xref: /openbmc/linux/drivers/mmc/core/block.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41 
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47 
48 #include <linux/uaccess.h>
49 
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
59 
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
65 
66 /*
67  * Set a 10 second timeout for polling write request busy state. Note, mmc core
68  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69  * second software timer to timeout the whole request, so 10 seconds should be
70  * ample.
71  */
72 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
73 #define MMC_SANITIZE_REQ_TIMEOUT 240000
74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
76 
77 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
78 				  (rq_data_dir(req) == WRITE))
79 static DEFINE_MUTEX(block_mutex);
80 
81 /*
82  * The defaults come from config options but can be overriden by module
83  * or bootarg options.
84  */
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86 
87 /*
88  * We've only got one major, so number of mmcblk devices is
89  * limited to (1 << 20) / number of minors per device.  It is also
90  * limited by the MAX_DEVICES below.
91  */
92 static int max_devices;
93 
94 #define MAX_DEVICES 256
95 
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
98 
99 /*
100  * There is one mmc_blk_data per slot.
101  */
102 struct mmc_blk_data {
103 	spinlock_t	lock;
104 	struct device	*parent;
105 	struct gendisk	*disk;
106 	struct mmc_queue queue;
107 	struct list_head part;
108 	struct list_head rpmbs;
109 
110 	unsigned int	flags;
111 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
112 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
113 
114 	unsigned int	usage;
115 	unsigned int	read_only;
116 	unsigned int	part_type;
117 	unsigned int	reset_done;
118 #define MMC_BLK_READ		BIT(0)
119 #define MMC_BLK_WRITE		BIT(1)
120 #define MMC_BLK_DISCARD		BIT(2)
121 #define MMC_BLK_SECDISCARD	BIT(3)
122 #define MMC_BLK_CQE_RECOVERY	BIT(4)
123 
124 	/*
125 	 * Only set in main mmc_blk_data associated
126 	 * with mmc_card with dev_set_drvdata, and keeps
127 	 * track of the current selected device partition.
128 	 */
129 	unsigned int	part_curr;
130 	struct device_attribute force_ro;
131 	struct device_attribute power_ro_lock;
132 	int	area_type;
133 
134 	/* debugfs files (only in main mmc_blk_data) */
135 	struct dentry *status_dentry;
136 	struct dentry *ext_csd_dentry;
137 };
138 
139 /* Device type for RPMB character devices */
140 static dev_t mmc_rpmb_devt;
141 
142 /* Bus type for RPMB character devices */
143 static struct bus_type mmc_rpmb_bus_type = {
144 	.name = "mmc_rpmb",
145 };
146 
147 /**
148  * struct mmc_rpmb_data - special RPMB device type for these areas
149  * @dev: the device for the RPMB area
150  * @chrdev: character device for the RPMB area
151  * @id: unique device ID number
152  * @part_index: partition index (0 on first)
153  * @md: parent MMC block device
154  * @node: list item, so we can put this device on a list
155  */
156 struct mmc_rpmb_data {
157 	struct device dev;
158 	struct cdev chrdev;
159 	int id;
160 	unsigned int part_index;
161 	struct mmc_blk_data *md;
162 	struct list_head node;
163 };
164 
165 static DEFINE_MUTEX(open_lock);
166 
167 module_param(perdev_minors, int, 0444);
168 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
169 
170 static inline int mmc_blk_part_switch(struct mmc_card *card,
171 				      unsigned int part_type);
172 
173 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
174 {
175 	struct mmc_blk_data *md;
176 
177 	mutex_lock(&open_lock);
178 	md = disk->private_data;
179 	if (md && md->usage == 0)
180 		md = NULL;
181 	if (md)
182 		md->usage++;
183 	mutex_unlock(&open_lock);
184 
185 	return md;
186 }
187 
188 static inline int mmc_get_devidx(struct gendisk *disk)
189 {
190 	int devidx = disk->first_minor / perdev_minors;
191 	return devidx;
192 }
193 
194 static void mmc_blk_put(struct mmc_blk_data *md)
195 {
196 	mutex_lock(&open_lock);
197 	md->usage--;
198 	if (md->usage == 0) {
199 		int devidx = mmc_get_devidx(md->disk);
200 		blk_put_queue(md->queue.queue);
201 		ida_simple_remove(&mmc_blk_ida, devidx);
202 		put_disk(md->disk);
203 		kfree(md);
204 	}
205 	mutex_unlock(&open_lock);
206 }
207 
208 static ssize_t power_ro_lock_show(struct device *dev,
209 		struct device_attribute *attr, char *buf)
210 {
211 	int ret;
212 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
213 	struct mmc_card *card = md->queue.card;
214 	int locked = 0;
215 
216 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
217 		locked = 2;
218 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
219 		locked = 1;
220 
221 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
222 
223 	mmc_blk_put(md);
224 
225 	return ret;
226 }
227 
228 static ssize_t power_ro_lock_store(struct device *dev,
229 		struct device_attribute *attr, const char *buf, size_t count)
230 {
231 	int ret;
232 	struct mmc_blk_data *md, *part_md;
233 	struct mmc_queue *mq;
234 	struct request *req;
235 	unsigned long set;
236 
237 	if (kstrtoul(buf, 0, &set))
238 		return -EINVAL;
239 
240 	if (set != 1)
241 		return count;
242 
243 	md = mmc_blk_get(dev_to_disk(dev));
244 	mq = &md->queue;
245 
246 	/* Dispatch locking to the block layer */
247 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
248 	if (IS_ERR(req)) {
249 		count = PTR_ERR(req);
250 		goto out_put;
251 	}
252 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
253 	blk_execute_rq(mq->queue, NULL, req, 0);
254 	ret = req_to_mmc_queue_req(req)->drv_op_result;
255 	blk_put_request(req);
256 
257 	if (!ret) {
258 		pr_info("%s: Locking boot partition ro until next power on\n",
259 			md->disk->disk_name);
260 		set_disk_ro(md->disk, 1);
261 
262 		list_for_each_entry(part_md, &md->part, part)
263 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
264 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
265 				set_disk_ro(part_md->disk, 1);
266 			}
267 	}
268 out_put:
269 	mmc_blk_put(md);
270 	return count;
271 }
272 
273 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
274 			     char *buf)
275 {
276 	int ret;
277 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
278 
279 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
280 		       get_disk_ro(dev_to_disk(dev)) ^
281 		       md->read_only);
282 	mmc_blk_put(md);
283 	return ret;
284 }
285 
286 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
287 			      const char *buf, size_t count)
288 {
289 	int ret;
290 	char *end;
291 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
292 	unsigned long set = simple_strtoul(buf, &end, 0);
293 	if (end == buf) {
294 		ret = -EINVAL;
295 		goto out;
296 	}
297 
298 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
299 	ret = count;
300 out:
301 	mmc_blk_put(md);
302 	return ret;
303 }
304 
305 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
306 {
307 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
308 	int ret = -ENXIO;
309 
310 	mutex_lock(&block_mutex);
311 	if (md) {
312 		if (md->usage == 2)
313 			check_disk_change(bdev);
314 		ret = 0;
315 
316 		if ((mode & FMODE_WRITE) && md->read_only) {
317 			mmc_blk_put(md);
318 			ret = -EROFS;
319 		}
320 	}
321 	mutex_unlock(&block_mutex);
322 
323 	return ret;
324 }
325 
326 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
327 {
328 	struct mmc_blk_data *md = disk->private_data;
329 
330 	mutex_lock(&block_mutex);
331 	mmc_blk_put(md);
332 	mutex_unlock(&block_mutex);
333 }
334 
335 static int
336 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
337 {
338 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
339 	geo->heads = 4;
340 	geo->sectors = 16;
341 	return 0;
342 }
343 
344 struct mmc_blk_ioc_data {
345 	struct mmc_ioc_cmd ic;
346 	unsigned char *buf;
347 	u64 buf_bytes;
348 	struct mmc_rpmb_data *rpmb;
349 };
350 
351 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
352 	struct mmc_ioc_cmd __user *user)
353 {
354 	struct mmc_blk_ioc_data *idata;
355 	int err;
356 
357 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
358 	if (!idata) {
359 		err = -ENOMEM;
360 		goto out;
361 	}
362 
363 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
364 		err = -EFAULT;
365 		goto idata_err;
366 	}
367 
368 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
369 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
370 		err = -EOVERFLOW;
371 		goto idata_err;
372 	}
373 
374 	if (!idata->buf_bytes) {
375 		idata->buf = NULL;
376 		return idata;
377 	}
378 
379 	idata->buf = memdup_user((void __user *)(unsigned long)
380 				 idata->ic.data_ptr, idata->buf_bytes);
381 	if (IS_ERR(idata->buf)) {
382 		err = PTR_ERR(idata->buf);
383 		goto idata_err;
384 	}
385 
386 	return idata;
387 
388 idata_err:
389 	kfree(idata);
390 out:
391 	return ERR_PTR(err);
392 }
393 
394 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
395 				      struct mmc_blk_ioc_data *idata)
396 {
397 	struct mmc_ioc_cmd *ic = &idata->ic;
398 
399 	if (copy_to_user(&(ic_ptr->response), ic->response,
400 			 sizeof(ic->response)))
401 		return -EFAULT;
402 
403 	if (!idata->ic.write_flag) {
404 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
405 				 idata->buf, idata->buf_bytes))
406 			return -EFAULT;
407 	}
408 
409 	return 0;
410 }
411 
412 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
413 				       u32 retries_max)
414 {
415 	int err;
416 	u32 retry_count = 0;
417 
418 	if (!status || !retries_max)
419 		return -EINVAL;
420 
421 	do {
422 		err = __mmc_send_status(card, status, 5);
423 		if (err)
424 			break;
425 
426 		if (!R1_STATUS(*status) &&
427 				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
428 			break; /* RPMB programming operation complete */
429 
430 		/*
431 		 * Rechedule to give the MMC device a chance to continue
432 		 * processing the previous command without being polled too
433 		 * frequently.
434 		 */
435 		usleep_range(1000, 5000);
436 	} while (++retry_count < retries_max);
437 
438 	if (retry_count == retries_max)
439 		err = -EPERM;
440 
441 	return err;
442 }
443 
444 static int ioctl_do_sanitize(struct mmc_card *card)
445 {
446 	int err;
447 
448 	if (!mmc_can_sanitize(card)) {
449 			pr_warn("%s: %s - SANITIZE is not supported\n",
450 				mmc_hostname(card->host), __func__);
451 			err = -EOPNOTSUPP;
452 			goto out;
453 	}
454 
455 	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
456 		mmc_hostname(card->host), __func__);
457 
458 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
459 					EXT_CSD_SANITIZE_START, 1,
460 					MMC_SANITIZE_REQ_TIMEOUT);
461 
462 	if (err)
463 		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
464 		       mmc_hostname(card->host), __func__, err);
465 
466 	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
467 					     __func__);
468 out:
469 	return err;
470 }
471 
472 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
473 			       struct mmc_blk_ioc_data *idata)
474 {
475 	struct mmc_command cmd = {};
476 	struct mmc_data data = {};
477 	struct mmc_request mrq = {};
478 	struct scatterlist sg;
479 	int err;
480 	unsigned int target_part;
481 	u32 status = 0;
482 
483 	if (!card || !md || !idata)
484 		return -EINVAL;
485 
486 	/*
487 	 * The RPMB accesses comes in from the character device, so we
488 	 * need to target these explicitly. Else we just target the
489 	 * partition type for the block device the ioctl() was issued
490 	 * on.
