1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block driver for media (i.e., flash cards) 4 * 5 * Copyright 2002 Hewlett-Packard Company 6 * Copyright 2005-2008 Pierre Ossman 7 * 8 * Use consistent with the GNU GPL is permitted, 9 * provided that this copyright notice is 10 * preserved in its entirety in all copies and derived works. 11 * 12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 14 * FITNESS FOR ANY PARTICULAR PURPOSE. 15 * 16 * Many thanks to Alessandro Rubini and Jonathan Corbet! 17 * 18 * Author: Andrew Christian 19 * 28 May 2002 20 */ 21 #include <linux/moduleparam.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/errno.h> 29 #include <linux/hdreg.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kref.h> 32 #include <linux/blkdev.h> 33 #include <linux/cdev.h> 34 #include <linux/mutex.h> 35 #include <linux/scatterlist.h> 36 #include <linux/string_helpers.h> 37 #include <linux/delay.h> 38 #include <linux/capability.h> 39 #include <linux/compat.h> 40 #include <linux/pm_runtime.h> 41 #include <linux/idr.h> 42 #include <linux/debugfs.h> 43 44 #include <linux/mmc/ioctl.h> 45 #include <linux/mmc/card.h> 46 #include <linux/mmc/host.h> 47 #include <linux/mmc/mmc.h> 48 #include <linux/mmc/sd.h> 49 50 #include <linux/uaccess.h> 51 52 #include "queue.h" 53 #include "block.h" 54 #include "core.h" 55 #include "card.h" 56 #include "crypto.h" 57 #include "host.h" 58 #include "bus.h" 59 #include "mmc_ops.h" 60 #include "quirks.h" 61 #include "sd_ops.h" 62 63 MODULE_ALIAS("mmc:block"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "mmcblk." 68 69 /* 70 * Set a 10 second timeout for polling write request busy state. Note, mmc core 71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 72 * second software timer to timeout the whole request, so 10 seconds should be 73 * ample. 74 */ 75 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 78 79 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 80 (rq_data_dir(req) == WRITE)) 81 static DEFINE_MUTEX(block_mutex); 82 83 /* 84 * The defaults come from config options but can be overriden by module 85 * or bootarg options. 86 */ 87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 88 89 /* 90 * We've only got one major, so number of mmcblk devices is 91 * limited to (1 << 20) / number of minors per device. It is also 92 * limited by the MAX_DEVICES below. 93 */ 94 static int max_devices; 95 96 #define MAX_DEVICES 256 97 98 static DEFINE_IDA(mmc_blk_ida); 99 static DEFINE_IDA(mmc_rpmb_ida); 100 101 struct mmc_blk_busy_data { 102 struct mmc_card *card; 103 u32 status; 104 }; 105 106 /* 107 * There is one mmc_blk_data per slot. 108 */ 109 struct mmc_blk_data { 110 struct device *parent; 111 struct gendisk *disk; 112 struct mmc_queue queue; 113 struct list_head part; 114 struct list_head rpmbs; 115 116 unsigned int flags; 117 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 118 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 119 120 struct kref kref; 121 unsigned int read_only; 122 unsigned int part_type; 123 unsigned int reset_done; 124 #define MMC_BLK_READ BIT(0) 125 #define MMC_BLK_WRITE BIT(1) 126 #define MMC_BLK_DISCARD BIT(2) 127 #define MMC_BLK_SECDISCARD BIT(3) 128 #define MMC_BLK_CQE_RECOVERY BIT(4) 129 130 /* 131 * Only set in main mmc_blk_data associated 132 * with mmc_card with dev_set_drvdata, and keeps 133 * track of the current selected device partition. 134 */ 135 unsigned int part_curr; 136 int area_type; 137 138 /* debugfs files (only in main mmc_blk_data) */ 139 struct dentry *status_dentry; 140 struct dentry *ext_csd_dentry; 141 }; 142 143 /* Device type for RPMB character devices */ 144 static dev_t mmc_rpmb_devt; 145 146 /* Bus type for RPMB character devices */ 147 static struct bus_type mmc_rpmb_bus_type = { 148 .name = "mmc_rpmb", 149 }; 150 151 /** 152 * struct mmc_rpmb_data - special RPMB device type for these areas 153 * @dev: the device for the RPMB area 154 * @chrdev: character device for the RPMB area 155 * @id: unique device ID number 156 * @part_index: partition index (0 on first) 157 * @md: parent MMC block device 158 * @node: list item, so we can put this device on a list 159 */ 160 struct mmc_rpmb_data { 161 struct device dev; 162 struct cdev chrdev; 163 int id; 164 unsigned int part_index; 165 struct mmc_blk_data *md; 166 struct list_head node; 167 }; 168 169 static DEFINE_MUTEX(open_lock); 170 171 module_param(perdev_minors, int, 0444); 172 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 173 174 static inline int mmc_blk_part_switch(struct mmc_card *card, 175 unsigned int part_type); 176 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 177 struct mmc_card *card, 178 int disable_multi, 179 struct mmc_queue *mq); 180 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 181 182 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 183 { 184 struct mmc_blk_data *md; 185 186 mutex_lock(&open_lock); 187 md = disk->private_data; 188 if (md && !kref_get_unless_zero(&md->kref)) 189 md = NULL; 190 mutex_unlock(&open_lock); 191 192 return md; 193 } 194 195 static inline int mmc_get_devidx(struct gendisk *disk) 196 { 197 int devidx = disk->first_minor / perdev_minors; 198 return devidx; 199 } 200 201 static void mmc_blk_kref_release(struct kref *ref) 202 { 203 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref); 204 int devidx; 205 206 devidx = mmc_get_devidx(md->disk); 207 ida_simple_remove(&mmc_blk_ida, devidx); 208 209 mutex_lock(&open_lock); 210 md->disk->private_data = NULL; 211 mutex_unlock(&open_lock); 212 213 put_disk(md->disk); 214 kfree(md); 215 } 216 217 static void mmc_blk_put(struct mmc_blk_data *md) 218 { 219 kref_put(&md->kref, mmc_blk_kref_release); 220 } 221 222 static ssize_t power_ro_lock_show(struct device *dev, 223 struct device_attribute *attr, char *buf) 224 { 225 int ret; 226 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 227 struct mmc_card *card = md->queue.card; 228 int locked = 0; 229 230 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 231 locked = 2; 232 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 233 locked = 1; 234 235 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 236 237 mmc_blk_put(md); 238 239 return ret; 240 } 241 242 static ssize_t power_ro_lock_store(struct device *dev, 243 struct device_attribute *attr, const char *buf, size_t count) 244 { 245 int ret; 246 struct mmc_blk_data *md, *part_md; 247 struct mmc_queue *mq; 248 struct request *req; 249 unsigned long set; 250 251 if (kstrtoul(buf, 0, &set)) 252 return -EINVAL; 253 254 if (set != 1) 255 return count; 256 257 md = mmc_blk_get(dev_to_disk(dev)); 258 mq = &md->queue; 259 260 /* Dispatch locking to the block layer */ 261 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0); 262 if (IS_ERR(req)) { 263 count = PTR_ERR(req); 264 goto out_put; 265 } 266 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 267 blk_execute_rq(req, false); 268 ret = req_to_mmc_queue_req(req)->drv_op_result; 269 blk_mq_free_request(req); 270 271 if (!ret) { 272 pr_info("%s: Locking boot partition ro until next power on\n", 273 md->disk->disk_name); 274 set_disk_ro(md->disk, 1); 275 276 list_for_each_entry(part_md, &md->part, part) 277 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 278 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 279 set_disk_ro(part_md->disk, 1); 280 } 281 } 282 out_put: 283 mmc_blk_put(md); 284 return count; 285 } 286 287 static DEVICE_ATTR(ro_lock_until_next_power_on, 0, 288 power_ro_lock_show, power_ro_lock_store); 289 290 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 291 char *buf) 292 { 293 int ret; 294 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 295 296 ret = snprintf(buf, PAGE_SIZE, "%d\n", 297 get_disk_ro(dev_to_disk(dev)) ^ 298 md->read_only); 299 mmc_blk_put(md); 300 return ret; 301 } 302 303 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 304 const char *buf, size_t count) 305 { 306 int ret; 307 char *end; 308 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 309 unsigned long set = simple_strtoul(buf, &end, 0); 310 if (end == buf) { 311 ret = -EINVAL; 312 goto out; 313 } 314 315 set_disk_ro(dev_to_disk(dev), set || md->read_only); 316 ret = count; 317 out: 318 mmc_blk_put(md); 319 return ret; 320 } 321 322 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store); 323 324 static struct attribute *mmc_disk_attrs[] = { 325 &dev_attr_force_ro.attr, 326 &dev_attr_ro_lock_until_next_power_on.attr, 327 NULL, 328 }; 329 330 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj, 331 struct attribute *a, int n) 332 { 333 struct device *dev = container_of(kobj, struct device, kobj); 334 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 335 umode_t mode = a->mode; 336 337 if (a == &dev_attr_ro_lock_until_next_power_on.attr && 338 (md->area_type & MMC_BLK_DATA_AREA_BOOT) && 339 md->queue.card->ext_csd.boot_ro_lockable) { 340 mode = S_IRUGO; 341 if (!(md->queue.card->ext_csd.boot_ro_lock & 342 EXT_CSD_BOOT_WP_B_PWR_WP_DIS)) 343 mode |= S_IWUSR; 344 } 345 346 mmc_blk_put(md); 347 return mode; 348 } 349 350 static const struct attribute_group mmc_disk_attr_group = { 351 .is_visible = mmc_disk_attrs_is_visible, 352 .attrs = mmc_disk_attrs, 353 }; 354 355 static const struct attribute_group *mmc_disk_attr_groups[] = { 356 &mmc_disk_attr_group, 357 NULL, 358 }; 359 360 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 361 { 362 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 363 int ret = -ENXIO; 364 365 mutex_lock(&block_mutex); 366 if (md) { 367 ret = 0; 368 if ((mode & FMODE_WRITE) && md->read_only) { 369 mmc_blk_put(md); 370 ret = -EROFS; 371 } 372 } 373 mutex_unlock(&block_mutex); 374 375 return ret; 376 } 377 378 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 379 { 380 struct mmc_blk_data *md = disk->private_data; 381 382 mutex_lock(&block_mutex); 383 mmc_blk_put(md); 384 mutex_unlock(&block_mutex); 385 } 386 387 static int 388 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 389 { 390 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 391 geo->heads = 4; 392 geo->sectors = 16; 393 return 0; 394 } 395 396 struct mmc_blk_ioc_data { 397 struct mmc_ioc_cmd ic; 398 unsigned char *buf; 399 u64 buf_bytes; 400 struct mmc_rpmb_data *rpmb; 401 }; 402 403 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 404 struct mmc_ioc_cmd __user *user) 405 { 406 struct mmc_blk_ioc_data *idata; 407 int err; 408 409 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 410 if (!idata) { 411 err = -ENOMEM; 412 goto out; 413 } 414 415 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 416 err = -EFAULT; 417 goto idata_err; 418 } 419 420 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 421 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 422 err = -EOVERFLOW; 423 goto idata_err; 424 } 425 426 if (!idata->buf_bytes) { 427 idata->buf = NULL; 428 return idata; 429 } 430 431 idata->buf = memdup_user((void __user *)(unsigned long) 432 idata->ic.data_ptr, idata->buf_bytes); 433 if (IS_ERR(idata->buf)) { 434 err = PTR_ERR(idata->buf); 435 goto idata_err; 436 } 437 438 return idata; 439 440 idata_err: 441 kfree(idata); 442 out: 443 return ERR_PTR(err); 444 } 445 446 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 447 struct mmc_blk_ioc_data *idata) 448 { 449 struct mmc_ioc_cmd *ic = &idata->ic; 450 451 if (copy_to_user(&(ic_ptr->response), ic->response, 452 sizeof(ic->response))) 453 return -EFAULT; 454 455 if (!idata->ic.write_flag) { 456 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 457 idata->buf, idata->buf_bytes)) 458 return -EFAULT; 459 } 460 461 return 0; 462 } 463 464 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 465 struct mmc_blk_ioc_data *idata) 466 { 467 struct mmc_command cmd = {}, sbc = {}; 468 struct mmc_data data = {}; 469 struct mmc_request mrq = {}; 470 struct scatterlist sg; 471 int err; 472 unsigned int target_part; 473 474 if (!card || !md || !idata) 475 return -EINVAL; 476 477 /* 478 * The RPMB accesses comes in from the character device, so we 479 * need to target these explicitly. Else we just target the 480 * partition type for the block device the ioctl() was issued 481 * on. 482 */ 483 if (idata->rpmb) { 484 /* Support multiple RPMB partitions */ 485 target_part = idata->rpmb->part_index; 486 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 487 } else { 488 target_part = md->part_type; 489 } 490 491 cmd.opcode = idata->ic.opcode; 492 cmd.arg = idata->ic.arg; 493 cmd.flags = idata->ic.flags; 494 495 if (idata->buf_bytes) { 496 data.sg = &sg; 497 data.sg_len = 1; 498 data.blksz = idata->ic.blksz; 499 data.blocks = idata->ic.blocks; 500 501 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 502 503 if (idata->ic.write_flag) 504 data.flags = MMC_DATA_WRITE; 505 else 506 data.flags = MMC_DATA_READ; 507 508 /* data.flags must already be set before doing this. */ 509 mmc_set_data_timeout(&data, card); 510 511 /* Allow overriding the timeout_ns for empirical tuning. */ 512 if (idata->ic.data_timeout_ns) 513 data.timeout_ns = idata->ic.data_timeout_ns; 514 515 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 516 /* 517 * Pretend this is a data transfer and rely on the 518 * host driver to compute timeout. When all host 519 * drivers support cmd.cmd_timeout for R1B, this 520 * can be changed to: 521 * 522 * mrq.data = NULL; 523 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 524 */ 525 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 526 } 527 528 mrq.data = &data; 529 } 530 531 mrq.cmd = &cmd; 532 533 err = mmc_blk_part_switch(card, target_part); 534 if (err) 535 return err; 536 537 if (idata->ic.is_acmd) { 538 err = mmc_app_cmd(card->host, card); 539 if (err) 540 return err; 541 } 542 543 if (idata->rpmb) { 544 sbc.opcode = MMC_SET_BLOCK_COUNT; 545 /* 546 * We don't do any blockcount validation because the max size 547 * may be increased by a future standard. We just copy the 548 * 'Reliable Write' bit here. 549 */ 550 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 551 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 552 mrq.sbc = &sbc; 553 } 554 555 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 556 (cmd.opcode == MMC_SWITCH)) 557 return mmc_sanitize(card, idata->ic.cmd_timeout_ms); 558 559 mmc_wait_for_req(card->host, &mrq); 560 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp)); 561 562 if (cmd.error) { 563 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 564 __func__, cmd.error); 565 return cmd.error; 566 } 567 if (data.error) { 568 dev_err(mmc_dev(card->host), "%s: data error %d\n", 569 __func__, data.error); 570 return data.error; 571 } 572 573 /* 574 * Make sure the cache of the PARTITION_CONFIG register and 575 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 576 * changed it successfully. 577 */ 578 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 579 (cmd.opcode == MMC_SWITCH)) { 580 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 581 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 582 583 /* 584 * Update cache so the next mmc_blk_part_switch call operates 585 * on up-to-date data. 586 */ 587 card->ext_csd.part_config = value; 588 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 589 } 590 591 /* 592 * Make sure to update CACHE_CTRL in case it was changed. The cache 593 * will get turned back on if the card is re-initialized, e.g. 594 * suspend/resume or hw reset in recovery. 595 */ 596 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && 597 (cmd.opcode == MMC_SWITCH)) { 598 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; 599 600 card->ext_csd.cache_ctrl = value; 601 } 602 603 /* 604 * According to the SD specs, some commands require a delay after 605 * issuing the command. 606 */ 607 if (idata->ic.postsleep_min_us) 608 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 609 610 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 611 /* 612 * Ensure RPMB/R1B command has completed by polling CMD13 613 * "Send Status". 614 */ 615 err = mmc_poll_for_busy(card, MMC_BLK_TIMEOUT_MS, false, 616 MMC_BUSY_IO); 617 } 618 619 return err; 620 } 621 622 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 623 struct mmc_ioc_cmd __user *ic_ptr, 624 struct mmc_rpmb_data *rpmb) 625 { 626 struct mmc_blk_ioc_data *idata; 627 struct mmc_blk_ioc_data *idatas[1]; 628 struct mmc_queue *mq; 629 struct mmc_card *card; 630 int err = 0, ioc_err = 0; 631 struct request *req; 632 633 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 634 if (IS_ERR(idata)) 635 return PTR_ERR(idata); 636 /* This will be NULL on non-RPMB ioctl():s */ 637 idata->rpmb = rpmb; 638 639 card = md->queue.card; 640 if (IS_ERR(card)) { 641 err = PTR_ERR(card); 642 goto cmd_done; 643 } 644 645 /* 646 * Dispatch the ioctl() into the block request queue. 647 */ 648 mq = &md->queue; 649 req = blk_mq_alloc_request(mq->queue, 650 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 651 if (IS_ERR(req)) { 652 err = PTR_ERR(req); 653 goto cmd_done; 654 } 655 idatas[0] = idata; 656 req_to_mmc_queue_req(req)->drv_op = 657 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 658 req_to_mmc_queue_req(req)->drv_op_data = idatas; 659 req_to_mmc_queue_req(req)->ioc_count = 1; 660 blk_execute_rq(req, false); 661 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 662 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 663 blk_mq_free_request(req); 664 665 cmd_done: 666 kfree(idata->buf); 667 kfree(idata); 668 return ioc_err ? ioc_err : err; 669 } 670 671 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 672 struct mmc_ioc_multi_cmd __user *user, 673 struct mmc_rpmb_data *rpmb) 674 { 675 struct mmc_blk_ioc_data **idata = NULL; 676 struct mmc_ioc_cmd __user *cmds = user->cmds; 677 struct mmc_card *card; 678 struct mmc_queue *mq; 679 int i, err = 0, ioc_err = 0; 680 __u64 num_of_cmds; 681 struct request *req; 682 683 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 684 sizeof(num_of_cmds))) 685 return -EFAULT; 686 687 if (!num_of_cmds) 688 return 0; 689 690 if (num_of_cmds > MMC_IOC_MAX_CMDS) 691 return -EINVAL; 692 693 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 694 if (!idata) 695 return -ENOMEM; 696 697 for (i = 0; i < num_of_cmds; i++) { 698 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 699 if (IS_ERR(idata[i])) { 700 err = PTR_ERR(idata[i]); 701 num_of_cmds = i; 702 goto cmd_err; 703 } 704 /* This will be NULL on non-RPMB ioctl():s */ 705 idata[i]->rpmb = rpmb; 706 } 707 708 card = md->queue.card; 709 if (IS_ERR(card)) { 710 err = PTR_ERR(card); 711 goto cmd_err; 712 } 713 714 715 /* 716 * Dispatch the ioctl()s into the block request queue. 717 */ 718 mq = &md->queue; 719 req = blk_mq_alloc_request(mq->queue, 720 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 721 if (IS_ERR(req)) { 722 err = PTR_ERR(req); 723 goto cmd_err; 724 } 725 req_to_mmc_queue_req(req)->drv_op = 726 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 727 req_to_mmc_queue_req(req)->drv_op_data = idata; 728 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 729 blk_execute_rq(req, false); 730 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 731 732 /* copy to user if data and response */ 733 for (i = 0; i < num_of_cmds && !err; i++) 734 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 735 736 blk_mq_free_request(req); 737 738 cmd_err: 739 for (i = 0; i < num_of_cmds; i++) { 740 kfree(idata[i]->buf); 741 kfree(idata[i]); 742 } 743 kfree(idata); 744 return ioc_err ? ioc_err : err; 745 } 746 747 static int mmc_blk_check_blkdev(struct block_device *bdev) 748 { 749 /* 750 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 751 * whole block device, not on a partition. This prevents overspray 752 * between sibling partitions. 753 */ 754 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 755 return -EPERM; 756 return 0; 757 } 758 759 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 760 unsigned int cmd, unsigned long arg) 761 { 762 struct mmc_blk_data *md; 763 int ret; 764 765 switch (cmd) { 766 case MMC_IOC_CMD: 767 ret = mmc_blk_check_blkdev(bdev); 768 if (ret) 769 return ret; 770 md = mmc_blk_get(bdev->bd_disk); 771 if (!md) 772 return -EINVAL; 773 ret = mmc_blk_ioctl_cmd(md, 774 (struct mmc_ioc_cmd __user *)arg, 775 NULL); 776 mmc_blk_put(md); 777 return ret; 778 case MMC_IOC_MULTI_CMD: 779 ret = mmc_blk_check_blkdev(bdev); 780 if (ret) 781 return ret; 782 md = mmc_blk_get(bdev->bd_disk); 783 if (!md) 784 return -EINVAL; 785 ret = mmc_blk_ioctl_multi_cmd(md, 786 (struct mmc_ioc_multi_cmd __user *)arg, 787 NULL); 788 mmc_blk_put(md); 789 return ret; 790 default: 791 return -EINVAL; 792 } 793 } 794 795 #ifdef CONFIG_COMPAT 796 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 797 unsigned int cmd, unsigned long arg) 798 { 799 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 800 } 801 #endif 802 803 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk, 804 sector_t *sector) 805 { 806 struct mmc_blk_data *md; 807 int ret; 808 809 md = mmc_blk_get(disk); 810 if (!md) 811 return -EINVAL; 812 813 if (md->queue.card) 814 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector); 815 else 816 ret = -ENODEV; 817 818 mmc_blk_put(md); 819 820 return ret; 821 } 822 823 static const struct block_device_operations mmc_bdops = { 824 .open = mmc_blk_open, 825 .release = mmc_blk_release, 826 .getgeo = mmc_blk_getgeo, 827 .owner = THIS_MODULE, 828 .ioctl = mmc_blk_ioctl, 829 #ifdef CONFIG_COMPAT 830 .compat_ioctl = mmc_blk_compat_ioctl, 831 #endif 832 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector, 