xref: /openbmc/linux/drivers/mmc/core/block.c (revision 5d0e4d78)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/idr.h>
39 
40 #include <linux/mmc/ioctl.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/host.h>
43 #include <linux/mmc/mmc.h>
44 #include <linux/mmc/sd.h>
45 
46 #include <linux/uaccess.h>
47 
48 #include "queue.h"
49 #include "block.h"
50 #include "core.h"
51 #include "card.h"
52 #include "host.h"
53 #include "bus.h"
54 #include "mmc_ops.h"
55 #include "quirks.h"
56 #include "sd_ops.h"
57 
58 MODULE_ALIAS("mmc:block");
59 #ifdef MODULE_PARAM_PREFIX
60 #undef MODULE_PARAM_PREFIX
61 #endif
62 #define MODULE_PARAM_PREFIX "mmcblk."
63 
64 #define MMC_BLK_TIMEOUT_MS  (10 * 60 * 1000)        /* 10 minute timeout */
65 #define MMC_SANITIZE_REQ_TIMEOUT 240000
66 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
67 
68 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
69 				  (rq_data_dir(req) == WRITE))
70 static DEFINE_MUTEX(block_mutex);
71 
72 /*
73  * The defaults come from config options but can be overriden by module
74  * or bootarg options.
75  */
76 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
77 
78 /*
79  * We've only got one major, so number of mmcblk devices is
80  * limited to (1 << 20) / number of minors per device.  It is also
81  * limited by the MAX_DEVICES below.
82  */
83 static int max_devices;
84 
85 #define MAX_DEVICES 256
86 
87 static DEFINE_IDA(mmc_blk_ida);
88 
89 /*
90  * There is one mmc_blk_data per slot.
91  */
92 struct mmc_blk_data {
93 	spinlock_t	lock;
94 	struct device	*parent;
95 	struct gendisk	*disk;
96 	struct mmc_queue queue;
97 	struct list_head part;
98 
99 	unsigned int	flags;
100 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
101 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
102 
103 	unsigned int	usage;
104 	unsigned int	read_only;
105 	unsigned int	part_type;
106 	unsigned int	reset_done;
107 #define MMC_BLK_READ		BIT(0)
108 #define MMC_BLK_WRITE		BIT(1)
109 #define MMC_BLK_DISCARD		BIT(2)
110 #define MMC_BLK_SECDISCARD	BIT(3)
111 
112 	/*
113 	 * Only set in main mmc_blk_data associated
114 	 * with mmc_card with dev_set_drvdata, and keeps
115 	 * track of the current selected device partition.
116 	 */
117 	unsigned int	part_curr;
118 	struct device_attribute force_ro;
119 	struct device_attribute power_ro_lock;
120 	int	area_type;
121 };
122 
123 static DEFINE_MUTEX(open_lock);
124 
125 module_param(perdev_minors, int, 0444);
126 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
127 
128 static inline int mmc_blk_part_switch(struct mmc_card *card,
129 				      struct mmc_blk_data *md);
130 
131 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
132 {
133 	struct mmc_blk_data *md;
134 
135 	mutex_lock(&open_lock);
136 	md = disk->private_data;
137 	if (md && md->usage == 0)
138 		md = NULL;
139 	if (md)
140 		md->usage++;
141 	mutex_unlock(&open_lock);
142 
143 	return md;
144 }
145 
146 static inline int mmc_get_devidx(struct gendisk *disk)
147 {
148 	int devidx = disk->first_minor / perdev_minors;
149 	return devidx;
150 }
151 
152 static void mmc_blk_put(struct mmc_blk_data *md)
153 {
154 	mutex_lock(&open_lock);
155 	md->usage--;
156 	if (md->usage == 0) {
157 		int devidx = mmc_get_devidx(md->disk);
158 		blk_cleanup_queue(md->queue.queue);
159 		ida_simple_remove(&mmc_blk_ida, devidx);
160 		put_disk(md->disk);
161 		kfree(md);
162 	}
163 	mutex_unlock(&open_lock);
164 }
165 
166 static ssize_t power_ro_lock_show(struct device *dev,
167 		struct device_attribute *attr, char *buf)
168 {
169 	int ret;
170 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
171 	struct mmc_card *card = md->queue.card;
172 	int locked = 0;
173 
174 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
175 		locked = 2;
176 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
177 		locked = 1;
178 
179 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
180 
181 	mmc_blk_put(md);
182 
183 	return ret;
184 }
185 
186 static ssize_t power_ro_lock_store(struct device *dev,
187 		struct device_attribute *attr, const char *buf, size_t count)
188 {
189 	int ret;
190 	struct mmc_blk_data *md, *part_md;
191 	struct mmc_card *card;
192 	struct mmc_queue *mq;
193 	struct request *req;
194 	unsigned long set;
195 
196 	if (kstrtoul(buf, 0, &set))
197 		return -EINVAL;
198 
199 	if (set != 1)
200 		return count;
201 
202 	md = mmc_blk_get(dev_to_disk(dev));
203 	mq = &md->queue;
204 	card = md->queue.card;
205 
206 	/* Dispatch locking to the block layer */
207 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM);
208 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
209 	blk_execute_rq(mq->queue, NULL, req, 0);
210 	ret = req_to_mmc_queue_req(req)->drv_op_result;
211 
212 	if (!ret) {
213 		pr_info("%s: Locking boot partition ro until next power on\n",
214 			md->disk->disk_name);
215 		set_disk_ro(md->disk, 1);
216 
217 		list_for_each_entry(part_md, &md->part, part)
218 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
219 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
220 				set_disk_ro(part_md->disk, 1);
221 			}
222 	}
223 
224 	mmc_blk_put(md);
225 	return count;
226 }
227 
228 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
229 			     char *buf)
230 {
231 	int ret;
232 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
233 
234 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
235 		       get_disk_ro(dev_to_disk(dev)) ^
236 		       md->read_only);
237 	mmc_blk_put(md);
238 	return ret;
239 }
240 
241 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
242 			      const char *buf, size_t count)
243 {
244 	int ret;
245 	char *end;
246 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
247 	unsigned long set = simple_strtoul(buf, &end, 0);
248 	if (end == buf) {
249 		ret = -EINVAL;
250 		goto out;
251 	}
252 
253 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
254 	ret = count;
255 out:
256 	mmc_blk_put(md);
257 	return ret;
258 }
259 
260 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
261 {
262 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
263 	int ret = -ENXIO;
264 
265 	mutex_lock(&block_mutex);
266 	if (md) {
267 		if (md->usage == 2)
268 			check_disk_change(bdev);
269 		ret = 0;
270 
271 		if ((mode & FMODE_WRITE) && md->read_only) {
272 			mmc_blk_put(md);
273 			ret = -EROFS;
274 		}
275 	}
276 	mutex_unlock(&block_mutex);
277 
278 	return ret;
279 }
280 
281 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
282 {
283 	struct mmc_blk_data *md = disk->private_data;
284 
285 	mutex_lock(&block_mutex);
286 	mmc_blk_put(md);
287 	mutex_unlock(&block_mutex);
288 }
289 
290 static int
291 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
292 {
293 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
294 	geo->heads = 4;
295 	geo->sectors = 16;
296 	return 0;
297 }
298 
299 struct mmc_blk_ioc_data {
300 	struct mmc_ioc_cmd ic;
301 	unsigned char *buf;
302 	u64 buf_bytes;
303 };
304 
305 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
306 	struct mmc_ioc_cmd __user *user)
307 {
308 	struct mmc_blk_ioc_data *idata;
309 	int err;
310 
311 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
312 	if (!idata) {
313 		err = -ENOMEM;
314 		goto out;
315 	}
316 
317 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
318 		err = -EFAULT;
319 		goto idata_err;
320 	}
321 
322 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
323 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
324 		err = -EOVERFLOW;
325 		goto idata_err;
326 	}
327 
328 	if (!idata->buf_bytes) {
329 		idata->buf = NULL;
330 		return idata;
331 	}
332 
333 	idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
334 	if (!idata->buf) {
335 		err = -ENOMEM;
336 		goto idata_err;
337 	}
338 
339 	if (copy_from_user(idata->buf, (void __user *)(unsigned long)
340 					idata->ic.data_ptr, idata->buf_bytes)) {
341 		err = -EFAULT;
342 		goto copy_err;
343 	}
344 
345 	return idata;
346 
347 copy_err:
348 	kfree(idata->buf);
349 idata_err:
350 	kfree(idata);
351 out:
352 	return ERR_PTR(err);
353 }
354 
355 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
356 				      struct mmc_blk_ioc_data *idata)
357 {
358 	struct mmc_ioc_cmd *ic = &idata->ic;
359 
360 	if (copy_to_user(&(ic_ptr->response), ic->response,
361 			 sizeof(ic->response)))
362 		return -EFAULT;
363 
364 	if (!idata->ic.write_flag) {
365 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
366 				 idata->buf, idata->buf_bytes))
367 			return -EFAULT;
368 	}
369 
370 	return 0;
371 }
372 
373 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
374 				       u32 retries_max)
375 {
376 	int err;
377 	u32 retry_count = 0;
378 
379 	if (!status || !retries_max)
380 		return -EINVAL;
381 
382 	do {
383 		err = __mmc_send_status(card, status, 5);
384 		if (err)
385 			break;
386 
387 		if (!R1_STATUS(*status) &&
388 				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
389 			break; /* RPMB programming operation complete */
390 
391 		/*
392 		 * Rechedule to give the MMC device a chance to continue
393 		 * processing the previous command without being polled too
394 		 * frequently.
