1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block driver for media (i.e., flash cards) 4 * 5 * Copyright 2002 Hewlett-Packard Company 6 * Copyright 2005-2008 Pierre Ossman 7 * 8 * Use consistent with the GNU GPL is permitted, 9 * provided that this copyright notice is 10 * preserved in its entirety in all copies and derived works. 11 * 12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 14 * FITNESS FOR ANY PARTICULAR PURPOSE. 15 * 16 * Many thanks to Alessandro Rubini and Jonathan Corbet! 17 * 18 * Author: Andrew Christian 19 * 28 May 2002 20 */ 21 #include <linux/moduleparam.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/errno.h> 29 #include <linux/hdreg.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kref.h> 32 #include <linux/blkdev.h> 33 #include <linux/cdev.h> 34 #include <linux/mutex.h> 35 #include <linux/scatterlist.h> 36 #include <linux/string_helpers.h> 37 #include <linux/delay.h> 38 #include <linux/capability.h> 39 #include <linux/compat.h> 40 #include <linux/pm_runtime.h> 41 #include <linux/idr.h> 42 #include <linux/debugfs.h> 43 44 #include <linux/mmc/ioctl.h> 45 #include <linux/mmc/card.h> 46 #include <linux/mmc/host.h> 47 #include <linux/mmc/mmc.h> 48 #include <linux/mmc/sd.h> 49 50 #include <linux/uaccess.h> 51 52 #include "queue.h" 53 #include "block.h" 54 #include "core.h" 55 #include "card.h" 56 #include "crypto.h" 57 #include "host.h" 58 #include "bus.h" 59 #include "mmc_ops.h" 60 #include "quirks.h" 61 #include "sd_ops.h" 62 63 MODULE_ALIAS("mmc:block"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "mmcblk." 68 69 /* 70 * Set a 10 second timeout for polling write request busy state. Note, mmc core 71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 72 * second software timer to timeout the whole request, so 10 seconds should be 73 * ample. 74 */ 75 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 78 79 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 80 (rq_data_dir(req) == WRITE)) 81 static DEFINE_MUTEX(block_mutex); 82 83 /* 84 * The defaults come from config options but can be overriden by module 85 * or bootarg options. 86 */ 87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 88 89 /* 90 * We've only got one major, so number of mmcblk devices is 91 * limited to (1 << 20) / number of minors per device. It is also 92 * limited by the MAX_DEVICES below. 93 */ 94 static int max_devices; 95 96 #define MAX_DEVICES 256 97 98 static DEFINE_IDA(mmc_blk_ida); 99 static DEFINE_IDA(mmc_rpmb_ida); 100 101 struct mmc_blk_busy_data { 102 struct mmc_card *card; 103 u32 status; 104 }; 105 106 /* 107 * There is one mmc_blk_data per slot. 108 */ 109 struct mmc_blk_data { 110 struct device *parent; 111 struct gendisk *disk; 112 struct mmc_queue queue; 113 struct list_head part; 114 struct list_head rpmbs; 115 116 unsigned int flags; 117 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 118 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 119 120 struct kref kref; 121 unsigned int read_only; 122 unsigned int part_type; 123 unsigned int reset_done; 124 #define MMC_BLK_READ BIT(0) 125 #define MMC_BLK_WRITE BIT(1) 126 #define MMC_BLK_DISCARD BIT(2) 127 #define MMC_BLK_SECDISCARD BIT(3) 128 #define MMC_BLK_CQE_RECOVERY BIT(4) 129 #define MMC_BLK_TRIM BIT(5) 130 131 /* 132 * Only set in main mmc_blk_data associated 133 * with mmc_card with dev_set_drvdata, and keeps 134 * track of the current selected device partition. 135 */ 136 unsigned int part_curr; 137 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */ 138 int area_type; 139 140 /* debugfs files (only in main mmc_blk_data) */ 141 struct dentry *status_dentry; 142 struct dentry *ext_csd_dentry; 143 }; 144 145 /* Device type for RPMB character devices */ 146 static dev_t mmc_rpmb_devt; 147 148 /* Bus type for RPMB character devices */ 149 static struct bus_type mmc_rpmb_bus_type = { 150 .name = "mmc_rpmb", 151 }; 152 153 /** 154 * struct mmc_rpmb_data - special RPMB device type for these areas 155 * @dev: the device for the RPMB area 156 * @chrdev: character device for the RPMB area 157 * @id: unique device ID number 158 * @part_index: partition index (0 on first) 159 * @md: parent MMC block device 160 * @node: list item, so we can put this device on a list 161 */ 162 struct mmc_rpmb_data { 163 struct device dev; 164 struct cdev chrdev; 165 int id; 166 unsigned int part_index; 167 struct mmc_blk_data *md; 168 struct list_head node; 169 }; 170 171 static DEFINE_MUTEX(open_lock); 172 173 module_param(perdev_minors, int, 0444); 174 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 175 176 static inline int mmc_blk_part_switch(struct mmc_card *card, 177 unsigned int part_type); 178 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 179 struct mmc_card *card, 180 int recovery_mode, 181 struct mmc_queue *mq); 182 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 183 184 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 185 { 186 struct mmc_blk_data *md; 187 188 mutex_lock(&open_lock); 189 md = disk->private_data; 190 if (md && !kref_get_unless_zero(&md->kref)) 191 md = NULL; 192 mutex_unlock(&open_lock); 193 194 return md; 195 } 196 197 static inline int mmc_get_devidx(struct gendisk *disk) 198 { 199 int devidx = disk->first_minor / perdev_minors; 200 return devidx; 201 } 202 203 static void mmc_blk_kref_release(struct kref *ref) 204 { 205 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref); 206 int devidx; 207 208 devidx = mmc_get_devidx(md->disk); 209 ida_simple_remove(&mmc_blk_ida, devidx); 210 211 mutex_lock(&open_lock); 212 md->disk->private_data = NULL; 213 mutex_unlock(&open_lock); 214 215 put_disk(md->disk); 216 kfree(md); 217 } 218 219 static void mmc_blk_put(struct mmc_blk_data *md) 220 { 221 kref_put(&md->kref, mmc_blk_kref_release); 222 } 223 224 static ssize_t power_ro_lock_show(struct device *dev, 225 struct device_attribute *attr, char *buf) 226 { 227 int ret; 228 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 229 struct mmc_card *card = md->queue.card; 230 int locked = 0; 231 232 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 233 locked = 2; 234 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 235 locked = 1; 236 237 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 238 239 mmc_blk_put(md); 240 241 return ret; 242 } 243 244 static ssize_t power_ro_lock_store(struct device *dev, 245 struct device_attribute *attr, const char *buf, size_t count) 246 { 247 int ret; 248 struct mmc_blk_data *md, *part_md; 249 struct mmc_queue *mq; 250 struct request *req; 251 unsigned long set; 252 253 if (kstrtoul(buf, 0, &set)) 254 return -EINVAL; 255 256 if (set != 1) 257 return count; 258 259 md = mmc_blk_get(dev_to_disk(dev)); 260 mq = &md->queue; 261 262 /* Dispatch locking to the block layer */ 263 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0); 264 if (IS_ERR(req)) { 265 count = PTR_ERR(req); 266 goto out_put; 267 } 268 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 269 blk_execute_rq(req, false); 270 ret = req_to_mmc_queue_req(req)->drv_op_result; 271 blk_mq_free_request(req); 272 273 if (!ret) { 274 pr_info("%s: Locking boot partition ro until next power on\n", 275 md->disk->disk_name); 276 set_disk_ro(md->disk, 1); 277 278 list_for_each_entry(part_md, &md->part, part) 279 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 280 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 281 set_disk_ro(part_md->disk, 1); 282 } 283 } 284 out_put: 285 mmc_blk_put(md); 286 return count; 287 } 288 289 static DEVICE_ATTR(ro_lock_until_next_power_on, 0, 290 power_ro_lock_show, power_ro_lock_store); 291 292 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 293 char *buf) 294 { 295 int ret; 296 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 297 298 ret = snprintf(buf, PAGE_SIZE, "%d\n", 299 get_disk_ro(dev_to_disk(dev)) ^ 300 md->read_only); 301 mmc_blk_put(md); 302 return ret; 303 } 304 305 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 306 const char *buf, size_t count) 307 { 308 int ret; 309 char *end; 310 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 311 unsigned long set = simple_strtoul(buf, &end, 0); 312 if (end == buf) { 313 ret = -EINVAL; 314 goto out; 315 } 316 317 set_disk_ro(dev_to_disk(dev), set || md->read_only); 318 ret = count; 319 out: 320 mmc_blk_put(md); 321 return ret; 322 } 323 324 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store); 325 326 static struct attribute *mmc_disk_attrs[] = { 327 &dev_attr_force_ro.attr, 328 &dev_attr_ro_lock_until_next_power_on.attr, 329 NULL, 330 }; 331 332 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj, 333 struct attribute *a, int n) 334 { 335 struct device *dev = kobj_to_dev(kobj); 336 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 337 umode_t mode = a->mode; 338 339 if (a == &dev_attr_ro_lock_until_next_power_on.attr && 340 (md->area_type & MMC_BLK_DATA_AREA_BOOT) && 341 md->queue.card->ext_csd.boot_ro_lockable) { 342 mode = S_IRUGO; 343 if (!(md->queue.card->ext_csd.boot_ro_lock & 344 EXT_CSD_BOOT_WP_B_PWR_WP_DIS)) 345 mode |= S_IWUSR; 346 } 347 348 mmc_blk_put(md); 349 return mode; 350 } 351 352 static const struct attribute_group mmc_disk_attr_group = { 353 .is_visible = mmc_disk_attrs_is_visible, 354 .attrs = mmc_disk_attrs, 355 }; 356 357 static const struct attribute_group *mmc_disk_attr_groups[] = { 358 &mmc_disk_attr_group, 359 NULL, 360 }; 361 362 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 363 { 364 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 365 int ret = -ENXIO; 366 367 mutex_lock(&block_mutex); 368 if (md) { 369 ret = 0; 370 if ((mode & FMODE_WRITE) && md->read_only) { 371 mmc_blk_put(md); 372 ret = -EROFS; 373 } 374 } 375 mutex_unlock(&block_mutex); 376 377 return ret; 378 } 379 380 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 381 { 382 struct mmc_blk_data *md = disk->private_data; 383 384 mutex_lock(&block_mutex); 385 mmc_blk_put(md); 386 mutex_unlock(&block_mutex); 387 } 388 389 static int 390 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 391 { 392 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 393 geo->heads = 4; 394 geo->sectors = 16; 395 return 0; 396 } 397 398 struct mmc_blk_ioc_data { 399 struct mmc_ioc_cmd ic; 400 unsigned char *buf; 401 u64 buf_bytes; 402 struct mmc_rpmb_data *rpmb; 403 }; 404 405 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 406 struct mmc_ioc_cmd __user *user) 407 { 408 struct mmc_blk_ioc_data *idata; 409 int err; 410 411 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 412 if (!idata) { 413 err = -ENOMEM; 414 goto out; 415 } 416 417 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 418 err = -EFAULT; 419 goto idata_err; 420 } 421 422 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 423 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 424 err = -EOVERFLOW; 425 goto idata_err; 426 } 427 428 if (!idata->buf_bytes) { 