1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/cdev.h> 32 #include <linux/mutex.h> 33 #include <linux/scatterlist.h> 34 #include <linux/string_helpers.h> 35 #include <linux/delay.h> 36 #include <linux/capability.h> 37 #include <linux/compat.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/idr.h> 40 #include <linux/debugfs.h> 41 42 #include <linux/mmc/ioctl.h> 43 #include <linux/mmc/card.h> 44 #include <linux/mmc/host.h> 45 #include <linux/mmc/mmc.h> 46 #include <linux/mmc/sd.h> 47 48 #include <linux/uaccess.h> 49 50 #include "queue.h" 51 #include "block.h" 52 #include "core.h" 53 #include "card.h" 54 #include "host.h" 55 #include "bus.h" 56 #include "mmc_ops.h" 57 #include "quirks.h" 58 #include "sd_ops.h" 59 60 MODULE_ALIAS("mmc:block"); 61 #ifdef MODULE_PARAM_PREFIX 62 #undef MODULE_PARAM_PREFIX 63 #endif 64 #define MODULE_PARAM_PREFIX "mmcblk." 65 66 /* 67 * Set a 10 second timeout for polling write request busy state. Note, mmc core 68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 69 * second software timer to timeout the whole request, so 10 seconds should be 70 * ample. 71 */ 72 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 73 #define MMC_SANITIZE_REQ_TIMEOUT 240000 74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 76 77 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 78 (rq_data_dir(req) == WRITE)) 79 static DEFINE_MUTEX(block_mutex); 80 81 /* 82 * The defaults come from config options but can be overriden by module 83 * or bootarg options. 84 */ 85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 86 87 /* 88 * We've only got one major, so number of mmcblk devices is 89 * limited to (1 << 20) / number of minors per device. It is also 90 * limited by the MAX_DEVICES below. 91 */ 92 static int max_devices; 93 94 #define MAX_DEVICES 256 95 96 static DEFINE_IDA(mmc_blk_ida); 97 static DEFINE_IDA(mmc_rpmb_ida); 98 99 /* 100 * There is one mmc_blk_data per slot. 101 */ 102 struct mmc_blk_data { 103 struct device *parent; 104 struct gendisk *disk; 105 struct mmc_queue queue; 106 struct list_head part; 107 struct list_head rpmbs; 108 109 unsigned int flags; 110 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 111 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 112 113 unsigned int usage; 114 unsigned int read_only; 115 unsigned int part_type; 116 unsigned int reset_done; 117 #define MMC_BLK_READ BIT(0) 118 #define MMC_BLK_WRITE BIT(1) 119 #define MMC_BLK_DISCARD BIT(2) 120 #define MMC_BLK_SECDISCARD BIT(3) 121 #define MMC_BLK_CQE_RECOVERY BIT(4) 122 123 /* 124 * Only set in main mmc_blk_data associated 125 * with mmc_card with dev_set_drvdata, and keeps 126 * track of the current selected device partition. 127 */ 128 unsigned int part_curr; 129 struct device_attribute force_ro; 130 struct device_attribute power_ro_lock; 131 int area_type; 132 133 /* debugfs files (only in main mmc_blk_data) */ 134 struct dentry *status_dentry; 135 struct dentry *ext_csd_dentry; 136 }; 137 138 /* Device type for RPMB character devices */ 139 static dev_t mmc_rpmb_devt; 140 141 /* Bus type for RPMB character devices */ 142 static struct bus_type mmc_rpmb_bus_type = { 143 .name = "mmc_rpmb", 144 }; 145 146 /** 147 * struct mmc_rpmb_data - special RPMB device type for these areas 148 * @dev: the device for the RPMB area 149 * @chrdev: character device for the RPMB area 150 * @id: unique device ID number 151 * @part_index: partition index (0 on first) 152 * @md: parent MMC block device 153 * @node: list item, so we can put this device on a list 154 */ 155 struct mmc_rpmb_data { 156 struct device dev; 157 struct cdev chrdev; 158 int id; 159 unsigned int part_index; 160 struct mmc_blk_data *md; 161 struct list_head node; 162 }; 163 164 static DEFINE_MUTEX(open_lock); 165 166 