395 		 */
396 		usleep_range(1000, 5000);
397 	} while (++retry_count < retries_max);
398 
399 	if (retry_count == retries_max)
400 		err = -EPERM;
401 
402 	return err;
403 }
404 
405 static int ioctl_do_sanitize(struct mmc_card *card)
406 {
407 	int err;
408 
409 	if (!mmc_can_sanitize(card)) {
410 			pr_warn("%s: %s - SANITIZE is not supported\n",
411 				mmc_hostname(card->host), __func__);
412 			err = -EOPNOTSUPP;
413 			goto out;
414 	}
415 
416 	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
417 		mmc_hostname(card->host), __func__);
418 
419 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
420 					EXT_CSD_SANITIZE_START, 1,
421 					MMC_SANITIZE_REQ_TIMEOUT);
422 
423 	if (err)
424 		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
425 		       mmc_hostname(card->host), __func__, err);
426 
427 	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
428 					     __func__);
429 out:
430 	return err;
431 }
432 
433 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
434 			       struct mmc_blk_ioc_data *idata)
435 {
436 	struct mmc_command cmd = {};
437 	struct mmc_data data = {};
438 	struct mmc_request mrq = {};
439 	struct scatterlist sg;
440 	int err;
441 	bool is_rpmb = false;
442 	u32 status = 0;
443 
444 	if (!card || !md || !idata)
445 		return -EINVAL;
446 
447 	if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
448 		is_rpmb = true;
449 
450 	cmd.opcode = idata->ic.opcode;
451 	cmd.arg = idata->ic.arg;
452 	cmd.flags = idata->ic.flags;
453 
454 	if (idata->buf_bytes) {
455 		data.sg = &sg;
456 		data.sg_len = 1;
457 		data.blksz = idata->ic.blksz;
458 		data.blocks = idata->ic.blocks;
459 
460 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
461 
462 		if (idata->ic.write_flag)
463 			data.flags = MMC_DATA_WRITE;
464 		else
465 			data.flags = MMC_DATA_READ;
466 
467 		/* data.flags must already be set before doing this. */
468 		mmc_set_data_timeout(&data, card);
469 
470 		/* Allow overriding the timeout_ns for empirical tuning. */
471 		if (idata->ic.data_timeout_ns)
472 			data.timeout_ns = idata->ic.data_timeout_ns;
473 
474 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
475 			/*
476 			 * Pretend this is a data transfer and rely on the
477 			 * host driver to compute timeout.  When all host
478 			 * drivers support cmd.cmd_timeout for R1B, this
479 			 * can be changed to:
480 			 *
481 			 *     mrq.data = NULL;
482 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
483 			 */
484 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
485 		}
486 
487 		mrq.data = &data;
488 	}
489 
490 	mrq.cmd = &cmd;
491 
492 	err = mmc_blk_part_switch(card, md);
493 	if (err)
494 		return err;
495 
496 	if (idata->ic.is_acmd) {
497 		err = mmc_app_cmd(card->host, card);
498 		if (err)
499 			return err;
500 	}
501 
502 	if (is_rpmb) {
503 		err = mmc_set_blockcount(card, data.blocks,
504 			idata->ic.write_flag & (1 << 31));
505 		if (err)
506 			return err;
507 	}
508 
509 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
510 	    (cmd.opcode == MMC_SWITCH)) {
511 		err = ioctl_do_sanitize(card);
512 
513 		if (err)
514 			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
515 			       __func__, err);
516 
517 		return err;
518 	}
519 
520 	mmc_wait_for_req(card->host, &mrq);
521 
522 	if (cmd.error) {
523 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
524 						__func__, cmd.error);
525 		return cmd.error;
526 	}
527 	if (data.error) {
528 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
529 						__func__, data.error);
530 		return data.error;
531 	}
532 
533 	/*
534 	 * According to the SD specs, some commands require a delay after
535 	 * issuing the command.
536 	 */
537 	if (idata->ic.postsleep_min_us)
538 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
539 
540 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
541 
542 	if (is_rpmb) {
543 		/*
544 		 * Ensure RPMB command has completed by polling CMD13
545 		 * "Send Status".
546 		 */
547 		err = ioctl_rpmb_card_status_poll(card, &status, 5);
548 		if (err)
549 			dev_err(mmc_dev(card->host),
550 					"%s: Card Status=0x%08X, error %d\n",
551 					__func__, status, err);
552 	}
553 
554 	return err;
555 }
556 
557 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
558 			     struct mmc_ioc_cmd __user *ic_ptr)
559 {
560 	struct mmc_blk_ioc_data *idata;
561 	struct mmc_blk_ioc_data *idatas[1];
562 	struct mmc_blk_data *md;
563 	struct mmc_queue *mq;
564 	struct mmc_card *card;
565 	int err = 0, ioc_err = 0;
566 	struct request *req;
567 
568 	/*
569 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
570 	 * whole block device, not on a partition.  This prevents overspray
571 	 * between sibling partitions.
572 	 */
573 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
574 		return -EPERM;
575 
576 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
577 	if (IS_ERR(idata))
578 		return PTR_ERR(idata);
579 
580 	md = mmc_blk_get(bdev->bd_disk);
581 	if (!md) {
582 		err = -EINVAL;
583 		goto cmd_err;
584 	}
585 
586 	card = md->queue.card;
587 	if (IS_ERR(card)) {
588 		err = PTR_ERR(card);
589 		goto cmd_done;
590 	}
591 
592 	/*
593 	 * Dispatch the ioctl() into the block request queue.
594 	 */
595 	mq = &md->queue;
596 	req = blk_get_request(mq->queue,
597 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
598 		__GFP_RECLAIM);
599 	idatas[0] = idata;
600 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL;
601 	req_to_mmc_queue_req(req)->idata = idatas;
602 	req_to_mmc_queue_req(req)->ioc_count = 1;
603 	blk_execute_rq(mq->queue, NULL, req, 0);
604 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
605 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
606 	blk_put_request(req);
607 
608 cmd_done:
609 	mmc_blk_put(md);
610 cmd_err:
611 	kfree(idata->buf);
612 	kfree(idata);
613 	return ioc_err ? ioc_err : err;
614 }
615 
616 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
617 				   struct mmc_ioc_multi_cmd __user *user)
618 {
619 	struct mmc_blk_ioc_data **idata = NULL;
620 	struct mmc_ioc_cmd __user *cmds = user->cmds;
621 	struct mmc_card *card;
622 	struct mmc_blk_data *md;
623 	struct mmc_queue *mq;
624 	int i, err = 0, ioc_err = 0;
625 	__u64 num_of_cmds;
626 	struct request *req;
627 
628 	/*
629 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
630 	 * whole block device, not on a partition.  This prevents overspray
631 	 * between sibling partitions.
632 	 */
633 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
634 		return -EPERM;
635 
636 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
637 			   sizeof(num_of_cmds)))
638 		return -EFAULT;
639 
640 	if (!num_of_cmds)
641 		return 0;
642 
643 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
644 		return -EINVAL;
645 
646 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
647 	if (!idata)
648 		return -ENOMEM;
649 
650 	for (i = 0; i < num_of_cmds; i++) {
651 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
652 		if (IS_ERR(idata[i])) {
653 			err = PTR_ERR(idata[i]);
654 			num_of_cmds = i;
655 			goto cmd_err;
656 		}
657 	}
658 
659 	md = mmc_blk_get(bdev->bd_disk);
660 	if (!md) {
661 		err = -EINVAL;
662 		goto cmd_err;
663 	}
664 
665 	card = md->queue.card;
666 	if (IS_ERR(card)) {
667 		err = PTR_ERR(card);
668 		goto cmd_done;
669 	}
670 
671 
672 	/*
673 	 * Dispatch the ioctl()s into the block request queue.
