1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block driver for media (i.e., flash cards) 4 * 5 * Copyright 2002 Hewlett-Packard Company 6 * Copyright 2005-2008 Pierre Ossman 7 * 8 * Use consistent with the GNU GPL is permitted, 9 * provided that this copyright notice is 10 * preserved in its entirety in all copies and derived works. 11 * 12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 14 * FITNESS FOR ANY PARTICULAR PURPOSE. 15 * 16 * Many thanks to Alessandro Rubini and Jonathan Corbet! 17 * 18 * Author: Andrew Christian 19 * 28 May 2002 20 */ 21 #include <linux/moduleparam.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/errno.h> 29 #include <linux/hdreg.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kref.h> 32 #include <linux/blkdev.h> 33 #include <linux/cdev.h> 34 #include <linux/mutex.h> 35 #include <linux/scatterlist.h> 36 #include <linux/string_helpers.h> 37 #include <linux/delay.h> 38 #include <linux/capability.h> 39 #include <linux/compat.h> 40 #include <linux/pm_runtime.h> 41 #include <linux/idr.h> 42 #include <linux/debugfs.h> 43 44 #include <linux/mmc/ioctl.h> 45 #include <linux/mmc/card.h> 46 #include <linux/mmc/host.h> 47 #include <linux/mmc/mmc.h> 48 #include <linux/mmc/sd.h> 49 50 #include <linux/uaccess.h> 51 52 #include "queue.h" 53 #include "block.h" 54 #include "core.h" 55 #include "card.h" 56 #include "crypto.h" 57 #include "host.h" 58 #include "bus.h" 59 #include "mmc_ops.h" 60 #include "quirks.h" 61 #include "sd_ops.h" 62 63 MODULE_ALIAS("mmc:block"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "mmcblk." 68 69 /* 70 * Set a 10 second timeout for polling write request busy state. Note, mmc core 71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 72 * second software timer to timeout the whole request, so 10 seconds should be 73 * ample. 74 */ 75 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 78 79 static DEFINE_MUTEX(block_mutex); 80 81 /* 82 * The defaults come from config options but can be overriden by module 83 * or bootarg options. 84 */ 85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 86 87 /* 88 * We've only got one major, so number of mmcblk devices is 89 * limited to (1 << 20) / number of minors per device. It is also 90 * limited by the MAX_DEVICES below. 91 */ 92 static int max_devices; 93 94 #define MAX_DEVICES 256 95 96 static DEFINE_IDA(mmc_blk_ida); 97 static DEFINE_IDA(mmc_rpmb_ida); 98 99 struct mmc_blk_busy_data { 100 struct mmc_card *card; 101 u32 status; 102 }; 103 104 /* 105 * There is one mmc_blk_data per slot. 106 */ 107 struct mmc_blk_data { 108 struct device *parent; 109 struct gendisk *disk; 110 struct mmc_queue queue; 111 struct list_head part; 112 struct list_head rpmbs; 113 114 unsigned int flags; 115 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 116 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 117 118 struct kref kref; 119 unsigned int read_only; 120 unsigned int part_type; 121 unsigned int reset_done; 122 #define MMC_BLK_READ BIT(0) 123 #define MMC_BLK_WRITE BIT(1) 124 #define MMC_BLK_DISCARD BIT(2) 125 #define MMC_BLK_SECDISCARD BIT(3) 126 #define MMC_BLK_CQE_RECOVERY BIT(4) 127 #define MMC_BLK_TRIM BIT(5) 128 129 /* 130 * Only set in main mmc_blk_data associated 131 * with mmc_card with dev_set_drvdata, and keeps 132 * track of the current selected device partition. 133 */ 134 unsigned int part_curr; 135 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */ 136 int area_type; 137 138 /* debugfs files (only in main mmc_blk_data) */ 139 struct dentry *status_dentry; 140 struct dentry *ext_csd_dentry; 141 }; 142 143 /* Device type for RPMB character devices */ 144 static dev_t mmc_rpmb_devt; 145 146 /* Bus type for RPMB character devices */ 147 static struct bus_type mmc_rpmb_bus_type = { 148 .name = "mmc_rpmb", 149 }; 150 151 /** 152 * struct mmc_rpmb_data - special RPMB device type for these areas 153 * @dev: the device for the RPMB area 154 * @chrdev: character device for the RPMB area 155 * @id: unique device ID number 156 * @part_index: partition index (0 on first) 157 * @md: parent MMC block device 158 * @node: list item, so we can put this device on a list 159 */ 160 struct mmc_rpmb_data { 161 struct device dev; 162 struct cdev chrdev; 163 int id; 164 unsigned int part_index; 165 struct mmc_blk_data *md; 166 struct list_head node; 167 }; 168 169 static DEFINE_MUTEX(open_lock); 170 171 module_param(perdev_minors, int, 0444); 172 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 173 174 static inline int mmc_blk_part_switch(struct mmc_card *card, 175 unsigned int part_type); 176 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 177 struct mmc_card *card, 178 int recovery_mode, 179 struct mmc_queue *mq); 180 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 181 static int mmc_spi_err_check(struct mmc_card *card); 182 static int mmc_blk_busy_cb(void *cb_data, bool *busy); 183 184 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 185 { 186 struct mmc_blk_data *md; 187 188 mutex_lock(&open_lock); 189 md = disk->private_data; 190 if (md && !kref_get_unless_zero(&md->kref)) 191 md = NULL; 192 mutex_unlock(&open_lock); 193 194 return md; 195 } 196 197 static inline int mmc_get_devidx(struct gendisk *disk) 198 { 199 int devidx = disk->first_minor / perdev_minors; 200 return devidx; 201 } 202 203 static void mmc_blk_kref_release(struct kref *ref) 204 { 205 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref); 206 int devidx; 207 208 devidx = mmc_get_devidx(md->disk); 209 ida_simple_remove(&mmc_blk_ida, devidx); 210 211 mutex_lock(&open_lock); 212 md->disk->private_data = NULL; 213 mutex_unlock(&open_lock); 214 215 put_disk(md->disk); 216 kfree(md); 217 } 218 219 static void mmc_blk_put(struct mmc_blk_data *md) 220 { 221 kref_put(&md->kref, mmc_blk_kref_release); 222 } 223 224 static ssize_t power_ro_lock_show(struct device *dev, 225 struct device_attribute *attr, char *buf) 226 { 227 int ret; 228 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 229 struct mmc_card *card = md->queue.card; 230 int locked = 0; 231 232 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 233 locked = 2; 234 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 235 locked = 1; 236 237 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 238 239 mmc_blk_put(md); 240 241 return ret; 242 } 243 244 static ssize_t power_ro_lock_store(struct device *dev, 245 struct device_attribute *attr, const char *buf, size_t count) 246 { 247 int ret; 248 struct mmc_blk_data *md, *part_md; 249 struct mmc_queue *mq; 250 struct request *req; 251 unsigned long set; 252 253 if (kstrtoul(buf, 0, &set)) 254 return -EINVAL; 255 256 if (set != 1) 257 return count; 258 259 md = mmc_blk_get(dev_to_disk(dev)); 260 mq = &md->queue; 261 262 /* Dispatch locking to the block layer */ 263 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0); 264 if (IS_ERR(req)) { 265 count = PTR_ERR(req); 266 goto out_put; 267 } 268 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 269 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 270 blk_execute_rq(req, false); 271 ret = req_to_mmc_queue_req(req)->drv_op_result; 272 blk_mq_free_request(req); 273 274 if (!ret) { 275 pr_info("%s: Locking boot partition ro until next power on\n", 276 md->disk->disk_name); 277 set_disk_ro(md->disk, 1); 278 279 list_for_each_entry(part_md, &md->part, part) 280 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 281 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 282 set_disk_ro(part_md->disk, 1); 283 } 284 } 285 out_put: 286 mmc_blk_put(md); 287 return count; 288 } 289 290 static DEVICE_ATTR(ro_lock_until_next_power_on, 0, 291 power_ro_lock_show, power_ro_lock_store); 292 293 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 294 char *buf) 295 { 296 int ret; 297 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 298 299 ret = snprintf(buf, PAGE_SIZE, "%d\n", 300 get_disk_ro(dev_to_disk(dev)) ^ 301 md->read_only); 302 mmc_blk_put(md); 303 return ret; 304 } 305 306 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 307 const char *buf, size_t count) 308 { 309 int ret; 310 char *end; 311 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 312 unsigned long set = simple_strtoul(buf, &end, 0); 313 if (end == buf) { 314 ret = -EINVAL; 315 goto out; 316 } 317 318 set_disk_ro(dev_to_disk(dev), set || md->read_only); 319 ret = count; 320 out: 321 mmc_blk_put(md); 322 return ret; 323 } 324 325 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store); 326 327 static struct attribute *mmc_disk_attrs[] = { 328 &dev_attr_force_ro.attr, 329 &dev_attr_ro_lock_until_next_power_on.attr, 330 NULL, 331 }; 332 333 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj, 334 struct attribute *a, int n) 335 { 336 struct device *dev = kobj_to_dev(kobj); 337 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 338 umode_t mode = a->mode; 339 340 if (a == &dev_attr_ro_lock_until_next_power_on.attr && 341 (md->area_type & MMC_BLK_DATA_AREA_BOOT) && 342 md->queue.card->ext_csd.boot_ro_lockable) { 343 mode = S_IRUGO; 344 if (!(md->queue.card->ext_csd.boot_ro_lock & 345 EXT_CSD_BOOT_WP_B_PWR_WP_DIS)) 346 mode |= S_IWUSR; 347 } 348 349 mmc_blk_put(md); 350 return mode; 351 } 352 353 static const struct attribute_group mmc_disk_attr_group = { 354 .is_visible = mmc_disk_attrs_is_visible, 355 .attrs = mmc_disk_attrs, 356 }; 357 358 static const struct attribute_group *mmc_disk_attr_groups[] = { 359 &mmc_disk_attr_group, 360 NULL, 361 }; 362 363 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode) 364 { 365 struct mmc_blk_data *md = mmc_blk_get(disk); 366 int ret = -ENXIO; 367 368 mutex_lock(&block_mutex); 369 if (md) { 370 ret = 0; 371 if ((mode & BLK_OPEN_WRITE) && md->read_only) { 372 mmc_blk_put(md); 373 ret = -EROFS; 374 } 375 } 376 mutex_unlock(&block_mutex); 377 378 return ret; 379 } 380 381 static void mmc_blk_release(struct gendisk *disk) 382 { 383 struct mmc_blk_data *md = disk->private_data; 384 385 mutex_lock(&block_mutex); 386 mmc_blk_put(md); 387 mutex_unlock(&block_mutex); 388 } 389 390 static int 391 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 392 { 393 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 394 geo->heads = 4; 395 geo->sectors = 16; 396 return 0; 397 } 398 399 struct mmc_blk_ioc_data { 400 struct mmc_ioc_cmd ic; 401 unsigned char *buf; 402 u64 buf_bytes; 403 struct mmc_rpmb_data *rpmb; 404 }; 405 406 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 407 struct mmc_ioc_cmd __user *user) 408 { 409 struct mmc_blk_ioc_data *idata; 410 int err; 411 412 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 413 if (!idata) { 414 err = -ENOMEM; 415 goto out; 416 } 417 418 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 419 err = -EFAULT; 420 goto idata_err; 421 } 422 423 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 424 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 425 err = -EOVERFLOW; 426 goto idata_err; 427 } 