module_param(perdev_minors, int, 0444); 167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 168 169 static inline int mmc_blk_part_switch(struct mmc_card *card, 170 unsigned int part_type); 171 172 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 173 { 174 struct mmc_blk_data *md; 175 176 mutex_lock(&open_lock); 177 md = disk->private_data; 178 if (md && md->usage == 0) 179 md = NULL; 180 if (md) 181 md->usage++; 182 mutex_unlock(&open_lock); 183 184 return md; 185 } 186 187 static inline int mmc_get_devidx(struct gendisk *disk) 188 { 189 int devidx = disk->first_minor / perdev_minors; 190 return devidx; 191 } 192 193 static void mmc_blk_put(struct mmc_blk_data *md) 194 { 195 mutex_lock(&open_lock); 196 md->usage--; 197 if (md->usage == 0) { 198 int devidx = mmc_get_devidx(md->disk); 199 blk_put_queue(md->queue.queue); 200 ida_simple_remove(&mmc_blk_ida, devidx); 201 put_disk(md->disk); 202 kfree(md); 203 } 204 mutex_unlock(&open_lock); 205 } 206 207 static ssize_t power_ro_lock_show(struct device *dev, 208 struct device_attribute *attr, char *buf) 209 { 210 int ret; 211 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 212 struct mmc_card *card = md->queue.card; 213 int locked = 0; 214 215 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 216 locked = 2; 217 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 218 locked = 1; 219 220 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 221 222 mmc_blk_put(md); 223 224 return ret; 225 } 226 227 static ssize_t power_ro_lock_store(struct device *dev, 228 struct device_attribute *attr, const char *buf, size_t count) 229 { 230 int ret; 231 struct mmc_blk_data *md, *part_md; 232 struct mmc_queue *mq; 233 struct request *req; 234 unsigned long set; 235 236 if (kstrtoul(buf, 0, &set)) 237 return -EINVAL; 238 239 if (set != 1) 240 return count; 241 242 md = mmc_blk_get(dev_to_disk(dev)); 243 mq = &md->queue; 244 245 /* Dispatch locking to the block layer */ 246 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0); 247 if (IS_ERR(req)) { 248 count = PTR_ERR(req); 249 goto out_put; 250 } 251 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 252 blk_execute_rq(mq->queue, NULL, req, 0); 253 ret = req_to_mmc_queue_req(req)->drv_op_result; 254 blk_put_request(req); 255 256 if (!ret) { 257 pr_info("%s: Locking boot partition ro until next power on\n", 258 md->disk->disk_name); 259 set_disk_ro(md->disk, 1); 260 261 list_for_each_entry(part_md, &md->part, part) 262 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 263 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 264 set_disk_ro(part_md->disk, 1); 265 } 266 } 267 out_put: 268 mmc_blk_put(md); 269 return count; 270 } 271 272 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 273 char *buf) 274 { 275 int ret; 276 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 277 278 ret = snprintf(buf, PAGE_SIZE, "%d\n", 279 get_disk_ro(dev_to_disk(dev)) ^ 280 md->read_only); 281 mmc_blk_put(md); 282 return ret; 283 } 284 285 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 286 const char *buf, size_t count) 287 { 288 int ret; 289 char *end; 290 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 291 unsigned long set = simple_strtoul(buf, &end, 0); 292 if (end == buf) { 293 ret = -EINVAL; 294 goto out; 295 } 296 297 set_disk_ro(dev_to_disk(dev), set || md->read_only); 298 ret = count; 299 out: 300 mmc_blk_put(md); 301 return ret; 302 } 303 304 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 305 { 306 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 307 int ret = -ENXIO; 308 309 mutex_lock(&block_mutex); 310 if (md) { 311 if (md->usage == 2) 312 check_disk_change(bdev); 313 ret = 0; 314 315 if ((mode & FMODE_WRITE) && md->read_only) { 316 mmc_blk_put(md); 317 ret = -EROFS; 318 } 319 } 320 mutex_unlock(&block_mutex); 