busy(card, busy_timeout_ms, false, 614 MMC_BUSY_IO); 615 616 return err; 617 } 618 619 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 620 struct mmc_ioc_cmd __user *ic_ptr, 621 struct mmc_rpmb_data *rpmb) 622 { 623 struct mmc_blk_ioc_data *idata; 624 struct mmc_blk_ioc_data *idatas[1]; 625 struct mmc_queue *mq; 626 struct mmc_card *card; 627 int err = 0, ioc_err = 0; 628 struct request *req; 629 630 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 631 if (IS_ERR(idata)) 632 return PTR_ERR(idata); 633 /* This will be NULL on non-RPMB ioctl():s */ 634 idata->rpmb = rpmb; 635 636 card = md->queue.card; 637 if (IS_ERR(card)) { 638 err = PTR_ERR(card); 639 goto cmd_done; 640 } 641 642 /* 643 * Dispatch the ioctl() into the block request queue. 644 */ 645 mq = &md->queue; 646 req = blk_mq_alloc_request(mq->queue, 647 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 648 if (IS_ERR(req)) { 649 err = PTR_ERR(req); 650 goto cmd_done; 651 } 652 idatas[0] = idata; 653 req_to_mmc_queue_req(req)->drv_op = 654 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 655 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 656 req_to_mmc_queue_req(req)->drv_op_data = idatas; 657 req_to_mmc_queue_req(req)->ioc_count = 1; 658 blk_execute_rq(req, false); 659 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 660 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 661 blk_mq_free_request(req); 662 663 cmd_done: 664 kfree(idata->buf); 665 kfree(idata); 666 return ioc_err ? ioc_err : err; 667 } 668 669 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 670 struct mmc_ioc_multi_cmd __user *user, 671 struct mmc_rpmb_data *rpmb) 672 { 673 struct mmc_blk_ioc_data **idata = NULL; 674 struct mmc_ioc_cmd __user *cmds = user->cmds; 675 struct mmc_card *card; 676 struct mmc_queue *mq; 677 int err = 0, ioc_err = 0; 678 __u64 num_of_cmds; 679 unsigned int i, n; 680 struct request *req; 681 682 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 683 sizeof(num_of_cmds))) 684 return -EFAULT; 685 686 if (!num_of_cmds) 687 return 0; 688 689 if (num_of_cmds > MMC_IOC_MAX_CMDS) 690 return -EINVAL; 691 692 n = num_of_cmds; 693 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL); 694 if (!idata) 695 return -ENOMEM; 696 697 for (i = 0; i < n; i++) { 698 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 699 if (IS_ERR(idata[i])) { 700 err = PTR_ERR(idata[i]); 701 n = i; 702 goto cmd_err; 703 } 704 /* This will be NULL on non-RPMB ioctl():s */ 705 idata[i]->rpmb = rpmb; 706 } 707 708 card = md->queue.card; 709 if (IS_ERR(card)) { 710 err = PTR_ERR(card); 711 goto cmd_err; 712 } 713 714 715 /* 716 * Dispatch the ioctl()s into the block request queue. 717 */ 718 mq = &md->queue; 719 req = blk_mq_alloc_request(mq->queue, 720 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 721 if (IS_ERR(req)) { 722 err = PTR_ERR(req); 723 goto cmd_err; 724 } 725 req_to_mmc_queue_req(req)->drv_op = 726 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 727 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 728 req_to_mmc_queue_req(req)->drv_op_data = idata; 729 req_to_mmc_queue_req(req)->ioc_count = n; 730 blk_execute_rq(req, false); 731 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 732 733 /* copy to user if data and response */ 734 for (i = 0; i < n && !err; i++) 735 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 736 737 blk_mq_free_request(req); 738 739 cmd_err: 740 for (i = 0; i < n; i++) { 741 kfree(idata[i]->buf); 742 kfree(idata[i]); 743 } 744 kfree(idata); 745 return ioc_err ? ioc_err : err; 746 } 747 748 static int mmc_blk_check_blkdev(struct block_device *bdev) 749 { 750 /* 751 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 752 * whole block device, not on a partition. This prevents overspray 753 * between sibling partitions. 754 */ 755 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 756 return -EPERM; 757 return 0; 758 } 759 760 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 761 unsigned int cmd, unsigned long arg) 762 { 763 struct mmc_blk_data *md; 764 int ret; 765 766 switch (cmd) { 767 case MMC_IOC_CMD: 768 ret = mmc_blk_check_blkdev(bdev); 769 if (ret) 770 return ret; 771 md = mmc_blk_get(bdev->bd_disk); 772 if (!md) 773 return -EINVAL; 774 ret = mmc_blk_ioctl_cmd(md, 775 (struct mmc_ioc_cmd __user *)arg, 776 NULL); 777 mmc_blk_put(md); 778 return ret; 779 case MMC_IOC_MULTI_CMD: 780 ret = mmc_blk_check_blkdev(bdev); 781 if (ret) 782 return ret; 783 md = mmc_blk_get(bdev->bd_disk); 784 if (!md) 785 return -EINVAL; 786 ret = mmc_blk_ioctl_multi_cmd(md, 787 (struct mmc_ioc_multi_cmd __user *)arg, 788 NULL); 789 mmc_blk_put(md); 790 return ret; 791 default: 792 return -EINVAL; 793 } 794 } 795 796 #ifdef CONFIG_COMPAT 797 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 798 unsigned int cmd, unsigned long arg) 799 { 800 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 801 } 802 #endif 803 804 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk, 805 sector_t *sector) 806 { 807 struct mmc_blk_data *md; 808 int ret; 809 810 md = mmc_blk_get(disk); 811 if (!md) 812 return -EINVAL; 813 814 if (md->queue.card) 815 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector); 816 else 817 ret = -ENODEV; 818 819 mmc_blk_put(md); 820 821 return ret; 822 } 823 824 static const struct block_device_operations mmc_bdops = { 825 .open = mmc_blk_open, 826 .release = mmc_blk_release, 827 .getgeo = mmc_blk_getgeo, 828 .owner = THIS_MODULE, 829 .ioctl = mmc_blk_ioctl, 830 #ifdef CONFIG_COMPAT 831 .compat_ioctl = mmc_blk_compat_ioctl, 832 #endif 833 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector, 834 }; 835 836 static int mmc_blk_part_switch_pre(struct mmc_card *card, 837 unsigned int part_type) 838 { 839 int ret = 0; 840 841 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 842 if (card->ext_csd.cmdq_en) { 843 ret = mmc_cmdq_disable(card); 844 if (ret) 845 return ret; 846 } 847 mmc_retune_pause(card->host); 848 } 849 850 return ret; 851 } 852 853 static int mmc_blk_part_switch_post(struct mmc_card *card, 854 unsigned int part_type) 855 { 856 int ret = 0; 857 858 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 859 mmc_retune_unpause(card->host); 860 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 861 ret = mmc_cmdq_enable(card); 862 } 863 864 return ret; 865 } 866 867 static inline int mmc_blk_part_switch(struct mmc_card *card, 868 unsigned int part_type) 869 { 870 int ret = 0; 871 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 872 873 if (main_md->part_curr == part_type) 874 return 0; 875 876 if (mmc_card_mmc(card)) { 877 u8 part_config = card->ext_csd.part_config; 878 879 ret = mmc_blk_part_switch_pre(card, part_type); 880 if (ret) 881 return ret; 882 883 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 884 part_config |= part_type; 885 886 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 887 EXT_CSD_PART_CONFIG, part_config, 888 card->ext_csd.part_time); 889 if (ret) { 890 mmc_blk_part_switch_post(card, part_type); 891 return ret; 892 } 893 894 card->ext_csd.part_config = part_config; 895 896 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 897 } 898 899 main_md->part_curr = part_type; 900 return ret; 901 } 902 903 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 904 { 905 int err; 906 u32 result; 907 __be32 *blocks; 908 909 struct mmc_request mrq = {}; 910 struct mmc_command cmd = {}; 911 struct mmc_data data = {}; 912 913 struct scatterlist sg; 914 915 cmd.opcode = MMC_APP_CMD; 916 cmd.arg = card->rca << 16; 917 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 918 919 err = mmc_wait_for_cmd(card->host, &cmd, 0); 920 if (err) 921 return err; 922 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 923 return -EIO; 924 925 memset(&cmd, 0, sizeof(struct mmc_command)); 926 927 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 928 cmd.arg = 0; 929 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 930 931 data.blksz = 4; 932 data.blocks = 1; 933 data.flags = MMC_DATA_READ; 934 data.sg = &sg; 935 data.sg_len = 1; 936 mmc_set_data_timeout(&data, card); 937 938 mrq.cmd = &cmd; 939 mrq.data = &data; 940 941 blocks = kmalloc(4, GFP_KERNEL); 942 if (!blocks) 943 return -ENOMEM; 944 945 sg_init_one(&sg, blocks, 4); 946 947 mmc_wait_for_req(card->host, &mrq); 948 949 result = ntohl(*blocks); 950 kfree(blocks); 951 952 if (cmd.error || data.error) 953 return -EIO; 954 955 *written_blocks = result; 956 957 return 0; 958 } 959 960 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 961 { 962 if (host->actual_clock) 963 return host->actual_clock / 1000; 964 965 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 966 if (host->ios.clock) 967 return host->ios.clock / 2000; 968 969 /* How can there be no clock */ 970 WARN_ON_ONCE(1); 971 return 100; /* 100 kHz is minimum possible value */ 972 } 973 974 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 975 struct mmc_data *data) 976 { 977 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 978 unsigned int khz; 979 980 if (data->timeout_clks) { 981 khz = mmc_blk_clock_khz(host); 982 ms += DIV_ROUND_UP(data->timeout_clks, khz); 983 } 984 985 return ms; 986 } 987 988 /* 989 * Attempts to reset the card and get back to the requested partition. 