674 	 */
675 	mq = &md->queue;
676 	req = blk_get_request(mq->queue,
677 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
678 		__GFP_RECLAIM);
679 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL;
680 	req_to_mmc_queue_req(req)->idata = idata;
681 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
682 	blk_execute_rq(mq->queue, NULL, req, 0);
683 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
684 
685 	/* copy to user if data and response */
686 	for (i = 0; i < num_of_cmds && !err; i++)
687 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
688 
689 	blk_put_request(req);
690 
691 cmd_done:
692 	mmc_blk_put(md);
693 cmd_err:
694 	for (i = 0; i < num_of_cmds; i++) {
695 		kfree(idata[i]->buf);
696 		kfree(idata[i]);
697 	}
698 	kfree(idata);
699 	return ioc_err ? ioc_err : err;
700 }
701 
702 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
703 	unsigned int cmd, unsigned long arg)
704 {
705 	switch (cmd) {
706 	case MMC_IOC_CMD:
707 		return mmc_blk_ioctl_cmd(bdev,
708 				(struct mmc_ioc_cmd __user *)arg);
709 	case MMC_IOC_MULTI_CMD:
710 		return mmc_blk_ioctl_multi_cmd(bdev,
711 				(struct mmc_ioc_multi_cmd __user *)arg);
712 	default:
713 		return -EINVAL;
714 	}
715 }
716 
717 #ifdef CONFIG_COMPAT
718 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
719 	unsigned int cmd, unsigned long arg)
720 {
721 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
722 }
723 #endif
724 
725 static const struct block_device_operations mmc_bdops = {
726 	.open			= mmc_blk_open,
727 	.release		= mmc_blk_release,
728 	.getgeo			= mmc_blk_getgeo,
729 	.owner			= THIS_MODULE,
730 	.ioctl			= mmc_blk_ioctl,
731 #ifdef CONFIG_COMPAT
732 	.compat_ioctl		= mmc_blk_compat_ioctl,
733 #endif
734 };
735 
736 static int mmc_blk_part_switch_pre(struct mmc_card *card,
737 				   unsigned int part_type)
738 {
739 	int ret = 0;
740 
741 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
742 		if (card->ext_csd.cmdq_en) {
743 			ret = mmc_cmdq_disable(card);
744 			if (ret)
745 				return ret;
746 		}
747 		mmc_retune_pause(card->host);
748 	}
749 
750 	return ret;
751 }
752 
753 static int mmc_blk_part_switch_post(struct mmc_card *card,
754 				    unsigned int part_type)
755 {
756 	int ret = 0;
757 
758 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
759 		mmc_retune_unpause(card->host);
760 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
761 			ret = mmc_cmdq_enable(card);
762 	}
763 
764 	return ret;
765 }
766 
767 static inline int mmc_blk_part_switch(struct mmc_card *card,
768 				      struct mmc_blk_data *md)
769 {
770 	int ret = 0;
771 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
772 
773 	if (main_md->part_curr == md->part_type)
774 		return 0;
775 
776 	if (mmc_card_mmc(card)) {
777 		u8 part_config = card->ext_csd.part_config;
778 
779 		ret = mmc_blk_part_switch_pre(card, md->part_type);
780 		if (ret)
781 			return ret;
782 
783 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
784 		part_config |= md->part_type;
785 
786 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
787 				 EXT_CSD_PART_CONFIG, part_config,
788 				 card->ext_csd.part_time);
789 		if (ret) {
790 			mmc_blk_part_switch_post(card, md->part_type);
791 			return ret;
792 		}
793 
794 		card->ext_csd.part_config = part_config;
795 
796 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
797 	}
798 
799 	main_md->part_curr = md->part_type;
800 	return ret;
801 }
802 
803 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
804 {
805 	int err;
806 	u32 result;
807 	__be32 *blocks;
808 
809 	struct mmc_request mrq = {};
810 	struct mmc_command cmd = {};
811 	struct mmc_data data = {};
812 
813 	struct scatterlist sg;
814 
815 	cmd.opcode = MMC_APP_CMD;
816 	cmd.arg = card->rca << 16;
817 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
818 
819 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
820 	if (err)
821 		return err;
822 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
823 		return -EIO;
824 
825 	memset(&cmd, 0, sizeof(struct mmc_command));
826 
827 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
828 	cmd.arg = 0;
829 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
830 
831 	data.blksz = 4;
832 	data.blocks = 1;
833 	data.flags = MMC_DATA_READ;
834 	data.sg = &sg;
835 	data.sg_len = 1;
836 	mmc_set_data_timeout(&data, card);
837 
838 	mrq.cmd = &cmd;
839 	mrq.data = &data;
840 
841 	blocks = kmalloc(4, GFP_KERNEL);
842 	if (!blocks)
843 		return -ENOMEM;
844 
845 	sg_init_one(&sg, blocks, 4);
846 
847 	mmc_wait_for_req(card->host, &mrq);
848 
849 	result = ntohl(*blocks);
850 	kfree(blocks);
851 
852 	if (cmd.error || data.error)
853 		return -EIO;
854 
855 	*written_blocks = result;
856 
857 	return 0;
858 }
859 
860 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
861 		bool hw_busy_detect, struct request *req, bool *gen_err)
862 {
863 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
864 	int err = 0;
865 	u32 status;
866 
867 	do {
868 		err = __mmc_send_status(card, &status, 5);
869 		if (err) {
870 			pr_err("%s: error %d requesting status\n",
871 			       req->rq_disk->disk_name, err);
872 			return err;
873 		}
874 
875 		if (status & R1_ERROR) {
876 			pr_err("%s: %s: error sending status cmd, status %#x\n",
877 				req->rq_disk->disk_name, __func__, status);
878 			*gen_err = true;
879 		}
880 
881 		/* We may rely on the host hw to handle busy detection.*/
882 		if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
883 			hw_busy_detect)
884 			break;
885 
886 		/*
887 		 * Timeout if the device never becomes ready for data and never
888 		 * leaves the program state.
889 		 */
890 		if (time_after(jiffies, timeout)) {
891 			pr_err("%s: Card stuck in programming state! %s %s\n",
892 				mmc_hostname(card->host),
893 				req->rq_disk->disk_name, __func__);
894 			return -ETIMEDOUT;
895 		}
896 
897 		/*
898 		 * Some cards mishandle the status bits,
899 		 * so make sure to check both the busy
900 		 * indication and the card state.
901 		 */
902 	} while (!(status & R1_READY_FOR_DATA) ||
903 		 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
904 
905 	return err;
906 }
907 
908 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
909 		struct request *req, bool *gen_err, u32 *stop_status)
910 {
911 	struct mmc_host *host = card->host;
912 	struct mmc_command cmd = {};
913 	int err;
914 	bool use_r1b_resp = rq_data_dir(req) == WRITE;
915 
916 	/*
917 	 * Normally we use R1B responses for WRITE, but in cases where the host
918 	 * has specified a max_busy_timeout we need to validate it. A failure
919 	 * means we need to prevent the host from doing hw busy detection, which
920 	 * is done by converting to a R1 response instead.
921 	 */
922 	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
923 		use_r1b_resp = false;
924 
925 	cmd.opcode = MMC_STOP_TRANSMISSION;
926 	if (use_r1b_resp) {
927 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
928 		cmd.busy_timeout = timeout_ms;
929 	} else {
930 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
931 	}
932 
933 	err = mmc_wait_for_cmd(host, &cmd, 5);
934 	if (err)
935 		return err;
936 
937 	*stop_status = cmd.resp[0];
938 
939 	/* No need to check card status in case of READ. */
940 	if (rq_data_dir(req) == READ)
941 		return 0;
942 
943 	if (!mmc_host_is_spi(host) &&
944 		(*stop_status & R1_ERROR)) {
945 		pr_err("%s: %s: general error sending stop command, resp %#x\n",
946 			req->rq_disk->disk_name, __func__, *stop_status);
947 		*gen_err = true;
948 	}
949 
950 	return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
951 }
952 
953 #define ERR_NOMEDIUM	3
954 #define ERR_RETRY	2
955 #define ERR_ABORT	1
956 #define ERR_CONTINUE	0
957 
958 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
959 	bool status_valid, u32 status)
960 {
961 	switch (error) {
962 	case -EILSEQ:
963 		/* response crc error, retry the r/w cmd */
964 		pr_err("%s: %s sending %s command, card status %#x\n",
965 			req->rq_disk->disk_name, "response CRC error",
966 			name, status);
967 		return ERR_RETRY;
968 
969 	case -ETIMEDOUT:
970 		pr_err("%s: %s sending %s command, card status %#x\n",
971 			req->rq_disk->disk_name, "timed out", name, status);
972 
973 		/* If the status cmd initially failed, retry the r/w cmd */
974 		if (!status_valid) {
975 			pr_err("%s: status not valid, retrying timeout\n",
976 				req->rq_disk->disk_name);
977 			return ERR_RETRY;
978 		}
979 
980 		/*
981 		 * If it was a r/w cmd crc error, or illegal command
982 		 * (eg, issued in wrong state) then retry - we should
983 		 * have corrected the state problem above.
984 		 */
985 		if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
986 			pr_err("%s: command error, retrying timeout\n",
987 				req->rq_disk->disk_name);
988 			return ERR_RETRY;
989 		}
990 
991 		/* Otherwise abort the command */
992 		return ERR_ABORT;
993 
994 	default:
995 		/* We don't understand the error code the driver gave us */
996 		pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
997 		       req->rq_disk->disk_name, error, status);
998 		return ERR_ABORT;
999 	}
1000 }
1001 
1002 /*
1003  * Initial r/w and stop cmd error recovery.
1004  * We don't know whether the card received the r/w cmd or not, so try to
1005  * restore things back to a sane state.  Essentially, we do this as follows:
1006  * - Obtain card status.  If the first attempt to obtain card status fails,
1007  *   the status word will reflect the failed status cmd, not the failed
1008  *   r/w cmd.  If we fail to obtain card status, it suggests we can no
1009  *   longer communicate with the card.
1010  * - Check the card state.  If the card received the cmd but there was a
1011  *   transient problem with the response, it might still be in a data transfer
1012  *   mode.  Try to send it a stop command.  If this fails, we can't recover.
1013  * - If the r/w cmd failed due to a response CRC error, it was probably
1014  *   transient, so retry the cmd.
1015  * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
1016  * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
1017  *   illegal cmd, retry.
1018  * Otherwise we don't understand what happened, so abort.
1019  */
1020 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
1021 	struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err)
1022 {
1023 	bool prev_cmd_status_valid = true;
1024 	u32 status, stop_status = 0;
1025 	int err, retry;
1026 
1027 	if (mmc_card_removed(card))
1028 		return ERR_NOMEDIUM;
1029 
1030 	/*
1031 	 * Try to get card status which indicates both the card state
1032 	 * and why there was no response.  If the first attempt fails,
1033 	 * we can't be sure the returned status is for the r/w command.
