xref: /openbmc/linux/drivers/mmc/core/block.c (revision 5b4cb650)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41 
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47 
48 #include <linux/uaccess.h>
49 
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
59 
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
65 
66 /*
67  * Set a 10 second timeout for polling write request busy state. Note, mmc core
68  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69  * second software timer to timeout the whole request, so 10 seconds should be
70  * ample.
71  */
72 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
73 #define MMC_SANITIZE_REQ_TIMEOUT 240000
74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
76 
77 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
78 				  (rq_data_dir(req) == WRITE))
79 static DEFINE_MUTEX(block_mutex);
80 
81 /*
82  * The defaults come from config options but can be overriden by module
83  * or bootarg options.
84  */
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86 
87 /*
88  * We've only got one major, so number of mmcblk devices is
89  * limited to (1 << 20) / number of minors per device.  It is also
90  * limited by the MAX_DEVICES below.
91  */
92 static int max_devices;
93 
94 #define MAX_DEVICES 256
95 
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
98 
99 /*
100  * There is one mmc_blk_data per slot.
101  */
102 struct mmc_blk_data {
103 	struct device	*parent;
104 	struct gendisk	*disk;
105 	struct mmc_queue queue;
106 	struct list_head part;
107 	struct list_head rpmbs;
108 
109 	unsigned int	flags;
110 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
111 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
112 
113 	unsigned int	usage;
114 	unsigned int	read_only;
115 	unsigned int	part_type;
116 	unsigned int	reset_done;
117 #define MMC_BLK_READ		BIT(0)
118 #define MMC_BLK_WRITE		BIT(1)
119 #define MMC_BLK_DISCARD		BIT(2)
120 #define MMC_BLK_SECDISCARD	BIT(3)
121 #define MMC_BLK_CQE_RECOVERY	BIT(4)
122 
123 	/*
124 	 * Only set in main mmc_blk_data associated
125 	 * with mmc_card with dev_set_drvdata, and keeps
126 	 * track of the current selected device partition.
127 	 */
128 	unsigned int	part_curr;
129 	struct device_attribute force_ro;
130 	struct device_attribute power_ro_lock;
131 	int	area_type;
132 
133 	/* debugfs files (only in main mmc_blk_data) */
134 	struct dentry *status_dentry;
135 	struct dentry *ext_csd_dentry;
136 };
137 
138 /* Device type for RPMB character devices */
139 static dev_t mmc_rpmb_devt;
140 
141 /* Bus type for RPMB character devices */
142 static struct bus_type mmc_rpmb_bus_type = {
143 	.name = "mmc_rpmb",
144 };
145 
146 /**
147  * struct mmc_rpmb_data - special RPMB device type for these areas
148  * @dev: the device for the RPMB area
149  * @chrdev: character device for the RPMB area
150  * @id: unique device ID number
151  * @part_index: partition index (0 on first)
152  * @md: parent MMC block device
153  * @node: list item, so we can put this device on a list
154  */
155 struct mmc_rpmb_data {
156 	struct device dev;
157 	struct cdev chrdev;
158 	int id;
159 	unsigned int part_index;
160 	struct mmc_blk_data *md;
161 	struct list_head node;
162 };
163 
164 static DEFINE_MUTEX(open_lock);
165 
166 module_param(perdev_minors, int, 0444);
167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
168 
169 static inline int mmc_blk_part_switch(struct mmc_card *card,
170 				      unsigned int part_type);
171 
172 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
173 {
174 	struct mmc_blk_data *md;
175 
176 	mutex_lock(&open_lock);
177 	md = disk->private_data;
178 	if (md && md->usage == 0)
179 		md = NULL;
180 	if (md)
181 		md->usage++;
182 	mutex_unlock(&open_lock);
183 
184 	return md;
185 }
186 
187 static inline int mmc_get_devidx(struct gendisk *disk)
188 {
189 	int devidx = disk->first_minor / perdev_minors;
190 	return devidx;
191 }
192 
193 static void mmc_blk_put(struct mmc_blk_data *md)
194 {
195 	mutex_lock(&open_lock);
196 	md->usage--;
197 	if (md->usage == 0) {
198 		int devidx = mmc_get_devidx(md->disk);
199 		blk_put_queue(md->queue.queue);
200 		ida_simple_remove(&mmc_blk_ida, devidx);
201 		put_disk(md->disk);
202 		kfree(md);
203 	}
204 	mutex_unlock(&open_lock);
205 }
206 
207 static ssize_t power_ro_lock_show(struct device *dev,
208 		struct device_attribute *attr, char *buf)
209 {
210 	int ret;
211 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
212 	struct mmc_card *card = md->queue.card;
213 	int locked = 0;
214 
215 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
216 		locked = 2;
217 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
218 		locked = 1;
219 
220 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
221 
222 	mmc_blk_put(md);
223 
224 	return ret;
225 }
226 
227 static ssize_t power_ro_lock_store(struct device *dev,
228 		struct device_attribute *attr, const char *buf, size_t count)
229 {
230 	int ret;
231 	struct mmc_blk_data *md, *part_md;
232 	struct mmc_queue *mq;
233 	struct request *req;
234 	unsigned long set;
235 
236 	if (kstrtoul(buf, 0, &set))
237 		return -EINVAL;
238 
239 	if (set != 1)
240 		return count;
241 
242 	md = mmc_blk_get(dev_to_disk(dev));
243 	mq = &md->queue;
244 
245 	/* Dispatch locking to the block layer */
246 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
247 	if (IS_ERR(req)) {
248 		count = PTR_ERR(req);
249 		goto out_put;
250 	}
251 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
252 	blk_execute_rq(mq->queue, NULL, req, 0);
253 	ret = req_to_mmc_queue_req(req)->drv_op_result;
254 	blk_put_request(req);
255 
256 	if (!ret) {
257 		pr_info("%s: Locking boot partition ro until next power on\n",
258 			md->disk->disk_name);
259 		set_disk_ro(md->disk, 1);
260 
261 		list_for_each_entry(part_md, &md->part, part)
262 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
263 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
264 				set_disk_ro(part_md->disk, 1);
265 			}
266 	}
267 out_put:
268 	mmc_blk_put(md);
269 	return count;
270 }
271 
272 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
273 			     char *buf)
274 {
275 	int ret;
276 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
277 
278 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
279 		       get_disk_ro(dev_to_disk(dev)) ^
280 		       md->read_only);
281 	mmc_blk_put(md);
282 	return ret;
283 }
284 
285 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
286 			      const char *buf, size_t count)
287 {
288 	int ret;
289 	char *end;
290 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
291 	unsigned long set = simple_strtoul(buf, &end, 0);
292 	if (end == buf) {
293 		ret = -EINVAL;
294 		goto out;
295 	}
296 
297 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
298 	ret = count;
299 out:
300 	mmc_blk_put(md);
301 	return ret;
302 }
303 
304 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
305 {
306 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
307 	int ret = -ENXIO;
308 
309 	mutex_lock(&block_mutex);
310 	if (md) {
311 		if (md->usage == 2)
312 			check_disk_change(bdev);
313 		ret = 0;
314 
315 		if ((mode & FMODE_WRITE) && md->read_only) {
316 			mmc_blk_put(md);
317 			ret = -EROFS;
318 		}
319 	}
320 	mutex_unlock(&block_mutex);
321 
322 	return ret;
323 }
324 
325 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
326 {
327 	struct mmc_blk_data *md = disk->private_data;
328 
329 	mutex_lock(&block_mutex);
330 	mmc_blk_put(md);
331 	mutex_unlock(&block_mutex);
332 }
333 
334 static int
335 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
336 {
337 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
338 	geo->heads = 4;
339 	geo->sectors = 16;
340 	return 0;
341 }
342 
343 struct mmc_blk_ioc_data {
344 	struct mmc_ioc_cmd ic;
345 	unsigned char *buf;
346 	u64 buf_bytes;
347 	struct mmc_rpmb_data *rpmb;
348 };
349 
350 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
351 	struct mmc_ioc_cmd __user *user)
352 {
353 	struct mmc_blk_ioc_data *idata;
354 	int err;
355 
356 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
357 	if (!idata) {
358 		err = -ENOMEM;
359 		goto out;
360 	}
361 
362 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
363 		err = -EFAULT;
364 		goto idata_err;
365 	}
366 
367 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
368 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
369 		err = -EOVERFLOW;
370 		goto idata_err;
371 	}
372 
373 	if (!idata->buf_bytes) {
374 		idata->buf = NULL;
375 		return idata;
376 	}
377 
378 	idata->buf = memdup_user((void __user *)(unsigned long)
379 				 idata->ic.data_ptr, idata->buf_bytes);
380 	if (IS_ERR(idata->buf)) {
381 		err = PTR_ERR(idata->buf);
382 		goto idata_err;
383 	}
384 
385 	return idata;
386 
387 idata_err:
388 	kfree(idata);
389 out:
390 	return ERR_PTR(err);
391 }
392 
393 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
394 				      struct mmc_blk_ioc_data *idata)
395 {
396 	struct mmc_ioc_cmd *ic = &idata->ic;
397 
398 	if (copy_to_user(&(ic_ptr->response), ic->response,
399 			 sizeof(ic->response)))
400 		return -EFAULT;
401 
402 	if (!idata->ic.write_flag) {
403 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
404 				 idata->buf, idata->buf_bytes))
405 			return -EFAULT;
406 	}
407 
408 	return 0;
409 }
410 
411 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
412 				       u32 retries_max)
413 {
414 	int err;
415 	u32 retry_count = 0;
416 
417 	if (!status || !retries_max)
418 		return -EINVAL;
419 
420 	do {
421 		err = __mmc_send_status(card, status, 5);
422 		if (err)
423 			break;
424 
425 		if (!R1_STATUS(*status) &&
426 				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
427 			break; /* RPMB programming operation complete */
428 
429 		/*
430 		 * Rechedule to give the MMC device a chance to continue
431 		 * processing the previous command without being polled too
432 		 * frequently.
433 		 */
434 		usleep_range(1000, 5000);
435 	} while (++retry_count < retries_max);
436 
437 	if (retry_count == retries_max)
438 		err = -EPERM;
439 
440 	return err;
441 }
442 
443 static int ioctl_do_sanitize(struct mmc_card *card)
444 {
445 	int err;
446 
447 	if (!mmc_can_sanitize(card)) {
448 			pr_warn("%s: %s - SANITIZE is not supported\n",
449 				mmc_hostname(card->host), __func__);
450 			err = -EOPNOTSUPP;
451 			goto out;
452 	}
453 
454 	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
455 		mmc_hostname(card->host), __func__);
456 
457 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
458 					EXT_CSD_SANITIZE_START, 1,
459 					MMC_SANITIZE_REQ_TIMEOUT);
460 
461 	if (err)
462 		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
463 		       mmc_hostname(card->host), __func__, err);
464 
465 	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
466 					     __func__);
467 out:
468 	return err;
469 }
470 
471 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
472 			       struct mmc_blk_ioc_data *idata)
473 {
474 	struct mmc_command cmd = {}, sbc = {};
475 	struct mmc_data data = {};
476 	struct mmc_request mrq = {};
477 	struct scatterlist sg;
478 	int err;
479 	unsigned int target_part;
480 	u32 status = 0;
481 
482 	if (!card || !md || !idata)
483 		return -EINVAL;
484 
485 	/*
486 	 * The RPMB accesses comes in from the character device, so we
487 	 * need to target these explicitly. Else we just target the
488 	 * partition type for the block device the ioctl() was issued
489 	 * on.