429 idata->buf = NULL; 430 return idata; 431 } 432 433 idata->buf = memdup_user((void __user *)(unsigned long) 434 idata->ic.data_ptr, idata->buf_bytes); 435 if (IS_ERR(idata->buf)) { 436 err = PTR_ERR(idata->buf); 437 goto idata_err; 438 } 439 440 return idata; 441 442 idata_err: 443 kfree(idata); 444 out: 445 return ERR_PTR(err); 446 } 447 448 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 449 struct mmc_blk_ioc_data *idata) 450 { 451 struct mmc_ioc_cmd *ic = &idata->ic; 452 453 if (copy_to_user(&(ic_ptr->response), ic->response, 454 sizeof(ic->response))) 455 return -EFAULT; 456 457 if (!idata->ic.write_flag) { 458 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 459 idata->buf, idata->buf_bytes)) 460 return -EFAULT; 461 } 462 463 return 0; 464 } 465 466 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 467 struct mmc_blk_ioc_data *idata) 468 { 469 struct mmc_command cmd = {}, sbc = {}; 470 struct mmc_data data = {}; 471 struct mmc_request mrq = {}; 472 struct scatterlist sg; 473 bool r1b_resp, use_r1b_resp = false; 474 unsigned int busy_timeout_ms; 475 int err; 476 unsigned int target_part; 477 478 if (!card || !md || !idata) 479 return -EINVAL; 480 481 /* 482 * The RPMB accesses comes in from the character device, so we 483 * need to target these explicitly. Else we just target the 484 * partition type for the block device the ioctl() was issued 485 * on. 486 */ 487 if (idata->rpmb) { 488 /* Support multiple RPMB partitions */ 489 target_part = idata->rpmb->part_index; 490 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 491 } else { 492 target_part = md->part_type; 493 } 494 495 cmd.opcode = idata->ic.opcode; 496 cmd.arg = idata->ic.arg; 497 cmd.flags = idata->ic.flags; 498 499 if (idata->buf_bytes) { 500 data.sg = &sg; 501 data.sg_len = 1; 502 data.blksz = idata->ic.blksz; 503 data.blocks = idata->ic.blocks; 504 505 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 506 507 if (idata->ic.write_flag) 508 data.flags = MMC_DATA_WRITE; 509 else 510 data.flags = MMC_DATA_READ; 511 512 /* data.flags must already be set before doing this. */ 513 mmc_set_data_timeout(&data, card); 514 515 /* Allow overriding the timeout_ns for empirical tuning. */ 516 if (idata->ic.data_timeout_ns) 517 data.timeout_ns = idata->ic.data_timeout_ns; 518 519 mrq.data = &data; 520 } 521 522 mrq.cmd = &cmd; 523 524 err = mmc_blk_part_switch(card, target_part); 525 if (err) 526 return err; 527 528 if (idata->ic.is_acmd) { 529 err = mmc_app_cmd(card->host, card); 530 if (err) 531 return err; 532 } 533 534 if (idata->rpmb) { 535 sbc.opcode = MMC_SET_BLOCK_COUNT; 536 /* 537 * We don't do any blockcount validation because the max size 538 * may be increased by a future standard. We just copy the 539 * 'Reliable Write' bit here. 540 */ 541 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 542 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 543 mrq.sbc = &sbc; 544 } 545 546 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 547 (cmd.opcode == MMC_SWITCH)) 548 return mmc_sanitize(card, idata->ic.cmd_timeout_ms); 549 550 /* If it's an R1B response we need some more preparations. */ 551 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS; 552 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B; 553 if (r1b_resp) 554 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, 555 busy_timeout_ms); 556 557 mmc_wait_for_req(card->host, &mrq); 558 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp)); 559 560 if (cmd.error) { 561 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 562 __func__, cmd.error); 563 return cmd.error; 564 } 565 if (data.error) { 566 dev_err(mmc_dev(card->host), "%s: data error %d\n", 567 __func__, data.error); 568 return data.error; 569 } 570 571 /* 572 * Make sure the cache of the PARTITION_CONFIG register and 573 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 574 * changed it successfully. 575 */ 576 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 577 (cmd.opcode == MMC_SWITCH)) { 578 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 579 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 580 581 /* 582 * Update cache so the next mmc_blk_part_switch call operates 583 * on up-to-date data. 584 */ 585 card->ext_csd.part_config = value; 586 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 587 } 588 589 /* 590 * Make sure to update CACHE_CTRL in case it was changed. The cache 591 * will get turned back on if the card is re-initialized, e.g. 592 * suspend/resume or hw reset in recovery. 593 */ 594 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && 595 (cmd.opcode == MMC_SWITCH)) { 596 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; 597 598 card->ext_csd.cache_ctrl = value; 599 } 600 601 /* 602 * According to the SD specs, some commands require a delay after 603 * issuing the command. 604 */ 605 if (idata->ic.postsleep_min_us) 606 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 607 608 /* No need to poll when using HW busy detection. */ 609 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 610 return 0; 611 612 /* Ensure RPMB/R1B command has completed by polling with CMD13. */ 613 if (idata->rpmb || r1b_resp) 614 err = mmc_poll_for_busy(card, busy_timeout_ms, false, 615 MMC_BUSY_IO); 616 617 return err; 618 } 619 620 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 621 struct mmc_ioc_cmd __user *ic_ptr, 622 struct mmc_rpmb_data *rpmb) 623 { 624 struct mmc_blk_ioc_data *idata; 625 struct mmc_blk_ioc_data *idatas[1]; 626 struct mmc_queue *mq; 627 struct mmc_card *card; 628 int err = 0, ioc_err = 0; 629 struct request *req; 630 631 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 632 if (IS_ERR(idata)) 633 return PTR_ERR(idata); 634 /* This will be NULL on non-RPMB ioctl():s */ 635 idata->rpmb = rpmb; 636 637 card = md->queue.card; 638 if (IS_ERR(card)) { 639 err = PTR_ERR(card); 640 goto cmd_done; 641 } 642 643 /* 644 * Dispatch the ioctl() into the block request queue. 645 */ 646 mq = &md->queue; 647 req = blk_mq_alloc_request(mq->queue, 648 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 649 if (IS_ERR(req)) { 650 err = PTR_ERR(req); 651 goto cmd_done; 652 } 653 idatas[0] = idata; 654 req_to_mmc_queue_req(req)->drv_op = 655 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 656 req_to_mmc_queue_req(req)->drv_op_data = idatas; 657 req_to_mmc_queue_req(req)->ioc_count = 1; 658 blk_execute_rq(req, false); 659 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 660 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 661 blk_mq_free_request(req); 662 663 cmd_done: 664 kfree(idata->buf); 665 kfree(idata); 666 return ioc_err ? ioc_err : err; 667 } 668 669 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 670 struct mmc_ioc_multi_cmd __user *user, 671 struct mmc_rpmb_data *rpmb) 672 { 673 struct mmc_blk_ioc_data **idata = NULL; 674 struct mmc_ioc_cmd __user *cmds = user->cmds; 675 struct mmc_card *card; 676 struct mmc_queue *mq; 677 int err = 0, ioc_err = 0; 678 __u64 num_of_cmds; 679 unsigned int i, n; 680 struct request *req; 681 682 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 683 sizeof(num_of_cmds))) 684 return -EFAULT; 685 686 if (!num_of_cmds) 687 return 0; 688 689 if (num_of_cmds > MMC_IOC_MAX_CMDS) 690 return -EINVAL; 691 692 n = num_of_cmds; 693 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL); 694 if (!idata) 695 return -ENOMEM; 696 697 for (i = 0; i < n; i++) { 698 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 699 if (IS_ERR(idata[i])) { 700 err = PTR_ERR(idata[i]); 701 n = i; 702 goto cmd_err; 703 } 704 /* This will be NULL on non-RPMB ioctl():s */ 705 idata[i]->rpmb = rpmb; 706 } 707 708 card = md->queue.card; 709 if (IS_ERR(card)) { 710 err = PTR_ERR(card); 711 goto cmd_err; 712 } 713 714 715 /* 716 * Dispatch the ioctl()s into the block request queue. 717 */ 718 mq = &md->queue; 719 req = blk_mq_alloc_request(mq->queue, 720 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 721 if (IS_ERR(req)) { 722 err = PTR_ERR(req); 723 goto cmd_err; 724 } 725 req_to_mmc_queue_req(req)->drv_op = 726 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 727 req_to_mmc_queue_req(req)->drv_op_data = idata; 728 req_to_mmc_queue_req(req)->ioc_count = n; 729 blk_execute_rq(req, false); 730 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 731 732 /* copy to user if data and response */ 733 for (i = 0; i < n && !err; i++) 734 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 735 736 blk_mq_free_request(req); 737 738 cmd_err: 739 for (i = 0; i < n; i++) { 740 kfree(idata[i]->buf); 741 kfree(idata[i]); 742 } 743 kfree(idata); 744 return ioc_err ? ioc_err : err; 745 } 746 747 static int mmc_blk_check_blkdev(struct block_device *bdev) 748 { 749 /* 750 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 751 * whole block device, not on a partition. This prevents overspray 752 * between sibling partitions. 753 */ 754 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 755 return -EPERM; 756 return 0; 757 } 758 759 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 760 unsigned int cmd, unsigned long arg) 761 { 762 struct mmc_blk_data *md; 763 int ret; 764 765 switch (cmd) { 766 case MMC_IOC_CMD: 767 ret = mmc_blk_check_blkdev(bdev); 768 if (ret) 769 return ret; 770 md = mmc_blk_get(bdev->bd_disk); 771 if (!md) 772 return -EINVAL; 773 ret = mmc_blk_ioctl_cmd(md, 774 (struct mmc_ioc_cmd __user *)arg, 775 NULL); 776 mmc_blk_put(md); 777 return ret; 778 case MMC_IOC_MULTI_CMD: 779 ret = mmc_blk_check_blkdev(bdev); 780 if (ret) 781 return ret; 782 md = mmc_blk_get(bdev->bd_disk); 783 if (!md) 784 return -EINVAL; 785 ret = mmc_blk_ioctl_multi_cmd(md, 786 (struct mmc_ioc_multi_cmd __user *)arg, 787 NULL); 788 mmc_blk_put(md); 789 return ret; 790 default: 791 return -EINVAL; 792 } 793 } 794 795 #ifdef CONFIG_COMPAT 796 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 797 unsigned int cmd, unsigned long arg) 798 { 799 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 800 } 801 #endif 802 803 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk, 804 sector_t *sector) 805 { 806 struct mmc_blk_data *md; 807 int ret; 808 809 md = mmc_blk_get(disk); 810 if (!md) 811 return -EINVAL; 812 813 if (md->queue.card) 814 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector); 815 else 816 ret = -ENODEV; 817 818 mmc_blk_put(md); 819 820 return ret; 821 } 822 823 static const struct block_device_operations mmc_bdops = { 824 .open = mmc_blk_open, 825 .release = mmc_blk_release, 826 .getgeo = mmc_blk_getgeo, 827 .owner = THIS_MODULE, 828 .ioctl = mmc_blk_ioctl, 829 #ifdef CONFIG_COMPAT 830 .compat_ioctl = mmc_blk_compat_ioctl, 831 #endif 832 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector, 833 }; 834 835 static int mmc_blk_part_switch_pre(struct mmc_card *card, 836 unsigned int part_type) 837 { 838 int ret = 0; 839 840 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 