833 }; 834 835 static int mmc_blk_part_switch_pre(struct mmc_card *card, 836 unsigned int part_type) 837 { 838 int ret = 0; 839 840 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 841 if (card->ext_csd.cmdq_en) { 842 ret = mmc_cmdq_disable(card); 843 if (ret) 844 return ret; 845 } 846 mmc_retune_pause(card->host); 847 } 848 849 return ret; 850 } 851 852 static int mmc_blk_part_switch_post(struct mmc_card *card, 853 unsigned int part_type) 854 { 855 int ret = 0; 856 857 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 858 mmc_retune_unpause(card->host); 859 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 860 ret = mmc_cmdq_enable(card); 861 } 862 863 return ret; 864 } 865 866 static inline int mmc_blk_part_switch(struct mmc_card *card, 867 unsigned int part_type) 868 { 869 int ret = 0; 870 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 871 872 if (main_md->part_curr == part_type) 873 return 0; 874 875 if (mmc_card_mmc(card)) { 876 u8 part_config = card->ext_csd.part_config; 877 878 ret = mmc_blk_part_switch_pre(card, part_type); 879 if (ret) 880 return ret; 881 882 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 883 part_config |= part_type; 884 885 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 886 EXT_CSD_PART_CONFIG, part_config, 887 card->ext_csd.part_time); 888 if (ret) { 889 mmc_blk_part_switch_post(card, part_type); 890 return ret; 891 } 892 893 card->ext_csd.part_config = part_config; 894 895 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 896 } 897 898 main_md->part_curr = part_type; 899 return ret; 900 } 901 902 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 903 { 904 int err; 905 u32 result; 906 __be32 *blocks; 907 908 struct mmc_request mrq = {}; 909 struct mmc_command cmd = {}; 910 struct mmc_data data = {}; 911 912 struct scatterlist sg; 913 914 cmd.opcode = MMC_APP_CMD; 915 cmd.arg = card->rca << 16; 916 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 917 918 err = mmc_wait_for_cmd(card->host, &cmd, 0); 919 if (err) 920 return err; 921 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 922 return -EIO; 923 924 memset(&cmd, 0, sizeof(struct mmc_command)); 925 926 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 927 cmd.arg = 0; 928 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 929 930 data.blksz = 4; 931 data.blocks = 1; 932 data.flags = MMC_DATA_READ; 933 data.sg = &sg; 934 data.sg_len = 1; 935 mmc_set_data_timeout(&data, card); 936 937 mrq.cmd = &cmd; 938 mrq.data = &data; 939 940 blocks = kmalloc(4, GFP_KERNEL); 941 if (!blocks) 942 return -ENOMEM; 943 944 sg_init_one(&sg, blocks, 4); 945 946 mmc_wait_for_req(card->host, &mrq); 947 948 result = ntohl(*blocks); 949 kfree(blocks); 950 951 if (cmd.error || data.error) 952 return -EIO; 953 954 *written_blocks = result; 955 956 return 0; 957 } 958 959 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 960 { 961 if (host->actual_clock) 962 return host->actual_clock / 1000; 963 964 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 965 if (host->ios.clock) 966 return host->ios.clock / 2000; 967 968 /* How can there be no clock */ 969 WARN_ON_ONCE(1); 970 return 100; /* 100 kHz is minimum possible value */ 971 } 972 973 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 974 struct mmc_data *data) 975 { 976 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 977 unsigned int khz; 978 979 if (data->timeout_clks) { 980 khz = mmc_blk_clock_khz(host); 981 ms += DIV_ROUND_UP(data->timeout_clks, khz); 982 } 983 984 return ms; 985 } 986 987 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 988 int type) 989 { 990 int err; 991 992 if (md->reset_done & type) 993 return -EEXIST; 994 995 md->reset_done |= type; 996 err = mmc_hw_reset(host->card); 997 /* Ensure we switch back to the correct partition */ 998 if (err) { 999 struct mmc_blk_data *main_md = 1000 dev_get_drvdata(&host->card->dev); 1001 int part_err; 1002 1003 main_md->part_curr = main_md->part_type; 1004 part_err = mmc_blk_part_switch(host->card, md->part_type); 1005 if (part_err) { 1006 /* 1007 * We have failed to get back into the correct 1008 * partition, so we need to abort the whole request. 1009 */ 1010 return -ENODEV; 1011 } 1012 } 1013 return err; 1014 } 1015 1016 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1017 { 1018 md->reset_done &= ~type; 1019 } 1020 1021 /* 1022 * The non-block commands come back from the block layer after it queued it and 1023 * processed it with all other requests and then they get issued in this 1024 * function. 1025 */ 1026 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1027 { 1028 struct mmc_queue_req *mq_rq; 1029 struct mmc_card *card = mq->card; 1030 struct mmc_blk_data *md = mq->blkdata; 1031 struct mmc_blk_ioc_data **idata; 1032 bool rpmb_ioctl; 1033 u8 **ext_csd; 1034 u32 status; 1035 int ret; 1036 int i; 1037 1038 mq_rq = req_to_mmc_queue_req(req); 1039 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1040 1041 switch (mq_rq->drv_op) { 1042 case MMC_DRV_OP_IOCTL: 1043 if (card->ext_csd.cmdq_en) { 1044 ret = mmc_cmdq_disable(card); 1045 if (ret) 1046 break; 1047 } 1048 fallthrough; 1049 case MMC_DRV_OP_IOCTL_RPMB: 1050 idata = mq_rq->drv_op_data; 1051 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1052 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1053 if (ret) 1054 break; 1055 } 1056 /* Always switch back to main area after RPMB access */ 1057 if (rpmb_ioctl) 1058 mmc_blk_part_switch(card, 0); 1059 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 1060 mmc_cmdq_enable(card); 1061 break; 1062 case MMC_DRV_OP_BOOT_WP: 1063 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1064 card->ext_csd.boot_ro_lock | 1065 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1066 card->ext_csd.part_time); 1067 if (ret) 1068 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1069 md->disk->disk_name, ret); 1070 else 1071 card->ext_csd.boot_ro_lock |= 1072 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1073 break; 1074 case MMC_DRV_OP_GET_CARD_STATUS: 1075 ret = mmc_send_status(card, &status); 1076 if (!ret) 1077 ret = status; 1078 break; 1079 case MMC_DRV_OP_GET_EXT_CSD: 1080 ext_csd = mq_rq->drv_op_data; 1081 ret = mmc_get_ext_csd(card, ext_csd); 1082 break; 1083 default: 1084 pr_err("%s: unknown driver specific operation\n", 1085 md->disk->disk_name); 1086 ret = -EINVAL; 1087 break; 1088 } 1089 mq_rq->drv_op_result = ret; 1090 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1091 } 1092 1093 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1094 { 1095 struct mmc_blk_data *md = mq->blkdata; 1096 struct mmc_card *card = md->queue.card; 1097 unsigned int from, nr; 1098 int err = 0, type = MMC_BLK_DISCARD; 1099 blk_status_t status = BLK_STS_OK; 1100 1101 if (!mmc_can_erase(card)) { 1102 status = BLK_STS_NOTSUPP; 1103 goto fail; 1104 } 1105 1106 from = blk_rq_pos(req); 1107 nr = blk_rq_sectors(req); 1108 1109 do { 1110 err = 0; 1111 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1112 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1113 INAND_CMD38_ARG_EXT_CSD, 1114 card->erase_arg == MMC_TRIM_ARG ? 1115 INAND_CMD38_ARG_TRIM : 1116 INAND_CMD38_ARG_ERASE, 1117 card->ext_csd.generic_cmd6_time); 1118 } 1119 if (!err) 1120 err = mmc_erase(card, from, nr, card->erase_arg); 1121 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1122 if (err) 1123 status = BLK_STS_IOERR; 1124 else 1125 mmc_blk_reset_success(md, type); 1126 fail: 1127 blk_mq_end_request(req, status); 1128 } 1129 1130 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1131 struct request *req) 1132 { 1133 struct mmc_blk_data *md = mq->blkdata; 1134 struct mmc_card *card = md->queue.card; 1135 unsigned int from, nr, arg; 1136 int err = 0, type = MMC_BLK_SECDISCARD; 1137 blk_status_t status = BLK_STS_OK; 1138 1139 if (!(mmc_can_secure_erase_trim(card))) { 1140 status = BLK_STS_NOTSUPP; 1141 goto out; 1142 } 1143 1144 from = blk_rq_pos(req); 1145 nr = blk_rq_sectors(req); 1146 1147 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1148 arg = MMC_SECURE_TRIM1_ARG; 1149 else 1150 arg = MMC_SECURE_ERASE_ARG; 1151 1152 retry: 1153 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1154 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1155 INAND_CMD38_ARG_EXT_CSD, 1156 arg == MMC_SECURE_TRIM1_ARG ? 1157 INAND_CMD38_ARG_SECTRIM1 : 1158 INAND_CMD38_ARG_SECERASE, 1159 card->ext_csd.generic_cmd6_time); 1160 if (err) 1161 goto out_retry; 1162 } 1163 1164 err = mmc_erase(card, from, nr, arg); 1165 if (err == -EIO) 1166 goto out_retry; 1167 if (err) { 1168 status = BLK_STS_IOERR; 1169 goto out; 1170 } 1171 1172 if (arg == MMC_SECURE_TRIM1_ARG) { 1173 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1174 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1175 INAND_CMD38_ARG_EXT_CSD, 1176 INAND_CMD38_ARG_SECTRIM2, 1177 card->ext_csd.generic_cmd6_time); 1178 if (err) 1179 goto out_retry; 1180 } 1181 1182 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1183 if (err == -EIO) 1184 goto out_retry; 1185 if (err) { 1186 status = BLK_STS_IOERR; 1187 goto out; 1188 } 1189 } 1190 1191 out_retry: 1192 if (err && !mmc_blk_reset(md, card->host, type)) 1193 goto retry; 1194 if (!err) 1195 mmc_blk_reset_success(md, type); 1196 out: 1197 blk_mq_end_request(req, status); 1198 } 1199 1200 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1201 { 1202 struct mmc_blk_data *md = mq->blkdata; 1203 struct mmc_card *card = md->queue.card; 1204 int ret = 0; 1205 1206 ret = mmc_flush_cache(card->host); 1207 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1208 } 1209 1210 /* 1211 * Reformat current write as a reliable write, supporting 1212 * both legacy and the enhanced reliable write MMC cards. 1213 * In each transfer we'll handle only as much as a single 1214 * reliable write can handle, thus finish the request in 1215 * partial completions. 1216 */ 1217 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1218 struct mmc_card *card, 1219 struct request *req) 1220 { 1221 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1222 /* Legacy mode imposes restrictions on transfers. */ 1223 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1224 brq->data.blocks = 1; 1225 1226 if (brq->data.blocks > card->ext_csd.rel_sectors) 1227 brq->data.blocks = card->ext_csd.rel_sectors; 1228 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1229 brq->data.blocks = 1; 1230 } 1231 } 1232 1233 #define CMD_ERRORS_EXCL_OOR \ 1234 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1235 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1236 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1237 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1238 R1_CC_ERROR | /* Card controller error */ \ 1239 R1_ERROR) /* General/unknown error */ 1240 1241 #define CMD_ERRORS \ 1242 (CMD_ERRORS_EXCL_OOR | \ 1243 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1244 1245 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1246 { 1247 u32 val; 1248 1249 /* 1250 * Per the SD specification(physical layer version 4.10)[1], 1251 * section 4.3.3, it explicitly states that "When the last 1252 * block of user area is read using CMD18, the host should 1253 * ignore OUT_OF_RANGE error that may occur even the sequence 1254 * is correct". And JESD84-B51 for eMMC also has a similar 1255 * statement on section 6.8.3. 