490 	 */
491 	if (idata->rpmb) {
492 		/* Support multiple RPMB partitions */
493 		target_part = idata->rpmb->part_index;
494 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
495 	} else {
496 		target_part = md->part_type;
497 	}
498 
499 	cmd.opcode = idata->ic.opcode;
500 	cmd.arg = idata->ic.arg;
501 	cmd.flags = idata->ic.flags;
502 
503 	if (idata->buf_bytes) {
504 		data.sg = &sg;
505 		data.sg_len = 1;
506 		data.blksz = idata->ic.blksz;
507 		data.blocks = idata->ic.blocks;
508 
509 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
510 
511 		if (idata->ic.write_flag)
512 			data.flags = MMC_DATA_WRITE;
513 		else
514 			data.flags = MMC_DATA_READ;
515 
516 		/* data.flags must already be set before doing this. */
517 		mmc_set_data_timeout(&data, card);
518 
519 		/* Allow overriding the timeout_ns for empirical tuning. */
520 		if (idata->ic.data_timeout_ns)
521 			data.timeout_ns = idata->ic.data_timeout_ns;
522 
523 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
524 			/*
525 			 * Pretend this is a data transfer and rely on the
526 			 * host driver to compute timeout.  When all host
527 			 * drivers support cmd.cmd_timeout for R1B, this
528 			 * can be changed to:
529 			 *
530 			 *     mrq.data = NULL;
531 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
532 			 */
533 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
534 		}
535 
536 		mrq.data = &data;
537 	}
538 
539 	mrq.cmd = &cmd;
540 
541 	err = mmc_blk_part_switch(card, target_part);
542 	if (err)
543 		return err;
544 
545 	if (idata->ic.is_acmd) {
546 		err = mmc_app_cmd(card->host, card);
547 		if (err)
548 			return err;
549 	}
550 
551 	if (idata->rpmb) {
552 		sbc.opcode = MMC_SET_BLOCK_COUNT;
553 		/*
554 		 * We don't do any blockcount validation because the max size
555 		 * may be increased by a future standard. We just copy the
556 		 * 'Reliable Write' bit here.
557 		 */
558 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
559 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
560 		mrq.sbc = &sbc;
561 	}
562 
563 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
564 	    (cmd.opcode == MMC_SWITCH)) {
565 		err = ioctl_do_sanitize(card);
566 
567 		if (err)
568 			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
569 			       __func__, err);
570 
571 		return err;
572 	}
573 
574 	mmc_wait_for_req(card->host, &mrq);
575 
576 	if (cmd.error) {
577 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
578 						__func__, cmd.error);
579 		return cmd.error;
580 	}
581 	if (data.error) {
582 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
583 						__func__, data.error);
584 		return data.error;
585 	}
586 
587 	/*
588 	 * Make sure the cache of the PARTITION_CONFIG register and
589 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
590 	 * changed it successfully.
591 	 */
592 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
593 	    (cmd.opcode == MMC_SWITCH)) {
594 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
595 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
596 
597 		/*
598 		 * Update cache so the next mmc_blk_part_switch call operates
599 		 * on up-to-date data.
600 		 */
601 		card->ext_csd.part_config = value;
602 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
603 	}
604 
605 	/*
606 	 * According to the SD specs, some commands require a delay after
607 	 * issuing the command.
608 	 */
609 	if (idata->ic.postsleep_min_us)
610 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
611 
612 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
613 
614 	if (idata->rpmb) {
615 		/*
616 		 * Ensure RPMB command has completed by polling CMD13
617 		 * "Send Status".
618 		 */
619 		err = ioctl_rpmb_card_status_poll(card, &status, 5);
620 		if (err)
621 			dev_err(mmc_dev(card->host),
622 					"%s: Card Status=0x%08X, error %d\n",
623 					__func__, status, err);
624 	}
625 
626 	return err;
627 }
628 
629 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
630 			     struct mmc_ioc_cmd __user *ic_ptr,
631 			     struct mmc_rpmb_data *rpmb)
632 {
633 	struct mmc_blk_ioc_data *idata;
634 	struct mmc_blk_ioc_data *idatas[1];
635 	struct mmc_queue *mq;
636 	struct mmc_card *card;
637 	int err = 0, ioc_err = 0;
638 	struct request *req;
639 
640 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
641 	if (IS_ERR(idata))
642 		return PTR_ERR(idata);
643 	/* This will be NULL on non-RPMB ioctl():s */
644 	idata->rpmb = rpmb;
645 
646 	card = md->queue.card;
647 	if (IS_ERR(card)) {
648 		err = PTR_ERR(card);
649 		goto cmd_done;
650 	}
651 
652 	/*
653 	 * Dispatch the ioctl() into the block request queue.
654 	 */
655 	mq = &md->queue;
656 	req = blk_get_request(mq->queue,
657 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
658 	if (IS_ERR(req)) {
659 		err = PTR_ERR(req);
660 		goto cmd_done;
661 	}
662 	idatas[0] = idata;
663 	req_to_mmc_queue_req(req)->drv_op =
664 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
665 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
666 	req_to_mmc_queue_req(req)->ioc_count = 1;
667 	blk_execute_rq(mq->queue, NULL, req, 0);
668 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
669 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
670 	blk_put_request(req);
671 
672 cmd_done:
673 	kfree(idata->buf);
674 	kfree(idata);
675 	return ioc_err ? ioc_err : err;
676 }
677 
678 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
679 				   struct mmc_ioc_multi_cmd __user *user,
680 				   struct mmc_rpmb_data *rpmb)
681 {
682 	struct mmc_blk_ioc_data **idata = NULL;
683 	struct mmc_ioc_cmd __user *cmds = user->cmds;
684 	struct mmc_card *card;
685 	struct mmc_queue *mq;
686 	int i, err = 0, ioc_err = 0;
687 	__u64 num_of_cmds;
688 	struct request *req;
689 
690 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
691 			   sizeof(num_of_cmds)))
692 		return -EFAULT;
693 
694 	if (!num_of_cmds)
695 		return 0;
696 
697 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
698 		return -EINVAL;
699 
700 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
701 	if (!idata)
702 		return -ENOMEM;
703 
704 	for (i = 0; i < num_of_cmds; i++) {
705 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
706 		if (IS_ERR(idata[i])) {
707 			err = PTR_ERR(idata[i]);
708 			num_of_cmds = i;
709 			goto cmd_err;
710 		}
711 		/* This will be NULL on non-RPMB ioctl():s */
712 		idata[i]->rpmb = rpmb;
713 	}
714 
715 	card = md->queue.card;
716 	if (IS_ERR(card)) {
717 		err = PTR_ERR(card);
718 		goto cmd_err;
719 	}
720 
721 
722 	/*
723 	 * Dispatch the ioctl()s into the block request queue.
724 	 */
725 	mq = &md->queue;
726 	req = blk_get_request(mq->queue,
727 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
728 	if (IS_ERR(req)) {
729 		err = PTR_ERR(req);
730 		goto cmd_err;
731 	}
732 	req_to_mmc_queue_req(req)->drv_op =
733 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
734 	req_to_mmc_queue_req(req)->drv_op_data = idata;
735 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
736 	blk_execute_rq(mq->queue, NULL, req, 0);
737 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
738 
739 	/* copy to user if data and response */
740 	for (i = 0; i < num_of_cmds && !err; i++)
741 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
742 
743 	blk_put_request(req);
744 
745 cmd_err:
746 	for (i = 0; i < num_of_cmds; i++) {
747 		kfree(idata[i]->buf);
748 		kfree(idata[i]);
749 	}
750 	kfree(idata);
751 	return ioc_err ? ioc_err : err;
752 }
753 
754 static int mmc_blk_check_blkdev(struct block_device *bdev)
755 {
756 	/*
757 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
758 	 * whole block device, not on a partition.  This prevents overspray
759 	 * between sibling partitions.
760 	 */
761 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
762 		return -EPERM;
763 	return 0;
764 }
765 
766 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
767 	unsigned int cmd, unsigned long arg)
768 {
769 	struct mmc_blk_data *md;
770 	int ret;
771 
772 	switch (cmd) {
773 	case MMC_IOC_CMD:
774 		ret = mmc_blk_check_blkdev(bdev);
775 		if (ret)
776 			return ret;
777 		md = mmc_blk_get(bdev->bd_disk);
778 		if (!md)
779 			return -EINVAL;
780 		ret = mmc_blk_ioctl_cmd(md,
781 					(struct mmc_ioc_cmd __user *)arg,
782 					NULL);
783 		mmc_blk_put(md);
784 		return ret;
785 	case MMC_IOC_MULTI_CMD:
786 		ret = mmc_blk_check_blkdev(bdev);
787 		if (ret)
788 			return ret;
789 		md = mmc_blk_get(bdev->bd_disk);
790 		if (!md)
791 			return -EINVAL;
792 		ret = mmc_blk_ioctl_multi_cmd(md,
793 					(struct mmc_ioc_multi_cmd __user *)arg,
794 					NULL);
795 		mmc_blk_put(md);
796 		return ret;
797 	default:
798 		return -EINVAL;
799 	}
800 }
801 
802 #ifdef CONFIG_COMPAT
803 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
804 	unsigned int cmd, unsigned long arg)
805 {
806 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
807 }
808 #endif
809 
810 static const struct block_device_operations mmc_bdops = {
811 	.open			= mmc_blk_open,
812 	.release		= mmc_blk_release,
813 	.getgeo			= mmc_blk_getgeo,
814 	.owner			= THIS_MODULE,
815 	.ioctl			= mmc_blk_ioctl,
816 #ifdef CONFIG_COMPAT
817 	.compat_ioctl		= mmc_blk_compat_ioctl,
818 #endif
819 };
820 
821 static int mmc_blk_part_switch_pre(struct mmc_card *card,
822 				   unsigned int part_type)
823 {
824 	int ret = 0;
825 
826 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
827 		if (card->ext_csd.cmdq_en) {
828 			ret = mmc_cmdq_disable(card);
829 			if (ret)
830 				return ret;
831 		}
832 		mmc_retune_pause(card->host);
833 	}
834 
835 	return ret;
836 }
837 
838 static int mmc_blk_part_switch_post(struct mmc_card *card,
839 				    unsigned int part_type)
840 {
841 	int ret = 0;
842 
843 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
844 		mmc_retune_unpause(card->host);
845 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
846 			ret = mmc_cmdq_enable(card);
847 	}
848 
849 	return ret;
850 }
851 
852 static inline int mmc_blk_part_switch(struct mmc_card *card,
853 				      unsigned int part_type)
854 {
855 	int ret = 0;
856 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
857 
858 	if (main_md->part_curr == part_type)
859 		return 0;
860 
861 	if (mmc_card_mmc(card)) {
862 		u8 part_config = card->ext_csd.part_config;
863 
864 		ret = mmc_blk_part_switch_pre(card, part_type);
865 		if (ret)
866 			return ret;
867 
868 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
869 		part_config |= part_type;
870 
871 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
872 				 EXT_CSD_PART_CONFIG, part_config,
873 				 card->ext_csd.part_time);
874 		if (ret) {
875 			mmc_blk_part_switch_post(card, part_type);
876 			return ret;
877 		}
878 
879 		card->ext_csd.part_config = part_config;
880 
881 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
882 	}
883 
884 	main_md->part_curr = part_type;
885 	return ret;
886 }
887 
888 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
889 {
890 	int err;
891 	u32 result;
892 	__be32 *blocks;
893 
894 	struct mmc_request mrq = {};
895 	struct mmc_command cmd = {};
896 	struct mmc_data data = {};
897 
898 	struct scatterlist sg;
899 
900 	cmd.opcode = MMC_APP_CMD;
901 	cmd.arg = card->rca << 16;
902 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
903 
904 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
905 	if (err)
906 		return err;
907 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
908 		return -EIO;
909 
910 	memset(&cmd, 0, sizeof(struct mmc_command));
911 
912 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
913 	cmd.arg = 0;
914 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
915 
916 	data.blksz = 4;
917 	data.blocks = 1;
918 	data.flags = MMC_DATA_READ;
919 	data.sg = &sg;
920 	data.sg_len = 1;
921 	mmc_set_data_timeout(&data, card);
922 
923 	mrq.cmd = &cmd;
924 	mrq.data = &data;
925 
926 	blocks = kmalloc(4, GFP_KERNEL);
927 	if (!blocks)
928 		return -ENOMEM;
929 
930 	sg_init_one(&sg, blocks, 4);
931 
932 	mmc_wait_for_req(card->host, &mrq);
933 
934 	result = ntohl(*blocks);
935 	kfree(blocks);
936 
937 	if (cmd.error || data.error)
938 		return -EIO;
939 
940 	*written_blocks = result;
941 
942 	return 0;
943 }
944 
945 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
946 {
947 	if (host->actual_clock)
948 		return host->actual_clock / 1000;
949 
950 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
951 	if (host->ios.clock)
952 		return host->ios.clock / 2000;
953 
954 	/* How can there be no clock */
955 	WARN_ON_ONCE(1);
956 	return 100; /* 100 kHz is minimum possible value */
957 }
958 
959 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
960 					    struct mmc_data *data)
961 {
962 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
963 	unsigned int khz;
964 
965 	if (data->timeout_clks) {
966 		khz = mmc_blk_clock_khz(host);
967 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
968 	}
969 
970 	return ms;
971 }
972 
973 static inline bool mmc_blk_in_tran_state(u32 status)
974 {
975 	/*
976 	 * Some cards mishandle the status bits, so make sure to check both the
977 	 * busy indication and the card state.