1034 	 */
1035 	for (retry = 2; retry >= 0; retry--) {
1036 		err = __mmc_send_status(card, &status, 0);
1037 		if (!err)
1038 			break;
1039 
1040 		/* Re-tune if needed */
1041 		mmc_retune_recheck(card->host);
1042 
1043 		prev_cmd_status_valid = false;
1044 		pr_err("%s: error %d sending status command, %sing\n",
1045 		       req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1046 	}
1047 
1048 	/* We couldn't get a response from the card.  Give up. */
1049 	if (err) {
1050 		/* Check if the card is removed */
1051 		if (mmc_detect_card_removed(card->host))
1052 			return ERR_NOMEDIUM;
1053 		return ERR_ABORT;
1054 	}
1055 
1056 	/* Flag ECC errors */
1057 	if ((status & R1_CARD_ECC_FAILED) ||
1058 	    (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1059 	    (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1060 		*ecc_err = true;
1061 
1062 	/* Flag General errors */
1063 	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1064 		if ((status & R1_ERROR) ||
1065 			(brq->stop.resp[0] & R1_ERROR)) {
1066 			pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1067 			       req->rq_disk->disk_name, __func__,
1068 			       brq->stop.resp[0], status);
1069 			*gen_err = true;
1070 		}
1071 
1072 	/*
1073 	 * Check the current card state.  If it is in some data transfer
1074 	 * mode, tell it to stop (and hopefully transition back to TRAN.)
1075 	 */
1076 	if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1077 	    R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1078 		err = send_stop(card,
1079 			DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1080 			req, gen_err, &stop_status);
1081 		if (err) {
1082 			pr_err("%s: error %d sending stop command\n",
1083 			       req->rq_disk->disk_name, err);
1084 			/*
1085 			 * If the stop cmd also timed out, the card is probably
1086 			 * not present, so abort. Other errors are bad news too.
1087 			 */
1088 			return ERR_ABORT;
1089 		}
1090 
1091 		if (stop_status & R1_CARD_ECC_FAILED)
1092 			*ecc_err = true;
1093 	}
1094 
1095 	/* Check for set block count errors */
1096 	if (brq->sbc.error)
1097 		return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1098 				prev_cmd_status_valid, status);
1099 
1100 	/* Check for r/w command errors */
1101 	if (brq->cmd.error)
1102 		return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1103 				prev_cmd_status_valid, status);
1104 
1105 	/* Data errors */
1106 	if (!brq->stop.error)
1107 		return ERR_CONTINUE;
1108 
1109 	/* Now for stop errors.  These aren't fatal to the transfer. */
1110 	pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1111 	       req->rq_disk->disk_name, brq->stop.error,
1112 	       brq->cmd.resp[0], status);
1113 
1114 	/*
1115 	 * Subsitute in our own stop status as this will give the error
1116 	 * state which happened during the execution of the r/w command.
1117 	 */
1118 	if (stop_status) {
1119 		brq->stop.resp[0] = stop_status;
1120 		brq->stop.error = 0;
1121 	}
1122 	return ERR_CONTINUE;
1123 }
1124 
1125 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1126 			 int type)
1127 {
1128 	int err;
1129 
1130 	if (md->reset_done & type)
1131 		return -EEXIST;
1132 
1133 	md->reset_done |= type;
1134 	err = mmc_hw_reset(host);
1135 	/* Ensure we switch back to the correct partition */
1136 	if (err != -EOPNOTSUPP) {
1137 		struct mmc_blk_data *main_md =
1138 			dev_get_drvdata(&host->card->dev);
1139 		int part_err;
1140 
1141 		main_md->part_curr = main_md->part_type;
1142 		part_err = mmc_blk_part_switch(host->card, md);
1143 		if (part_err) {
1144 			/*
1145 			 * We have failed to get back into the correct
1146 			 * partition, so we need to abort the whole request.
1147 			 */
1148 			return -ENODEV;
1149 		}
1150 	}
1151 	return err;
1152 }
1153 
1154 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1155 {
1156 	md->reset_done &= ~type;
1157 }
1158 
1159 int mmc_access_rpmb(struct mmc_queue *mq)
1160 {
1161 	struct mmc_blk_data *md = mq->blkdata;
1162 	/*
1163 	 * If this is a RPMB partition access, return ture
1164 	 */
1165 	if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1166 		return true;
1167 
1168 	return false;
1169 }
1170 
1171 /*
1172  * The non-block commands come back from the block layer after it queued it and
1173  * processed it with all other requests and then they get issued in this
1174  * function.
1175  */
1176 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1177 {
1178 	struct mmc_queue_req *mq_rq;
1179 	struct mmc_card *card = mq->card;
1180 	struct mmc_blk_data *md = mq->blkdata;
1181 	int ret;
1182 	int i;
1183 
1184 	mq_rq = req_to_mmc_queue_req(req);
1185 
1186 	switch (mq_rq->drv_op) {
1187 	case MMC_DRV_OP_IOCTL:
1188 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1189 			ret = __mmc_blk_ioctl_cmd(card, md, mq_rq->idata[i]);
1190 			if (ret)
1191 				break;
1192 		}
1193 		/* Always switch back to main area after RPMB access */
1194 		if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
1195 			mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
1196 		break;
1197 	case MMC_DRV_OP_BOOT_WP:
1198 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1199 				 card->ext_csd.boot_ro_lock |
1200 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1201 				 card->ext_csd.part_time);
1202 		if (ret)
1203 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1204 			       md->disk->disk_name, ret);
1205 		else
1206 			card->ext_csd.boot_ro_lock |=
1207 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1208 		break;
1209 	default:
1210 		pr_err("%s: unknown driver specific operation\n",
1211 		       md->disk->disk_name);
1212 		ret = -EINVAL;
1213 		break;
1214 	}
1215 	mq_rq->drv_op_result = ret;
1216 	blk_end_request_all(req, ret);
1217 }
1218 
1219 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1220 {
1221 	struct mmc_blk_data *md = mq->blkdata;
1222 	struct mmc_card *card = md->queue.card;
1223 	unsigned int from, nr, arg;
1224 	int err = 0, type = MMC_BLK_DISCARD;
1225 	blk_status_t status = BLK_STS_OK;
1226 
1227 	if (!mmc_can_erase(card)) {
1228 		status = BLK_STS_NOTSUPP;
1229 		goto fail;
1230 	}
1231 
1232 	from = blk_rq_pos(req);
1233 	nr = blk_rq_sectors(req);
1234 
1235 	if (mmc_can_discard(card))
1236 		arg = MMC_DISCARD_ARG;
1237 	else if (mmc_can_trim(card))
1238 		arg = MMC_TRIM_ARG;
1239 	else
1240 		arg = MMC_ERASE_ARG;
1241 	do {
1242 		err = 0;
1243 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1244 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1245 					 INAND_CMD38_ARG_EXT_CSD,
1246 					 arg == MMC_TRIM_ARG ?
1247 					 INAND_CMD38_ARG_TRIM :
1248 					 INAND_CMD38_ARG_ERASE,
1249 					 0);
1250 		}
1251 		if (!err)
1252 			err = mmc_erase(card, from, nr, arg);
1253 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1254 	if (err)
1255 		status = BLK_STS_IOERR;
1256 	else
1257 		mmc_blk_reset_success(md, type);
1258 fail:
1259 	blk_end_request(req, status, blk_rq_bytes(req));
1260 }
1261 
1262 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1263 				       struct request *req)
1264 {
1265 	struct mmc_blk_data *md = mq->blkdata;
1266 	struct mmc_card *card = md->queue.card;
1267 	unsigned int from, nr, arg;
1268 	int err = 0, type = MMC_BLK_SECDISCARD;
1269 	blk_status_t status = BLK_STS_OK;
1270 
1271 	if (!(mmc_can_secure_erase_trim(card))) {
1272 		status = BLK_STS_NOTSUPP;
1273 		goto out;
1274 	}
1275 
1276 	from = blk_rq_pos(req);
1277 	nr = blk_rq_sectors(req);
1278 
1279 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1280 		arg = MMC_SECURE_TRIM1_ARG;
1281 	else
1282 		arg = MMC_SECURE_ERASE_ARG;
1283 
1284 retry:
1285 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1286 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1287 				 INAND_CMD38_ARG_EXT_CSD,
1288 				 arg == MMC_SECURE_TRIM1_ARG ?