990 * Therefore any error here must result in cancelling the block layer 991 * request, it must not be reattempted without going through the mmc_blk 992 * partition sanity checks. 993 */ 994 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 995 int type) 996 { 997 int err; 998 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev); 999 1000 if (md->reset_done & type) 1001 return -EEXIST; 1002 1003 md->reset_done |= type; 1004 err = mmc_hw_reset(host->card); 1005 /* 1006 * A successful reset will leave the card in the main partition, but 1007 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID 1008 * in that case. 1009 */ 1010 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type; 1011 if (err) 1012 return err; 1013 /* Ensure we switch back to the correct partition */ 1014 if (mmc_blk_part_switch(host->card, md->part_type)) 1015 /* 1016 * We have failed to get back into the correct 1017 * partition, so we need to abort the whole request. 1018 */ 1019 return -ENODEV; 1020 return 0; 1021 } 1022 1023 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1024 { 1025 md->reset_done &= ~type; 1026 } 1027 1028 /* 1029 * The non-block commands come back from the block layer after it queued it and 1030 * processed it with all other requests and then they get issued in this 1031 * function. 1032 */ 1033 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1034 { 1035 struct mmc_queue_req *mq_rq; 1036 struct mmc_card *card = mq->card; 1037 struct mmc_blk_data *md = mq->blkdata; 1038 struct mmc_blk_ioc_data **idata; 1039 bool rpmb_ioctl; 1040 u8 **ext_csd; 1041 u32 status; 1042 int ret; 1043 int i; 1044 1045 mq_rq = req_to_mmc_queue_req(req); 1046 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1047 1048 switch (mq_rq->drv_op) { 1049 case MMC_DRV_OP_IOCTL: 1050 if (card->ext_csd.cmdq_en) { 1051 ret = mmc_cmdq_disable(card); 1052 if (ret) 1053 break; 1054 } 1055 fallthrough; 1056 case MMC_DRV_OP_IOCTL_RPMB: 1057 idata = mq_rq->drv_op_data; 1058 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1059 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1060 if (ret) 1061 break; 1062 } 1063 /* Always switch back to main area after RPMB access */ 1064 if (rpmb_ioctl) 1065 mmc_blk_part_switch(card, 0); 1066 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 1067 mmc_cmdq_enable(card); 1068 break; 1069 case MMC_DRV_OP_BOOT_WP: 1070 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1071 card->ext_csd.boot_ro_lock | 1072 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1073 card->ext_csd.part_time); 1074 if (ret) 1075 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1076 md->disk->disk_name, ret); 1077 else 1078 card->ext_csd.boot_ro_lock |= 1079 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1080 break; 1081 case MMC_DRV_OP_GET_CARD_STATUS: 1082 ret = mmc_send_status(card, &status); 1083 if (!ret) 1084 ret = status; 1085 break; 1086 case MMC_DRV_OP_GET_EXT_CSD: 1087 ext_csd = mq_rq->drv_op_data; 1088 ret = mmc_get_ext_csd(card, ext_csd); 1089 break; 1090 default: 1091 pr_err("%s: unknown driver specific operation\n", 1092 md->disk->disk_name); 1093 ret = -EINVAL; 1094 break; 1095 } 1096 mq_rq->drv_op_result = ret; 1097 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1098 } 1099 1100 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req, 1101 int type, unsigned int erase_arg) 1102 { 1103 struct mmc_blk_data *md = mq->blkdata; 1104 struct mmc_card *card = md->queue.card; 1105 unsigned int from, nr; 1106 int err = 0; 1107 blk_status_t status = BLK_STS_OK; 1108 1109 if (!mmc_can_erase(card)) { 1110 status = BLK_STS_NOTSUPP; 1111 goto fail; 1112 } 1113 1114 from = blk_rq_pos(req); 1115 nr = blk_rq_sectors(req); 1116 1117 do { 1118 err = 0; 1119 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1120 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1121 INAND_CMD38_ARG_EXT_CSD, 1122 erase_arg == MMC_TRIM_ARG ? 1123 INAND_CMD38_ARG_TRIM : 1124 INAND_CMD38_ARG_ERASE, 1125 card->ext_csd.generic_cmd6_time); 1126 } 1127 if (!err) 1128 err = mmc_erase(card, from, nr, erase_arg); 1129 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1130 if (err) 1131 status = BLK_STS_IOERR; 1132 else 1133 mmc_blk_reset_success(md, type); 1134 fail: 1135 blk_mq_end_request(req, status); 1136 } 1137 1138 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req) 1139 { 1140 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG); 1141 } 1142 1143 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1144 { 1145 struct mmc_blk_data *md = mq->blkdata; 1146 struct mmc_card *card = md->queue.card; 1147 unsigned int arg = card->erase_arg; 1148 1149 if (mmc_card_broken_sd_discard(card)) 1150 arg = SD_ERASE_ARG; 1151 1152 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg); 1153 } 1154 1155 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1156 struct request *req) 1157 { 1158 struct mmc_blk_data *md = mq->blkdata; 1159 struct mmc_card *card = md->queue.card; 1160 unsigned int from, nr, arg; 1161 int err = 0, type = MMC_BLK_SECDISCARD; 1162 blk_status_t status = BLK_STS_OK; 1163 1164 if (!(mmc_can_secure_erase_trim(card))) { 1165 status = BLK_STS_NOTSUPP; 1166 goto out; 1167 } 1168 1169 from = blk_rq_pos(req); 1170 nr = blk_rq_sectors(req); 1171 1172 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1173 arg = MMC_SECURE_TRIM1_ARG; 1174 else 1175 arg = MMC_SECURE_ERASE_ARG; 1176 1177 retry: 1178 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1179 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1180 INAND_CMD38_ARG_EXT_CSD, 1181 arg == MMC_SECURE_TRIM1_ARG ? 1182 INAND_CMD38_ARG_SECTRIM1 : 1183 INAND_CMD38_ARG_SECERASE, 1184 card->ext_csd.generic_cmd6_time); 1185 if (err) 1186 goto out_retry; 1187 } 1188 1189 err = mmc_erase(card, from, nr, arg); 1190 if (err == -EIO) 1191 goto out_retry; 1192 if (err) { 1193 status = BLK_STS_IOERR; 1194 goto out; 1195 } 1196 1197 if (arg == MMC_SECURE_TRIM1_ARG) { 1198 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1199 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1200 INAND_CMD38_ARG_EXT_CSD, 1201 INAND_CMD38_ARG_SECTRIM2, 1202 card->ext_csd.generic_cmd6_time); 1203 if (err) 1204 goto out_retry; 1205 } 1206 1207 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1208 if (err == -EIO) 1209 goto out_retry; 1210 if (err) { 1211 status = BLK_STS_IOERR; 1212 goto out; 1213 } 1214 } 1215 1216 out_retry: 1217 if (err && !mmc_blk_reset(md, card->host, type)) 1218 goto retry; 1219 if (!err) 1220 mmc_blk_reset_success(md, type); 1221 out: 1222 blk_mq_end_request(req, status); 1223 } 1224 1225 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1226 { 1227 struct mmc_blk_data *md = mq->blkdata; 1228 struct mmc_card *card = md->queue.card; 1229 int ret = 0; 1230 1231 ret = mmc_flush_cache(card->host); 1232 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1233 } 1234 1235 /* 1236 * Reformat current write as a reliable write, supporting 1237 * both legacy and the enhanced reliable write MMC cards. 1238 * In each transfer we'll handle only as much as a single 1239 * reliable write can handle, thus finish the request in 1240 * partial completions. 1241 */ 1242 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1243 struct mmc_card *card, 1244 struct request *req) 1245 { 1246 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1247 /* Legacy mode imposes restrictions on transfers. */ 1248 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1249 brq->data.blocks = 1; 1250 1251 if (brq->data.blocks > card->ext_csd.rel_sectors) 1252 brq->data.blocks = card->ext_csd.rel_sectors; 1253 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1254 brq->data.blocks = 1; 1255 } 1256 } 1257 1258 #define CMD_ERRORS_EXCL_OOR \ 1259 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1260 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1261 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1262 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1263 R1_CC_ERROR | /* Card controller error */ \ 1264 R1_ERROR) /* General/unknown error */ 1265 1266 #define CMD_ERRORS \ 1267 (CMD_ERRORS_EXCL_OOR | \ 1268 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1269 1270 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1271 { 1272 u32 val; 1273 1274 /* 1275 * Per the SD specification(physical layer version 4.10)[1], 1276 * section 4.3.3, it explicitly states that "When the last 1277 * block of user area is read using CMD18, the host should 1278 * ignore OUT_OF_RANGE error that may occur even the sequence 1279 * is correct". And JESD84-B51 for eMMC also has a similar 1280 * statement on section 6.8.3. 