978 	 */
979 	return status & R1_READY_FOR_DATA &&
980 	       (R1_CURRENT_STATE(status) == R1_STATE_TRAN);
981 }
982 
983 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
984 			    struct request *req, u32 *resp_errs)
985 {
986 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
987 	int err = 0;
988 	u32 status;
989 
990 	do {
991 		bool done = time_after(jiffies, timeout);
992 
993 		err = __mmc_send_status(card, &status, 5);
994 		if (err) {
995 			pr_err("%s: error %d requesting status\n",
996 			       req->rq_disk->disk_name, err);
997 			return err;
998 		}
999 
1000 		/* Accumulate any response error bits seen */
1001 		if (resp_errs)
1002 			*resp_errs |= status;
1003 
1004 		/*
1005 		 * Timeout if the device never becomes ready for data and never
1006 		 * leaves the program state.
1007 		 */
1008 		if (done) {
1009 			pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n",
1010 				mmc_hostname(card->host),
1011 				req->rq_disk->disk_name, __func__, status);
1012 			return -ETIMEDOUT;
1013 		}
1014 
1015 		/*
1016 		 * Some cards mishandle the status bits,
1017 		 * so make sure to check both the busy
1018 		 * indication and the card state.
1019 		 */
1020 	} while (!mmc_blk_in_tran_state(status));
1021 
1022 	return err;
1023 }
1024 
1025 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1026 			 int type)
1027 {
1028 	int err;
1029 
1030 	if (md->reset_done & type)
1031 		return -EEXIST;
1032 
1033 	md->reset_done |= type;
1034 	err = mmc_hw_reset(host);
1035 	/* Ensure we switch back to the correct partition */
1036 	if (err != -EOPNOTSUPP) {
1037 		struct mmc_blk_data *main_md =
1038 			dev_get_drvdata(&host->card->dev);
1039 		int part_err;
1040 
1041 		main_md->part_curr = main_md->part_type;
1042 		part_err = mmc_blk_part_switch(host->card, md->part_type);
1043 		if (part_err) {
1044 			/*
1045 			 * We have failed to get back into the correct
1046 			 * partition, so we need to abort the whole request.
1047 			 */
1048 			return -ENODEV;
1049 		}
1050 	}
1051 	return err;
1052 }
1053 
1054 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1055 {
1056 	md->reset_done &= ~type;
1057 }
1058 
1059 /*
1060  * The non-block commands come back from the block layer after it queued it and
1061  * processed it with all other requests and then they get issued in this
1062  * function.
1063  */
1064 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1065 {
1066 	struct mmc_queue_req *mq_rq;
1067 	struct mmc_card *card = mq->card;
1068 	struct mmc_blk_data *md = mq->blkdata;
1069 	struct mmc_blk_ioc_data **idata;
1070 	bool rpmb_ioctl;
1071 	u8 **ext_csd;
1072 	u32 status;
1073 	int ret;
1074 	int i;
1075 
1076 	mq_rq = req_to_mmc_queue_req(req);
1077 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1078 
1079 	switch (mq_rq->drv_op) {
1080 	case MMC_DRV_OP_IOCTL:
1081 	case MMC_DRV_OP_IOCTL_RPMB:
1082 		idata = mq_rq->drv_op_data;
1083 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1084 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1085 			if (ret)
1086 				break;
1087 		}
1088 		/* Always switch back to main area after RPMB access */
1089 		if (rpmb_ioctl)
1090 			mmc_blk_part_switch(card, 0);
1091 		break;
1092 	case MMC_DRV_OP_BOOT_WP:
1093 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1094 				 card->ext_csd.boot_ro_lock |
1095 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1096 				 card->ext_csd.part_time);
1097 		if (ret)
1098 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1099 			       md->disk->disk_name, ret);
1100 		else
1101 			card->ext_csd.boot_ro_lock |=
1102 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1103 		break;
1104 	case MMC_DRV_OP_GET_CARD_STATUS:
1105 		ret = mmc_send_status(card, &status);
1106 		if (!ret)
1107 			ret = status;
1108 		break;
1109 	case MMC_DRV_OP_GET_EXT_CSD:
1110 		ext_csd = mq_rq->drv_op_data;
1111 		ret = mmc_get_ext_csd(card, ext_csd);
1112 		break;
1113 	default:
1114 		pr_err("%s: unknown driver specific operation\n",
1115 		       md->disk->disk_name);
1116 		ret = -EINVAL;
1117 		break;
1118 	}
1119 	mq_rq->drv_op_result = ret;
1120 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1121 }
1122 
1123 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1124 {
1125 	struct mmc_blk_data *md = mq->blkdata;
1126 	struct mmc_card *card = md->queue.card;
1127 	unsigned int from, nr, arg;
1128 	int err = 0, type = MMC_BLK_DISCARD;
1129 	blk_status_t status = BLK_STS_OK;
1130 
1131 	if (!mmc_can_erase(card)) {
1132 		status = BLK_STS_NOTSUPP;
1133 		goto fail;
1134 	}
1135 
1136 	from = blk_rq_pos(req);
1137 	nr = blk_rq_sectors(req);
1138 
1139 	if (mmc_can_discard(card))
1140 		arg = MMC_DISCARD_ARG;
1141 	else if (mmc_can_trim(card))
1142 		arg = MMC_TRIM_ARG;
1143 	else
1144 		arg = MMC_ERASE_ARG;
1145 	do {
1146 		err = 0;
1147 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1148 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1149 					 INAND_CMD38_ARG_EXT_CSD,
1150 					 arg == MMC_TRIM_ARG ?
1151 					 INAND_CMD38_ARG_TRIM :
1152 					 INAND_CMD38_ARG_ERASE,
1153 					 0);
1154 		}
1155 		if (!err)
1156 			err = mmc_erase(card, from, nr, arg);
1157 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1158 	if (err)
1159 		status = BLK_STS_IOERR;
1160 	else
1161 		mmc_blk_reset_success(md, type);
1162 fail:
1163 	blk_mq_end_request(req, status);
1164 }
1165 
1166 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1167 				       struct request *req)
1168 {
1169 	struct mmc_blk_data *md = mq->blkdata;
1170 	struct mmc_card *card = md->queue.card;
1171 	unsigned int from, nr, arg;
1172 	int err = 0, type = MMC_BLK_SECDISCARD;
1173 	blk_status_t status = BLK_STS_OK;
1174 
1175 	if (!(mmc_can_secure_erase_trim(card))) {
1176 		status = BLK_STS_NOTSUPP;
1177 		goto out;
1178 	}
1179 
1180 	from = blk_rq_pos(req);
1181 	nr = blk_rq_sectors(req);
1182 
1183 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1184 		arg = MMC_SECURE_TRIM1_ARG;
1185 	else
1186 		arg = MMC_SECURE_ERASE_ARG;
1187 
1188 retry:
1189 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1190 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1191 				 INAND_CMD38_ARG_EXT_CSD,
1192 				 arg == MMC_SECURE_TRIM1_ARG ?
1193 				 INAND_CMD38_ARG_SECTRIM1 :
1194 				 INAND_CMD38_ARG_SECERASE,
1195 				 0);
1196 		if (err)
1197 			goto out_retry;
1198 	}
1199 
1200 	err = mmc_erase(card, from, nr, arg);
1201 	if (err == -EIO)
1202 		goto out_retry;
1203 	if (err) {
1204 		status = BLK_STS_IOERR;
1205 		goto out;
1206 	}
1207 
1208 	if (arg == MMC_SECURE_TRIM1_ARG) {
1209 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1210 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1211 					 INAND_CMD38_ARG_EXT_CSD,
1212 					 INAND_CMD38_ARG_SECTRIM2,
1213 					 0);
1214 			if (err)
1215 				goto out_retry;
1216 		}
1217 
1218 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1219 		if (err == -EIO)
1220 			goto out_retry;
1221 		if (err) {
1222 			status = BLK_STS_IOERR;
1223 			goto out;
1224 		}
1225 	}
1226 
1227 out_retry:
1228 	if (err && !mmc_blk_reset(md, card->host, type))
1229 		goto retry;
1230 	if (!err)
1231 		mmc_blk_reset_success(md, type);
1232 out:
1233 	blk_mq_end_request(req, status);
1234 }
1235 
1236 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1237 {
1238 	struct mmc_blk_data *md = mq->blkdata;
1239 	struct mmc_card *card = md->queue.card;
1240 	int ret = 0;
1241 
1242 	ret = mmc_flush_cache(card);
1243 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1244 }
1245 
1246 /*
1247  * Reformat current write as a reliable write, supporting
1248  * both legacy and the enhanced reliable write MMC cards.
1249  * In each transfer we'll handle only as much as a single
1250  * reliable write can handle, thus finish the request in
1251  * partial completions.