1256 * 1257 * Multiple block read/write could be done by either predefined 1258 * method, namely CMD23, or open-ending mode. For open-ending mode, 1259 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1260 * 1261 * However the spec[1] doesn't tell us whether we should also 1262 * ignore that for predefined method. But per the spec[1], section 1263 * 4.15 Set Block Count Command, it says"If illegal block count 1264 * is set, out of range error will be indicated during read/write 1265 * operation (For example, data transfer is stopped at user area 1266 * boundary)." In another word, we could expect a out of range error 1267 * in the response for the following CMD18/25. And if argument of 1268 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1269 * we could also expect to get a -ETIMEDOUT or any error number from 1270 * the host drivers due to missing data response(for write)/data(for 1271 * read), as the cards will stop the data transfer by itself per the 1272 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1273 */ 1274 1275 if (!brq->stop.error) { 1276 bool oor_with_open_end; 1277 /* If there is no error yet, check R1 response */ 1278 1279 val = brq->stop.resp[0] & CMD_ERRORS; 1280 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1281 1282 if (val && !oor_with_open_end) 1283 brq->stop.error = -EIO; 1284 } 1285 } 1286 1287 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1288 int disable_multi, bool *do_rel_wr_p, 1289 bool *do_data_tag_p) 1290 { 1291 struct mmc_blk_data *md = mq->blkdata; 1292 struct mmc_card *card = md->queue.card; 1293 struct mmc_blk_request *brq = &mqrq->brq; 1294 struct request *req = mmc_queue_req_to_req(mqrq); 1295 bool do_rel_wr, do_data_tag; 1296 1297 /* 1298 * Reliable writes are used to implement Forced Unit Access and 1299 * are supported only on MMCs. 1300 */ 1301 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1302 rq_data_dir(req) == WRITE && 1303 (md->flags & MMC_BLK_REL_WR); 1304 1305 memset(brq, 0, sizeof(struct mmc_blk_request)); 1306 1307 mmc_crypto_prepare_req(mqrq); 1308 1309 brq->mrq.data = &brq->data; 1310 brq->mrq.tag = req->tag; 1311 1312 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1313 brq->stop.arg = 0; 1314 1315 if (rq_data_dir(req) == READ) { 1316 brq->data.flags = MMC_DATA_READ; 1317 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1318 } else { 1319 brq->data.flags = MMC_DATA_WRITE; 1320 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1321 } 1322 1323 brq->data.blksz = 512; 1324 brq->data.blocks = blk_rq_sectors(req); 1325 brq->data.blk_addr = blk_rq_pos(req); 1326 1327 /* 1328 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1329 * The eMMC will give "high" priority tasks priority over "simple" 1330 * priority tasks. Here we always set "simple" priority by not setting 1331 * MMC_DATA_PRIO. 1332 */ 1333 1334 /* 1335 * The block layer doesn't support all sector count 1336 * restrictions, so we need to be prepared for too big 1337 * requests. 1338 */ 1339 if (brq->data.blocks > card->host->max_blk_count) 1340 brq->data.blocks = card->host->max_blk_count; 1341 1342 if (brq->data.blocks > 1) { 1343 /* 1344 * Some SD cards in SPI mode return a CRC error or even lock up 1345 * completely when trying to read the last block using a 1346 * multiblock read command. 1347 */ 1348 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1349 (blk_rq_pos(req) + blk_rq_sectors(req) == 1350 get_capacity(md->disk))) 1351 brq->data.blocks--; 1352 1353 /* 1354 * After a read error, we redo the request one sector 1355 * at a time in order to accurately determine which 1356 * sectors can be read successfully. 1357 */ 1358 if (disable_multi) 1359 brq->data.blocks = 1; 1360 1361 /* 1362 * Some controllers have HW issues while operating 1363 * in multiple I/O mode 1364 */ 1365 if (card->host->ops->multi_io_quirk) 1366 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1367 (rq_data_dir(req) == READ) ? 1368 MMC_DATA_READ : MMC_DATA_WRITE, 1369 brq->data.blocks); 1370 } 1371 1372 if (do_rel_wr) { 1373 mmc_apply_rel_rw(brq, card, req); 1374 brq->data.flags |= MMC_DATA_REL_WR; 1375 } 1376 1377 /* 1378 * Data tag is used only during writing meta data to speed 1379 * up write and any subsequent read of this meta data 1380 */ 1381 do_data_tag = card->ext_csd.data_tag_unit_size && 1382 (req->cmd_flags & REQ_META) && 1383 (rq_data_dir(req) == WRITE) && 1384 ((brq->data.blocks * brq->data.blksz) >= 1385 card->ext_csd.data_tag_unit_size); 1386 1387 if (do_data_tag) 1388 brq->data.flags |= MMC_DATA_DAT_TAG; 1389 1390 mmc_set_data_timeout(&brq->data, card); 1391 1392 brq->data.sg = mqrq->sg; 1393 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1394 1395 /* 1396 * Adjust the sg list so it is the same size as the 1397 * request. 1398 */ 1399 if (brq->data.blocks != blk_rq_sectors(req)) { 1400 int i, data_size = brq->data.blocks << 9; 1401 struct scatterlist *sg; 1402 1403 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1404 data_size -= sg->length; 1405 if (data_size <= 0) { 1406 sg->length += data_size; 1407 i++; 1408 break; 1409 } 1410 } 1411 brq->data.sg_len = i; 1412 } 1413 1414 if (do_rel_wr_p) 1415 *do_rel_wr_p = do_rel_wr; 1416 1417 if (do_data_tag_p) 1418 *do_data_tag_p = do_data_tag; 1419 } 1420 1421 #define MMC_CQE_RETRIES 2 1422 1423 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1424 { 1425 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1426 struct mmc_request *mrq = &mqrq->brq.mrq; 1427 struct request_queue *q = req->q; 1428 struct mmc_host *host = mq->card->host; 1429 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1430 unsigned long flags; 1431 bool put_card; 1432 int err; 1433 1434 mmc_cqe_post_req(host, mrq); 1435 1436 if (mrq->cmd && mrq->cmd->error) 1437 err = mrq->cmd->error; 1438 else if (mrq->data && mrq->data->error) 1439 err = mrq->data->error; 1440 else 1441 err = 0; 1442 1443 if (err) { 1444 if (mqrq->retries++ < MMC_CQE_RETRIES) 1445 blk_mq_requeue_request(req, true); 1446 else 1447 blk_mq_end_request(req, BLK_STS_IOERR); 1448 } else if (mrq->data) { 1449 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1450 blk_mq_requeue_request(req, true); 1451 else 1452 __blk_mq_end_request(req, BLK_STS_OK); 1453 } else { 1454 blk_mq_end_request(req, BLK_STS_OK); 1455 } 1456 1457 spin_lock_irqsave(&mq->lock, flags); 1458 1459 mq->in_flight[issue_type] -= 1; 1460 1461 put_card = (mmc_tot_in_flight(mq) == 0); 1462 1463 mmc_cqe_check_busy(mq); 1464 1465 spin_unlock_irqrestore(&mq->lock, flags); 1466 1467 if (!mq->cqe_busy) 1468 blk_mq_run_hw_queues(q, true); 1469 1470 if (put_card) 1471 mmc_put_card(mq->card, &mq->ctx); 1472 } 1473 1474 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1475 { 1476 struct mmc_card *card = mq->card; 1477 struct mmc_host *host = card->host; 1478 int err; 1479 1480 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1481 1482 err = mmc_cqe_recovery(host); 1483 if (err) 1484 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1485 else 1486 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1487 1488 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1489 } 1490 1491 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1492 { 1493 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1494 brq.mrq); 1495 struct request *req = mmc_queue_req_to_req(mqrq); 1496 struct request_queue *q = req->q; 1497 struct mmc_queue *mq = q->queuedata; 1498 1499 /* 1500 * Block layer timeouts race with completions which means the normal 1501 * completion path cannot be used during recovery. 1502 */ 1503 if (mq->in_recovery) 1504 mmc_blk_cqe_complete_rq(mq, req); 1505 else if (likely(!blk_should_fake_timeout(req->q))) 1506 blk_mq_complete_request(req); 1507 } 1508 1509 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1510 { 1511 mrq->done = mmc_blk_cqe_req_done; 1512 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1513 1514 return mmc_cqe_start_req(host, mrq); 1515 } 1516 1517 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1518 struct request *req) 1519 { 1520 struct mmc_blk_request *brq = &mqrq->brq; 1521 1522 memset(brq, 0, sizeof(*brq)); 1523 1524 brq->mrq.cmd = &brq->cmd; 1525 brq->mrq.tag = req->tag; 1526 1527 return &brq->mrq; 1528 } 1529 1530 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1531 { 1532 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1533 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1534 1535 mrq->cmd->opcode = MMC_SWITCH; 1536 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1537 (EXT_CSD_FLUSH_CACHE << 16) | 1538 (1 << 8) | 1539 EXT_CSD_CMD_SET_NORMAL; 1540 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1541 1542 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1543 } 1544 1545 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1546 { 1547 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1548 struct mmc_host *host = mq->card->host; 1549 int err; 1550 1551 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1552 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1553 mmc_pre_req(host, &mqrq->brq.mrq); 1554 1555 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1556 if (err) 1557 mmc_post_req(host, &mqrq->brq.mrq, err); 1558 1559 return err; 1560 } 1561 1562 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1563 { 1564 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1565 struct mmc_host *host = mq->card->host; 1566 1567 if (host->hsq_enabled) 1568 return mmc_blk_hsq_issue_rw_rq(mq, req); 1569 1570 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1571 1572 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1573 } 1574 1575 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1576 struct mmc_card *card, 1577 int disable_multi, 1578 struct mmc_queue *mq) 1579 { 1580 u32 readcmd, writecmd; 1581 struct mmc_blk_request *brq = &mqrq->brq; 1582 struct request *req = mmc_queue_req_to_req(mqrq); 1583 struct mmc_blk_data *md = mq->blkdata; 1584 bool do_rel_wr, do_data_tag; 1585 1586 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1587 1588 brq->mrq.cmd = &brq->cmd; 1589 1590 brq->cmd.arg = blk_rq_pos(req); 1591 if (!mmc_card_blockaddr(card)) 1592 brq->cmd.arg <<= 9; 1593 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1594 1595 if (brq->data.blocks > 1 || do_rel_wr) { 1596 /* SPI multiblock writes terminate using a special 1597 * token, not a STOP_TRANSMISSION request. 