428 429 if (!idata->buf_bytes) { 430 idata->buf = NULL; 431 return idata; 432 } 433 434 idata->buf = memdup_user((void __user *)(unsigned long) 435 idata->ic.data_ptr, idata->buf_bytes); 436 if (IS_ERR(idata->buf)) { 437 err = PTR_ERR(idata->buf); 438 goto idata_err; 439 } 440 441 return idata; 442 443 idata_err: 444 kfree(idata); 445 out: 446 return ERR_PTR(err); 447 } 448 449 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 450 struct mmc_blk_ioc_data *idata) 451 { 452 struct mmc_ioc_cmd *ic = &idata->ic; 453 454 if (copy_to_user(&(ic_ptr->response), ic->response, 455 sizeof(ic->response))) 456 return -EFAULT; 457 458 if (!idata->ic.write_flag) { 459 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 460 idata->buf, idata->buf_bytes)) 461 return -EFAULT; 462 } 463 464 return 0; 465 } 466 467 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 468 struct mmc_blk_ioc_data *idata) 469 { 470 struct mmc_command cmd = {}, sbc = {}; 471 struct mmc_data data = {}; 472 struct mmc_request mrq = {}; 473 struct scatterlist sg; 474 bool r1b_resp; 475 unsigned int busy_timeout_ms; 476 int err; 477 unsigned int target_part; 478 479 if (!card || !md || !idata) 480 return -EINVAL; 481 482 /* 483 * The RPMB accesses comes in from the character device, so we 484 * need to target these explicitly. Else we just target the 485 * partition type for the block device the ioctl() was issued 486 * on. 487 */ 488 if (idata->rpmb) { 489 /* Support multiple RPMB partitions */ 490 target_part = idata->rpmb->part_index; 491 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 492 } else { 493 target_part = md->part_type; 494 } 495 496 cmd.opcode = idata->ic.opcode; 497 cmd.arg = idata->ic.arg; 498 cmd.flags = idata->ic.flags; 499 500 if (idata->buf_bytes) { 501 data.sg = &sg; 502 data.sg_len = 1; 503 data.blksz = idata->ic.blksz; 504 data.blocks = idata->ic.blocks; 505 506 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 507 508 if (idata->ic.write_flag) 509 data.flags = MMC_DATA_WRITE; 510 else 511 data.flags = MMC_DATA_READ; 512 513 /* data.flags must already be set before doing this. */ 514 mmc_set_data_timeout(&data, card); 515 516 /* Allow overriding the timeout_ns for empirical tuning. */ 517 if (idata->ic.data_timeout_ns) 518 data.timeout_ns = idata->ic.data_timeout_ns; 519 520 mrq.data = &data; 521 } 522 523 mrq.cmd = &cmd; 524 525 err = mmc_blk_part_switch(card, target_part); 526 if (err) 527 return err; 528 529 if (idata->ic.is_acmd) { 530 err = mmc_app_cmd(card->host, card); 531 if (err) 532 return err; 533 } 534 535 if (idata->rpmb) { 536 sbc.opcode = MMC_SET_BLOCK_COUNT; 537 /* 538 * We don't do any blockcount validation because the max size 539 * may be increased by a future standard. We just copy the 540 * 'Reliable Write' bit here. 541 */ 542 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 543 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 544 mrq.sbc = &sbc; 545 } 546 547 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 548 (cmd.opcode == MMC_SWITCH)) 549 return mmc_sanitize(card, idata->ic.cmd_timeout_ms); 550 551 /* If it's an R1B response we need some more preparations. */ 552 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS; 553 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B; 554 if (r1b_resp) 555 mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms); 556 557 mmc_wait_for_req(card->host, &mrq); 558 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp)); 559 560 if (cmd.error) { 561 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 562 __func__, cmd.error); 563 return cmd.error; 564 } 565 if (data.error) { 566 dev_err(mmc_dev(card->host), "%s: data error %d\n", 567 __func__, data.error); 568 return data.error; 569 } 570 571 /* 572 * Make sure the cache of the PARTITION_CONFIG register and 573 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 574 * changed it successfully. 575 */ 576 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 577 (cmd.opcode == MMC_SWITCH)) { 578 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 579 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 580 581 /* 582 * Update cache so the next mmc_blk_part_switch call operates 583 * on up-to-date data. 584 */ 585 card->ext_csd.part_config = value; 586 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 587 } 588 589 /* 590 * Make sure to update CACHE_CTRL in case it was changed. The cache 591 * will get turned back on if the card is re-initialized, e.g. 592 * suspend/resume or hw reset in recovery. 593 */ 594 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && 595 (cmd.opcode == MMC_SWITCH)) { 596 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; 597 598 card->ext_csd.cache_ctrl = value; 599 } 600 601 /* 602 * According to the SD specs, some commands require a delay after 603 * issuing the command. 604 */ 605 if (idata->ic.postsleep_min_us) 606 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 607 608 if (mmc_host_is_spi(card->host)) { 609 if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY) 610 return mmc_spi_err_check(card); 611 return err; 612 } 613 614 /* 615 * Ensure RPMB, writes and R1B responses are completed by polling with 616 * CMD13. Note that, usually we don't need to poll when using HW busy 617 * detection, but here it's needed since some commands may indicate the 618 * error through the R1 status bits. 619 */ 620 if (idata->rpmb || idata->ic.write_flag || r1b_resp) { 621 struct mmc_blk_busy_data cb_data = { 622 .card = card, 623 }; 624 625 err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms, 626 &mmc_blk_busy_cb, &cb_data); 627 628 idata->ic.response[0] = cb_data.status; 629 } 630 631 return err; 632 } 633 634 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 635 struct mmc_ioc_cmd __user *ic_ptr, 636 struct mmc_rpmb_data *rpmb) 637 { 638 struct mmc_blk_ioc_data *idata; 639 struct mmc_blk_ioc_data *idatas[1]; 640 struct mmc_queue *mq; 641 struct mmc_card *card; 642 int err = 0, ioc_err = 0; 643 struct request *req; 644 645 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 646 if (IS_ERR(idata)) 647 return PTR_ERR(idata); 648 /* This will be NULL on non-RPMB ioctl():s */ 649 idata->rpmb = rpmb; 650 651 card = md->queue.card; 652 if (IS_ERR(card)) { 653 err = PTR_ERR(card); 654 goto cmd_done; 655 } 656 657 /* 658 * Dispatch the ioctl() into the block request queue. 659 */ 660 mq = &md->queue; 661 req = blk_mq_alloc_request(mq->queue, 662 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 663 if (IS_ERR(req)) { 664 err = PTR_ERR(req); 665 goto cmd_done; 666 } 667 idatas[0] = idata; 668 req_to_mmc_queue_req(req)->drv_op = 669 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 670 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 671 req_to_mmc_queue_req(req)->drv_op_data = idatas; 672 req_to_mmc_queue_req(req)->ioc_count = 1; 673 blk_execute_rq(req, false); 674 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 675 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 676 blk_mq_free_request(req); 677 678 cmd_done: 679 kfree(idata->buf); 680 kfree(idata); 681 return ioc_err ? ioc_err : err; 682 } 683 684 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 685 struct mmc_ioc_multi_cmd __user *user, 686 struct mmc_rpmb_data *rpmb) 687 { 688 struct mmc_blk_ioc_data **idata = NULL; 689 struct mmc_ioc_cmd __user *cmds = user->cmds; 690 struct mmc_card *card; 691 struct mmc_queue *mq; 692 int err = 0, ioc_err = 0; 693 __u64 num_of_cmds; 694 unsigned int i, n; 695 struct request *req; 696 697 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 698 sizeof(num_of_cmds))) 699 return -EFAULT; 700 701 if (!num_of_cmds) 702 return 0; 703 704 if (num_of_cmds > MMC_IOC_MAX_CMDS) 705 return -EINVAL; 706 707 n = num_of_cmds; 708 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL); 709 if (!idata) 710 return -ENOMEM; 711 712 for (i = 0; i < n; i++) { 713 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 714 if (IS_ERR(idata[i])) { 715 err = PTR_ERR(idata[i]); 716 n = i; 717 goto cmd_err; 718 } 719 /* This will be NULL on non-RPMB ioctl():s */ 720 idata[i]->rpmb = rpmb; 721 } 722 723 card = md->queue.card; 724 if (IS_ERR(card)) { 725 err = PTR_ERR(card); 726 goto cmd_err; 727 } 728 729 730 /* 731 * Dispatch the ioctl()s into the block request queue. 732 */ 733 mq = &md->queue; 734 req = blk_mq_alloc_request(mq->queue, 735 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 736 if (IS_ERR(req)) { 737 err = PTR_ERR(req); 738 goto cmd_err; 739 } 740 req_to_mmc_queue_req(req)->drv_op = 741 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 742 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 743 req_to_mmc_queue_req(req)->drv_op_data = idata; 744 req_to_mmc_queue_req(req)->ioc_count = n; 745 blk_execute_rq(req, false); 746 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 747 748 /* copy to user if data and response */ 749 for (i = 0; i < n && !err; i++) 750 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 751 752 blk_mq_free_request(req); 753 754 cmd_err: 755 for (i = 0; i < n; i++) { 756 kfree(idata[i]->buf); 757 kfree(idata[i]); 758 } 759 kfree(idata); 760 return ioc_err ? ioc_err : err; 761 } 762 763 static int mmc_blk_check_blkdev(struct block_device *bdev) 764 { 765 /* 766 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 767 * whole block device, not on a partition. This prevents overspray 768 * between sibling partitions. 