1281 * 1282 * Multiple block read/write could be done by either predefined 1283 * method, namely CMD23, or open-ending mode. For open-ending mode, 1284 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1285 * 1286 * However the spec[1] doesn't tell us whether we should also 1287 * ignore that for predefined method. But per the spec[1], section 1288 * 4.15 Set Block Count Command, it says"If illegal block count 1289 * is set, out of range error will be indicated during read/write 1290 * operation (For example, data transfer is stopped at user area 1291 * boundary)." In another word, we could expect a out of range error 1292 * in the response for the following CMD18/25. And if argument of 1293 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1294 * we could also expect to get a -ETIMEDOUT or any error number from 1295 * the host drivers due to missing data response(for write)/data(for 1296 * read), as the cards will stop the data transfer by itself per the 1297 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1298 */ 1299 1300 if (!brq->stop.error) { 1301 bool oor_with_open_end; 1302 /* If there is no error yet, check R1 response */ 1303 1304 val = brq->stop.resp[0] & CMD_ERRORS; 1305 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1306 1307 if (val && !oor_with_open_end) 1308 brq->stop.error = -EIO; 1309 } 1310 } 1311 1312 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1313 int recovery_mode, bool *do_rel_wr_p, 1314 bool *do_data_tag_p) 1315 { 1316 struct mmc_blk_data *md = mq->blkdata; 1317 struct mmc_card *card = md->queue.card; 1318 struct mmc_blk_request *brq = &mqrq->brq; 1319 struct request *req = mmc_queue_req_to_req(mqrq); 1320 bool do_rel_wr, do_data_tag; 1321 1322 /* 1323 * Reliable writes are used to implement Forced Unit Access and 1324 * are supported only on MMCs. 1325 */ 1326 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1327 rq_data_dir(req) == WRITE && 1328 (md->flags & MMC_BLK_REL_WR); 1329 1330 memset(brq, 0, sizeof(struct mmc_blk_request)); 1331 1332 mmc_crypto_prepare_req(mqrq); 1333 1334 brq->mrq.data = &brq->data; 1335 brq->mrq.tag = req->tag; 1336 1337 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1338 brq->stop.arg = 0; 1339 1340 if (rq_data_dir(req) == READ) { 1341 brq->data.flags = MMC_DATA_READ; 1342 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1343 } else { 1344 brq->data.flags = MMC_DATA_WRITE; 1345 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1346 } 1347 1348 brq->data.blksz = 512; 1349 brq->data.blocks = blk_rq_sectors(req); 1350 brq->data.blk_addr = blk_rq_pos(req); 1351 1352 /* 1353 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1354 * The eMMC will give "high" priority tasks priority over "simple" 1355 * priority tasks. Here we always set "simple" priority by not setting 1356 * MMC_DATA_PRIO. 1357 */ 1358 1359 /* 1360 * The block layer doesn't support all sector count 1361 * restrictions, so we need to be prepared for too big 1362 * requests. 1363 */ 1364 if (brq->data.blocks > card->host->max_blk_count) 1365 brq->data.blocks = card->host->max_blk_count; 1366 1367 if (brq->data.blocks > 1) { 1368 /* 1369 * Some SD cards in SPI mode return a CRC error or even lock up 1370 * completely when trying to read the last block using a 1371 * multiblock read command. 1372 */ 1373 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1374 (blk_rq_pos(req) + blk_rq_sectors(req) == 1375 get_capacity(md->disk))) 1376 brq->data.blocks--; 1377 1378 /* 1379 * After a read error, we redo the request one (native) sector 1380 * at a time in order to accurately determine which 1381 * sectors can be read successfully. 1382 */ 1383 if (recovery_mode) 1384 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9; 1385 1386 /* 1387 * Some controllers have HW issues while operating 1388 * in multiple I/O mode 1389 */ 1390 if (card->host->ops->multi_io_quirk) 1391 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1392 (rq_data_dir(req) == READ) ? 1393 MMC_DATA_READ : MMC_DATA_WRITE, 1394 brq->data.blocks); 1395 } 1396 1397 if (do_rel_wr) { 1398 mmc_apply_rel_rw(brq, card, req); 1399 brq->data.flags |= MMC_DATA_REL_WR; 1400 } 1401 1402 /* 1403 * Data tag is used only during writing meta data to speed 1404 * up write and any subsequent read of this meta data 1405 */ 1406 do_data_tag = card->ext_csd.data_tag_unit_size && 1407 (req->cmd_flags & REQ_META) && 1408 (rq_data_dir(req) == WRITE) && 1409 ((brq->data.blocks * brq->data.blksz) >= 1410 card->ext_csd.data_tag_unit_size); 1411 1412 if (do_data_tag) 1413 brq->data.flags |= MMC_DATA_DAT_TAG; 1414 1415 mmc_set_data_timeout(&brq->data, card); 1416 1417 brq->data.sg = mqrq->sg; 1418 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1419 1420 /* 1421 * Adjust the sg list so it is the same size as the 1422 * request. 1423 */ 1424 if (brq->data.blocks != blk_rq_sectors(req)) { 1425 int i, data_size = brq->data.blocks << 9; 1426 struct scatterlist *sg; 1427 1428 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1429 data_size -= sg->length; 1430 if (data_size <= 0) { 1431 sg->length += data_size; 1432 i++; 1433 break; 1434 } 1435 } 1436 brq->data.sg_len = i; 1437 } 1438 1439 if (do_rel_wr_p) 1440 *do_rel_wr_p = do_rel_wr; 1441 1442 if (do_data_tag_p) 1443 *do_data_tag_p = do_data_tag; 1444 } 1445 1446 #define MMC_CQE_RETRIES 2 1447 1448 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1449 { 1450 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1451 struct mmc_request *mrq = &mqrq->brq.mrq; 1452 struct request_queue *q = req->q; 1453 struct mmc_host *host = mq->card->host; 1454 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1455 unsigned long flags; 1456 bool put_card; 1457 int err; 1458 1459 mmc_cqe_post_req(host, mrq); 1460 1461 if (mrq->cmd && mrq->cmd->error) 1462 err = mrq->cmd->error; 1463 else if (mrq->data && mrq->data->error) 1464 err = mrq->data->error; 1465 else 1466 err = 0; 1467 1468 if (err) { 1469 if (mqrq->retries++ < MMC_CQE_RETRIES) 1470 blk_mq_requeue_request(req, true); 1471 else 1472 blk_mq_end_request(req, BLK_STS_IOERR); 1473 } else if (mrq->data) { 1474 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1475 blk_mq_requeue_request(req, true); 1476 else 1477 __blk_mq_end_request(req, BLK_STS_OK); 1478 } else { 1479 blk_mq_end_request(req, BLK_STS_OK); 1480 } 1481 1482 spin_lock_irqsave(&mq->lock, flags); 1483 1484 mq->in_flight[issue_type] -= 1; 1485 1486 put_card = (mmc_tot_in_flight(mq) == 0); 1487 1488 mmc_cqe_check_busy(mq); 1489 1490 spin_unlock_irqrestore(&mq->lock, flags); 1491 1492 if (!mq->cqe_busy) 1493 blk_mq_run_hw_queues(q, true); 1494 1495 if (put_card) 1496 mmc_put_card(mq->card, &mq->ctx); 1497 } 1498 1499 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1500 { 1501 struct mmc_card *card = mq->card; 1502 struct mmc_host *host = card->host; 1503 int err; 1504 1505 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1506 1507 err = mmc_cqe_recovery(host); 1508 if (err) 1509 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1510 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1511 1512 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1513 } 1514 1515 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1516 { 1517 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1518 brq.mrq); 1519 struct request *req = mmc_queue_req_to_req(mqrq); 1520 struct request_queue *q = req->q; 1521 struct mmc_queue *mq = q->queuedata; 1522 1523 /* 1524 * Block layer timeouts race with completions which means the normal 1525 * completion path cannot be used during recovery. 