841 if (card->ext_csd.cmdq_en) { 842 ret = mmc_cmdq_disable(card); 843 if (ret) 844 return ret; 845 } 846 mmc_retune_pause(card->host); 847 } 848 849 return ret; 850 } 851 852 static int mmc_blk_part_switch_post(struct mmc_card *card, 853 unsigned int part_type) 854 { 855 int ret = 0; 856 857 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 858 mmc_retune_unpause(card->host); 859 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 860 ret = mmc_cmdq_enable(card); 861 } 862 863 return ret; 864 } 865 866 static inline int mmc_blk_part_switch(struct mmc_card *card, 867 unsigned int part_type) 868 { 869 int ret = 0; 870 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 871 872 if (main_md->part_curr == part_type) 873 return 0; 874 875 if (mmc_card_mmc(card)) { 876 u8 part_config = card->ext_csd.part_config; 877 878 ret = mmc_blk_part_switch_pre(card, part_type); 879 if (ret) 880 return ret; 881 882 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 883 part_config |= part_type; 884 885 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 886 EXT_CSD_PART_CONFIG, part_config, 887 card->ext_csd.part_time); 888 if (ret) { 889 mmc_blk_part_switch_post(card, part_type); 890 return ret; 891 } 892 893 card->ext_csd.part_config = part_config; 894 895 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 896 } 897 898 main_md->part_curr = part_type; 899 return ret; 900 } 901 902 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 903 { 904 int err; 905 u32 result; 906 __be32 *blocks; 907 908 struct mmc_request mrq = {}; 909 struct mmc_command cmd = {}; 910 struct mmc_data data = {}; 911 912 struct scatterlist sg; 913 914 cmd.opcode = MMC_APP_CMD; 915 cmd.arg = card->rca << 16; 916 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 917 918 err = mmc_wait_for_cmd(card->host, &cmd, 0); 919 if (err) 920 return err; 921 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 922 return -EIO; 923 924 memset(&cmd, 0, sizeof(struct mmc_command)); 925 926 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 927 cmd.arg = 0; 928 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 929 930 data.blksz = 4; 931 data.blocks = 1; 932 data.flags = MMC_DATA_READ; 933 data.sg = &sg; 934 data.sg_len = 1; 935 mmc_set_data_timeout(&data, card); 936 937 mrq.cmd = &cmd; 938 mrq.data = &data; 939 940 blocks = kmalloc(4, GFP_KERNEL); 941 if (!blocks) 942 return -ENOMEM; 943 944 sg_init_one(&sg, blocks, 4); 945 946 mmc_wait_for_req(card->host, &mrq); 947 948 result = ntohl(*blocks); 949 kfree(blocks); 950 951 if (cmd.error || data.error) 952 return -EIO; 953 954 *written_blocks = result; 955 956 return 0; 957 } 958 959 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 960 { 961 if (host->actual_clock) 962 return host->actual_clock / 1000; 963 964 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 965 if (host->ios.clock) 966 return host->ios.clock / 2000; 967 968 /* How can there be no clock */ 969 WARN_ON_ONCE(1); 970 return 100; /* 100 kHz is minimum possible value */ 971 } 972 973 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 974 struct mmc_data *data) 975 { 976 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 977 unsigned int khz; 978 979 if (data->timeout_clks) { 980 khz = mmc_blk_clock_khz(host); 981 ms += DIV_ROUND_UP(data->timeout_clks, khz); 982 } 983 984 return ms; 985 } 986 987 /* 988 * Attempts to reset the card and get back to the requested partition. 989 * Therefore any error here must result in cancelling the block layer 990 * request, it must not be reattempted without going through the mmc_blk 991 * partition sanity checks. 992 */ 993 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 994 int type) 995 { 996 int err; 997 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev); 998 999 if (md->reset_done & type) 1000 return -EEXIST; 1001 1002 md->reset_done |= type; 1003 err = mmc_hw_reset(host->card); 1004 /* 1005 * A successful reset will leave the card in the main partition, but 1006 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID 1007 * in that case. 1008 */ 1009 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type; 1010 if (err) 1011 return err; 1012 /* Ensure we switch back to the correct partition */ 1013 if (mmc_blk_part_switch(host->card, md->part_type)) 1014 /* 1015 * We have failed to get back into the correct 1016 * partition, so we need to abort the whole request. 1017 */ 1018 return -ENODEV; 1019 return 0; 1020 } 1021 1022 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1023 { 1024 md->reset_done &= ~type; 1025 } 1026 1027 /* 1028 * The non-block commands come back from the block layer after it queued it and 1029 * processed it with all other requests and then they get issued in this 1030 * function. 1031 */ 1032 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1033 { 1034 struct mmc_queue_req *mq_rq; 1035 struct mmc_card *card = mq->card; 1036 struct mmc_blk_data *md = mq->blkdata; 1037 struct mmc_blk_ioc_data **idata; 1038 bool rpmb_ioctl; 1039 u8 **ext_csd; 1040 u32 status; 1041 int ret; 1042 int i; 1043 1044 mq_rq = req_to_mmc_queue_req(req); 1045 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1046 1047 switch (mq_rq->drv_op) { 1048 case MMC_DRV_OP_IOCTL: 1049 if (card->ext_csd.cmdq_en) { 1050 ret = mmc_cmdq_disable(card); 1051 if (ret) 1052 break; 1053 } 1054 fallthrough; 1055 case MMC_DRV_OP_IOCTL_RPMB: 1056 idata = mq_rq->drv_op_data; 1057 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1058 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1059 if (ret) 1060 break; 1061 } 1062 /* Always switch back to main area after RPMB access */ 1063 if (rpmb_ioctl) 1064 mmc_blk_part_switch(card, 0); 1065 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 1066 mmc_cmdq_enable(card); 1067 break; 1068 case MMC_DRV_OP_BOOT_WP: 1069 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1070 card->ext_csd.boot_ro_lock | 1071 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1072 card->ext_csd.part_time); 1073 if (ret) 1074 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1075 md->disk->disk_name, ret); 1076 else 1077 card->ext_csd.boot_ro_lock |= 1078 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1079 break; 1080 case MMC_DRV_OP_GET_CARD_STATUS: 1081 ret = mmc_send_status(card, &status); 1082 if (!ret) 1083 ret = status; 1084 break; 1085 case MMC_DRV_OP_GET_EXT_CSD: 1086 ext_csd = mq_rq->drv_op_data; 1087 ret = mmc_get_ext_csd(card, ext_csd); 1088 break; 1089 default: 1090 pr_err("%s: unknown driver specific operation\n", 1091 md->disk->disk_name); 1092 ret = -EINVAL; 1093 break; 1094 } 1095 mq_rq->drv_op_result = ret; 1096 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1097 } 1098 1099 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req, 1100 int type, unsigned int erase_arg) 1101 { 1102 struct mmc_blk_data *md = mq->blkdata; 1103 struct mmc_card *card = md->queue.card; 1104 unsigned int from, nr; 1105 int err = 0; 1106 blk_status_t status = BLK_STS_OK; 1107 1108 if (!mmc_can_erase(card)) { 1109 status = BLK_STS_NOTSUPP; 1110 goto fail; 1111 } 1112 1113 from = blk_rq_pos(req); 1114 nr = blk_rq_sectors(req); 1115 1116 do { 1117 err = 0; 1118 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1119 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1120 INAND_CMD38_ARG_EXT_CSD, 1121 erase_arg == MMC_TRIM_ARG ? 1122 INAND_CMD38_ARG_TRIM : 1123 INAND_CMD38_ARG_ERASE, 1124 card->ext_csd.generic_cmd6_time); 1125 } 1126 if (!err) 1127 err = mmc_erase(card, from, nr, erase_arg); 1128 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1129 if (err) 1130 status = BLK_STS_IOERR; 1131 else 1132 mmc_blk_reset_success(md, type); 1133 fail: 1134 blk_mq_end_request(req, status); 1135 } 1136 1137 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req) 1138 { 1139 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG); 1140 } 1141 1142 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1143 { 1144 struct mmc_blk_data *md = mq->blkdata; 1145 struct mmc_card *card = md->queue.card; 1146 unsigned int arg = card->erase_arg; 1147 1148 if (mmc_card_broken_sd_discard(card)) 1149 arg = SD_ERASE_ARG; 1150 1151 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg); 1152 } 1153 1154 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1155 struct request *req) 1156 { 1157 struct mmc_blk_data *md = mq->blkdata; 1158 struct mmc_card *card = md->queue.card; 1159 unsigned int from, nr, arg; 1160 int err = 0, type = MMC_BLK_SECDISCARD; 1161 blk_status_t status = BLK_STS_OK; 1162 1163 if (!(mmc_can_secure_erase_trim(card))) { 1164 status = BLK_STS_NOTSUPP; 1165 goto out; 1166 } 1167 1168 from = blk_rq_pos(req); 1169 nr = blk_rq_sectors(req); 1170 1171 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1172 arg = MMC_SECURE_TRIM1_ARG; 1173 else 1174 arg = MMC_SECURE_ERASE_ARG; 1175 1176 retry: 1177 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1178 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1179 INAND_CMD38_ARG_EXT_CSD, 1180 arg == MMC_SECURE_TRIM1_ARG ? 1181 INAND_CMD38_ARG_SECTRIM1 : 1182 INAND_CMD38_ARG_SECERASE, 1183 card->ext_csd.generic_cmd6_time); 1184 if (err) 1185 goto out_retry; 1186 } 1187 1188 err = mmc_erase(card, from, nr, arg); 1189 if (err == -EIO) 1190 goto out_retry; 1191 if (err) { 1192 status = BLK_STS_IOERR; 1193 goto out; 1194 } 1195 1196 if (arg == MMC_SECURE_TRIM1_ARG) { 1197 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1198 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1199 INAND_CMD38_ARG_EXT_CSD, 1200 INAND_CMD38_ARG_SECTRIM2, 1201 card->ext_csd.generic_cmd6_time); 1202 if (err) 1203 goto out_retry; 1204 } 1205 1206 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1207 if (err == -EIO) 1208 goto out_retry; 1209 if (err) { 1210 status = BLK_STS_IOERR; 1211 goto out; 1212 } 1213 } 1214 1215 out_retry: 1216 if (err && !mmc_blk_reset(md, card->host, type)) 1217 goto retry; 1218 if (!err) 1219 mmc_blk_reset_success(md, type); 1220 out: 1221 blk_mq_end_request(req, status); 1222 } 1223 1224 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1225 { 1226 struct mmc_blk_data *md = mq->blkdata; 1227 struct mmc_card *card = md->queue.card; 1228 int ret = 0; 1229 1230 ret = mmc_flush_cache(card->host); 1231 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1232 } 1233 1234 /* 1235 * Reformat current write as a reliable write, supporting 1236 * both legacy and the enhanced reliable write MMC cards. 1237 * In each transfer we'll handle only as much as a single 1238 * reliable write can handle, thus finish the request in 1239 * partial completions. 