769 */ 770 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 771 return -EPERM; 772 return 0; 773 } 774 775 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 776 unsigned int cmd, unsigned long arg) 777 { 778 struct mmc_blk_data *md; 779 int ret; 780 781 switch (cmd) { 782 case MMC_IOC_CMD: 783 ret = mmc_blk_check_blkdev(bdev); 784 if (ret) 785 return ret; 786 md = mmc_blk_get(bdev->bd_disk); 787 if (!md) 788 return -EINVAL; 789 ret = mmc_blk_ioctl_cmd(md, 790 (struct mmc_ioc_cmd __user *)arg, 791 NULL); 792 mmc_blk_put(md); 793 return ret; 794 case MMC_IOC_MULTI_CMD: 795 ret = mmc_blk_check_blkdev(bdev); 796 if (ret) 797 return ret; 798 md = mmc_blk_get(bdev->bd_disk); 799 if (!md) 800 return -EINVAL; 801 ret = mmc_blk_ioctl_multi_cmd(md, 802 (struct mmc_ioc_multi_cmd __user *)arg, 803 NULL); 804 mmc_blk_put(md); 805 return ret; 806 default: 807 return -EINVAL; 808 } 809 } 810 811 #ifdef CONFIG_COMPAT 812 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 813 unsigned int cmd, unsigned long arg) 814 { 815 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 816 } 817 #endif 818 819 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk, 820 sector_t *sector) 821 { 822 struct mmc_blk_data *md; 823 int ret; 824 825 md = mmc_blk_get(disk); 826 if (!md) 827 return -EINVAL; 828 829 if (md->queue.card) 830 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector); 831 else 832 ret = -ENODEV; 833 834 mmc_blk_put(md); 835 836 return ret; 837 } 838 839 static const struct block_device_operations mmc_bdops = { 840 .open = mmc_blk_open, 841 .release = mmc_blk_release, 842 .getgeo = mmc_blk_getgeo, 843 .owner = THIS_MODULE, 844 .ioctl = mmc_blk_ioctl, 845 #ifdef CONFIG_COMPAT 846 .compat_ioctl = mmc_blk_compat_ioctl, 847 #endif 848 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector, 849 }; 850 851 static int mmc_blk_part_switch_pre(struct mmc_card *card, 852 unsigned int part_type) 853 { 854 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB; 855 int ret = 0; 856 857 if ((part_type & mask) == mask) { 858 if (card->ext_csd.cmdq_en) { 859 ret = mmc_cmdq_disable(card); 860 if (ret) 861 return ret; 862 } 863 mmc_retune_pause(card->host); 864 } 865 866 return ret; 867 } 868 869 static int mmc_blk_part_switch_post(struct mmc_card *card, 870 unsigned int part_type) 871 { 872 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB; 873 int ret = 0; 874 875 if ((part_type & mask) == mask) { 876 mmc_retune_unpause(card->host); 877 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 878 ret = mmc_cmdq_enable(card); 879 } 880 881 return ret; 882 } 883 884 static inline int mmc_blk_part_switch(struct mmc_card *card, 885 unsigned int part_type) 886 { 887 int ret = 0; 888 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 889 890 if (main_md->part_curr == part_type) 891 return 0; 892 893 if (mmc_card_mmc(card)) { 894 u8 part_config = card->ext_csd.part_config; 895 896 ret = mmc_blk_part_switch_pre(card, part_type); 897 if (ret) 898 return ret; 899 900 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 901 part_config |= part_type; 902 903 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 904 EXT_CSD_PART_CONFIG, part_config, 905 card->ext_csd.part_time); 906 if (ret) { 907 mmc_blk_part_switch_post(card, part_type); 908 return ret; 909 } 910 911 card->ext_csd.part_config = part_config; 912 913 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 914 } 915 916 main_md->part_curr = part_type; 917 return ret; 918 } 919 920 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 921 { 922 int err; 923 u32 result; 924 __be32 *blocks; 925 926 struct mmc_request mrq = {}; 927 struct mmc_command cmd = {}; 928 struct mmc_data data = {}; 929 930 struct scatterlist sg; 931 932 err = mmc_app_cmd(card->host, card); 933 if (err) 934 return err; 935 936 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 937 cmd.arg = 0; 938 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 939 940 data.blksz = 4; 941 data.blocks = 1; 942 data.flags = MMC_DATA_READ; 943 data.sg = &sg; 944 data.sg_len = 1; 945 mmc_set_data_timeout(&data, card); 946 947 mrq.cmd = &cmd; 948 mrq.data = &data; 949 950 blocks = kmalloc(4, GFP_KERNEL); 951 if (!blocks) 952 return -ENOMEM; 953 954 sg_init_one(&sg, blocks, 4); 955 956 mmc_wait_for_req(card->host, &mrq); 957 958 result = ntohl(*blocks); 959 kfree(blocks); 960 961 if (cmd.error || data.error) 962 return -EIO; 963 964 *written_blocks = result; 965 966 return 0; 967 } 968 969 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 970 { 971 if (host->actual_clock) 972 return host->actual_clock / 1000; 973 974 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 975 if (host->ios.clock) 976 return host->ios.clock / 2000; 977 978 /* How can there be no clock */ 979 WARN_ON_ONCE(1); 980 return 100; /* 100 kHz is minimum possible value */ 981 } 982 983 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 984 struct mmc_data *data) 985 { 986 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 987 unsigned int khz; 988 989 if (data->timeout_clks) { 990 khz = mmc_blk_clock_khz(host); 991 ms += DIV_ROUND_UP(data->timeout_clks, khz); 992 } 993 994 return ms; 995 } 996 997 /* 998 * Attempts to reset the card and get back to the requested partition. 999 * Therefore any error here must result in cancelling the block layer 1000 * request, it must not be reattempted without going through the mmc_blk 1001 * partition sanity checks. 1002 */ 1003 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1004 int type) 1005 { 1006 int err; 1007 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev); 1008 1009 if (md->reset_done & type) 1010 return -EEXIST; 1011 1012 md->reset_done |= type; 1013 err = mmc_hw_reset(host->card); 1014 /* 1015 * A successful reset will leave the card in the main partition, but 1016 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID 1017 * in that case. 1018 */ 1019 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type; 1020 if (err) 1021 return err; 1022 /* Ensure we switch back to the correct partition */ 1023 if (mmc_blk_part_switch(host->card, md->part_type)) 1024 /* 1025 * We have failed to get back into the correct 1026 * partition, so we need to abort the whole request. 1027 */ 1028 return -ENODEV; 1029 return 0; 1030 } 1031 1032 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1033 { 1034 md->reset_done &= ~type; 1035 } 1036 1037 /* 1038 * The non-block commands come back from the block layer after it queued it and 1039 * processed it with all other requests and then they get issued in this 1040 * function. 1041 */ 1042 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1043 { 1044 struct mmc_queue_req *mq_rq; 1045 struct mmc_card *card = mq->card; 1046 struct mmc_blk_data *md = mq->blkdata; 1047 struct mmc_blk_ioc_data **idata; 1048 bool rpmb_ioctl; 1049 u8 **ext_csd; 1050 u32 status; 1051 int ret; 1052 int i; 1053 1054 mq_rq = req_to_mmc_queue_req(req); 1055 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1056 1057 switch (mq_rq->drv_op) { 1058 case MMC_DRV_OP_IOCTL: 1059 if (card->ext_csd.cmdq_en) { 1060 ret = mmc_cmdq_disable(card); 1061 if (ret) 1062 break; 1063 } 1064 fallthrough; 1065 case MMC_DRV_OP_IOCTL_RPMB: 1066 idata = mq_rq->drv_op_data; 1067 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1068 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1069 if (ret) 1070 break; 1071 } 1072 /* Always switch back to main area after RPMB access */ 1073 if (rpmb_ioctl) 1074 mmc_blk_part_switch(card, 0); 1075 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 1076 mmc_cmdq_enable(card); 1077 break; 1078 case MMC_DRV_OP_BOOT_WP: 1079 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1080 card->ext_csd.boot_ro_lock | 1081 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1082 card->ext_csd.part_time); 1083 if (ret) 1084 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1085 md->disk->disk_name, ret); 1086 else 1087 card->ext_csd.boot_ro_lock |= 1088 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1089 break; 1090 case MMC_DRV_OP_GET_CARD_STATUS: 1091 ret = mmc_send_status(card, &status); 1092 if (!ret) 1093 ret = status; 1094 break; 1095 case MMC_DRV_OP_GET_EXT_CSD: 1096 ext_csd = mq_rq->drv_op_data; 1097 ret = mmc_get_ext_csd(card, ext_csd); 1098 break; 1099 default: 1100 pr_err("%s: unknown driver specific operation\n", 1101 md->disk->disk_name); 1102 ret = -EINVAL; 1103 break; 1104 } 1105 mq_rq->drv_op_result = ret; 1106 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1107 } 1108 1109 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req, 1110 int type, unsigned int erase_arg) 1111 { 1112 struct mmc_blk_data *md = mq->blkdata; 1113 struct mmc_card *card = md->queue.card; 1114 unsigned int from, nr; 1115 int err = 0; 1116 blk_status_t status = BLK_STS_OK; 1117 1118 if (!mmc_can_erase(card)) { 1119 status = BLK_STS_NOTSUPP; 1120 goto fail; 1121 } 1122 1123 from = blk_rq_pos(req); 1124 nr = blk_rq_sectors(req); 1125 1126 do { 1127 err = 0; 1128 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1129 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1130 INAND_CMD38_ARG_EXT_CSD, 1131 erase_arg == MMC_TRIM_ARG ? 1132 INAND_CMD38_ARG_TRIM : 1133 INAND_CMD38_ARG_ERASE, 1134 card->ext_csd.generic_cmd6_time); 1135 } 1136 if (!err) 1137 err = mmc_erase(card, from, nr, erase_arg); 1138 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1139 if (err) 1140 status = BLK_STS_IOERR; 1141 else 1142 mmc_blk_reset_success(md, type); 1143 fail: 1144 blk_mq_end_request(req, status); 1145 } 1146 1147 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req) 1148 { 1149 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG); 1150 } 1151 1152 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1153 { 1154 struct mmc_blk_data *md = mq->blkdata; 1155 struct mmc_card *card = md->queue.card; 1156 unsigned int arg = card->erase_arg; 1157 1158 if (mmc_card_broken_sd_discard(card)) 1159 arg = SD_ERASE_ARG; 1160 1161 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg); 1162 } 1163 1164 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1165 struct request *req) 1166 { 1167 struct mmc_blk_data *md = mq->blkdata; 1168 struct mmc_card *card = md->queue.card; 1169 unsigned int from, nr, arg; 1170 int err = 0, type = MMC_BLK_SECDISCARD; 1171 blk_status_t status = BLK_STS_OK; 1172 1173 if (!(mmc_can_secure_erase_trim(card))) { 1174 status = BLK_STS_NOTSUPP; 1175 goto out; 1176 } 1177 1178 from = blk_rq_pos(req); 1179 nr = blk_rq_sectors(req); 1180 1181 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1182 arg = MMC_SECURE_TRIM1_ARG; 1183 else 1184 arg = MMC_SECURE_ERASE_ARG; 1185 1186 retry: 1187 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1188 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1189 INAND_CMD38_ARG_EXT_CSD, 1190 arg == MMC_SECURE_TRIM1_ARG ? 1191 INAND_CMD38_ARG_SECTRIM1 : 1192 INAND_CMD38_ARG_SECERASE, 1193 card->ext_csd.generic_cmd6_time); 1194 if (err) 1195 goto out_retry; 1196 } 1197 1198 err = mmc_erase(card, from, nr, arg); 1199 if (err == -EIO) 1200 goto out_retry; 1201 if (err) { 1202 status = BLK_STS_IOERR; 1203 goto out; 1204 } 1205 1206 if (arg == MMC_SECURE_TRIM1_ARG) { 1207 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1208 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1209 INAND_CMD38_ARG_EXT_CSD, 1210 INAND_CMD38_ARG_SECTRIM2, 1211 card->ext_csd.generic_cmd6_time); 1212 if (err) 1213 goto out_retry; 1214 } 1215 1216 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1217 if (err == -EIO) 1218 goto out_retry; 1219 if (err) { 1220 status = BLK_STS_IOERR; 1221 goto out; 1222 } 1223 } 1224 1225 out_retry: 1226 if (err && !mmc_blk_reset(md, card->host, type)) 1227 goto retry; 1228 if (!err) 1229 mmc_blk_reset_success(md, type); 1230 out: 1231 blk_mq_end_request(req, status); 1232 } 1233 1234 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1235 { 1236 struct mmc_blk_data *md = mq->blkdata; 1237 struct mmc_card *card = md->queue.card; 1238 int ret = 0; 1239 1240 ret = mmc_flush_cache(card->host); 1241 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1242 } 1243 1244 /* 1245 * Reformat current write as a reliable write, supporting 1246 * both legacy and the enhanced reliable write MMC cards. 1247 * In each transfer we'll handle only as much as a single 1248 * reliable write can handle, thus finish the request in 1249 * partial completions. 