1526 */ 1527 if (mq->in_recovery) 1528 mmc_blk_cqe_complete_rq(mq, req); 1529 else if (likely(!blk_should_fake_timeout(req->q))) 1530 blk_mq_complete_request(req); 1531 } 1532 1533 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1534 { 1535 mrq->done = mmc_blk_cqe_req_done; 1536 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1537 1538 return mmc_cqe_start_req(host, mrq); 1539 } 1540 1541 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1542 struct request *req) 1543 { 1544 struct mmc_blk_request *brq = &mqrq->brq; 1545 1546 memset(brq, 0, sizeof(*brq)); 1547 1548 brq->mrq.cmd = &brq->cmd; 1549 brq->mrq.tag = req->tag; 1550 1551 return &brq->mrq; 1552 } 1553 1554 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1555 { 1556 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1557 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1558 1559 mrq->cmd->opcode = MMC_SWITCH; 1560 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1561 (EXT_CSD_FLUSH_CACHE << 16) | 1562 (1 << 8) | 1563 EXT_CSD_CMD_SET_NORMAL; 1564 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1565 1566 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1567 } 1568 1569 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1570 { 1571 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1572 struct mmc_host *host = mq->card->host; 1573 int err; 1574 1575 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1576 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1577 mmc_pre_req(host, &mqrq->brq.mrq); 1578 1579 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1580 if (err) 1581 mmc_post_req(host, &mqrq->brq.mrq, err); 1582 1583 return err; 1584 } 1585 1586 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1587 { 1588 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1589 struct mmc_host *host = mq->card->host; 1590 1591 if (host->hsq_enabled) 1592 return mmc_blk_hsq_issue_rw_rq(mq, req); 1593 1594 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1595 1596 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1597 } 1598 1599 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1600 struct mmc_card *card, 1601 int recovery_mode, 1602 struct mmc_queue *mq) 1603 { 1604 u32 readcmd, writecmd; 1605 struct mmc_blk_request *brq = &mqrq->brq; 1606 struct request *req = mmc_queue_req_to_req(mqrq); 1607 struct mmc_blk_data *md = mq->blkdata; 1608 bool do_rel_wr, do_data_tag; 1609 1610 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag); 1611 1612 brq->mrq.cmd = &brq->cmd; 1613 1614 brq->cmd.arg = blk_rq_pos(req); 1615 if (!mmc_card_blockaddr(card)) 1616 brq->cmd.arg <<= 9; 1617 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1618 1619 if (brq->data.blocks > 1 || do_rel_wr) { 1620 /* SPI multiblock writes terminate using a special 1621 * token, not a STOP_TRANSMISSION request. 1622 */ 1623 if (!mmc_host_is_spi(card->host) || 1624 rq_data_dir(req) == READ) 1625 brq->mrq.stop = &brq->stop; 1626 readcmd = MMC_READ_MULTIPLE_BLOCK; 1627 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1628 } else { 1629 brq->mrq.stop = NULL; 1630 readcmd = MMC_READ_SINGLE_BLOCK; 1631 writecmd = MMC_WRITE_BLOCK; 1632 } 1633 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1634 1635 /* 1636 * Pre-defined multi-block transfers are preferable to 1637 * open ended-ones (and necessary for reliable writes). 1638 * However, it is not sufficient to just send CMD23, 1639 * and avoid the final CMD12, as on an error condition 1640 * CMD12 (stop) needs to be sent anyway. This, coupled 1641 * with Auto-CMD23 enhancements provided by some 1642 * hosts, means that the complexity of dealing 1643 * with this is best left to the host. If CMD23 is 1644 * supported by card and host, we'll fill sbc in and let 1645 * the host deal with handling it correctly. This means 1646 * that for hosts that don't expose MMC_CAP_CMD23, no 1647 * change of behavior will be observed. 1648 * 1649 * N.B: Some MMC cards experience perf degradation. 1650 * We'll avoid using CMD23-bounded multiblock writes for 1651 * these, while retaining features like reliable writes. 1652 */ 1653 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1654 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1655 do_data_tag)) { 1656 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1657 brq->sbc.arg = brq->data.blocks | 1658 (do_rel_wr ? (1 << 31) : 0) | 1659 (do_data_tag ? (1 << 29) : 0); 1660 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1661 brq->mrq.sbc = &brq->sbc; 1662 } 1663 } 1664 1665 #define MMC_MAX_RETRIES 5 1666 #define MMC_DATA_RETRIES 2 1667 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1668 1669 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1670 { 1671 struct mmc_command cmd = { 1672 .opcode = MMC_STOP_TRANSMISSION, 1673 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1674 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1675 .busy_timeout = timeout, 1676 }; 1677 1678 return mmc_wait_for_cmd(card->host, &cmd, 5); 1679 } 1680 1681 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1682 { 1683 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1684 struct mmc_blk_request *brq = &mqrq->brq; 1685 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1686 int err; 1687 1688 mmc_retune_hold_now(card->host); 1689 1690 mmc_blk_send_stop(card, timeout); 1691 1692 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO); 1693 1694 mmc_retune_release(card->host); 1695 1696 return err; 1697 } 1698 1699 #define MMC_READ_SINGLE_RETRIES 2 1700 1701 /* Single (native) sector read during recovery */ 1702 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1703 { 1704 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1705 struct mmc_request *mrq = &mqrq->brq.mrq; 1706 struct mmc_card *card = mq->card; 1707 struct mmc_host *host = card->host; 1708 blk_status_t error = BLK_STS_OK; 1709 size_t bytes_per_read = queue_physical_block_size(mq->queue); 1710 1711 do { 1712 u32 status; 1713 int err; 1714 int retries = 0; 1715 1716 while (retries++ <= MMC_READ_SINGLE_RETRIES) { 1717 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1718 1719 mmc_wait_for_req(host, mrq); 1720 1721 err = mmc_send_status(card, &status); 1722 if (err) 1723 goto error_exit; 1724 1725 if (!mmc_host_is_spi(host) && 1726 !mmc_ready_for_data(status)) { 1727 err = mmc_blk_fix_state(card, req); 1728 if (err) 1729 goto error_exit; 1730 } 1731 1732 if (!mrq->cmd->error) 1733 break; 1734 } 1735 1736 if (mrq->cmd->error || 1737 mrq->data->error || 1738 (!mmc_host_is_spi(host) && 1739 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1740 error = BLK_STS_IOERR; 1741 else 1742 error = BLK_STS_OK; 1743 1744 } while (blk_update_request(req, error, bytes_per_read)); 1745 1746 return; 1747 1748 error_exit: 1749 mrq->data->bytes_xfered = 0; 1750 blk_update_request(req, BLK_STS_IOERR, bytes_per_read); 1751 /* Let it try the remaining request again */ 1752 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1753 mqrq->retries = MMC_MAX_RETRIES - 1; 1754 } 1755 1756 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1757 { 1758 return !!brq->mrq.sbc; 1759 } 1760 1761 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1762 { 1763 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1764 } 1765 1766 /* 1767 * Check for errors the host controller driver might not have seen such as 1768 * response mode errors or invalid card state. 1769 */ 1770 static bool mmc_blk_status_error(struct request *req, u32 status) 1771 { 1772 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1773 struct mmc_blk_request *brq = &mqrq->brq; 1774 struct mmc_queue *mq = req->q->queuedata; 1775 u32 stop_err_bits; 1776 1777 if (mmc_host_is_spi(mq->card->host)) 1778 return false; 1779 1780 stop_err_bits = mmc_blk_stop_err_bits(brq); 1781 1782 return brq->cmd.resp[0] & CMD_ERRORS || 1783 brq->stop.resp[0] & stop_err_bits || 1784 status & stop_err_bits || 1785 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1786 } 1787 1788 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1789 { 1790 return !brq->sbc.error && !brq->cmd.error && 1791 !(brq->cmd.resp[0] & CMD_ERRORS); 1792 } 1793 1794 /* 1795 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1796 * policy: 1797 * 1. A request that has transferred at least some data is considered 1798 * successful and will be requeued if there is remaining data to 1799 * transfer. 1800 * 2. Otherwise the number of retries is incremented and the request 1801 * will be requeued if there are remaining retries. 1802 * 3. Otherwise the request will be errored out. 1803 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1804 * mqrq->retries. So there are only 4 possible actions here: 1805 * 1. do not accept the bytes_xfered value i.e. set it to zero 1806 * 2. change mqrq->retries to determine the number of retries 1807 * 3. try to reset the card 1808 * 4. read one sector at a time 1809 */ 1810 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1811 { 1812 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1813 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1814 struct mmc_blk_request *brq = &mqrq->brq; 1815 struct mmc_blk_data *md = mq->blkdata; 1816 struct mmc_card *card = mq->card; 1817 u32 status; 1818 u32 blocks; 1819 int err; 1820 1821 /* 1822 * Some errors the host driver might not have seen. Set the number of 1823 * bytes transferred to zero in that case. 1824 */ 1825 err = __mmc_send_status(card, &status, 0); 1826 if (err || mmc_blk_status_error(req, status)) 1827 brq->data.bytes_xfered = 0; 1828 1829 mmc_retune_release(card->host); 1830 1831 /* 1832 * Try again to get the status. This also provides an opportunity for 1833 * re-tuning. 1834 */ 1835 if (err) 1836 err = __mmc_send_status(card, &status, 0); 1837 1838 /* 1839 * Nothing more to do after the number of bytes transferred has been 1840 * updated and there is no card. 1841 */ 1842 if (err && mmc_detect_card_removed(card->host)) 1843 return; 1844 1845 /* Try to get back to "tran" state */ 1846 if (!mmc_host_is_spi(mq->card->host) && 1847 (err || !mmc_ready_for_data(status))) 1848 err = mmc_blk_fix_state(mq->card, req); 1849 1850 /* 1851 * Special case for SD cards where the card might record the number of 1852 * blocks written. 