491 	 */
492 	if (idata->rpmb) {
493 		/* Support multiple RPMB partitions */
494 		target_part = idata->rpmb->part_index;
495 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
496 	} else {
497 		target_part = md->part_type;
498 	}
499 
500 	cmd.opcode = idata->ic.opcode;
501 	cmd.arg = idata->ic.arg;
502 	cmd.flags = idata->ic.flags;
503 
504 	if (idata->buf_bytes) {
505 		data.sg = &sg;
506 		data.sg_len = 1;
507 		data.blksz = idata->ic.blksz;
508 		data.blocks = idata->ic.blocks;
509 
510 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
511 
512 		if (idata->ic.write_flag)
513 			data.flags = MMC_DATA_WRITE;
514 		else
515 			data.flags = MMC_DATA_READ;
516 
517 		/* data.flags must already be set before doing this. */
518 		mmc_set_data_timeout(&data, card);
519 
520 		/* Allow overriding the timeout_ns for empirical tuning. */
521 		if (idata->ic.data_timeout_ns)
522 			data.timeout_ns = idata->ic.data_timeout_ns;
523 
524 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
525 			/*
526 			 * Pretend this is a data transfer and rely on the
527 			 * host driver to compute timeout.  When all host
528 			 * drivers support cmd.cmd_timeout for R1B, this
529 			 * can be changed to:
530 			 *
531 			 *     mrq.data = NULL;
532 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
533 			 */
534 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
535 		}
536 
537 		mrq.data = &data;
538 	}
539 
540 	mrq.cmd = &cmd;
541 
542 	err = mmc_blk_part_switch(card, target_part);
543 	if (err)
544 		return err;
545 
546 	if (idata->ic.is_acmd) {
547 		err = mmc_app_cmd(card->host, card);
548 		if (err)
549 			return err;
550 	}
551 
552 	if (idata->rpmb) {
553 		err = mmc_set_blockcount(card, data.blocks,
554 			idata->ic.write_flag & (1 << 31));
555 		if (err)
556 			return err;
557 	}
558 
559 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
560 	    (cmd.opcode == MMC_SWITCH)) {
561 		err = ioctl_do_sanitize(card);
562 
563 		if (err)
564 			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
565 			       __func__, err);
566 
567 		return err;
568 	}
569 
570 	mmc_wait_for_req(card->host, &mrq);
571 
572 	if (cmd.error) {
573 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
574 						__func__, cmd.error);
575 		return cmd.error;
576 	}
577 	if (data.error) {
578 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
579 						__func__, data.error);
580 		return data.error;
581 	}
582 
583 	/*
584 	 * Make sure the cache of the PARTITION_CONFIG register and
585 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
586 	 * changed it successfully.
587 	 */
588 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
589 	    (cmd.opcode == MMC_SWITCH)) {
590 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
591 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
592 
593 		/*
594 		 * Update cache so the next mmc_blk_part_switch call operates
595 		 * on up-to-date data.
596 		 */
597 		card->ext_csd.part_config = value;
598 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
599 	}
600 
601 	/*
602 	 * According to the SD specs, some commands require a delay after
603 	 * issuing the command.
604 	 */
605 	if (idata->ic.postsleep_min_us)
606 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
607 
608 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
609 
610 	if (idata->rpmb) {
611 		/*
612 		 * Ensure RPMB command has completed by polling CMD13
613 		 * "Send Status".
614 		 */
615 		err = ioctl_rpmb_card_status_poll(card, &status, 5);
616 		if (err)
617 			dev_err(mmc_dev(card->host),
618 					"%s: Card Status=0x%08X, error %d\n",
619 					__func__, status, err);
620 	}
621 
622 	return err;
623 }
624 
625 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
626 			     struct mmc_ioc_cmd __user *ic_ptr,
627 			     struct mmc_rpmb_data *rpmb)
628 {
629 	struct mmc_blk_ioc_data *idata;
630 	struct mmc_blk_ioc_data *idatas[1];
631 	struct mmc_queue *mq;
632 	struct mmc_card *card;
633 	int err = 0, ioc_err = 0;
634 	struct request *req;
635 
636 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
637 	if (IS_ERR(idata))
638 		return PTR_ERR(idata);
639 	/* This will be NULL on non-RPMB ioctl():s */
640 	idata->rpmb = rpmb;
641 
642 	card = md->queue.card;
643 	if (IS_ERR(card)) {
644 		err = PTR_ERR(card);
645 		goto cmd_done;
646 	}
647 
648 	/*
649 	 * Dispatch the ioctl() into the block request queue.
650 	 */
651 	mq = &md->queue;
652 	req = blk_get_request(mq->queue,
653 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
654 	if (IS_ERR(req)) {
655 		err = PTR_ERR(req);
656 		goto cmd_done;
657 	}
658 	idatas[0] = idata;
659 	req_to_mmc_queue_req(req)->drv_op =
660 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
661 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
662 	req_to_mmc_queue_req(req)->ioc_count = 1;
663 	blk_execute_rq(mq->queue, NULL, req, 0);
664 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
665 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
666 	blk_put_request(req);
667 
668 cmd_done:
669 	kfree(idata->buf);
670 	kfree(idata);
671 	return ioc_err ? ioc_err : err;
672 }
673 
674 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
675 				   struct mmc_ioc_multi_cmd __user *user,
676 				   struct mmc_rpmb_data *rpmb)
677 {
678 	struct mmc_blk_ioc_data **idata = NULL;
679 	struct mmc_ioc_cmd __user *cmds = user->cmds;
680 	struct mmc_card *card;
681 	struct mmc_queue *mq;
682 	int i, err = 0, ioc_err = 0;
683 	__u64 num_of_cmds;
684 	struct request *req;
685 
686 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
687 			   sizeof(num_of_cmds)))
688 		return -EFAULT;
689 
690 	if (!num_of_cmds)
691 		return 0;
692 
693 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
694 		return -EINVAL;
695 
696 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
697 	if (!idata)
698 		return -ENOMEM;
699 
700 	for (i = 0; i < num_of_cmds; i++) {
701 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
702 		if (IS_ERR(idata[i])) {
703 			err = PTR_ERR(idata[i]);
704 			num_of_cmds = i;
705 			goto cmd_err;
706 		}
707 		/* This will be NULL on non-RPMB ioctl():s */
708 		idata[i]->rpmb = rpmb;
709 	}
710 
711 	card = md->queue.card;
712 	if (IS_ERR(card)) {
713 		err = PTR_ERR(card);
714 		goto cmd_err;
715 	}
716 
717 
718 	/*
719 	 * Dispatch the ioctl()s into the block request queue.
720 	 */
721 	mq = &md->queue;
722 	req = blk_get_request(mq->queue,
723 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
724 	if (IS_ERR(req)) {
725 		err = PTR_ERR(req);
726 		goto cmd_err;
727 	}
728 	req_to_mmc_queue_req(req)->drv_op =
729 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
730 	req_to_mmc_queue_req(req)->drv_op_data = idata;
731 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
732 	blk_execute_rq(mq->queue, NULL, req, 0);
733 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
734 
735 	/* copy to user if data and response */
736 	for (i = 0; i < num_of_cmds && !err; i++)
737 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
738 
739 	blk_put_request(req);
740 
741 cmd_err:
742 	for (i = 0; i < num_of_cmds; i++) {
743 		kfree(idata[i]->buf);
744 		kfree(idata[i]);
745 	}
746 	kfree(idata);
747 	return ioc_err ? ioc_err : err;
748 }
749 
750 static int mmc_blk_check_blkdev(struct block_device *bdev)
751 {
752 	/*
753 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
754 	 * whole block device, not on a partition.  This prevents overspray
755 	 * between sibling partitions.
756 	 */
757 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
758 		return -EPERM;
759 	return 0;
760 }
761 
762 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
763 	unsigned int cmd, unsigned long arg)
764 {
765 	struct mmc_blk_data *md;
766 	int ret;
767 
768 	switch (cmd) {
769 	case MMC_IOC_CMD:
770 		ret = mmc_blk_check_blkdev(bdev);
771 		if (ret)
772 			return ret;
773 		md = mmc_blk_get(bdev->bd_disk);
774 		if (!md)
775 			return -EINVAL;
776 		ret = mmc_blk_ioctl_cmd(md,
777 					(struct mmc_ioc_cmd __user *)arg,
778 					NULL);
779 		mmc_blk_put(md);
780 		return ret;
781 	case MMC_IOC_MULTI_CMD:
782 		ret = mmc_blk_check_blkdev(bdev);
783 		if (ret)
784 			return ret;
785 		md = mmc_blk_get(bdev->bd_disk);
786 		if (!md)
787 			return -EINVAL;
788 		ret = mmc_blk_ioctl_multi_cmd(md,
789 					(struct mmc_ioc_multi_cmd __user *)arg,
790 					NULL);
791 		mmc_blk_put(md);
792 		return ret;
793 	default:
794 		return -EINVAL;
795 	}
796 }
797 
798 #ifdef CONFIG_COMPAT
799 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
800 	unsigned int cmd, unsigned long arg)
801 {
802 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
803 }
804 #endif
805 
806 static const struct block_device_operations mmc_bdops = {
807 	.open			= mmc_blk_open,
808 	.release		= mmc_blk_release,
809 	.getgeo			= mmc_blk_getgeo,
810 	.owner			= THIS_MODULE,
811 	.ioctl			= mmc_blk_ioctl,
812 #ifdef CONFIG_COMPAT
813 	.compat_ioctl		= mmc_blk_compat_ioctl,
814 #endif
815 };
816 
817 static int mmc_blk_part_switch_pre(struct mmc_card *card,
818 				   unsigned int part_type)
819 {
820 	int ret = 0;
821 
822 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
823 		if (card->ext_csd.cmdq_en) {
824 			ret = mmc_cmdq_disable(card);
825 			if (ret)
826 				return ret;
827 		}
828 		mmc_retune_pause(card->host);
829 	}
830 
831 	return ret;
832 }
833 
834 static int mmc_blk_part_switch_post(struct mmc_card *card,
835 				    unsigned int part_type)
836 {
837 	int ret = 0;
838 
839 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
840 		mmc_retune_unpause(card->host);
841 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
842 			ret = mmc_cmdq_enable(card);
843 	}
844 
845 	return ret;
846 }
847 
848 static inline int mmc_blk_part_switch(struct mmc_card *card,
849 				      unsigned int part_type)
850 {
851 	int ret = 0;
852 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
853 
854 	if (main_md->part_curr == part_type)
855 		return 0;
856 
857 	if (mmc_card_mmc(card)) {
858 		u8 part_config = card->ext_csd.part_config;
859 
860 		ret = mmc_blk_part_switch_pre(card, part_type);
861 		if (ret)
862 			return ret;
863 
864 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
865 		part_config |= part_type;
866 
867 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
868 				 EXT_CSD_PART_CONFIG, part_config,
869 				 card->ext_csd.part_time);
870 		if (ret) {
871 			mmc_blk_part_switch_post(card, part_type);
872 			return ret;
873 		}
874 
875 		card->ext_csd.part_config = part_config;
876 
877 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
878 	}
879 
880 	main_md->part_curr = part_type;
881 	return ret;
882 }
883 
884 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
885 {
886 	int err;
887 	u32 result;
888 	__be32 *blocks;
889 
890 	struct mmc_request mrq = {};
891 	struct mmc_command cmd = {};
892 	struct mmc_data data = {};
893 
894 	struct scatterlist sg;
895 
896 	cmd.opcode = MMC_APP_CMD;
897 	cmd.arg = card->rca << 16;
898 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
899 
900 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
901 	if (err)
902 		return err;
903 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
904 		return -EIO;
905 
906 	memset(&cmd, 0, sizeof(struct mmc_command));
907 
908 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
909 	cmd.arg = 0;
910 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
911 
912 	data.blksz = 4;
913 	data.blocks = 1;
914 	data.flags = MMC_DATA_READ;
915 	data.sg = &sg;
916 	data.sg_len = 1;
917 	mmc_set_data_timeout(&data, card);
918 
919 	mrq.cmd = &cmd;
920 	mrq.data = &data;
921 
922 	blocks = kmalloc(4, GFP_KERNEL);
923 	if (!blocks)
924 		return -ENOMEM;
925 
926 	sg_init_one(&sg, blocks, 4);
927 
928 	mmc_wait_for_req(card->host, &mrq);
929 
930 	result = ntohl(*blocks);
931 	kfree(blocks);
932 
933 	if (cmd.error || data.error)
934 		return -EIO;
935 
936 	*written_blocks = result;
937 
938 	return 0;
939 }
940 
941 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
942 {
943 	if (host->actual_clock)
944 		return host->actual_clock / 1000;
945 
946 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
947 	if (host->ios.clock)
948 		return host->ios.clock / 2000;
949 
950 	/* How can there be no clock */
951 	WARN_ON_ONCE(1);
952 	return 100; /* 100 kHz is minimum possible value */
953 }
954 
955 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
956 					    struct mmc_data *data)
957 {
958 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
959 	unsigned int khz;
960 
961 	if (data->timeout_clks) {
962 		khz = mmc_blk_clock_khz(host);
963 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
964 	}
965 
966 	return ms;
967 }
968 
969 static inline bool mmc_blk_in_tran_state(u32 status)
970 {
971 	/*
972 	 * Some cards mishandle the status bits, so make sure to check both the
973 	 * busy indication and the card state.