1598 */ 1599 if (!mmc_host_is_spi(card->host) || 1600 rq_data_dir(req) == READ) 1601 brq->mrq.stop = &brq->stop; 1602 readcmd = MMC_READ_MULTIPLE_BLOCK; 1603 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1604 } else { 1605 brq->mrq.stop = NULL; 1606 readcmd = MMC_READ_SINGLE_BLOCK; 1607 writecmd = MMC_WRITE_BLOCK; 1608 } 1609 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1610 1611 /* 1612 * Pre-defined multi-block transfers are preferable to 1613 * open ended-ones (and necessary for reliable writes). 1614 * However, it is not sufficient to just send CMD23, 1615 * and avoid the final CMD12, as on an error condition 1616 * CMD12 (stop) needs to be sent anyway. This, coupled 1617 * with Auto-CMD23 enhancements provided by some 1618 * hosts, means that the complexity of dealing 1619 * with this is best left to the host. If CMD23 is 1620 * supported by card and host, we'll fill sbc in and let 1621 * the host deal with handling it correctly. This means 1622 * that for hosts that don't expose MMC_CAP_CMD23, no 1623 * change of behavior will be observed. 1624 * 1625 * N.B: Some MMC cards experience perf degradation. 1626 * We'll avoid using CMD23-bounded multiblock writes for 1627 * these, while retaining features like reliable writes. 1628 */ 1629 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1630 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1631 do_data_tag)) { 1632 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1633 brq->sbc.arg = brq->data.blocks | 1634 (do_rel_wr ? (1 << 31) : 0) | 1635 (do_data_tag ? (1 << 29) : 0); 1636 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1637 brq->mrq.sbc = &brq->sbc; 1638 } 1639 } 1640 1641 #define MMC_MAX_RETRIES 5 1642 #define MMC_DATA_RETRIES 2 1643 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1644 1645 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1646 { 1647 struct mmc_command cmd = { 1648 .opcode = MMC_STOP_TRANSMISSION, 1649 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1650 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1651 .busy_timeout = timeout, 1652 }; 1653 1654 return mmc_wait_for_cmd(card->host, &cmd, 5); 1655 } 1656 1657 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1658 { 1659 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1660 struct mmc_blk_request *brq = &mqrq->brq; 1661 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1662 int err; 1663 1664 mmc_retune_hold_now(card->host); 1665 1666 mmc_blk_send_stop(card, timeout); 1667 1668 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO); 1669 1670 mmc_retune_release(card->host); 1671 1672 return err; 1673 } 1674 1675 #define MMC_READ_SINGLE_RETRIES 2 1676 1677 /* Single sector read during recovery */ 1678 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1679 { 1680 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1681 struct mmc_request *mrq = &mqrq->brq.mrq; 1682 struct mmc_card *card = mq->card; 1683 struct mmc_host *host = card->host; 1684 blk_status_t error = BLK_STS_OK; 1685 1686 do { 1687 u32 status; 1688 int err; 1689 int retries = 0; 1690 1691 while (retries++ <= MMC_READ_SINGLE_RETRIES) { 1692 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1693 1694 mmc_wait_for_req(host, mrq); 1695 1696 err = mmc_send_status(card, &status); 1697 if (err) 1698 goto error_exit; 1699 1700 if (!mmc_host_is_spi(host) && 1701 !mmc_ready_for_data(status)) { 1702 err = mmc_blk_fix_state(card, req); 1703 if (err) 1704 goto error_exit; 1705 } 1706 1707 if (!mrq->cmd->error) 1708 break; 1709 } 1710 1711 if (mrq->cmd->error || 1712 mrq->data->error || 1713 (!mmc_host_is_spi(host) && 1714 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1715 error = BLK_STS_IOERR; 1716 else 1717 error = BLK_STS_OK; 1718 1719 } while (blk_update_request(req, error, 512)); 1720 1721 return; 1722 1723 error_exit: 1724 mrq->data->bytes_xfered = 0; 1725 blk_update_request(req, BLK_STS_IOERR, 512); 1726 /* Let it try the remaining request again */ 1727 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1728 mqrq->retries = MMC_MAX_RETRIES - 1; 1729 } 1730 1731 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1732 { 1733 return !!brq->mrq.sbc; 1734 } 1735 1736 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1737 { 1738 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1739 } 1740 1741 /* 1742 * Check for errors the host controller driver might not have seen such as 1743 * response mode errors or invalid card state. 1744 */ 1745 static bool mmc_blk_status_error(struct request *req, u32 status) 1746 { 1747 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1748 struct mmc_blk_request *brq = &mqrq->brq; 1749 struct mmc_queue *mq = req->q->queuedata; 1750 u32 stop_err_bits; 1751 1752 if (mmc_host_is_spi(mq->card->host)) 1753 return false; 1754 1755 stop_err_bits = mmc_blk_stop_err_bits(brq); 1756 1757 return brq->cmd.resp[0] & CMD_ERRORS || 1758 brq->stop.resp[0] & stop_err_bits || 1759 status & stop_err_bits || 1760 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1761 } 1762 1763 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1764 { 1765 return !brq->sbc.error && !brq->cmd.error && 1766 !(brq->cmd.resp[0] & CMD_ERRORS); 1767 } 1768 1769 /* 1770 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1771 * policy: 1772 * 1. A request that has transferred at least some data is considered 1773 * successful and will be requeued if there is remaining data to 1774 * transfer. 1775 * 2. Otherwise the number of retries is incremented and the request 1776 * will be requeued if there are remaining retries. 1777 * 3. Otherwise the request will be errored out. 1778 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1779 * mqrq->retries. So there are only 4 possible actions here: 1780 * 1. do not accept the bytes_xfered value i.e. set it to zero 1781 * 2. change mqrq->retries to determine the number of retries 1782 * 3. try to reset the card 1783 * 4. read one sector at a time 1784 */ 1785 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1786 { 1787 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1788 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1789 struct mmc_blk_request *brq = &mqrq->brq; 1790 struct mmc_blk_data *md = mq->blkdata; 1791 struct mmc_card *card = mq->card; 1792 u32 status; 1793 u32 blocks; 1794 int err; 1795 1796 /* 1797 * Some errors the host driver might not have seen. Set the number of 1798 * bytes transferred to zero in that case. 1799 */ 1800 err = __mmc_send_status(card, &status, 0); 1801 if (err || mmc_blk_status_error(req, status)) 1802 brq->data.bytes_xfered = 0; 1803 1804 mmc_retune_release(card->host); 1805 1806 /* 1807 * Try again to get the status. This also provides an opportunity for 1808 * re-tuning. 1809 */ 1810 if (err) 1811 err = __mmc_send_status(card, &status, 0); 1812 1813 /* 1814 * Nothing more to do after the number of bytes transferred has been 1815 * updated and there is no card. 1816 */ 1817 if (err && mmc_detect_card_removed(card->host)) 1818 return; 1819 1820 /* Try to get back to "tran" state */ 1821 if (!mmc_host_is_spi(mq->card->host) && 1822 (err || !mmc_ready_for_data(status))) 1823 err = mmc_blk_fix_state(mq->card, req); 1824 1825 /* 1826 * Special case for SD cards where the card might record the number of 1827 * blocks written. 1828 */ 1829 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1830 rq_data_dir(req) == WRITE) { 1831 if (mmc_sd_num_wr_blocks(card, &blocks)) 1832 brq->data.bytes_xfered = 0; 1833 else 1834 brq->data.bytes_xfered = blocks << 9; 1835 } 1836 1837 /* Reset if the card is in a bad state */ 1838 if (!mmc_host_is_spi(mq->card->host) && 1839 err && mmc_blk_reset(md, card->host, type)) { 1840 pr_err("%s: recovery failed!\n", req->q->disk->disk_name); 1841 mqrq->retries = MMC_NO_RETRIES; 1842 return; 1843 } 1844 1845 /* 1846 * If anything was done, just return and if there is anything remaining 1847 * on the request it will get requeued. 1848 */ 1849 if (brq->data.bytes_xfered) 1850 return; 1851 1852 /* Reset before last retry */ 1853 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1854 mmc_blk_reset(md, card->host, type); 1855 1856 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1857 if (brq->sbc.error || brq->cmd.error) 1858 return; 1859 1860 /* Reduce the remaining retries for data errors */ 1861 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1862 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1863 return; 1864 } 1865 1866 /* FIXME: Missing single sector read for large sector size */ 1867 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1868 brq->data.blocks > 1) { 1869 /* Read one sector at a time */ 1870 mmc_blk_read_single(mq, req); 1871 return; 1872 } 1873 } 1874 1875 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1876 { 1877 mmc_blk_eval_resp_error(brq); 1878 1879 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1880 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1881 } 1882 1883 static int mmc_spi_err_check(struct mmc_card *card) 1884 { 1885 u32 status = 0; 1886 int err; 1887 1888 /* 1889 * SPI does not have a TRAN state we have to wait on, instead the 1890 * card is ready again when it no longer holds the line LOW. 1891 * We still have to ensure two things here before we know the write 1892 * was successful: 1893 * 1. The card has not disconnected during busy and we actually read our 1894 * own pull-up, thinking it was still connected, so ensure it 1895 * still responds. 