1250 */ 1251 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1252 struct mmc_card *card, 1253 struct request *req) 1254 { 1255 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1256 /* Legacy mode imposes restrictions on transfers. */ 1257 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1258 brq->data.blocks = 1; 1259 1260 if (brq->data.blocks > card->ext_csd.rel_sectors) 1261 brq->data.blocks = card->ext_csd.rel_sectors; 1262 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1263 brq->data.blocks = 1; 1264 } 1265 } 1266 1267 #define CMD_ERRORS_EXCL_OOR \ 1268 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1269 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1270 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1271 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1272 R1_CC_ERROR | /* Card controller error */ \ 1273 R1_ERROR) /* General/unknown error */ 1274 1275 #define CMD_ERRORS \ 1276 (CMD_ERRORS_EXCL_OOR | \ 1277 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1278 1279 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1280 { 1281 u32 val; 1282 1283 /* 1284 * Per the SD specification(physical layer version 4.10)[1], 1285 * section 4.3.3, it explicitly states that "When the last 1286 * block of user area is read using CMD18, the host should 1287 * ignore OUT_OF_RANGE error that may occur even the sequence 1288 * is correct". And JESD84-B51 for eMMC also has a similar 1289 * statement on section 6.8.3. 1290 * 1291 * Multiple block read/write could be done by either predefined 1292 * method, namely CMD23, or open-ending mode. For open-ending mode, 1293 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1294 * 1295 * However the spec[1] doesn't tell us whether we should also 1296 * ignore that for predefined method. But per the spec[1], section 1297 * 4.15 Set Block Count Command, it says"If illegal block count 1298 * is set, out of range error will be indicated during read/write 1299 * operation (For example, data transfer is stopped at user area 1300 * boundary)." In another word, we could expect a out of range error 1301 * in the response for the following CMD18/25. And if argument of 1302 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1303 * we could also expect to get a -ETIMEDOUT or any error number from 1304 * the host drivers due to missing data response(for write)/data(for 1305 * read), as the cards will stop the data transfer by itself per the 1306 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1307 */ 1308 1309 if (!brq->stop.error) { 1310 bool oor_with_open_end; 1311 /* If there is no error yet, check R1 response */ 1312 1313 val = brq->stop.resp[0] & CMD_ERRORS; 1314 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1315 1316 if (val && !oor_with_open_end) 1317 brq->stop.error = -EIO; 1318 } 1319 } 1320 1321 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1322 int recovery_mode, bool *do_rel_wr_p, 1323 bool *do_data_tag_p) 1324 { 1325 struct mmc_blk_data *md = mq->blkdata; 1326 struct mmc_card *card = md->queue.card; 1327 struct mmc_blk_request *brq = &mqrq->brq; 1328 struct request *req = mmc_queue_req_to_req(mqrq); 1329 bool do_rel_wr, do_data_tag; 1330 1331 /* 1332 * Reliable writes are used to implement Forced Unit Access and 1333 * are supported only on MMCs. 1334 */ 1335 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1336 rq_data_dir(req) == WRITE && 1337 (md->flags & MMC_BLK_REL_WR); 1338 1339 memset(brq, 0, sizeof(struct mmc_blk_request)); 1340 1341 mmc_crypto_prepare_req(mqrq); 1342 1343 brq->mrq.data = &brq->data; 1344 brq->mrq.tag = req->tag; 1345 1346 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1347 brq->stop.arg = 0; 1348 1349 if (rq_data_dir(req) == READ) { 1350 brq->data.flags = MMC_DATA_READ; 1351 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1352 } else { 1353 brq->data.flags = MMC_DATA_WRITE; 1354 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1355 } 1356 1357 brq->data.blksz = 512; 1358 brq->data.blocks = blk_rq_sectors(req); 1359 brq->data.blk_addr = blk_rq_pos(req); 1360 1361 /* 1362 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1363 * The eMMC will give "high" priority tasks priority over "simple" 1364 * priority tasks. Here we always set "simple" priority by not setting 1365 * MMC_DATA_PRIO. 1366 */ 1367 1368 /* 1369 * The block layer doesn't support all sector count 1370 * restrictions, so we need to be prepared for too big 1371 * requests. 1372 */ 1373 if (brq->data.blocks > card->host->max_blk_count) 1374 brq->data.blocks = card->host->max_blk_count; 1375 1376 if (brq->data.blocks > 1) { 1377 /* 1378 * Some SD cards in SPI mode return a CRC error or even lock up 1379 * completely when trying to read the last block using a 1380 * multiblock read command. 1381 */ 1382 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1383 (blk_rq_pos(req) + blk_rq_sectors(req) == 1384 get_capacity(md->disk))) 1385 brq->data.blocks--; 1386 1387 /* 1388 * After a read error, we redo the request one (native) sector 1389 * at a time in order to accurately determine which 1390 * sectors can be read successfully. 1391 */ 1392 if (recovery_mode) 1393 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9; 1394 1395 /* 1396 * Some controllers have HW issues while operating 1397 * in multiple I/O mode 1398 */ 1399 if (card->host->ops->multi_io_quirk) 1400 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1401 (rq_data_dir(req) == READ) ? 1402 MMC_DATA_READ : MMC_DATA_WRITE, 1403 brq->data.blocks); 1404 } 1405 1406 if (do_rel_wr) { 1407 mmc_apply_rel_rw(brq, card, req); 1408 brq->data.flags |= MMC_DATA_REL_WR; 1409 } 1410 1411 /* 1412 * Data tag is used only during writing meta data to speed 1413 * up write and any subsequent read of this meta data 1414 */ 1415 do_data_tag = card->ext_csd.data_tag_unit_size && 1416 (req->cmd_flags & REQ_META) && 1417 (rq_data_dir(req) == WRITE) && 1418 ((brq->data.blocks * brq->data.blksz) >= 1419 card->ext_csd.data_tag_unit_size); 1420 1421 if (do_data_tag) 1422 brq->data.flags |= MMC_DATA_DAT_TAG; 1423 1424 mmc_set_data_timeout(&brq->data, card); 1425 1426 brq->data.sg = mqrq->sg; 1427 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1428 1429 /* 1430 * Adjust the sg list so it is the same size as the 1431 * request. 1432 */ 1433 if (brq->data.blocks != blk_rq_sectors(req)) { 1434 int i, data_size = brq->data.blocks << 9; 1435 struct scatterlist *sg; 1436 1437 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1438 data_size -= sg->length; 1439 if (data_size <= 0) { 1440 sg->length += data_size; 1441 i++; 1442 break; 1443 } 1444 } 1445 brq->data.sg_len = i; 1446 } 1447 1448 if (do_rel_wr_p) 1449 *do_rel_wr_p = do_rel_wr; 1450 1451 if (do_data_tag_p) 1452 *do_data_tag_p = do_data_tag; 1453 } 1454 1455 #define MMC_CQE_RETRIES 2 1456 1457 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1458 { 1459 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1460 struct mmc_request *mrq = &mqrq->brq.mrq; 1461 struct request_queue *q = req->q; 1462 struct mmc_host *host = mq->card->host; 1463 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1464 unsigned long flags; 1465 bool put_card; 1466 int err; 1467 1468 mmc_cqe_post_req(host, mrq); 1469 1470 if (mrq->cmd && mrq->cmd->error) 1471 err = mrq->cmd->error; 1472 else if (mrq->data && mrq->data->error) 1473 err = mrq->data->error; 1474 else 1475 err = 0; 1476 1477 if (err) { 1478 if (mqrq->retries++ < MMC_CQE_RETRIES) 1479 blk_mq_requeue_request(req, true); 1480 else 1481 blk_mq_end_request(req, BLK_STS_IOERR); 1482 } else if (mrq->data) { 1483 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1484 blk_mq_requeue_request(req, true); 1485 else 1486 __blk_mq_end_request(req, BLK_STS_OK); 1487 } else if (mq->in_recovery) { 1488 blk_mq_requeue_request(req, true); 1489 } else { 1490 blk_mq_end_request(req, BLK_STS_OK); 1491 } 1492 1493 spin_lock_irqsave(&mq->lock, flags); 1494 1495 mq->in_flight[issue_type] -= 1; 1496 1497 put_card = (mmc_tot_in_flight(mq) == 0); 1498 1499 mmc_cqe_check_busy(mq); 1500 1501 spin_unlock_irqrestore(&mq->lock, flags); 1502 1503 if (!mq->cqe_busy) 1504 blk_mq_run_hw_queues(q, true); 1505 1506 if (put_card) 1507 mmc_put_card(mq->card, &mq->ctx); 1508 } 1509 1510 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1511 { 1512 struct mmc_card *card = mq->card; 1513 struct mmc_host *host = card->host; 1514 int err; 1515 1516 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1517 1518 err = mmc_cqe_recovery(host); 1519 if (err) 1520 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1521 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1522 1523 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1524 } 1525 1526 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1527 { 1528 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1529 brq.mrq); 1530 struct request *req = mmc_queue_req_to_req(mqrq); 1531 struct request_queue *q = req->q; 1532 struct mmc_queue *mq = q->queuedata; 1533 1534 /* 1535 * Block layer timeouts race with completions which means the normal 1536 * completion path cannot be used during recovery. 1537 */ 1538 if (mq->in_recovery) 1539 mmc_blk_cqe_complete_rq(mq, req); 1540 else if (likely(!blk_should_fake_timeout(req->q))) 1541 blk_mq_complete_request(req); 1542 } 1543 1544 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1545 { 1546 mrq->done = mmc_blk_cqe_req_done; 1547 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1548 1549 return mmc_cqe_start_req(host, mrq); 1550 } 1551 1552 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1553 struct request *req) 1554 { 1555 struct mmc_blk_request *brq = &mqrq->brq; 1556 1557 memset(brq, 0, sizeof(*brq)); 1558 1559 brq->mrq.cmd = &brq->cmd; 1560 brq->mrq.tag = req->tag; 1561 1562 return &brq->mrq; 1563 } 1564 1565 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1566 { 1567 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1568 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1569 1570 mrq->cmd->opcode = MMC_SWITCH; 1571 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1572 (EXT_CSD_FLUSH_CACHE << 16) | 1573 (1 << 8) | 1574 EXT_CSD_CMD_SET_NORMAL; 1575 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1576 1577 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1578 } 1579 1580 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1581 { 1582 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1583 struct mmc_host *host = mq->card->host; 1584 int err; 1585 1586 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1587 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1588 mmc_pre_req(host, &mqrq->brq.mrq); 1589 1590 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1591 if (err) 1592 mmc_post_req(host, &mqrq->brq.mrq, err); 1593 1594 return err; 1595 } 1596 1597 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1598 { 1599 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1600 struct mmc_host *host = mq->card->host; 1601 1602 if (host->hsq_enabled) 1603 return mmc_blk_hsq_issue_rw_rq(mq, req); 1604 1605 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1606 1607 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1608 } 1609 1610 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1611 struct mmc_card *card, 1612 int recovery_mode, 1613 struct mmc_queue *mq) 1614 { 1615 u32 readcmd, writecmd; 1616 struct mmc_blk_request *brq = &mqrq->brq; 1617 struct request *req = mmc_queue_req_to_req(mqrq); 1618 struct mmc_blk_data *md = mq->blkdata; 1619 bool do_rel_wr, do_data_tag; 1620 1621 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag); 1622 1623 brq->mrq.cmd = &brq->cmd; 1624 1625 brq->cmd.arg = blk_rq_pos(req); 1626 if (!mmc_card_blockaddr(card)) 1627 brq->cmd.arg <<= 9; 1628 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1629 1630 if (brq->data.blocks > 1 || do_rel_wr) { 1631 /* SPI multiblock writes terminate using a special 1632 * token, not a STOP_TRANSMISSION request. 