321 322 return ret; 323 } 324 325 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 326 { 327 struct mmc_blk_data *md = disk->private_data; 328 329 mutex_lock(&block_mutex); 330 mmc_blk_put(md); 331 mutex_unlock(&block_mutex); 332 } 333 334 static int 335 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 336 { 337 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 338 geo->heads = 4; 339 geo->sectors = 16; 340 return 0; 341 } 342 343 struct mmc_blk_ioc_data { 344 struct mmc_ioc_cmd ic; 345 unsigned char *buf; 346 u64 buf_bytes; 347 struct mmc_rpmb_data *rpmb; 348 }; 349 350 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 351 struct mmc_ioc_cmd __user *user) 352 { 353 struct mmc_blk_ioc_data *idata; 354 int err; 355 356 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 357 if (!idata) { 358 err = -ENOMEM; 359 goto out; 360 } 361 362 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 363 err = -EFAULT; 364 goto idata_err; 365 } 366 367 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 368 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 369 err = -EOVERFLOW; 370 goto idata_err; 371 } 372 373 if (!idata->buf_bytes) { 374 idata->buf = NULL; 375 return idata; 376 } 377 378 idata->buf = memdup_user((void __user *)(unsigned long) 379 idata->ic.data_ptr, idata->buf_bytes); 380 if (IS_ERR(idata->buf)) { 381 err = PTR_ERR(idata->buf); 382 goto idata_err; 383 } 384 385 return idata; 386 387 idata_err: 388 kfree(idata); 389 out: 390 return ERR_PTR(err); 391 } 392 393 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 394 struct mmc_blk_ioc_data *idata) 395 { 396 struct mmc_ioc_cmd *ic = &idata->ic; 397 398 if (copy_to_user(&(ic_ptr->response), ic->response, 399 sizeof(ic->response))) 400 return -EFAULT; 401 402 if (!idata->ic.write_flag) { 403 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 404 idata->buf, idata->buf_bytes)) 405 return -EFAULT; 406 } 407 408 return 0; 409 } 410 411 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status, 412 u32 retries_max) 413 { 414 int err; 415 u32 retry_count = 0; 416 417 if (!status || !retries_max) 418 return -EINVAL; 419 420 do { 421 err = __mmc_send_status(card, status, 5); 422 if (err) 423 break; 424 425 if (!R1_STATUS(*status) && 426 (R1_CURRENT_STATE(*status) != R1_STATE_PRG)) 427 break; /* RPMB programming operation complete */ 428 429 /* 430 * Rechedule to give the MMC device a chance to continue 431 * processing the previous command without being polled too 432 * frequently. 433 */ 434 usleep_range(1000, 5000); 435 } while (++retry_count < retries_max); 436 437 if (retry_count == retries_max) 438 err = -EPERM; 439 440 return err; 441 } 442 443 static int ioctl_do_sanitize(struct mmc_card *card) 444 { 445 int err; 446 447 if (!mmc_can_sanitize(card)) { 448 pr_warn("%s: %s - SANITIZE is not supported\n", 449 mmc_hostname(card->host), __func__); 450 err = -EOPNOTSUPP; 451 goto out; 452 } 453 454 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n", 455 mmc_hostname(card->host), __func__); 456 457 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 458 EXT_CSD_SANITIZE_START, 1, 459 MMC_SANITIZE_REQ_TIMEOUT); 460 461 if (err) 462 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n", 463 mmc_hostname(card->host), __func__, err); 464 465 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host), 466 __func__); 467 out: 468 return err; 469 } 470 471 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 472 struct mmc_blk_ioc_data *idata) 473 { 474 struct mmc_command cmd = {}, sbc = {}; 475 struct mmc_data data = {}; 476 struct mmc_request mrq = {}; 477 struct scatterlist sg; 478 int err; 479 unsigned int target_part; 480 u32 status = 0; 481 482 if (!card || !md || !idata) 483 return -EINVAL; 484 485 /* 486 * The RPMB accesses