1853 */ 1854 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1855 rq_data_dir(req) == WRITE) { 1856 if (mmc_sd_num_wr_blocks(card, &blocks)) 1857 brq->data.bytes_xfered = 0; 1858 else 1859 brq->data.bytes_xfered = blocks << 9; 1860 } 1861 1862 /* Reset if the card is in a bad state */ 1863 if (!mmc_host_is_spi(mq->card->host) && 1864 err && mmc_blk_reset(md, card->host, type)) { 1865 pr_err("%s: recovery failed!\n", req->q->disk->disk_name); 1866 mqrq->retries = MMC_NO_RETRIES; 1867 return; 1868 } 1869 1870 /* 1871 * If anything was done, just return and if there is anything remaining 1872 * on the request it will get requeued. 1873 */ 1874 if (brq->data.bytes_xfered) 1875 return; 1876 1877 /* Reset before last retry */ 1878 if (mqrq->retries + 1 == MMC_MAX_RETRIES && 1879 mmc_blk_reset(md, card->host, type)) 1880 return; 1881 1882 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1883 if (brq->sbc.error || brq->cmd.error) 1884 return; 1885 1886 /* Reduce the remaining retries for data errors */ 1887 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1888 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1889 return; 1890 } 1891 1892 if (rq_data_dir(req) == READ && brq->data.blocks > 1893 queue_physical_block_size(mq->queue) >> 9) { 1894 /* Read one (native) sector at a time */ 1895 mmc_blk_read_single(mq, req); 1896 return; 1897 } 1898 } 1899 1900 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1901 { 1902 mmc_blk_eval_resp_error(brq); 1903 1904 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1905 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1906 } 1907 1908 static int mmc_spi_err_check(struct mmc_card *card) 1909 { 1910 u32 status = 0; 1911 int err; 1912 1913 /* 1914 * SPI does not have a TRAN state we have to wait on, instead the 1915 * card is ready again when it no longer holds the line LOW. 1916 * We still have to ensure two things here before we know the write 1917 * was successful: 1918 * 1. The card has not disconnected during busy and we actually read our 1919 * own pull-up, thinking it was still connected, so ensure it 1920 * still responds. 1921 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a 1922 * just reconnected card after being disconnected during busy. 1923 */ 1924 err = __mmc_send_status(card, &status, 0); 1925 if (err) 1926 return err; 1927 /* All R1 and R2 bits of SPI are errors in our case */ 1928 if (status) 1929 return -EIO; 1930 return 0; 1931 } 1932 1933 static int mmc_blk_busy_cb(void *cb_data, bool *busy) 1934 { 1935 struct mmc_blk_busy_data *data = cb_data; 1936 u32 status = 0; 1937 int err; 1938 1939 err = mmc_send_status(data->card, &status); 1940 if (err) 1941 return err; 1942 1943 /* Accumulate response error bits. */ 1944 data->status |= status; 1945 1946 *busy = !mmc_ready_for_data(status); 1947 return 0; 1948 } 1949 1950 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1951 { 1952 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1953 struct mmc_blk_busy_data cb_data; 1954 int err; 1955 1956 if (rq_data_dir(req) == READ) 1957 return 0; 1958 1959 if (mmc_host_is_spi(card->host)) { 1960 err = mmc_spi_err_check(card); 1961 if (err) 1962 mqrq->brq.data.bytes_xfered = 0; 1963 return err; 1964 } 1965 1966 cb_data.card = card; 1967 cb_data.status = 0; 1968 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS, 1969 &mmc_blk_busy_cb, &cb_data); 1970 1971 /* 1972 * Do not assume data transferred correctly if there are any error bits 1973 * set. 1974 */ 1975 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1976 mqrq->brq.data.bytes_xfered = 0; 1977 err = err ? err : -EIO; 1978 } 1979 1980 /* Copy the exception bit so it will be seen later on */ 1981 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT) 1982 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1983 1984 return err; 1985 } 1986 1987 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1988 struct request *req) 1989 { 1990 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1991 1992 mmc_blk_reset_success(mq->blkdata, type); 1993 } 1994 1995 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1996 { 1997 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1998 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1999 2000 if (nr_bytes) { 2001 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 2002 blk_mq_requeue_request(req, true); 2003 else 2004 __blk_mq_end_request(req, BLK_STS_OK); 2005 } else if (!blk_rq_bytes(req)) { 2006 __blk_mq_end_request(req, BLK_STS_IOERR); 2007 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 2008 blk_mq_requeue_request(req, true); 2009 } else { 2010 if (mmc_card_removed(mq->card)) 2011 req->rq_flags |= RQF_QUIET; 2012 blk_mq_end_request(req, BLK_STS_IOERR); 2013 } 2014 } 2015 2016 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 2017 struct mmc_queue_req *mqrq) 2018 { 2019 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 2020 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 2021 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 2022 } 2023 2024 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 2025 struct mmc_queue_req *mqrq) 2026 { 2027 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 2028 mmc_run_bkops(mq->card); 2029 } 2030 2031 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 2032 { 2033 struct mmc_queue_req *mqrq = 2034 container_of(mrq, struct mmc_queue_req, brq.mrq); 2035 struct request *req = mmc_queue_req_to_req(mqrq); 2036 struct request_queue *q = req->q; 2037 struct mmc_queue *mq = q->queuedata; 2038 struct mmc_host *host = mq->card->host; 2039 unsigned long flags; 2040 2041 if (mmc_blk_rq_error(&mqrq->brq) || 2042 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2043 spin_lock_irqsave(&mq->lock, flags); 2044 mq->recovery_needed = true; 2045 mq->recovery_req = req; 2046 spin_unlock_irqrestore(&mq->lock, flags); 2047 2048 host->cqe_ops->cqe_recovery_start(host); 2049 2050 schedule_work(&mq->recovery_work); 2051 return; 2052 } 2053 2054 mmc_blk_rw_reset_success(mq, req); 2055 2056 /* 2057 * Block layer timeouts race with completions which means the normal 2058 * completion path cannot be used during recovery. 2059 */ 2060 if (mq->in_recovery) 2061 mmc_blk_cqe_complete_rq(mq, req); 2062 else if (likely(!blk_should_fake_timeout(req->q))) 2063 blk_mq_complete_request(req); 2064 } 2065 2066 void mmc_blk_mq_complete(struct request *req) 2067 { 2068 struct mmc_queue *mq = req->q->queuedata; 2069 struct mmc_host *host = mq->card->host; 2070 2071 if (host->cqe_enabled) 2072 mmc_blk_cqe_complete_rq(mq, req); 2073 else if (likely(!blk_should_fake_timeout(req->q))) 2074 mmc_blk_mq_complete_rq(mq, req); 2075 } 2076 2077 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 2078 struct request *req) 2079 { 2080 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2081 struct mmc_host *host = mq->card->host; 2082 2083 if (mmc_blk_rq_error(&mqrq->brq) || 2084 mmc_blk_card_busy(mq->card, req)) { 2085 mmc_blk_mq_rw_recovery(mq, req); 2086 } else { 2087 mmc_blk_rw_reset_success(mq, req); 2088 mmc_retune_release(host); 2089 } 2090 2091 mmc_blk_urgent_bkops(mq, mqrq); 2092 } 2093 2094 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 2095 { 2096 unsigned long flags; 2097 bool put_card; 2098 2099 spin_lock_irqsave(&mq->lock, flags); 2100 2101 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 2102 2103 put_card = (mmc_tot_in_flight(mq) == 0); 2104 2105 spin_unlock_irqrestore(&mq->lock, flags); 2106 2107 if (put_card) 2108 mmc_put_card(mq->card, &mq->ctx); 2109 } 2110 2111 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req, 2112 bool can_sleep) 2113 { 2114 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2115 struct mmc_request *mrq = &mqrq->brq.mrq; 2116 struct mmc_host *host = mq->card->host; 2117 2118 mmc_post_req(host, mrq, 0); 2119 2120 /* 2121 * Block layer timeouts race with completions which means the normal 2122 * completion path cannot be used during recovery. 