1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block driver for media (i.e., flash cards) 4 * 5 * Copyright 2002 Hewlett-Packard Company 6 * Copyright 2005-2008 Pierre Ossman 7 * 8 * Use consistent with the GNU GPL is permitted, 9 * provided that this copyright notice is 10 * preserved in its entirety in all copies and derived works. 11 * 12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 14 * FITNESS FOR ANY PARTICULAR PURPOSE. 15 * 16 * Many thanks to Alessandro Rubini and Jonathan Corbet! 17 * 18 * Author: Andrew Christian 19 * 28 May 2002 20 */ 21 #include <linux/moduleparam.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/errno.h> 29 #include <linux/hdreg.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kref.h> 32 #include <linux/blkdev.h> 33 #include <linux/cdev.h> 34 #include <linux/mutex.h> 35 #include <linux/scatterlist.h> 36 #include <linux/string_helpers.h> 37 #include <linux/delay.h> 38 #include <linux/capability.h> 39 #include <linux/compat.h> 40 #include <linux/pm_runtime.h> 41 #include <linux/idr.h> 42 #include <linux/debugfs.h> 43 44 #include <linux/mmc/ioctl.h> 45 #include <linux/mmc/card.h> 46 #include <linux/mmc/host.h> 47 #include <linux/mmc/mmc.h> 48 #include <linux/mmc/sd.h> 49 50 #include <linux/uaccess.h> 51 52 #include "queue.h" 53 #include "block.h" 54 #include "core.h" 55 #include "card.h" 56 #include "crypto.h" 57 #include "host.h" 58 #include "bus.h" 59 #include "mmc_ops.h" 60 #include "quirks.h" 61 #include "sd_ops.h" 62 63 MODULE_ALIAS("mmc:block"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "mmcblk." 68 69 /* 70 * Set a 10 second timeout for polling write request busy state. Note, mmc core 71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 72 * second software timer to timeout the whole request, so 10 seconds should be 73 * ample. 74 */ 75 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 78 79 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 80 (rq_data_dir(req) == WRITE)) 81 static DEFINE_MUTEX(block_mutex); 82 83 /* 84 * The defaults come from config options but can be overriden by module 85 * or bootarg options. 86 */ 87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 88 89 /* 90 * We've only got one major, so number of mmcblk devices is 91 * limited to (1 << 20) / number of minors per device. It is also 92 * limited by the MAX_DEVICES below. 93 */ 94 static int max_devices; 95 96 #define MAX_DEVICES 256 97 98 static DEFINE_IDA(mmc_blk_ida); 99 static DEFINE_IDA(mmc_rpmb_ida); 100 101 struct mmc_blk_busy_data { 102 struct mmc_card *card; 103 u32 status; 104 }; 105 106 /* 107 * There is one mmc_blk_data per slot. 108 */ 109 struct mmc_blk_data { 110 struct device *parent; 111 struct gendisk *disk; 112 struct mmc_queue queue; 113 struct list_head part; 114 struct list_head rpmbs; 115 116 unsigned int flags; 117 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 118 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 119 120 struct kref kref; 121 unsigned int read_only; 122 unsigned int part_type; 123 unsigned int reset_done; 124 #define MMC_BLK_READ BIT(0) 125 #define MMC_BLK_WRITE BIT(1) 126 #define MMC_BLK_DISCARD BIT(2) 127 #define MMC_BLK_SECDISCARD BIT(3) 128 #define MMC_BLK_CQE_RECOVERY BIT(4) 129 #define MMC_BLK_TRIM BIT(5) 130 131 /* 132 * Only set in main mmc_blk_data associated 133 * with mmc_card with dev_set_drvdata, and keeps 134 * track of the current selected device partition. 135 */ 136 unsigned int part_curr; 137 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */ 138 int area_type; 139 140 /* debugfs files (only in main mmc_blk_data) */ 141 struct dentry *status_dentry; 142 struct dentry *ext_csd_dentry; 143 }; 144 145 /* Device type for RPMB character devices */ 146 static dev_t mmc_rpmb_devt; 147 148 /* Bus type for RPMB character devices */ 149 static struct bus_type mmc_rpmb_bus_type = { 150 .name = "mmc_rpmb", 151 }; 152 153 /** 154 * struct mmc_rpmb_data - special RPMB device type for these areas 155 * @dev: the device for the RPMB area 156 * @chrdev: character device for the RPMB area 157 * @id: unique device ID number 158 * @part_index: partition index (0 on first) 159 * @md: parent MMC block device 160 * @node: list item, so we can put this device on a list 161 */ 162 struct mmc_rpmb_data { 163 struct device dev; 164 struct cdev chrdev; 165 int id; 166 unsigned int part_index; 167 struct mmc_blk_data *md; 168 struct list_head node; 169 }; 170 171 static DEFINE_MUTEX(open_lock); 172 173 module_param(perdev_minors, int, 0444); 174 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 175 176 static inline int mmc_blk_part_switch(struct mmc_card *card, 177 unsigned int part_type); 178 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 179 struct mmc_card *card, 180 int recovery_mode, 181 struct mmc_queue *mq); 182 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 183 184 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 185 { 186 struct mmc_blk_data *md; 187 188 mutex_lock(&open_lock); 189 md = disk->private_data; 190 if (md && !kref_get_unless_zero(&md->kref)) 191 md = NULL; 192 mutex_unlock(&open_lock); 193 194 return md; 195 } 196 197 static inline int mmc_get_devidx(struct gendisk *disk) 198 { 199 int devidx = disk->first_minor / perdev_minors; 200 return devidx; 201 } 202 203 static void mmc_blk_kref_release(struct kref *ref) 204 { 205 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref); 206 int devidx; 207 208 devidx = mmc_get_devidx(md->disk); 209 ida_simple_remove(&mmc_blk_ida, devidx); 210 211 mutex_lock(&open_lock); 212 md->disk->private_data = NULL; 213 mutex_unlock(&open_lock); 214 215 put_disk(md->disk); 216 kfree(md); 217 } 218 219 static void mmc_blk_put(struct mmc_blk_data *md) 220 { 221 kref_put(&md->kref, mmc_blk_kref_release); 222 } 223 224 static ssize_t power_ro_lock_show(struct device *dev, 225 struct device_attribute *attr, char *buf) 226 { 227 int ret; 228 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 229 struct mmc_card *card = md->queue.card; 230 int locked = 0; 231 232 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 233 locked = 2; 234 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 235 locked = 1; 236 237 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 238 239 mmc_blk_put(md); 240 241 return ret; 242 } 243 244 static ssize_t power_ro_lock_store(struct device *dev, 245 struct device_attribute *attr, const char *buf, size_t count) 246 { 247 int ret; 248 struct mmc_blk_data *md, *part_md; 249 struct mmc_queue *mq; 250 struct request *req; 251 unsigned long set; 252 253 if (kstrtoul(buf, 0, &set)) 254 return -EINVAL; 255 256 if (set != 1) 257 return count; 258 259 md = mmc_blk_get(dev_to_disk(dev)); 260 mq = &md->queue; 261 262 /* Dispatch locking to the block layer */ 263 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0); 264 if (IS_ERR(req)) { 265 count = PTR_ERR(req); 266 goto out_put; 267 } 268 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 269 blk_execute_rq(req, false); 270 ret = req_to_mmc_queue_req(req)->drv_op_result; 271 blk_mq_free_request(req); 272 273 if (!ret) { 274 pr_info("%s: Locking boot partition ro until next power on\n", 275 md->disk->disk_name); 276 set_disk_ro(md->disk, 1); 277 278 list_for_each_entry(part_md, &md->part, part) 279 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 280 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 281 set_disk_ro(part_md->disk, 1); 282 } 283 } 284 out_put: 285 mmc_blk_put(md); 286 return count; 287 } 288 289 static DEVICE_ATTR(ro_lock_until_next_power_on, 0, 290 power_ro_lock_show, power_ro_lock_store); 291 292 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 293 char *buf) 294 { 295 int ret; 296 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 297 298 ret = snprintf(buf, PAGE_SIZE, "%d\n", 299 get_disk_ro(dev_to_disk(dev)) ^ 300 md->read_only); 301 mmc_blk_put(md); 302 return ret; 303 } 304 305 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 306 const char *buf, size_t count) 307 { 308 int ret; 309 char *end; 310 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 311 unsigned long set = simple_strtoul(buf, &end, 0); 312 if (end == buf) { 313 ret = -EINVAL; 314 goto out; 315 } 316 317 set_disk_ro(dev_to_disk(dev), set || md->read_only); 318 ret = count; 319 out: 320 mmc_blk_put(md); 321 return ret; 322 } 323 324 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store); 325 326 static struct attribute *mmc_disk_attrs[] = { 327 &dev_attr_force_ro.attr, 328 &dev_attr_ro_lock_until_next_power_on.attr, 329 NULL, 330 }; 331 332 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj, 333 struct attribute *a, int n) 334 { 335 struct device *dev = kobj_to_dev(kobj); 336 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 337 umode_t mode = a->mode; 338 339 if (a == &dev_attr_ro_lock_until_next_power_on.attr && 340 (md->area_type & MMC_BLK_DATA_AREA_BOOT) && 341 md->queue.card->ext_csd.boot_ro_lockable) { 342 mode = S_IRUGO; 343 if (!(md->queue.card->ext_csd.boot_ro_lock & 344 EXT_CSD_BOOT_WP_B_PWR_WP_DIS)) 345 mode |= S_IWUSR; 346 } 347 348 mmc_blk_put(md); 349 return mode; 350 } 351 352 static const struct attribute_group mmc_disk_attr_group = { 353 .is_visible = mmc_disk_attrs_is_visible, 354 .attrs = mmc_disk_attrs, 355 }; 356 357 static const struct attribute_group *mmc_disk_attr_groups[] = { 358 &mmc_disk_attr_group, 359 NULL, 360 }; 361 362 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 363 { 364 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 365 int ret = -ENXIO; 366 367 mutex_lock(&block_mutex); 368 if (md) { 369 ret = 0; 370 if ((mode & FMODE_WRITE) && md->read_only) { 371 mmc_blk_put(md); 372 ret = -EROFS; 373 } 374 } 375 mutex_unlock(&block_mutex); 376 377 return ret; 378 } 379 380 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 381 { 382 struct mmc_blk_data *md = disk->private_data; 383 384 mutex_lock(&block_mutex); 385 mmc_blk_put(md); 386 mutex_unlock(&block_mutex); 387 } 388 389 static int 390 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 391 { 392 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 393 geo->heads = 4; 394 geo->sectors = 16; 395 return 0; 396 } 397 398 struct mmc_blk_ioc_data { 399 struct mmc_ioc_cmd ic; 400 unsigned char *buf; 401 u64 buf_bytes; 402 struct mmc_rpmb_data *rpmb; 403 }; 404 405 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 406 struct mmc_ioc_cmd __user *user) 407 { 408 struct mmc_blk_ioc_data *idata; 409 int err; 410 411 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 412 if (!idata) { 413 err = -ENOMEM; 414 goto out; 415 } 416 417 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 418 err = -EFAULT; 419 goto idata_err; 420 } 421 422 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 423 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 424 err = -EOVERFLOW; 425 goto