974 	 */
975 	return status & R1_READY_FOR_DATA &&
976 	       (R1_CURRENT_STATE(status) == R1_STATE_TRAN);
977 }
978 
979 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
980 			    struct request *req, u32 *resp_errs)
981 {
982 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
983 	int err = 0;
984 	u32 status;
985 
986 	do {
987 		bool done = time_after(jiffies, timeout);
988 
989 		err = __mmc_send_status(card, &status, 5);
990 		if (err) {
991 			pr_err("%s: error %d requesting status\n",
992 			       req->rq_disk->disk_name, err);
993 			return err;
994 		}
995 
996 		/* Accumulate any response error bits seen */
997 		if (resp_errs)
998 			*resp_errs |= status;
999 
1000 		/*
1001 		 * Timeout if the device never becomes ready for data and never
1002 		 * leaves the program state.
1003 		 */
1004 		if (done) {
1005 			pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n",
1006 				mmc_hostname(card->host),
1007 				req->rq_disk->disk_name, __func__, status);
1008 			return -ETIMEDOUT;
1009 		}
1010 
1011 		/*
1012 		 * Some cards mishandle the status bits,
1013 		 * so make sure to check both the busy
1014 		 * indication and the card state.
1015 		 */
1016 	} while (!mmc_blk_in_tran_state(status));
1017 
1018 	return err;
1019 }
1020 
1021 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1022 			 int type)
1023 {
1024 	int err;
1025 
1026 	if (md->reset_done & type)
1027 		return -EEXIST;
1028 
1029 	md->reset_done |= type;
1030 	err = mmc_hw_reset(host);
1031 	/* Ensure we switch back to the correct partition */
1032 	if (err != -EOPNOTSUPP) {
1033 		struct mmc_blk_data *main_md =
1034 			dev_get_drvdata(&host->card->dev);
1035 		int part_err;
1036 
1037 		main_md->part_curr = main_md->part_type;
1038 		part_err = mmc_blk_part_switch(host->card, md->part_type);
1039 		if (part_err) {
1040 			/*
1041 			 * We have failed to get back into the correct
1042 			 * partition, so we need to abort the whole request.
1043 			 */
1044 			return -ENODEV;
1045 		}
1046 	}
1047 	return err;
1048 }
1049 
1050 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1051 {
1052 	md->reset_done &= ~type;
1053 }
1054 
1055 /*
1056  * The non-block commands come back from the block layer after it queued it and
1057  * processed it with all other requests and then they get issued in this
1058  * function.
1059  */
1060 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1061 {
1062 	struct mmc_queue_req *mq_rq;
1063 	struct mmc_card *card = mq->card;
1064 	struct mmc_blk_data *md = mq->blkdata;
1065 	struct mmc_blk_ioc_data **idata;
1066 	bool rpmb_ioctl;
1067 	u8 **ext_csd;
1068 	u32 status;
1069 	int ret;
1070 	int i;
1071 
1072 	mq_rq = req_to_mmc_queue_req(req);
1073 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1074 
1075 	switch (mq_rq->drv_op) {
1076 	case MMC_DRV_OP_IOCTL:
1077 	case MMC_DRV_OP_IOCTL_RPMB:
1078 		idata = mq_rq->drv_op_data;
1079 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1080 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1081 			if (ret)
1082 				break;
1083 		}
1084 		/* Always switch back to main area after RPMB access */
1085 		if (rpmb_ioctl)
1086 			mmc_blk_part_switch(card, 0);
1087 		break;
1088 	case MMC_DRV_OP_BOOT_WP:
1089 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1090 				 card->ext_csd.boot_ro_lock |
1091 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1092 				 card->ext_csd.part_time);
1093 		if (ret)
1094 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1095 			       md->disk->disk_name, ret);
1096 		else
1097 			card->ext_csd.boot_ro_lock |=
1098 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1099 		break;
1100 	case MMC_DRV_OP_GET_CARD_STATUS:
1101 		ret = mmc_send_status(card, &status);
1102 		if (!ret)
1103 			ret = status;
1104 		break;
1105 	case MMC_DRV_OP_GET_EXT_CSD:
1106 		ext_csd = mq_rq->drv_op_data;
1107 		ret = mmc_get_ext_csd(card, ext_csd);
1108 		break;
1109 	default:
1110 		pr_err("%s: unknown driver specific operation\n",
1111 		       md->disk->disk_name);
1112 		ret = -EINVAL;
1113 		break;
1114 	}
1115 	mq_rq->drv_op_result = ret;
1116 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1117 }
1118 
1119 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1120 {
1121 	struct mmc_blk_data *md = mq->blkdata;
1122 	struct mmc_card *card = md->queue.card;
1123 	unsigned int from, nr, arg;
1124 	int err = 0, type = MMC_BLK_DISCARD;
1125 	blk_status_t status = BLK_STS_OK;
1126 
1127 	if (!mmc_can_erase(card)) {
1128 		status = BLK_STS_NOTSUPP;
1129 		goto fail;
1130 	}
1131 
1132 	from = blk_rq_pos(req);
1133 	nr = blk_rq_sectors(req);
1134 
1135 	if (mmc_can_discard(card))
1136 		arg = MMC_DISCARD_ARG;
1137 	else if (mmc_can_trim(card))
1138 		arg = MMC_TRIM_ARG;
1139 	else
1140 		arg = MMC_ERASE_ARG;
1141 	do {
1142 		err = 0;
1143 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1144 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1145 					 INAND_CMD38_ARG_EXT_CSD,
1146 					 arg == MMC_TRIM_ARG ?
1147 					 INAND_CMD38_ARG_TRIM :
1148 					 INAND_CMD38_ARG_ERASE,
1149 					 0);
1150 		}
1151 		if (!err)
1152 			err = mmc_erase(card, from, nr, arg);
1153 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1154 	if (err)
1155 		status = BLK_STS_IOERR;
1156 	else
1157 		mmc_blk_reset_success(md, type);
1158 fail:
1159 	blk_mq_end_request(req, status);
1160 }
1161 
1162 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1163 				       struct request *req)
1164 {
1165 	struct mmc_blk_data *md = mq->blkdata;
1166 	struct mmc_card *card = md->queue.card;
1167 	unsigned int from, nr, arg;
1168 	int err = 0, type = MMC_BLK_SECDISCARD;
1169 	blk_status_t status = BLK_STS_OK;
1170 
1171 	if (!(mmc_can_secure_erase_trim(card))) {
1172 		status = BLK_STS_NOTSUPP;
1173 		goto out;
1174 	}
1175 
1176 	from = blk_rq_pos(req);
1177 	nr = blk_rq_sectors(req);
1178 
1179 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1180 		arg = MMC_SECURE_TRIM1_ARG;
1181 	else
1182 		arg = MMC_SECURE_ERASE_ARG;
1183 
1184 retry:
1185 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1186 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1187 				 INAND_CMD38_ARG_EXT_CSD,
1188 				 arg == MMC_SECURE_TRIM1_ARG ?
1189 				 INAND_CMD38_ARG_SECTRIM1 :
1190 				 INAND_CMD38_ARG_SECERASE,
1191 				 0);
1192 		if (err)
1193 			goto out_retry;
1194 	}
1195 
1196 	err = mmc_erase(card, from, nr, arg);
1197 	if (err == -EIO)
1198 		goto out_retry;
1199 	if (err) {
1200 		status = BLK_STS_IOERR;
1201 		goto out;
1202 	}
1203 
1204 	if (arg == MMC_SECURE_TRIM1_ARG) {
1205 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1206 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1207 					 INAND_CMD38_ARG_EXT_CSD,
1208 					 INAND_CMD38_ARG_SECTRIM2,
1209 					 0);
1210 			if (err)
1211 				goto out_retry;
1212 		}
1213 
1214 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1215 		if (err == -EIO)
1216 			goto out_retry;
1217 		if (err) {
1218 			status = BLK_STS_IOERR;
1219 			goto out;
1220 		}
1221 	}
1222 
1223 out_retry:
1224 	if (err && !mmc_blk_reset(md, card->host, type))
1225 		goto retry;
1226 	if (!err)
1227 		mmc_blk_reset_success(md, type);
1228 out:
1229 	blk_mq_end_request(req, status);
1230 }
1231 
1232 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1233 {
1234 	struct mmc_blk_data *md = mq->blkdata;
1235 	struct mmc_card *card = md->queue.card;
1236 	int ret = 0;
1237 
1238 	ret = mmc_flush_cache(card);
1239 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1240 }
1241 
1242 /*
1243  * Reformat current write as a reliable write, supporting
1244  * both legacy and the enhanced reliable write MMC cards.
1245  * In each transfer we'll handle only as much as a single
1246  * reliable write can handle, thus finish the request in
1247  * partial completions.