comes in from the character device, so we 487 * need to target these explicitly. Else we just target the 488 * partition type for the block device the ioctl() was issued 489 * on. 490 */ 491 if (idata->rpmb) { 492 /* Support multiple RPMB partitions */ 493 target_part = idata->rpmb->part_index; 494 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 495 } else { 496 target_part = md->part_type; 497 } 498 499 cmd.opcode = idata->ic.opcode; 500 cmd.arg = idata->ic.arg; 501 cmd.flags = idata->ic.flags; 502 503 if (idata->buf_bytes) { 504 data.sg = &sg; 505 data.sg_len = 1; 506 data.blksz = idata->ic.blksz; 507 data.blocks = idata->ic.blocks; 508 509 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 510 511 if (idata->ic.write_flag) 512 data.flags = MMC_DATA_WRITE; 513 else 514 data.flags = MMC_DATA_READ; 515 516 /* data.flags must already be set before doing this. */ 517 mmc_set_data_timeout(&data, card); 518 519 /* Allow overriding the timeout_ns for empirical tuning. */ 520 if (idata->ic.data_timeout_ns) 521 data.timeout_ns = idata->ic.data_timeout_ns; 522 523 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 524 /* 525 * Pretend this is a data transfer and rely on the 526 * host driver to compute timeout. When all host 527 * drivers support cmd.cmd_timeout for R1B, this 528 * can be changed to: 529 * 530 * mrq.data = NULL; 531 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 532 */ 533 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 534 } 535 536 mrq.data = &data; 537 } 538 539 mrq.cmd = &cmd; 540 541 err = mmc_blk_part_switch(card, target_part); 542 if (err) 543 return err; 544 545 if (idata->ic.is_acmd) { 546 err = mmc_app_cmd(card->host, card); 547 if (err) 548 return err; 549 } 550 551 if (idata->rpmb) { 552 sbc.opcode = MMC_SET_BLOCK_COUNT; 553 /* 554 * We don't do any blockcount validation because the max size 555 * may be increased by a future standard. We just copy the 556 * 'Reliable Write' bit here. 557 */ 558 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 559 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 560 mrq.sbc = &sbc; 561 } 562 563 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 564 (cmd.opcode == MMC_SWITCH)) { 565 err = ioctl_do_sanitize(card); 566 567 if (err) 568 pr_err("%s: ioctl_do_sanitize() failed. err = %d", 569 __func__, err); 570 571 return err; 572 } 573 574 mmc_wait_for_req(card->host, &mrq); 575 576 if (cmd.error) { 577 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 578 __func__, cmd.error); 579 return cmd.error; 580 } 581 if (data.error) { 582 dev_err(mmc_dev(card->host), "%s: data error %d\n", 583 __func__, data.error); 584 return data.error; 585 } 586 587 /* 588 * Make sure the cache of the PARTITION_CONFIG register and 589 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 590 * changed it successfully. 591 */ 592 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 593 (cmd.opcode == MMC_SWITCH)) { 594 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 595 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 596 597 /* 598 * Update cache so the next mmc_blk_part_switch call operates 599 * on up-to-date data. 600 */ 601 card->ext_csd.part_config = value; 602 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 603 } 604 605 /* 606 * According to the SD specs, some commands require a delay after 607 * issuing the command. 608 */ 609 if (idata->ic.postsleep_min_us) 610 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 611 612 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 613 614 if (idata->rpmb) { 615 /* 616 * Ensure RPMB command has completed by polling CMD13 617 * "Send Status". 