1289 				 INAND_CMD38_ARG_SECTRIM1 :
1290 				 INAND_CMD38_ARG_SECERASE,
1291 				 0);
1292 		if (err)
1293 			goto out_retry;
1294 	}
1295 
1296 	err = mmc_erase(card, from, nr, arg);
1297 	if (err == -EIO)
1298 		goto out_retry;
1299 	if (err) {
1300 		status = BLK_STS_IOERR;
1301 		goto out;
1302 	}
1303 
1304 	if (arg == MMC_SECURE_TRIM1_ARG) {
1305 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1306 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1307 					 INAND_CMD38_ARG_EXT_CSD,
1308 					 INAND_CMD38_ARG_SECTRIM2,
1309 					 0);
1310 			if (err)
1311 				goto out_retry;
1312 		}
1313 
1314 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1315 		if (err == -EIO)
1316 			goto out_retry;
1317 		if (err) {
1318 			status = BLK_STS_IOERR;
1319 			goto out;
1320 		}
1321 	}
1322 
1323 out_retry:
1324 	if (err && !mmc_blk_reset(md, card->host, type))
1325 		goto retry;
1326 	if (!err)
1327 		mmc_blk_reset_success(md, type);
1328 out:
1329 	blk_end_request(req, status, blk_rq_bytes(req));
1330 }
1331 
1332 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1333 {
1334 	struct mmc_blk_data *md = mq->blkdata;
1335 	struct mmc_card *card = md->queue.card;
1336 	int ret = 0;
1337 
1338 	ret = mmc_flush_cache(card);
1339 	blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1340 }
1341 
1342 /*
1343  * Reformat current write as a reliable write, supporting
1344  * both legacy and the enhanced reliable write MMC cards.
1345  * In each transfer we'll handle only as much as a single
1346  * reliable write can handle, thus finish the request in
1347  * partial completions.
1348  */
1349 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1350 				    struct mmc_card *card,
1351 				    struct request *req)
1352 {
1353 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1354 		/* Legacy mode imposes restrictions on transfers. */
1355 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1356 			brq->data.blocks = 1;
1357 
1358 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1359 			brq->data.blocks = card->ext_csd.rel_sectors;
1360 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1361 			brq->data.blocks = 1;
1362 	}
1363 }
1364 
1365 #define CMD_ERRORS							\
1366 	(R1_OUT_OF_RANGE |	/* Command argument out of range */	\
1367 	 R1_ADDRESS_ERROR |	/* Misaligned address */		\
1368 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1369 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1370 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1371 	 R1_CC_ERROR |		/* Card controller error */		\
1372 	 R1_ERROR)		/* General/unknown error */
1373 
1374 static bool mmc_blk_has_cmd_err(struct mmc_command *cmd)
1375 {
1376 	if (!cmd->error && cmd->resp[0] & CMD_ERRORS)
1377 		cmd->error = -EIO;
1378 
1379 	return cmd->error;
1380 }
1381 
1382 static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card,
1383 					     struct mmc_async_req *areq)
1384 {
1385 	struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1386 						    areq);
1387 	struct mmc_blk_request *brq = &mq_mrq->brq;
1388 	struct request *req = mmc_queue_req_to_req(mq_mrq);
1389 	int need_retune = card->host->need_retune;
1390 	bool ecc_err = false;
1391 	bool gen_err = false;
1392 
1393 	/*
1394 	 * sbc.error indicates a problem with the set block count
1395 	 * command.  No data will have been transferred.
1396 	 *
1397 	 * cmd.error indicates a problem with the r/w command.  No
1398 	 * data will have been transferred.
1399 	 *
1400 	 * stop.error indicates a problem with the stop command.  Data
1401 	 * may have been transferred, or may still be transferring.
1402 	 */
1403 	if (brq->sbc.error || brq->cmd.error || mmc_blk_has_cmd_err(&brq->stop) ||
1404 	    brq->data.error) {
1405 		switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1406 		case ERR_RETRY:
1407 			return MMC_BLK_RETRY;
1408 		case ERR_ABORT:
1409 			return MMC_BLK_ABORT;
1410 		case ERR_NOMEDIUM:
1411 			return MMC_BLK_NOMEDIUM;
1412 		case ERR_CONTINUE:
1413 			break;
1414 		}
1415 	}
1416 
1417 	/*
1418 	 * Check for errors relating to the execution of the
1419 	 * initial command - such as address errors.  No data
1420 	 * has been transferred.
1421 	 */
1422 	if (brq->cmd.resp[0] & CMD_ERRORS) {
1423 		pr_err("%s: r/w command failed, status = %#x\n",
1424 		       req->rq_disk->disk_name, brq->cmd.resp[0]);
1425 		return MMC_BLK_ABORT;
1426 	}
1427 
1428 	/*
1429 	 * Everything else is either success, or a data error of some
1430 	 * kind.  If it was a write, we may have transitioned to
1431 	 * program mode, which we have to wait for it to complete.
1432 	 */
1433 	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1434 		int err;
1435 
1436 		/* Check stop command response */
1437 		if (brq->stop.resp[0] & R1_ERROR) {
1438 			pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1439 			       req->rq_disk->disk_name, __func__,
1440 			       brq->stop.resp[0]);
1441 			gen_err = true;
1442 		}
1443 
1444 		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1445 					&gen_err);
1446 		if (err)
1447 			return MMC_BLK_CMD_ERR;
1448 	}
1449 
1450 	/* if general error occurs, retry the write operation. */
1451 	if (gen_err) {
1452 		pr_warn("%s: retrying write for general error\n",
1453 				req->rq_disk->disk_name);
1454 		return MMC_BLK_RETRY;
1455 	}
1456 
1457 	/* Some errors (ECC) are flagged on the next commmand, so check stop, too */
1458 	if (brq->data.error || brq->stop.error) {
1459 		if (need_retune && !brq->retune_retry_done) {
1460 			pr_debug("%s: retrying because a re-tune was needed\n",
1461 				 req->rq_disk->disk_name);
1462 			brq->retune_retry_done = 1;
1463 			return MMC_BLK_RETRY;
1464 		}
1465 		pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1466 		       req->rq_disk->disk_name, brq->data.error ?: brq->stop.error,
1467 		       (unsigned)blk_rq_pos(req),
1468 		       (unsigned)blk_rq_sectors(req),
1469 		       brq->cmd.resp[0], brq->stop.resp[0]);
1470 
1471 		if (rq_data_dir(req) == READ) {
1472 			if (ecc_err)
1473 				return MMC_BLK_ECC_ERR;
1474 			return MMC_BLK_DATA_ERR;
1475 		} else {
1476 			return MMC_BLK_CMD_ERR;
1477 		}
1478 	}
1479 
1480 	if (!brq->data.bytes_xfered)
1481 		return MMC_BLK_RETRY;
1482 
1483 	if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1484 		return MMC_BLK_PARTIAL;
1485 
1486 	return MMC_BLK_SUCCESS;
1487 }
1488 
1489 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1490 			      int disable_multi, bool *do_rel_wr,
1491 			      bool *do_data_tag)
1492 {
1493 	struct mmc_blk_data *md = mq->blkdata;
1494 	struct mmc_card *card = md->queue.card;
1495 	struct mmc_blk_request *brq = &mqrq->brq;
1496 	struct request *req = mmc_queue_req_to_req(mqrq);
1497 
1498 	/*
1499 	 * Reliable writes are used to implement Forced Unit Access and
1500 	 * are supported only on MMCs.
1501 	 */
1502 	*do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1503 		     rq_data_dir(req) == WRITE &&
1504 		     (md->flags & MMC_BLK_REL_WR);
1505 
1506 	memset(brq, 0, sizeof(struct mmc_blk_request));
1507 
1508 	brq->mrq.data = &brq->data;
1509 
1510 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1511 	brq->stop.arg = 0;
1512 
1513 	if (rq_data_dir(req) == READ) {
1514 		brq->data.flags = MMC_DATA_READ;
1515 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1516 	} else {
1517 		brq->data.flags = MMC_DATA_WRITE;
1518 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1519 	}
1520 
1521 	brq->data.blksz = 512;
1522 	brq->data.blocks = blk_rq_sectors(req);
1523 
1524 	/*
1525 	 * The block layer doesn't support all sector count
1526 	 * restrictions, so we need to be prepared for too big
1527 	 * requests.
1528 	 */
1529 	if (brq->data.blocks > card->host->max_blk_count)
1530 		brq->data.blocks = card->host->max_blk_count;
1531 
1532 	if (brq->data.blocks > 1) {
1533 		/*
1534 		 * After a read error, we redo the request one sector
1535 		 * at a time in order to accurately determine which
1536 		 * sectors can be read successfully.
1537 		 */
1538 		if (disable_multi)
1539 			brq->data.blocks = 1;
1540 
1541 		/*
1542 		 * Some controllers have HW issues while operating
1543 		 * in multiple I/O mode
1544 		 */
1545 		if (card->host->ops->multi_io_quirk)
1546 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1547 						(rq_data_dir(req) == READ) ?
1548 						MMC_DATA_READ : MMC_DATA_WRITE,
1549 						brq->data.blocks);
1550 	}
1551 
1552 	if (*do_rel_wr)
1553 		mmc_apply_rel_rw(brq, card, req);
1554 
1555 	/*
1556 	 * Data tag is used only during writing meta data to speed
1557 	 * up write and any subsequent read of this meta data
1558 	 */
1559 	*do_data_tag = card->ext_csd.data_tag_unit_size &&
1560 		       (req->cmd_flags & REQ_META) &&
1561 		       (rq_data_dir(req) == WRITE) &&
1562 		       ((brq->data.blocks * brq->data.blksz) >=
1563 			card->ext_csd.data_tag_unit_size);
1564 
1565 	mmc_set_data_timeout(&brq->data, card);
1566 
1567 	brq->data.sg = mqrq->sg;
1568 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1569 
1570 	/*
1571 	 * Adjust the sg list so it is the same size as the
1572 	 * request.