1252  */
1253 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1254 				    struct mmc_card *card,
1255 				    struct request *req)
1256 {
1257 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1258 		/* Legacy mode imposes restrictions on transfers. */
1259 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1260 			brq->data.blocks = 1;
1261 
1262 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1263 			brq->data.blocks = card->ext_csd.rel_sectors;
1264 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1265 			brq->data.blocks = 1;
1266 	}
1267 }
1268 
1269 #define CMD_ERRORS_EXCL_OOR						\
1270 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1271 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1272 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1273 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1274 	 R1_CC_ERROR |		/* Card controller error */		\
1275 	 R1_ERROR)		/* General/unknown error */
1276 
1277 #define CMD_ERRORS							\
1278 	(CMD_ERRORS_EXCL_OOR |						\
1279 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1280 
1281 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1282 {
1283 	u32 val;
1284 
1285 	/*
1286 	 * Per the SD specification(physical layer version 4.10)[1],
1287 	 * section 4.3.3, it explicitly states that "When the last
1288 	 * block of user area is read using CMD18, the host should
1289 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1290 	 * is correct". And JESD84-B51 for eMMC also has a similar
1291 	 * statement on section 6.8.3.
1292 	 *
1293 	 * Multiple block read/write could be done by either predefined
1294 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1295 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1296 	 *
1297 	 * However the spec[1] doesn't tell us whether we should also
1298 	 * ignore that for predefined method. But per the spec[1], section
1299 	 * 4.15 Set Block Count Command, it says"If illegal block count
1300 	 * is set, out of range error will be indicated during read/write
1301 	 * operation (For example, data transfer is stopped at user area
1302 	 * boundary)." In another word, we could expect a out of range error
1303 	 * in the response for the following CMD18/25. And if argument of
1304 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1305 	 * we could also expect to get a -ETIMEDOUT or any error number from
1306 	 * the host drivers due to missing data response(for write)/data(for
1307 	 * read), as the cards will stop the data transfer by itself per the
1308 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1309 	 */
1310 
1311 	if (!brq->stop.error) {
1312 		bool oor_with_open_end;
1313 		/* If there is no error yet, check R1 response */
1314 
1315 		val = brq->stop.resp[0] & CMD_ERRORS;
1316 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1317 
1318 		if (val && !oor_with_open_end)
1319 			brq->stop.error = -EIO;
1320 	}
1321 }
1322 
1323 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1324 			      int disable_multi, bool *do_rel_wr_p,
1325 			      bool *do_data_tag_p)
1326 {
1327 	struct mmc_blk_data *md = mq->blkdata;
1328 	struct mmc_card *card = md->queue.card;
1329 	struct mmc_blk_request *brq = &mqrq->brq;
1330 	struct request *req = mmc_queue_req_to_req(mqrq);
1331 	bool do_rel_wr, do_data_tag;
1332 
1333 	/*
1334 	 * Reliable writes are used to implement Forced Unit Access and
1335 	 * are supported only on MMCs.
1336 	 */
1337 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1338 		    rq_data_dir(req) == WRITE &&
1339 		    (md->flags & MMC_BLK_REL_WR);
1340 
1341 	memset(brq, 0, sizeof(struct mmc_blk_request));
1342 
1343 	brq->mrq.data = &brq->data;
1344 	brq->mrq.tag = req->tag;
1345 
1346 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1347 	brq->stop.arg = 0;
1348 
1349 	if (rq_data_dir(req) == READ) {
1350 		brq->data.flags = MMC_DATA_READ;
1351 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1352 	} else {
1353 		brq->data.flags = MMC_DATA_WRITE;
1354 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1355 	}
1356 
1357 	brq->data.blksz = 512;
1358 	brq->data.blocks = blk_rq_sectors(req);
1359 	brq->data.blk_addr = blk_rq_pos(req);
1360 
1361 	/*
1362 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1363 	 * The eMMC will give "high" priority tasks priority over "simple"
1364 	 * priority tasks. Here we always set "simple" priority by not setting
1365 	 * MMC_DATA_PRIO.
1366 	 */
1367 
1368 	/*
1369 	 * The block layer doesn't support all sector count
1370 	 * restrictions, so we need to be prepared for too big
1371 	 * requests.
1372 	 */
1373 	if (brq->data.blocks > card->host->max_blk_count)
1374 		brq->data.blocks = card->host->max_blk_count;
1375 
1376 	if (brq->data.blocks > 1) {
1377 		/*
1378 		 * Some SD cards in SPI mode return a CRC error or even lock up
1379 		 * completely when trying to read the last block using a
1380 		 * multiblock read command.
1381 		 */
1382 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1383 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1384 		     get_capacity(md->disk)))
1385 			brq->data.blocks--;
1386 
1387 		/*
1388 		 * After a read error, we redo the request one sector
1389 		 * at a time in order to accurately determine which
1390 		 * sectors can be read successfully.
1391 		 */
1392 		if (disable_multi)
1393 			brq->data.blocks = 1;
1394 
1395 		/*
1396 		 * Some controllers have HW issues while operating
1397 		 * in multiple I/O mode
1398 		 */
1399 		if (card->host->ops->multi_io_quirk)
1400 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1401 						(rq_data_dir(req) == READ) ?
1402 						MMC_DATA_READ : MMC_DATA_WRITE,
1403 						brq->data.blocks);
1404 	}
1405 
1406 	if (do_rel_wr) {
1407 		mmc_apply_rel_rw(brq, card, req);
1408 		brq->data.flags |= MMC_DATA_REL_WR;
1409 	}
1410 
1411 	/*
1412 	 * Data tag is used only during writing meta data to speed
1413 	 * up write and any subsequent read of this meta data
1414 	 */
1415 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1416 		      (req->cmd_flags & REQ_META) &&
1417 		      (rq_data_dir(req) == WRITE) &&
1418 		      ((brq->data.blocks * brq->data.blksz) >=
1419 		       card->ext_csd.data_tag_unit_size);
1420 
1421 	if (do_data_tag)
1422 		brq->data.flags |= MMC_DATA_DAT_TAG;
1423 
1424 	mmc_set_data_timeout(&brq->data, card);
1425 
1426 	brq->data.sg = mqrq->sg;
1427 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1428 
1429 	/*
1430 	 * Adjust the sg list so it is the same size as the
1431 	 * request.
1432 	 */
1433 	if (brq->data.blocks != blk_rq_sectors(req)) {
1434 		int i, data_size = brq->data.blocks << 9;
1435 		struct scatterlist *sg;
1436 
1437 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1438 			data_size -= sg->length;
1439 			if (data_size <= 0) {
1440 				sg->length += data_size;
1441 				i++;
1442 				break;
1443 			}
1444 		}
1445 		brq->data.sg_len = i;
1446 	}
1447 
1448 	if (do_rel_wr_p)
1449 		*do_rel_wr_p = do_rel_wr;
1450 
1451 	if (do_data_tag_p)
1452 		*do_data_tag_p = do_data_tag;
1453 }
1454 
1455 #define MMC_CQE_RETRIES 2
1456 
1457 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1458 {
1459 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1460 	struct mmc_request *mrq = &mqrq->brq.mrq;
1461 	struct request_queue *q = req->q;
1462 	struct mmc_host *host = mq->card->host;
1463 	unsigned long flags;
1464 	bool put_card;
1465 	int err;
1466 
1467 	mmc_cqe_post_req(host, mrq);
1468 
1469 	if (mrq->cmd && mrq->cmd->error)
1470 		err = mrq->cmd->error;
1471 	else if (mrq->data && mrq->data->error)
1472 		err = mrq->data->error;
1473 	else
1474 		err = 0;
1475 
1476 	if (err) {
1477 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1478 			blk_mq_requeue_request(req, true);
1479 		else
1480 			blk_mq_end_request(req, BLK_STS_IOERR);
1481 	} else if (mrq->data) {
1482 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1483 			blk_mq_requeue_request(req, true);
1484 		else
1485 			__blk_mq_end_request(req, BLK_STS_OK);
1486 	} else {
1487 		blk_mq_end_request(req, BLK_STS_OK);
1488 	}
1489 
1490 	spin_lock_irqsave(&mq->lock, flags);
1491 
1492 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1493 
1494 	put_card = (mmc_tot_in_flight(mq) == 0);
1495 
1496 	mmc_cqe_check_busy(mq);
1497 
1498 	spin_unlock_irqrestore(&mq->lock, flags);
1499 
1500 	if (!mq->cqe_busy)
1501 		blk_mq_run_hw_queues(q, true);
1502 
1503 	if (put_card)
1504 		mmc_put_card(mq->card, &mq->ctx);
1505 }
1506 
1507 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1508 {
1509 	struct mmc_card *card = mq->card;
1510 	struct mmc_host *host = card->host;
1511 	int err;
1512 
1513 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1514 
1515 	err = mmc_cqe_recovery(host);
1516 	if (err)
1517 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1518 	else
1519 		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1520 
1521 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1522 }
1523 
1524 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1525 {
1526 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1527 						  brq.mrq);
1528 	struct request *req = mmc_queue_req_to_req(mqrq);
1529 	struct request_queue *q = req->q;
1530 	struct mmc_queue *mq = q->queuedata;
1531 
1532 	/*
1533 	 * Block layer timeouts race with completions which means the normal
1534 	 * completion path cannot be used during recovery.
1535 	 */
1536 	if (mq->in_recovery)
1537 		mmc_blk_cqe_complete_rq(mq, req);
1538 	else
1539 		blk_mq_complete_request(req);
1540 }
1541 
1542 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1543 {
1544 	mrq->done		= mmc_blk_cqe_req_done;
1545 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1546 
1547 	return mmc_cqe_start_req(host, mrq);
1548 }
1549 
1550 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1551 						 struct request *req)
1552 {
1553 	struct mmc_blk_request *brq = &mqrq->brq;
1554 
1555 	memset(brq, 0, sizeof(*brq));
1556 
1557 	brq->mrq.cmd = &brq->cmd;
1558 	brq->mrq.tag = req->tag;
1559 
1560 	return &brq->mrq;
1561 }
1562 
1563 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1564 {
1565 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1566 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1567 
1568 	mrq->cmd->opcode = MMC_SWITCH;
1569 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1570 			(EXT_CSD_FLUSH_CACHE << 16) |
1571 			(1 << 8) |
1572 			EXT_CSD_CMD_SET_NORMAL;
1573 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1574 
1575 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1576 }
1577 
1578 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1579 {
1580 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1581 
1582 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1583 
1584 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1585 }
1586 
1587 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1588 			       struct mmc_card *card,
1589 			       int disable_multi,
1590 			       struct mmc_queue *mq)
1591 {
1592 	u32 readcmd, writecmd;
1593 	struct mmc_blk_request *brq = &mqrq->brq;
1594 	struct request *req = mmc_queue_req_to_req(mqrq);
1595 	struct mmc_blk_data *md = mq->blkdata;
1596 	bool do_rel_wr, do_data_tag;
1597 
1598 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1599 
1600 	brq->mrq.cmd = &brq->cmd;
1601 
1602 	brq->cmd.arg = blk_rq_pos(req);
1603 	if (!mmc_card_blockaddr(card))
1604 		brq->cmd.arg <<= 9;
1605 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1606 
1607 	if (brq->data.blocks > 1 || do_rel_wr) {
1608 		/* SPI multiblock writes terminate using a special
1609 		 * token, not a STOP_TRANSMISSION request.