1248  */
1249 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1250 				    struct mmc_card *card,
1251 				    struct request *req)
1252 {
1253 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1254 		/* Legacy mode imposes restrictions on transfers. */
1255 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1256 			brq->data.blocks = 1;
1257 
1258 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1259 			brq->data.blocks = card->ext_csd.rel_sectors;
1260 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1261 			brq->data.blocks = 1;
1262 	}
1263 }
1264 
1265 #define CMD_ERRORS_EXCL_OOR						\
1266 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1267 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1268 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1269 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1270 	 R1_CC_ERROR |		/* Card controller error */		\
1271 	 R1_ERROR)		/* General/unknown error */
1272 
1273 #define CMD_ERRORS							\
1274 	(CMD_ERRORS_EXCL_OOR |						\
1275 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1276 
1277 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1278 {
1279 	u32 val;
1280 
1281 	/*
1282 	 * Per the SD specification(physical layer version 4.10)[1],
1283 	 * section 4.3.3, it explicitly states that "When the last
1284 	 * block of user area is read using CMD18, the host should
1285 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1286 	 * is correct". And JESD84-B51 for eMMC also has a similar
1287 	 * statement on section 6.8.3.
1288 	 *
1289 	 * Multiple block read/write could be done by either predefined
1290 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1291 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1292 	 *
1293 	 * However the spec[1] doesn't tell us whether we should also
1294 	 * ignore that for predefined method. But per the spec[1], section
1295 	 * 4.15 Set Block Count Command, it says"If illegal block count
1296 	 * is set, out of range error will be indicated during read/write
1297 	 * operation (For example, data transfer is stopped at user area
1298 	 * boundary)." In another word, we could expect a out of range error
1299 	 * in the response for the following CMD18/25. And if argument of
1300 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1301 	 * we could also expect to get a -ETIMEDOUT or any error number from
1302 	 * the host drivers due to missing data response(for write)/data(for
1303 	 * read), as the cards will stop the data transfer by itself per the
1304 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1305 	 */
1306 
1307 	if (!brq->stop.error) {
1308 		bool oor_with_open_end;
1309 		/* If there is no error yet, check R1 response */
1310 
1311 		val = brq->stop.resp[0] & CMD_ERRORS;
1312 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1313 
1314 		if (val && !oor_with_open_end)
1315 			brq->stop.error = -EIO;
1316 	}
1317 }
1318 
1319 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1320 			      int disable_multi, bool *do_rel_wr_p,
1321 			      bool *do_data_tag_p)
1322 {
1323 	struct mmc_blk_data *md = mq->blkdata;
1324 	struct mmc_card *card = md->queue.card;
1325 	struct mmc_blk_request *brq = &mqrq->brq;
1326 	struct request *req = mmc_queue_req_to_req(mqrq);
1327 	bool do_rel_wr, do_data_tag;
1328 
1329 	/*
1330 	 * Reliable writes are used to implement Forced Unit Access and
1331 	 * are supported only on MMCs.
1332 	 */
1333 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1334 		    rq_data_dir(req) == WRITE &&
1335 		    (md->flags & MMC_BLK_REL_WR);
1336 
1337 	memset(brq, 0, sizeof(struct mmc_blk_request));
1338 
1339 	brq->mrq.data = &brq->data;
1340 	brq->mrq.tag = req->tag;
1341 
1342 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1343 	brq->stop.arg = 0;
1344 
1345 	if (rq_data_dir(req) == READ) {
1346 		brq->data.flags = MMC_DATA_READ;
1347 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1348 	} else {
1349 		brq->data.flags = MMC_DATA_WRITE;
1350 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1351 	}
1352 
1353 	brq->data.blksz = 512;
1354 	brq->data.blocks = blk_rq_sectors(req);
1355 	brq->data.blk_addr = blk_rq_pos(req);
1356 
1357 	/*
1358 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1359 	 * The eMMC will give "high" priority tasks priority over "simple"
1360 	 * priority tasks. Here we always set "simple" priority by not setting
1361 	 * MMC_DATA_PRIO.
1362 	 */
1363 
1364 	/*
1365 	 * The block layer doesn't support all sector count
1366 	 * restrictions, so we need to be prepared for too big
1367 	 * requests.
1368 	 */
1369 	if (brq->data.blocks > card->host->max_blk_count)
1370 		brq->data.blocks = card->host->max_blk_count;
1371 
1372 	if (brq->data.blocks > 1) {
1373 		/*
1374 		 * After a read error, we redo the request one sector
1375 		 * at a time in order to accurately determine which
1376 		 * sectors can be read successfully.
1377 		 */
1378 		if (disable_multi)
1379 			brq->data.blocks = 1;
1380 
1381 		/*
1382 		 * Some controllers have HW issues while operating
1383 		 * in multiple I/O mode
1384 		 */
1385 		if (card->host->ops->multi_io_quirk)
1386 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1387 						(rq_data_dir(req) == READ) ?
1388 						MMC_DATA_READ : MMC_DATA_WRITE,
1389 						brq->data.blocks);
1390 	}
1391 
1392 	if (do_rel_wr) {
1393 		mmc_apply_rel_rw(brq, card, req);
1394 		brq->data.flags |= MMC_DATA_REL_WR;
1395 	}
1396 
1397 	/*
1398 	 * Data tag is used only during writing meta data to speed
1399 	 * up write and any subsequent read of this meta data
1400 	 */
1401 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1402 		      (req->cmd_flags & REQ_META) &&
1403 		      (rq_data_dir(req) == WRITE) &&
1404 		      ((brq->data.blocks * brq->data.blksz) >=
1405 		       card->ext_csd.data_tag_unit_size);
1406 
1407 	if (do_data_tag)
1408 		brq->data.flags |= MMC_DATA_DAT_TAG;
1409 
1410 	mmc_set_data_timeout(&brq->data, card);
1411 
1412 	brq->data.sg = mqrq->sg;
1413 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1414 
1415 	/*
1416 	 * Adjust the sg list so it is the same size as the
1417 	 * request.
1418 	 */
1419 	if (brq->data.blocks != blk_rq_sectors(req)) {
1420 		int i, data_size = brq->data.blocks << 9;
1421 		struct scatterlist *sg;
1422 
1423 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1424 			data_size -= sg->length;
1425 			if (data_size <= 0) {
1426 				sg->length += data_size;
1427 				i++;
1428 				break;
1429 			}
1430 		}
1431 		brq->data.sg_len = i;
1432 	}
1433 
1434 	if (do_rel_wr_p)
1435 		*do_rel_wr_p = do_rel_wr;
1436 
1437 	if (do_data_tag_p)
1438 		*do_data_tag_p = do_data_tag;
1439 }
1440 
1441 #define MMC_CQE_RETRIES 2
1442 
1443 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1444 {
1445 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1446 	struct mmc_request *mrq = &mqrq->brq.mrq;
1447 	struct request_queue *q = req->q;
1448 	struct mmc_host *host = mq->card->host;
1449 	unsigned long flags;
1450 	bool put_card;
1451 	int err;
1452 
1453 	mmc_cqe_post_req(host, mrq);
1454 
1455 	if (mrq->cmd && mrq->cmd->error)
1456 		err = mrq->cmd->error;
1457 	else if (mrq->data && mrq->data->error)
1458 		err = mrq->data->error;
1459 	else
1460 		err = 0;
1461 
1462 	if (err) {
1463 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1464 			blk_mq_requeue_request(req, true);
1465 		else
1466 			blk_mq_end_request(req, BLK_STS_IOERR);
1467 	} else if (mrq->data) {
1468 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1469 			blk_mq_requeue_request(req, true);
1470 		else
1471 			__blk_mq_end_request(req, BLK_STS_OK);
1472 	} else {
1473 		blk_mq_end_request(req, BLK_STS_OK);
1474 	}
1475 
1476 	spin_lock_irqsave(q->queue_lock, flags);
1477 
1478 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1479 
1480 	put_card = (mmc_tot_in_flight(mq) == 0);
1481 
1482 	mmc_cqe_check_busy(mq);
1483 
1484 	spin_unlock_irqrestore(q->queue_lock, flags);
1485 
1486 	if (!mq->cqe_busy)
1487 		blk_mq_run_hw_queues(q, true);
1488 
1489 	if (put_card)
1490 		mmc_put_card(mq->card, &mq->ctx);
1491 }
1492 
1493 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1494 {
1495 	struct mmc_card *card = mq->card;
1496 	struct mmc_host *host = card->host;
1497 	int err;
1498 
1499 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1500 
1501 	err = mmc_cqe_recovery(host);
1502 	if (err)
1503 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1504 	else
1505 		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1506 
1507 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1508 }
1509 
1510 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1511 {
1512 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1513 						  brq.mrq);
1514 	struct request *req = mmc_queue_req_to_req(mqrq);
1515 	struct request_queue *q = req->q;
1516 	struct mmc_queue *mq = q->queuedata;
1517 
1518 	/*
1519 	 * Block layer timeouts race with completions which means the normal
1520 	 * completion path cannot be used during recovery.
1521 	 */
1522 	if (mq->in_recovery)
1523 		mmc_blk_cqe_complete_rq(mq, req);
1524 	else
1525 		blk_mq_complete_request(req);
1526 }
1527 
1528 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1529 {
1530 	mrq->done		= mmc_blk_cqe_req_done;
1531 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1532 
1533 	return mmc_cqe_start_req(host, mrq);
1534 }
1535 
1536 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1537 						 struct request *req)
1538 {
1539 	struct mmc_blk_request *brq = &mqrq->brq;
1540 
1541 	memset(brq, 0, sizeof(*brq));
1542 
1543 	brq->mrq.cmd = &brq->cmd;
1544 	brq->mrq.tag = req->tag;
1545 
1546 	return &brq->mrq;
1547 }
1548 
1549 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1550 {
1551 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1552 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1553 
1554 	mrq->cmd->opcode = MMC_SWITCH;
1555 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1556 			(EXT_CSD_FLUSH_CACHE << 16) |
1557 			(1 << 8) |
1558 			EXT_CSD_CMD_SET_NORMAL;
1559 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1560 
1561 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1562 }
1563 
1564 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1565 {
1566 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1567 
1568 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1569 
1570 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1571 }
1572 
1573 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1574 			       struct mmc_card *card,
1575 			       int disable_multi,
1576 			       struct mmc_queue *mq)
1577 {
1578 	u32 readcmd, writecmd;
1579 	struct mmc_blk_request *brq = &mqrq->brq;
1580 	struct request *req = mmc_queue_req_to_req(mqrq);
1581 	struct mmc_blk_data *md = mq->blkdata;
1582 	bool do_rel_wr, do_data_tag;
1583 
1584 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1585 
1586 	brq->mrq.cmd = &brq->cmd;
1587 
1588 	brq->cmd.arg = blk_rq_pos(req);
1589 	if (!mmc_card_blockaddr(card))
1590 		brq->cmd.arg <<= 9;
1591 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1592 
1593 	if (brq->data.blocks > 1 || do_rel_wr) {
1594 		/* SPI multiblock writes terminate using a special
1595 		 * token, not a STOP_TRANSMISSION request.
1596 		 */
1597 		if (!mmc_host_is_spi(card->host) ||
1598 		    rq_data_dir(req) == READ)
1599 			brq->mrq.stop = &brq->stop;
1600 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1601 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1602 	} else {
1603 		brq->mrq.stop = NULL;
1604 		readcmd = MMC_READ_SINGLE_BLOCK;
1605 		writecmd = MMC_WRITE_BLOCK;
1606 	}
1607 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1608 
1609 	/*
1610 	 * Pre-defined multi-block transfers are preferable to
1611 	 * open ended-ones (and necessary for reliable writes).