1633 */ 1634 if (!mmc_host_is_spi(card->host) || 1635 rq_data_dir(req) == READ) 1636 brq->mrq.stop = &brq->stop; 1637 readcmd = MMC_READ_MULTIPLE_BLOCK; 1638 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1639 } else { 1640 brq->mrq.stop = NULL; 1641 readcmd = MMC_READ_SINGLE_BLOCK; 1642 writecmd = MMC_WRITE_BLOCK; 1643 } 1644 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1645 1646 /* 1647 * Pre-defined multi-block transfers are preferable to 1648 * open ended-ones (and necessary for reliable writes). 1649 * However, it is not sufficient to just send CMD23, 1650 * and avoid the final CMD12, as on an error condition 1651 * CMD12 (stop) needs to be sent anyway. This, coupled 1652 * with Auto-CMD23 enhancements provided by some 1653 * hosts, means that the complexity of dealing 1654 * with this is best left to the host. If CMD23 is 1655 * supported by card and host, we'll fill sbc in and let 1656 * the host deal with handling it correctly. This means 1657 * that for hosts that don't expose MMC_CAP_CMD23, no 1658 * change of behavior will be observed. 1659 * 1660 * N.B: Some MMC cards experience perf degradation. 1661 * We'll avoid using CMD23-bounded multiblock writes for 1662 * these, while retaining features like reliable writes. 1663 */ 1664 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1665 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1666 do_data_tag)) { 1667 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1668 brq->sbc.arg = brq->data.blocks | 1669 (do_rel_wr ? (1 << 31) : 0) | 1670 (do_data_tag ? (1 << 29) : 0); 1671 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1672 brq->mrq.sbc = &brq->sbc; 1673 } 1674 } 1675 1676 #define MMC_MAX_RETRIES 5 1677 #define MMC_DATA_RETRIES 2 1678 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1679 1680 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1681 { 1682 struct mmc_command cmd = { 1683 .opcode = MMC_STOP_TRANSMISSION, 1684 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1685 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1686 .busy_timeout = timeout, 1687 }; 1688 1689 return mmc_wait_for_cmd(card->host, &cmd, 5); 1690 } 1691 1692 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1693 { 1694 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1695 struct mmc_blk_request *brq = &mqrq->brq; 1696 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1697 int err; 1698 1699 mmc_retune_hold_now(card->host); 1700 1701 mmc_blk_send_stop(card, timeout); 1702 1703 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO); 1704 1705 mmc_retune_release(card->host); 1706 1707 return err; 1708 } 1709 1710 #define MMC_READ_SINGLE_RETRIES 2 1711 1712 /* Single (native) sector read during recovery */ 1713 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1714 { 1715 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1716 struct mmc_request *mrq = &mqrq->brq.mrq; 1717 struct mmc_card *card = mq->card; 1718 struct mmc_host *host = card->host; 1719 blk_status_t error = BLK_STS_OK; 1720 size_t bytes_per_read = queue_physical_block_size(mq->queue); 1721 1722 do { 1723 u32 status; 1724 int err; 1725 int retries = 0; 1726 1727 while (retries++ <= MMC_READ_SINGLE_RETRIES) { 1728 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1729 1730 mmc_wait_for_req(host, mrq); 1731 1732 err = mmc_send_status(card, &status); 1733 if (err) 1734 goto error_exit; 1735 1736 if (!mmc_host_is_spi(host) && 1737 !mmc_ready_for_data(status)) { 1738 err = mmc_blk_fix_state(card, req); 1739 if (err) 1740 goto error_exit; 1741 } 1742 1743 if (!mrq->cmd->error) 1744 break; 1745 } 1746 1747 if (mrq->cmd->error || 1748 mrq->data->error || 1749 (!mmc_host_is_spi(host) && 1750 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1751 error = BLK_STS_IOERR; 1752 else 1753 error = BLK_STS_OK; 1754 1755 } while (blk_update_request(req, error, bytes_per_read)); 1756 1757 return; 1758 1759 error_exit: 1760 mrq->data->bytes_xfered = 0; 1761 blk_update_request(req, BLK_STS_IOERR, bytes_per_read); 1762 /* Let it try the remaining request again */ 1763 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1764 mqrq->retries = MMC_MAX_RETRIES - 1; 1765 } 1766 1767 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1768 { 1769 return !!brq->mrq.sbc; 1770 } 1771 1772 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1773 { 1774 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1775 } 1776 1777 /* 1778 * Check for errors the host controller driver might not have seen such as 1779 * response mode errors or invalid card state. 1780 */ 1781 static bool mmc_blk_status_error(struct request *req, u32 status) 1782 { 1783 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1784 struct mmc_blk_request *brq = &mqrq->brq; 1785 struct mmc_queue *mq = req->q->queuedata; 1786 u32 stop_err_bits; 1787 1788 if (mmc_host_is_spi(mq->card->host)) 1789 return false; 1790 1791 stop_err_bits = mmc_blk_stop_err_bits(brq); 1792 1793 return brq->cmd.resp[0] & CMD_ERRORS || 1794 brq->stop.resp[0] & stop_err_bits || 1795 status & stop_err_bits || 1796 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1797 } 1798 1799 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1800 { 1801 return !brq->sbc.error && !brq->cmd.error && 1802 !(brq->cmd.resp[0] & CMD_ERRORS); 1803 } 1804 1805 /* 1806 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1807 * policy: 1808 * 1. A request that has transferred at least some data is considered 1809 * successful and will be requeued if there is remaining data to 1810 * transfer. 1811 * 2. Otherwise the number of retries is incremented and the request 1812 * will be requeued if there are remaining retries. 1813 * 3. Otherwise the request will be errored out. 1814 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1815 * mqrq->retries. So there are only 4 possible actions here: 1816 * 1. do not accept the bytes_xfered value i.e. set it to zero 1817 * 2. change mqrq->retries to determine the number of retries 1818 * 3. try to reset the card 1819 * 4. read one sector at a time 1820 */ 1821 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1822 { 1823 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1824 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1825 struct mmc_blk_request *brq = &mqrq->brq; 1826 struct mmc_blk_data *md = mq->blkdata; 1827 struct mmc_card *card = mq->card; 1828 u32 status; 1829 u32 blocks; 1830 int err; 1831 1832 /* 1833 * Some errors the host driver might not have seen. Set the number of 1834 * bytes transferred to zero in that case. 1835 */ 1836 err = __mmc_send_status(card, &status, 0); 1837 if (err || mmc_blk_status_error(req, status)) 1838 brq->data.bytes_xfered = 0; 1839 1840 mmc_retune_release(card->host); 1841 1842 /* 1843 * Try again to get the status. This also provides an opportunity for 1844 * re-tuning. 1845 */ 1846 if (err) 1847 err = __mmc_send_status(card, &status, 0); 1848 1849 /* 1850 * Nothing more to do after the number of bytes transferred has been 1851 * updated and there is no card. 1852 */ 1853 if (err && mmc_detect_card_removed(card->host)) 1854 return; 1855 1856 /* Try to get back to "tran" state */ 1857 if (!mmc_host_is_spi(mq->card->host) && 1858 (err || !mmc_ready_for_data(status))) 1859 err = mmc_blk_fix_state(mq->card, req); 1860 1861 /* 1862 * Special case for SD cards where the card might record the number of 1863 * blocks written. 1864 */ 1865 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1866 rq_data_dir(req) == WRITE) { 1867 if (mmc_sd_num_wr_blocks(card, &blocks)) 1868 brq->data.bytes_xfered = 0; 1869 else 1870 brq->data.bytes_xfered = blocks << 9; 1871 } 1872 1873 /* Reset if the card is in a bad state */ 1874 if (!mmc_host_is_spi(mq->card->host) && 1875 err && mmc_blk_reset(md, card->host, type)) { 1876 pr_err("%s: recovery failed!\n", req->q->disk->disk_name); 1877 mqrq->retries = MMC_NO_RETRIES; 1878 return; 1879 } 1880 1881 /* 1882 * If anything was done, just return and if there is anything remaining 1883 * on the request it will get requeued. 1884 */ 1885 if (brq->data.bytes_xfered) 1886 return; 1887 1888 /* Reset before last retry */ 1889 if (mqrq->retries + 1 == MMC_MAX_RETRIES && 1890 mmc_blk_reset(md, card->host, type)) 1891 return; 1892 1893 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1894 if (brq->sbc.error || brq->cmd.error) 1895 return; 1896 1897 /* Reduce the remaining retries for data errors */ 1898 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1899 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1900 return; 1901 } 1902 1903 if (rq_data_dir(req) == READ && brq->data.blocks > 1904 queue_physical_block_size(mq->queue) >> 9) { 1905 /* Read one (native) sector at a time */ 1906 mmc_blk_read_single(mq, req); 1907 return; 1908 } 1909 } 1910 1911 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1912 { 1913 mmc_blk_eval_resp_error(brq); 1914 1915 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1916 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1917 } 1918 1919 static int mmc_spi_err_check(struct mmc_card *card) 1920 { 1921 u32 status = 0; 1922 int err; 1923 1924 /* 1925 * SPI does not have a TRAN state we have to wait on, instead the 1926 * card is ready again when it no longer holds the line LOW. 1927 * We still have to ensure two things here before we know the write 1928 * was successful: 1929 * 1. The card has not disconnected during busy and we actually read our 1930 * own pull-up, thinking it was still connected, so ensure it 1931 * still responds. 