1610 		 */
1611 		if (!mmc_host_is_spi(card->host) ||
1612 		    rq_data_dir(req) == READ)
1613 			brq->mrq.stop = &brq->stop;
1614 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1615 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1616 	} else {
1617 		brq->mrq.stop = NULL;
1618 		readcmd = MMC_READ_SINGLE_BLOCK;
1619 		writecmd = MMC_WRITE_BLOCK;
1620 	}
1621 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1622 
1623 	/*
1624 	 * Pre-defined multi-block transfers are preferable to
1625 	 * open ended-ones (and necessary for reliable writes).
1626 	 * However, it is not sufficient to just send CMD23,
1627 	 * and avoid the final CMD12, as on an error condition
1628 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1629 	 * with Auto-CMD23 enhancements provided by some
1630 	 * hosts, means that the complexity of dealing
1631 	 * with this is best left to the host. If CMD23 is
1632 	 * supported by card and host, we'll fill sbc in and let
1633 	 * the host deal with handling it correctly. This means
1634 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1635 	 * change of behavior will be observed.
1636 	 *
1637 	 * N.B: Some MMC cards experience perf degradation.
1638 	 * We'll avoid using CMD23-bounded multiblock writes for
1639 	 * these, while retaining features like reliable writes.
1640 	 */
1641 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1642 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1643 	     do_data_tag)) {
1644 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1645 		brq->sbc.arg = brq->data.blocks |
1646 			(do_rel_wr ? (1 << 31) : 0) |
1647 			(do_data_tag ? (1 << 29) : 0);
1648 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1649 		brq->mrq.sbc = &brq->sbc;
1650 	}
1651 }
1652 
1653 #define MMC_MAX_RETRIES		5
1654 #define MMC_DATA_RETRIES	2
1655 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1656 
1657 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1658 {
1659 	struct mmc_command cmd = {
1660 		.opcode = MMC_STOP_TRANSMISSION,
1661 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1662 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1663 		.busy_timeout = timeout,
1664 	};
1665 
1666 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1667 }
1668 
1669 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1670 {
1671 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1672 	struct mmc_blk_request *brq = &mqrq->brq;
1673 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1674 	int err;
1675 
1676 	mmc_retune_hold_now(card->host);
1677 
1678 	mmc_blk_send_stop(card, timeout);
1679 
1680 	err = card_busy_detect(card, timeout, req, NULL);
1681 
1682 	mmc_retune_release(card->host);
1683 
1684 	return err;
1685 }
1686 
1687 #define MMC_READ_SINGLE_RETRIES	2
1688 
1689 /* Single sector read during recovery */
1690 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1691 {
1692 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1693 	struct mmc_request *mrq = &mqrq->brq.mrq;
1694 	struct mmc_card *card = mq->card;
1695 	struct mmc_host *host = card->host;
1696 	blk_status_t error = BLK_STS_OK;
1697 	int retries = 0;
1698 
1699 	do {
1700 		u32 status;
1701 		int err;
1702 
1703 		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1704 
1705 		mmc_wait_for_req(host, mrq);
1706 
1707 		err = mmc_send_status(card, &status);
1708 		if (err)
1709 			goto error_exit;
1710 
1711 		if (!mmc_host_is_spi(host) &&
1712 		    !mmc_blk_in_tran_state(status)) {
1713 			err = mmc_blk_fix_state(card, req);
1714 			if (err)
1715 				goto error_exit;
1716 		}
1717 
1718 		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1719 			continue;
1720 
1721 		retries = 0;
1722 
1723 		if (mrq->cmd->error ||
1724 		    mrq->data->error ||
1725 		    (!mmc_host_is_spi(host) &&
1726 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1727 			error = BLK_STS_IOERR;
1728 		else
1729 			error = BLK_STS_OK;
1730 
1731 	} while (blk_update_request(req, error, 512));
1732 
1733 	return;
1734 
1735 error_exit:
1736 	mrq->data->bytes_xfered = 0;
1737 	blk_update_request(req, BLK_STS_IOERR, 512);
1738 	/* Let it try the remaining request again */
1739 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1740 		mqrq->retries = MMC_MAX_RETRIES - 1;
1741 }
1742 
1743 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1744 {
1745 	return !!brq->mrq.sbc;
1746 }
1747 
1748 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1749 {
1750 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1751 }
1752 
1753 /*
1754  * Check for errors the host controller driver might not have seen such as
1755  * response mode errors or invalid card state.
1756  */
1757 static bool mmc_blk_status_error(struct request *req, u32 status)
1758 {
1759 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1760 	struct mmc_blk_request *brq = &mqrq->brq;
1761 	struct mmc_queue *mq = req->q->queuedata;
1762 	u32 stop_err_bits;
1763 
1764 	if (mmc_host_is_spi(mq->card->host))
1765 		return false;
1766 
1767 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1768 
1769 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1770 	       brq->stop.resp[0] & stop_err_bits ||
1771 	       status            & stop_err_bits ||
1772 	       (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status));
1773 }
1774 
1775 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1776 {
1777 	return !brq->sbc.error && !brq->cmd.error &&
1778 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1779 }
1780 
1781 /*
1782  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1783  * policy:
1784  * 1. A request that has transferred at least some data is considered
1785  * successful and will be requeued if there is remaining data to
1786  * transfer.
1787  * 2. Otherwise the number of retries is incremented and the request
1788  * will be requeued if there are remaining retries.
1789  * 3. Otherwise the request will be errored out.
1790  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1791  * mqrq->retries. So there are only 4 possible actions here:
1792  *	1. do not accept the bytes_xfered value i.e. set it to zero
1793  *	2. change mqrq->retries to determine the number of retries
1794  *	3. try to reset the card
1795  *	4. read one sector at a time
1796  */
1797 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1798 {
1799 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1800 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1801 	struct mmc_blk_request *brq = &mqrq->brq;
1802 	struct mmc_blk_data *md = mq->blkdata;
1803 	struct mmc_card *card = mq->card;
1804 	u32 status;
1805 	u32 blocks;
1806 	int err;
1807 
1808 	/*
1809 	 * Some errors the host driver might not have seen. Set the number of
1810 	 * bytes transferred to zero in that case.
1811 	 */
1812 	err = __mmc_send_status(card, &status, 0);
1813 	if (err || mmc_blk_status_error(req, status))
1814 		brq->data.bytes_xfered = 0;
1815 
1816 	mmc_retune_release(card->host);
1817 
1818 	/*
1819 	 * Try again to get the status. This also provides an opportunity for
1820 	 * re-tuning.
1821 	 */
1822 	if (err)
1823 		err = __mmc_send_status(card, &status, 0);
1824 
1825 	/*
1826 	 * Nothing more to do after the number of bytes transferred has been
1827 	 * updated and there is no card.
1828 	 */
1829 	if (err && mmc_detect_card_removed(card->host))
1830 		return;
1831 
1832 	/* Try to get back to "tran" state */
1833 	if (!mmc_host_is_spi(mq->card->host) &&
1834 	    (err || !mmc_blk_in_tran_state(status)))
1835 		err = mmc_blk_fix_state(mq->card, req);
1836 
1837 	/*
1838 	 * Special case for SD cards where the card might record the number of
1839 	 * blocks written.
1840 	 */
1841 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1842 	    rq_data_dir(req) == WRITE) {
1843 		if (mmc_sd_num_wr_blocks(card, &blocks))
1844 			brq->data.bytes_xfered = 0;
1845 		else
1846 			brq->data.bytes_xfered = blocks << 9;
1847 	}
1848 
1849 	/* Reset if the card is in a bad state */
1850 	if (!mmc_host_is_spi(mq->card->host) &&
1851 	    err && mmc_blk_reset(md, card->host, type)) {
1852 		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1853 		mqrq->retries = MMC_NO_RETRIES;
1854 		return;
1855 	}
1856 
1857 	/*
1858 	 * If anything was done, just return and if there is anything remaining
1859 	 * on the request it will get requeued.
1860 	 */
1861 	if (brq->data.bytes_xfered)
1862 		return;
1863 
1864 	/* Reset before last retry */
1865 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1866 		mmc_blk_reset(md, card->host, type);
1867 
1868 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1869 	if (brq->sbc.error || brq->cmd.error)
1870 		return;
1871 
1872 	/* Reduce the remaining retries for data errors */
1873 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1874 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1875 		return;
1876 	}
1877 
1878 	/* FIXME: Missing single sector read for large sector size */
1879 	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1880 	    brq->data.blocks > 1) {
1881 		/* Read one sector at a time */
1882 		mmc_blk_read_single(mq, req);
1883 		return;
1884 	}
1885 }
1886 
1887 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1888 {
1889 	mmc_blk_eval_resp_error(brq);
1890 
1891 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1892 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1893 }
1894 
1895 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1896 {
1897 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1898 	u32 status = 0;
1899 	int err;
1900 
1901 	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1902 		return 0;
1903 
1904 	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status);
1905 
1906 	/*
1907 	 * Do not assume data transferred correctly if there are any error bits
1908 	 * set.
1909 	 */
1910 	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1911 		mqrq->brq.data.bytes_xfered = 0;
1912 		err = err ? err : -EIO;
1913 	}
1914 
1915 	/* Copy the exception bit so it will be seen later on */
1916 	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1917 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1918 
1919 	return err;
1920 }
1921 
1922 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1923 					    struct request *req)
1924 {
1925 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1926 
1927 	mmc_blk_reset_success(mq->blkdata, type);
1928 }
1929 
1930 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1931 {
1932 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1933 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1934 
1935 	if (nr_bytes) {
1936 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1937 			blk_mq_requeue_request(req, true);
1938 		else
1939 			__blk_mq_end_request(req, BLK_STS_OK);
1940 	} else if (!blk_rq_bytes(req)) {
1941 		__blk_mq_end_request(req, BLK_STS_IOERR);
1942 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1943 		blk_mq_requeue_request(req, true);
1944 	} else {
1945 		if (mmc_card_removed(mq->card))
1946 			req->rq_flags |= RQF_QUIET;
1947 		blk_mq_end_request(req, BLK_STS_IOERR);
1948 	}
1949 }
1950 
1951 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1952 					struct mmc_queue_req *mqrq)
1953 {
1954 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1955 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1956 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1957 }
1958 
1959 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1960 				 struct mmc_queue_req *mqrq)
1961 {
1962 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1963 		mmc_run_bkops(mq->card);
1964 }
1965 
1966 void mmc_blk_mq_complete(struct request *req)
1967 {
1968 	struct mmc_queue *mq = req->q->queuedata;
1969 
1970 	if (mq->use_cqe)
1971 		mmc_blk_cqe_complete_rq(mq, req);
1972 	else
1973 		mmc_blk_mq_complete_rq(mq, req);
1974 }
1975 
1976 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1977 				       struct request *req)
1978 {
1979 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1980 	struct mmc_host *host = mq->card->host;
1981 
1982 	if (mmc_blk_rq_error(&mqrq->brq) ||
1983 	    mmc_blk_card_busy(mq->card, req)) {
1984 		mmc_blk_mq_rw_recovery(mq, req);
1985 	} else {
1986 		mmc_blk_rw_reset_success(mq, req);
1987 		mmc_retune_release(host);
1988 	}
1989 
1990 	mmc_blk_urgent_bkops(mq, mqrq);
1991 }
1992 
1993 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1994 {
1995 	unsigned long flags;
1996 	bool put_card;
1997 
1998 	spin_lock_irqsave(&mq->lock, flags);
1999 
2000 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2001 
2002 	put_card = (mmc_tot_in_flight(mq) == 0);
2003 
2004 	spin_unlock_irqrestore(&mq->lock, flags);
2005 
2006 	if (put_card)
2007 		mmc_put_card(mq->card, &mq->ctx);
2008 }
2009 
2010 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2011 {
2012 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2013 	struct mmc_request *mrq = &mqrq->brq.mrq;
2014 	struct mmc_host *host = mq->card->host;
2015 
2016 	mmc_post_req(host, mrq, 0);
2017 
2018 	/*
2019 	 * Block layer timeouts race with completions which means the normal
2020 	 * completion path cannot be used during recovery.