1896 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a 1897 * just reconnected card after being disconnected during busy. 1898 */ 1899 err = __mmc_send_status(card, &status, 0); 1900 if (err) 1901 return err; 1902 /* All R1 and R2 bits of SPI are errors in our case */ 1903 if (status) 1904 return -EIO; 1905 return 0; 1906 } 1907 1908 static int mmc_blk_busy_cb(void *cb_data, bool *busy) 1909 { 1910 struct mmc_blk_busy_data *data = cb_data; 1911 u32 status = 0; 1912 int err; 1913 1914 err = mmc_send_status(data->card, &status); 1915 if (err) 1916 return err; 1917 1918 /* Accumulate response error bits. */ 1919 data->status |= status; 1920 1921 *busy = !mmc_ready_for_data(status); 1922 return 0; 1923 } 1924 1925 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1926 { 1927 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1928 struct mmc_blk_busy_data cb_data; 1929 int err; 1930 1931 if (rq_data_dir(req) == READ) 1932 return 0; 1933 1934 if (mmc_host_is_spi(card->host)) { 1935 err = mmc_spi_err_check(card); 1936 if (err) 1937 mqrq->brq.data.bytes_xfered = 0; 1938 return err; 1939 } 1940 1941 cb_data.card = card; 1942 cb_data.status = 0; 1943 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS, 1944 &mmc_blk_busy_cb, &cb_data); 1945 1946 /* 1947 * Do not assume data transferred correctly if there are any error bits 1948 * set. 1949 */ 1950 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1951 mqrq->brq.data.bytes_xfered = 0; 1952 err = err ? err : -EIO; 1953 } 1954 1955 /* Copy the exception bit so it will be seen later on */ 1956 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT) 1957 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1958 1959 return err; 1960 } 1961 1962 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1963 struct request *req) 1964 { 1965 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1966 1967 mmc_blk_reset_success(mq->blkdata, type); 1968 } 1969 1970 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1971 { 1972 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1973 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1974 1975 if (nr_bytes) { 1976 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1977 blk_mq_requeue_request(req, true); 1978 else 1979 __blk_mq_end_request(req, BLK_STS_OK); 1980 } else if (!blk_rq_bytes(req)) { 1981 __blk_mq_end_request(req, BLK_STS_IOERR); 1982 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1983 blk_mq_requeue_request(req, true); 1984 } else { 1985 if (mmc_card_removed(mq->card)) 1986 req->rq_flags |= RQF_QUIET; 1987 blk_mq_end_request(req, BLK_STS_IOERR); 1988 } 1989 } 1990 1991 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1992 struct mmc_queue_req *mqrq) 1993 { 1994 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1995 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1996 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1997 } 1998 1999 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 2000 struct mmc_queue_req *mqrq) 2001 { 2002 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 2003 mmc_run_bkops(mq->card); 2004 } 2005 2006 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 2007 { 2008 struct mmc_queue_req *mqrq = 2009 container_of(mrq, struct mmc_queue_req, brq.mrq); 2010 struct request *req = mmc_queue_req_to_req(mqrq); 2011 struct request_queue *q = req->q; 2012 struct mmc_queue *mq = q->queuedata; 2013 struct mmc_host *host = mq->card->host; 2014 unsigned long flags; 2015 2016 if (mmc_blk_rq_error(&mqrq->brq) || 2017 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2018 spin_lock_irqsave(&mq->lock, flags); 2019 mq->recovery_needed = true; 2020 mq->recovery_req = req; 2021 spin_unlock_irqrestore(&mq->lock, flags); 2022 2023 host->cqe_ops->cqe_recovery_start(host); 2024 2025 schedule_work(&mq->recovery_work); 2026 return; 2027 } 2028 2029 mmc_blk_rw_reset_success(mq, req); 2030 2031 /* 2032 * Block layer timeouts race with completions which means the normal 2033 * completion path cannot be used during recovery. 2034 */ 2035 if (mq->in_recovery) 2036 mmc_blk_cqe_complete_rq(mq, req); 2037 else if (likely(!blk_should_fake_timeout(req->q))) 2038 blk_mq_complete_request(req); 2039 } 2040 2041 void mmc_blk_mq_complete(struct request *req) 2042 { 2043 struct mmc_queue *mq = req->q->queuedata; 2044 struct mmc_host *host = mq->card->host; 2045 2046 if (host->cqe_enabled) 2047 mmc_blk_cqe_complete_rq(mq, req); 2048 else if (likely(!blk_should_fake_timeout(req->q))) 2049 mmc_blk_mq_complete_rq(mq, req); 2050 } 2051 2052 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 2053 struct request *req) 2054 { 2055 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2056 struct mmc_host *host = mq->card->host; 2057 2058 if (mmc_blk_rq_error(&mqrq->brq) || 2059 mmc_blk_card_busy(mq->card, req)) { 2060 mmc_blk_mq_rw_recovery(mq, req); 2061 } else { 2062 mmc_blk_rw_reset_success(mq, req); 2063 mmc_retune_release(host); 2064 } 2065 2066 mmc_blk_urgent_bkops(mq, mqrq); 2067 } 2068 2069 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 2070 { 2071 unsigned long flags; 2072 bool put_card; 2073 2074 spin_lock_irqsave(&mq->lock, flags); 2075 2076 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 2077 2078 put_card = (mmc_tot_in_flight(mq) == 0); 2079 2080 spin_unlock_irqrestore(&mq->lock, flags); 2081 2082 if (put_card) 2083 mmc_put_card(mq->card, &mq->ctx); 2084 } 2085 2086 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req, 2087 bool can_sleep) 2088 { 2089 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2090 struct mmc_request *mrq = &mqrq->brq.mrq; 2091 struct mmc_host *host = mq->card->host; 2092 2093 mmc_post_req(host, mrq, 0); 2094 2095 /* 2096 * Block layer timeouts race with completions which means the normal 2097 * completion path cannot be used during recovery. 2098 */ 2099 if (mq->in_recovery) { 2100 mmc_blk_mq_complete_rq(mq, req); 2101 } else if (likely(!blk_should_fake_timeout(req->q))) { 2102 if (can_sleep) 2103 blk_mq_complete_request_direct(req, mmc_blk_mq_complete); 2104 else 2105 blk_mq_complete_request(req); 2106 } 2107 2108 mmc_blk_mq_dec_in_flight(mq, req); 2109 } 2110 2111 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2112 { 2113 struct request *req = mq->recovery_req; 2114 struct mmc_host *host = mq->card->host; 2115 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2116 2117 mq->recovery_req = NULL; 2118 mq->rw_wait = false; 2119 2120 if (mmc_blk_rq_error(&mqrq->brq)) { 2121 mmc_retune_hold_now(host); 2122 mmc_blk_mq_rw_recovery(mq, req); 2123 } 2124 2125 mmc_blk_urgent_bkops(mq, mqrq); 2126 2127 mmc_blk_mq_post_req(mq, req, true); 2128 } 2129 2130 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2131 struct request **prev_req) 2132 { 2133 if (mmc_host_done_complete(mq->card->host)) 2134 return; 2135 2136 mutex_lock(&mq->complete_lock); 2137 2138 if (!mq->complete_req) 2139 goto out_unlock; 2140 2141 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2142 2143 if (prev_req) 2144 *prev_req = mq->complete_req; 2145 else 2146 mmc_blk_mq_post_req(mq, mq->complete_req, true); 2147 2148 mq->complete_req = NULL; 2149 2150 out_unlock: 2151 mutex_unlock(&mq->complete_lock); 2152 } 2153 2154 void mmc_blk_mq_complete_work(struct work_struct *work) 2155 { 2156 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2157 complete_work); 2158 2159 mmc_blk_mq_complete_prev_req(mq, NULL); 2160 } 2161 2162 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2163 { 2164 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2165 brq.mrq); 2166 struct request *req = mmc_queue_req_to_req(mqrq); 2167 struct request_queue *q = req->q; 2168 struct mmc_queue *mq = q->queuedata; 2169 struct mmc_host *host = mq->card->host; 2170 unsigned long flags; 2171 2172 if (!mmc_host_done_complete(host)) { 2173 bool waiting; 2174 2175 /* 2176 * We cannot complete the request in this context, so record 2177 * that there is a request to complete, and that a following 2178 * request does not need to wait (although it does need to 2179 * complete complete_req first). 2180 */ 2181 spin_lock_irqsave(&mq->lock, flags); 2182 mq->complete_req = req; 2183 mq->rw_wait = false; 2184 waiting = mq->waiting; 2185 spin_unlock_irqrestore(&mq->lock, flags); 2186 2187 /* 2188 * If 'waiting' then the waiting task will complete this 2189 * request, otherwise queue a work to do it. Note that 2190 * complete_work may still race with the dispatch of a following 2191 * request. 2192 */ 2193 if (waiting) 2194 wake_up(&mq->wait); 2195 else 2196 queue_work(mq->card->complete_wq, &mq->complete_work); 2197 2198 return; 2199 } 2200 2201 /* Take the recovery path for errors or urgent background operations */ 2202 if (mmc_blk_rq_error(&mqrq->brq) || 2203 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2204 spin_lock_irqsave(&mq->lock, flags); 2205 mq->recovery_needed = true; 2206 mq->recovery_req = req; 2207 spin_unlock_irqrestore(&mq->lock, flags); 2208 wake_up(&mq->wait); 2209 schedule_work(&mq->recovery_work); 2210 return; 2211 } 2212 2213 mmc_blk_rw_reset_success(mq, req); 2214 2215 mq->rw_wait = false; 2216 wake_up(&mq->wait); 2217 2218 /* context unknown */ 2219 mmc_blk_mq_post_req(mq, req, false); 2220 } 2221 2222 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2223 { 2224 unsigned long flags; 2225 bool done; 2226 2227 /* 2228 * Wait while there is another request in progress, but not if recovery 2229 * is needed. Also indicate whether there is a request waiting to start. 2230 */ 2231 spin_lock_irqsave(&mq->lock, flags); 2232 if (mq->recovery_needed) { 2233 *err = -EBUSY; 2234 done = true; 2235 } else { 2236 done = !mq->rw_wait; 2237 } 2238 mq->waiting = !done; 2239 spin_unlock_irqrestore(&mq->lock, flags); 2240 2241 return done; 2242 } 2243 2244 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2245 { 2246 int err = 0; 2247 2248 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2249 2250 /* Always complete the previous request if there is one */ 2251 mmc_blk_mq_complete_prev_req(mq, prev_req); 2252 2253 return err; 2254 } 2255 2256 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2257 struct request *req) 2258 { 2259 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2260 struct mmc_host *host = mq->card->host; 2261 struct request *prev_req = NULL; 2262 int err = 0; 2263 2264 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2265 2266 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2267 2268 mmc_pre_req(host, &mqrq->brq.mrq); 2269 2270 err = mmc_blk_rw_wait(mq, &prev_req); 2271 if (err) 2272 goto out_post_req; 2273 2274 mq->rw_wait = true; 2275 2276 err = mmc_start_request(host, &mqrq->brq.mrq); 2277 2278 if (prev_req) 2279 mmc_blk_mq_post_req(mq, prev_req, true); 2280 2281 if (err) 2282 mq->rw_wait = false; 2283 2284 /* Release re-tuning here where there is no synchronization required */ 2285 if (err || mmc_host_done_complete(host)) 2286 mmc_retune_release(host); 2287 2288 out_post_req: 2289 if (err) 2290 mmc_post_req(host, &mqrq->brq.mrq, err); 2291 2292 return err; 2293 } 2294 2295 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2296 { 2297 if (host->cqe_enabled) 2298 return host->cqe_ops->cqe_wait_for_idle(host); 2299 2300 return mmc_blk_rw_wait(mq, NULL); 2301 } 2302 2303 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2304 { 2305 struct mmc_blk_data *md = mq->blkdata; 2306 struct mmc_card *card = md->queue.card; 2307 struct mmc_host *host = card->host; 2308 int ret; 2309 2310 ret = mmc_blk_part_switch(card, md->part_type); 2311 if (ret) 2312 return MMC_REQ_FAILED_TO_START; 2313 2314 switch (mmc_issue_type(mq, req)) { 2315 case MMC_ISSUE_SYNC: 2316 ret = mmc_blk_wait_for_idle(mq, host); 2317 if (ret) 2318 return MMC_REQ_BUSY; 2319 switch (req_op(req)) { 2320 case REQ_OP_DRV_IN: 2321 case REQ_OP_DRV_OUT: 2322 mmc_blk_issue_drv_op(mq, req); 