1240 */ 1241 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1242 struct mmc_card *card, 1243 struct request *req) 1244 { 1245 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1246 /* Legacy mode imposes restrictions on transfers. */ 1247 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1248 brq->data.blocks = 1; 1249 1250 if (brq->data.blocks > card->ext_csd.rel_sectors) 1251 brq->data.blocks = card->ext_csd.rel_sectors; 1252 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1253 brq->data.blocks = 1; 1254 } 1255 } 1256 1257 #define CMD_ERRORS_EXCL_OOR \ 1258 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1259 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1260 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1261 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1262 R1_CC_ERROR | /* Card controller error */ \ 1263 R1_ERROR) /* General/unknown error */ 1264 1265 #define CMD_ERRORS \ 1266 (CMD_ERRORS_EXCL_OOR | \ 1267 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1268 1269 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1270 { 1271 u32 val; 1272 1273 /* 1274 * Per the SD specification(physical layer version 4.10)[1], 1275 * section 4.3.3, it explicitly states that "When the last 1276 * block of user area is read using CMD18, the host should 1277 * ignore OUT_OF_RANGE error that may occur even the sequence 1278 * is correct". And JESD84-B51 for eMMC also has a similar 1279 * statement on section 6.8.3. 1280 * 1281 * Multiple block read/write could be done by either predefined 1282 * method, namely CMD23, or open-ending mode. For open-ending mode, 1283 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1284 * 1285 * However the spec[1] doesn't tell us whether we should also 1286 * ignore that for predefined method. But per the spec[1], section 1287 * 4.15 Set Block Count Command, it says"If illegal block count 1288 * is set, out of range error will be indicated during read/write 1289 * operation (For example, data transfer is stopped at user area 1290 * boundary)." In another word, we could expect a out of range error 1291 * in the response for the following CMD18/25. And if argument of 1292 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1293 * we could also expect to get a -ETIMEDOUT or any error number from 1294 * the host drivers due to missing data response(for write)/data(for 1295 * read), as the cards will stop the data transfer by itself per the 1296 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1297 */ 1298 1299 if (!brq->stop.error) { 1300 bool oor_with_open_end; 1301 /* If there is no error yet, check R1 response */ 1302 1303 val = brq->stop.resp[0] & CMD_ERRORS; 1304 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1305 1306 if (val && !oor_with_open_end) 1307 brq->stop.error = -EIO; 1308 } 1309 } 1310 1311 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1312 int recovery_mode, bool *do_rel_wr_p, 1313 bool *do_data_tag_p) 1314 { 1315 struct mmc_blk_data *md = mq->blkdata; 1316 struct mmc_card *card = md->queue.card; 1317 struct mmc_blk_request *brq = &mqrq->brq; 1318 struct request *req = mmc_queue_req_to_req(mqrq); 1319 bool do_rel_wr, do_data_tag; 1320 1321 /* 1322 * Reliable writes are used to implement Forced Unit Access and 1323 * are supported only on MMCs. 1324 */ 1325 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1326 rq_data_dir(req) == WRITE && 1327 (md->flags & MMC_BLK_REL_WR); 1328 1329 memset(brq, 0, sizeof(struct mmc_blk_request)); 1330 1331 mmc_crypto_prepare_req(mqrq); 1332 1333 brq->mrq.data = &brq->data; 1334 brq->mrq.tag = req->tag; 1335 1336 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1337 brq->stop.arg = 0; 1338 1339 if (rq_data_dir(req) == READ) { 1340 brq->data.flags = MMC_DATA_READ; 1341 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1342 } else { 1343 brq->data.flags = MMC_DATA_WRITE; 1344 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1345 } 1346 1347 brq->data.blksz = 512; 1348 brq->data.blocks = blk_rq_sectors(req); 1349 brq->data.blk_addr = blk_rq_pos(req); 1350 1351 /* 1352 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1353 * The eMMC will give "high" priority tasks priority over "simple" 1354 * priority tasks. Here we always set "simple" priority by not setting 1355 * MMC_DATA_PRIO. 1356 */ 1357 1358 /* 1359 * The block layer doesn't support all sector count 1360 * restrictions, so we need to be prepared for too big 1361 * requests. 1362 */ 1363 if (brq->data.blocks > card->host->max_blk_count) 1364 brq->data.blocks = card->host->max_blk_count; 1365 1366 if (brq->data.blocks > 1) { 1367 /* 1368 * Some SD cards in SPI mode return a CRC error or even lock up 1369 * completely when trying to read the last block using a 1370 * multiblock read command. 1371 */ 1372 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1373 (blk_rq_pos(req) + blk_rq_sectors(req) == 1374 get_capacity(md->disk))) 1375 brq->data.blocks--; 1376 1377 /* 1378 * After a read error, we redo the request one (native) sector 1379 * at a time in order to accurately determine which 1380 * sectors can be read successfully. 1381 */ 1382 if (recovery_mode) 1383 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9; 1384 1385 /* 1386 * Some controllers have HW issues while operating 1387 * in multiple I/O mode 1388 */ 1389 if (card->host->ops->multi_io_quirk) 1390 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1391 (rq_data_dir(req) == READ) ? 1392 MMC_DATA_READ : MMC_DATA_WRITE, 1393 brq->data.blocks); 1394 } 1395 1396 if (do_rel_wr) { 1397 mmc_apply_rel_rw(brq, card, req); 1398 brq->data.flags |= MMC_DATA_REL_WR; 1399 } 1400 1401 /* 1402 * Data tag is used only during writing meta data to speed 1403 * up write and any subsequent read of this meta data 1404 */ 1405 do_data_tag = card->ext_csd.data_tag_unit_size && 1406 (req->cmd_flags & REQ_META) && 1407 (rq_data_dir(req) == WRITE) && 1408 ((brq->data.blocks * brq->data.blksz) >= 1409 card->ext_csd.data_tag_unit_size); 1410 1411 if (do_data_tag) 1412 brq->data.flags |= MMC_DATA_DAT_TAG; 1413 1414 mmc_set_data_timeout(&brq->data, card); 1415 1416 brq->data.sg = mqrq->sg; 1417 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1418 1419 /* 1420 * Adjust the sg list so it is the same size as the 1421 * request. 1422 */ 1423 if (brq->data.blocks != blk_rq_sectors(req)) { 1424 int i, data_size = brq->data.blocks << 9; 1425 struct scatterlist *sg; 1426 1427 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1428 data_size -= sg->length; 1429 if (data_size <= 0) { 1430 sg->length += data_size; 1431 i++; 1432 break; 1433 } 1434 } 1435 brq->data.sg_len = i; 1436 } 1437 1438 if (do_rel_wr_p) 1439 *do_rel_wr_p = do_rel_wr; 1440 1441 if (do_data_tag_p) 1442 *do_data_tag_p = do_data_tag; 1443 } 1444 1445 #define MMC_CQE_RETRIES 2 1446 1447 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1448 { 1449 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1450 struct mmc_request *mrq = &mqrq->brq.mrq; 1451 struct request_queue *q = req->q; 1452 struct mmc_host *host = mq->card->host; 1453 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1454 unsigned long flags; 1455 bool put_card; 1456 int err; 1457 1458 mmc_cqe_post_req(host, mrq); 1459 1460 if (mrq->cmd && mrq->cmd->error) 1461 err = mrq->cmd->error; 1462 else if (mrq->data && mrq->data->error) 1463 err = mrq->data->error; 1464 else 1465 err = 0; 1466 1467 if (err) { 1468 if (mqrq->retries++ < MMC_CQE_RETRIES) 1469 blk_mq_requeue_request(req, true); 1470 else 1471 blk_mq_end_request(req, BLK_STS_IOERR); 1472 } else if (mrq->data) { 1473 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1474 blk_mq_requeue_request(req, true); 1475 else 1476 __blk_mq_end_request(req, BLK_STS_OK); 1477 } else { 1478 blk_mq_end_request(req, BLK_STS_OK); 1479 } 1480 1481 spin_lock_irqsave(&mq->lock, flags); 1482 1483 mq->in_flight[issue_type] -= 1; 1484 1485 put_card = (mmc_tot_in_flight(mq) == 0); 1486 1487 mmc_cqe_check_busy(mq); 1488 1489 spin_unlock_irqrestore(&mq->lock, flags); 1490 1491 if (!mq->cqe_busy) 1492 blk_mq_run_hw_queues(q, true); 1493 1494 if (put_card) 1495 mmc_put_card(mq->card, &mq->ctx); 1496 } 1497 1498 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1499 { 1500 struct mmc_card *card = mq->card; 1501 struct mmc_host *host = card->host; 1502 int err; 1503 1504 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1505 1506 err = mmc_cqe_recovery(host); 1507 if (err) 1508 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1509 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1510 1511 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1512 } 1513 1514 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1515 { 1516 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1517 brq.mrq); 1518 struct request *req = mmc_queue_req_to_req(mqrq); 1519 struct request_queue *q = req->q; 1520 struct mmc_queue *mq = q->queuedata; 1521 1522 /* 1523 * Block layer timeouts race with completions which means the normal 1524 * completion path cannot be used during recovery. 1525 */ 1526 if (mq->in_recovery) 1527 mmc_blk_cqe_complete_rq(mq, req); 1528 else if (likely(!blk_should_fake_timeout(req->q))) 1529 blk_mq_complete_request(req); 1530 } 1531 1532 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1533 { 1534 mrq->done = mmc_blk_cqe_req_done; 1535 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1536 1537 return mmc_cqe_start_req(host, mrq); 1538 } 1539 1540 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1541 struct request *req) 1542 { 1543 struct mmc_blk_request *brq = &mqrq->brq; 1544 1545 memset(brq, 0, sizeof(*brq)); 1546 1547 brq->mrq.cmd = &brq->cmd; 1548 brq->mrq.tag = req->tag; 1549 1550 return &brq->mrq; 1551 } 1552 1553 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1554 { 1555 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1556 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1557 1558 mrq->cmd->opcode = MMC_SWITCH; 1559 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1560 (EXT_CSD_FLUSH_CACHE << 16) | 1561 (1 << 8) | 1562 EXT_CSD_CMD_SET_NORMAL; 1563 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1564 1565 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1566 } 1567 1568 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1569 { 1570 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1571 struct mmc_host *host = mq->card->host; 1572 int err; 1573 1574 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1575 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1576 mmc_pre_req(host, &mqrq->brq.mrq); 1577 1578 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1579 if (err) 1580 mmc_post_req(host, &mqrq->brq.mrq, err); 1581 1582 return err; 1583 } 1584 1585 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1586 { 1587 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1588 struct mmc_host *host = mq->card->host; 1589 1590 if (host->hsq_enabled) 1591 return mmc_blk_hsq_issue_rw_rq(mq, req); 1592 1593 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1594 1595 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1596 } 1597 1598 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1599 struct mmc_card *card, 1600 int recovery_mode, 1601 struct mmc_queue *mq) 1602 { 1603 u32 readcmd, writecmd; 1604 struct mmc_blk_request *brq = &mqrq->brq; 1605 struct request *req = mmc_queue_req_to_req(mqrq); 1606 struct mmc_blk_data *md = mq->blkdata; 1607 bool do_rel_wr, do_data_tag; 1608 1609 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag); 1610 1611 brq->mrq.cmd = &brq->cmd; 1612 1613 brq->cmd.arg = blk_rq_pos(req); 1614 if (!mmc_card_blockaddr(card)) 1615 brq->cmd.arg <<= 9; 1616 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1617 1618 if (brq->data.blocks > 1 || do_rel_wr) { 1619 /* SPI multiblock writes terminate using a special 1620 * token, not a STOP_TRANSMISSION request. 