1612 	 * However, it is not sufficient to just send CMD23,
1613 	 * and avoid the final CMD12, as on an error condition
1614 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1615 	 * with Auto-CMD23 enhancements provided by some
1616 	 * hosts, means that the complexity of dealing
1617 	 * with this is best left to the host. If CMD23 is
1618 	 * supported by card and host, we'll fill sbc in and let
1619 	 * the host deal with handling it correctly. This means
1620 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1621 	 * change of behavior will be observed.
1622 	 *
1623 	 * N.B: Some MMC cards experience perf degradation.
1624 	 * We'll avoid using CMD23-bounded multiblock writes for
1625 	 * these, while retaining features like reliable writes.
1626 	 */
1627 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1628 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1629 	     do_data_tag)) {
1630 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1631 		brq->sbc.arg = brq->data.blocks |
1632 			(do_rel_wr ? (1 << 31) : 0) |
1633 			(do_data_tag ? (1 << 29) : 0);
1634 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1635 		brq->mrq.sbc = &brq->sbc;
1636 	}
1637 }
1638 
1639 #define MMC_MAX_RETRIES		5
1640 #define MMC_DATA_RETRIES	2
1641 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1642 
1643 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1644 {
1645 	struct mmc_command cmd = {
1646 		.opcode = MMC_STOP_TRANSMISSION,
1647 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1648 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1649 		.busy_timeout = timeout,
1650 	};
1651 
1652 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1653 }
1654 
1655 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1656 {
1657 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1658 	struct mmc_blk_request *brq = &mqrq->brq;
1659 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1660 	int err;
1661 
1662 	mmc_retune_hold_now(card->host);
1663 
1664 	mmc_blk_send_stop(card, timeout);
1665 
1666 	err = card_busy_detect(card, timeout, req, NULL);
1667 
1668 	mmc_retune_release(card->host);
1669 
1670 	return err;
1671 }
1672 
1673 #define MMC_READ_SINGLE_RETRIES	2
1674 
1675 /* Single sector read during recovery */
1676 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1677 {
1678 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1679 	struct mmc_request *mrq = &mqrq->brq.mrq;
1680 	struct mmc_card *card = mq->card;
1681 	struct mmc_host *host = card->host;
1682 	blk_status_t error = BLK_STS_OK;
1683 	int retries = 0;
1684 
1685 	do {
1686 		u32 status;
1687 		int err;
1688 
1689 		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1690 
1691 		mmc_wait_for_req(host, mrq);
1692 
1693 		err = mmc_send_status(card, &status);
1694 		if (err)
1695 			goto error_exit;
1696 
1697 		if (!mmc_host_is_spi(host) &&
1698 		    !mmc_blk_in_tran_state(status)) {
1699 			err = mmc_blk_fix_state(card, req);
1700 			if (err)
1701 				goto error_exit;
1702 		}
1703 
1704 		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1705 			continue;
1706 
1707 		retries = 0;
1708 
1709 		if (mrq->cmd->error ||
1710 		    mrq->data->error ||
1711 		    (!mmc_host_is_spi(host) &&
1712 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1713 			error = BLK_STS_IOERR;
1714 		else
1715 			error = BLK_STS_OK;
1716 
1717 	} while (blk_update_request(req, error, 512));
1718 
1719 	return;
1720 
1721 error_exit:
1722 	mrq->data->bytes_xfered = 0;
1723 	blk_update_request(req, BLK_STS_IOERR, 512);
1724 	/* Let it try the remaining request again */
1725 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1726 		mqrq->retries = MMC_MAX_RETRIES - 1;
1727 }
1728 
1729 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1730 {
1731 	return !!brq->mrq.sbc;
1732 }
1733 
1734 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1735 {
1736 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1737 }
1738 
1739 /*
1740  * Check for errors the host controller driver might not have seen such as
1741  * response mode errors or invalid card state.
1742  */
1743 static bool mmc_blk_status_error(struct request *req, u32 status)
1744 {
1745 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1746 	struct mmc_blk_request *brq = &mqrq->brq;
1747 	struct mmc_queue *mq = req->q->queuedata;
1748 	u32 stop_err_bits;
1749 
1750 	if (mmc_host_is_spi(mq->card->host))
1751 		return false;
1752 
1753 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1754 
1755 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1756 	       brq->stop.resp[0] & stop_err_bits ||
1757 	       status            & stop_err_bits ||
1758 	       (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status));
1759 }
1760 
1761 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1762 {
1763 	return !brq->sbc.error && !brq->cmd.error &&
1764 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1765 }
1766 
1767 /*
1768  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1769  * policy:
1770  * 1. A request that has transferred at least some data is considered
1771  * successful and will be requeued if there is remaining data to
1772  * transfer.
1773  * 2. Otherwise the number of retries is incremented and the request
1774  * will be requeued if there are remaining retries.
1775  * 3. Otherwise the request will be errored out.
1776  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1777  * mqrq->retries. So there are only 4 possible actions here:
1778  *	1. do not accept the bytes_xfered value i.e. set it to zero
1779  *	2. change mqrq->retries to determine the number of retries
1780  *	3. try to reset the card
1781  *	4. read one sector at a time
1782  */
1783 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1784 {
1785 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1786 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1787 	struct mmc_blk_request *brq = &mqrq->brq;
1788 	struct mmc_blk_data *md = mq->blkdata;
1789 	struct mmc_card *card = mq->card;
1790 	u32 status;
1791 	u32 blocks;
1792 	int err;
1793 
1794 	/*
1795 	 * Some errors the host driver might not have seen. Set the number of
1796 	 * bytes transferred to zero in that case.
1797 	 */
1798 	err = __mmc_send_status(card, &status, 0);
1799 	if (err || mmc_blk_status_error(req, status))
1800 		brq->data.bytes_xfered = 0;
1801 
1802 	mmc_retune_release(card->host);
1803 
1804 	/*
1805 	 * Try again to get the status. This also provides an opportunity for
1806 	 * re-tuning.
1807 	 */
1808 	if (err)
1809 		err = __mmc_send_status(card, &status, 0);
1810 
1811 	/*
1812 	 * Nothing more to do after the number of bytes transferred has been
1813 	 * updated and there is no card.
1814 	 */
1815 	if (err && mmc_detect_card_removed(card->host))
1816 		return;
1817 
1818 	/* Try to get back to "tran" state */
1819 	if (!mmc_host_is_spi(mq->card->host) &&
1820 	    (err || !mmc_blk_in_tran_state(status)))
1821 		err = mmc_blk_fix_state(mq->card, req);
1822 
1823 	/*
1824 	 * Special case for SD cards where the card might record the number of
1825 	 * blocks written.
1826 	 */
1827 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1828 	    rq_data_dir(req) == WRITE) {
1829 		if (mmc_sd_num_wr_blocks(card, &blocks))
1830 			brq->data.bytes_xfered = 0;
1831 		else
1832 			brq->data.bytes_xfered = blocks << 9;
1833 	}
1834 
1835 	/* Reset if the card is in a bad state */
1836 	if (!mmc_host_is_spi(mq->card->host) &&
1837 	    err && mmc_blk_reset(md, card->host, type)) {
1838 		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1839 		mqrq->retries = MMC_NO_RETRIES;
1840 		return;
1841 	}
1842 
1843 	/*
1844 	 * If anything was done, just return and if there is anything remaining
1845 	 * on the request it will get requeued.
1846 	 */
1847 	if (brq->data.bytes_xfered)
1848 		return;
1849 
1850 	/* Reset before last retry */
1851 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1852 		mmc_blk_reset(md, card->host, type);
1853 
1854 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1855 	if (brq->sbc.error || brq->cmd.error)
1856 		return;
1857 
1858 	/* Reduce the remaining retries for data errors */
1859 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1860 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1861 		return;
1862 	}
1863 
1864 	/* FIXME: Missing single sector read for large sector size */
1865 	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1866 	    brq->data.blocks > 1) {
1867 		/* Read one sector at a time */
1868 		mmc_blk_read_single(mq, req);
1869 		return;
1870 	}
1871 }
1872 
1873 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1874 {
1875 	mmc_blk_eval_resp_error(brq);
1876 
1877 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1878 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1879 }
1880 
1881 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1882 {
1883 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1884 	u32 status = 0;
1885 	int err;
1886 
1887 	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1888 		return 0;
1889 
1890 	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status);
1891 
1892 	/*
1893 	 * Do not assume data transferred correctly if there are any error bits
1894 	 * set.
1895 	 */
1896 	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1897 		mqrq->brq.data.bytes_xfered = 0;
1898 		err = err ? err : -EIO;
1899 	}
1900 
1901 	/* Copy the exception bit so it will be seen later on */
1902 	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1903 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1904 
1905 	return err;
1906 }
1907 
1908 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1909 					    struct request *req)
1910 {
1911 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1912 
1913 	mmc_blk_reset_success(mq->blkdata, type);
1914 }
1915 
1916 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1917 {
1918 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1919 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1920 
1921 	if (nr_bytes) {
1922 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1923 			blk_mq_requeue_request(req, true);
1924 		else
1925 			__blk_mq_end_request(req, BLK_STS_OK);
1926 	} else if (!blk_rq_bytes(req)) {
1927 		__blk_mq_end_request(req, BLK_STS_IOERR);
1928 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1929 		blk_mq_requeue_request(req, true);
1930 	} else {
1931 		if (mmc_card_removed(mq->card))
1932 			req->rq_flags |= RQF_QUIET;
1933 		blk_mq_end_request(req, BLK_STS_IOERR);
1934 	}
1935 }
1936 
1937 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1938 					struct mmc_queue_req *mqrq)
1939 {
1940 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1941 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1942 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1943 }
1944 
1945 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1946 				 struct mmc_queue_req *mqrq)
1947 {
1948 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1949 		mmc_start_bkops(mq->card, true);
1950 }
1951 
1952 void mmc_blk_mq_complete(struct request *req)
1953 {
1954 	struct mmc_queue *mq = req->q->queuedata;
1955 
1956 	if (mq->use_cqe)
1957 		mmc_blk_cqe_complete_rq(mq, req);
1958 	else
1959 		mmc_blk_mq_complete_rq(mq, req);
1960 }
1961 
1962 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1963 				       struct request *req)
1964 {
1965 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1966 	struct mmc_host *host = mq->card->host;
1967 
1968 	if (mmc_blk_rq_error(&mqrq->brq) ||
1969 	    mmc_blk_card_busy(mq->card, req)) {
1970 		mmc_blk_mq_rw_recovery(mq, req);
1971 	} else {
1972 		mmc_blk_rw_reset_success(mq, req);
1973 		mmc_retune_release(host);
1974 	}
1975 
1976 	mmc_blk_urgent_bkops(mq, mqrq);
1977 }
1978 
1979 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1980 {
1981 	struct request_queue *q = req->q;
1982 	unsigned long flags;
1983 	bool put_card;
1984 
1985 	spin_lock_irqsave(q->queue_lock, flags);
1986 
1987 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1988 
1989 	put_card = (mmc_tot_in_flight(mq) == 0);
1990 
1991 	spin_unlock_irqrestore(q->queue_lock, flags);
1992 
1993 	if (put_card)
1994 		mmc_put_card(mq->card, &mq->ctx);
1995 }
1996 
1997 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1998 {
1999 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2000 	struct mmc_request *mrq = &mqrq->brq.mrq;
2001 	struct mmc_host *host = mq->card->host;
2002 
2003 	mmc_post_req(host, mrq, 0);
2004 
2005 	/*
2006 	 * Block layer timeouts race with completions which means the normal
2007 	 * completion path cannot be used during recovery.