idata_err; 426 } 427 428 if (!idata->buf_bytes) { 429 idata->buf = NULL; 430 return idata; 431 } 432 433 idata->buf = memdup_user((void __user *)(unsigned long) 434 idata->ic.data_ptr, idata->buf_bytes); 435 if (IS_ERR(idata->buf)) { 436 err = PTR_ERR(idata->buf); 437 goto idata_err; 438 } 439 440 return idata; 441 442 idata_err: 443 kfree(idata); 444 out: 445 return ERR_PTR(err); 446 } 447 448 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 449 struct mmc_blk_ioc_data *idata) 450 { 451 struct mmc_ioc_cmd *ic = &idata->ic; 452 453 if (copy_to_user(&(ic_ptr->response), ic->response, 454 sizeof(ic->response))) 455 return -EFAULT; 456 457 if (!idata->ic.write_flag) { 458 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 459 idata->buf, idata->buf_bytes)) 460 return -EFAULT; 461 } 462 463 return 0; 464 } 465 466 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 467 struct mmc_blk_ioc_data *idata) 468 { 469 struct mmc_command cmd = {}, sbc = {}; 470 struct mmc_data data = {}; 471 struct mmc_request mrq = {}; 472 struct scatterlist sg; 473 int err; 474 unsigned int target_part; 475 476 if (!card || !md || !idata) 477 return -EINVAL; 478 479 /* 480 * The RPMB accesses comes in from the character device, so we 481 * need to target these explicitly. Else we just target the 482 * partition type for the block device the ioctl() was issued 483 * on. 484 */ 485 if (idata->rpmb) { 486 /* Support multiple RPMB partitions */ 487 target_part = idata->rpmb->part_index; 488 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 489 } else { 490 target_part = md->part_type; 491 } 492 493 cmd.opcode = idata->ic.opcode; 494 cmd.arg = idata->ic.arg; 495 cmd.flags = idata->ic.flags; 496 497 if (idata->buf_bytes) { 498 data.sg = &sg; 499 data.sg_len = 1; 500 data.blksz = idata->ic.blksz; 501 data.blocks = idata->ic.blocks; 502 503 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 504 505 if (idata->ic.write_flag) 506 data.flags = MMC_DATA_WRITE; 507 else 508 data.flags = MMC_DATA_READ; 509 510 /* data.flags must already be set before doing this. */ 511 mmc_set_data_timeout(&data, card); 512 513 /* Allow overriding the timeout_ns for empirical tuning. */ 514 if (idata->ic.data_timeout_ns) 515 data.timeout_ns = idata->ic.data_timeout_ns; 516 517 mrq.data = &data; 518 } 519 520 mrq.cmd = &cmd; 521 522 err = mmc_blk_part_switch(card, target_part); 523 if (err) 524 return err; 525 526 if (idata->ic.is_acmd) { 527 err = mmc_app_cmd(card->host, card); 528 if (err) 529 return err; 530 } 531 532 if (idata->rpmb) { 533 sbc.opcode = MMC_SET_BLOCK_COUNT; 534 /* 535 * We don't do any blockcount validation because the max size 536 * may be increased by a future standard. We just copy the 537 * 'Reliable Write' bit here. 538 */ 539 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 540 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 541 mrq.sbc = &sbc; 542 } 543 544 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 545 (cmd.opcode == MMC_SWITCH)) 546 return mmc_sanitize(card, idata->ic.cmd_timeout_ms); 547 548 mmc_wait_for_req(card->host, &mrq); 549 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp)); 550 551 if (cmd.error) { 552 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 553 __func__, cmd.error); 554 return cmd.error; 555 } 556 if (data.error) { 557 dev_err(mmc_dev(card->host), "%s: data error %d\n", 558 __func__, data.error); 559 return data.error; 560 } 561 562 /* 563 * Make sure the cache of the PARTITION_CONFIG register and 564 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 565 * changed it successfully. 566 */ 567 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 568 (cmd.opcode == MMC_SWITCH)) { 569 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 570 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 571 572 /* 573 * Update cache so the next mmc_blk_part_switch call operates 574 * on up-to-date data. 575 */ 576 card->ext_csd.part_config = value; 577 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 578 } 579 580 /* 581 * Make sure to update CACHE_CTRL in case it was changed. The cache 582 * will get turned back on if the card is re-initialized, e.g. 583 * suspend/resume or hw reset in recovery. 584 */ 585 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && 586 (cmd.opcode == MMC_SWITCH)) { 587 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; 588 589 card->ext_csd.cache_ctrl = value; 590 } 591 592 /* 593 * According to the SD specs, some commands require a delay after 594 * issuing the command. 595 */ 596 if (idata->ic.postsleep_min_us) 597 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 598 599 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 600 /* 601 * Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we 602 * allow to override the default timeout value if a custom timeout is specified. 603 */ 604 err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS, 605 false, MMC_BUSY_IO); 606 } 607 608 return err; 609 } 610 611 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 612 struct mmc_ioc_cmd __user *ic_ptr, 613 struct mmc_rpmb_data *rpmb) 614 { 615 struct mmc_blk_ioc_data *idata; 616 struct mmc_blk_ioc_data *idatas[1]; 617 struct mmc_queue *mq; 618 struct mmc_card *card; 619 int err = 0, ioc_err = 0; 620 struct request *req; 621 622 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 623 if (IS_ERR(idata)) 624 return PTR_ERR(idata); 625 /* This will be NULL on non-RPMB ioctl():s */ 626 idata->rpmb = rpmb; 627 628 card = md->queue.card; 629 if (IS_ERR(card)) { 630 err = PTR_ERR(card); 631 goto cmd_done; 632 } 633 634 /* 635 * Dispatch the ioctl() into the block request queue. 636 */ 637 mq = &md->queue; 638 req = blk_mq_alloc_request(mq->queue, 639 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 640 if (IS_ERR(req)) { 641 err = PTR_ERR(req); 642 goto cmd_done; 643 } 644 idatas[0] = idata; 645 req_to_mmc_queue_req(req)->drv_op = 646 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 647 req_to_mmc_queue_req(req)->drv_op_data = idatas; 648 req_to_mmc_queue_req(req)->ioc_count = 1; 649 blk_execute_rq(req, false); 650 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 651 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 652 blk_mq_free_request(req); 653 654 cmd_done: 655 kfree(idata->buf); 656 kfree(idata); 657 return ioc_err ? ioc_err : err; 658 } 659 660 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 661 struct mmc_ioc_multi_cmd __user *user, 662 struct mmc_rpmb_data *rpmb) 663 { 664 struct mmc_blk_ioc_data **idata = NULL; 665 struct mmc_ioc_cmd __user *cmds = user->cmds; 666 struct mmc_card *card; 667 struct mmc_queue *mq; 668 int err = 0, ioc_err = 0; 669 __u64 num_of_cmds; 670 unsigned int i, n; 671 struct request *req; 672 673 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 674 sizeof(num_of_cmds))) 675 return -EFAULT; 676 677 if (!num_of_cmds) 678 return 0; 679 680 if (num_of_cmds > MMC_IOC_MAX_CMDS) 681 return -EINVAL; 682 683 n = num_of_cmds; 684 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL); 685 if (!idata) 686 return -ENOMEM; 687 688 for (i = 0; i < n; i++) { 689 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 690 if (IS_ERR(idata[i])) { 691 err = PTR_ERR(idata[i]); 692 n = i; 693 goto cmd_err; 694 } 695 /* This will be NULL on non-RPMB ioctl():s */ 696 idata[i]->rpmb = rpmb; 697 } 698 699 card = md->queue.card; 700 if (IS_ERR(card)) { 701 err = PTR_ERR(card); 702 goto cmd_err; 703 } 704 705 706 /* 707 * Dispatch the ioctl()s into the block request queue. 708 */ 709 mq = &md->queue; 710 req = blk_mq_alloc_request(mq->queue, 711 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 712 if (IS_ERR(req)) { 713 err = PTR_ERR(req); 714 goto cmd_err; 715 } 716 req_to_mmc_queue_req(req)->drv_op = 717 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 718 req_to_mmc_queue_req(req)->drv_op_data = idata; 719 req_to_mmc_queue_req(req)->ioc_count = n; 720 blk_execute_rq(req, false); 721 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 722 723 /* copy to user if data and response */ 724 for (i = 0; i < n && !err; i++) 725 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 726 727 blk_mq_free_request(req); 728 729 cmd_err: 730 for (i = 0; i < n; i++) { 731 kfree(idata[i]->buf); 732 kfree(idata[i]); 733 } 734 kfree(idata); 735 return ioc_err ? ioc_err : err; 736 } 737 738 static int mmc_blk_check_blkdev(struct block_device *bdev) 739 { 740 /* 741 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 742 * whole block device, not on a partition. This prevents overspray 743 * between sibling partitions. 744 */ 745 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 746 return -EPERM; 747 return 0; 748 } 749 750 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 751 unsigned int cmd, unsigned long arg) 752 { 753 struct mmc_blk_data *md; 754 int ret; 755 756 switch (cmd) { 757 case MMC_IOC_CMD: 758 ret = mmc_blk_check_blkdev(bdev); 759 if (ret) 760 return ret; 761 md = mmc_blk_get(bdev->bd_disk); 762 if (!md) 763 return -EINVAL; 764 ret = mmc_blk_ioctl_cmd(md, 765 (struct mmc_ioc_cmd __user *)arg, 766 NULL); 767 mmc_blk_put(md); 768 return ret; 769 case MMC_IOC_MULTI_CMD: 770 ret = mmc_blk_check_blkdev(bdev); 771 if (ret) 772 return ret; 773 md = mmc_blk_get(bdev->bd_disk); 774 if (!md) 775 return -EINVAL; 776 ret = mmc_blk_ioctl_multi_cmd(md, 777 (struct mmc_ioc_multi_cmd __user *)arg, 778 NULL); 779 mmc_blk_put(md); 780 return ret; 781 default: 782 return -EINVAL; 783 } 784 } 785 786 #ifdef CONFIG_COMPAT 787 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 788 unsigned int cmd, unsigned long arg) 789 { 790 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 791 } 792 #endif 793 794 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk, 795 sector_t *sector) 796 { 797 struct mmc_blk_data *md; 798 int ret; 799 800 md = mmc_blk_get(disk); 801 if (!md) 802 return -EINVAL; 803 804 if (md->queue.card) 805 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector); 806 else 807 ret = -ENODEV; 808 809 mmc_blk_put(md); 810 811 return ret; 812 } 813 814 static const struct block_device_operations mmc_bdops = { 815 .open = mmc_blk_open, 816 .release = mmc_blk_release, 817 .getgeo = mmc_blk_getgeo, 818 .owner = THIS_MODULE, 819 .ioctl = mmc_blk_ioctl, 820 #ifdef CONFIG_COMPAT 821 .compat_ioctl = mmc_blk_compat_ioctl, 822 #endif 823 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector, 824 }; 825 826 static int mmc_blk_part_switch_pre(struct mmc_card *card, 827 unsigned int part_type) 828 { 829 int ret = 0; 830 831 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 832 if (card->ext_csd.cmdq_en) { 833 ret = mmc_cmdq_disable(card); 834 if (ret) 835 return ret; 836 } 837 mmc_retune_pause(card->host); 838 } 839 840 return ret; 841 } 842 843 static int mmc_blk_part_switch_post(struct mmc_card *card, 844 unsigned int