1932 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a 1933 * just reconnected card after being disconnected during busy. 1934 */ 1935 err = __mmc_send_status(card, &status, 0); 1936 if (err) 1937 return err; 1938 /* All R1 and R2 bits of SPI are errors in our case */ 1939 if (status) 1940 return -EIO; 1941 return 0; 1942 } 1943 1944 static int mmc_blk_busy_cb(void *cb_data, bool *busy) 1945 { 1946 struct mmc_blk_busy_data *data = cb_data; 1947 u32 status = 0; 1948 int err; 1949 1950 err = mmc_send_status(data->card, &status); 1951 if (err) 1952 return err; 1953 1954 /* Accumulate response error bits. */ 1955 data->status |= status; 1956 1957 *busy = !mmc_ready_for_data(status); 1958 return 0; 1959 } 1960 1961 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1962 { 1963 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1964 struct mmc_blk_busy_data cb_data; 1965 int err; 1966 1967 if (rq_data_dir(req) == READ) 1968 return 0; 1969 1970 if (mmc_host_is_spi(card->host)) { 1971 err = mmc_spi_err_check(card); 1972 if (err) 1973 mqrq->brq.data.bytes_xfered = 0; 1974 return err; 1975 } 1976 1977 cb_data.card = card; 1978 cb_data.status = 0; 1979 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS, 1980 &mmc_blk_busy_cb, &cb_data); 1981 1982 /* 1983 * Do not assume data transferred correctly if there are any error bits 1984 * set. 1985 */ 1986 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1987 mqrq->brq.data.bytes_xfered = 0; 1988 err = err ? err : -EIO; 1989 } 1990 1991 /* Copy the exception bit so it will be seen later on */ 1992 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT) 1993 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1994 1995 return err; 1996 } 1997 1998 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1999 struct request *req) 2000 { 2001 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 2002 2003 mmc_blk_reset_success(mq->blkdata, type); 2004 } 2005 2006 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 2007 { 2008 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2009 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 2010 2011 if (nr_bytes) { 2012 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 2013 blk_mq_requeue_request(req, true); 2014 else 2015 __blk_mq_end_request(req, BLK_STS_OK); 2016 } else if (!blk_rq_bytes(req)) { 2017 __blk_mq_end_request(req, BLK_STS_IOERR); 2018 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 2019 blk_mq_requeue_request(req, true); 2020 } else { 2021 if (mmc_card_removed(mq->card)) 2022 req->rq_flags |= RQF_QUIET; 2023 blk_mq_end_request(req, BLK_STS_IOERR); 2024 } 2025 } 2026 2027 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 2028 struct mmc_queue_req *mqrq) 2029 { 2030 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 2031 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 2032 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 2033 } 2034 2035 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 2036 struct mmc_queue_req *mqrq) 2037 { 2038 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 2039 mmc_run_bkops(mq->card); 2040 } 2041 2042 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 2043 { 2044 struct mmc_queue_req *mqrq = 2045 container_of(mrq, struct mmc_queue_req, brq.mrq); 2046 struct request *req = mmc_queue_req_to_req(mqrq); 2047 struct request_queue *q = req->q; 2048 struct mmc_queue *mq = q->queuedata; 2049 struct mmc_host *host = mq->card->host; 2050 unsigned long flags; 2051 2052 if (mmc_blk_rq_error(&mqrq->brq) || 2053 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2054 spin_lock_irqsave(&mq->lock, flags); 2055 mq->recovery_needed = true; 2056 mq->recovery_req = req; 2057 spin_unlock_irqrestore(&mq->lock, flags); 2058 2059 host->cqe_ops->cqe_recovery_start(host); 2060 2061 schedule_work(&mq->recovery_work); 2062 return; 2063 } 2064 2065 mmc_blk_rw_reset_success(mq, req); 2066 2067 /* 2068 * Block layer timeouts race with completions which means the normal 2069 * completion path cannot be used during recovery. 2070 */ 2071 if (mq->in_recovery) 2072 mmc_blk_cqe_complete_rq(mq, req); 2073 else if (likely(!blk_should_fake_timeout(req->q))) 2074 blk_mq_complete_request(req); 2075 } 2076 2077 void mmc_blk_mq_complete(struct request *req) 2078 { 2079 struct mmc_queue *mq = req->q->queuedata; 2080 struct mmc_host *host = mq->card->host; 2081 2082 if (host->cqe_enabled) 2083 mmc_blk_cqe_complete_rq(mq, req); 2084 else if (likely(!blk_should_fake_timeout(req->q))) 2085 mmc_blk_mq_complete_rq(mq, req); 2086 } 2087 2088 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 2089 struct request *req) 2090 { 2091 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2092 struct mmc_host *host = mq->card->host; 2093 2094 if (mmc_blk_rq_error(&mqrq->brq) || 2095 mmc_blk_card_busy(mq->card, req)) { 2096 mmc_blk_mq_rw_recovery(mq, req); 2097 } else { 2098 mmc_blk_rw_reset_success(mq, req); 2099 mmc_retune_release(host); 2100 } 2101 2102 mmc_blk_urgent_bkops(mq, mqrq); 2103 } 2104 2105 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type) 2106 { 2107 unsigned long flags; 2108 bool put_card; 2109 2110 spin_lock_irqsave(&mq->lock, flags); 2111 2112 mq->in_flight[issue_type] -= 1; 2113 2114 put_card = (mmc_tot_in_flight(mq) == 0); 2115 2116 spin_unlock_irqrestore(&mq->lock, flags); 2117 2118 if (put_card) 2119 mmc_put_card(mq->card, &mq->ctx); 2120 } 2121 2122 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req, 2123 bool can_sleep) 2124 { 2125 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 2126 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2127 struct mmc_request *mrq = &mqrq->brq.mrq; 2128 struct mmc_host *host = mq->card->host; 2129 2130 mmc_post_req(host, mrq, 0); 2131 2132 /* 2133 * Block layer timeouts race with completions which means the normal 2134 * completion path cannot be used during recovery. 2135 */ 2136 if (mq->in_recovery) { 2137 mmc_blk_mq_complete_rq(mq, req); 2138 } else if (likely(!blk_should_fake_timeout(req->q))) { 2139 if (can_sleep) 2140 blk_mq_complete_request_direct(req, mmc_blk_mq_complete); 2141 else 2142 blk_mq_complete_request(req); 2143 } 2144 2145 mmc_blk_mq_dec_in_flight(mq, issue_type); 2146 } 2147 2148 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2149 { 2150 struct request *req = mq->recovery_req; 2151 struct mmc_host *host = mq->card->host; 2152 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2153 2154 mq->recovery_req = NULL; 2155 mq->rw_wait = false; 2156 2157 if (mmc_blk_rq_error(&mqrq->brq)) { 2158 mmc_retune_hold_now(host); 2159 mmc_blk_mq_rw_recovery(mq, req); 2160 } 2161 2162 mmc_blk_urgent_bkops(mq, mqrq); 2163 2164 mmc_blk_mq_post_req(mq, req, true); 2165 } 2166 2167 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2168 struct request **prev_req) 2169 { 2170 if (mmc_host_done_complete(mq->card->host)) 2171 return; 2172 2173 mutex_lock(&mq->complete_lock); 2174 2175 if (!mq->complete_req) 2176 goto out_unlock; 2177 2178 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2179 2180 if (prev_req) 2181 *prev_req = mq->complete_req; 2182 else 2183 mmc_blk_mq_post_req(mq, mq->complete_req, true); 2184 2185 mq->complete_req = NULL; 2186 2187 out_unlock: 2188 mutex_unlock(&mq->complete_lock); 2189 } 2190 2191 void mmc_blk_mq_complete_work(struct work_struct *work) 2192 { 2193 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2194 complete_work); 2195 2196 mmc_blk_mq_complete_prev_req(mq, NULL); 2197 } 2198 2199 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2200 { 2201 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2202 brq.mrq); 2203 struct request *req = mmc_queue_req_to_req(mqrq); 2204 struct request_queue *q = req->q; 2205 struct mmc_queue *mq = q->queuedata; 2206 struct mmc_host *host = mq->card->host; 2207 unsigned long flags; 2208 2209 if (!mmc_host_done_complete(host)) { 2210 bool waiting; 2211 2212 /* 2213 * We cannot complete the request in this context, so record 2214 * that there is a request to complete, and that a following 2215 * request does not need to wait (although it does need to 2216 * complete complete_req first). 2217 */ 2218 spin_lock_irqsave(&mq->lock, flags); 2219 mq->complete_req = req; 2220 mq->rw_wait = false; 2221 waiting = mq->waiting; 2222 spin_unlock_irqrestore(&mq->lock, flags); 2223 2224 /* 2225 * If 'waiting' then the waiting task will complete this 2226 * request, otherwise queue a work to do it. Note that 2227 * complete_work may still race with the dispatch of a following 2228 * request. 2229 */ 2230 if (waiting) 2231 wake_up(&mq->wait); 2232 else 2233 queue_work(mq->card->complete_wq, &mq->complete_work); 2234 2235 return; 2236 } 2237 2238 /* Take the recovery path for errors or urgent background operations */ 2239 if (mmc_blk_rq_error(&mqrq->brq) || 2240 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2241 spin_lock_irqsave(&mq->lock, flags); 2242 mq->recovery_needed = true; 2243 mq->recovery_req = req; 2244 spin_unlock_irqrestore(&mq->lock, flags); 2245 wake_up(&mq->wait); 2246 schedule_work(&mq->recovery_work); 2247 return; 2248 } 2249 2250 mmc_blk_rw_reset_success(mq, req); 2251 2252 mq->rw_wait = false; 2253 wake_up(&mq->wait); 2254 2255 /* context unknown */ 2256 mmc_blk_mq_post_req(mq, req, false); 2257 } 2258 2259 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2260 { 2261 unsigned long flags; 2262 bool done; 2263 2264 /* 2265 * Wait while there is another request in progress, but not if recovery 2266 * is needed. Also indicate whether there is a request waiting to start. 2267 */ 2268 spin_lock_irqsave(&mq->lock, flags); 2269 if (mq->recovery_needed) { 2270 *err = -EBUSY; 2271 done = true; 2272 } else { 2273 done = !mq->rw_wait; 2274 } 2275 mq->waiting = !done; 2276 spin_unlock_irqrestore(&mq->lock, flags); 2277 2278 return done; 2279 } 2280 2281 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2282 { 2283 int err = 0; 2284 2285 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2286 2287 /* Always complete the previous request if there is one */ 2288 mmc_blk_mq_complete_prev_req(mq, prev_req); 2289 2290 return err; 2291 } 2292 2293 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2294 struct request *req) 2295 { 2296 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2297 struct mmc_host *host = mq->card->host; 2298 struct request *prev_req = NULL; 2299 int err = 0; 2300 2301 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2302 2303 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2304 2305 mmc_pre_req(host, &mqrq->brq.mrq); 2306 2307 err = mmc_blk_rw_wait(mq, &prev_req); 2308 if (err) 2309 goto out_post_req; 2310 2311 mq->rw_wait = true; 2312 2313 err = mmc_start_request(host, &mqrq->brq.mrq); 2314 2315 if (prev_req) 2316 mmc_blk_mq_post_req(mq, prev_req, true); 2317 2318 if (err) 2319 mq->rw_wait = false; 2320 2321 /* Release re-tuning here where there is no synchronization required */ 2322 if (err || mmc_host_done_complete(host)) 2323 mmc_retune_release(host); 2324 2325 out_post_req: 2326 if (err) 2327 mmc_post_req(host, &mqrq->brq.mrq, err); 2328 2329 return err; 2330 } 2331 2332 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2333 { 2334 if (host->cqe_enabled) 2335 return host->cqe_ops->cqe_wait_for_idle(host); 2336 2337 return mmc_blk_rw_wait(mq, NULL); 2338 } 2339 2340 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2341 { 2342 struct mmc_blk_data *md = mq->blkdata; 2343 