2008 	 */
2009 	if (mq->in_recovery)
2010 		mmc_blk_mq_complete_rq(mq, req);
2011 	else
2012 		blk_mq_complete_request(req);
2013 
2014 	mmc_blk_mq_dec_in_flight(mq, req);
2015 }
2016 
2017 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2018 {
2019 	struct request *req = mq->recovery_req;
2020 	struct mmc_host *host = mq->card->host;
2021 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2022 
2023 	mq->recovery_req = NULL;
2024 	mq->rw_wait = false;
2025 
2026 	if (mmc_blk_rq_error(&mqrq->brq)) {
2027 		mmc_retune_hold_now(host);
2028 		mmc_blk_mq_rw_recovery(mq, req);
2029 	}
2030 
2031 	mmc_blk_urgent_bkops(mq, mqrq);
2032 
2033 	mmc_blk_mq_post_req(mq, req);
2034 }
2035 
2036 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2037 					 struct request **prev_req)
2038 {
2039 	if (mmc_host_done_complete(mq->card->host))
2040 		return;
2041 
2042 	mutex_lock(&mq->complete_lock);
2043 
2044 	if (!mq->complete_req)
2045 		goto out_unlock;
2046 
2047 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2048 
2049 	if (prev_req)
2050 		*prev_req = mq->complete_req;
2051 	else
2052 		mmc_blk_mq_post_req(mq, mq->complete_req);
2053 
2054 	mq->complete_req = NULL;
2055 
2056 out_unlock:
2057 	mutex_unlock(&mq->complete_lock);
2058 }
2059 
2060 void mmc_blk_mq_complete_work(struct work_struct *work)
2061 {
2062 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2063 					    complete_work);
2064 
2065 	mmc_blk_mq_complete_prev_req(mq, NULL);
2066 }
2067 
2068 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2069 {
2070 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2071 						  brq.mrq);
2072 	struct request *req = mmc_queue_req_to_req(mqrq);
2073 	struct request_queue *q = req->q;
2074 	struct mmc_queue *mq = q->queuedata;
2075 	struct mmc_host *host = mq->card->host;
2076 	unsigned long flags;
2077 
2078 	if (!mmc_host_done_complete(host)) {
2079 		bool waiting;
2080 
2081 		/*
2082 		 * We cannot complete the request in this context, so record
2083 		 * that there is a request to complete, and that a following
2084 		 * request does not need to wait (although it does need to
2085 		 * complete complete_req first).
2086 		 */
2087 		spin_lock_irqsave(q->queue_lock, flags);
2088 		mq->complete_req = req;
2089 		mq->rw_wait = false;
2090 		waiting = mq->waiting;
2091 		spin_unlock_irqrestore(q->queue_lock, flags);
2092 
2093 		/*
2094 		 * If 'waiting' then the waiting task will complete this
2095 		 * request, otherwise queue a work to do it. Note that
2096 		 * complete_work may still race with the dispatch of a following
2097 		 * request.
2098 		 */
2099 		if (waiting)
2100 			wake_up(&mq->wait);
2101 		else
2102 			kblockd_schedule_work(&mq->complete_work);
2103 
2104 		return;
2105 	}
2106 
2107 	/* Take the recovery path for errors or urgent background operations */
2108 	if (mmc_blk_rq_error(&mqrq->brq) ||
2109 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2110 		spin_lock_irqsave(q->queue_lock, flags);
2111 		mq->recovery_needed = true;
2112 		mq->recovery_req = req;
2113 		spin_unlock_irqrestore(q->queue_lock, flags);
2114 		wake_up(&mq->wait);
2115 		schedule_work(&mq->recovery_work);
2116 		return;
2117 	}
2118 
2119 	mmc_blk_rw_reset_success(mq, req);
2120 
2121 	mq->rw_wait = false;
2122 	wake_up(&mq->wait);
2123 
2124 	mmc_blk_mq_post_req(mq, req);
2125 }
2126 
2127 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2128 {
2129 	struct request_queue *q = mq->queue;
2130 	unsigned long flags;
2131 	bool done;
2132 
2133 	/*
2134 	 * Wait while there is another request in progress, but not if recovery
2135 	 * is needed. Also indicate whether there is a request waiting to start.
2136 	 */
2137 	spin_lock_irqsave(q->queue_lock, flags);
2138 	if (mq->recovery_needed) {
2139 		*err = -EBUSY;
2140 		done = true;
2141 	} else {
2142 		done = !mq->rw_wait;
2143 	}
2144 	mq->waiting = !done;
2145 	spin_unlock_irqrestore(q->queue_lock, flags);
2146 
2147 	return done;
2148 }
2149 
2150 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2151 {
2152 	int err = 0;
2153 
2154 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2155 
2156 	/* Always complete the previous request if there is one */
2157 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2158 
2159 	return err;
2160 }
2161 
2162 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2163 				  struct request *req)
2164 {
2165 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2166 	struct mmc_host *host = mq->card->host;
2167 	struct request *prev_req = NULL;
2168 	int err = 0;
2169 
2170 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2171 
2172 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2173 
2174 	mmc_pre_req(host, &mqrq->brq.mrq);
2175 
2176 	err = mmc_blk_rw_wait(mq, &prev_req);
2177 	if (err)
2178 		goto out_post_req;
2179 
2180 	mq->rw_wait = true;
2181 
2182 	err = mmc_start_request(host, &mqrq->brq.mrq);
2183 
2184 	if (prev_req)
2185 		mmc_blk_mq_post_req(mq, prev_req);
2186 
2187 	if (err)
2188 		mq->rw_wait = false;
2189 
2190 	/* Release re-tuning here where there is no synchronization required */
2191 	if (err || mmc_host_done_complete(host))
2192 		mmc_retune_release(host);
2193 
2194 out_post_req:
2195 	if (err)
2196 		mmc_post_req(host, &mqrq->brq.mrq, err);
2197 
2198 	return err;
2199 }
2200 
2201 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2202 {
2203 	if (mq->use_cqe)
2204 		return host->cqe_ops->cqe_wait_for_idle(host);
2205 
2206 	return mmc_blk_rw_wait(mq, NULL);
2207 }
2208 
2209 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2210 {
2211 	struct mmc_blk_data *md = mq->blkdata;
2212 	struct mmc_card *card = md->queue.card;
2213 	struct mmc_host *host = card->host;
2214 	int ret;
2215 
2216 	ret = mmc_blk_part_switch(card, md->part_type);
2217 	if (ret)
2218 		return MMC_REQ_FAILED_TO_START;
2219 
2220 	switch (mmc_issue_type(mq, req)) {
2221 	case MMC_ISSUE_SYNC:
2222 		ret = mmc_blk_wait_for_idle(mq, host);
2223 		if (ret)
2224 			return MMC_REQ_BUSY;
2225 		switch (req_op(req)) {
2226 		case REQ_OP_DRV_IN:
2227 		case REQ_OP_DRV_OUT:
2228 			mmc_blk_issue_drv_op(mq, req);
2229 			break;
2230 		case REQ_OP_DISCARD:
2231 			mmc_blk_issue_discard_rq(mq, req);
2232 			break;
2233 		case REQ_OP_SECURE_ERASE:
2234 			mmc_blk_issue_secdiscard_rq(mq, req);
2235 			break;
2236 		case REQ_OP_FLUSH:
2237 			mmc_blk_issue_flush(mq, req);
2238 			break;
2239 		default:
2240 			WARN_ON_ONCE(1);
2241 			return MMC_REQ_FAILED_TO_START;
2242 		}
2243 		return MMC_REQ_FINISHED;
2244 	case MMC_ISSUE_DCMD:
2245 	case MMC_ISSUE_ASYNC:
2246 		switch (req_op(req)) {
2247 		case REQ_OP_FLUSH:
2248 			ret = mmc_blk_cqe_issue_flush(mq, req);
2249 			break;
2250 		case REQ_OP_READ:
2251 		case REQ_OP_WRITE:
2252 			if (mq->use_cqe)
2253 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2254 			else
2255 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2256 			break;
2257 		default:
2258 			WARN_ON_ONCE(1);
2259 			ret = -EINVAL;
2260 		}
2261 		if (!ret)
2262 			return MMC_REQ_STARTED;
2263 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2264 	default:
2265 		WARN_ON_ONCE(1);
2266 		return MMC_REQ_FAILED_TO_START;
2267 	}
2268 }
2269 
2270 static inline int mmc_blk_readonly(struct mmc_card *card)
2271 {
2272 	return mmc_card_readonly(card) ||
2273 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2274 }
2275 
2276 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2277 					      struct device *parent,
2278 					      sector_t size,
2279 					      bool default_ro,
2280 					      const char *subname,
2281 					      int area_type)
2282 {
2283 	struct mmc_blk_data *md;
2284 	int devidx, ret;
2285 
2286 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2287 	if (devidx < 0) {
2288 		/*
2289 		 * We get -ENOSPC because there are no more any available
2290 		 * devidx. The reason may be that, either userspace haven't yet
2291 		 * unmounted the partitions, which postpones mmc_blk_release()
2292 		 * from being called, or the device has more partitions than
2293 		 * what we support.
2294 		 */
2295 		if (devidx == -ENOSPC)
2296 			dev_err(mmc_dev(card->host),
2297 				"no more device IDs available\n");
2298 
2299 		return ERR_PTR(devidx);
2300 	}
2301 
2302 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2303 	if (!md) {
2304 		ret = -ENOMEM;
2305 		goto out;
2306 	}
2307 
2308 	md->area_type = area_type;
2309 
2310 	/*
2311 	 * Set the read-only status based on the supported commands
2312 	 * and the write protect switch.
2313 	 */
2314 	md->read_only = mmc_blk_readonly(card);
2315 
2316 	md->disk = alloc_disk(perdev_minors);
2317 	if (md->disk == NULL) {
2318 		ret = -ENOMEM;
2319 		goto err_kfree;
2320 	}
2321 
2322 	spin_lock_init(&md->lock);
2323 	INIT_LIST_HEAD(&md->part);
2324 	INIT_LIST_HEAD(&md->rpmbs);
2325 	md->usage = 1;
2326 
2327 	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2328 	if (ret)
2329 		goto err_putdisk;
2330 
2331 	md->queue.blkdata = md;
2332 
2333 	/*
2334 	 * Keep an extra reference to the queue so that we can shutdown the
2335 	 * queue (i.e. call blk_cleanup_queue()) while there are still
2336 	 * references to the 'md'. The corresponding blk_put_queue() is in
2337 	 * mmc_blk_put().