part_type) 845 { 846 int ret = 0; 847 848 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 849 mmc_retune_unpause(card->host); 850 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 851 ret = mmc_cmdq_enable(card); 852 } 853 854 return ret; 855 } 856 857 static inline int mmc_blk_part_switch(struct mmc_card *card, 858 unsigned int part_type) 859 { 860 int ret = 0; 861 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 862 863 if (main_md->part_curr == part_type) 864 return 0; 865 866 if (mmc_card_mmc(card)) { 867 u8 part_config = card->ext_csd.part_config; 868 869 ret = mmc_blk_part_switch_pre(card, part_type); 870 if (ret) 871 return ret; 872 873 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 874 part_config |= part_type; 875 876 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 877 EXT_CSD_PART_CONFIG, part_config, 878 card->ext_csd.part_time); 879 if (ret) { 880 mmc_blk_part_switch_post(card, part_type); 881 return ret; 882 } 883 884 card->ext_csd.part_config = part_config; 885 886 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 887 } 888 889 main_md->part_curr = part_type; 890 return ret; 891 } 892 893 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 894 { 895 int err; 896 u32 result; 897 __be32 *blocks; 898 899 struct mmc_request mrq = {}; 900 struct mmc_command cmd = {}; 901 struct mmc_data data = {}; 902 903 struct scatterlist sg; 904 905 cmd.opcode = MMC_APP_CMD; 906 cmd.arg = card->rca << 16; 907 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 908 909 err = mmc_wait_for_cmd(card->host, &cmd, 0); 910 if (err) 911 return err; 912 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 913 return -EIO; 914 915 memset(&cmd, 0, sizeof(struct mmc_command)); 916 917 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 918 cmd.arg = 0; 919 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 920 921 data.blksz = 4; 922 data.blocks = 1; 923 data.flags = MMC_DATA_READ; 924 data.sg = &sg; 925 data.sg_len = 1; 926 mmc_set_data_timeout(&data, card); 927 928 mrq.cmd = &cmd; 929 mrq.data = &data; 930 931 blocks = kmalloc(4, GFP_KERNEL); 932 if (!blocks) 933 return -ENOMEM; 934 935 sg_init_one(&sg, blocks, 4); 936 937 mmc_wait_for_req(card->host, &mrq); 938 939 result = ntohl(*blocks); 940 kfree(blocks); 941 942 if (cmd.error || data.error) 943 return -EIO; 944 945 *written_blocks = result; 946 947 return 0; 948 } 949 950 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 951 { 952 if (host->actual_clock) 953 return host->actual_clock / 1000; 954 955 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 956 if (host->ios.clock) 957 return host->ios.clock / 2000; 958 959 /* How can there be no clock */ 960 WARN_ON_ONCE(1); 961 return 100; /* 100 kHz is minimum possible value */ 962 } 963 964 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 965 struct mmc_data *data) 966 { 967 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 968 unsigned int khz; 969 970 if (data->timeout_clks) { 971 khz = mmc_blk_clock_khz(host); 972 ms += DIV_ROUND_UP(data->timeout_clks, khz); 973 } 974 975 return ms; 976 } 977 978 /* 979 * Attempts to reset the card and get back to the requested partition. 980 * Therefore any error here must result in cancelling the block layer 981 * request, it must not be reattempted without going through the mmc_blk 982 * partition sanity checks. 983 */ 984 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 985 int type) 986 { 987 int err; 988 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev); 989 990 if (md->reset_done & type) 991 return -EEXIST; 992 993 md->reset_done |= type; 994 err = mmc_hw_reset(host->card); 995 /* 996 * A successful reset will leave the card in the main partition, but 997 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID 998 * in that case. 999 */ 1000 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type; 1001 if (err) 1002 return err; 1003 /* Ensure we switch back to the correct partition */ 1004 if (mmc_blk_part_switch(host->card, md->part_type)) 1005 /* 1006 * We have failed to get back into the correct 1007 * partition, so we need to abort the whole request. 1008 */ 1009 return -ENODEV; 1010 return 0; 1011 } 1012 1013 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1014 { 1015 md->reset_done &= ~type; 1016 } 1017 1018 /* 1019 * The non-block commands come back from the block layer after it queued it and 1020 * processed it with all other requests and then they get issued in this 1021 * function. 1022 */ 1023 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1024 { 1025 struct mmc_queue_req *mq_rq; 1026 struct mmc_card *card = mq->card; 1027 struct mmc_blk_data *md = mq->blkdata; 1028 struct mmc_blk_ioc_data **idata; 1029 bool rpmb_ioctl; 1030 u8 **ext_csd; 1031 u32 status; 1032 int ret; 1033 int i; 1034 1035 mq_rq = req_to_mmc_queue_req(req); 1036 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1037 1038 switch (mq_rq->drv_op) { 1039 case MMC_DRV_OP_IOCTL: 1040 if (card->ext_csd.cmdq_en) { 1041 ret = mmc_cmdq_disable(card); 1042 if (ret) 1043 break; 1044 } 1045 fallthrough; 1046 case MMC_DRV_OP_IOCTL_RPMB: 1047 idata = mq_rq->drv_op_data; 1048 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1049 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1050 if (ret) 1051 break; 1052 } 1053 /* Always switch back to main area after RPMB access */ 1054 if (rpmb_ioctl) 1055 mmc_blk_part_switch(card, 0); 1056 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 1057 mmc_cmdq_enable(card); 1058 break; 1059 case MMC_DRV_OP_BOOT_WP: 1060 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1061 card->ext_csd.boot_ro_lock | 1062 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1063 card->ext_csd.part_time); 1064 if (ret) 1065 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1066 md->disk->disk_name, ret); 1067 else 1068 card->ext_csd.boot_ro_lock |= 1069 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1070 break; 1071 case MMC_DRV_OP_GET_CARD_STATUS: 1072 ret = mmc_send_status(card, &status); 1073 if (!ret) 1074 ret = status; 1075 break; 1076 case MMC_DRV_OP_GET_EXT_CSD: 1077 ext_csd = mq_rq->drv_op_data; 1078 ret = mmc_get_ext_csd(card, ext_csd); 1079 break; 1080 default: 1081 pr_err("%s: unknown driver specific operation\n", 1082 md->disk->disk_name); 1083 ret = -EINVAL; 1084 break; 1085 } 1086 mq_rq->drv_op_result = ret; 1087 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1088 } 1089 1090 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req, 1091 int type, unsigned int erase_arg) 1092 { 1093 struct mmc_blk_data *md = mq->blkdata; 1094 struct mmc_card *card = md->queue.card; 1095 unsigned int from, nr; 1096 int err = 0; 1097 blk_status_t status = BLK_STS_OK; 1098 1099 if (!mmc_can_erase(card)) { 1100 status = BLK_STS_NOTSUPP; 1101 goto fail; 1102 } 1103 1104 from = blk_rq_pos(req); 1105 nr = blk_rq_sectors(req); 1106 1107 do { 1108 err = 0; 1109 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1110 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1111 INAND_CMD38_ARG_EXT_CSD, 1112 erase_arg == MMC_TRIM_ARG ? 1113 INAND_CMD38_ARG_TRIM : 1114 INAND_CMD38_ARG_ERASE, 1115 card->ext_csd.generic_cmd6_time); 1116 } 1117 if (!err) 1118 err = mmc_erase(card, from, nr, erase_arg); 1119 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1120 if (err) 1121 status = BLK_STS_IOERR; 1122 else 1123 mmc_blk_reset_success(md, type); 1124 fail: 1125 blk_mq_end_request(req, status); 1126 } 1127 1128 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req) 1129 { 1130 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG); 1131 } 1132 1133 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1134 { 1135 struct mmc_blk_data *md = mq->blkdata; 1136 struct mmc_card *card = md->queue.card; 1137 unsigned int arg = card->erase_arg; 1138 1139 if (mmc_card_broken_sd_discard(card)) 1140 arg = SD_ERASE_ARG; 1141 1142 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg); 1143 } 1144 1145 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1146 struct request *req) 1147 { 1148 struct mmc_blk_data *md = mq->blkdata; 1149 struct mmc_card *card = md->queue.card; 1150 unsigned int from, nr, arg; 1151 int err = 0, type = MMC_BLK_SECDISCARD; 1152 blk_status_t status = BLK_STS_OK; 1153 1154 if (!(mmc_can_secure_erase_trim(card))) { 1155 status = BLK_STS_NOTSUPP; 1156 goto out; 1157 } 1158 1159 from = blk_rq_pos(req); 1160 nr = blk_rq_sectors(req); 1161 1162 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1163 arg = MMC_SECURE_TRIM1_ARG; 1164 else 1165 arg = MMC_SECURE_ERASE_ARG; 1166 1167 retry: 1168 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1169 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1170 INAND_CMD38_ARG_EXT_CSD, 1171 arg == MMC_SECURE_TRIM1_ARG ? 1172 INAND_CMD38_ARG_SECTRIM1 : 1173 INAND_CMD38_ARG_SECERASE, 1174 card->ext_csd.generic_cmd6_time); 1175 if (err) 1176 goto out_retry; 1177 } 1178 1179 err = mmc_erase(card, from, nr, arg); 1180 if (err == -EIO) 1181 goto out_retry; 1182 if (err) { 1183 status = BLK_STS_IOERR; 1184 goto out; 1185 } 1186 1187 if (arg == MMC_SECURE_TRIM1_ARG) { 1188 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1189 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1190 INAND_CMD38_ARG_EXT_CSD, 1191 INAND_CMD38_ARG_SECTRIM2, 1192 card->ext_csd.generic_cmd6_time); 1193 if (err) 1194 goto out_retry; 1195 } 1196 1197 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1198 if (err == -EIO) 1199 goto out_retry; 1200 if (err) { 1201 status = BLK_STS_IOERR; 1202 goto out; 1203 } 1204 } 1205 1206 out_retry: 1207 if (err && !mmc_blk_reset(md, card->host, type)) 1208 goto retry; 1209 if (!err) 1210 mmc_blk_reset_success(md, type); 1211 out: 1212 blk_mq_end_request(req, status); 1213 } 1214 1215 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1216 { 1217 struct mmc_blk_data *md = mq->blkdata; 1218 struct mmc_card *card = md->queue.card; 1219 int ret = 0; 1220 1221 ret = mmc_flush_cache(card->host); 1222 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1223 } 1224 1225 /* 1226 * Reformat current write as a reliable write, supporting 1227 * both legacy and the enhanced reliable write MMC cards. 1228 * In each transfer we'll handle only as much as a single 1229 * reliable write can handle, thus finish the request in 1230 * partial completions. 