1573 	 */
1574 	if (brq->data.blocks != blk_rq_sectors(req)) {
1575 		int i, data_size = brq->data.blocks << 9;
1576 		struct scatterlist *sg;
1577 
1578 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1579 			data_size -= sg->length;
1580 			if (data_size <= 0) {
1581 				sg->length += data_size;
1582 				i++;
1583 				break;
1584 			}
1585 		}
1586 		brq->data.sg_len = i;
1587 	}
1588 
1589 	mqrq->areq.mrq = &brq->mrq;
1590 
1591 	mmc_queue_bounce_pre(mqrq);
1592 }
1593 
1594 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1595 			       struct mmc_card *card,
1596 			       int disable_multi,
1597 			       struct mmc_queue *mq)
1598 {
1599 	u32 readcmd, writecmd;
1600 	struct mmc_blk_request *brq = &mqrq->brq;
1601 	struct request *req = mmc_queue_req_to_req(mqrq);
1602 	struct mmc_blk_data *md = mq->blkdata;
1603 	bool do_rel_wr, do_data_tag;
1604 
1605 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1606 
1607 	brq->mrq.cmd = &brq->cmd;
1608 
1609 	brq->cmd.arg = blk_rq_pos(req);
1610 	if (!mmc_card_blockaddr(card))
1611 		brq->cmd.arg <<= 9;
1612 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1613 
1614 	if (brq->data.blocks > 1 || do_rel_wr) {
1615 		/* SPI multiblock writes terminate using a special
1616 		 * token, not a STOP_TRANSMISSION request.
1617 		 */
1618 		if (!mmc_host_is_spi(card->host) ||
1619 		    rq_data_dir(req) == READ)
1620 			brq->mrq.stop = &brq->stop;
1621 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1622 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1623 	} else {
1624 		brq->mrq.stop = NULL;
1625 		readcmd = MMC_READ_SINGLE_BLOCK;
1626 		writecmd = MMC_WRITE_BLOCK;
1627 	}
1628 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1629 
1630 	/*
1631 	 * Pre-defined multi-block transfers are preferable to
1632 	 * open ended-ones (and necessary for reliable writes).
1633 	 * However, it is not sufficient to just send CMD23,
1634 	 * and avoid the final CMD12, as on an error condition
1635 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1636 	 * with Auto-CMD23 enhancements provided by some
1637 	 * hosts, means that the complexity of dealing
1638 	 * with this is best left to the host. If CMD23 is
1639 	 * supported by card and host, we'll fill sbc in and let
1640 	 * the host deal with handling it correctly. This means
1641 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1642 	 * change of behavior will be observed.
1643 	 *
1644 	 * N.B: Some MMC cards experience perf degradation.
1645 	 * We'll avoid using CMD23-bounded multiblock writes for
1646 	 * these, while retaining features like reliable writes.
1647 	 */
1648 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1649 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1650 	     do_data_tag)) {
1651 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1652 		brq->sbc.arg = brq->data.blocks |
1653 			(do_rel_wr ? (1 << 31) : 0) |
1654 			(do_data_tag ? (1 << 29) : 0);
1655 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1656 		brq->mrq.sbc = &brq->sbc;
1657 	}
1658 
1659 	mqrq->areq.err_check = mmc_blk_err_check;
1660 }
1661 
1662 static bool mmc_blk_rw_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1663 			       struct mmc_blk_request *brq, struct request *req,
1664 			       bool old_req_pending)
1665 {
1666 	bool req_pending;
1667 
1668 	/*
1669 	 * If this is an SD card and we're writing, we can first
1670 	 * mark the known good sectors as ok.
1671 	 *
1672 	 * If the card is not SD, we can still ok written sectors
1673 	 * as reported by the controller (which might be less than
1674 	 * the real number of written sectors, but never more).
1675 	 */
1676 	if (mmc_card_sd(card)) {
1677 		u32 blocks;
1678 		int err;
1679 
1680 		err = mmc_sd_num_wr_blocks(card, &blocks);
1681 		if (err)
1682 			req_pending = old_req_pending;
1683 		else
1684 			req_pending = blk_end_request(req, 0, blocks << 9);
1685 	} else {
1686 		req_pending = blk_end_request(req, 0, brq->data.bytes_xfered);
1687 	}
1688 	return req_pending;
1689 }
1690 
1691 static void mmc_blk_rw_cmd_abort(struct mmc_queue *mq, struct mmc_card *card,
1692 				 struct request *req,
1693 				 struct mmc_queue_req *mqrq)
1694 {
1695 	if (mmc_card_removed(card))
1696 		req->rq_flags |= RQF_QUIET;
1697 	while (blk_end_request(req, BLK_STS_IOERR, blk_rq_cur_bytes(req)));
1698 	mq->qcnt--;
1699 }
1700 
1701 /**
1702  * mmc_blk_rw_try_restart() - tries to restart the current async request
1703  * @mq: the queue with the card and host to restart
1704  * @req: a new request that want to be started after the current one
1705  */
1706 static void mmc_blk_rw_try_restart(struct mmc_queue *mq, struct request *req,
1707 				   struct mmc_queue_req *mqrq)
1708 {
1709 	if (!req)
1710 		return;
1711 
1712 	/*
1713 	 * If the card was removed, just cancel everything and return.
1714 	 */
1715 	if (mmc_card_removed(mq->card)) {
1716 		req->rq_flags |= RQF_QUIET;
1717 		blk_end_request_all(req, BLK_STS_IOERR);
1718 		mq->qcnt--; /* FIXME: just set to 0? */
1719 		return;
1720 	}
1721 	/* Else proceed and try to restart the current async request */
1722 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1723 	mmc_start_areq(mq->card->host, &mqrq->areq, NULL);
1724 }
1725 
1726 static void mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *new_req)
1727 {
1728 	struct mmc_blk_data *md = mq->blkdata;
1729 	struct mmc_card *card = md->queue.card;
1730 	struct mmc_blk_request *brq;
1731 	int disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1732 	enum mmc_blk_status status;
1733 	struct mmc_queue_req *mqrq_cur = NULL;
1734 	struct mmc_queue_req *mq_rq;
1735 	struct request *old_req;
1736 	struct mmc_async_req *new_areq;
1737 	struct mmc_async_req *old_areq;
1738 	bool req_pending = true;
1739 
1740 	if (new_req) {
1741 		mqrq_cur = req_to_mmc_queue_req(new_req);
1742 		mq->qcnt++;
1743 	}
1744 
1745 	if (!mq->qcnt)
1746 		return;
1747 
1748 	do {
1749 		if (new_req) {
1750 			/*
1751 			 * When 4KB native sector is enabled, only 8 blocks
1752 			 * multiple read or write is allowed
1753 			 */
1754 			if (mmc_large_sector(card) &&
1755 				!IS_ALIGNED(blk_rq_sectors(new_req), 8)) {
1756 				pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1757 					new_req->rq_disk->disk_name);
1758 				mmc_blk_rw_cmd_abort(mq, card, new_req, mqrq_cur);
1759 				return;
1760 			}
1761 
1762 			mmc_blk_rw_rq_prep(mqrq_cur, card, 0, mq);
1763 			new_areq = &mqrq_cur->areq;
1764 		} else
1765 			new_areq = NULL;
1766 
1767 		old_areq = mmc_start_areq(card->host, new_areq, &status);
1768 		if (!old_areq) {
1769 			/*
1770 			 * We have just put the first request into the pipeline
1771 			 * and there is nothing more to do until it is
1772 			 * complete.
1773 			 */
1774 			return;
1775 		}
1776 
1777 		/*
1778 		 * An asynchronous request has been completed and we proceed
1779 		 * to handle the result of it.
1780 		 */
1781 		mq_rq =	container_of(old_areq, struct mmc_queue_req, areq);
1782 		brq = &mq_rq->brq;
1783 		old_req = mmc_queue_req_to_req(mq_rq);
1784 		type = rq_data_dir(old_req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1785 		mmc_queue_bounce_post(mq_rq);
1786 
1787 		switch (status) {
1788 		case MMC_BLK_SUCCESS:
1789 		case MMC_BLK_PARTIAL:
1790 			/*
1791 			 * A block was successfully transferred.
1792 			 */
1793 			mmc_blk_reset_success(md, type);
1794 
1795 			req_pending = blk_end_request(old_req, BLK_STS_OK,
1796 						      brq->data.bytes_xfered);
1797 			/*
1798 			 * If the blk_end_request function returns non-zero even
1799 			 * though all data has been transferred and no errors
1800 			 * were returned by the host controller, it's a bug.