2338 	 */
2339 	if (!blk_get_queue(md->queue.queue)) {
2340 		mmc_cleanup_queue(&md->queue);
2341 		ret = -ENODEV;
2342 		goto err_putdisk;
2343 	}
2344 
2345 	md->disk->major	= MMC_BLOCK_MAJOR;
2346 	md->disk->first_minor = devidx * perdev_minors;
2347 	md->disk->fops = &mmc_bdops;
2348 	md->disk->private_data = md;
2349 	md->disk->queue = md->queue.queue;
2350 	md->parent = parent;
2351 	set_disk_ro(md->disk, md->read_only || default_ro);
2352 	md->disk->flags = GENHD_FL_EXT_DEVT;
2353 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2354 		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2355 				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2356 
2357 	/*
2358 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2359 	 *
2360 	 * - be set for removable media with permanent block devices
2361 	 * - be unset for removable block devices with permanent media
2362 	 *
2363 	 * Since MMC block devices clearly fall under the second
2364 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2365 	 * should use the block device creation/destruction hotplug
2366 	 * messages to tell when the card is present.
2367 	 */
2368 
2369 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2370 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2371 
2372 	if (mmc_card_mmc(card))
2373 		blk_queue_logical_block_size(md->queue.queue,
2374 					     card->ext_csd.data_sector_size);
2375 	else
2376 		blk_queue_logical_block_size(md->queue.queue, 512);
2377 
2378 	set_capacity(md->disk, size);
2379 
2380 	if (mmc_host_cmd23(card->host)) {
2381 		if ((mmc_card_mmc(card) &&
2382 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2383 		    (mmc_card_sd(card) &&
2384 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2385 			md->flags |= MMC_BLK_CMD23;
2386 	}
2387 
2388 	if (mmc_card_mmc(card) &&
2389 	    md->flags & MMC_BLK_CMD23 &&
2390 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2391 	     card->ext_csd.rel_sectors)) {
2392 		md->flags |= MMC_BLK_REL_WR;
2393 		blk_queue_write_cache(md->queue.queue, true, true);
2394 	}
2395 
2396 	return md;
2397 
2398  err_putdisk:
2399 	put_disk(md->disk);
2400  err_kfree:
2401 	kfree(md);
2402  out:
2403 	ida_simple_remove(&mmc_blk_ida, devidx);
2404 	return ERR_PTR(ret);
2405 }
2406 
2407 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2408 {
2409 	sector_t size;
2410 
2411 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2412 		/*
2413 		 * The EXT_CSD sector count is in number or 512 byte
2414 		 * sectors.
2415 		 */
2416 		size = card->ext_csd.sectors;
2417 	} else {
2418 		/*
2419 		 * The CSD capacity field is in units of read_blkbits.
2420 		 * set_capacity takes units of 512 bytes.
2421 		 */
2422 		size = (typeof(sector_t))card->csd.capacity
2423 			<< (card->csd.read_blkbits - 9);
2424 	}
2425 
2426 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2427 					MMC_BLK_DATA_AREA_MAIN);
2428 }
2429 
2430 static int mmc_blk_alloc_part(struct mmc_card *card,
2431 			      struct mmc_blk_data *md,
2432 			      unsigned int part_type,
2433 			      sector_t size,
2434 			      bool default_ro,
2435 			      const char *subname,
2436 			      int area_type)
2437 {
2438 	char cap_str[10];
2439 	struct mmc_blk_data *part_md;
2440 
2441 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2442 				    subname, area_type);
2443 	if (IS_ERR(part_md))
2444 		return PTR_ERR(part_md);
2445 	part_md->part_type = part_type;
2446 	list_add(&part_md->part, &md->part);
2447 
2448 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2449 			cap_str, sizeof(cap_str));
2450 	pr_info("%s: %s %s partition %u %s\n",
2451 	       part_md->disk->disk_name, mmc_card_id(card),
2452 	       mmc_card_name(card), part_md->part_type, cap_str);
2453 	return 0;
2454 }
2455 
2456 /**
2457  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2458  * @filp: the character device file
2459  * @cmd: the ioctl() command
2460  * @arg: the argument from userspace
2461  *
2462  * This will essentially just redirect the ioctl()s coming in over to
2463  * the main block device spawning the RPMB character device.
2464  */
2465 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2466 			   unsigned long arg)
2467 {
2468 	struct mmc_rpmb_data *rpmb = filp->private_data;
2469 	int ret;
2470 
2471 	switch (cmd) {
2472 	case MMC_IOC_CMD:
2473 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2474 					(struct mmc_ioc_cmd __user *)arg,
2475 					rpmb);
2476 		break;
2477 	case MMC_IOC_MULTI_CMD:
2478 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2479 					(struct mmc_ioc_multi_cmd __user *)arg,
2480 					rpmb);
2481 		break;
2482 	default:
2483 		ret = -EINVAL;
2484 		break;
2485 	}
2486 
2487 	return ret;
2488 }
2489 
2490 #ifdef CONFIG_COMPAT
2491 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2492 			      unsigned long arg)
2493 {
2494 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2495 }
2496 #endif
2497 
2498 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2499 {
2500 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2501 						  struct mmc_rpmb_data, chrdev);
2502 
2503 	get_device(&rpmb->dev);
2504 	filp->private_data = rpmb;
2505 	mmc_blk_get(rpmb->md->disk);
2506 
2507 	return nonseekable_open(inode, filp);
2508 }
2509 
2510 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2511 {
2512 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2513 						  struct mmc_rpmb_data, chrdev);
2514 
2515 	put_device(&rpmb->dev);
2516 	mmc_blk_put(rpmb->md);
2517 
2518 	return 0;
2519 }
2520 
2521 static const struct file_operations mmc_rpmb_fileops = {
2522 	.release = mmc_rpmb_chrdev_release,
2523 	.open = mmc_rpmb_chrdev_open,
2524 	.owner = THIS_MODULE,
2525 	.llseek = no_llseek,
2526 	.unlocked_ioctl = mmc_rpmb_ioctl,
2527 #ifdef CONFIG_COMPAT
2528 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2529 #endif
2530 };
2531 
2532 static void mmc_blk_rpmb_device_release(struct device *dev)
2533 {
2534 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2535 
2536 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2537 	kfree(rpmb);
2538 }
2539 
2540 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2541 				   struct mmc_blk_data *md,
2542 				   unsigned int part_index,
2543 				   sector_t size,
2544 				   const char *subname)
2545 {
2546 	int devidx, ret;
2547 	char rpmb_name[DISK_NAME_LEN];
2548 	char cap_str[10];
2549 	struct mmc_rpmb_data *rpmb;
2550 
2551 	/* This creates the minor number for the RPMB char device */
2552 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2553 	if (devidx < 0)
2554 		return devidx;
2555 
2556 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2557 	if (!rpmb) {
2558 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2559 		return -ENOMEM;
2560 	}
2561 
2562 	snprintf(rpmb_name, sizeof(rpmb_name),
2563 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2564 
2565 	rpmb->id = devidx;
2566 	rpmb->part_index = part_index;
2567 	rpmb->dev.init_name = rpmb_name;
2568 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2569 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2570 	rpmb->dev.parent = &card->dev;
2571 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2572 	device_initialize(&rpmb->dev);
2573 	dev_set_drvdata(&rpmb->dev, rpmb);
2574 	rpmb->md = md;
2575 
2576 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2577 	rpmb->chrdev.owner = THIS_MODULE;
2578 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2579 	if (ret) {
2580 		pr_err("%s: could not add character device\n", rpmb_name);
2581 		goto out_put_device;
2582 	}
2583 
2584 	list_add(&rpmb->node, &md->rpmbs);
2585 
2586 	string_get_size((u64)size, 512, STRING_UNITS_2,
2587 			cap_str, sizeof(cap_str));
2588 
2589 	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2590 		rpmb_name, mmc_card_id(card),
2591 		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2592 		MAJOR(mmc_rpmb_devt), rpmb->id);
2593 
2594 	return 0;
2595 
2596 out_put_device:
2597 	put_device(&rpmb->dev);
2598 	return ret;
2599 }
2600 
2601 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2602 
2603 {
2604 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2605 	put_device(&rpmb->dev);
2606 }
2607 
2608 /* MMC Physical partitions consist of two boot partitions and
2609  * up to four general purpose partitions.
2610  * For each partition enabled in EXT_CSD a block device will be allocatedi
2611  * to provide access to the partition.
2612  */
2613 
2614 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2615 {
2616 	int idx, ret;
2617 
2618 	if (!mmc_card_mmc(card))
2619 		return 0;
2620 
2621 	for (idx = 0; idx < card->nr_parts; idx++) {
2622 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2623 			/*
2624 			 * RPMB partitions does not provide block access, they
2625 			 * are only accessed using ioctl():s. Thus create
2626 			 * special RPMB block devices that do not have a
2627 			 * backing block queue for these.
2628 			 */
2629 			ret = mmc_blk_alloc_rpmb_part(card, md,
2630 				card->part[idx].part_cfg,
2631 				card->part[idx].size >> 9,
2632 				card->part[idx].name);
2633 			if (ret)
2634 				return ret;
2635 		} else if (card->part[idx].size) {
2636 			ret = mmc_blk_alloc_part(card, md,
2637 				card->part[idx].part_cfg,
2638 				card->part[idx].size >> 9,
2639 				card->part[idx].force_ro,
2640 				card->part[idx].name,
2641 				card->part[idx].area_type);
2642 			if (ret)
2643 				return ret;
2644 		}
2645 	}
2646 
2647 	return 0;
2648 }
2649 
2650 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2651 {
2652 	struct mmc_card *card;
2653 
2654 	if (md) {
2655 		/*
2656 		 * Flush remaining requests and free queues. It
2657 		 * is freeing the queue that stops new requests
2658 		 * from being accepted.