1231 */ 1232 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1233 struct mmc_card *card, 1234 struct request *req) 1235 { 1236 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1237 /* Legacy mode imposes restrictions on transfers. */ 1238 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1239 brq->data.blocks = 1; 1240 1241 if (brq->data.blocks > card->ext_csd.rel_sectors) 1242 brq->data.blocks = card->ext_csd.rel_sectors; 1243 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1244 brq->data.blocks = 1; 1245 } 1246 } 1247 1248 #define CMD_ERRORS_EXCL_OOR \ 1249 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1250 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1251 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1252 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1253 R1_CC_ERROR | /* Card controller error */ \ 1254 R1_ERROR) /* General/unknown error */ 1255 1256 #define CMD_ERRORS \ 1257 (CMD_ERRORS_EXCL_OOR | \ 1258 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1259 1260 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1261 { 1262 u32 val; 1263 1264 /* 1265 * Per the SD specification(physical layer version 4.10)[1], 1266 * section 4.3.3, it explicitly states that "When the last 1267 * block of user area is read using CMD18, the host should 1268 * ignore OUT_OF_RANGE error that may occur even the sequence 1269 * is correct". And JESD84-B51 for eMMC also has a similar 1270 * statement on section 6.8.3. 1271 * 1272 * Multiple block read/write could be done by either predefined 1273 * method, namely CMD23, or open-ending mode. For open-ending mode, 1274 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1275 * 1276 * However the spec[1] doesn't tell us whether we should also 1277 * ignore that for predefined method. But per the spec[1], section 1278 * 4.15 Set Block Count Command, it says"If illegal block count 1279 * is set, out of range error will be indicated during read/write 1280 * operation (For example, data transfer is stopped at user area 1281 * boundary)." In another word, we could expect a out of range error 1282 * in the response for the following CMD18/25. And if argument of 1283 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1284 * we could also expect to get a -ETIMEDOUT or any error number from 1285 * the host drivers due to missing data response(for write)/data(for 1286 * read), as the cards will stop the data transfer by itself per the 1287 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1288 */ 1289 1290 if (!brq->stop.error) { 1291 bool oor_with_open_end; 1292 /* If there is no error yet, check R1 response */ 1293 1294 val = brq->stop.resp[0] & CMD_ERRORS; 1295 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1296 1297 if (val && !oor_with_open_end) 1298 brq->stop.error = -EIO; 1299 } 1300 } 1301 1302 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1303 int recovery_mode, bool *do_rel_wr_p, 1304 bool *do_data_tag_p) 1305 { 1306 struct mmc_blk_data *md = mq->blkdata; 1307 struct mmc_card *card = md->queue.card; 1308 struct mmc_blk_request *brq = &mqrq->brq; 1309 struct request *req = mmc_queue_req_to_req(mqrq); 1310 bool do_rel_wr, do_data_tag; 1311 1312 /* 1313 * Reliable writes are used to implement Forced Unit Access and 1314 * are supported only on MMCs. 1315 */ 1316 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1317 rq_data_dir(req) == WRITE && 1318 (md->flags & MMC_BLK_REL_WR); 1319 1320 memset(brq, 0, sizeof(struct mmc_blk_request)); 1321 1322 mmc_crypto_prepare_req(mqrq); 1323 1324 brq->mrq.data = &brq->data; 1325 brq->mrq.tag = req->tag; 1326 1327 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1328 brq->stop.arg = 0; 1329 1330 if (rq_data_dir(req) == READ) { 1331 brq->data.flags = MMC_DATA_READ; 1332 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1333 } else { 1334 brq->data.flags = MMC_DATA_WRITE; 1335 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1336 } 1337 1338 brq->data.blksz = 512; 1339 brq->data.blocks = blk_rq_sectors(req); 1340 brq->data.blk_addr = blk_rq_pos(req); 1341 1342 /* 1343 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1344 * The eMMC will give "high" priority tasks priority over "simple" 1345 * priority tasks. Here we always set "simple" priority by not setting 1346 * MMC_DATA_PRIO. 1347 */ 1348 1349 /* 1350 * The block layer doesn't support all sector count 1351 * restrictions, so we need to be prepared for too big 1352 * requests. 1353 */ 1354 if (brq->data.blocks > card->host->max_blk_count) 1355 brq->data.blocks = card->host->max_blk_count; 1356 1357 if (brq->data.blocks > 1) { 1358 /* 1359 * Some SD cards in SPI mode return a CRC error or even lock up 1360 * completely when trying to read the last block using a 1361 * multiblock read command. 1362 */ 1363 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1364 (blk_rq_pos(req) + blk_rq_sectors(req) == 1365 get_capacity(md->disk))) 1366 brq->data.blocks--; 1367 1368 /* 1369 * After a read error, we redo the request one (native) sector 1370 * at a time in order to accurately determine which 1371 * sectors can be read successfully. 1372 */ 1373 if (recovery_mode) 1374 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9; 1375 1376 /* 1377 * Some controllers have HW issues while operating 1378 * in multiple I/O mode 1379 */ 1380 if (card->host->ops->multi_io_quirk) 1381 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1382 (rq_data_dir(req) == READ) ? 1383 MMC_DATA_READ : MMC_DATA_WRITE, 1384 brq->data.blocks); 1385 } 1386 1387 if (do_rel_wr) { 1388 mmc_apply_rel_rw(brq, card, req); 1389 brq->data.flags |= MMC_DATA_REL_WR; 1390 } 1391 1392 /* 1393 * Data tag is used only during writing meta data to speed 1394 * up write and any subsequent read of this meta data 1395 */ 1396 do_data_tag = card->ext_csd.data_tag_unit_size && 1397 (req->cmd_flags & REQ_META) && 1398 (rq_data_dir(req) == WRITE) && 1399 ((brq->data.blocks * brq->data.blksz) >= 1400 card->ext_csd.data_tag_unit_size); 1401 1402 if (do_data_tag) 1403 brq->data.flags |= MMC_DATA_DAT_TAG; 1404 1405 mmc_set_data_timeout(&brq->data, card); 1406 1407 brq->data.sg = mqrq->sg; 1408 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1409 1410 /* 1411 * Adjust the sg list so it is the same size as the 1412 * request. 1413 */ 1414 if (brq->data.blocks != blk_rq_sectors(req)) { 1415 int i, data_size = brq->data.blocks << 9; 1416 struct scatterlist *sg; 1417 1418 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1419 data_size -= sg->length; 1420 if (data_size <= 0) { 1421 sg->length += data_size; 1422 i++; 1423 break; 1424 } 1425 } 1426 brq->data.sg_len = i; 1427 } 1428 1429 if (do_rel_wr_p) 1430 *do_rel_wr_p = do_rel_wr; 1431 1432 if (do_data_tag_p) 1433 *do_data_tag_p = do_data_tag; 1434 } 1435 1436 #define MMC_CQE_RETRIES 2 1437 1438 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1439 { 1440 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1441 struct mmc_request *mrq = &mqrq->brq.mrq; 1442 struct request_queue *q = req->q; 1443 struct mmc_host *host = mq->card->host; 1444 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1445 unsigned long flags; 1446 bool put_card; 1447 int err; 1448 1449 mmc_cqe_post_req(host, mrq); 1450 1451 if (mrq->cmd && mrq->cmd->error) 1452 err = mrq->cmd->error; 1453 else if (mrq->data && mrq->data->error) 1454 err = mrq->data->error; 1455 else 1456 err = 0; 1457 1458 if (err) { 1459 if (mqrq->retries++ < MMC_CQE_RETRIES) 1460 blk_mq_requeue_request(req, true); 1461 else 1462 blk_mq_end_request(req, BLK_STS_IOERR); 1463 } else if (mrq->data) { 1464 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1465 blk_mq_requeue_request(req, true); 1466 else 1467 __blk_mq_end_request(req, BLK_STS_OK); 1468 } else { 1469 blk_mq_end_request(req, BLK_STS_OK); 1470 } 1471 1472 spin_lock_irqsave(&mq->lock, flags); 1473 1474 mq->in_flight[issue_type] -= 1; 1475 1476 put_card = (mmc_tot_in_flight(mq) == 0); 1477 1478 mmc_cqe_check_busy(mq); 1479 1480 spin_unlock_irqrestore(&mq->lock, flags); 1481 1482 if (!mq->cqe_busy) 1483 blk_mq_run_hw_queues(q, true); 1484 1485 if (put_card) 1486 mmc_put_card(mq->card, &mq->ctx); 1487 } 1488 1489 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1490 { 1491 struct mmc_card *card = mq->card; 1492 struct mmc_host *host = card->host; 1493 int err; 1494 1495 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1496 1497 err = mmc_cqe_recovery(host); 1498 if (err) 1499 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1500 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1501 1502 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1503 } 1504 1505 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1506 { 1507 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1508 brq.mrq); 1509 struct request *req = mmc_queue_req_to_req(mqrq); 1510 struct request_queue *q = req->q; 1511 struct mmc_queue *mq = q->queuedata; 1512 1513 /* 1514 * Block layer timeouts race with completions which means the normal 1515 * completion path cannot be used during recovery. 1516 */ 1517 if (mq->in_recovery) 1518 mmc_blk_cqe_complete_rq(mq, req); 1519 else if (likely(!blk_should_fake_timeout(req->q))) 1520 blk_mq_complete_request(req); 1521 } 1522 1523 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1524 { 1525 mrq->done = mmc_blk_cqe_req_done; 1526 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1527 1528 return mmc_cqe_start_req(host, mrq); 1529 } 1530 1531 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1532 struct request *req) 1533 { 1534 struct mmc_blk_request *brq = &mqrq->brq; 1535 1536 memset(brq, 0, sizeof(*brq)); 1537 1538 brq->mrq.cmd = &brq->cmd; 1539 brq->mrq.tag = req->tag; 1540 1541 return &brq->mrq; 1542 } 1543 1544 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1545 { 1546 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1547 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1548 1549 mrq->cmd->opcode = MMC_SWITCH; 1550 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1551 (EXT_CSD_FLUSH_CACHE << 16) | 1552 (1 << 8) | 1553 EXT_CSD_CMD_SET_NORMAL; 1554 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1555 1556 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1557 } 1558 1559 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1560 { 1561 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1562 struct mmc_host *host = mq->card->host; 1563 int err; 1564 1565 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1566 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1567 mmc_pre_req(host, &mqrq->brq.mrq); 1568 1569 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1570 if (err) 1571 mmc_post_req(host, &mqrq->brq.mrq, err); 1572 1573 return err; 1574 } 1575 1576 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1577 { 1578 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1579 struct mmc_host *host = mq->card->host; 1580 1581 if (host->hsq_enabled) 1582 return mmc_blk_hsq_issue_rw_rq(mq, req); 1583 1584 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1585 1586 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1587 } 1588 1589 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1590 struct mmc_card *card, 1591 int recovery_mode, 1592 struct mmc_queue *mq) 1593 { 1594 u32 readcmd, writecmd; 1595 struct mmc_blk_request *brq = &mqrq->brq; 1596 struct request *req = mmc_queue_req_to_req(mqrq); 1597 struct mmc_blk_data *md = mq->blkdata; 1598 bool do_rel_wr, do_data_tag; 1599 1600 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag); 1601 1602 brq->mrq.cmd = &brq->cmd; 1603 1604 brq->cmd.arg = blk_rq_pos(req); 1605 if (!mmc_card_blockaddr(card)) 1606 brq->cmd.arg <<= 9; 1607 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1608 1609 if (brq->data.blocks > 1 || do_rel_wr) { 1610 /* SPI multiblock writes terminate using a special 1611 * token, not a STOP_TRANSMISSION request. 