1621 */ 1622 if (!mmc_host_is_spi(card->host) || 1623 rq_data_dir(req) == READ) 1624 brq->mrq.stop = &brq->stop; 1625 readcmd = MMC_READ_MULTIPLE_BLOCK; 1626 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1627 } else { 1628 brq->mrq.stop = NULL; 1629 readcmd = MMC_READ_SINGLE_BLOCK; 1630 writecmd = MMC_WRITE_BLOCK; 1631 } 1632 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1633 1634 /* 1635 * Pre-defined multi-block transfers are preferable to 1636 * open ended-ones (and necessary for reliable writes). 1637 * However, it is not sufficient to just send CMD23, 1638 * and avoid the final CMD12, as on an error condition 1639 * CMD12 (stop) needs to be sent anyway. This, coupled 1640 * with Auto-CMD23 enhancements provided by some 1641 * hosts, means that the complexity of dealing 1642 * with this is best left to the host. If CMD23 is 1643 * supported by card and host, we'll fill sbc in and let 1644 * the host deal with handling it correctly. This means 1645 * that for hosts that don't expose MMC_CAP_CMD23, no 1646 * change of behavior will be observed. 1647 * 1648 * N.B: Some MMC cards experience perf degradation. 1649 * We'll avoid using CMD23-bounded multiblock writes for 1650 * these, while retaining features like reliable writes. 1651 */ 1652 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1653 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1654 do_data_tag)) { 1655 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1656 brq->sbc.arg = brq->data.blocks | 1657 (do_rel_wr ? (1 << 31) : 0) | 1658 (do_data_tag ? (1 << 29) : 0); 1659 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1660 brq->mrq.sbc = &brq->sbc; 1661 } 1662 } 1663 1664 #define MMC_MAX_RETRIES 5 1665 #define MMC_DATA_RETRIES 2 1666 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1667 1668 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1669 { 1670 struct mmc_command cmd = { 1671 .opcode = MMC_STOP_TRANSMISSION, 1672 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1673 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1674 .busy_timeout = timeout, 1675 }; 1676 1677 return mmc_wait_for_cmd(card->host, &cmd, 5); 1678 } 1679 1680 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1681 { 1682 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1683 struct mmc_blk_request *brq = &mqrq->brq; 1684 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1685 int err; 1686 1687 mmc_retune_hold_now(card->host); 1688 1689 mmc_blk_send_stop(card, timeout); 1690 1691 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO); 1692 1693 mmc_retune_release(card->host); 1694 1695 return err; 1696 } 1697 1698 #define MMC_READ_SINGLE_RETRIES 2 1699 1700 /* Single (native) sector read during recovery */ 1701 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1702 { 1703 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1704 struct mmc_request *mrq = &mqrq->brq.mrq; 1705 struct mmc_card *card = mq->card; 1706 struct mmc_host *host = card->host; 1707 blk_status_t error = BLK_STS_OK; 1708 size_t bytes_per_read = queue_physical_block_size(mq->queue); 1709 1710 do { 1711 u32 status; 1712 int err; 1713 int retries = 0; 1714 1715 while (retries++ <= MMC_READ_SINGLE_RETRIES) { 1716 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1717 1718 mmc_wait_for_req(host, mrq); 1719 1720 err = mmc_send_status(card, &status); 1721 if (err) 1722 goto error_exit; 1723 1724 if (!mmc_host_is_spi(host) && 1725 !mmc_ready_for_data(status)) { 1726 err = mmc_blk_fix_state(card, req); 1727 if (err) 1728 goto error_exit; 1729 } 1730 1731 if (!mrq->cmd->error) 1732 break; 1733 } 1734 1735 if (mrq->cmd->error || 1736 mrq->data->error || 1737 (!mmc_host_is_spi(host) && 1738 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1739 error = BLK_STS_IOERR; 1740 else 1741 error = BLK_STS_OK; 1742 1743 } while (blk_update_request(req, error, bytes_per_read)); 1744 1745 return; 1746 1747 error_exit: 1748 mrq->data->bytes_xfered = 0; 1749 blk_update_request(req, BLK_STS_IOERR, bytes_per_read); 1750 /* Let it try the remaining request again */ 1751 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1752 mqrq->retries = MMC_MAX_RETRIES - 1; 1753 } 1754 1755 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1756 { 1757 return !!brq->mrq.sbc; 1758 } 1759 1760 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1761 { 1762 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1763 } 1764 1765 /* 1766 * Check for errors the host controller driver might not have seen such as 1767 * response mode errors or invalid card state. 1768 */ 1769 static bool mmc_blk_status_error(struct request *req, u32 status) 1770 { 1771 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1772 struct mmc_blk_request *brq = &mqrq->brq; 1773 struct mmc_queue *mq = req->q->queuedata; 1774 u32 stop_err_bits; 1775 1776 if (mmc_host_is_spi(mq->card->host)) 1777 return false; 1778 1779 stop_err_bits = mmc_blk_stop_err_bits(brq); 1780 1781 return brq->cmd.resp[0] & CMD_ERRORS || 1782 brq->stop.resp[0] & stop_err_bits || 1783 status & stop_err_bits || 1784 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1785 } 1786 1787 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1788 { 1789 return !brq->sbc.error && !brq->cmd.error && 1790 !(brq->cmd.resp[0] & CMD_ERRORS); 1791 } 1792 1793 /* 1794 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1795 * policy: 1796 * 1. A request that has transferred at least some data is considered 1797 * successful and will be requeued if there is remaining data to 1798 * transfer. 1799 * 2. Otherwise the number of retries is incremented and the request 1800 * will be requeued if there are remaining retries. 1801 * 3. Otherwise the request will be errored out. 1802 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1803 * mqrq->retries. So there are only 4 possible actions here: 1804 * 1. do not accept the bytes_xfered value i.e. set it to zero 1805 * 2. change mqrq->retries to determine the number of retries 1806 * 3. try to reset the card 1807 * 4. read one sector at a time 1808 */ 1809 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1810 { 1811 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1812 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1813 struct mmc_blk_request *brq = &mqrq->brq; 1814 struct mmc_blk_data *md = mq->blkdata; 1815 struct mmc_card *card = mq->card; 1816 u32 status; 1817 u32 blocks; 1818 int err; 1819 1820 /* 1821 * Some errors the host driver might not have seen. Set the number of 1822 * bytes transferred to zero in that case. 1823 */ 1824 err = __mmc_send_status(card, &status, 0); 1825 if (err || mmc_blk_status_error(req, status)) 1826 brq->data.bytes_xfered = 0; 1827 1828 mmc_retune_release(card->host); 1829 1830 /* 1831 * Try again to get the status. This also provides an opportunity for 1832 * re-tuning. 1833 */ 1834 if (err) 1835 err = __mmc_send_status(card, &status, 0); 1836 1837 /* 1838 * Nothing more to do after the number of bytes transferred has been 1839 * updated and there is no card. 1840 */ 1841 if (err && mmc_detect_card_removed(card->host)) 1842 return; 1843 1844 /* Try to get back to "tran" state */ 1845 if (!mmc_host_is_spi(mq->card->host) && 1846 (err || !mmc_ready_for_data(status))) 1847 err = mmc_blk_fix_state(mq->card, req); 1848 1849 /* 1850 * Special case for SD cards where the card might record the number of 1851 * blocks written. 1852 */ 1853 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1854 rq_data_dir(req) == WRITE) { 1855 if (mmc_sd_num_wr_blocks(card, &blocks)) 1856 brq->data.bytes_xfered = 0; 1857 else 1858 brq->data.bytes_xfered = blocks << 9; 1859 } 1860 1861 /* Reset if the card is in a bad state */ 1862 if (!mmc_host_is_spi(mq->card->host) && 1863 err && mmc_blk_reset(md, card->host, type)) { 1864 pr_err("%s: recovery failed!\n", req->q->disk->disk_name); 1865 mqrq->retries = MMC_NO_RETRIES; 1866 return; 1867 } 1868 1869 /* 1870 * If anything was done, just return and if there is anything remaining 1871 * on the request it will get requeued. 1872 */ 1873 if (brq->data.bytes_xfered) 1874 return; 1875 1876 /* Reset before last retry */ 1877 if (mqrq->retries + 1 == MMC_MAX_RETRIES && 1878 mmc_blk_reset(md, card->host, type)) 1879 return; 1880 1881 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1882 if (brq->sbc.error || brq->cmd.error) 1883 return; 1884 1885 /* Reduce the remaining retries for data errors */ 1886 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1887 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1888 return; 1889 } 1890 1891 if (rq_data_dir(req) == READ && brq->data.blocks > 1892 queue_physical_block_size(mq->queue) >> 9) { 1893 /* Read one (native) sector at a time */ 1894 mmc_blk_read_single(mq, req); 1895 return; 1896 } 1897 } 1898 1899 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1900 { 1901 mmc_blk_eval_resp_error(brq); 1902 1903 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1904 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1905 } 1906 1907 static int mmc_spi_err_check(struct mmc_card *card) 1908 { 1909 u32 status = 0; 1910 int err; 1911 1912 /* 1913 * SPI does not have a TRAN state we have to wait on, instead the 1914 * card is ready again when it no longer holds the line LOW. 1915 * We still have to ensure two things here before we know the write 1916 * was successful: 1917 * 1. The card has not disconnected during busy and we actually read our 1918 * own pull-up, thinking it was still connected, so ensure it 1919 * still responds. 