2659 		 */
2660 		card = md->queue.card;
2661 		if (md->disk->flags & GENHD_FL_UP) {
2662 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2663 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2664 					card->ext_csd.boot_ro_lockable)
2665 				device_remove_file(disk_to_dev(md->disk),
2666 					&md->power_ro_lock);
2667 
2668 			del_gendisk(md->disk);
2669 		}
2670 		mmc_cleanup_queue(&md->queue);
2671 		mmc_blk_put(md);
2672 	}
2673 }
2674 
2675 static void mmc_blk_remove_parts(struct mmc_card *card,
2676 				 struct mmc_blk_data *md)
2677 {
2678 	struct list_head *pos, *q;
2679 	struct mmc_blk_data *part_md;
2680 	struct mmc_rpmb_data *rpmb;
2681 
2682 	/* Remove RPMB partitions */
2683 	list_for_each_safe(pos, q, &md->rpmbs) {
2684 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2685 		list_del(pos);
2686 		mmc_blk_remove_rpmb_part(rpmb);
2687 	}
2688 	/* Remove block partitions */
2689 	list_for_each_safe(pos, q, &md->part) {
2690 		part_md = list_entry(pos, struct mmc_blk_data, part);
2691 		list_del(pos);
2692 		mmc_blk_remove_req(part_md);
2693 	}
2694 }
2695 
2696 static int mmc_add_disk(struct mmc_blk_data *md)
2697 {
2698 	int ret;
2699 	struct mmc_card *card = md->queue.card;
2700 
2701 	device_add_disk(md->parent, md->disk);
2702 	md->force_ro.show = force_ro_show;
2703 	md->force_ro.store = force_ro_store;
2704 	sysfs_attr_init(&md->force_ro.attr);
2705 	md->force_ro.attr.name = "force_ro";
2706 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2707 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2708 	if (ret)
2709 		goto force_ro_fail;
2710 
2711 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2712 	     card->ext_csd.boot_ro_lockable) {
2713 		umode_t mode;
2714 
2715 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2716 			mode = S_IRUGO;
2717 		else
2718 			mode = S_IRUGO | S_IWUSR;
2719 
2720 		md->power_ro_lock.show = power_ro_lock_show;
2721 		md->power_ro_lock.store = power_ro_lock_store;
2722 		sysfs_attr_init(&md->power_ro_lock.attr);
2723 		md->power_ro_lock.attr.mode = mode;
2724 		md->power_ro_lock.attr.name =
2725 					"ro_lock_until_next_power_on";
2726 		ret = device_create_file(disk_to_dev(md->disk),
2727 				&md->power_ro_lock);
2728 		if (ret)
2729 			goto power_ro_lock_fail;
2730 	}
2731 	return ret;
2732 
2733 power_ro_lock_fail:
2734 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2735 force_ro_fail:
2736 	del_gendisk(md->disk);
2737 
2738 	return ret;
2739 }
2740 
2741 #ifdef CONFIG_DEBUG_FS
2742 
2743 static int mmc_dbg_card_status_get(void *data, u64 *val)
2744 {
2745 	struct mmc_card *card = data;
2746 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2747 	struct mmc_queue *mq = &md->queue;
2748 	struct request *req;
2749 	int ret;
2750 
2751 	/* Ask the block layer about the card status */
2752 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2753 	if (IS_ERR(req))
2754 		return PTR_ERR(req);
2755 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2756 	blk_execute_rq(mq->queue, NULL, req, 0);
2757 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2758 	if (ret >= 0) {
2759 		*val = ret;
2760 		ret = 0;
2761 	}
2762 	blk_put_request(req);
2763 
2764 	return ret;
2765 }
2766 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2767 		NULL, "%08llx\n");
2768 
2769 /* That is two digits * 512 + 1 for newline */
2770 #define EXT_CSD_STR_LEN 1025
2771 
2772 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2773 {
2774 	struct mmc_card *card = inode->i_private;
2775 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2776 	struct mmc_queue *mq = &md->queue;
2777 	struct request *req;
2778 	char *buf;
2779 	ssize_t n = 0;
2780 	u8 *ext_csd;
2781 	int err, i;
2782 
2783 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2784 	if (!buf)
2785 		return -ENOMEM;
2786 
2787 	/* Ask the block layer for the EXT CSD */
2788 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2789 	if (IS_ERR(req)) {
2790 		err = PTR_ERR(req);
2791 		goto out_free;
2792 	}
2793 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2794 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2795 	blk_execute_rq(mq->queue, NULL, req, 0);
2796 	err = req_to_mmc_queue_req(req)->drv_op_result;
2797 	blk_put_request(req);
2798 	if (err) {
2799 		pr_err("FAILED %d\n", err);
2800 		goto out_free;
2801 	}
2802 
2803 	for (i = 0; i < 512; i++)
2804 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2805 	n += sprintf(buf + n, "\n");
2806 
2807 	if (n != EXT_CSD_STR_LEN) {
2808 		err = -EINVAL;
2809 		kfree(ext_csd);
2810 		goto out_free;
2811 	}
2812 
2813 	filp->private_data = buf;
2814 	kfree(ext_csd);
2815 	return 0;
2816 
2817 out_free:
2818 	kfree(buf);
2819 	return err;
2820 }
2821 
2822 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2823 				size_t cnt, loff_t *ppos)
2824 {
2825 	char *buf = filp->private_data;
2826 
2827 	return simple_read_from_buffer(ubuf, cnt, ppos,
2828 				       buf, EXT_CSD_STR_LEN);
2829 }
2830 
2831 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2832 {
2833 	kfree(file->private_data);
2834 	return 0;
2835 }
2836 
2837 static const struct file_operations mmc_dbg_ext_csd_fops = {
2838 	.open		= mmc_ext_csd_open,
2839 	.read		= mmc_ext_csd_read,
2840 	.release	= mmc_ext_csd_release,
2841 	.llseek		= default_llseek,
2842 };
2843 
2844 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2845 {
2846 	struct dentry *root;
2847 
2848 	if (!card->debugfs_root)
2849 		return 0;
2850 
2851 	root = card->debugfs_root;
2852 
2853 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2854 		md->status_dentry =
2855 			debugfs_create_file("status", S_IRUSR, root, card,
2856 					    &mmc_dbg_card_status_fops);
2857 		if (!md->status_dentry)
2858 			return -EIO;
2859 	}
2860 
2861 	if (mmc_card_mmc(card)) {
2862 		md->ext_csd_dentry =
2863 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2864 					    &mmc_dbg_ext_csd_fops);
2865 		if (!md->ext_csd_dentry)
2866 			return -EIO;
2867 	}
2868 
2869 	return 0;
2870 }
2871 
2872 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2873 				   struct mmc_blk_data *md)
2874 {
2875 	if (!card->debugfs_root)
2876 		return;
2877 
2878 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2879 		debugfs_remove(md->status_dentry);
2880 		md->status_dentry = NULL;
2881 	}
2882 
2883 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2884 		debugfs_remove(md->ext_csd_dentry);
2885 		md->ext_csd_dentry = NULL;
2886 	}
2887 }
2888 
2889 #else
2890 
2891 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2892 {
2893 	return 0;
2894 }
2895 
2896 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2897 				   struct mmc_blk_data *md)
2898 {
2899 }
2900 
2901 #endif /* CONFIG_DEBUG_FS */
2902 
2903 static int mmc_blk_probe(struct mmc_card *card)
2904 {
2905 	struct mmc_blk_data *md, *part_md;
2906 	char cap_str[10];
2907 
2908 	/*
2909 	 * Check that the card supports the command class(es) we need.
2910 	 */
2911 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2912 		return -ENODEV;
2913 
2914 	mmc_fixup_device(card, mmc_blk_fixups);
2915 
2916 	md = mmc_blk_alloc(card);
2917 	if (IS_ERR(md))
2918 		return PTR_ERR(md);
2919 
2920 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2921 			cap_str, sizeof(cap_str));
2922 	pr_info("%s: %s %s %s %s\n",
2923 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2924 		cap_str, md->read_only ? "(ro)" : "");
2925 
2926 	if (mmc_blk_alloc_parts(card, md))
2927 		goto out;
2928 
2929 	dev_set_drvdata(&card->dev, md);
2930 
2931 	if (mmc_add_disk(md))
2932 		goto out;
2933 
2934 	list_for_each_entry(part_md, &md->part, part) {
2935 		if (mmc_add_disk(part_md))
2936 			goto out;
2937 	}
2938 
2939 	/* Add two debugfs entries */
2940 	mmc_blk_add_debugfs(card, md);
2941 
2942 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2943 	pm_runtime_use_autosuspend(&card->dev);
2944 
2945 	/*
2946 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2947 	 * decision to be taken during the SDIO init sequence instead.
2948 	 */
2949 	if (card->type != MMC_TYPE_SD_COMBO) {
2950 		pm_runtime_set_active(&card->dev);
2951 		pm_runtime_enable(&card->dev);
2952 	}
2953 
2954 	return 0;
2955 
2956  out:
2957 	mmc_blk_remove_parts(card, md);
2958 	mmc_blk_remove_req(md);
2959 	return 0;
2960 }
2961 
2962 static void mmc_blk_remove(struct mmc_card *card)
2963 {
2964 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2965 
2966 	mmc_blk_remove_debugfs(card, md);
2967 	mmc_blk_remove_parts(card, md);
2968 	pm_runtime_get_sync(&card->dev);
2969 	if (md->part_curr != md->part_type) {
2970 		mmc_claim_host(card->host);
2971 		mmc_blk_part_switch(card, md->part_type);
2972 		mmc_release_host(card->host);
2973 	}
2974 	if (card->type != MMC_TYPE_SD_COMBO)
2975 		pm_runtime_disable(&card->dev);
2976 	pm_runtime_put_noidle(&card->dev);
2977 	mmc_blk_remove_req(md);
2978 	dev_set_drvdata(&card->dev, NULL);
2979 }
2980 
2981 static int _mmc_blk_suspend(struct mmc_card *card)
2982 {
2983 	struct mmc_blk_data *part_md;
2984 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2985 
2986 	if (md) {
2987 		mmc_queue_suspend(&md->queue);
2988 		list_for_each_entry(part_md, &md->part, part) {
2989 			mmc_queue_suspend(&part_md->queue);
2990 		}
2991 	}
2992 	return 0;
2993 }
2994 
2995 static void mmc_blk_shutdown(struct mmc_card *card)
2996 {
2997 	_mmc_blk_suspend(card);
2998 }
2999 
3000 #ifdef CONFIG_PM_SLEEP
3001 static int mmc_blk_suspend(struct device *dev)
3002 {
3003 	struct mmc_card *card = mmc_dev_to_card(dev);
3004 
3005 	return _mmc_blk_suspend(card);
3006 }
3007 
3008 static int mmc_blk_resume(struct device *dev)
3009 {
3010 	struct mmc_blk_data *part_md;
3011 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3012 
3013 	if (md) {
3014 		/*
3015 		 * Resume involves the card going into idle state,
3016 		 * so current partition is always the main one.
3017 		 */
3018 		md->part_curr = md->part_type;
3019 		mmc_queue_resume(&md->queue);
3020 		list_for_each_entry(part_md, &md->part, part) {
3021 			mmc_queue_resume(&part_md->queue);
3022 		}
3023 	}
3024 	return 0;
3025 }
3026 #endif
3027 
3028 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3029 
3030 static struct mmc_driver mmc_driver = {
3031 	.drv		= {
3032 		.name	= "mmcblk",
3033 		.pm	= &mmc_blk_pm_ops,
3034 	},
3035 	.probe		= mmc_blk_probe,
3036 	.remove		= mmc_blk_remove,
3037 	.shutdown	= mmc_blk_shutdown,
3038 };
3039 
3040 static int __init mmc_blk_init(void)
3041 {
3042 	int res;
3043 
3044 	res  = bus_register(&mmc_rpmb_bus_type);
3045 	if (res < 0) {
3046 		pr_err("mmcblk: could not register RPMB bus type\n");
3047 		return res;
3048 	}
3049 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3050 	if (res < 0) {
3051 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3052 		goto out_bus_unreg;
3053 	}
3054 
3055 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3056 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3057 
3058 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3059 
3060 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3061 	if (res)
3062 		goto out_chrdev_unreg;
3063 
3064 	res = mmc_register_driver(&mmc_driver);
3065 	if (res)
3066 		goto out_blkdev_unreg;
3067 
3068 	return 0;
3069 
3070 out_blkdev_unreg:
3071 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3072 out_chrdev_unreg:
3073 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3074 out_bus_unreg:
3075 	bus_unregister(&mmc_rpmb_bus_type);
3076 	return res;
3077 }
3078 
3079 static void __exit mmc_blk_exit(void)
3080 {
3081 	mmc_unregister_driver(&mmc_driver);
3082 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3083 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3084 	bus_unregister(&mmc_rpmb_bus_type);
3085 }
3086 
3087 module_init(mmc_blk_init);
3088 module_exit(mmc_blk_exit);
3089 
3090 MODULE_LICENSE("GPL");
3091 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3092 
3093