1612 */ 1613 if (!mmc_host_is_spi(card->host) || 1614 rq_data_dir(req) == READ) 1615 brq->mrq.stop = &brq->stop; 1616 readcmd = MMC_READ_MULTIPLE_BLOCK; 1617 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1618 } else { 1619 brq->mrq.stop = NULL; 1620 readcmd = MMC_READ_SINGLE_BLOCK; 1621 writecmd = MMC_WRITE_BLOCK; 1622 } 1623 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1624 1625 /* 1626 * Pre-defined multi-block transfers are preferable to 1627 * open ended-ones (and necessary for reliable writes). 1628 * However, it is not sufficient to just send CMD23, 1629 * and avoid the final CMD12, as on an error condition 1630 * CMD12 (stop) needs to be sent anyway. This, coupled 1631 * with Auto-CMD23 enhancements provided by some 1632 * hosts, means that the complexity of dealing 1633 * with this is best left to the host. If CMD23 is 1634 * supported by card and host, we'll fill sbc in and let 1635 * the host deal with handling it correctly. This means 1636 * that for hosts that don't expose MMC_CAP_CMD23, no 1637 * change of behavior will be observed. 1638 * 1639 * N.B: Some MMC cards experience perf degradation. 1640 * We'll avoid using CMD23-bounded multiblock writes for 1641 * these, while retaining features like reliable writes. 1642 */ 1643 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1644 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1645 do_data_tag)) { 1646 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1647 brq->sbc.arg = brq->data.blocks | 1648 (do_rel_wr ? (1 << 31) : 0) | 1649 (do_data_tag ? (1 << 29) : 0); 1650 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1651 brq->mrq.sbc = &brq->sbc; 1652 } 1653 } 1654 1655 #define MMC_MAX_RETRIES 5 1656 #define MMC_DATA_RETRIES 2 1657 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1658 1659 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1660 { 1661 struct mmc_command cmd = { 1662 .opcode = MMC_STOP_TRANSMISSION, 1663 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1664 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1665 .busy_timeout = timeout, 1666 }; 1667 1668 return mmc_wait_for_cmd(card->host, &cmd, 5); 1669 } 1670 1671 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1672 { 1673 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1674 struct mmc_blk_request *brq = &mqrq->brq; 1675 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1676 int err; 1677 1678 mmc_retune_hold_now(card->host); 1679 1680 mmc_blk_send_stop(card, timeout); 1681 1682 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO); 1683 1684 mmc_retune_release(card->host); 1685 1686 return err; 1687 } 1688 1689 #define MMC_READ_SINGLE_RETRIES 2 1690 1691 /* Single (native) sector read during recovery */ 1692 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1693 { 1694 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1695 struct mmc_request *mrq = &mqrq->brq.mrq; 1696 struct mmc_card *card = mq->card; 1697 struct mmc_host *host = card->host; 1698 blk_status_t error = BLK_STS_OK; 1699 size_t bytes_per_read = queue_physical_block_size(mq->queue); 1700 1701 do { 1702 u32 status; 1703 int err; 1704 int retries = 0; 1705 1706 while (retries++ <= MMC_READ_SINGLE_RETRIES) { 1707 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1708 1709 mmc_wait_for_req(host, mrq); 1710 1711 err = mmc_send_status(card, &status); 1712 if (err) 1713 goto error_exit; 1714 1715 if (!mmc_host_is_spi(host) && 1716 !mmc_ready_for_data(status)) { 1717 err = mmc_blk_fix_state(card, req); 1718 if (err) 1719 goto error_exit; 1720 } 1721 1722 if (!mrq->cmd->error) 1723 break; 1724 } 1725 1726 if (mrq->cmd->error || 1727 mrq->data->error || 1728 (!mmc_host_is_spi(host) && 1729 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1730 error = BLK_STS_IOERR; 1731 else 1732 error = BLK_STS_OK; 1733 1734 } while (blk_update_request(req, error, bytes_per_read)); 1735 1736 return; 1737 1738 error_exit: 1739 mrq->data->bytes_xfered = 0; 1740 blk_update_request(req, BLK_STS_IOERR, bytes_per_read); 1741 /* Let it try the remaining request again */ 1742 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1743 mqrq->retries = MMC_MAX_RETRIES - 1; 1744 } 1745 1746 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1747 { 1748 return !!brq->mrq.sbc; 1749 } 1750 1751 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1752 { 1753 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1754 } 1755 1756 /* 1757 * Check for errors the host controller driver might not have seen such as 1758 * response mode errors or invalid card state. 1759 */ 1760 static bool mmc_blk_status_error(struct request *req, u32 status) 1761 { 1762 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1763 struct mmc_blk_request *brq = &mqrq->brq; 1764 struct mmc_queue *mq = req->q->queuedata; 1765 u32 stop_err_bits; 1766 1767 if (mmc_host_is_spi(mq->card->host)) 1768 return false; 1769 1770 stop_err_bits = mmc_blk_stop_err_bits(brq); 1771 1772 return brq->cmd.resp[0] & CMD_ERRORS || 1773 brq->stop.resp[0] & stop_err_bits || 1774 status & stop_err_bits || 1775 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1776 } 1777 1778 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1779 { 1780 return !brq->sbc.error && !brq->cmd.error && 1781 !(brq->cmd.resp[0] & CMD_ERRORS); 1782 } 1783 1784 /* 1785 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1786 * policy: 1787 * 1. A request that has transferred at least some data is considered 1788 * successful and will be requeued if there is remaining data to 1789 * transfer. 1790 * 2. Otherwise the number of retries is incremented and the request 1791 * will be requeued if there are remaining retries. 1792 * 3. Otherwise the request will be errored out. 1793 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1794 * mqrq->retries. So there are only 4 possible actions here: 1795 * 1. do not accept the bytes_xfered value i.e. set it to zero 1796 * 2. change mqrq->retries to determine the number of retries 1797 * 3. try to reset the card 1798 * 4. read one sector at a time 1799 */ 1800 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1801 { 1802 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1803 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1804 struct mmc_blk_request *brq = &mqrq->brq; 1805 struct mmc_blk_data *md = mq->blkdata; 1806 struct mmc_card *card = mq->card; 1807 u32 status; 1808 u32 blocks; 1809 int err; 1810 1811 /* 1812 * Some errors the host driver might not have seen. Set the number of 1813 * bytes transferred to zero in that case. 1814 */ 1815 err = __mmc_send_status(card, &status, 0); 1816 if (err || mmc_blk_status_error(req, status)) 1817 brq->data.bytes_xfered = 0; 1818 1819 mmc_retune_release(card->host); 1820 1821 /* 1822 * Try again to get the status. This also provides an opportunity for 1823 * re-tuning. 1824 */ 1825 if (err) 1826 err = __mmc_send_status(card, &status, 0); 1827 1828 /* 1829 * Nothing more to do after the number of bytes transferred has been 1830 * updated and there is no card. 1831 */ 1832 if (err && mmc_detect_card_removed(card->host)) 1833 return; 1834 1835 /* Try to get back to "tran" state */ 1836 if (!mmc_host_is_spi(mq->card->host) && 1837 (err || !mmc_ready_for_data(status))) 1838 err = mmc_blk_fix_state(mq->card, req); 1839 1840 /* 1841 * Special case for SD cards where the card might record the number of 1842 * blocks written. 1843 */ 1844 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1845 rq_data_dir(req) == WRITE) { 1846 if (mmc_sd_num_wr_blocks(card, &blocks)) 1847 brq->data.bytes_xfered = 0; 1848 else 1849 brq->data.bytes_xfered = blocks << 9; 1850 } 1851 1852 /* Reset if the card is in a bad state */ 1853 if (!mmc_host_is_spi(mq->card->host) && 1854 err && mmc_blk_reset(md, card->host, type)) { 1855 pr_err("%s: recovery failed!\n", req->q->disk->disk_name); 1856 mqrq->retries = MMC_NO_RETRIES; 1857 return; 1858 } 1859 1860 /* 1861 * If anything was done, just return and if there is anything remaining 1862 * on the request it will get requeued. 1863 */ 1864 if (brq->data.bytes_xfered) 1865 return; 1866 1867 /* Reset before last retry */ 1868 if (mqrq->retries + 1 == MMC_MAX_RETRIES && 1869 mmc_blk_reset(md, card->host, type)) 1870 return; 1871 1872 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1873 if (brq->sbc.error || brq->cmd.error) 1874 return; 1875 1876 /* Reduce the remaining retries for data errors */ 1877 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1878 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1879 return; 1880 } 1881 1882 if (rq_data_dir(req) == READ && brq->data.blocks > 1883 queue_physical_block_size(mq->queue) >> 9) { 1884 /* Read one (native) sector at a time */ 1885 mmc_blk_read_single(mq, req); 1886 return; 1887 } 1888 } 1889 1890 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1891 { 1892 mmc_blk_eval_resp_error(brq); 1893 1894 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1895 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1896 } 1897 1898 static int mmc_spi_err_check(struct mmc_card *card) 1899 { 1900 u32 status = 0; 1901 int err; 1902 1903 /* 1904 * SPI does not have a TRAN state we have to wait on, instead the 1905 * card is ready again when it no longer holds the line LOW. 1906 * We still have to ensure two things here before we know the write 1907 * was successful: 1908 * 1. The card has not disconnected during busy and we actually read our 1909 * own pull-up, thinking it was still connected, so ensure it 1910 * still responds. 