618 */ 619 err = ioctl_rpmb_card_status_poll(card, &status, 5); 620 if (err) 621 dev_err(mmc_dev(card->host), 622 "%s: Card Status=0x%08X, error %d\n", 623 __func__, status, err); 624 } 625 626 return err; 627 } 628 629 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 630 struct mmc_ioc_cmd __user *ic_ptr, 631 struct mmc_rpmb_data *rpmb) 632 { 633 struct mmc_blk_ioc_data *idata; 634 struct mmc_blk_ioc_data *idatas[1]; 635 struct mmc_queue *mq; 636 struct mmc_card *card; 637 int err = 0, ioc_err = 0; 638 struct request *req; 639 640 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 641 if (IS_ERR(idata)) 642 return PTR_ERR(idata); 643 /* This will be NULL on non-RPMB ioctl():s */ 644 idata->rpmb = rpmb; 645 646 card = md->queue.card; 647 if (IS_ERR(card)) { 648 err = PTR_ERR(card); 649 goto cmd_done; 650 } 651 652 /* 653 * Dispatch the ioctl() into the block request queue. 654 */ 655 mq = &md->queue; 656 req = blk_get_request(mq->queue, 657 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 658 if (IS_ERR(req)) { 659 err = PTR_ERR(req); 660 goto cmd_done; 661 } 662 idatas[0] = idata; 663 req_to_mmc_queue_req(req)->drv_op = 664 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 665 req_to_mmc_queue_req(req)->drv_op_data = idatas; 666 req_to_mmc_queue_req(req)->ioc_count = 1; 667 blk_execute_rq(mq->queue, NULL, req, 0); 668 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 669 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 670 blk_put_request(req); 671 672 cmd_done: 673 kfree(idata->buf); 674 kfree(idata); 675 return ioc_err ? ioc_err : err; 676 } 677 678 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 679 struct mmc_ioc_multi_cmd __user *user, 680 struct mmc_rpmb_data *rpmb) 681 { 682 struct mmc_blk_ioc_data **idata = NULL; 683 struct mmc_ioc_cmd __user *cmds = user->cmds; 684 struct mmc_card *card; 685 struct mmc_queue *mq; 686 int i, err = 0, ioc_err = 0; 687 __u64 num_of_cmds; 688 struct request *req; 689 690 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 691 sizeof(num_of_cmds))) 692 return -EFAULT; 693 694 if (!num_of_cmds) 695 return 0; 696 697 if (num_of_cmds > MMC_IOC_MAX_CMDS) 698 return -EINVAL; 699 700 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 701 if (!idata) 702 return -ENOMEM; 703 704 for (i = 0; i < num_of_cmds; i++) { 705 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 706 if (IS_ERR(idata[i])) { 707 err = PTR_ERR(idata[i]); 708 num_of_cmds = i; 709 goto cmd_err; 710 } 711 /* This will be NULL on non-RPMB ioctl():s */ 712 idata[i]->rpmb = rpmb; 713 } 714 715 card = md->queue.card; 716 if (IS_ERR(card)) { 717 err = PTR_ERR(card); 718 goto cmd_err; 719 } 720 721 722 /* 723 * Dispatch the ioctl()s into the block request queue. 724 */ 725 mq = &md->queue; 726 req = blk_get_request(mq->queue, 727 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 728 if (IS_ERR(req)) { 729 err = PTR_ERR(req); 730 goto cmd_err; 731 } 732 req_to_mmc_queue_req(req)->drv_op = 733 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 734 req_to_mmc_queue_req(req)->drv_op_data = idata; 735 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 736 blk_execute_rq(mq->queue, NULL, req, 0); 737 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 738 739 /* copy to user if data and response */ 740 for (i = 0; i < num_of_cmds && !err; i++) 741 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 742 743 blk_put_request(req); 744 745 cmd_err: 746 for (i = 0; i < num_of_cmds; i++) { 747 kfree(idata[i]->buf); 748 kfree(idata[i]); 749 } 750 kfree(idata); 751 return ioc_err ? ioc_err : err; 752 } 753 754 static int mmc_blk_check_blkdev(struct block_device *bdev) 755 { 756 /* 757 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 758 * whole block device, not on a partition. This prevents overspray 759 * between sibling partitions. 