1920 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a 1921 * just reconnected card after being disconnected during busy. 1922 */ 1923 err = __mmc_send_status(card, &status, 0); 1924 if (err) 1925 return err; 1926 /* All R1 and R2 bits of SPI are errors in our case */ 1927 if (status) 1928 return -EIO; 1929 return 0; 1930 } 1931 1932 static int mmc_blk_busy_cb(void *cb_data, bool *busy) 1933 { 1934 struct mmc_blk_busy_data *data = cb_data; 1935 u32 status = 0; 1936 int err; 1937 1938 err = mmc_send_status(data->card, &status); 1939 if (err) 1940 return err; 1941 1942 /* Accumulate response error bits. */ 1943 data->status |= status; 1944 1945 *busy = !mmc_ready_for_data(status); 1946 return 0; 1947 } 1948 1949 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1950 { 1951 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1952 struct mmc_blk_busy_data cb_data; 1953 int err; 1954 1955 if (rq_data_dir(req) == READ) 1956 return 0; 1957 1958 if (mmc_host_is_spi(card->host)) { 1959 err = mmc_spi_err_check(card); 1960 if (err) 1961 mqrq->brq.data.bytes_xfered = 0; 1962 return err; 1963 } 1964 1965 cb_data.card = card; 1966 cb_data.status = 0; 1967 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS, 1968 &mmc_blk_busy_cb, &cb_data); 1969 1970 /* 1971 * Do not assume data transferred correctly if there are any error bits 1972 * set. 1973 */ 1974 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1975 mqrq->brq.data.bytes_xfered = 0; 1976 err = err ? err : -EIO; 1977 } 1978 1979 /* Copy the exception bit so it will be seen later on */ 1980 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT) 1981 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1982 1983 return err; 1984 } 1985 1986 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1987 struct request *req) 1988 { 1989 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1990 1991 mmc_blk_reset_success(mq->blkdata, type); 1992 } 1993 1994 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1995 { 1996 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1997 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1998 1999 if (nr_bytes) { 2000 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 2001 blk_mq_requeue_request(req, true); 2002 else 2003 __blk_mq_end_request(req, BLK_STS_OK); 2004 } else if (!blk_rq_bytes(req)) { 2005 __blk_mq_end_request(req, BLK_STS_IOERR); 2006 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 2007 blk_mq_requeue_request(req, true); 2008 } else { 2009 if (mmc_card_removed(mq->card)) 2010 req->rq_flags |= RQF_QUIET; 2011 blk_mq_end_request(req, BLK_STS_IOERR); 2012 } 2013 } 2014 2015 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 2016 struct mmc_queue_req *mqrq) 2017 { 2018 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 2019 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 2020 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 2021 } 2022 2023 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 2024 struct mmc_queue_req *mqrq) 2025 { 2026 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 2027 mmc_run_bkops(mq->card); 2028 } 2029 2030 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 2031 { 2032 struct mmc_queue_req *mqrq = 2033 container_of(mrq, struct mmc_queue_req, brq.mrq); 2034 struct request *req = mmc_queue_req_to_req(mqrq); 2035 struct request_queue *q = req->q; 2036 struct mmc_queue *mq = q->queuedata; 2037 struct mmc_host *host = mq->card->host; 2038 unsigned long flags; 2039 2040 if (mmc_blk_rq_error(&mqrq->brq) || 2041 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2042 spin_lock_irqsave(&mq->lock, flags); 2043 mq->recovery_needed = true; 2044 mq->recovery_req = req; 2045 spin_unlock_irqrestore(&mq->lock, flags); 2046 2047 host->cqe_ops->cqe_recovery_start(host); 2048 2049 schedule_work(&mq->recovery_work); 2050 return; 2051 } 2052 2053 mmc_blk_rw_reset_success(mq, req); 2054 2055 /* 2056 * Block layer timeouts race with completions which means the normal 2057 * completion path cannot be used during recovery. 2058 */ 2059 if (mq->in_recovery) 2060 mmc_blk_cqe_complete_rq(mq, req); 2061 else if (likely(!blk_should_fake_timeout(req->q))) 2062 blk_mq_complete_request(req); 2063 } 2064 2065 void mmc_blk_mq_complete(struct request *req) 2066 { 2067 struct mmc_queue *mq = req->q->queuedata; 2068 struct mmc_host *host = mq->card->host; 2069 2070 if (host->cqe_enabled) 2071 mmc_blk_cqe_complete_rq(mq, req); 2072 else if (likely(!blk_should_fake_timeout(req->q))) 2073 mmc_blk_mq_complete_rq(mq, req); 2074 } 2075 2076 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 2077 struct request *req) 2078 { 2079 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2080 struct mmc_host *host = mq->card->host; 2081 2082 if (mmc_blk_rq_error(&mqrq->brq) || 2083 mmc_blk_card_busy(mq->card, req)) { 2084 mmc_blk_mq_rw_recovery(mq, req); 2085 } else { 2086 mmc_blk_rw_reset_success(mq, req); 2087 mmc_retune_release(host); 2088 } 2089 2090 mmc_blk_urgent_bkops(mq, mqrq); 2091 } 2092 2093 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 2094 { 2095 unsigned long flags; 2096 bool put_card; 2097 2098 spin_lock_irqsave(&mq->lock, flags); 2099 2100 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 2101 2102 put_card = (mmc_tot_in_flight(mq) == 0); 2103 2104 spin_unlock_irqrestore(&mq->lock, flags); 2105 2106 if (put_card) 2107 mmc_put_card(mq->card, &mq->ctx); 2108 } 2109 2110 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req, 2111 bool can_sleep) 2112 { 2113 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2114 struct mmc_request *mrq = &mqrq->brq.mrq; 2115 struct mmc_host *host = mq->card->host; 2116 2117 mmc_post_req(host, mrq, 0); 2118 2119 /* 2120 * Block layer timeouts race with completions which means the normal 2121 * completion path cannot be used during recovery. 2122 */ 2123 if (mq->in_recovery) { 2124 mmc_blk_mq_complete_rq(mq, req); 2125 } else if (likely(!blk_should_fake_timeout(req->q))) { 2126 if (can_sleep) 2127 blk_mq_complete_request_direct(req, mmc_blk_mq_complete); 2128 else 2129 blk_mq_complete_request(req); 2130 } 2131 2132 mmc_blk_mq_dec_in_flight(mq, req); 2133 } 2134 2135 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2136 { 2137 struct request *req = mq->recovery_req; 2138 struct mmc_host *host = mq->card->host; 2139 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2140 2141 mq->recovery_req = NULL; 2142 mq->rw_wait = false; 2143 2144 if (mmc_blk_rq_error(&mqrq->brq)) { 2145 mmc_retune_hold_now(host); 2146 mmc_blk_mq_rw_recovery(mq, req); 2147 } 2148 2149 mmc_blk_urgent_bkops(mq, mqrq); 2150 2151 mmc_blk_mq_post_req(mq, req, true); 2152 } 2153 2154 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2155 struct request **prev_req) 2156 { 2157 if (mmc_host_done_complete(mq->card->host)) 2158 return; 2159 2160 mutex_lock(&mq->complete_lock); 2161 2162 if (!mq->complete_req) 2163 goto out_unlock; 2164 2165 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2166 2167 if (prev_req) 2168 *prev_req = mq->complete_req; 2169 else 2170 mmc_blk_mq_post_req(mq, mq->complete_req, true); 2171 2172 mq->complete_req = NULL; 2173 2174 out_unlock: 2175 mutex_unlock(&mq->complete_lock); 2176 } 2177 2178 void mmc_blk_mq_complete_work(struct work_struct *work) 2179 { 2180 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2181 complete_work); 2182 2183 mmc_blk_mq_complete_prev_req(mq, NULL); 2184 } 2185 2186 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2187 { 2188 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2189 brq.mrq); 2190 struct request *req = mmc_queue_req_to_req(mqrq); 2191 struct request_queue *q = req->q; 2192 struct mmc_queue *mq = q->queuedata; 2193 struct mmc_host *host = mq->card->host; 2194 unsigned long flags; 2195 2196 if (!mmc_host_done_complete(host)) { 2197 bool waiting; 2198 2199 /* 2200 * We cannot complete the request in this context, so record 2201 * that there is a request to complete, and that a following 2202 * request does not need to wait (although it does need to 2203 * complete complete_req first). 2204 */ 2205 spin_lock_irqsave(&mq->lock, flags); 2206 mq->complete_req = req; 2207 mq->rw_wait = false; 2208 waiting = mq->waiting; 2209 spin_unlock_irqrestore(&mq->lock, flags); 2210 2211 /* 2212 * If 'waiting' then the waiting task will complete this 2213 * request, otherwise queue a work to do it. Note that 2214 * complete_work may still race with the dispatch of a following 2215 * request. 2216 */ 2217 if (waiting) 2218 wake_up(&mq->wait); 2219 else 2220 queue_work(mq->card->complete_wq, &mq->complete_work); 2221 2222 return; 2223 } 2224 2225 /* Take the recovery path for errors or urgent background operations */ 2226 if (mmc_blk_rq_error(&mqrq->brq) || 2227 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2228 spin_lock_irqsave(&mq->lock, flags); 2229 mq->recovery_needed = true; 2230 mq->recovery_req = req; 2231 spin_unlock_irqrestore(&mq->lock, flags); 2232 wake_up(&mq->wait); 2233 schedule_work(&mq->recovery_work); 2234 return; 2235 } 2236 2237 mmc_blk_rw_reset_success(mq, req); 2238 2239 mq->rw_wait = false; 2240 wake_up(&mq->wait); 2241 2242 /* context unknown */ 2243 mmc_blk_mq_post_req(mq, req, false); 2244 } 2245 2246 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2247 { 2248 unsigned long flags; 2249 bool done; 2250 2251 /* 2252 * Wait while there is another request in progress, but not if recovery 2253 * is needed. Also indicate whether there is a request waiting to start. 2254 */ 2255 spin_lock_irqsave(&mq->lock, flags); 2256 if (mq->recovery_needed) { 2257 *err = -EBUSY; 2258 done = true; 2259 } else { 2260 done = !mq->rw_wait; 2261 } 2262 mq->waiting = !done; 2263 spin_unlock_irqrestore(&mq->lock, flags); 2264 2265 return done; 2266 } 2267 2268 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2269 { 2270 int err = 0; 2271 2272 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2273 2274 /* Always complete the previous request if there is one */ 2275 mmc_blk_mq_complete_prev_req(mq, prev_req); 2276 2277 return err; 2278 } 2279 2280 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2281 struct request *req) 2282 { 2283 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2284 struct mmc_host *host = mq->card->host; 2285 struct request *prev_req = NULL; 2286 int err = 0; 2287 2288 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2289 2290 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2291 2292 mmc_pre_req(host, &mqrq->brq.mrq); 2293 2294 err = mmc_blk_rw_wait(mq, &prev_req); 2295 if (err) 2296 goto out_post_req; 2297 2298 mq->rw_wait = true; 2299 2300 err = mmc_start_request(host, &mqrq->brq.mrq); 2301 2302 if (prev_req) 2303 mmc_blk_mq_post_req(mq, prev_req, true); 2304 2305 if (err) 2306 mq->rw_wait = false; 2307 2308 /* Release re-tuning here where there is no synchronization required */ 2309 if (err || mmc_host_done_complete(host)) 2310 mmc_retune_release(host); 2311 2312 out_post_req: 2313 if (err) 2314 mmc_post_req(host, &mqrq->brq.mrq, err); 2315 2316 return err; 2317 } 2318 2319 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2320 { 2321 if (host->cqe_enabled) 2322 return host->cqe_ops->cqe_wait_for_idle(host); 2323 2324 return mmc_blk_rw_wait(mq, NULL); 2325 } 2326 2327 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2328 { 2329 struct mmc_blk_data *md = mq->blkdata; 2330 struct mmc_card *card = md->queue.card; 2331 struct mmc_host *host = card->host; 2332 int ret; 2333 2334 ret = mmc_blk_part_switch(card, md->part_type); 2335 if (ret) 2336 return MMC_REQ_FAILED_TO_START; 2337 2338 switch (mmc_issue_type(mq, req)) { 2339 case MMC_ISSUE_SYNC: 2340 ret = mmc_blk_wait_for_idle(mq, host); 2341 if (ret) 2342 return MMC_REQ_BUSY; 2343 switch (req_op(req)) { 2344 case REQ_OP_DRV_IN: 2345 case REQ_OP_DRV_OUT: 2346 mmc_blk_issue_drv_op(mq, req); 2347 break; 2348 case REQ_OP_DISCARD: 2349 mmc_blk_issue_discard_rq(mq, req); 2350 break; 2351 case REQ_OP_SECURE_ERASE: 2352 mmc_blk_issue_secdiscard_rq(mq, req); 2353 break; 2354 case REQ_OP_WRITE_ZEROES: 2355 mmc_blk_issue_trim_rq(mq, req); 2356 break; 2357 case REQ_OP_FLUSH: 2358 mmc_blk_issue_flush(mq, req); 2359 break; 2360 default: 2361 WARN_ON_ONCE(1); 2362 return MMC_REQ_FAILED_TO_START; 2363 } 2364 return MMC_REQ_FINISHED; 2365 case MMC_ISSUE_DCMD: 2366 case MMC_ISSUE_ASYNC: 2367 switch (req_op(req)) { 2368 case REQ_OP_FLUSH: 2369 if (!mmc_cache_enabled(host)) { 2370 blk_mq_end_request(req, BLK_STS_OK); 2371 return MMC_REQ_FINISHED; 2372 } 2373 ret = mmc_blk_cqe_issue_flush(mq, req); 2374 break; 2375 case REQ_OP_READ: 2376 case REQ_OP_WRITE: 2377 if (host->cqe_enabled) 2378 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2379 else 2380 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2381 break; 2382 default: 2383 WARN_ON_ONCE(1); 2384 ret = -EINVAL; 2385 } 2386 if (!ret) 2387 return MMC_REQ_STARTED; 2388 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2389 default: 2390 WARN_ON_ONCE(1); 2391 return MMC_REQ_FAILED_TO_START; 2392 } 2393 } 2394 2395 static inline int mmc_blk_readonly(struct mmc_card *card) 2396 { 2397 return mmc_card_readonly(card) || 2398 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2399 } 2400 2401 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2402 struct device *parent, 2403 sector_t size, 2404 bool default_ro, 2405 const char *subname, 2406 int area_type, 2407 unsigned int part_type) 2408 { 2409 struct mmc_blk_data *md; 2410 int devidx, ret; 2411 char cap_str[10]; 2412 bool cache_enabled = false; 2413 bool fua_enabled = false; 2414 2415 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2416 if (devidx < 0) { 2417 /* 2418 * We get -ENOSPC because there are no more any available 2419 * devidx. The reason may be that, either userspace haven't yet 2420 * unmounted the partitions, which postpones mmc_blk_release() 2421 * from being called, or the device has more partitions than 2422 * what we support. 2423 */ 2424 if (devidx == -ENOSPC) 2425 dev_err(mmc_dev(card->host), 2426 "no more device IDs available\n"); 2427 2428 return ERR_PTR(devidx); 2429 } 2430 2431 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2432 if (!md) { 2433 ret = -ENOMEM; 2434 goto out; 2435 } 2436 2437 md->area_type = area_type; 2438 2439 /* 2440 * Set the read-only status based on the supported commands 2441 * and the write protect switch. 2442 */ 2443 md->read_only = mmc_blk_readonly(card); 2444 2445 md->disk = mmc_init_queue(&md->queue, card); 2446 if (IS_ERR(md->disk)) { 2447 ret = PTR_ERR(md->disk); 2448 goto err_kfree; 2449 } 2450 2451 INIT_LIST_HEAD(&md->part); 2452 INIT_LIST_HEAD(&md->rpmbs); 2453 kref_init(&md->kref); 2454 2455 md->queue.blkdata = md; 2456 md->part_type = part_type; 2457 2458 md->disk->major = MMC_BLOCK_MAJOR; 2459 md->disk->minors = perdev_minors; 2460 md->disk->first_minor = devidx * perdev_minors; 2461 md->disk->fops = &mmc_bdops; 2462 md->disk->private_data = md; 2463 md->parent = parent; 2464 set_disk_ro(md->disk, md->read_only || default_ro); 2465 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2466 md->disk->flags |= GENHD_FL_NO_PART; 2467 2468 /* 2469 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2470 * 2471 * - be set for removable media with permanent block devices 2472 * - be unset for removable block devices with permanent media 2473 * 2474 * Since MMC block devices clearly fall under the second 2475 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2476 * should use the block device creation/destruction hotplug 2477 * messages to tell when the card is present. 2478 */ 2479 2480 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2481 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2482 2483 set_capacity(md->disk, size); 2484 2485 if (mmc_host_cmd23(card->host)) { 2486 if ((mmc_card_mmc(card) && 2487 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2488 (mmc_card_sd(card) && 2489 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2490 md->flags |= MMC_BLK_CMD23; 2491 } 2492 2493 if (md->flags & MMC_BLK_CMD23 && 2494 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2495 card->ext_csd.rel_sectors)) { 2496 md->flags |= MMC_BLK_REL_WR; 2497 fua_enabled = true; 2498 cache_enabled = true; 2499 } 2500 if (mmc_cache_enabled(card->host)) 2501 cache_enabled = true; 2502 2503 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled); 2504 2505 string_get_size((u64)size, 512, STRING_UNITS_2, 2506 cap_str, sizeof(cap_str)); 2507 pr_info("%s: %s %s %s %s\n", 2508 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2509 cap_str, md->read_only ? "(ro)" : ""); 2510 2511 /* used in ->open, must be set before add_disk: */ 2512 if (area_type == MMC_BLK_DATA_AREA_MAIN) 2513 dev_set_drvdata(&card->dev, md); 2514 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups); 2515 if (ret) 2516 goto err_put_disk; 2517 return md; 2518 2519 err_put_disk: 2520 put_disk(md->disk); 2521 blk_mq_free_tag_set(&md->queue.tag_set); 2522 err_kfree: 2523 kfree(md); 2524 out: 2525 ida_simple_remove(&mmc_blk_ida, devidx); 2526 return ERR_PTR(ret); 2527 } 2528 2529 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2530 { 2531 sector_t size; 2532 2533 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2534 /* 2535 * The EXT_CSD sector count is in number or 512 byte 2536 * sectors. 2537 */ 2538 size = card->ext_csd.sectors; 2539 } else { 2540 /* 2541 * The CSD capacity field is in units of read_blkbits. 2542 * set_capacity takes units of 512 bytes. 2543 */ 2544 size = (typeof(sector_t))card->csd.capacity 2545 << (card->csd.read_blkbits - 9); 2546 } 2547 2548 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2549 MMC_BLK_DATA_AREA_MAIN, 0); 2550 } 2551 2552 static int mmc_blk_alloc_part(struct mmc_card *card, 2553 struct mmc_blk_data *md, 2554 unsigned int part_type, 2555 sector_t size, 2556 bool default_ro, 2557 const char *subname, 2558 int area_type) 2559 { 2560 struct mmc_blk_data *part_md; 2561 2562 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2563 subname, area_type, part_type); 2564 if (IS_ERR(part_md)) 2565 return PTR_ERR(part_md); 2566 list_add(&part_md->part, &md->part); 2567 2568 return 0; 2569 } 2570 2571 /** 2572 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2573 * @filp: the character device file 2574 * @cmd: the ioctl() command 2575 * @arg: the argument from userspace 2576 * 2577 * This will essentially just redirect the ioctl()s coming in over to 2578 * the main block device spawning the RPMB character device. 2579 */ 2580 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2581 unsigned long arg) 2582 { 2583 struct mmc_rpmb_data *rpmb = filp->private_data; 2584 int ret; 2585 2586 switch (cmd) { 2587 case MMC_IOC_CMD: 2588 ret = mmc_blk_ioctl_cmd(rpmb->md, 2589 (struct mmc_ioc_cmd __user *)arg, 2590 rpmb); 2591 break; 2592 case MMC_IOC_MULTI_CMD: 2593 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2594 (struct mmc_ioc_multi_cmd __user *)arg, 2595 rpmb); 2596 break; 2597 default: 2598 ret = -EINVAL; 2599 break; 2600 } 2601 2602 return ret; 2603 } 2604 2605 #ifdef CONFIG_COMPAT 2606 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2607 unsigned long arg) 2608 { 2609 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2610 } 2611 #endif 2612 2613 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2614 { 2615 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2616 struct mmc_rpmb_data, chrdev); 2617 2618 get_device(&rpmb->dev); 2619 filp->private_data = rpmb; 2620 mmc_blk_get(rpmb->md->disk); 2621 2622 return nonseekable_open(inode, filp); 2623 } 2624 2625 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2626 { 2627 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2628 struct mmc_rpmb_data, chrdev); 2629 2630 mmc_blk_put(rpmb->md); 2631 put_device(&rpmb->dev); 2632 2633 return 0; 2634 } 2635 2636 static const struct file_operations mmc_rpmb_fileops = { 2637 .release = mmc_rpmb_chrdev_release, 2638 .open = mmc_rpmb_chrdev_open, 2639 .owner = THIS_MODULE, 2640 .llseek = no_llseek, 2641 .unlocked_ioctl = mmc_rpmb_ioctl, 2642 #ifdef CONFIG_COMPAT 2643 .compat_ioctl = mmc_rpmb_ioctl_compat, 2644 #endif 2645 }; 2646 2647 static void mmc_blk_rpmb_device_release(struct device *dev) 2648 { 2649 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2650 2651 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2652 kfree(rpmb); 2653 } 2654 2655 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2656 struct mmc_blk_data *md, 2657 unsigned int part_index, 2658 sector_t size, 2659 const char *subname) 2660 { 2661 int devidx, ret; 2662 char rpmb_name[DISK_NAME_LEN]; 2663 char cap_str[10]; 2664 struct mmc_rpmb_data *rpmb; 2665 2666 /* This creates the minor number for the RPMB char device */ 2667 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2668 if (devidx < 0) 2669 return devidx; 2670 2671 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2672 if (!rpmb) { 2673 ida_simple_remove(&mmc_rpmb_ida, devidx); 2674 return -ENOMEM; 2675 } 2676 2677 snprintf(rpmb_name, sizeof(rpmb_name), 2678 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2679 2680 rpmb->id = devidx; 2681 rpmb->part_index = part_index; 2682 rpmb->dev.init_name = rpmb_name; 2683 rpmb->dev.bus = &mmc_rpmb_bus_type; 2684 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2685 rpmb->dev.parent = &card->dev; 2686 rpmb->dev.release = mmc_blk_rpmb_device_release; 2687 device_initialize(&rpmb->dev); 2688 dev_set_drvdata(&rpmb->dev, rpmb); 2689 rpmb->md = md; 2690 2691 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2692 rpmb->chrdev.owner = THIS_MODULE; 2693 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2694 if (ret) { 2695 pr_err("%s: could not add character device\n", rpmb_name); 2696 goto out_put_device; 2697 } 2698 2699 list_add(&rpmb->node, &md->rpmbs); 2700 2701 string_get_size((u64)size, 512, STRING_UNITS_2, 2702 cap_str, sizeof(cap_str)); 2703 2704 pr_info("%s: %s %s %s, chardev (%d:%d)\n", 2705 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, 2706 MAJOR(mmc_rpmb_devt), rpmb->id); 2707 2708 return 0; 2709 2710 out_put_device: 2711 put_device(&rpmb->dev); 2712 return ret; 2713 } 2714 2715 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2716 2717 { 2718 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2719 put_device(&rpmb->dev); 2720 } 2721 2722 /* MMC Physical partitions consist of two boot partitions and 2723 * up to four general purpose partitions. 2724 * For each partition enabled in EXT_CSD a block device will be allocatedi 2725 * to provide access to the partition. 