1911 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a 1912 * just reconnected card after being disconnected during busy. 1913 */ 1914 err = __mmc_send_status(card, &status, 0); 1915 if (err) 1916 return err; 1917 /* All R1 and R2 bits of SPI are errors in our case */ 1918 if (status) 1919 return -EIO; 1920 return 0; 1921 } 1922 1923 static int mmc_blk_busy_cb(void *cb_data, bool *busy) 1924 { 1925 struct mmc_blk_busy_data *data = cb_data; 1926 u32 status = 0; 1927 int err; 1928 1929 err = mmc_send_status(data->card, &status); 1930 if (err) 1931 return err; 1932 1933 /* Accumulate response error bits. */ 1934 data->status |= status; 1935 1936 *busy = !mmc_ready_for_data(status); 1937 return 0; 1938 } 1939 1940 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1941 { 1942 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1943 struct mmc_blk_busy_data cb_data; 1944 int err; 1945 1946 if (rq_data_dir(req) == READ) 1947 return 0; 1948 1949 if (mmc_host_is_spi(card->host)) { 1950 err = mmc_spi_err_check(card); 1951 if (err) 1952 mqrq->brq.data.bytes_xfered = 0; 1953 return err; 1954 } 1955 1956 cb_data.card = card; 1957 cb_data.status = 0; 1958 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS, 1959 &mmc_blk_busy_cb, &cb_data); 1960 1961 /* 1962 * Do not assume data transferred correctly if there are any error bits 1963 * set. 1964 */ 1965 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1966 mqrq->brq.data.bytes_xfered = 0; 1967 err = err ? err : -EIO; 1968 } 1969 1970 /* Copy the exception bit so it will be seen later on */ 1971 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT) 1972 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1973 1974 return err; 1975 } 1976 1977 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1978 struct request *req) 1979 { 1980 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1981 1982 mmc_blk_reset_success(mq->blkdata, type); 1983 } 1984 1985 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1986 { 1987 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1988 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1989 1990 if (nr_bytes) { 1991 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1992 blk_mq_requeue_request(req, true); 1993 else 1994 __blk_mq_end_request(req, BLK_STS_OK); 1995 } else if (!blk_rq_bytes(req)) { 1996 __blk_mq_end_request(req, BLK_STS_IOERR); 1997 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1998 blk_mq_requeue_request(req, true); 1999 } else { 2000 if (mmc_card_removed(mq->card)) 2001 req->rq_flags |= RQF_QUIET; 2002 blk_mq_end_request(req, BLK_STS_IOERR); 2003 } 2004 } 2005 2006 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 2007 struct mmc_queue_req *mqrq) 2008 { 2009 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 2010 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 2011 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 2012 } 2013 2014 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 2015 struct mmc_queue_req *mqrq) 2016 { 2017 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 2018 mmc_run_bkops(mq->card); 2019 } 2020 2021 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 2022 { 2023 struct mmc_queue_req *mqrq = 2024 container_of(mrq, struct mmc_queue_req, brq.mrq); 2025 struct request *req = mmc_queue_req_to_req(mqrq); 2026 struct request_queue *q = req->q; 2027 struct mmc_queue *mq = q->queuedata; 2028 struct mmc_host *host = mq->card->host; 2029 unsigned long flags; 2030 2031 if (mmc_blk_rq_error(&mqrq->brq) || 2032 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2033 spin_lock_irqsave(&mq->lock, flags); 2034 mq->recovery_needed = true; 2035 mq->recovery_req = req; 2036 spin_unlock_irqrestore(&mq->lock, flags); 2037 2038 host->cqe_ops->cqe_recovery_start(host); 2039 2040 schedule_work(&mq->recovery_work); 2041 return; 2042 } 2043 2044 mmc_blk_rw_reset_success(mq, req); 2045 2046 /* 2047 * Block layer timeouts race with completions which means the normal 2048 * completion path cannot be used during recovery. 2049 */ 2050 if (mq->in_recovery) 2051 mmc_blk_cqe_complete_rq(mq, req); 2052 else if (likely(!blk_should_fake_timeout(req->q))) 2053 blk_mq_complete_request(req); 2054 } 2055 2056 void mmc_blk_mq_complete(struct request *req) 2057 { 2058 struct mmc_queue *mq = req->q->queuedata; 2059 struct mmc_host *host = mq->card->host; 2060 2061 if (host->cqe_enabled) 2062 mmc_blk_cqe_complete_rq(mq, req); 2063 else if (likely(!blk_should_fake_timeout(req->q))) 2064 mmc_blk_mq_complete_rq(mq, req); 2065 } 2066 2067 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 2068 struct request *req) 2069 { 2070 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2071 struct mmc_host *host = mq->card->host; 2072 2073 if (mmc_blk_rq_error(&mqrq->brq) || 2074 mmc_blk_card_busy(mq->card, req)) { 2075 mmc_blk_mq_rw_recovery(mq, req); 2076 } else { 2077 mmc_blk_rw_reset_success(mq, req); 2078 mmc_retune_release(host); 2079 } 2080 2081 mmc_blk_urgent_bkops(mq, mqrq); 2082 } 2083 2084 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 2085 { 2086 unsigned long flags; 2087 bool put_card; 2088 2089 spin_lock_irqsave(&mq->lock, flags); 2090 2091 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 2092 2093 put_card = (mmc_tot_in_flight(mq) == 0); 2094 2095 spin_unlock_irqrestore(&mq->lock, flags); 2096 2097 if (put_card) 2098 mmc_put_card(mq->card, &mq->ctx); 2099 } 2100 2101 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req, 2102 bool can_sleep) 2103 { 2104 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2105 struct mmc_request *mrq = &mqrq->brq.mrq; 2106 struct mmc_host *host = mq->card->host; 2107 2108 mmc_post_req(host, mrq, 0); 2109 2110 /* 2111 * Block layer timeouts race with completions which means the normal 2112 * completion path cannot be used during recovery. 2113 */ 2114 if (mq->in_recovery) { 2115 mmc_blk_mq_complete_rq(mq, req); 2116 } else if (likely(!blk_should_fake_timeout(req->q))) { 2117 if (can_sleep) 2118 blk_mq_complete_request_direct(req, mmc_blk_mq_complete); 2119 else 2120 blk_mq_complete_request(req); 2121 } 2122 2123 mmc_blk_mq_dec_in_flight(mq, req); 2124 } 2125 2126 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2127 { 2128 struct request *req = mq->recovery_req; 2129 struct mmc_host *host = mq->card->host; 2130 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2131 2132 mq->recovery_req = NULL; 2133 mq->rw_wait = false; 2134 2135 if (mmc_blk_rq_error(&mqrq->brq)) { 2136 mmc_retune_hold_now(host); 2137 mmc_blk_mq_rw_recovery(mq, req); 2138 } 2139 2140 mmc_blk_urgent_bkops(mq, mqrq); 2141 2142 mmc_blk_mq_post_req(mq, req, true); 2143 } 2144 2145 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2146 struct request **prev_req) 2147 { 2148 if (mmc_host_done_complete(mq->card->host)) 2149 return; 2150 2151 mutex_lock(&mq->complete_lock); 2152 2153 if (!mq->complete_req) 2154 goto out_unlock; 2155 2156 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2157 2158 if (prev_req) 2159 *prev_req = mq->complete_req; 2160 else 2161 mmc_blk_mq_post_req(mq, mq->complete_req, true); 2162 2163 mq->complete_req = NULL; 2164 2165 out_unlock: 2166 mutex_unlock(&mq->complete_lock); 2167 } 2168 2169 void mmc_blk_mq_complete_work(struct work_struct *work) 2170 { 2171 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2172 complete_work); 2173 2174 mmc_blk_mq_complete_prev_req(mq, NULL); 2175 } 2176 2177 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2178 { 2179 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2180 brq.mrq); 2181 struct request *req = mmc_queue_req_to_req(mqrq); 2182 struct request_queue *q = req->q; 2183 struct mmc_queue *mq = q->queuedata; 2184 struct mmc_host *host = mq->card->host; 2185 unsigned long flags; 2186 2187 if (!mmc_host_done_complete(host)) { 2188 bool waiting; 2189 2190 /* 2191 * We cannot complete the request in this context, so record 2192 * that there is a request to complete, and that a following 2193 * request does not need to wait (although it does need to 2194 * complete complete_req first). 2195 */ 2196 spin_lock_irqsave(&mq->lock, flags); 2197 mq->complete_req = req; 2198 mq->rw_wait = false; 2199 waiting = mq->waiting; 2200 spin_unlock_irqrestore(&mq->lock, flags); 2201 2202 /* 2203 * If 'waiting' then the waiting task will complete this 2204 * request, otherwise queue a work to do it. Note that 2205 * complete_work may still race with the dispatch of a following 2206 * request. 2207 */ 2208 if (waiting) 2209 wake_up(&mq->wait); 2210 else 2211 queue_work(mq->card->complete_wq, &mq->complete_work); 2212 2213 return; 2214 } 2215 2216 /* Take the recovery path for errors or urgent background operations */ 2217 if (mmc_blk_rq_error(&mqrq->brq) || 2218 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2219 spin_lock_irqsave(&mq->lock, flags); 2220 mq->recovery_needed = true; 2221 mq->recovery_req = req; 2222 spin_unlock_irqrestore(&mq->lock, flags); 2223 wake_up(&mq->wait); 2224 schedule_work(&mq->recovery_work); 2225 return; 2226 } 2227 2228 mmc_blk_rw_reset_success(mq, req); 2229 2230 mq->rw_wait = false; 2231 wake_up(&mq->wait); 2232 2233 /* context unknown */ 2234 mmc_blk_mq_post_req(mq, req, false); 2235 } 2236 2237 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2238 { 2239 unsigned long flags; 2240 bool done; 2241 2242 /* 2243 * Wait while there is another request in progress, but not if recovery 2244 * is needed. Also indicate whether there is a request waiting to start. 2245 */ 2246 spin_lock_irqsave(&mq->lock, flags); 2247 if (mq->recovery_needed) { 2248 *err = -EBUSY; 2249 done = true; 2250 } else { 2251 done = !mq->rw_wait; 2252 } 2253 mq->waiting = !done; 2254 spin_unlock_irqrestore(&mq->lock, flags); 2255 2256 return done; 2257 } 2258 2259 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2260 { 2261 int err = 0; 2262 2263 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2264 2265 /* Always complete the previous request if there is one */ 2266 mmc_blk_mq_complete_prev_req(mq, prev_req); 2267 2268 return err; 2269 } 2270 2271 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2272 struct request *req) 2273 { 2274 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2275 struct mmc_host *host = mq->card->host; 2276 struct request *prev_req = NULL; 2277 int err = 0; 2278 2279 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2280 2281 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2282 2283 mmc_pre_req(host, &mqrq->brq.mrq); 2284 2285 err = mmc_blk_rw_wait(mq, &prev_req); 2286 if (err) 2287 goto out_post_req; 2288 2289 mq->rw_wait = true; 2290 2291 err = mmc_start_request(host, &mqrq->brq.mrq); 2292 2293 if (prev_req) 2294 mmc_blk_mq_post_req(mq, prev_req, true); 2295 2296 if (err) 2297 mq->rw_wait = false; 2298 2299 /* Release re-tuning here where there is no synchronization required */ 2300 if (err || mmc_host_done_complete(host)) 2301 mmc_retune_release(host); 2302 2303 out_post_req: 2304 if (err) 2305 mmc_post_req(host, &mqrq->brq.mrq, err); 2306 2307 return err; 2308 } 2309 2310 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2311 { 2312 if (host->cqe_enabled) 2313 return host->cqe_ops->cqe_wait_for_idle(host); 2314 2315 return mmc_blk_rw_wait(mq, NULL); 2316 } 2317 2318 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2319 { 2320 struct mmc_blk_data *md = mq->blkdata; 2321 struct mmc_card *card = md->queue.card; 2322 struct mmc_host *host = card->host; 2323 int ret; 2324 2325 ret = mmc_blk_part_switch(card, md->part_type); 2326 if (ret) 2327 return MMC_REQ_FAILED_TO_START; 2328 2329 switch (mmc_issue_type(mq, req)) { 2330 case MMC_ISSUE_SYNC: 2331 ret = mmc_blk_wait_for_idle(mq, host); 2332 if (ret) 2333 return MMC_REQ_BUSY; 2334 switch (req_op(req)) { 2335 case REQ_OP_DRV_IN: 2336 case REQ_OP_DRV_OUT: 2337 mmc_blk_issue_drv_op(mq, req); 2338 break; 2339 case REQ_OP_DISCARD: 2340 mmc_blk_issue_discard_rq(mq, req); 2341 break; 2342 case REQ_OP_SECURE_ERASE: 2343 mmc_blk_issue_secdiscard_rq(mq, req); 2344 break; 2345 case REQ_OP_WRITE_ZEROES: 2346 mmc_blk_issue_trim_rq(mq, req); 2347 break; 2348 case REQ_OP_FLUSH: 2349 mmc_blk_issue_flush(mq, req); 2350 break; 2351 default: 2352 WARN_ON_ONCE(1); 2353 return MMC_REQ_FAILED_TO_START; 2354 } 2355 return MMC_REQ_FINISHED; 2356 case MMC_ISSUE_DCMD: 2357 case MMC_ISSUE_ASYNC: 2358 switch (req_op(req)) { 2359 case REQ_OP_FLUSH: 2360 if (!mmc_cache_enabled(host)) { 2361 blk_mq_end_request(req, BLK_STS_OK); 2362 return MMC_REQ_FINISHED; 2363 } 2364 ret = mmc_blk_cqe_issue_flush(mq, req); 2365 break; 2366 case REQ_OP_READ: 2367 case REQ_OP_WRITE: 2368 if (host->cqe_enabled) 2369 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2370 else 2371 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2372 break; 2373 default: 2374 WARN_ON_ONCE(1); 2375 ret = -EINVAL; 2376 } 2377 if (!ret) 2378 return MMC_REQ_STARTED; 2379 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2380 default: 2381 WARN_ON_ONCE(1); 2382 return MMC_REQ_FAILED_TO_START; 2383 } 2384 } 2385 2386 static inline int mmc_blk_readonly(struct mmc_card *card) 2387 { 2388 return mmc_card_readonly(card) || 2389 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2390 } 2391 2392 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2393 struct device *parent, 2394 sector_t size, 2395 bool default_ro, 2396 const char *subname, 2397 int area_type, 2398 unsigned int part_type) 2399 { 2400 struct mmc_blk_data *md; 2401 int devidx, ret; 2402 char cap_str[10]; 2403 bool cache_enabled = false; 2404 bool fua_enabled = false; 2405 2406 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2407 if (devidx < 0) { 2408 /* 2409 * We get -ENOSPC because there are no more any available 2410 * devidx. The reason may be that, either userspace haven't yet 2411 * unmounted the partitions, which postpones mmc_blk_release() 2412 * from being called, or the device has more partitions than 2413 * what we support. 2414 */ 2415 if (devidx == -ENOSPC) 2416 dev_err(mmc_dev(card->host), 2417 "no more device IDs available\n"); 2418 2419 return ERR_PTR(devidx); 2420 } 2421 2422 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2423 if (!md) { 2424 ret = -ENOMEM; 2425 goto out; 2426 } 2427 2428 md->area_type = area_type; 2429 2430 /* 2431 * Set the read-only status based on the supported commands 2432 * and the write protect switch. 2433 */ 2434 md->read_only = mmc_blk_readonly(card); 2435 2436 md->disk = mmc_init_queue(&md->queue, card); 2437 if (IS_ERR(md->disk)) { 2438 ret = PTR_ERR(md->disk); 2439 goto err_kfree; 2440 } 2441 2442 INIT_LIST_HEAD(&md->part); 2443 INIT_LIST_HEAD(&md->rpmbs); 2444 kref_init(&md->kref); 2445 2446 md->queue.blkdata = md; 2447 md->part_type = part_type; 2448 2449 md->disk->major = MMC_BLOCK_MAJOR; 2450 md->disk->minors = perdev_minors; 2451 md->disk->first_minor = devidx * perdev_minors; 2452 md->disk->fops = &mmc_bdops; 2453 md->disk->private_data = md; 2454 md->parent = parent; 2455 set_disk_ro(md->disk, md->read_only || default_ro); 2456 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2457 md->disk->flags |= GENHD_FL_NO_PART; 2458 2459 /* 2460 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2461 * 2462 * - be set for removable media with permanent block devices 2463 * - be unset for removable block devices with permanent media 2464 * 2465 * Since MMC block devices clearly fall under the second 2466 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2467 * should use the block device creation/destruction hotplug 2468 * messages to tell when the card is present. 2469 */ 2470 2471 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2472 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2473 2474 set_capacity(md->disk, size); 2475 2476 if (mmc_host_cmd23(card->host)) { 2477 if ((mmc_card_mmc(card) && 2478 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2479 (mmc_card_sd(card) && 2480 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2481 md->flags |= MMC_BLK_CMD23; 2482 } 2483 2484 if (md->flags & MMC_BLK_CMD23 && 2485 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2486 card->ext_csd.rel_sectors)) { 2487 md->flags |= MMC_BLK_REL_WR; 2488 fua_enabled = true; 2489 cache_enabled = true; 2490 } 2491 if (mmc_cache_enabled(card->host)) 2492 cache_enabled = true; 2493 2494 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled); 2495 2496 string_get_size((u64)size, 512, STRING_UNITS_2, 2497 cap_str, sizeof(cap_str)); 2498 pr_info("%s: %s %s %s %s\n", 2499 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2500 cap_str, md->read_only ? "(ro)" : ""); 2501 2502 /* used in ->open, must be set before add_disk: */ 2503 if (area_type == MMC_BLK_DATA_AREA_MAIN) 2504 dev_set_drvdata(&card->dev, md); 2505 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups); 2506 if (ret) 2507 goto err_put_disk; 2508 return md; 2509 2510 err_put_disk: 2511 put_disk(md->disk); 2512 blk_mq_free_tag_set(&md->queue.tag_set); 2513 err_kfree: 2514 kfree(md); 2515 out: 2516 ida_simple_remove(&mmc_blk_ida, devidx); 2517 return ERR_PTR(ret); 2518 } 2519 2520 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2521 { 2522 sector_t size; 2523 2524 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2525 /* 2526 * The EXT_CSD sector count is in number or 512 byte 2527 * sectors. 2528 */ 2529 size = card->ext_csd.sectors; 2530 } else { 2531 /* 2532 * The CSD capacity field is in units of read_blkbits. 2533 * set_capacity takes units of 512 bytes. 2534 */ 2535 size = (typeof(sector_t))card->csd.capacity 2536 << (card->csd.read_blkbits - 9); 2537 } 2538 2539 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2540 MMC_BLK_DATA_AREA_MAIN, 0); 2541 } 2542 2543 static int mmc_blk_alloc_part(struct mmc_card *card, 2544 struct mmc_blk_data *md, 2545 unsigned int part_type, 2546 sector_t size, 2547 bool default_ro, 2548 const char *subname, 2549 int area_type) 2550 { 2551 struct mmc_blk_data *part_md; 2552 2553 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2554 subname, area_type, part_type); 2555 if (IS_ERR(part_md)) 2556 return PTR_ERR(part_md); 2557 list_add(&part_md->part, &md->part); 2558 2559 return 0; 2560 } 2561 2562 /** 2563 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2564 * @filp: the character device file 2565 * @cmd: the ioctl() command 2566 * @arg: the argument from userspace 2567 * 2568 * This will essentially just redirect the ioctl()s coming in over to 2569 * the main block device spawning the RPMB character device. 2570 */ 2571 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2572 unsigned long arg) 2573 { 2574 struct mmc_rpmb_data *rpmb = filp->private_data; 2575 int ret; 2576 2577 switch (cmd) { 2578 case MMC_IOC_CMD: 2579 ret = mmc_blk_ioctl_cmd(rpmb->md, 2580 (struct mmc_ioc_cmd __user *)arg, 2581 rpmb); 2582 break; 2583 case MMC_IOC_MULTI_CMD: 2584 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2585 (struct mmc_ioc_multi_cmd __user *)arg, 2586 rpmb); 2587 break; 2588 default: 2589 ret = -EINVAL; 2590 break; 2591 } 2592 2593 return ret; 2594 } 2595 2596 #ifdef CONFIG_COMPAT 2597 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2598 unsigned long arg) 2599 { 2600 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2601 } 2602 #endif 2603 2604 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2605 { 2606 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2607 struct mmc_rpmb_data, chrdev); 2608 2609 get_device(&rpmb->dev); 2610 filp->private_data = rpmb; 2611 mmc_blk_get(rpmb->md->disk); 2612 2613 return nonseekable_open(inode, filp); 2614 } 2615 2616 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2617 { 2618 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2619 struct mmc_rpmb_data, chrdev); 2620 2621 mmc_blk_put(rpmb->md); 2622 put_device(&rpmb->dev); 2623 2624 return 0; 2625 } 2626 2627 static const struct file_operations mmc_rpmb_fileops = { 2628 .release = mmc_rpmb_chrdev_release, 2629 .open = mmc_rpmb_chrdev_open, 2630 .owner = THIS_MODULE, 2631 .llseek = no_llseek, 2632 .unlocked_ioctl = mmc_rpmb_ioctl, 2633 #ifdef CONFIG_COMPAT 2634 .compat_ioctl = mmc_rpmb_ioctl_compat, 2635 #endif 2636 }; 2637 2638 static void mmc_blk_rpmb_device_release(struct device *dev) 2639 { 2640 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2641 2642 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2643 kfree(rpmb); 2644 } 2645 2646 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2647 struct mmc_blk_data *md, 2648 unsigned int part_index, 2649 sector_t size, 2650 const char *subname) 2651 { 2652 int devidx, ret; 2653 char rpmb_name[DISK_NAME_LEN]; 2654 char cap_str[10]; 2655 struct mmc_rpmb_data *rpmb; 2656 2657 /* This creates the minor number for the RPMB char device */ 2658 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2659 if (devidx < 0) 2660 return devidx; 2661 2662 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2663 if (!rpmb) { 2664 ida_simple_remove(&mmc_rpmb_ida, devidx); 2665 return -ENOMEM; 2666 } 2667 2668 snprintf(rpmb_name, sizeof(rpmb_name), 2669 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2670 2671 rpmb->id = devidx; 2672 rpmb->part_index = part_index; 2673 rpmb->dev.init_name = rpmb_name; 2674 rpmb->dev.bus = &mmc_rpmb_bus_type; 2675 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2676 rpmb->dev.parent = &card->dev; 2677 rpmb->dev.release = mmc_blk_rpmb_device_release; 2678 device_initialize(&rpmb->dev); 2679 dev_set_drvdata(&rpmb->dev, rpmb); 2680 rpmb->md = md; 2681 2682 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2683 rpmb->chrdev.owner = THIS_MODULE; 2684 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2685 if (ret) { 2686 pr_err("%s: could not add character device\n", rpmb_name); 2687 goto out_put_device; 2688 } 2689 2690 list_add(&rpmb->node, &md->rpmbs); 2691 2692 string_get_size((u64)size, 512, STRING_UNITS_2, 2693 cap_str, sizeof(cap_str)); 2694 2695 pr_info("%s: %s %s %s, chardev (%d:%d)\n", 2696 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, 2697 MAJOR(mmc_rpmb_devt), rpmb->id); 2698 2699 return 0; 2700 2701 out_put_device: 2702 put_device(&rpmb->dev); 2703 return ret; 2704 } 2705 2706 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2707 2708 { 2709 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2710 put_device(&rpmb->dev); 2711 } 2712 2713 /* MMC Physical partitions consist of two boot partitions and 2714 * up to four general purpose partitions. 2715 * For each partition enabled in EXT_CSD a block device will be allocatedi 2716 * to provide access to the partition. 