2123 */ 2124 if (mq->in_recovery) { 2125 mmc_blk_mq_complete_rq(mq, req); 2126 } else if (likely(!blk_should_fake_timeout(req->q))) { 2127 if (can_sleep) 2128 blk_mq_complete_request_direct(req, mmc_blk_mq_complete); 2129 else 2130 blk_mq_complete_request(req); 2131 } 2132 2133 mmc_blk_mq_dec_in_flight(mq, req); 2134 } 2135 2136 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2137 { 2138 struct request *req = mq->recovery_req; 2139 struct mmc_host *host = mq->card->host; 2140 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2141 2142 mq->recovery_req = NULL; 2143 mq->rw_wait = false; 2144 2145 if (mmc_blk_rq_error(&mqrq->brq)) { 2146 mmc_retune_hold_now(host); 2147 mmc_blk_mq_rw_recovery(mq, req); 2148 } 2149 2150 mmc_blk_urgent_bkops(mq, mqrq); 2151 2152 mmc_blk_mq_post_req(mq, req, true); 2153 } 2154 2155 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2156 struct request **prev_req) 2157 { 2158 if (mmc_host_done_complete(mq->card->host)) 2159 return; 2160 2161 mutex_lock(&mq->complete_lock); 2162 2163 if (!mq->complete_req) 2164 goto out_unlock; 2165 2166 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2167 2168 if (prev_req) 2169 *prev_req = mq->complete_req; 2170 else 2171 mmc_blk_mq_post_req(mq, mq->complete_req, true); 2172 2173 mq->complete_req = NULL; 2174 2175 out_unlock: 2176 mutex_unlock(&mq->complete_lock); 2177 } 2178 2179 void mmc_blk_mq_complete_work(struct work_struct *work) 2180 { 2181 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2182 complete_work); 2183 2184 mmc_blk_mq_complete_prev_req(mq, NULL); 2185 } 2186 2187 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2188 { 2189 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2190 brq.mrq); 2191 struct request *req = mmc_queue_req_to_req(mqrq); 2192 struct request_queue *q = req->q; 2193 struct mmc_queue *mq = q->queuedata; 2194 struct mmc_host *host = mq->card->host; 2195 unsigned long flags; 2196 2197 if (!mmc_host_done_complete(host)) { 2198 bool waiting; 2199 2200 /* 2201 * We cannot complete the request in this context, so record 2202 * that there is a request to complete, and that a following 2203 * request does not need to wait (although it does need to 2204 * complete complete_req first). 2205 */ 2206 spin_lock_irqsave(&mq->lock, flags); 2207 mq->complete_req = req; 2208 mq->rw_wait = false; 2209 waiting = mq->waiting; 2210 spin_unlock_irqrestore(&mq->lock, flags); 2211 2212 /* 2213 * If 'waiting' then the waiting task will complete this 2214 * request, otherwise queue a work to do it. Note that 2215 * complete_work may still race with the dispatch of a following 2216 * request. 2217 */ 2218 if (waiting) 2219 wake_up(&mq->wait); 2220 else 2221 queue_work(mq->card->complete_wq, &mq->complete_work); 2222 2223 return; 2224 } 2225 2226 /* Take the recovery path for errors or urgent background operations */ 2227 if (mmc_blk_rq_error(&mqrq->brq) || 2228 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2229 spin_lock_irqsave(&mq->lock, flags); 2230 mq->recovery_needed = true; 2231 mq->recovery_req = req; 2232 spin_unlock_irqrestore(&mq->lock, flags); 2233 wake_up(&mq->wait); 2234 schedule_work(&mq->recovery_work); 2235 return; 2236 } 2237 2238 mmc_blk_rw_reset_success(mq, req); 2239 2240 mq->rw_wait = false; 2241 wake_up(&mq->wait); 2242 2243 /* context unknown */ 2244 mmc_blk_mq_post_req(mq, req, false); 2245 } 2246 2247 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2248 { 2249 unsigned long flags; 2250 bool done; 2251 2252 /* 2253 * Wait while there is another request in progress, but not if recovery 2254 * is needed. Also indicate whether there is a request waiting to start. 2255 */ 2256 spin_lock_irqsave(&mq->lock, flags); 2257 if (mq->recovery_needed) { 2258 *err = -EBUSY; 2259 done = true; 2260 } else { 2261 done = !mq->rw_wait; 2262 } 2263 mq->waiting = !done; 2264 spin_unlock_irqrestore(&mq->lock, flags); 2265 2266 return done; 2267 } 2268 2269 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2270 { 2271 int err = 0; 2272 2273 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2274 2275 /* Always complete the previous request if there is one */ 2276 mmc_blk_mq_complete_prev_req(mq, prev_req); 2277 2278 return err; 2279 } 2280 2281 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2282 struct request *req) 2283 { 2284 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2285 struct mmc_host *host = mq->card->host; 2286 struct request *prev_req = NULL; 2287 int err = 0; 2288 2289 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2290 2291 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2292 2293 mmc_pre_req(host, &mqrq->brq.mrq); 2294 2295 err = mmc_blk_rw_wait(mq, &prev_req); 2296 if (err) 2297 goto out_post_req; 2298 2299 mq->rw_wait = true; 2300 2301 err = mmc_start_request(host, &mqrq->brq.mrq); 2302 2303 if (prev_req) 2304 mmc_blk_mq_post_req(mq, prev_req, true); 2305 2306 if (err) 2307 mq->rw_wait = false; 2308 2309 /* Release re-tuning here where there is no synchronization required */ 2310 if (err || mmc_host_done_complete(host)) 2311 mmc_retune_release(host); 2312 2313 out_post_req: 2314 if (err) 2315 mmc_post_req(host, &mqrq->brq.mrq, err); 2316 2317 return err; 2318 } 2319 2320 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2321 { 2322 if (host->cqe_enabled) 2323 return host->cqe_ops->cqe_wait_for_idle(host); 2324 2325 return mmc_blk_rw_wait(mq, NULL); 2326 } 2327 2328 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2329 { 2330 struct mmc_blk_data *md = mq->blkdata; 2331 struct mmc_card *card = md->queue.card; 2332 struct mmc_host *host = card->host; 2333 int ret; 2334 2335 ret = mmc_blk_part_switch(card, md->part_type); 2336 if (ret) 2337 return MMC_REQ_FAILED_TO_START; 2338 2339 switch (mmc_issue_type(mq, req)) { 2340 case MMC_ISSUE_SYNC: 2341 ret = mmc_blk_wait_for_idle(mq, host); 2342 if (ret) 2343 return MMC_REQ_BUSY; 2344 switch (req_op(req)) { 2345 case REQ_OP_DRV_IN: 2346 case REQ_OP_DRV_OUT: 2347 mmc_blk_issue_drv_op(mq, req); 2348 break; 2349 case REQ_OP_DISCARD: 2350 mmc_blk_issue_discard_rq(mq, req); 2351 break; 2352 case REQ_OP_SECURE_ERASE: 2353 mmc_blk_issue_secdiscard_rq(mq, req); 2354 break; 2355 case REQ_OP_WRITE_ZEROES: 2356 mmc_blk_issue_trim_rq(mq, req); 2357 break; 2358 case REQ_OP_FLUSH: 2359 mmc_blk_issue_flush(mq, req); 2360 break; 2361 default: 2362 WARN_ON_ONCE(1); 2363 return MMC_REQ_FAILED_TO_START; 2364 } 2365 return MMC_REQ_FINISHED; 2366 case MMC_ISSUE_DCMD: 2367 case MMC_ISSUE_ASYNC: 2368 switch (req_op(req)) { 2369 case REQ_OP_FLUSH: 2370 if (!mmc_cache_enabled(host)) { 2371 blk_mq_end_request(req, BLK_STS_OK); 2372 return MMC_REQ_FINISHED; 2373 } 2374 ret = mmc_blk_cqe_issue_flush(mq, req); 2375 break; 2376 case REQ_OP_READ: 2377 case REQ_OP_WRITE: 2378 if (host->cqe_enabled) 2379 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2380 else 2381 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2382 break; 2383 default: 2384 WARN_ON_ONCE(1); 2385 ret = -EINVAL; 2386 } 2387 if (!ret) 2388 return MMC_REQ_STARTED; 2389 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2390 default: 2391 WARN_ON_ONCE(1); 2392 return MMC_REQ_FAILED_TO_START; 2393 } 2394 } 2395 2396 static inline int mmc_blk_readonly(struct mmc_card *card) 2397 { 2398 return mmc_card_readonly(card) || 2399 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2400 } 2401 2402 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2403 struct device *parent, 2404 sector_t size, 2405 bool default_ro, 2406 const char *subname, 2407 int area_type, 2408 unsigned int part_type) 2409 { 2410 struct mmc_blk_data *md; 2411 int devidx, ret; 2412 char cap_str[10]; 2413 bool cache_enabled = false; 2414 bool fua_enabled = false; 2415 2416 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2417 if (devidx < 0) { 2418 /* 2419 * We get -ENOSPC because there are no more any available 2420 * devidx. The reason may be that, either userspace haven't yet 2421 * unmounted the partitions, which postpones mmc_blk_release() 2422 * from being called, or the device has more partitions than 2423 * what we support. 2424 */ 2425 if (devidx == -ENOSPC) 2426 dev_err(mmc_dev(card->host), 2427 "no more device IDs available\n"); 2428 2429 return ERR_PTR(devidx); 2430 } 2431 2432 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2433 if (!md) { 2434 ret = -ENOMEM; 2435 goto out; 2436 } 2437 2438 md->area_type = area_type; 2439 2440 /* 2441 * Set the read-only status based on the supported commands 2442 * and the write protect switch. 2443 */ 2444 md->read_only = mmc_blk_readonly(card); 2445 2446 md->disk = mmc_init_queue(&md->queue, card); 2447 if (IS_ERR(md->disk)) { 2448 ret = PTR_ERR(md->disk); 2449 goto err_kfree; 2450 } 2451 2452 INIT_LIST_HEAD(&md->part); 2453 INIT_LIST_HEAD(&md->rpmbs); 2454 kref_init(&md->kref); 2455 2456 md->queue.blkdata = md; 2457 md->part_type = part_type; 2458 2459 md->disk->major = MMC_BLOCK_MAJOR; 2460 md->disk->minors = perdev_minors; 2461 md->disk->first_minor = devidx * perdev_minors; 2462 md->disk->fops = &mmc_bdops; 2463 md->disk->private_data = md; 2464 md->parent = parent; 2465 set_disk_ro(md->disk, md->read_only || default_ro); 2466 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2467 md->disk->flags |= GENHD_FL_NO_PART; 2468 2469 /* 2470 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2471 * 2472 * - be set for removable media with permanent block devices 2473 * - be unset for removable block devices with permanent media 2474 * 2475 * Since MMC block devices clearly fall under the second 2476 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2477 * should use the block device creation/destruction hotplug 2478 * messages to tell when the card is present. 