2323 break; 2324 case REQ_OP_DISCARD: 2325 mmc_blk_issue_discard_rq(mq, req); 2326 break; 2327 case REQ_OP_SECURE_ERASE: 2328 mmc_blk_issue_secdiscard_rq(mq, req); 2329 break; 2330 case REQ_OP_FLUSH: 2331 mmc_blk_issue_flush(mq, req); 2332 break; 2333 default: 2334 WARN_ON_ONCE(1); 2335 return MMC_REQ_FAILED_TO_START; 2336 } 2337 return MMC_REQ_FINISHED; 2338 case MMC_ISSUE_DCMD: 2339 case MMC_ISSUE_ASYNC: 2340 switch (req_op(req)) { 2341 case REQ_OP_FLUSH: 2342 if (!mmc_cache_enabled(host)) { 2343 blk_mq_end_request(req, BLK_STS_OK); 2344 return MMC_REQ_FINISHED; 2345 } 2346 ret = mmc_blk_cqe_issue_flush(mq, req); 2347 break; 2348 case REQ_OP_READ: 2349 case REQ_OP_WRITE: 2350 if (host->cqe_enabled) 2351 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2352 else 2353 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2354 break; 2355 default: 2356 WARN_ON_ONCE(1); 2357 ret = -EINVAL; 2358 } 2359 if (!ret) 2360 return MMC_REQ_STARTED; 2361 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2362 default: 2363 WARN_ON_ONCE(1); 2364 return MMC_REQ_FAILED_TO_START; 2365 } 2366 } 2367 2368 static inline int mmc_blk_readonly(struct mmc_card *card) 2369 { 2370 return mmc_card_readonly(card) || 2371 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2372 } 2373 2374 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2375 struct device *parent, 2376 sector_t size, 2377 bool default_ro, 2378 const char *subname, 2379 int area_type, 2380 unsigned int part_type) 2381 { 2382 struct mmc_blk_data *md; 2383 int devidx, ret; 2384 char cap_str[10]; 2385 bool cache_enabled = false; 2386 bool fua_enabled = false; 2387 2388 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2389 if (devidx < 0) { 2390 /* 2391 * We get -ENOSPC because there are no more any available 2392 * devidx. The reason may be that, either userspace haven't yet 2393 * unmounted the partitions, which postpones mmc_blk_release() 2394 * from being called, or the device has more partitions than 2395 * what we support. 2396 */ 2397 if (devidx == -ENOSPC) 2398 dev_err(mmc_dev(card->host), 2399 "no more device IDs available\n"); 2400 2401 return ERR_PTR(devidx); 2402 } 2403 2404 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2405 if (!md) { 2406 ret = -ENOMEM; 2407 goto out; 2408 } 2409 2410 md->area_type = area_type; 2411 2412 /* 2413 * Set the read-only status based on the supported commands 2414 * and the write protect switch. 2415 */ 2416 md->read_only = mmc_blk_readonly(card); 2417 2418 md->disk = mmc_init_queue(&md->queue, card); 2419 if (IS_ERR(md->disk)) { 2420 ret = PTR_ERR(md->disk); 2421 goto err_kfree; 2422 } 2423 2424 INIT_LIST_HEAD(&md->part); 2425 INIT_LIST_HEAD(&md->rpmbs); 2426 kref_init(&md->kref); 2427 2428 md->queue.blkdata = md; 2429 md->part_type = part_type; 2430 2431 md->disk->major = MMC_BLOCK_MAJOR; 2432 md->disk->minors = perdev_minors; 2433 md->disk->first_minor = devidx * perdev_minors; 2434 md->disk->fops = &mmc_bdops; 2435 md->disk->private_data = md; 2436 md->parent = parent; 2437 set_disk_ro(md->disk, md->read_only || default_ro); 2438 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2439 md->disk->flags |= GENHD_FL_NO_PART; 2440 2441 /* 2442 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2443 * 2444 * - be set for removable media with permanent block devices 2445 * - be unset for removable block devices with permanent media 2446 * 2447 * Since MMC block devices clearly fall under the second 2448 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2449 * should use the block device creation/destruction hotplug 2450 * messages to tell when the card is present. 2451 */ 2452 2453 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2454 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2455 2456 set_capacity(md->disk, size); 2457 2458 if (mmc_host_cmd23(card->host)) { 2459 if ((mmc_card_mmc(card) && 2460 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2461 (mmc_card_sd(card) && 2462 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2463 md->flags |= MMC_BLK_CMD23; 2464 } 2465 2466 if (md->flags & MMC_BLK_CMD23 && 2467 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2468 card->ext_csd.rel_sectors)) { 2469 md->flags |= MMC_BLK_REL_WR; 2470 fua_enabled = true; 2471 cache_enabled = true; 2472 } 2473 if (mmc_cache_enabled(card->host)) 2474 cache_enabled = true; 2475 2476 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled); 2477 2478 string_get_size((u64)size, 512, STRING_UNITS_2, 2479 cap_str, sizeof(cap_str)); 2480 pr_info("%s: %s %s %s %s\n", 2481 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2482 cap_str, md->read_only ? "(ro)" : ""); 2483 2484 /* used in ->open, must be set before add_disk: */ 2485 if (area_type == MMC_BLK_DATA_AREA_MAIN) 2486 dev_set_drvdata(&card->dev, md); 2487 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups); 2488 if (ret) 2489 goto err_cleanup_queue; 2490 return md; 2491 2492 err_cleanup_queue: 2493 blk_cleanup_queue(md->disk->queue); 2494 blk_mq_free_tag_set(&md->queue.tag_set); 2495 err_kfree: 2496 kfree(md); 2497 out: 2498 ida_simple_remove(&mmc_blk_ida, devidx); 2499 return ERR_PTR(ret); 2500 } 2501 2502 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2503 { 2504 sector_t size; 2505 2506 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2507 /* 2508 * The EXT_CSD sector count is in number or 512 byte 2509 * sectors. 2510 */ 2511 size = card->ext_csd.sectors; 2512 } else { 2513 /* 2514 * The CSD capacity field is in units of read_blkbits. 2515 * set_capacity takes units of 512 bytes. 2516 */ 2517 size = (typeof(sector_t))card->csd.capacity 2518 << (card->csd.read_blkbits - 9); 2519 } 2520 2521 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2522 MMC_BLK_DATA_AREA_MAIN, 0); 2523 } 2524 2525 static int mmc_blk_alloc_part(struct mmc_card *card, 2526 struct mmc_blk_data *md, 2527 unsigned int part_type, 2528 sector_t size, 2529 bool default_ro, 2530 const char *subname, 2531 int area_type) 2532 { 2533 struct mmc_blk_data *part_md; 2534 2535 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2536 subname, area_type, part_type); 2537 if (IS_ERR(part_md)) 2538 return PTR_ERR(part_md); 2539 list_add(&part_md->part, &md->part); 2540 2541 return 0; 2542 } 2543 2544 /** 2545 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2546 * @filp: the character device file 2547 * @cmd: the ioctl() command 2548 * @arg: the argument from userspace 2549 * 2550 * This will essentially just redirect the ioctl()s coming in over to 2551 * the main block device spawning the RPMB character device. 2552 */ 2553 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2554 unsigned long arg) 2555 { 2556 struct mmc_rpmb_data *rpmb = filp->private_data; 2557 int ret; 2558 2559 switch (cmd) { 2560 case MMC_IOC_CMD: 2561 ret = mmc_blk_ioctl_cmd(rpmb->md, 2562 (struct mmc_ioc_cmd __user *)arg, 2563 rpmb); 2564 break; 2565 case MMC_IOC_MULTI_CMD: 2566 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2567 (struct mmc_ioc_multi_cmd __user *)arg, 2568 rpmb); 2569 break; 2570 default: 2571 ret = -EINVAL; 2572 break; 2573 } 2574 2575 return ret; 2576 } 2577 2578 #ifdef CONFIG_COMPAT 2579 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2580 unsigned long arg) 2581 { 2582 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2583 } 2584 #endif 2585 2586 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2587 { 2588 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2589 struct mmc_rpmb_data, chrdev); 2590 2591 get_device(&rpmb->dev); 2592 filp->private_data = rpmb; 2593 mmc_blk_get(rpmb->md->disk); 2594 2595 return nonseekable_open(inode, filp); 2596 } 2597 2598 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2599 { 2600 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2601 struct mmc_rpmb_data, chrdev); 2602 2603 mmc_blk_put(rpmb->md); 2604 put_device(&rpmb->dev); 2605 2606 return 0; 2607 } 2608 2609 static const struct file_operations mmc_rpmb_fileops = { 2610 .release = mmc_rpmb_chrdev_release, 2611 .open = mmc_rpmb_chrdev_open, 2612 .owner = THIS_MODULE, 2613 .llseek = no_llseek, 2614 .unlocked_ioctl = mmc_rpmb_ioctl, 2615 #ifdef CONFIG_COMPAT 2616 .compat_ioctl = mmc_rpmb_ioctl_compat, 2617 #endif 2618 }; 2619 2620 static void mmc_blk_rpmb_device_release(struct device *dev) 2621 { 2622 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2623 2624 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2625 kfree(rpmb); 2626 } 2627 2628 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2629 struct mmc_blk_data *md, 2630 unsigned int part_index, 2631 sector_t size, 2632 const char *subname) 2633 { 2634 int devidx, ret; 2635 char rpmb_name[DISK_NAME_LEN]; 2636 char cap_str[10]; 2637 struct mmc_rpmb_data *rpmb; 2638 2639 /* This creates the minor number for the RPMB char device */ 2640 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2641 if (devidx < 0) 2642 return devidx; 2643 2644 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2645 if (!rpmb) { 2646 ida_simple_remove(&mmc_rpmb_ida, devidx); 2647 return -ENOMEM; 2648 } 2649 2650 snprintf(rpmb_name, sizeof(rpmb_name), 2651 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2652 2653 rpmb->id = devidx; 2654 rpmb->part_index = part_index; 2655 rpmb->dev.init_name = rpmb_name; 2656 rpmb->dev.bus = &mmc_rpmb_bus_type; 2657 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2658 rpmb->dev.parent = &card->dev; 2659 rpmb->dev.release = mmc_blk_rpmb_device_release; 2660 device_initialize(&rpmb->dev); 2661 dev_set_drvdata(&rpmb->dev, rpmb); 2662 rpmb->md = md; 2663 2664 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2665 rpmb->chrdev.owner = THIS_MODULE; 2666 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2667 if (ret) { 2668 pr_err("%s: could not add character device\n", rpmb_name); 2669 goto out_put_device; 2670 } 2671 2672 list_add(&rpmb->node, &md->rpmbs); 2673 2674 string_get_size((u64)size, 512, STRING_UNITS_2, 2675 cap_str, sizeof(cap_str)); 2676 2677 pr_info("%s: %s %s %s, chardev (%d:%d)\n", 2678 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, 2679 MAJOR(mmc_rpmb_devt), rpmb->id); 2680 2681 return 0; 2682 2683 out_put_device: 2684 put_device(&rpmb->dev); 2685 return ret; 2686 } 2687 2688 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2689 2690 { 2691 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2692 put_device(&rpmb->dev); 2693 } 2694 2695 /* MMC Physical partitions consist of two boot partitions and 2696 * up to four general purpose partitions. 2697 * For each partition enabled in EXT_CSD a block device will be allocatedi 2698 * to provide access to the partition. 