2021 	 */
2022 	if (mq->in_recovery)
2023 		mmc_blk_mq_complete_rq(mq, req);
2024 	else
2025 		blk_mq_complete_request(req);
2026 
2027 	mmc_blk_mq_dec_in_flight(mq, req);
2028 }
2029 
2030 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2031 {
2032 	struct request *req = mq->recovery_req;
2033 	struct mmc_host *host = mq->card->host;
2034 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2035 
2036 	mq->recovery_req = NULL;
2037 	mq->rw_wait = false;
2038 
2039 	if (mmc_blk_rq_error(&mqrq->brq)) {
2040 		mmc_retune_hold_now(host);
2041 		mmc_blk_mq_rw_recovery(mq, req);
2042 	}
2043 
2044 	mmc_blk_urgent_bkops(mq, mqrq);
2045 
2046 	mmc_blk_mq_post_req(mq, req);
2047 }
2048 
2049 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2050 					 struct request **prev_req)
2051 {
2052 	if (mmc_host_done_complete(mq->card->host))
2053 		return;
2054 
2055 	mutex_lock(&mq->complete_lock);
2056 
2057 	if (!mq->complete_req)
2058 		goto out_unlock;
2059 
2060 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2061 
2062 	if (prev_req)
2063 		*prev_req = mq->complete_req;
2064 	else
2065 		mmc_blk_mq_post_req(mq, mq->complete_req);
2066 
2067 	mq->complete_req = NULL;
2068 
2069 out_unlock:
2070 	mutex_unlock(&mq->complete_lock);
2071 }
2072 
2073 void mmc_blk_mq_complete_work(struct work_struct *work)
2074 {
2075 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2076 					    complete_work);
2077 
2078 	mmc_blk_mq_complete_prev_req(mq, NULL);
2079 }
2080 
2081 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2082 {
2083 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2084 						  brq.mrq);
2085 	struct request *req = mmc_queue_req_to_req(mqrq);
2086 	struct request_queue *q = req->q;
2087 	struct mmc_queue *mq = q->queuedata;
2088 	struct mmc_host *host = mq->card->host;
2089 	unsigned long flags;
2090 
2091 	if (!mmc_host_done_complete(host)) {
2092 		bool waiting;
2093 
2094 		/*
2095 		 * We cannot complete the request in this context, so record
2096 		 * that there is a request to complete, and that a following
2097 		 * request does not need to wait (although it does need to
2098 		 * complete complete_req first).
2099 		 */
2100 		spin_lock_irqsave(&mq->lock, flags);
2101 		mq->complete_req = req;
2102 		mq->rw_wait = false;
2103 		waiting = mq->waiting;
2104 		spin_unlock_irqrestore(&mq->lock, flags);
2105 
2106 		/*
2107 		 * If 'waiting' then the waiting task will complete this
2108 		 * request, otherwise queue a work to do it. Note that
2109 		 * complete_work may still race with the dispatch of a following
2110 		 * request.
2111 		 */
2112 		if (waiting)
2113 			wake_up(&mq->wait);
2114 		else
2115 			kblockd_schedule_work(&mq->complete_work);
2116 
2117 		return;
2118 	}
2119 
2120 	/* Take the recovery path for errors or urgent background operations */
2121 	if (mmc_blk_rq_error(&mqrq->brq) ||
2122 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2123 		spin_lock_irqsave(&mq->lock, flags);
2124 		mq->recovery_needed = true;
2125 		mq->recovery_req = req;
2126 		spin_unlock_irqrestore(&mq->lock, flags);
2127 		wake_up(&mq->wait);
2128 		schedule_work(&mq->recovery_work);
2129 		return;
2130 	}
2131 
2132 	mmc_blk_rw_reset_success(mq, req);
2133 
2134 	mq->rw_wait = false;
2135 	wake_up(&mq->wait);
2136 
2137 	mmc_blk_mq_post_req(mq, req);
2138 }
2139 
2140 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2141 {
2142 	unsigned long flags;
2143 	bool done;
2144 
2145 	/*
2146 	 * Wait while there is another request in progress, but not if recovery
2147 	 * is needed. Also indicate whether there is a request waiting to start.
2148 	 */
2149 	spin_lock_irqsave(&mq->lock, flags);
2150 	if (mq->recovery_needed) {
2151 		*err = -EBUSY;
2152 		done = true;
2153 	} else {
2154 		done = !mq->rw_wait;
2155 	}
2156 	mq->waiting = !done;
2157 	spin_unlock_irqrestore(&mq->lock, flags);
2158 
2159 	return done;
2160 }
2161 
2162 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2163 {
2164 	int err = 0;
2165 
2166 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2167 
2168 	/* Always complete the previous request if there is one */
2169 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2170 
2171 	return err;
2172 }
2173 
2174 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2175 				  struct request *req)
2176 {
2177 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2178 	struct mmc_host *host = mq->card->host;
2179 	struct request *prev_req = NULL;
2180 	int err = 0;
2181 
2182 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2183 
2184 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2185 
2186 	mmc_pre_req(host, &mqrq->brq.mrq);
2187 
2188 	err = mmc_blk_rw_wait(mq, &prev_req);
2189 	if (err)
2190 		goto out_post_req;
2191 
2192 	mq->rw_wait = true;
2193 
2194 	err = mmc_start_request(host, &mqrq->brq.mrq);
2195 
2196 	if (prev_req)
2197 		mmc_blk_mq_post_req(mq, prev_req);
2198 
2199 	if (err)
2200 		mq->rw_wait = false;
2201 
2202 	/* Release re-tuning here where there is no synchronization required */
2203 	if (err || mmc_host_done_complete(host))
2204 		mmc_retune_release(host);
2205 
2206 out_post_req:
2207 	if (err)
2208 		mmc_post_req(host, &mqrq->brq.mrq, err);
2209 
2210 	return err;
2211 }
2212 
2213 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2214 {
2215 	if (mq->use_cqe)
2216 		return host->cqe_ops->cqe_wait_for_idle(host);
2217 
2218 	return mmc_blk_rw_wait(mq, NULL);
2219 }
2220 
2221 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2222 {
2223 	struct mmc_blk_data *md = mq->blkdata;
2224 	struct mmc_card *card = md->queue.card;
2225 	struct mmc_host *host = card->host;
2226 	int ret;
2227 
2228 	ret = mmc_blk_part_switch(card, md->part_type);
2229 	if (ret)
2230 		return MMC_REQ_FAILED_TO_START;
2231 
2232 	switch (mmc_issue_type(mq, req)) {
2233 	case MMC_ISSUE_SYNC:
2234 		ret = mmc_blk_wait_for_idle(mq, host);
2235 		if (ret)
2236 			return MMC_REQ_BUSY;
2237 		switch (req_op(req)) {
2238 		case REQ_OP_DRV_IN:
2239 		case REQ_OP_DRV_OUT:
2240 			mmc_blk_issue_drv_op(mq, req);
2241 			break;
2242 		case REQ_OP_DISCARD:
2243 			mmc_blk_issue_discard_rq(mq, req);
2244 			break;
2245 		case REQ_OP_SECURE_ERASE:
2246 			mmc_blk_issue_secdiscard_rq(mq, req);
2247 			break;
2248 		case REQ_OP_FLUSH:
2249 			mmc_blk_issue_flush(mq, req);
2250 			break;
2251 		default:
2252 			WARN_ON_ONCE(1);
2253 			return MMC_REQ_FAILED_TO_START;
2254 		}
2255 		return MMC_REQ_FINISHED;
2256 	case MMC_ISSUE_DCMD:
2257 	case MMC_ISSUE_ASYNC:
2258 		switch (req_op(req)) {
2259 		case REQ_OP_FLUSH:
2260 			ret = mmc_blk_cqe_issue_flush(mq, req);
2261 			break;
2262 		case REQ_OP_READ:
2263 		case REQ_OP_WRITE:
2264 			if (mq->use_cqe)
2265 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2266 			else
2267 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2268 			break;
2269 		default:
2270 			WARN_ON_ONCE(1);
2271 			ret = -EINVAL;
2272 		}
2273 		if (!ret)
2274 			return MMC_REQ_STARTED;
2275 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2276 	default:
2277 		WARN_ON_ONCE(1);
2278 		return MMC_REQ_FAILED_TO_START;
2279 	}
2280 }
2281 
2282 static inline int mmc_blk_readonly(struct mmc_card *card)
2283 {
2284 	return mmc_card_readonly(card) ||
2285 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2286 }
2287 
2288 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2289 					      struct device *parent,
2290 					      sector_t size,
2291 					      bool default_ro,
2292 					      const char *subname,
2293 					      int area_type)
2294 {
2295 	struct mmc_blk_data *md;
2296 	int devidx, ret;
2297 
2298 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2299 	if (devidx < 0) {
2300 		/*
2301 		 * We get -ENOSPC because there are no more any available
2302 		 * devidx. The reason may be that, either userspace haven't yet
2303 		 * unmounted the partitions, which postpones mmc_blk_release()
2304 		 * from being called, or the device has more partitions than
2305 		 * what we support.
2306 		 */
2307 		if (devidx == -ENOSPC)
2308 			dev_err(mmc_dev(card->host),
2309 				"no more device IDs available\n");
2310 
2311 		return ERR_PTR(devidx);
2312 	}
2313 
2314 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2315 	if (!md) {
2316 		ret = -ENOMEM;
2317 		goto out;
2318 	}
2319 
2320 	md->area_type = area_type;
2321 
2322 	/*
2323 	 * Set the read-only status based on the supported commands
2324 	 * and the write protect switch.
2325 	 */
2326 	md->read_only = mmc_blk_readonly(card);
2327 
2328 	md->disk = alloc_disk(perdev_minors);
2329 	if (md->disk == NULL) {
2330 		ret = -ENOMEM;
2331 		goto err_kfree;
2332 	}
2333 
2334 	INIT_LIST_HEAD(&md->part);
2335 	INIT_LIST_HEAD(&md->rpmbs);
2336 	md->usage = 1;
2337 
2338 	ret = mmc_init_queue(&md->queue, card);
2339 	if (ret)
2340 		goto err_putdisk;
2341 
2342 	md->queue.blkdata = md;
2343 
2344 	/*
2345 	 * Keep an extra reference to the queue so that we can shutdown the
2346 	 * queue (i.e. call blk_cleanup_queue()) while there are still
2347 	 * references to the 'md'. The corresponding blk_put_queue() is in
2348 	 * mmc_blk_put().