760 */ 761 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 762 return -EPERM; 763 return 0; 764 } 765 766 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 767 unsigned int cmd, unsigned long arg) 768 { 769 struct mmc_blk_data *md; 770 int ret; 771 772 switch (cmd) { 773 case MMC_IOC_CMD: 774 ret = mmc_blk_check_blkdev(bdev); 775 if (ret) 776 return ret; 777 md = mmc_blk_get(bdev->bd_disk); 778 if (!md) 779 return -EINVAL; 780 ret = mmc_blk_ioctl_cmd(md, 781 (struct mmc_ioc_cmd __user *)arg, 782 NULL); 783 mmc_blk_put(md); 784 return ret; 785 case MMC_IOC_MULTI_CMD: 786 ret = mmc_blk_check_blkdev(bdev); 787 if (ret) 788 return ret; 789 md = mmc_blk_get(bdev->bd_disk); 790 if (!md) 791 return -EINVAL; 792 ret = mmc_blk_ioctl_multi_cmd(md, 793 (struct mmc_ioc_multi_cmd __user *)arg, 794 NULL); 795 mmc_blk_put(md); 796 return ret; 797 default: 798 return -EINVAL; 799 } 800 } 801 802 #ifdef CONFIG_COMPAT 803 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 804 unsigned int cmd, unsigned long arg) 805 { 806 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 807 } 808 #endif 809 810 static const struct block_device_operations mmc_bdops = { 811 .open = mmc_blk_open, 812 .release = mmc_blk_release, 813 .getgeo = mmc_blk_getgeo, 814 .owner = THIS_MODULE, 815 .ioctl = mmc_blk_ioctl, 816 #ifdef CONFIG_COMPAT 817 .compat_ioctl = mmc_blk_compat_ioctl, 818 #endif 819 }; 820 821 static int mmc_blk_part_switch_pre(struct mmc_card *card, 822 unsigned int part_type) 823 { 824 int ret = 0; 825 826 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 827 if (card->ext_csd.cmdq_en) { 828 ret = mmc_cmdq_disable(card); 829 if (ret) 830 return ret; 831 } 832 mmc_retune_pause(card->host); 833 } 834 835 return ret; 836 } 837 838 static int mmc_blk_part_switch_post(struct mmc_card *card, 839 unsigned int part_type) 840 { 841 int ret = 0; 842 843 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 844 mmc_retune_unpause(card->host); 845 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 846 ret = mmc_cmdq_enable(card); 847 } 848 849 return ret; 850 } 851 852 static inline int mmc_blk_part_switch(struct mmc_card *card, 853 unsigned int part_type) 854 { 855 int ret = 0; 856 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 857 858 if (main_md->part_curr == part_type) 859 return 0; 860 861 if (mmc_card_mmc(card)) { 862 u8 part_config = card->ext_csd.part_config; 863 864 ret = mmc_blk_part_switch_pre(card, part_type); 865 if (ret) 866 return ret; 867 868 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 869 part_config |= part_type; 870 871 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 872 EXT_CSD_PART_CONFIG, part_config, 873 card->ext_csd.part_time); 874 if (ret) { 875 mmc_blk_part_switch_post(card, part_type); 876 return ret; 877 } 878 879 card->ext_csd.part_config = part_config; 880 881 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 882 } 883 884 main_md->part_curr = part_type; 885 return ret; 886 } 887 888 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 889 { 890 int err; 891 u32 result; 892 __be32 *blocks; 893 894 struct mmc_request mrq = {}; 895 struct mmc_command cmd = {}; 896 struct mmc_data data = {}; 897 898 struct scatterlist sg; 899 900 cmd.opcode = MMC_APP_CMD; 901 cmd.arg = card->rca << 16; 902 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 903 904 err = mmc_wait_for_cmd(card->host, &cmd, 0); 905 if (err) 906 return err; 907 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 908 return -EIO; 909 910 memset(&cmd, 0, sizeof(struct mmc_command)); 911 912 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 913 cmd.arg = 0; 914 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 915 916 data.blksz = 4; 917 data.blocks = 1; 918 data.flags = MMC_DATA_READ; 919 data.sg = &sg; 920 data.sg_len = 1; 921 mmc_set_data_timeout(&data, card); 922 923 mrq.cmd = &cmd; 924 