2726 */ 2727 2728 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2729 { 2730 int idx, ret; 2731 2732 if (!mmc_card_mmc(card)) 2733 return 0; 2734 2735 for (idx = 0; idx < card->nr_parts; idx++) { 2736 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2737 /* 2738 * RPMB partitions does not provide block access, they 2739 * are only accessed using ioctl():s. Thus create 2740 * special RPMB block devices that do not have a 2741 * backing block queue for these. 2742 */ 2743 ret = mmc_blk_alloc_rpmb_part(card, md, 2744 card->part[idx].part_cfg, 2745 card->part[idx].size >> 9, 2746 card->part[idx].name); 2747 if (ret) 2748 return ret; 2749 } else if (card->part[idx].size) { 2750 ret = mmc_blk_alloc_part(card, md, 2751 card->part[idx].part_cfg, 2752 card->part[idx].size >> 9, 2753 card->part[idx].force_ro, 2754 card->part[idx].name, 2755 card->part[idx].area_type); 2756 if (ret) 2757 return ret; 2758 } 2759 } 2760 2761 return 0; 2762 } 2763 2764 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2765 { 2766 /* 2767 * Flush remaining requests and free queues. It is freeing the queue 2768 * that stops new requests from being accepted. 2769 */ 2770 del_gendisk(md->disk); 2771 mmc_cleanup_queue(&md->queue); 2772 mmc_blk_put(md); 2773 } 2774 2775 static void mmc_blk_remove_parts(struct mmc_card *card, 2776 struct mmc_blk_data *md) 2777 { 2778 struct list_head *pos, *q; 2779 struct mmc_blk_data *part_md; 2780 struct mmc_rpmb_data *rpmb; 2781 2782 /* Remove RPMB partitions */ 2783 list_for_each_safe(pos, q, &md->rpmbs) { 2784 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2785 list_del(pos); 2786 mmc_blk_remove_rpmb_part(rpmb); 2787 } 2788 /* Remove block partitions */ 2789 list_for_each_safe(pos, q, &md->part) { 2790 part_md = list_entry(pos, struct mmc_blk_data, part); 2791 list_del(pos); 2792 mmc_blk_remove_req(part_md); 2793 } 2794 } 2795 2796 #ifdef CONFIG_DEBUG_FS 2797 2798 static int mmc_dbg_card_status_get(void *data, u64 *val) 2799 { 2800 struct mmc_card *card = data; 2801 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2802 struct mmc_queue *mq = &md->queue; 2803 struct request *req; 2804 int ret; 2805 2806 /* Ask the block layer about the card status */ 2807 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2808 if (IS_ERR(req)) 2809 return PTR_ERR(req); 2810 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2811 blk_execute_rq(req, false); 2812 ret = req_to_mmc_queue_req(req)->drv_op_result; 2813 if (ret >= 0) { 2814 *val = ret; 2815 ret = 0; 2816 } 2817 blk_mq_free_request(req); 2818 2819 return ret; 2820 } 2821 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2822 NULL, "%08llx\n"); 2823 2824 /* That is two digits * 512 + 1 for newline */ 2825 #define EXT_CSD_STR_LEN 1025 2826 2827 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2828 { 2829 struct mmc_card *card = inode->i_private; 2830 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2831 struct mmc_queue *mq = &md->queue; 2832 struct request *req; 2833 char *buf; 2834 ssize_t n = 0; 2835 u8 *ext_csd; 2836 int err, i; 2837 2838 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2839 if (!buf) 2840 return -ENOMEM; 2841 2842 /* Ask the block layer for the EXT CSD */ 2843 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2844 if (IS_ERR(req)) { 2845 err = PTR_ERR(req); 2846 goto out_free; 2847 } 2848 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2849 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2850 blk_execute_rq(req, false); 2851 err = req_to_mmc_queue_req(req)->drv_op_result; 2852 blk_mq_free_request(req); 2853 if (err) { 2854 pr_err("FAILED %d\n", err); 2855 goto out_free; 2856 } 2857 2858 for (i = 0; i < 512; i++) 2859 n += sprintf(buf + n, "%02x", ext_csd[i]); 2860 n += sprintf(buf + n, "\n"); 2861 2862 if (n != EXT_CSD_STR_LEN) { 2863 err = -EINVAL; 2864 kfree(ext_csd); 2865 goto out_free; 2866 } 2867 2868 filp->private_data = buf; 2869 kfree(ext_csd); 2870 return 0; 2871 2872 out_free: 2873 kfree(buf); 2874 return err; 2875 } 2876 2877 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2878 size_t cnt, loff_t *ppos) 2879 { 2880 char *buf = filp->private_data; 2881 2882 return simple_read_from_buffer(ubuf, cnt, ppos, 2883 buf, EXT_CSD_STR_LEN); 2884 } 2885 2886 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2887 { 2888 kfree(file->private_data); 2889 return 0; 2890 } 2891 2892 static const struct file_operations mmc_dbg_ext_csd_fops = { 2893 .open = mmc_ext_csd_open, 2894 .read = mmc_ext_csd_read, 2895 .release = mmc_ext_csd_release, 2896 .llseek = default_llseek, 2897 }; 2898 2899 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2900 { 2901 struct dentry *root; 2902 2903 if (!card->debugfs_root) 2904 return 0; 2905 2906 root = card->debugfs_root; 2907 2908 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2909 md->status_dentry = 2910 debugfs_create_file_unsafe("status", 0400, root, 2911 card, 2912 &mmc_dbg_card_status_fops); 2913 if (!md->status_dentry) 2914 return -EIO; 2915 } 2916 2917 if (mmc_card_mmc(card)) { 2918 md->ext_csd_dentry = 2919 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2920 &mmc_dbg_ext_csd_fops); 2921 if (!md->ext_csd_dentry) 2922 return -EIO; 2923 } 2924 2925 return 0; 2926 } 2927 2928 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2929 struct mmc_blk_data *md) 2930 { 2931 if (!card->debugfs_root) 2932 return; 2933 2934 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2935 debugfs_remove(md->status_dentry); 2936 md->status_dentry = NULL; 2937 } 2938 2939 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2940 debugfs_remove(md->ext_csd_dentry); 2941 md->ext_csd_dentry = NULL; 2942 } 2943 } 2944 2945 #else 2946 2947 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2948 { 2949 return 0; 2950 } 2951 2952 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2953 struct mmc_blk_data *md) 2954 { 2955 } 2956 2957 #endif /* CONFIG_DEBUG_FS */ 2958 2959 static int mmc_blk_probe(struct mmc_card *card) 2960 { 2961 struct mmc_blk_data *md; 2962 int ret = 0; 2963 2964 /* 2965 * Check that the card supports the command class(es) we need. 2966 */ 2967 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2968 return -ENODEV; 2969 2970 mmc_fixup_device(card, mmc_blk_fixups); 2971 2972 card->complete_wq = alloc_workqueue("mmc_complete", 2973 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2974 if (!card->complete_wq) { 2975 pr_err("Failed to create mmc completion workqueue"); 2976 return -ENOMEM; 2977 } 2978 2979 md = mmc_blk_alloc(card); 2980 if (IS_ERR(md)) { 2981 ret = PTR_ERR(md); 2982 goto out_free; 2983 } 2984 2985 ret = mmc_blk_alloc_parts(card, md); 2986 if (ret) 2987 goto out; 2988 2989 /* Add two debugfs entries */ 2990 mmc_blk_add_debugfs(card, md); 2991 2992 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2993 pm_runtime_use_autosuspend(&card->dev); 2994 2995 /* 2996 * Don't enable runtime PM for SD-combo cards here. Leave that 2997 * decision to be taken during the SDIO init sequence instead. 2998 */ 2999 if (!mmc_card_sd_combo(card)) { 3000 pm_runtime_set_active(&card->dev); 3001 pm_runtime_enable(&card->dev); 3002 } 3003 3004 return 0; 3005 3006 out: 3007 mmc_blk_remove_parts(card, md); 3008 mmc_blk_remove_req(md); 3009 out_free: 3010 destroy_workqueue(card->complete_wq); 3011 return ret; 3012 } 3013 3014 static void mmc_blk_remove(struct mmc_card *card) 3015 { 3016 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3017 3018 mmc_blk_remove_debugfs(card, md); 3019 mmc_blk_remove_parts(card, md); 3020 pm_runtime_get_sync(&card->dev); 3021 if (md->part_curr != md->part_type) { 3022 mmc_claim_host(card->host); 3023 mmc_blk_part_switch(card, md->part_type); 3024 mmc_release_host(card->host); 3025 } 3026 if (!mmc_card_sd_combo(card)) 3027 pm_runtime_disable(&card->dev); 3028 pm_runtime_put_noidle(&card->dev); 3029 mmc_blk_remove_req(md); 3030 dev_set_drvdata(&card->dev, NULL); 3031 destroy_workqueue(card->complete_wq); 3032 } 3033 3034 static int _mmc_blk_suspend(struct mmc_card *card) 3035 { 3036 struct mmc_blk_data *part_md; 3037 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3038 3039 if (md) { 3040 mmc_queue_suspend(&md->queue); 3041 list_for_each_entry(part_md, &md->part, part) { 3042 mmc_queue_suspend(&part_md->queue); 3043 } 3044 } 3045 return 0; 3046 } 3047 3048 static void mmc_blk_shutdown(struct mmc_card *card) 3049 { 3050 _mmc_blk_suspend(card); 3051 } 3052 3053 #ifdef CONFIG_PM_SLEEP 3054 static int mmc_blk_suspend(struct device *dev) 3055 { 3056 struct mmc_card *card = mmc_dev_to_card(dev); 3057 3058 return _mmc_blk_suspend(card); 3059 } 3060 3061 static int mmc_blk_resume(struct device *dev) 3062 { 3063 struct mmc_blk_data *part_md; 3064 struct mmc_blk_data *md = dev_get_drvdata(dev); 3065 3066 if (md) { 3067 /* 3068 * Resume involves the card going into idle state, 3069 * so current partition is always the main one. 3070 */ 3071 md->part_curr = md->part_type; 3072 mmc_queue_resume(&md->queue); 3073 list_for_each_entry(part_md, &md->part, part) { 3074 mmc_queue_resume(&part_md->queue); 3075 } 3076 } 3077 return 0; 3078 } 3079 #endif 3080 3081 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3082 3083 static struct mmc_driver mmc_driver = { 3084 .drv = { 3085 .name = "mmcblk", 3086 .pm = &mmc_blk_pm_ops, 3087 }, 3088 .probe = mmc_blk_probe, 3089 .remove = mmc_blk_remove, 3090 .shutdown = mmc_blk_shutdown, 3091 }; 3092 3093 static int __init mmc_blk_init(void) 3094 { 3095 int res; 3096 3097 res = bus_register(&mmc_rpmb_bus_type); 3098 if (res < 0) { 3099 pr_err("mmcblk: could not register RPMB bus type\n"); 3100 return res; 3101 } 3102 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3103 if (res < 0) { 3104 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3105 goto out_bus_unreg; 3106 } 3107 3108 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3109 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3110 3111 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3112 3113 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3114 if (res) 3115 goto out_chrdev_unreg; 3116 3117 res = mmc_register_driver(&mmc_driver); 3118 if (res) 3119 goto out_blkdev_unreg; 3120 3121 return 0; 3122 3123 out_blkdev_unreg: 3124 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3125 out_chrdev_unreg: 3126 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3127 out_bus_unreg: 3128 bus_unregister(&mmc_rpmb_bus_type); 3129 return res; 3130 } 3131 3132 static void __exit mmc_blk_exit(void) 3133 { 3134 mmc_unregister_driver(&mmc_driver); 3135 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3136 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3137 bus_unregister(&mmc_rpmb_bus_type); 3138 } 3139 3140 module_init(mmc_blk_init); 3141 module_exit(mmc_blk_exit); 3142 3143 MODULE_LICENSE("GPL"); 3144 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3145 3146