2479 */ 2480 2481 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2482 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2483 2484 set_capacity(md->disk, size); 2485 2486 if (mmc_host_cmd23(card->host)) { 2487 if ((mmc_card_mmc(card) && 2488 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2489 (mmc_card_sd(card) && 2490 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2491 md->flags |= MMC_BLK_CMD23; 2492 } 2493 2494 if (md->flags & MMC_BLK_CMD23 && 2495 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2496 card->ext_csd.rel_sectors)) { 2497 md->flags |= MMC_BLK_REL_WR; 2498 fua_enabled = true; 2499 cache_enabled = true; 2500 } 2501 if (mmc_cache_enabled(card->host)) 2502 cache_enabled = true; 2503 2504 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled); 2505 2506 string_get_size((u64)size, 512, STRING_UNITS_2, 2507 cap_str, sizeof(cap_str)); 2508 pr_info("%s: %s %s %s %s\n", 2509 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2510 cap_str, md->read_only ? "(ro)" : ""); 2511 2512 /* used in ->open, must be set before add_disk: */ 2513 if (area_type == MMC_BLK_DATA_AREA_MAIN) 2514 dev_set_drvdata(&card->dev, md); 2515 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups); 2516 if (ret) 2517 goto err_put_disk; 2518 return md; 2519 2520 err_put_disk: 2521 put_disk(md->disk); 2522 blk_mq_free_tag_set(&md->queue.tag_set); 2523 err_kfree: 2524 kfree(md); 2525 out: 2526 ida_simple_remove(&mmc_blk_ida, devidx); 2527 return ERR_PTR(ret); 2528 } 2529 2530 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2531 { 2532 sector_t size; 2533 2534 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2535 /* 2536 * The EXT_CSD sector count is in number or 512 byte 2537 * sectors. 2538 */ 2539 size = card->ext_csd.sectors; 2540 } else { 2541 /* 2542 * The CSD capacity field is in units of read_blkbits. 2543 * set_capacity takes units of 512 bytes. 2544 */ 2545 size = (typeof(sector_t))card->csd.capacity 2546 << (card->csd.read_blkbits - 9); 2547 } 2548 2549 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2550 MMC_BLK_DATA_AREA_MAIN, 0); 2551 } 2552 2553 static int mmc_blk_alloc_part(struct mmc_card *card, 2554 struct mmc_blk_data *md, 2555 unsigned int part_type, 2556 sector_t size, 2557 bool default_ro, 2558 const char *subname, 2559 int area_type) 2560 { 2561 struct mmc_blk_data *part_md; 2562 2563 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2564 subname, area_type, part_type); 2565 if (IS_ERR(part_md)) 2566 return PTR_ERR(part_md); 2567 list_add(&part_md->part, &md->part); 2568 2569 return 0; 2570 } 2571 2572 /** 2573 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2574 * @filp: the character device file 2575 * @cmd: the ioctl() command 2576 * @arg: the argument from userspace 2577 * 2578 * This will essentially just redirect the ioctl()s coming in over to 2579 * the main block device spawning the RPMB character device. 2580 */ 2581 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2582 unsigned long arg) 2583 { 2584 struct mmc_rpmb_data *rpmb = filp->private_data; 2585 int ret; 2586 2587 switch (cmd) { 2588 case MMC_IOC_CMD: 2589 ret = mmc_blk_ioctl_cmd(rpmb->md, 2590 (struct mmc_ioc_cmd __user *)arg, 2591 rpmb); 2592 break; 2593 case MMC_IOC_MULTI_CMD: 2594 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2595 (struct mmc_ioc_multi_cmd __user *)arg, 2596 rpmb); 2597 break; 2598 default: 2599 ret = -EINVAL; 2600 break; 2601 } 2602 2603 return ret; 2604 } 2605 2606 #ifdef CONFIG_COMPAT 2607 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2608 unsigned long arg) 2609 { 2610 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2611 } 2612 #endif 2613 2614 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2615 { 2616 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2617 struct mmc_rpmb_data, chrdev); 2618 2619 get_device(&rpmb->dev); 2620 filp->private_data = rpmb; 2621 mmc_blk_get(rpmb->md->disk); 2622 2623 return nonseekable_open(inode, filp); 2624 } 2625 2626 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2627 { 2628 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2629 struct mmc_rpmb_data, chrdev); 2630 2631 mmc_blk_put(rpmb->md); 2632 put_device(&rpmb->dev); 2633 2634 return 0; 2635 } 2636 2637 static const struct file_operations mmc_rpmb_fileops = { 2638 .release = mmc_rpmb_chrdev_release, 2639 .open = mmc_rpmb_chrdev_open, 2640 .owner = THIS_MODULE, 2641 .llseek = no_llseek, 2642 .unlocked_ioctl = mmc_rpmb_ioctl, 2643 #ifdef CONFIG_COMPAT 2644 .compat_ioctl = mmc_rpmb_ioctl_compat, 2645 #endif 2646 }; 2647 2648 static void mmc_blk_rpmb_device_release(struct device *dev) 2649 { 2650 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2651 2652 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2653 kfree(rpmb); 2654 } 2655 2656 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2657 struct mmc_blk_data *md, 2658 unsigned int part_index, 2659 sector_t size, 2660 const char *subname) 2661 { 2662 int devidx, ret; 2663 char rpmb_name[DISK_NAME_LEN]; 2664 char cap_str[10]; 2665 struct mmc_rpmb_data *rpmb; 2666 2667 /* This creates the minor number for the RPMB char device */ 2668 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2669 if (devidx < 0) 2670 return devidx; 2671 2672 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2673 if (!rpmb) { 2674 ida_simple_remove(&mmc_rpmb_ida, devidx); 2675 return -ENOMEM; 2676 } 2677 2678 snprintf(rpmb_name, sizeof(rpmb_name), 2679 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2680 2681 rpmb->id = devidx; 2682 rpmb->part_index = part_index; 2683 rpmb->dev.init_name = rpmb_name; 2684 rpmb->dev.bus = &mmc_rpmb_bus_type; 2685 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2686 rpmb->dev.parent = &card->dev; 2687 rpmb->dev.release = mmc_blk_rpmb_device_release; 2688 device_initialize(&rpmb->dev); 2689 dev_set_drvdata(&rpmb->dev, rpmb); 2690 rpmb->md = md; 2691 2692 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2693 rpmb->chrdev.owner = THIS_MODULE; 2694 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2695 if (ret) { 2696 pr_err("%s: could not add character device\n", rpmb_name); 2697 goto out_put_device; 2698 } 2699 2700 list_add(&rpmb->node, &md->rpmbs); 2701 2702 string_get_size((u64)size, 512, STRING_UNITS_2, 2703 cap_str, sizeof(cap_str)); 2704 2705 pr_info("%s: %s %s %s, chardev (%d:%d)\n", 2706 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, 2707 MAJOR(mmc_rpmb_devt), rpmb->id); 2708 2709 return 0; 2710 2711 out_put_device: 2712 put_device(&rpmb->dev); 2713 return ret; 2714 } 2715 2716 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2717 2718 { 2719 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2720 put_device(&rpmb->dev); 2721 } 2722 2723 /* MMC Physical partitions consist of two boot partitions and 2724 * up to four general purpose partitions. 2725 * For each partition enabled in EXT_CSD a block device will be allocatedi 2726 * to provide access to the partition. 2727 */ 2728 2729 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2730 { 2731 int idx, ret; 2732 2733 if (!mmc_card_mmc(card)) 2734 return 0; 2735 2736 for (idx = 0; idx < card->nr_parts; idx++) { 2737 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2738 /* 2739 * RPMB partitions does not provide block access, they 2740 * are only accessed using ioctl():s. Thus create 2741 * special RPMB block devices that do not have a 2742 * backing block queue for these. 2743 */ 2744 ret = mmc_blk_alloc_rpmb_part(card, md, 2745 card->part[idx].part_cfg, 2746 card->part[idx].size >> 9, 2747 card->part[idx].name); 2748 if (ret) 2749 return ret; 2750 } else if (card->part[idx].size) { 2751 ret = mmc_blk_alloc_part(card, md, 2752 card->part[idx].part_cfg, 2753 card->part[idx].size >> 9, 2754 card->part[idx].force_ro, 2755 card->part[idx].name, 2756 card->part[idx].area_type); 2757 if (ret) 2758 return ret; 2759 } 2760 } 2761 2762 return 0; 2763 } 2764 2765 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2766 { 2767 /* 2768 * Flush remaining requests and free queues. It is freeing the queue 2769 * that stops new requests from being accepted. 