mrq.data = &data; 925 926 blocks = kmalloc(4, GFP_KERNEL); 927 if (!blocks) 928 return -ENOMEM; 929 930 sg_init_one(&sg, blocks, 4); 931 932 mmc_wait_for_req(card->host, &mrq); 933 934 result = ntohl(*blocks); 935 kfree(blocks); 936 937 if (cmd.error || data.error) 938 return -EIO; 939 940 *written_blocks = result; 941 942 return 0; 943 } 944 945 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 946 { 947 if (host->actual_clock) 948 return host->actual_clock / 1000; 949 950 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 951 if (host->ios.clock) 952 return host->ios.clock / 2000; 953 954 /* How can there be no clock */ 955 WARN_ON_ONCE(1); 956 return 100; /* 100 kHz is minimum possible value */ 957 } 958 959 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 960 struct mmc_data *data) 961 { 962 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 963 unsigned int khz; 964 965 if (data->timeout_clks) { 966 khz = mmc_blk_clock_khz(host); 967 ms += DIV_ROUND_UP(data->timeout_clks, khz); 968 } 969 970 return ms; 971 } 972 973 static inline bool mmc_blk_in_tran_state(u32 status) 974 { 975 /* 976 * Some cards mishandle the status bits, so make sure to check both the 977 * busy indication and the card state. 978 */ 979 return status & R1_READY_FOR_DATA && 980 (R1_CURRENT_STATE(status) == R1_STATE_TRAN); 981 } 982 983 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 984 struct request *req, u32 *resp_errs) 985 { 986 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 987 int err = 0; 988 u32 status; 989 990 do { 991 bool done = time_after(jiffies, timeout); 992 993 err = __mmc_send_status(card, &status, 5); 994 if (err) { 995 pr_err("%s: error %d requesting status\n", 996 req->rq_disk->disk_name, err); 997 return err; 998 } 999 1000 /* Accumulate any response error bits seen */ 1001 if (resp_errs) 1002 *resp_errs |= status; 1003 1004 /* 1005 * Timeout if the device never becomes ready for data and never 1006 * leaves the program state. 1007 */ 1008 if (done) { 1009 pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n", 1010 mmc_hostname(card->host), 1011 req->rq_disk->disk_name, __func__, status); 1012 return -ETIMEDOUT; 1013 } 1014 1015 /* 1016 * Some cards mishandle the status bits, 1017 * so make sure to check both the busy 1018 * indication and the card state. 1019 */ 1020 } while (!mmc_blk_in_tran_state(status)); 1021 1022 return err; 1023 } 1024 1025 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1026 int type) 1027 { 1028 int err; 1029 1030 if (md->reset_done & type) 1031 return -EEXIST; 1032 1033 md->reset_done |= type; 1034 err = mmc_hw_reset(host); 1035 /* Ensure we switch back to the correct partition */ 1036 if (err != -EOPNOTSUPP) { 1037 struct mmc_blk_data *main_md = 1038 dev_get_drvdata(&host->card->dev); 1039 int part_err; 1040 1041 main_md->part_curr = main_md->part_type; 1042 part_err = mmc_blk_part_switch(host->card, md->part_type); 1043 if (part_err) { 1044 /* 1045 * We have failed to get back into the correct 1046 * partition, so we need to abort the whole request. 1047 */ 1048 return -ENODEV; 1049 } 1050 } 1051 return err; 1052 } 1053 1054 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1055 { 1056 md->reset_done &= ~type; 1057 } 1058 1059 /* 1060 * The non-block commands come back from the block layer after it queued it and 1061 * processed it with all other requests and then they get issued in this 1062 * function. 