1801 			 */
1802 			if (status == MMC_BLK_SUCCESS && req_pending) {
1803 				pr_err("%s BUG rq_tot %d d_xfer %d\n",
1804 				       __func__, blk_rq_bytes(old_req),
1805 				       brq->data.bytes_xfered);
1806 				mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1807 				return;
1808 			}
1809 			break;
1810 		case MMC_BLK_CMD_ERR:
1811 			req_pending = mmc_blk_rw_cmd_err(md, card, brq, old_req, req_pending);
1812 			if (mmc_blk_reset(md, card->host, type)) {
1813 				if (req_pending)
1814 					mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1815 				else
1816 					mq->qcnt--;
1817 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1818 				return;
1819 			}
1820 			if (!req_pending) {
1821 				mq->qcnt--;
1822 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1823 				return;
1824 			}
1825 			break;
1826 		case MMC_BLK_RETRY:
1827 			retune_retry_done = brq->retune_retry_done;
1828 			if (retry++ < 5)
1829 				break;
1830 			/* Fall through */
1831 		case MMC_BLK_ABORT:
1832 			if (!mmc_blk_reset(md, card->host, type))
1833 				break;
1834 			mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1835 			mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1836 			return;
1837 		case MMC_BLK_DATA_ERR: {
1838 			int err;
1839 
1840 			err = mmc_blk_reset(md, card->host, type);
1841 			if (!err)
1842 				break;
1843 			if (err == -ENODEV) {
1844 				mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1845 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1846 				return;
1847 			}
1848 			/* Fall through */
1849 		}
1850 		case MMC_BLK_ECC_ERR:
1851 			if (brq->data.blocks > 1) {
1852 				/* Redo read one sector at a time */
1853 				pr_warn("%s: retrying using single block read\n",
1854 					old_req->rq_disk->disk_name);
1855 				disable_multi = 1;
1856 				break;
1857 			}
1858 			/*
1859 			 * After an error, we redo I/O one sector at a
1860 			 * time, so we only reach here after trying to
1861 			 * read a single sector.
1862 			 */
1863 			req_pending = blk_end_request(old_req, BLK_STS_IOERR,
1864 						      brq->data.blksz);
1865 			if (!req_pending) {
1866 				mq->qcnt--;
1867 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1868 				return;
1869 			}
1870 			break;
1871 		case MMC_BLK_NOMEDIUM:
1872 			mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1873 			mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1874 			return;
1875 		default:
1876 			pr_err("%s: Unhandled return value (%d)",
1877 					old_req->rq_disk->disk_name, status);
1878 			mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1879 			mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1880 			return;
1881 		}
1882 
1883 		if (req_pending) {
1884 			/*
1885 			 * In case of a incomplete request
1886 			 * prepare it again and resend.
1887 			 */
1888 			mmc_blk_rw_rq_prep(mq_rq, card,
1889 					disable_multi, mq);
1890 			mmc_start_areq(card->host,
1891 					&mq_rq->areq, NULL);
1892 			mq_rq->brq.retune_retry_done = retune_retry_done;
1893 		}
1894 	} while (req_pending);
1895 
1896 	mq->qcnt--;
1897 }
1898 
1899 void mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1900 {
1901 	int ret;
1902 	struct mmc_blk_data *md = mq->blkdata;
1903 	struct mmc_card *card = md->queue.card;
1904 
1905 	if (req && !mq->qcnt)
1906 		/* claim host only for the first request */
1907 		mmc_get_card(card);
1908 
1909 	ret = mmc_blk_part_switch(card, md);
1910 	if (ret) {
1911 		if (req) {
1912 			blk_end_request_all(req, BLK_STS_IOERR);
1913 		}
1914 		goto out;
1915 	}
1916 
1917 	if (req) {
1918 		switch (req_op(req)) {
1919 		case REQ_OP_DRV_IN:
1920 		case REQ_OP_DRV_OUT:
1921 			/*
1922 			 * Complete ongoing async transfer before issuing
1923 			 * ioctl()s
1924 			 */
1925 			if (mq->qcnt)
1926 				mmc_blk_issue_rw_rq(mq, NULL);
1927 			mmc_blk_issue_drv_op(mq, req);
1928 			break;
1929 		case REQ_OP_DISCARD:
1930 			/*
1931 			 * Complete ongoing async transfer before issuing
1932 			 * discard.
1933 			 */
1934 			if (mq->qcnt)
1935 				mmc_blk_issue_rw_rq(mq, NULL);
1936 			mmc_blk_issue_discard_rq(mq, req);
1937 			break;
1938 		case REQ_OP_SECURE_ERASE:
1939 			/*
1940 			 * Complete ongoing async transfer before issuing
1941 			 * secure erase.
1942 			 */
1943 			if (mq->qcnt)
1944 				mmc_blk_issue_rw_rq(mq, NULL);
1945 			mmc_blk_issue_secdiscard_rq(mq, req);
1946 			break;
1947 		case REQ_OP_FLUSH:
1948 			/*
1949 			 * Complete ongoing async transfer before issuing
1950 			 * flush.
1951 			 */
1952 			if (mq->qcnt)
1953 				mmc_blk_issue_rw_rq(mq, NULL);
1954 			mmc_blk_issue_flush(mq, req);
1955 			break;
1956 		default:
1957 			/* Normal request, just issue it */
1958 			mmc_blk_issue_rw_rq(mq, req);
1959 			card->host->context_info.is_waiting_last_req = false;
1960 			break;
1961 		}
1962 	} else {
1963 		/* No request, flushing the pipeline with NULL */
1964 		mmc_blk_issue_rw_rq(mq, NULL);
1965 		card->host->context_info.is_waiting_last_req = false;
1966 	}
1967 
1968 out:
1969 	if (!mq->qcnt)
1970 		mmc_put_card(card);
1971 }
1972 
1973 static inline int mmc_blk_readonly(struct mmc_card *card)
1974 {
1975 	return mmc_card_readonly(card) ||
1976 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1977 }
1978 
1979 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1980 					      struct device *parent,
1981 					      sector_t size,
1982 					      bool default_ro,
1983 					      const char *subname,
1984 					      int area_type)
1985 {
1986 	struct mmc_blk_data *md;
1987 	int devidx, ret;
1988 
1989 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
1990 	if (devidx < 0)
1991 		return ERR_PTR(devidx);
1992 
1993 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1994 	if (!md) {
1995 		ret = -ENOMEM;
1996 		goto out;
1997 	}
1998 
1999 	md->area_type = area_type;
2000 
2001 	/*
2002 	 * Set the read-only status based on the supported commands
2003 	 * and the write protect switch.
2004 	 */
2005 	md->read_only = mmc_blk_readonly(card);
2006 
2007 	md->disk = alloc_disk(perdev_minors);
2008 	if (md->disk == NULL) {
2009 		ret = -ENOMEM;
2010 		goto err_kfree;
2011 	}
2012 
2013 	spin_lock_init(&md->lock);
2014 	INIT_LIST_HEAD(&md->part);
2015 	md->usage = 1;
2016 
2017 	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2018 	if (ret)
2019 		goto err_putdisk;
2020 
2021 	md->queue.blkdata = md;
2022 
2023 	md->disk->major	= MMC_BLOCK_MAJOR;
2024 	md->disk->first_minor = devidx * perdev_minors;
2025 	md->disk->fops = &mmc_bdops;
2026 	md->disk->private_data = md;
2027 	md->disk->queue = md->queue.queue;
2028 	md->parent = parent;
2029 	set_disk_ro(md->disk, md->read_only || default_ro);
2030 	md->disk->flags = GENHD_FL_EXT_DEVT;
2031 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2032 		md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2033 
2034 	/*
2035 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2036 	 *
2037 	 * - be set for removable media with permanent block devices
2038 	 * - be unset for removable block devices with permanent media
2039 	 *
2040 	 * Since MMC block devices clearly fall under the second
2041 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2042 	 * should use the block device creation/destruction hotplug
2043 	 * messages to tell when the card is present.
2044 	 */
2045 
2046 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2047 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2048 
2049 	if (mmc_card_mmc(card))
2050 		blk_queue_logical_block_size(md->queue.queue,
2051 					     card->ext_csd.data_sector_size);
2052 	else
2053 		blk_queue_logical_block_size(md->queue.queue, 512);
2054 
2055 	set_capacity(md->disk, size);
2056 
2057 	if (mmc_host_cmd23(card->host)) {
2058 		if ((mmc_card_mmc(card) &&
2059 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2060 		    (mmc_card_sd(card) &&
2061 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2062 			md->flags |= MMC_BLK_CMD23;
2063 	}
2064 
2065 	if (mmc_card_mmc(card) &&
2066 	    md->flags & MMC_BLK_CMD23 &&
2067 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2068 	     card->ext_csd.rel_sectors)) {
2069 		md->flags |= MMC_BLK_REL_WR;
2070 		blk_queue_write_cache(md->queue.queue, true, true);
2071 	}
2072 
2073 	return md;
2074 
2075  err_putdisk:
2076 	put_disk(md->disk);
2077  err_kfree:
2078 	kfree(md);
2079  out:
2080 	ida_simple_remove(&mmc_blk_ida, devidx);
2081 	return ERR_PTR(ret);
2082 }
2083 
2084 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2085 {
2086 	sector_t size;
2087 
2088 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2089 		/*
2090 		 * The EXT_CSD sector count is in number or 512 byte
2091 		 * sectors.
2092 		 */
2093 		size = card->ext_csd.sectors;
2094 	} else {
2095 		/*
2096 		 * The CSD capacity field is in units of read_blkbits.
2097 		 * set_capacity takes units of 512 bytes.