2717 */ 2718 2719 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2720 { 2721 int idx, ret; 2722 2723 if (!mmc_card_mmc(card)) 2724 return 0; 2725 2726 for (idx = 0; idx < card->nr_parts; idx++) { 2727 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2728 /* 2729 * RPMB partitions does not provide block access, they 2730 * are only accessed using ioctl():s. Thus create 2731 * special RPMB block devices that do not have a 2732 * backing block queue for these. 2733 */ 2734 ret = mmc_blk_alloc_rpmb_part(card, md, 2735 card->part[idx].part_cfg, 2736 card->part[idx].size >> 9, 2737 card->part[idx].name); 2738 if (ret) 2739 return ret; 2740 } else if (card->part[idx].size) { 2741 ret = mmc_blk_alloc_part(card, md, 2742 card->part[idx].part_cfg, 2743 card->part[idx].size >> 9, 2744 card->part[idx].force_ro, 2745 card->part[idx].name, 2746 card->part[idx].area_type); 2747 if (ret) 2748 return ret; 2749 } 2750 } 2751 2752 return 0; 2753 } 2754 2755 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2756 { 2757 /* 2758 * Flush remaining requests and free queues. It is freeing the queue 2759 * that stops new requests from being accepted. 2760 */ 2761 del_gendisk(md->disk); 2762 mmc_cleanup_queue(&md->queue); 2763 mmc_blk_put(md); 2764 } 2765 2766 static void mmc_blk_remove_parts(struct mmc_card *card, 2767 struct mmc_blk_data *md) 2768 { 2769 struct list_head *pos, *q; 2770 struct mmc_blk_data *part_md; 2771 struct mmc_rpmb_data *rpmb; 2772 2773 /* Remove RPMB partitions */ 2774 list_for_each_safe(pos, q, &md->rpmbs) { 2775 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2776 list_del(pos); 2777 mmc_blk_remove_rpmb_part(rpmb); 2778 } 2779 /* Remove block partitions */ 2780 list_for_each_safe(pos, q, &md->part) { 2781 part_md = list_entry(pos, struct mmc_blk_data, part); 2782 list_del(pos); 2783 mmc_blk_remove_req(part_md); 2784 } 2785 } 2786 2787 #ifdef CONFIG_DEBUG_FS 2788 2789 static int mmc_dbg_card_status_get(void *data, u64 *val) 2790 { 2791 struct mmc_card *card = data; 2792 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2793 struct mmc_queue *mq = &md->queue; 2794 struct request *req; 2795 int ret; 2796 2797 /* Ask the block layer about the card status */ 2798 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2799 if (IS_ERR(req)) 2800 return PTR_ERR(req); 2801 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2802 blk_execute_rq(req, false); 2803 ret = req_to_mmc_queue_req(req)->drv_op_result; 2804 if (ret >= 0) { 2805 *val = ret; 2806 ret = 0; 2807 } 2808 blk_mq_free_request(req); 2809 2810 return ret; 2811 } 2812 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2813 NULL, "%08llx\n"); 2814 2815 /* That is two digits * 512 + 1 for newline */ 2816 #define EXT_CSD_STR_LEN 1025 2817 2818 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2819 { 2820 struct mmc_card *card = inode->i_private; 2821 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2822 struct mmc_queue *mq = &md->queue; 2823 struct request *req; 2824 char *buf; 2825 ssize_t n = 0; 2826 u8 *ext_csd; 2827 int err, i; 2828 2829 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2830 if (!buf) 2831 return -ENOMEM; 2832 2833 /* Ask the block layer for the EXT CSD */ 2834 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2835 if (IS_ERR(req)) { 2836 err = PTR_ERR(req); 2837 goto out_free; 2838 } 2839 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2840 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2841 blk_execute_rq(req, false); 2842 err = req_to_mmc_queue_req(req)->drv_op_result; 2843 blk_mq_free_request(req); 2844 if (err) { 2845 pr_err("FAILED %d\n", err); 2846 goto out_free; 2847 } 2848 2849 for (i = 0; i < 512; i++) 2850 n += sprintf(buf + n, "%02x", ext_csd[i]); 2851 n += sprintf(buf + n, "\n"); 2852 2853 if (n != EXT_CSD_STR_LEN) { 2854 err = -EINVAL; 2855 kfree(ext_csd); 2856 goto out_free; 2857 } 2858 2859 filp->private_data = buf; 2860 kfree(ext_csd); 2861 return 0; 2862 2863 out_free: 2864 kfree(buf); 2865 return err; 2866 } 2867 2868 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2869 size_t cnt, loff_t *ppos) 2870 { 2871 char *buf = filp->private_data; 2872 2873 return simple_read_from_buffer(ubuf, cnt, ppos, 2874 buf, EXT_CSD_STR_LEN); 2875 } 2876 2877 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2878 { 2879 kfree(file->private_data); 2880 return 0; 2881 } 2882 2883 static const struct file_operations mmc_dbg_ext_csd_fops = { 2884 .open = mmc_ext_csd_open, 2885 .read = mmc_ext_csd_read, 2886 .release = mmc_ext_csd_release, 2887 .llseek = default_llseek, 2888 }; 2889 2890 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2891 { 2892 struct dentry *root; 2893 2894 if (!card->debugfs_root) 2895 return 0; 2896 2897 root = card->debugfs_root; 2898 2899 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2900 md->status_dentry = 2901 debugfs_create_file_unsafe("status", 0400, root, 2902 card, 2903 &mmc_dbg_card_status_fops); 2904 if (!md->status_dentry) 2905 return -EIO; 2906 } 2907 2908 if (mmc_card_mmc(card)) { 2909 md->ext_csd_dentry = 2910 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2911 &mmc_dbg_ext_csd_fops); 2912 if (!md->ext_csd_dentry) 2913 return -EIO; 2914 } 2915 2916 return 0; 2917 } 2918 2919 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2920 struct mmc_blk_data *md) 2921 { 2922 if (!card->debugfs_root) 2923 return; 2924 2925 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2926 debugfs_remove(md->status_dentry); 2927 md->status_dentry = NULL; 2928 } 2929 2930 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2931 debugfs_remove(md->ext_csd_dentry); 2932 md->ext_csd_dentry = NULL; 2933 } 2934 } 2935 2936 #else 2937 2938 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2939 { 2940 return 0; 2941 } 2942 2943 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2944 struct mmc_blk_data *md) 2945 { 2946 } 2947 2948 #endif /* CONFIG_DEBUG_FS */ 2949 2950 static int mmc_blk_probe(struct mmc_card *card) 2951 { 2952 struct mmc_blk_data *md; 2953 int ret = 0; 2954 2955 /* 2956 * Check that the card supports the command class(es) we need. 2957 */ 2958 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2959 return -ENODEV; 2960 2961 mmc_fixup_device(card, mmc_blk_fixups); 2962 2963 card->complete_wq = alloc_workqueue("mmc_complete", 2964 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2965 if (!card->complete_wq) { 2966 pr_err("Failed to create mmc completion workqueue"); 2967 return -ENOMEM; 2968 } 2969 2970 md = mmc_blk_alloc(card); 2971 if (IS_ERR(md)) { 2972 ret = PTR_ERR(md); 2973 goto out_free; 2974 } 2975 2976 ret = mmc_blk_alloc_parts(card, md); 2977 if (ret) 2978 goto out; 2979 2980 /* Add two debugfs entries */ 2981 mmc_blk_add_debugfs(card, md); 2982 2983 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2984 pm_runtime_use_autosuspend(&card->dev); 2985 2986 /* 2987 * Don't enable runtime PM for SD-combo cards here. Leave that 2988 * decision to be taken during the SDIO init sequence instead. 2989 */ 2990 if (!mmc_card_sd_combo(card)) { 2991 pm_runtime_set_active(&card->dev); 2992 pm_runtime_enable(&card->dev); 2993 } 2994 2995 return 0; 2996 2997 out: 2998 mmc_blk_remove_parts(card, md); 2999 mmc_blk_remove_req(md); 3000 out_free: 3001 destroy_workqueue(card->complete_wq); 3002 return ret; 3003 } 3004 3005 static void mmc_blk_remove(struct mmc_card *card) 3006 { 3007 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3008 3009 mmc_blk_remove_debugfs(card, md); 3010 mmc_blk_remove_parts(card, md); 3011 pm_runtime_get_sync(&card->dev); 3012 if (md->part_curr != md->part_type) { 3013 mmc_claim_host(card->host); 3014 mmc_blk_part_switch(card, md->part_type); 3015 mmc_release_host(card->host); 3016 } 3017 if (!mmc_card_sd_combo(card)) 3018 pm_runtime_disable(&card->dev); 3019 pm_runtime_put_noidle(&card->dev); 3020 mmc_blk_remove_req(md); 3021 dev_set_drvdata(&card->dev, NULL); 3022 destroy_workqueue(card->complete_wq); 3023 } 3024 3025 static int _mmc_blk_suspend(struct mmc_card *card) 3026 { 3027 struct mmc_blk_data *part_md; 3028 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3029 3030 if (md) { 3031 mmc_queue_suspend(&md->queue); 3032 list_for_each_entry(part_md, &md->part, part) { 3033 mmc_queue_suspend(&part_md->queue); 3034 } 3035 } 3036 return 0; 3037 } 3038 3039 static void mmc_blk_shutdown(struct mmc_card *card) 3040 { 3041 _mmc_blk_suspend(card); 3042 } 3043 3044 #ifdef CONFIG_PM_SLEEP 3045 static int mmc_blk_suspend(struct device *dev) 3046 { 3047 struct mmc_card *card = mmc_dev_to_card(dev); 3048 3049 return _mmc_blk_suspend(card); 3050 } 3051 3052 static int mmc_blk_resume(struct device *dev) 3053 { 3054 struct mmc_blk_data *part_md; 3055 struct mmc_blk_data *md = dev_get_drvdata(dev); 3056 3057 if (md) { 3058 /* 3059 * Resume involves the card going into idle state, 3060 * so current partition is always the main one. 3061 */ 3062 md->part_curr = md->part_type; 3063 mmc_queue_resume(&md->queue); 3064 list_for_each_entry(part_md, &md->part, part) { 3065 mmc_queue_resume(&part_md->queue); 3066 } 3067 } 3068 return 0; 3069 } 3070 #endif 3071 3072 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3073 3074 static struct mmc_driver mmc_driver = { 3075 .drv = { 3076 .name = "mmcblk", 3077 .pm = &mmc_blk_pm_ops, 3078 }, 3079 .probe = mmc_blk_probe, 3080 .remove = mmc_blk_remove, 3081 .shutdown = mmc_blk_shutdown, 3082 }; 3083 3084 static int __init mmc_blk_init(void) 3085 { 3086 int res; 3087 3088 res = bus_register(&mmc_rpmb_bus_type); 3089 if (res < 0) { 3090 pr_err("mmcblk: could not register RPMB bus type\n"); 3091 return res; 3092 } 3093 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3094 if (res < 0) { 3095 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3096 goto out_bus_unreg; 3097 } 3098 3099 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3100 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3101 3102 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3103 3104 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3105 if (res) 3106 goto out_chrdev_unreg; 3107 3108 res = mmc_register_driver(&mmc_driver); 3109 if (res) 3110 goto out_blkdev_unreg; 3111 3112 return 0; 3113 3114 out_blkdev_unreg: 3115 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3116 out_chrdev_unreg: 3117 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3118 out_bus_unreg: 3119 bus_unregister(&mmc_rpmb_bus_type); 3120 return res; 3121 } 3122 3123 static void __exit mmc_blk_exit(void) 3124 { 3125 mmc_unregister_driver(&mmc_driver); 3126 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3127 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3128 bus_unregister(&mmc_rpmb_bus_type); 3129 } 3130 3131 module_init(mmc_blk_init); 3132 module_exit(mmc_blk_exit); 3133 3134 MODULE_LICENSE("GPL"); 3135 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3136 3137