2349 	 */
2350 	if (!blk_get_queue(md->queue.queue)) {
2351 		mmc_cleanup_queue(&md->queue);
2352 		ret = -ENODEV;
2353 		goto err_putdisk;
2354 	}
2355 
2356 	md->disk->major	= MMC_BLOCK_MAJOR;
2357 	md->disk->first_minor = devidx * perdev_minors;
2358 	md->disk->fops = &mmc_bdops;
2359 	md->disk->private_data = md;
2360 	md->disk->queue = md->queue.queue;
2361 	md->parent = parent;
2362 	set_disk_ro(md->disk, md->read_only || default_ro);
2363 	md->disk->flags = GENHD_FL_EXT_DEVT;
2364 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2365 		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2366 				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2367 
2368 	/*
2369 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2370 	 *
2371 	 * - be set for removable media with permanent block devices
2372 	 * - be unset for removable block devices with permanent media
2373 	 *
2374 	 * Since MMC block devices clearly fall under the second
2375 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2376 	 * should use the block device creation/destruction hotplug
2377 	 * messages to tell when the card is present.
2378 	 */
2379 
2380 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2381 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2382 
2383 	if (mmc_card_mmc(card))
2384 		blk_queue_logical_block_size(md->queue.queue,
2385 					     card->ext_csd.data_sector_size);
2386 	else
2387 		blk_queue_logical_block_size(md->queue.queue, 512);
2388 
2389 	set_capacity(md->disk, size);
2390 
2391 	if (mmc_host_cmd23(card->host)) {
2392 		if ((mmc_card_mmc(card) &&
2393 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2394 		    (mmc_card_sd(card) &&
2395 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2396 			md->flags |= MMC_BLK_CMD23;
2397 	}
2398 
2399 	if (mmc_card_mmc(card) &&
2400 	    md->flags & MMC_BLK_CMD23 &&
2401 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2402 	     card->ext_csd.rel_sectors)) {
2403 		md->flags |= MMC_BLK_REL_WR;
2404 		blk_queue_write_cache(md->queue.queue, true, true);
2405 	}
2406 
2407 	return md;
2408 
2409  err_putdisk:
2410 	put_disk(md->disk);
2411  err_kfree:
2412 	kfree(md);
2413  out:
2414 	ida_simple_remove(&mmc_blk_ida, devidx);
2415 	return ERR_PTR(ret);
2416 }
2417 
2418 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2419 {
2420 	sector_t size;
2421 
2422 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2423 		/*
2424 		 * The EXT_CSD sector count is in number or 512 byte
2425 		 * sectors.
2426 		 */
2427 		size = card->ext_csd.sectors;
2428 	} else {
2429 		/*
2430 		 * The CSD capacity field is in units of read_blkbits.
2431 		 * set_capacity takes units of 512 bytes.
2432 		 */
2433 		size = (typeof(sector_t))card->csd.capacity
2434 			<< (card->csd.read_blkbits - 9);
2435 	}
2436 
2437 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2438 					MMC_BLK_DATA_AREA_MAIN);
2439 }
2440 
2441 static int mmc_blk_alloc_part(struct mmc_card *card,
2442 			      struct mmc_blk_data *md,
2443 			      unsigned int part_type,
2444 			      sector_t size,
2445 			      bool default_ro,
2446 			      const char *subname,
2447 			      int area_type)
2448 {
2449 	char cap_str[10];
2450 	struct mmc_blk_data *part_md;
2451 
2452 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2453 				    subname, area_type);
2454 	if (IS_ERR(part_md))
2455 		return PTR_ERR(part_md);
2456 	part_md->part_type = part_type;
2457 	list_add(&part_md->part, &md->part);
2458 
2459 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2460 			cap_str, sizeof(cap_str));
2461 	pr_info("%s: %s %s partition %u %s\n",
2462 	       part_md->disk->disk_name, mmc_card_id(card),
2463 	       mmc_card_name(card), part_md->part_type, cap_str);
2464 	return 0;
2465 }
2466 
2467 /**
2468  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2469  * @filp: the character device file
2470  * @cmd: the ioctl() command
2471  * @arg: the argument from userspace
2472  *
2473  * This will essentially just redirect the ioctl()s coming in over to
2474  * the main block device spawning the RPMB character device.
2475  */
2476 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2477 			   unsigned long arg)
2478 {
2479 	struct mmc_rpmb_data *rpmb = filp->private_data;
2480 	int ret;
2481 
2482 	switch (cmd) {
2483 	case MMC_IOC_CMD:
2484 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2485 					(struct mmc_ioc_cmd __user *)arg,
2486 					rpmb);
2487 		break;
2488 	case MMC_IOC_MULTI_CMD:
2489 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2490 					(struct mmc_ioc_multi_cmd __user *)arg,
2491 					rpmb);
2492 		break;
2493 	default:
2494 		ret = -EINVAL;
2495 		break;
2496 	}
2497 
2498 	return ret;
2499 }
2500 
2501 #ifdef CONFIG_COMPAT
2502 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2503 			      unsigned long arg)
2504 {
2505 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2506 }
2507 #endif
2508 
2509 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2510 {
2511 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2512 						  struct mmc_rpmb_data, chrdev);
2513 
2514 	get_device(&rpmb->dev);
2515 	filp->private_data = rpmb;
2516 	mmc_blk_get(rpmb->md->disk);
2517 
2518 	return nonseekable_open(inode, filp);
2519 }
2520 
2521 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2522 {
2523 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2524 						  struct mmc_rpmb_data, chrdev);
2525 
2526 	put_device(&rpmb->dev);
2527 	mmc_blk_put(rpmb->md);
2528 
2529 	return 0;
2530 }
2531 
2532 static const struct file_operations mmc_rpmb_fileops = {
2533 	.release = mmc_rpmb_chrdev_release,
2534 	.open = mmc_rpmb_chrdev_open,
2535 	.owner = THIS_MODULE,
2536 	.llseek = no_llseek,
2537 	.unlocked_ioctl = mmc_rpmb_ioctl,
2538 #ifdef CONFIG_COMPAT
2539 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2540 #endif
2541 };
2542 
2543 static void mmc_blk_rpmb_device_release(struct device *dev)
2544 {
2545 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2546 
2547 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2548 	kfree(rpmb);
2549 }
2550 
2551 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2552 				   struct mmc_blk_data *md,
2553 				   unsigned int part_index,
2554 				   sector_t size,
2555 				   const char *subname)
2556 {
2557 	int devidx, ret;
2558 	char rpmb_name[DISK_NAME_LEN];
2559 	char cap_str[10];
2560 	struct mmc_rpmb_data *rpmb;
2561 
2562 	/* This creates the minor number for the RPMB char device */
2563 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2564 	if (devidx < 0)
2565 		return devidx;
2566 
2567 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2568 	if (!rpmb) {
2569 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2570 		return -ENOMEM;
2571 	}
2572 
2573 	snprintf(rpmb_name, sizeof(rpmb_name),
2574 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2575 
2576 	rpmb->id = devidx;
2577 	rpmb->part_index = part_index;
2578 	rpmb->dev.init_name = rpmb_name;
2579 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2580 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2581 	rpmb->dev.parent = &card->dev;
2582 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2583 	device_initialize(&rpmb->dev);
2584 	dev_set_drvdata(&rpmb->dev, rpmb);
2585 	rpmb->md = md;
2586 
2587 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2588 	rpmb->chrdev.owner = THIS_MODULE;
2589 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2590 	if (ret) {
2591 		pr_err("%s: could not add character device\n", rpmb_name);
2592 		goto out_put_device;
2593 	}
2594 
2595 	list_add(&rpmb->node, &md->rpmbs);
2596 
2597 	string_get_size((u64)size, 512, STRING_UNITS_2,
2598 			cap_str, sizeof(cap_str));
2599 
2600 	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2601 		rpmb_name, mmc_card_id(card),
2602 		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2603 		MAJOR(mmc_rpmb_devt), rpmb->id);
2604 
2605 	return 0;
2606 
2607 out_put_device:
2608 	put_device(&rpmb->dev);
2609 	return ret;
2610 }
2611 
2612 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2613 
2614 {
2615 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2616 	put_device(&rpmb->dev);
2617 }
2618 
2619 /* MMC Physical partitions consist of two boot partitions and
2620  * up to four general purpose partitions.
2621  * For each partition enabled in EXT_CSD a block device will be allocatedi
2622  * to provide access to the partition.
2623  */
2624 
2625 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2626 {
2627 	int idx, ret;
2628 
2629 	if (!mmc_card_mmc(card))
2630 		return 0;
2631 
2632 	for (idx = 0; idx < card->nr_parts; idx++) {
2633 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2634 			/*
2635 			 * RPMB partitions does not provide block access, they
2636 			 * are only accessed using ioctl():s. Thus create
2637 			 * special RPMB block devices that do not have a
2638 			 * backing block queue for these.
2639 			 */
2640 			ret = mmc_blk_alloc_rpmb_part(card, md,
2641 				card->part[idx].part_cfg,
2642 				card->part[idx].size >> 9,
2643 				card->part[idx].name);
2644 			if (ret)
2645 				return ret;
2646 		} else if (card->part[idx].size) {
2647 			ret = mmc_blk_alloc_part(card, md,
2648 				card->part[idx].part_cfg,
2649 				card->part[idx].size >> 9,
2650 				card->part[idx].force_ro,
2651 				card->part[idx].name,
2652 				card->part[idx].area_type);
2653 			if (ret)
2654 				return ret;
2655 		}
2656 	}
2657 
2658 	return 0;
2659 }
2660 
2661 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2662 {
2663 	struct mmc_card *card;
2664 
2665 	if (md) {
2666 		/*
2667 		 * Flush remaining requests and free queues. It
2668 		 * is freeing the queue that stops new requests
2669 		 * from being accepted.