struct mmc_card *card = md->queue.card; 2344 struct mmc_host *host = card->host; 2345 int ret; 2346 2347 ret = mmc_blk_part_switch(card, md->part_type); 2348 if (ret) 2349 return MMC_REQ_FAILED_TO_START; 2350 2351 switch (mmc_issue_type(mq, req)) { 2352 case MMC_ISSUE_SYNC: 2353 ret = mmc_blk_wait_for_idle(mq, host); 2354 if (ret) 2355 return MMC_REQ_BUSY; 2356 switch (req_op(req)) { 2357 case REQ_OP_DRV_IN: 2358 case REQ_OP_DRV_OUT: 2359 mmc_blk_issue_drv_op(mq, req); 2360 break; 2361 case REQ_OP_DISCARD: 2362 mmc_blk_issue_discard_rq(mq, req); 2363 break; 2364 case REQ_OP_SECURE_ERASE: 2365 mmc_blk_issue_secdiscard_rq(mq, req); 2366 break; 2367 case REQ_OP_WRITE_ZEROES: 2368 mmc_blk_issue_trim_rq(mq, req); 2369 break; 2370 case REQ_OP_FLUSH: 2371 mmc_blk_issue_flush(mq, req); 2372 break; 2373 default: 2374 WARN_ON_ONCE(1); 2375 return MMC_REQ_FAILED_TO_START; 2376 } 2377 return MMC_REQ_FINISHED; 2378 case MMC_ISSUE_DCMD: 2379 case MMC_ISSUE_ASYNC: 2380 switch (req_op(req)) { 2381 case REQ_OP_FLUSH: 2382 if (!mmc_cache_enabled(host)) { 2383 blk_mq_end_request(req, BLK_STS_OK); 2384 return MMC_REQ_FINISHED; 2385 } 2386 ret = mmc_blk_cqe_issue_flush(mq, req); 2387 break; 2388 case REQ_OP_WRITE: 2389 card->written_flag = true; 2390 fallthrough; 2391 case REQ_OP_READ: 2392 if (host->cqe_enabled) 2393 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2394 else 2395 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2396 break; 2397 default: 2398 WARN_ON_ONCE(1); 2399 ret = -EINVAL; 2400 } 2401 if (!ret) 2402 return MMC_REQ_STARTED; 2403 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2404 default: 2405 WARN_ON_ONCE(1); 2406 return MMC_REQ_FAILED_TO_START; 2407 } 2408 } 2409 2410 static inline int mmc_blk_readonly(struct mmc_card *card) 2411 { 2412 return mmc_card_readonly(card) || 2413 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2414 } 2415 2416 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2417 struct device *parent, 2418 sector_t size, 2419 bool default_ro, 2420 const char *subname, 2421 int area_type, 2422 unsigned int part_type) 2423 { 2424 struct mmc_blk_data *md; 2425 int devidx, ret; 2426 char cap_str[10]; 2427 bool cache_enabled = false; 2428 bool fua_enabled = false; 2429 2430 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2431 if (devidx < 0) { 2432 /* 2433 * We get -ENOSPC because there are no more any available 2434 * devidx. The reason may be that, either userspace haven't yet 2435 * unmounted the partitions, which postpones mmc_blk_release() 2436 * from being called, or the device has more partitions than 2437 * what we support. 2438 */ 2439 if (devidx == -ENOSPC) 2440 dev_err(mmc_dev(card->host), 2441 "no more device IDs available\n"); 2442 2443 return ERR_PTR(devidx); 2444 } 2445 2446 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2447 if (!md) { 2448 ret = -ENOMEM; 2449 goto out; 2450 } 2451 2452 md->area_type = area_type; 2453 2454 /* 2455 * Set the read-only status based on the supported commands 2456 * and the write protect switch. 2457 */ 2458 md->read_only = mmc_blk_readonly(card); 2459 2460 md->disk = mmc_init_queue(&md->queue, card); 2461 if (IS_ERR(md->disk)) { 2462 ret = PTR_ERR(md->disk); 2463 goto err_kfree; 2464 } 2465 2466 INIT_LIST_HEAD(&md->part); 2467 INIT_LIST_HEAD(&md->rpmbs); 2468 kref_init(&md->kref); 2469 2470 md->queue.blkdata = md; 2471 md->part_type = part_type; 2472 2473 md->disk->major = MMC_BLOCK_MAJOR; 2474 md->disk->minors = perdev_minors; 2475 md->disk->first_minor = devidx * perdev_minors; 2476 md->disk->fops = &mmc_bdops; 2477 md->disk->private_data = md; 2478 md->parent = parent; 2479 set_disk_ro(md->disk, md->read_only || default_ro); 2480 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2481 md->disk->flags |= GENHD_FL_NO_PART; 2482 2483 /* 2484 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2485 * 2486 * - be set for removable media with permanent block devices 2487 * - be unset for removable block devices with permanent media 2488 * 2489 * Since MMC block devices clearly fall under the second 2490 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2491 * should use the block device creation/destruction hotplug 2492 * messages to tell when the card is present. 2493 */ 2494 2495 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2496 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2497 2498 set_capacity(md->disk, size); 2499 2500 if (mmc_host_cmd23(card->host)) { 2501 if ((mmc_card_mmc(card) && 2502 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2503 (mmc_card_sd(card) && 2504 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2505 md->flags |= MMC_BLK_CMD23; 2506 } 2507 2508 if (md->flags & MMC_BLK_CMD23 && 2509 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2510 card->ext_csd.rel_sectors)) { 2511 md->flags |= MMC_BLK_REL_WR; 2512 fua_enabled = true; 2513 cache_enabled = true; 2514 } 2515 if (mmc_cache_enabled(card->host)) 2516 cache_enabled = true; 2517 2518 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled); 2519 2520 string_get_size((u64)size, 512, STRING_UNITS_2, 2521 cap_str, sizeof(cap_str)); 2522 pr_info("%s: %s %s %s%s\n", 2523 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2524 cap_str, md->read_only ? " (ro)" : ""); 2525 2526 /* used in ->open, must be set before add_disk: */ 2527 if (area_type == MMC_BLK_DATA_AREA_MAIN) 2528 dev_set_drvdata(&card->dev, md); 2529 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups); 2530 if (ret) 2531 goto err_put_disk; 2532 return md; 2533 2534 err_put_disk: 2535 put_disk(md->disk); 2536 blk_mq_free_tag_set(&md->queue.tag_set); 2537 err_kfree: 2538 kfree(md); 2539 out: 2540 ida_simple_remove(&mmc_blk_ida, devidx); 2541 return ERR_PTR(ret); 2542 } 2543 2544 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2545 { 2546 sector_t size; 2547 2548 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2549 /* 2550 * The EXT_CSD sector count is in number or 512 byte 2551 * sectors. 2552 */ 2553 size = card->ext_csd.sectors; 2554 } else { 2555 /* 2556 * The CSD capacity field is in units of read_blkbits. 2557 * set_capacity takes units of 512 bytes. 2558 */ 2559 size = (typeof(sector_t))card->csd.capacity 2560 << (card->csd.read_blkbits - 9); 2561 } 2562 2563 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2564 MMC_BLK_DATA_AREA_MAIN, 0); 2565 } 2566 2567 static int mmc_blk_alloc_part(struct mmc_card *card, 2568 struct mmc_blk_data *md, 2569 unsigned int part_type, 2570 sector_t size, 2571 bool default_ro, 2572 const char *subname, 2573 int area_type) 2574 { 2575 struct mmc_blk_data *part_md; 2576 2577 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2578 subname, area_type, part_type); 2579 if (IS_ERR(part_md)) 2580 return PTR_ERR(part_md); 2581 list_add(&part_md->part, &md->part); 2582 2583 return 0; 2584 } 2585 2586 /** 2587 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2588 * @filp: the character device file 2589 * @cmd: the ioctl() command 2590 * @arg: the argument from userspace 2591 * 2592 * This will essentially just redirect the ioctl()s coming in over to 2593 * the main block device spawning the RPMB character device. 2594 */ 2595 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2596 unsigned long arg) 2597 { 2598 struct mmc_rpmb_data *rpmb = filp->private_data; 2599 int ret; 2600 2601 switch (cmd) { 2602 case MMC_IOC_CMD: 2603 ret = mmc_blk_ioctl_cmd(rpmb->md, 2604 (struct mmc_ioc_cmd __user *)arg, 2605 rpmb); 2606 break; 2607 case MMC_IOC_MULTI_CMD: 2608 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2609 (struct mmc_ioc_multi_cmd __user *)arg, 2610 rpmb); 2611 break; 2612 default: 2613 ret = -EINVAL; 2614 break; 2615 } 2616 2617 return ret; 2618 } 2619 2620 #ifdef CONFIG_COMPAT 2621 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2622 unsigned long arg) 2623 { 2624 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2625 } 2626 #endif 2627 2628 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2629 { 2630 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2631 struct mmc_rpmb_data, chrdev); 2632 2633 get_device(&rpmb->dev); 2634 filp->private_data = rpmb; 2635 mmc_blk_get(rpmb->md->disk); 2636 2637 return nonseekable_open(inode, filp); 2638 } 2639 2640 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2641 { 2642 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2643 struct mmc_rpmb_data, chrdev); 2644 2645 mmc_blk_put(rpmb->md); 2646 put_device(&rpmb->dev); 2647 2648 return 0; 2649 } 2650 2651 static const struct file_operations mmc_rpmb_fileops = { 2652 .release = mmc_rpmb_chrdev_release, 2653 .open = mmc_rpmb_chrdev_open, 2654 .owner = THIS_MODULE, 2655 .llseek = no_llseek, 2656 .unlocked_ioctl = mmc_rpmb_ioctl, 2657 #ifdef CONFIG_COMPAT 2658 .compat_ioctl = mmc_rpmb_ioctl_compat, 2659 #endif 2660 }; 2661 2662 static void mmc_blk_rpmb_device_release(struct device *dev) 2663 { 2664 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2665 2666 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2667 kfree(rpmb); 2668 } 2669 2670 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2671 struct mmc_blk_data *md, 2672 unsigned int part_index, 2673 sector_t size, 2674 const char *subname) 2675 { 2676 int devidx, ret; 2677 char rpmb_name[DISK_NAME_LEN]; 2678 char cap_str[10]; 2679 struct mmc_rpmb_data *rpmb; 2680 2681 /* This creates the minor number for the RPMB char device */ 2682 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2683 if (devidx < 0) 2684 return devidx; 2685 2686 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2687 if (!rpmb) { 2688 ida_simple_remove(&mmc_rpmb_ida, devidx); 2689 return -ENOMEM; 2690 } 2691 2692 snprintf(rpmb_name, sizeof(rpmb_name), 2693 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2694 2695 rpmb->id = devidx; 2696 rpmb->part_index = part_index; 2697 rpmb->dev.init_name = rpmb_name; 2698 rpmb->dev.bus = &mmc_rpmb_bus_type; 2699 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2700 rpmb->dev.parent = &card->dev; 2701 rpmb->dev.release = mmc_blk_rpmb_device_release; 2702 device_initialize(&rpmb->dev); 2703 dev_set_drvdata(&rpmb->dev, rpmb); 2704 rpmb->md = md; 2705 2706 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2707 rpmb->chrdev.owner = THIS_MODULE; 2708 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2709 if (ret) { 2710 pr_err("%s: could not add character device\n", rpmb_name); 2711 goto out_put_device; 2712 } 2713 2714 list_add(&rpmb->node, &md->rpmbs); 2715 2716 string_get_size((u64)size, 512, STRING_UNITS_2, 2717 cap_str, sizeof(cap_str)); 2718 2719 pr_info("%s: %s %s %s, chardev (%d:%d)\n", 2720 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, 2721 MAJOR(mmc_rpmb_devt), rpmb->id); 2722 2723 return 0; 2724 2725 out_put_device: 2726 put_device(&rpmb->dev); 2727 return ret; 2728 } 2729 2730 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2731 2732 { 2733 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2734 put_device(&rpmb->dev); 2735 } 2736 2737 /* MMC Physical partitions consist of two boot partitions and 2738 * up to four general purpose partitions. 