2770 */ 2771 del_gendisk(md->disk); 2772 mmc_cleanup_queue(&md->queue); 2773 mmc_blk_put(md); 2774 } 2775 2776 static void mmc_blk_remove_parts(struct mmc_card *card, 2777 struct mmc_blk_data *md) 2778 { 2779 struct list_head *pos, *q; 2780 struct mmc_blk_data *part_md; 2781 struct mmc_rpmb_data *rpmb; 2782 2783 /* Remove RPMB partitions */ 2784 list_for_each_safe(pos, q, &md->rpmbs) { 2785 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2786 list_del(pos); 2787 mmc_blk_remove_rpmb_part(rpmb); 2788 } 2789 /* Remove block partitions */ 2790 list_for_each_safe(pos, q, &md->part) { 2791 part_md = list_entry(pos, struct mmc_blk_data, part); 2792 list_del(pos); 2793 mmc_blk_remove_req(part_md); 2794 } 2795 } 2796 2797 #ifdef CONFIG_DEBUG_FS 2798 2799 static int mmc_dbg_card_status_get(void *data, u64 *val) 2800 { 2801 struct mmc_card *card = data; 2802 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2803 struct mmc_queue *mq = &md->queue; 2804 struct request *req; 2805 int ret; 2806 2807 /* Ask the block layer about the card status */ 2808 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2809 if (IS_ERR(req)) 2810 return PTR_ERR(req); 2811 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2812 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 2813 blk_execute_rq(req, false); 2814 ret = req_to_mmc_queue_req(req)->drv_op_result; 2815 if (ret >= 0) { 2816 *val = ret; 2817 ret = 0; 2818 } 2819 blk_mq_free_request(req); 2820 2821 return ret; 2822 } 2823 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2824 NULL, "%08llx\n"); 2825 2826 /* That is two digits * 512 + 1 for newline */ 2827 #define EXT_CSD_STR_LEN 1025 2828 2829 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2830 { 2831 struct mmc_card *card = inode->i_private; 2832 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2833 struct mmc_queue *mq = &md->queue; 2834 struct request *req; 2835 char *buf; 2836 ssize_t n = 0; 2837 u8 *ext_csd; 2838 int err, i; 2839 2840 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2841 if (!buf) 2842 return -ENOMEM; 2843 2844 /* Ask the block layer for the EXT CSD */ 2845 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2846 if (IS_ERR(req)) { 2847 err = PTR_ERR(req); 2848 goto out_free; 2849 } 2850 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2851 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 2852 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2853 blk_execute_rq(req, false); 2854 err = req_to_mmc_queue_req(req)->drv_op_result; 2855 blk_mq_free_request(req); 2856 if (err) { 2857 pr_err("FAILED %d\n", err); 2858 goto out_free; 2859 } 2860 2861 for (i = 0; i < 512; i++) 2862 n += sprintf(buf + n, "%02x", ext_csd[i]); 2863 n += sprintf(buf + n, "\n"); 2864 2865 if (n != EXT_CSD_STR_LEN) { 2866 err = -EINVAL; 2867 kfree(ext_csd); 2868 goto out_free; 2869 } 2870 2871 filp->private_data = buf; 2872 kfree(ext_csd); 2873 return 0; 2874 2875 out_free: 2876 kfree(buf); 2877 return err; 2878 } 2879 2880 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2881 size_t cnt, loff_t *ppos) 2882 { 2883 char *buf = filp->private_data; 2884 2885 return simple_read_from_buffer(ubuf, cnt, ppos, 2886 buf, EXT_CSD_STR_LEN); 2887 } 2888 2889 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2890 { 2891 kfree(file->private_data); 2892 return 0; 2893 } 2894 2895 static const struct file_operations mmc_dbg_ext_csd_fops = { 2896 .open = mmc_ext_csd_open, 2897 .read = mmc_ext_csd_read, 2898 .release = mmc_ext_csd_release, 2899 .llseek = default_llseek, 2900 }; 2901 2902 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2903 { 2904 struct dentry *root; 2905 2906 if (!card->debugfs_root) 2907 return 0; 2908 2909 root = card->debugfs_root; 2910 2911 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2912 md->status_dentry = 2913 debugfs_create_file_unsafe("status", 0400, root, 2914 card, 2915 &mmc_dbg_card_status_fops); 2916 if (!md->status_dentry) 2917 return -EIO; 2918 } 2919 2920 if (mmc_card_mmc(card)) { 2921 md->ext_csd_dentry = 2922 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2923 &mmc_dbg_ext_csd_fops); 2924 if (!md->ext_csd_dentry) 2925 return -EIO; 2926 } 2927 2928 return 0; 2929 } 2930 2931 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2932 struct mmc_blk_data *md) 2933 { 2934 if (!card->debugfs_root) 2935 return; 2936 2937 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2938 debugfs_remove(md->status_dentry); 2939 md->status_dentry = NULL; 2940 } 2941 2942 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2943 debugfs_remove(md->ext_csd_dentry); 2944 md->ext_csd_dentry = NULL; 2945 } 2946 } 2947 2948 #else 2949 2950 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2951 { 2952 return 0; 2953 } 2954 2955 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2956 struct mmc_blk_data *md) 2957 { 2958 } 2959 2960 #endif /* CONFIG_DEBUG_FS */ 2961 2962 static int mmc_blk_probe(struct mmc_card *card) 2963 { 2964 struct mmc_blk_data *md; 2965 int ret = 0; 2966 2967 /* 2968 * Check that the card supports the command class(es) we need. 2969 */ 2970 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2971 return -ENODEV; 2972 2973 mmc_fixup_device(card, mmc_blk_fixups); 2974 2975 card->complete_wq = alloc_workqueue("mmc_complete", 2976 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2977 if (!card->complete_wq) { 2978 pr_err("Failed to create mmc completion workqueue"); 2979 return -ENOMEM; 2980 } 2981 2982 md = mmc_blk_alloc(card); 2983 if (IS_ERR(md)) { 2984 ret = PTR_ERR(md); 2985 goto out_free; 2986 } 2987 2988 ret = mmc_blk_alloc_parts(card, md); 2989 if (ret) 2990 goto out; 2991 2992 /* Add two debugfs entries */ 2993 mmc_blk_add_debugfs(card, md); 2994 2995 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2996 pm_runtime_use_autosuspend(&card->dev); 2997 2998 /* 2999 * Don't enable runtime PM for SD-combo cards here. Leave that 3000 * decision to be taken during the SDIO init sequence instead. 3001 */ 3002 if (!mmc_card_sd_combo(card)) { 3003 pm_runtime_set_active(&card->dev); 3004 pm_runtime_enable(&card->dev); 3005 } 3006 3007 return 0; 3008 3009 out: 3010 mmc_blk_remove_parts(card, md); 3011 mmc_blk_remove_req(md); 3012 out_free: 3013 destroy_workqueue(card->complete_wq); 3014 return ret; 3015 } 3016 3017 static void mmc_blk_remove(struct mmc_card *card) 3018 { 3019 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3020 3021 mmc_blk_remove_debugfs(card, md); 3022 mmc_blk_remove_parts(card, md); 3023 pm_runtime_get_sync(&card->dev); 3024 if (md->part_curr != md->part_type) { 3025 mmc_claim_host(card->host); 3026 mmc_blk_part_switch(card, md->part_type); 3027 mmc_release_host(card->host); 3028 } 3029 if (!mmc_card_sd_combo(card)) 3030 pm_runtime_disable(&card->dev); 3031 pm_runtime_put_noidle(&card->dev); 3032 mmc_blk_remove_req(md); 3033 dev_set_drvdata(&card->dev, NULL); 3034 destroy_workqueue(card->complete_wq); 3035 } 3036 3037 static int _mmc_blk_suspend(struct mmc_card *card) 3038 { 3039 struct mmc_blk_data *part_md; 3040 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3041 3042 if (md) { 3043 mmc_queue_suspend(&md->queue); 3044 list_for_each_entry(part_md, &md->part, part) { 3045 mmc_queue_suspend(&part_md->queue); 3046 } 3047 } 3048 return 0; 3049 } 3050 3051 static void mmc_blk_shutdown(struct mmc_card *card) 3052 { 3053 _mmc_blk_suspend(card); 3054 } 3055 3056 #ifdef CONFIG_PM_SLEEP 3057 static int mmc_blk_suspend(struct device *dev) 3058 { 3059 struct mmc_card *card = mmc_dev_to_card(dev); 3060 3061 return _mmc_blk_suspend(card); 3062 } 3063 3064 static int mmc_blk_resume(struct device *dev) 3065 { 3066 struct mmc_blk_data *part_md; 3067 struct mmc_blk_data *md = dev_get_drvdata(dev); 3068 3069 if (md) { 3070 /* 3071 * Resume involves the card going into idle state, 3072 * so current partition is always the main one. 3073 */ 3074 md->part_curr = md->part_type; 3075 mmc_queue_resume(&md->queue); 3076 list_for_each_entry(part_md, &md->part, part) { 3077 mmc_queue_resume(&part_md->queue); 3078 } 3079 } 3080 return 0; 3081 } 3082 #endif 3083 3084 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3085 3086 static struct mmc_driver mmc_driver = { 3087 .drv = { 3088 .name = "mmcblk", 3089 .pm = &mmc_blk_pm_ops, 3090 }, 3091 .probe = mmc_blk_probe, 3092 .remove = mmc_blk_remove, 3093 .shutdown = mmc_blk_shutdown, 3094 }; 3095 3096 static int __init mmc_blk_init(void) 3097 { 3098 int res; 3099 3100 res = bus_register(&mmc_rpmb_bus_type); 3101 if (res < 0) { 3102 pr_err("mmcblk: could not register RPMB bus type\n"); 3103 return res; 3104 } 3105 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3106 if (res < 0) { 3107 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3108 goto out_bus_unreg; 3109 } 3110 3111 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3112 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3113 3114 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3115 3116 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3117 if (res) 3118 goto out_chrdev_unreg; 3119 3120 res = mmc_register_driver(&mmc_driver); 3121 if (res) 3122 goto out_blkdev_unreg; 3123 3124 return 0; 3125 3126 out_blkdev_unreg: 3127 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3128 out_chrdev_unreg: 3129 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3130 out_bus_unreg: 3131 bus_unregister(&mmc_rpmb_bus_type); 3132 return res; 3133 } 3134 3135 static void __exit mmc_blk_exit(void) 3136 { 3137 mmc_unregister_driver(&mmc_driver); 3138 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3139 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3140 bus_unregister(&mmc_rpmb_bus_type); 3141 } 3142 3143 module_init(mmc_blk_init); 3144 module_exit(mmc_blk_exit); 3145 3146 MODULE_LICENSE("GPL"); 3147 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3148 3149