2670 		 */
2671 		card = md->queue.card;
2672 		if (md->disk->flags & GENHD_FL_UP) {
2673 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2674 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2675 					card->ext_csd.boot_ro_lockable)
2676 				device_remove_file(disk_to_dev(md->disk),
2677 					&md->power_ro_lock);
2678 
2679 			del_gendisk(md->disk);
2680 		}
2681 		mmc_cleanup_queue(&md->queue);
2682 		mmc_blk_put(md);
2683 	}
2684 }
2685 
2686 static void mmc_blk_remove_parts(struct mmc_card *card,
2687 				 struct mmc_blk_data *md)
2688 {
2689 	struct list_head *pos, *q;
2690 	struct mmc_blk_data *part_md;
2691 	struct mmc_rpmb_data *rpmb;
2692 
2693 	/* Remove RPMB partitions */
2694 	list_for_each_safe(pos, q, &md->rpmbs) {
2695 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2696 		list_del(pos);
2697 		mmc_blk_remove_rpmb_part(rpmb);
2698 	}
2699 	/* Remove block partitions */
2700 	list_for_each_safe(pos, q, &md->part) {
2701 		part_md = list_entry(pos, struct mmc_blk_data, part);
2702 		list_del(pos);
2703 		mmc_blk_remove_req(part_md);
2704 	}
2705 }
2706 
2707 static int mmc_add_disk(struct mmc_blk_data *md)
2708 {
2709 	int ret;
2710 	struct mmc_card *card = md->queue.card;
2711 
2712 	device_add_disk(md->parent, md->disk, NULL);
2713 	md->force_ro.show = force_ro_show;
2714 	md->force_ro.store = force_ro_store;
2715 	sysfs_attr_init(&md->force_ro.attr);
2716 	md->force_ro.attr.name = "force_ro";
2717 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2718 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2719 	if (ret)
2720 		goto force_ro_fail;
2721 
2722 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2723 	     card->ext_csd.boot_ro_lockable) {
2724 		umode_t mode;
2725 
2726 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2727 			mode = S_IRUGO;
2728 		else
2729 			mode = S_IRUGO | S_IWUSR;
2730 
2731 		md->power_ro_lock.show = power_ro_lock_show;
2732 		md->power_ro_lock.store = power_ro_lock_store;
2733 		sysfs_attr_init(&md->power_ro_lock.attr);
2734 		md->power_ro_lock.attr.mode = mode;
2735 		md->power_ro_lock.attr.name =
2736 					"ro_lock_until_next_power_on";
2737 		ret = device_create_file(disk_to_dev(md->disk),
2738 				&md->power_ro_lock);
2739 		if (ret)
2740 			goto power_ro_lock_fail;
2741 	}
2742 	return ret;
2743 
2744 power_ro_lock_fail:
2745 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2746 force_ro_fail:
2747 	del_gendisk(md->disk);
2748 
2749 	return ret;
2750 }
2751 
2752 #ifdef CONFIG_DEBUG_FS
2753 
2754 static int mmc_dbg_card_status_get(void *data, u64 *val)
2755 {
2756 	struct mmc_card *card = data;
2757 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2758 	struct mmc_queue *mq = &md->queue;
2759 	struct request *req;
2760 	int ret;
2761 
2762 	/* Ask the block layer about the card status */
2763 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2764 	if (IS_ERR(req))
2765 		return PTR_ERR(req);
2766 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2767 	blk_execute_rq(mq->queue, NULL, req, 0);
2768 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2769 	if (ret >= 0) {
2770 		*val = ret;
2771 		ret = 0;
2772 	}
2773 	blk_put_request(req);
2774 
2775 	return ret;
2776 }
2777 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2778 		NULL, "%08llx\n");
2779 
2780 /* That is two digits * 512 + 1 for newline */
2781 #define EXT_CSD_STR_LEN 1025
2782 
2783 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2784 {
2785 	struct mmc_card *card = inode->i_private;
2786 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2787 	struct mmc_queue *mq = &md->queue;
2788 	struct request *req;
2789 	char *buf;
2790 	ssize_t n = 0;
2791 	u8 *ext_csd;
2792 	int err, i;
2793 
2794 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2795 	if (!buf)
2796 		return -ENOMEM;
2797 
2798 	/* Ask the block layer for the EXT CSD */
2799 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2800 	if (IS_ERR(req)) {
2801 		err = PTR_ERR(req);
2802 		goto out_free;
2803 	}
2804 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2805 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2806 	blk_execute_rq(mq->queue, NULL, req, 0);
2807 	err = req_to_mmc_queue_req(req)->drv_op_result;
2808 	blk_put_request(req);
2809 	if (err) {
2810 		pr_err("FAILED %d\n", err);
2811 		goto out_free;
2812 	}
2813 
2814 	for (i = 0; i < 512; i++)
2815 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2816 	n += sprintf(buf + n, "\n");
2817 
2818 	if (n != EXT_CSD_STR_LEN) {
2819 		err = -EINVAL;
2820 		kfree(ext_csd);
2821 		goto out_free;
2822 	}
2823 
2824 	filp->private_data = buf;
2825 	kfree(ext_csd);
2826 	return 0;
2827 
2828 out_free:
2829 	kfree(buf);
2830 	return err;
2831 }
2832 
2833 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2834 				size_t cnt, loff_t *ppos)
2835 {
2836 	char *buf = filp->private_data;
2837 
2838 	return simple_read_from_buffer(ubuf, cnt, ppos,
2839 				       buf, EXT_CSD_STR_LEN);
2840 }
2841 
2842 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2843 {
2844 	kfree(file->private_data);
2845 	return 0;
2846 }
2847 
2848 static const struct file_operations mmc_dbg_ext_csd_fops = {
2849 	.open		= mmc_ext_csd_open,
2850 	.read		= mmc_ext_csd_read,
2851 	.release	= mmc_ext_csd_release,
2852 	.llseek		= default_llseek,
2853 };
2854 
2855 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2856 {
2857 	struct dentry *root;
2858 
2859 	if (!card->debugfs_root)
2860 		return 0;
2861 
2862 	root = card->debugfs_root;
2863 
2864 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2865 		md->status_dentry =
2866 			debugfs_create_file("status", S_IRUSR, root, card,
2867 					    &mmc_dbg_card_status_fops);
2868 		if (!md->status_dentry)
2869 			return -EIO;
2870 	}
2871 
2872 	if (mmc_card_mmc(card)) {
2873 		md->ext_csd_dentry =
2874 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2875 					    &mmc_dbg_ext_csd_fops);
2876 		if (!md->ext_csd_dentry)
2877 			return -EIO;
2878 	}
2879 
2880 	return 0;
2881 }
2882 
2883 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2884 				   struct mmc_blk_data *md)
2885 {
2886 	if (!card->debugfs_root)
2887 		return;
2888 
2889 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2890 		debugfs_remove(md->status_dentry);
2891 		md->status_dentry = NULL;
2892 	}
2893 
2894 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2895 		debugfs_remove(md->ext_csd_dentry);
2896 		md->ext_csd_dentry = NULL;
2897 	}
2898 }
2899 
2900 #else
2901 
2902 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2903 {
2904 	return 0;
2905 }
2906 
2907 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2908 				   struct mmc_blk_data *md)
2909 {
2910 }
2911 
2912 #endif /* CONFIG_DEBUG_FS */
2913 
2914 static int mmc_blk_probe(struct mmc_card *card)
2915 {
2916 	struct mmc_blk_data *md, *part_md;
2917 	char cap_str[10];
2918 
2919 	/*
2920 	 * Check that the card supports the command class(es) we need.
2921 	 */
2922 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2923 		return -ENODEV;
2924 
2925 	mmc_fixup_device(card, mmc_blk_fixups);
2926 
2927 	md = mmc_blk_alloc(card);
2928 	if (IS_ERR(md))
2929 		return PTR_ERR(md);
2930 
2931 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2932 			cap_str, sizeof(cap_str));
2933 	pr_info("%s: %s %s %s %s\n",
2934 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2935 		cap_str, md->read_only ? "(ro)" : "");
2936 
2937 	if (mmc_blk_alloc_parts(card, md))
2938 		goto out;
2939 
2940 	dev_set_drvdata(&card->dev, md);
2941 
2942 	if (mmc_add_disk(md))
2943 		goto out;
2944 
2945 	list_for_each_entry(part_md, &md->part, part) {
2946 		if (mmc_add_disk(part_md))
2947 			goto out;
2948 	}
2949 
2950 	/* Add two debugfs entries */
2951 	mmc_blk_add_debugfs(card, md);
2952 
2953 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2954 	pm_runtime_use_autosuspend(&card->dev);
2955 
2956 	/*
2957 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2958 	 * decision to be taken during the SDIO init sequence instead.
2959 	 */
2960 	if (card->type != MMC_TYPE_SD_COMBO) {
2961 		pm_runtime_set_active(&card->dev);
2962 		pm_runtime_enable(&card->dev);
2963 	}
2964 
2965 	return 0;
2966 
2967  out:
2968 	mmc_blk_remove_parts(card, md);
2969 	mmc_blk_remove_req(md);
2970 	return 0;
2971 }
2972 
2973 static void mmc_blk_remove(struct mmc_card *card)
2974 {
2975 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2976 
2977 	mmc_blk_remove_debugfs(card, md);
2978 	mmc_blk_remove_parts(card, md);
2979 	pm_runtime_get_sync(&card->dev);
2980 	if (md->part_curr != md->part_type) {
2981 		mmc_claim_host(card->host);
2982 		mmc_blk_part_switch(card, md->part_type);
2983 		mmc_release_host(card->host);
2984 	}
2985 	if (card->type != MMC_TYPE_SD_COMBO)
2986 		pm_runtime_disable(&card->dev);
2987 	pm_runtime_put_noidle(&card->dev);
2988 	mmc_blk_remove_req(md);
2989 	dev_set_drvdata(&card->dev, NULL);
2990 }
2991 
2992 static int _mmc_blk_suspend(struct mmc_card *card)
2993 {
2994 	struct mmc_blk_data *part_md;
2995 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2996 
2997 	if (md) {
2998 		mmc_queue_suspend(&md->queue);
2999 		list_for_each_entry(part_md, &md->part, part) {
3000 			mmc_queue_suspend(&part_md->queue);
3001 		}
3002 	}
3003 	return 0;
3004 }
3005 
3006 static void mmc_blk_shutdown(struct mmc_card *card)
3007 {
3008 	_mmc_blk_suspend(card);
3009 }
3010 
3011 #ifdef CONFIG_PM_SLEEP
3012 static int mmc_blk_suspend(struct device *dev)
3013 {
3014 	struct mmc_card *card = mmc_dev_to_card(dev);
3015 
3016 	return _mmc_blk_suspend(card);
3017 }
3018 
3019 static int mmc_blk_resume(struct device *dev)
3020 {
3021 	struct mmc_blk_data *part_md;
3022 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3023 
3024 	if (md) {
3025 		/*
3026 		 * Resume involves the card going into idle state,
3027 		 * so current partition is always the main one.
3028 		 */
3029 		md->part_curr = md->part_type;
3030 		mmc_queue_resume(&md->queue);
3031 		list_for_each_entry(part_md, &md->part, part) {
3032 			mmc_queue_resume(&part_md->queue);
3033 		}
3034 	}
3035 	return 0;
3036 }
3037 #endif
3038 
3039 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3040 
3041 static struct mmc_driver mmc_driver = {
3042 	.drv		= {
3043 		.name	= "mmcblk",
3044 		.pm	= &mmc_blk_pm_ops,
3045 	},
3046 	.probe		= mmc_blk_probe,
3047 	.remove		= mmc_blk_remove,
3048 	.shutdown	= mmc_blk_shutdown,
3049 };
3050 
3051 static int __init mmc_blk_init(void)
3052 {
3053 	int res;
3054 
3055 	res  = bus_register(&mmc_rpmb_bus_type);
3056 	if (res < 0) {
3057 		pr_err("mmcblk: could not register RPMB bus type\n");
3058 		return res;
3059 	}
3060 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3061 	if (res < 0) {
3062 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3063 		goto out_bus_unreg;
3064 	}
3065 
3066 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3067 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3068 
3069 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3070 
3071 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3072 	if (res)
3073 		goto out_chrdev_unreg;
3074 
3075 	res = mmc_register_driver(&mmc_driver);
3076 	if (res)
3077 		goto out_blkdev_unreg;
3078 
3079 	return 0;
3080 
3081 out_blkdev_unreg:
3082 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3083 out_chrdev_unreg:
3084 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3085 out_bus_unreg:
3086 	bus_unregister(&mmc_rpmb_bus_type);
3087 	return res;
3088 }
3089 
3090 static void __exit mmc_blk_exit(void)
3091 {
3092 	mmc_unregister_driver(&mmc_driver);
3093 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3094 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3095 	bus_unregister(&mmc_rpmb_bus_type);
3096 }
3097 
3098 module_init(mmc_blk_init);
3099 module_exit(mmc_blk_exit);
3100 
3101 MODULE_LICENSE("GPL");
3102 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3103 
3104