2098 		 */
2099 		size = (typeof(sector_t))card->csd.capacity
2100 			<< (card->csd.read_blkbits - 9);
2101 	}
2102 
2103 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2104 					MMC_BLK_DATA_AREA_MAIN);
2105 }
2106 
2107 static int mmc_blk_alloc_part(struct mmc_card *card,
2108 			      struct mmc_blk_data *md,
2109 			      unsigned int part_type,
2110 			      sector_t size,
2111 			      bool default_ro,
2112 			      const char *subname,
2113 			      int area_type)
2114 {
2115 	char cap_str[10];
2116 	struct mmc_blk_data *part_md;
2117 
2118 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2119 				    subname, area_type);
2120 	if (IS_ERR(part_md))
2121 		return PTR_ERR(part_md);
2122 	part_md->part_type = part_type;
2123 	list_add(&part_md->part, &md->part);
2124 
2125 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2126 			cap_str, sizeof(cap_str));
2127 	pr_info("%s: %s %s partition %u %s\n",
2128 	       part_md->disk->disk_name, mmc_card_id(card),
2129 	       mmc_card_name(card), part_md->part_type, cap_str);
2130 	return 0;
2131 }
2132 
2133 /* MMC Physical partitions consist of two boot partitions and
2134  * up to four general purpose partitions.
2135  * For each partition enabled in EXT_CSD a block device will be allocatedi
2136  * to provide access to the partition.
2137  */
2138 
2139 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2140 {
2141 	int idx, ret = 0;
2142 
2143 	if (!mmc_card_mmc(card))
2144 		return 0;
2145 
2146 	for (idx = 0; idx < card->nr_parts; idx++) {
2147 		if (card->part[idx].size) {
2148 			ret = mmc_blk_alloc_part(card, md,
2149 				card->part[idx].part_cfg,
2150 				card->part[idx].size >> 9,
2151 				card->part[idx].force_ro,
2152 				card->part[idx].name,
2153 				card->part[idx].area_type);
2154 			if (ret)
2155 				return ret;
2156 		}
2157 	}
2158 
2159 	return ret;
2160 }
2161 
2162 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2163 {
2164 	struct mmc_card *card;
2165 
2166 	if (md) {
2167 		/*
2168 		 * Flush remaining requests and free queues. It
2169 		 * is freeing the queue that stops new requests
2170 		 * from being accepted.
2171 		 */
2172 		card = md->queue.card;
2173 		blk_set_queue_dying(md->queue.queue);
2174 		mmc_cleanup_queue(&md->queue);
2175 		if (md->disk->flags & GENHD_FL_UP) {
2176 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2177 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2178 					card->ext_csd.boot_ro_lockable)
2179 				device_remove_file(disk_to_dev(md->disk),
2180 					&md->power_ro_lock);
2181 
2182 			del_gendisk(md->disk);
2183 		}
2184 		mmc_blk_put(md);
2185 	}
2186 }
2187 
2188 static void mmc_blk_remove_parts(struct mmc_card *card,
2189 				 struct mmc_blk_data *md)
2190 {
2191 	struct list_head *pos, *q;
2192 	struct mmc_blk_data *part_md;
2193 
2194 	list_for_each_safe(pos, q, &md->part) {
2195 		part_md = list_entry(pos, struct mmc_blk_data, part);
2196 		list_del(pos);
2197 		mmc_blk_remove_req(part_md);
2198 	}
2199 }
2200 
2201 static int mmc_add_disk(struct mmc_blk_data *md)
2202 {
2203 	int ret;
2204 	struct mmc_card *card = md->queue.card;
2205 
2206 	device_add_disk(md->parent, md->disk);
2207 	md->force_ro.show = force_ro_show;
2208 	md->force_ro.store = force_ro_store;
2209 	sysfs_attr_init(&md->force_ro.attr);
2210 	md->force_ro.attr.name = "force_ro";
2211 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2212 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2213 	if (ret)
2214 		goto force_ro_fail;
2215 
2216 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2217 	     card->ext_csd.boot_ro_lockable) {
2218 		umode_t mode;
2219 
2220 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2221 			mode = S_IRUGO;
2222 		else
2223 			mode = S_IRUGO | S_IWUSR;
2224 
2225 		md->power_ro_lock.show = power_ro_lock_show;
2226 		md->power_ro_lock.store = power_ro_lock_store;
2227 		sysfs_attr_init(&md->power_ro_lock.attr);
2228 		md->power_ro_lock.attr.mode = mode;
2229 		md->power_ro_lock.attr.name =
2230 					"ro_lock_until_next_power_on";
2231 		ret = device_create_file(disk_to_dev(md->disk),
2232 				&md->power_ro_lock);
2233 		if (ret)
2234 			goto power_ro_lock_fail;
2235 	}
2236 	return ret;
2237 
2238 power_ro_lock_fail:
2239 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2240 force_ro_fail:
2241 	del_gendisk(md->disk);
2242 
2243 	return ret;
2244 }
2245 
2246 static int mmc_blk_probe(struct mmc_card *card)
2247 {
2248 	struct mmc_blk_data *md, *part_md;
2249 	char cap_str[10];
2250 
2251 	/*
2252 	 * Check that the card supports the command class(es) we need.
2253 	 */
2254 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2255 		return -ENODEV;
2256 
2257 	mmc_fixup_device(card, mmc_blk_fixups);
2258 
2259 	md = mmc_blk_alloc(card);
2260 	if (IS_ERR(md))
2261 		return PTR_ERR(md);
2262 
2263 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2264 			cap_str, sizeof(cap_str));
2265 	pr_info("%s: %s %s %s %s\n",
2266 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2267 		cap_str, md->read_only ? "(ro)" : "");
2268 
2269 	if (mmc_blk_alloc_parts(card, md))
2270 		goto out;
2271 
2272 	dev_set_drvdata(&card->dev, md);
2273 
2274 	if (mmc_add_disk(md))
2275 		goto out;
2276 
2277 	list_for_each_entry(part_md, &md->part, part) {
2278 		if (mmc_add_disk(part_md))
2279 			goto out;
2280 	}
2281 
2282 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2283 	pm_runtime_use_autosuspend(&card->dev);
2284 
2285 	/*
2286 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2287 	 * decision to be taken during the SDIO init sequence instead.
2288 	 */
2289 	if (card->type != MMC_TYPE_SD_COMBO) {
2290 		pm_runtime_set_active(&card->dev);
2291 		pm_runtime_enable(&card->dev);
2292 	}
2293 
2294 	return 0;
2295 
2296  out:
2297 	mmc_blk_remove_parts(card, md);
2298 	mmc_blk_remove_req(md);
2299 	return 0;
2300 }
2301 
2302 static void mmc_blk_remove(struct mmc_card *card)
2303 {
2304 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2305 
2306 	mmc_blk_remove_parts(card, md);
2307 	pm_runtime_get_sync(&card->dev);
2308 	mmc_claim_host(card->host);
2309 	mmc_blk_part_switch(card, md);
2310 	mmc_release_host(card->host);
2311 	if (card->type != MMC_TYPE_SD_COMBO)
2312 		pm_runtime_disable(&card->dev);
2313 	pm_runtime_put_noidle(&card->dev);
2314 	mmc_blk_remove_req(md);
2315 	dev_set_drvdata(&card->dev, NULL);
2316 }
2317 
2318 static int _mmc_blk_suspend(struct mmc_card *card)
2319 {
2320 	struct mmc_blk_data *part_md;
2321 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2322 
2323 	if (md) {
2324 		mmc_queue_suspend(&md->queue);
2325 		list_for_each_entry(part_md, &md->part, part) {
2326 			mmc_queue_suspend(&part_md->queue);
2327 		}
2328 	}
2329 	return 0;
2330 }
2331 
2332 static void mmc_blk_shutdown(struct mmc_card *card)
2333 {
2334 	_mmc_blk_suspend(card);
2335 }
2336 
2337 #ifdef CONFIG_PM_SLEEP
2338 static int mmc_blk_suspend(struct device *dev)
2339 {
2340 	struct mmc_card *card = mmc_dev_to_card(dev);
2341 
2342 	return _mmc_blk_suspend(card);
2343 }
2344 
2345 static int mmc_blk_resume(struct device *dev)
2346 {
2347 	struct mmc_blk_data *part_md;
2348 	struct mmc_blk_data *md = dev_get_drvdata(dev);
2349 
2350 	if (md) {
2351 		/*
2352 		 * Resume involves the card going into idle state,
2353 		 * so current partition is always the main one.
2354 		 */
2355 		md->part_curr = md->part_type;
2356 		mmc_queue_resume(&md->queue);
2357 		list_for_each_entry(part_md, &md->part, part) {
2358 			mmc_queue_resume(&part_md->queue);
2359 		}
2360 	}
2361 	return 0;
2362 }
2363 #endif
2364 
2365 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2366 
2367 static struct mmc_driver mmc_driver = {
2368 	.drv		= {
2369 		.name	= "mmcblk",
2370 		.pm	= &mmc_blk_pm_ops,
2371 	},
2372 	.probe		= mmc_blk_probe,
2373 	.remove		= mmc_blk_remove,
2374 	.shutdown	= mmc_blk_shutdown,
2375 };
2376 
2377 static int __init mmc_blk_init(void)
2378 {
2379 	int res;
2380 
2381 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2382 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2383 
2384 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2385 
2386 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2387 	if (res)
2388 		goto out;
2389 
2390 	res = mmc_register_driver(&mmc_driver);
2391 	if (res)
2392 		goto out2;
2393 
2394 	return 0;
2395  out2:
2396 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2397  out:
2398 	return res;
2399 }
2400 
2401 static void __exit mmc_blk_exit(void)
2402 {
2403 	mmc_unregister_driver(&mmc_driver);
2404 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2405 }
2406 
2407 module_init(mmc_blk_init);
2408 module_exit(mmc_blk_exit);
2409 
2410 MODULE_LICENSE("GPL");
2411 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2412 
2413