2699 */ 2700 2701 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2702 { 2703 int idx, ret; 2704 2705 if (!mmc_card_mmc(card)) 2706 return 0; 2707 2708 for (idx = 0; idx < card->nr_parts; idx++) { 2709 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2710 /* 2711 * RPMB partitions does not provide block access, they 2712 * are only accessed using ioctl():s. Thus create 2713 * special RPMB block devices that do not have a 2714 * backing block queue for these. 2715 */ 2716 ret = mmc_blk_alloc_rpmb_part(card, md, 2717 card->part[idx].part_cfg, 2718 card->part[idx].size >> 9, 2719 card->part[idx].name); 2720 if (ret) 2721 return ret; 2722 } else if (card->part[idx].size) { 2723 ret = mmc_blk_alloc_part(card, md, 2724 card->part[idx].part_cfg, 2725 card->part[idx].size >> 9, 2726 card->part[idx].force_ro, 2727 card->part[idx].name, 2728 card->part[idx].area_type); 2729 if (ret) 2730 return ret; 2731 } 2732 } 2733 2734 return 0; 2735 } 2736 2737 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2738 { 2739 /* 2740 * Flush remaining requests and free queues. It is freeing the queue 2741 * that stops new requests from being accepted. 2742 */ 2743 del_gendisk(md->disk); 2744 mmc_cleanup_queue(&md->queue); 2745 mmc_blk_put(md); 2746 } 2747 2748 static void mmc_blk_remove_parts(struct mmc_card *card, 2749 struct mmc_blk_data *md) 2750 { 2751 struct list_head *pos, *q; 2752 struct mmc_blk_data *part_md; 2753 struct mmc_rpmb_data *rpmb; 2754 2755 /* Remove RPMB partitions */ 2756 list_for_each_safe(pos, q, &md->rpmbs) { 2757 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2758 list_del(pos); 2759 mmc_blk_remove_rpmb_part(rpmb); 2760 } 2761 /* Remove block partitions */ 2762 list_for_each_safe(pos, q, &md->part) { 2763 part_md = list_entry(pos, struct mmc_blk_data, part); 2764 list_del(pos); 2765 mmc_blk_remove_req(part_md); 2766 } 2767 } 2768 2769 #ifdef CONFIG_DEBUG_FS 2770 2771 static int mmc_dbg_card_status_get(void *data, u64 *val) 2772 { 2773 struct mmc_card *card = data; 2774 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2775 struct mmc_queue *mq = &md->queue; 2776 struct request *req; 2777 int ret; 2778 2779 /* Ask the block layer about the card status */ 2780 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2781 if (IS_ERR(req)) 2782 return PTR_ERR(req); 2783 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2784 blk_execute_rq(req, false); 2785 ret = req_to_mmc_queue_req(req)->drv_op_result; 2786 if (ret >= 0) { 2787 *val = ret; 2788 ret = 0; 2789 } 2790 blk_mq_free_request(req); 2791 2792 return ret; 2793 } 2794 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2795 NULL, "%08llx\n"); 2796 2797 /* That is two digits * 512 + 1 for newline */ 2798 #define EXT_CSD_STR_LEN 1025 2799 2800 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2801 { 2802 struct mmc_card *card = inode->i_private; 2803 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2804 struct mmc_queue *mq = &md->queue; 2805 struct request *req; 2806 char *buf; 2807 ssize_t n = 0; 2808 u8 *ext_csd; 2809 int err, i; 2810 2811 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2812 if (!buf) 2813 return -ENOMEM; 2814 2815 /* Ask the block layer for the EXT CSD */ 2816 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2817 if (IS_ERR(req)) { 2818 err = PTR_ERR(req); 2819 goto out_free; 2820 } 2821 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2822 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2823 blk_execute_rq(req, false); 2824 err = req_to_mmc_queue_req(req)->drv_op_result; 2825 blk_mq_free_request(req); 2826 if (err) { 2827 pr_err("FAILED %d\n", err); 2828 goto out_free; 2829 } 2830 2831 for (i = 0; i < 512; i++) 2832 n += sprintf(buf + n, "%02x", ext_csd[i]); 2833 n += sprintf(buf + n, "\n"); 2834 2835 if (n != EXT_CSD_STR_LEN) { 2836 err = -EINVAL; 2837 kfree(ext_csd); 2838 goto out_free; 2839 } 2840 2841 filp->private_data = buf; 2842 kfree(ext_csd); 2843 return 0; 2844 2845 out_free: 2846 kfree(buf); 2847 return err; 2848 } 2849 2850 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2851 size_t cnt, loff_t *ppos) 2852 { 2853 char *buf = filp->private_data; 2854 2855 return simple_read_from_buffer(ubuf, cnt, ppos, 2856 buf, EXT_CSD_STR_LEN); 2857 } 2858 2859 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2860 { 2861 kfree(file->private_data); 2862 return 0; 2863 } 2864 2865 static const struct file_operations mmc_dbg_ext_csd_fops = { 2866 .open = mmc_ext_csd_open, 2867 .read = mmc_ext_csd_read, 2868 .release = mmc_ext_csd_release, 2869 .llseek = default_llseek, 2870 }; 2871 2872 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2873 { 2874 struct dentry *root; 2875 2876 if (!card->debugfs_root) 2877 return 0; 2878 2879 root = card->debugfs_root; 2880 2881 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2882 md->status_dentry = 2883 debugfs_create_file_unsafe("status", 0400, root, 2884 card, 2885 &mmc_dbg_card_status_fops); 2886 if (!md->status_dentry) 2887 return -EIO; 2888 } 2889 2890 if (mmc_card_mmc(card)) { 2891 md->ext_csd_dentry = 2892 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2893 &mmc_dbg_ext_csd_fops); 2894 if (!md->ext_csd_dentry) 2895 return -EIO; 2896 } 2897 2898 return 0; 2899 } 2900 2901 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2902 struct mmc_blk_data *md) 2903 { 2904 if (!card->debugfs_root) 2905 return; 2906 2907 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2908 debugfs_remove(md->status_dentry); 2909 md->status_dentry = NULL; 2910 } 2911 2912 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2913 debugfs_remove(md->ext_csd_dentry); 2914 md->ext_csd_dentry = NULL; 2915 } 2916 } 2917 2918 #else 2919 2920 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2921 { 2922 return 0; 2923 } 2924 2925 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2926 struct mmc_blk_data *md) 2927 { 2928 } 2929 2930 #endif /* CONFIG_DEBUG_FS */ 2931 2932 static int mmc_blk_probe(struct mmc_card *card) 2933 { 2934 struct mmc_blk_data *md; 2935 int ret = 0; 2936 2937 /* 2938 * Check that the card supports the command class(es) we need. 2939 */ 2940 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2941 return -ENODEV; 2942 2943 mmc_fixup_device(card, mmc_blk_fixups); 2944 2945 card->complete_wq = alloc_workqueue("mmc_complete", 2946 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2947 if (!card->complete_wq) { 2948 pr_err("Failed to create mmc completion workqueue"); 2949 return -ENOMEM; 2950 } 2951 2952 md = mmc_blk_alloc(card); 2953 if (IS_ERR(md)) { 2954 ret = PTR_ERR(md); 2955 goto out_free; 2956 } 2957 2958 ret = mmc_blk_alloc_parts(card, md); 2959 if (ret) 2960 goto out; 2961 2962 /* Add two debugfs entries */ 2963 mmc_blk_add_debugfs(card, md); 2964 2965 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2966 pm_runtime_use_autosuspend(&card->dev); 2967 2968 /* 2969 * Don't enable runtime PM for SD-combo cards here. Leave that 2970 * decision to be taken during the SDIO init sequence instead. 2971 */ 2972 if (card->type != MMC_TYPE_SD_COMBO) { 2973 pm_runtime_set_active(&card->dev); 2974 pm_runtime_enable(&card->dev); 2975 } 2976 2977 return 0; 2978 2979 out: 2980 mmc_blk_remove_parts(card, md); 2981 mmc_blk_remove_req(md); 2982 out_free: 2983 destroy_workqueue(card->complete_wq); 2984 return ret; 2985 } 2986 2987 static void mmc_blk_remove(struct mmc_card *card) 2988 { 2989 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2990 2991 mmc_blk_remove_debugfs(card, md); 2992 mmc_blk_remove_parts(card, md); 2993 pm_runtime_get_sync(&card->dev); 2994 if (md->part_curr != md->part_type) { 2995 mmc_claim_host(card->host); 2996 mmc_blk_part_switch(card, md->part_type); 2997 mmc_release_host(card->host); 2998 } 2999 if (card->type != MMC_TYPE_SD_COMBO) 3000 pm_runtime_disable(&card->dev); 3001 pm_runtime_put_noidle(&card->dev); 3002 mmc_blk_remove_req(md); 3003 dev_set_drvdata(&card->dev, NULL); 3004 destroy_workqueue(card->complete_wq); 3005 } 3006 3007 static int _mmc_blk_suspend(struct mmc_card *card) 3008 { 3009 struct mmc_blk_data *part_md; 3010 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3011 3012 if (md) { 3013 mmc_queue_suspend(&md->queue); 3014 list_for_each_entry(part_md, &md->part, part) { 3015 mmc_queue_suspend(&part_md->queue); 3016 } 3017 } 3018 return 0; 3019 } 3020 3021 static void mmc_blk_shutdown(struct mmc_card *card) 3022 { 3023 _mmc_blk_suspend(card); 3024 } 3025 3026 #ifdef CONFIG_PM_SLEEP 3027 static int mmc_blk_suspend(struct device *dev) 3028 { 3029 struct mmc_card *card = mmc_dev_to_card(dev); 3030 3031 return _mmc_blk_suspend(card); 3032 } 3033 3034 static int mmc_blk_resume(struct device *dev) 3035 { 3036 struct mmc_blk_data *part_md; 3037 struct mmc_blk_data *md = dev_get_drvdata(dev); 3038 3039 if (md) { 3040 /* 3041 * Resume involves the card going into idle state, 3042 * so current partition is always the main one. 3043 */ 3044 md->part_curr = md->part_type; 3045 mmc_queue_resume(&md->queue); 3046 list_for_each_entry(part_md, &md->part, part) { 3047 mmc_queue_resume(&part_md->queue); 3048 } 3049 } 3050 return 0; 3051 } 3052 #endif 3053 3054 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3055 3056 static struct mmc_driver mmc_driver = { 3057 .drv = { 3058 .name = "mmcblk", 3059 .pm = &mmc_blk_pm_ops, 3060 }, 3061 .probe = mmc_blk_probe, 3062 .remove = mmc_blk_remove, 3063 .shutdown = mmc_blk_shutdown, 3064 }; 3065 3066 static int __init mmc_blk_init(void) 3067 { 3068 int res; 3069 3070 res = bus_register(&mmc_rpmb_bus_type); 3071 if (res < 0) { 3072 pr_err("mmcblk: could not register RPMB bus type\n"); 3073 return res; 3074 } 3075 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3076 if (res < 0) { 3077 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3078 goto out_bus_unreg; 3079 } 3080 3081 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3082 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3083 3084 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3085 3086 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3087 if (res) 3088 goto out_chrdev_unreg; 3089 3090 res = mmc_register_driver(&mmc_driver); 3091 if (res) 3092 goto out_blkdev_unreg; 3093 3094 return 0; 3095 3096 out_blkdev_unreg: 3097 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3098 out_chrdev_unreg: 3099 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3100 out_bus_unreg: 3101 bus_unregister(&mmc_rpmb_bus_type); 3102 return res; 3103 } 3104 3105 static void __exit mmc_blk_exit(void) 3106 { 3107 mmc_unregister_driver(&mmc_driver); 3108 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3109 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3110 bus_unregister(&mmc_rpmb_bus_type); 3111 } 3112 3113 module_init(mmc_blk_init); 3114 module_exit(mmc_blk_exit); 3115 3116 MODULE_LICENSE("GPL"); 3117 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3118 3119