2739 * For each partition enabled in EXT_CSD a block device will be allocatedi 2740 * to provide access to the partition. 2741 */ 2742 2743 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2744 { 2745 int idx, ret; 2746 2747 if (!mmc_card_mmc(card)) 2748 return 0; 2749 2750 for (idx = 0; idx < card->nr_parts; idx++) { 2751 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2752 /* 2753 * RPMB partitions does not provide block access, they 2754 * are only accessed using ioctl():s. Thus create 2755 * special RPMB block devices that do not have a 2756 * backing block queue for these. 2757 */ 2758 ret = mmc_blk_alloc_rpmb_part(card, md, 2759 card->part[idx].part_cfg, 2760 card->part[idx].size >> 9, 2761 card->part[idx].name); 2762 if (ret) 2763 return ret; 2764 } else if (card->part[idx].size) { 2765 ret = mmc_blk_alloc_part(card, md, 2766 card->part[idx].part_cfg, 2767 card->part[idx].size >> 9, 2768 card->part[idx].force_ro, 2769 card->part[idx].name, 2770 card->part[idx].area_type); 2771 if (ret) 2772 return ret; 2773 } 2774 } 2775 2776 return 0; 2777 } 2778 2779 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2780 { 2781 /* 2782 * Flush remaining requests and free queues. It is freeing the queue 2783 * that stops new requests from being accepted. 2784 */ 2785 del_gendisk(md->disk); 2786 mmc_cleanup_queue(&md->queue); 2787 mmc_blk_put(md); 2788 } 2789 2790 static void mmc_blk_remove_parts(struct mmc_card *card, 2791 struct mmc_blk_data *md) 2792 { 2793 struct list_head *pos, *q; 2794 struct mmc_blk_data *part_md; 2795 struct mmc_rpmb_data *rpmb; 2796 2797 /* Remove RPMB partitions */ 2798 list_for_each_safe(pos, q, &md->rpmbs) { 2799 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2800 list_del(pos); 2801 mmc_blk_remove_rpmb_part(rpmb); 2802 } 2803 /* Remove block partitions */ 2804 list_for_each_safe(pos, q, &md->part) { 2805 part_md = list_entry(pos, struct mmc_blk_data, part); 2806 list_del(pos); 2807 mmc_blk_remove_req(part_md); 2808 } 2809 } 2810 2811 #ifdef CONFIG_DEBUG_FS 2812 2813 static int mmc_dbg_card_status_get(void *data, u64 *val) 2814 { 2815 struct mmc_card *card = data; 2816 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2817 struct mmc_queue *mq = &md->queue; 2818 struct request *req; 2819 int ret; 2820 2821 /* Ask the block layer about the card status */ 2822 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2823 if (IS_ERR(req)) 2824 return PTR_ERR(req); 2825 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2826 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 2827 blk_execute_rq(req, false); 2828 ret = req_to_mmc_queue_req(req)->drv_op_result; 2829 if (ret >= 0) { 2830 *val = ret; 2831 ret = 0; 2832 } 2833 blk_mq_free_request(req); 2834 2835 return ret; 2836 } 2837 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2838 NULL, "%08llx\n"); 2839 2840 /* That is two digits * 512 + 1 for newline */ 2841 #define EXT_CSD_STR_LEN 1025 2842 2843 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2844 { 2845 struct mmc_card *card = inode->i_private; 2846 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2847 struct mmc_queue *mq = &md->queue; 2848 struct request *req; 2849 char *buf; 2850 ssize_t n = 0; 2851 u8 *ext_csd; 2852 int err, i; 2853 2854 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2855 if (!buf) 2856 return -ENOMEM; 2857 2858 /* Ask the block layer for the EXT CSD */ 2859 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2860 if (IS_ERR(req)) { 2861 err = PTR_ERR(req); 2862 goto out_free; 2863 } 2864 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2865 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 2866 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2867 blk_execute_rq(req, false); 2868 err = req_to_mmc_queue_req(req)->drv_op_result; 2869 blk_mq_free_request(req); 2870 if (err) { 2871 pr_err("FAILED %d\n", err); 2872 goto out_free; 2873 } 2874 2875 for (i = 0; i < 512; i++) 2876 n += sprintf(buf + n, "%02x", ext_csd[i]); 2877 n += sprintf(buf + n, "\n"); 2878 2879 if (n != EXT_CSD_STR_LEN) { 2880 err = -EINVAL; 2881 kfree(ext_csd); 2882 goto out_free; 2883 } 2884 2885 filp->private_data = buf; 2886 kfree(ext_csd); 2887 return 0; 2888 2889 out_free: 2890 kfree(buf); 2891 return err; 2892 } 2893 2894 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2895 size_t cnt, loff_t *ppos) 2896 { 2897 char *buf = filp->private_data; 2898 2899 return simple_read_from_buffer(ubuf, cnt, ppos, 2900 buf, EXT_CSD_STR_LEN); 2901 } 2902 2903 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2904 { 2905 kfree(file->private_data); 2906 return 0; 2907 } 2908 2909 static const struct file_operations mmc_dbg_ext_csd_fops = { 2910 .open = mmc_ext_csd_open, 2911 .read = mmc_ext_csd_read, 2912 .release = mmc_ext_csd_release, 2913 .llseek = default_llseek, 2914 }; 2915 2916 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2917 { 2918 struct dentry *root; 2919 2920 if (!card->debugfs_root) 2921 return; 2922 2923 root = card->debugfs_root; 2924 2925 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2926 md->status_dentry = 2927 debugfs_create_file_unsafe("status", 0400, root, 2928 card, 2929 &mmc_dbg_card_status_fops); 2930 } 2931 2932 if (mmc_card_mmc(card)) { 2933 md->ext_csd_dentry = 2934 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2935 &mmc_dbg_ext_csd_fops); 2936 } 2937 } 2938 2939 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2940 struct mmc_blk_data *md) 2941 { 2942 if (!card->debugfs_root) 2943 return; 2944 2945 debugfs_remove(md->status_dentry); 2946 md->status_dentry = NULL; 2947 2948 debugfs_remove(md->ext_csd_dentry); 2949 md->ext_csd_dentry = NULL; 2950 } 2951 2952 #else 2953 2954 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2955 { 2956 } 2957 2958 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2959 struct mmc_blk_data *md) 2960 { 2961 } 2962 2963 #endif /* CONFIG_DEBUG_FS */ 2964 2965 static int mmc_blk_probe(struct mmc_card *card) 2966 { 2967 struct mmc_blk_data *md; 2968 int ret = 0; 2969 2970 /* 2971 * Check that the card supports the command class(es) we need. 2972 */ 2973 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2974 return -ENODEV; 2975 2976 mmc_fixup_device(card, mmc_blk_fixups); 2977 2978 card->complete_wq = alloc_workqueue("mmc_complete", 2979 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2980 if (!card->complete_wq) { 2981 pr_err("Failed to create mmc completion workqueue"); 2982 return -ENOMEM; 2983 } 2984 2985 md = mmc_blk_alloc(card); 2986 if (IS_ERR(md)) { 2987 ret = PTR_ERR(md); 2988 goto out_free; 2989 } 2990 2991 ret = mmc_blk_alloc_parts(card, md); 2992 if (ret) 2993 goto out; 2994 2995 /* Add two debugfs entries */ 2996 mmc_blk_add_debugfs(card, md); 2997 2998 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2999 pm_runtime_use_autosuspend(&card->dev); 3000 3001 /* 3002 * Don't enable runtime PM for SD-combo cards here. Leave that 3003 * decision to be taken during the SDIO init sequence instead. 3004 */ 3005 if (!mmc_card_sd_combo(card)) { 3006 pm_runtime_set_active(&card->dev); 3007 pm_runtime_enable(&card->dev); 3008 } 3009 3010 return 0; 3011 3012 out: 3013 mmc_blk_remove_parts(card, md); 3014 mmc_blk_remove_req(md); 3015 out_free: 3016 destroy_workqueue(card->complete_wq); 3017 return ret; 3018 } 3019 3020 static void mmc_blk_remove(struct mmc_card *card) 3021 { 3022 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3023 3024 mmc_blk_remove_debugfs(card, md); 3025 mmc_blk_remove_parts(card, md); 3026 pm_runtime_get_sync(&card->dev); 3027 if (md->part_curr != md->part_type) { 3028 mmc_claim_host(card->host); 3029 mmc_blk_part_switch(card, md->part_type); 3030 mmc_release_host(card->host); 3031 } 3032 if (!mmc_card_sd_combo(card)) 3033 pm_runtime_disable(&card->dev); 3034 pm_runtime_put_noidle(&card->dev); 3035 mmc_blk_remove_req(md); 3036 destroy_workqueue(card->complete_wq); 3037 } 3038 3039 static int _mmc_blk_suspend(struct mmc_card *card) 3040 { 3041 struct mmc_blk_data *part_md; 3042 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3043 3044 if (md) { 3045 mmc_queue_suspend(&md->queue); 3046 list_for_each_entry(part_md, &md->part, part) { 3047 mmc_queue_suspend(&part_md->queue); 3048 } 3049 } 3050 return 0; 3051 } 3052 3053 static void mmc_blk_shutdown(struct mmc_card *card) 3054 { 3055 _mmc_blk_suspend(card); 3056 } 3057 3058 #ifdef CONFIG_PM_SLEEP 3059 static int mmc_blk_suspend(struct device *dev) 3060 { 3061 struct mmc_card *card = mmc_dev_to_card(dev); 3062 3063 return _mmc_blk_suspend(card); 3064 } 3065 3066 static int mmc_blk_resume(struct device *dev) 3067 { 3068 struct mmc_blk_data *part_md; 3069 struct mmc_blk_data *md = dev_get_drvdata(dev); 3070 3071 if (md) { 3072 /* 3073 * Resume involves the card going into idle state, 3074 * so current partition is always the main one. 3075 */ 3076 md->part_curr = md->part_type; 3077 mmc_queue_resume(&md->queue); 3078 list_for_each_entry(part_md, &md->part, part) { 3079 mmc_queue_resume(&part_md->queue); 3080 } 3081 } 3082 return 0; 3083 } 3084 #endif 3085 3086 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3087 3088 static struct mmc_driver mmc_driver = { 3089 .drv = { 3090 .name = "mmcblk", 3091 .pm = &mmc_blk_pm_ops, 3092 }, 3093 .probe = mmc_blk_probe, 3094 .remove = mmc_blk_remove, 3095 .shutdown = mmc_blk_shutdown, 3096 }; 3097 3098 static int __init mmc_blk_init(void) 3099 { 3100 int res; 3101 3102 res = bus_register(&mmc_rpmb_bus_type); 3103 if (res < 0) { 3104 pr_err("mmcblk: could not register RPMB bus type\n"); 3105 return res; 3106 } 3107 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3108 if (res < 0) { 3109 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3110 goto out_bus_unreg; 3111 } 3112 3113 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3114 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3115 3116 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3117 3118 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3119 if (res) 3120 goto out_chrdev_unreg; 3121 3122 res = mmc_register_driver(&mmc_driver); 3123 if (res) 3124 goto out_blkdev_unreg; 3125 3126 return 0; 3127 3128 out_blkdev_unreg: 3129 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3130 out_chrdev_unreg: 3131 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3132 out_bus_unreg: 3133 bus_unregister(&mmc_rpmb_bus_type); 3134 return res; 3135 } 3136 3137 static void __exit mmc_blk_exit(void) 3138 { 3139 mmc_unregister_driver(&mmc_driver); 3140 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3141 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3142 bus_unregister(&mmc_rpmb_bus_type); 3143 } 3144 3145 module_init(mmc_blk_init); 3146 module_exit(mmc_blk_exit); 3147 3148 MODULE_LICENSE("GPL"); 3149 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3150