1063 */ 1064 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1065 { 1066 struct mmc_queue_req *mq_rq; 1067 struct mmc_card *card = mq->card; 1068 struct mmc_blk_data *md = mq->blkdata; 1069 struct mmc_blk_ioc_data **idata; 1070 bool rpmb_ioctl; 1071 u8 **ext_csd; 1072 u32 status; 1073 int ret; 1074 int i; 1075 1076 mq_rq = req_to_mmc_queue_req(req); 1077 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1078 1079 switch (mq_rq->drv_op) { 1080 case MMC_DRV_OP_IOCTL: 1081 case MMC_DRV_OP_IOCTL_RPMB: 1082 idata = mq_rq->drv_op_data; 1083 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1084 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1085 if (ret) 1086 break; 1087 } 1088 /* Always switch back to main area after RPMB access */ 1089 if (rpmb_ioctl) 1090 mmc_blk_part_switch(card, 0); 1091 break; 1092 case MMC_DRV_OP_BOOT_WP: 1093 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1094 card->ext_csd.boot_ro_lock | 1095 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1096 card->ext_csd.part_time); 1097 if (ret) 1098 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1099 md->disk->disk_name, ret); 1100 else 1101 card->ext_csd.boot_ro_lock |= 1102 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1103 break; 1104 case MMC_DRV_OP_GET_CARD_STATUS: 1105 ret = mmc_send_status(card, &status); 1106 if (!ret) 1107 ret = status; 1108 break; 1109 case MMC_DRV_OP_GET_EXT_CSD: 1110 ext_csd = mq_rq->drv_op_data; 1111 ret = mmc_get_ext_csd(card, ext_csd); 1112 break; 1113 default: 1114 pr_err("%s: unknown driver specific operation\n", 1115 md->disk->disk_name); 1116 ret = -EINVAL; 1117 break; 1118 } 1119 mq_rq->drv_op_result = ret; 1120 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1121 } 1122 1123 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1124 { 1125 struct mmc_blk_data *md = mq->blkdata; 1126 struct mmc_card *card = md->queue.card; 1127 unsigned int from, nr, arg; 1128 int err = 0, type = MMC_BLK_DISCARD; 1129 blk_status_t status = BLK_STS_OK; 1130 1131 if (!mmc_can_erase(card)) { 1132 status = BLK_STS_NOTSUPP; 1133 goto fail; 1134 } 1135 1136 from = blk_rq_pos(req); 1137 nr = blk_rq_sectors(req); 1138 1139 if (mmc_can_discard(card)) 1140 arg = MMC_DISCARD_ARG; 1141 else if (mmc_can_trim(card)) 1142 arg = MMC_TRIM_ARG; 1143 else 1144 arg = MMC_ERASE_ARG; 1145 do { 1146 err = 0; 1147 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1148 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1149 INAND_CMD38_ARG_EXT_CSD, 1150 arg == MMC_TRIM_ARG ? 1151 INAND_CMD38_ARG_TRIM : 1152 INAND_CMD38_ARG_ERASE, 1153 0); 1154 } 1155 if (!err) 1156 err = mmc_erase(card, from, nr, arg); 1157 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1158 if (err) 1159 status = BLK_STS_IOERR; 1160 else 1161 mmc_blk_reset_success(md, type); 1162 fail: 1163 blk_mq_end_request(req, status); 1164 } 1165 1166 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1167 struct request *req) 1168 { 1169 struct mmc_blk_data *md = mq->blkdata; 1170 struct mmc_card *card = md->queue.card; 1171 unsigned int from, nr, arg; 1172 int err = 0, type = MMC_BLK_SECDISCARD; 1173 blk_status_t status = BLK_STS_OK; 1174 1175 if (!(mmc_can_secure_erase_trim(card))) { 1176 status = BLK_STS_NOTSUPP; 1177 goto out; 1178 } 1179 1180 from = blk_rq_pos(req); 1181 nr = blk_rq_sectors(req); 1182 1183 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1184 arg = MMC_SECURE_TRIM1_ARG; 1185 else 1186 arg = MMC_SECURE_ERASE_ARG; 1187 1188 retry: 1189 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1190 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1191 INAND_CMD38_ARG_EXT_CSD, 1192 arg == MMC_SECURE_TRIM1_ARG ? 1193 INAND_CMD38_ARG_SECTRIM1 : 1194 INAND_CMD38_ARG_SECERASE, 1195 0); 1196 if (err) 1197 goto out_retry; 1198 } 1199 1200 err = mmc_erase(card, from, nr, arg); 1201 if (err == -EIO) 1202 goto out_retry; 1203 if (err) { 1204 status = BLK_STS_IOERR; 1205 goto out; 1206 } 1207 1208 if (arg == MMC_SECURE_TRIM1_ARG) { 1209 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1210 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1211 INAND_CMD38_ARG_EXT_CSD, 1212 INAND_CMD38_ARG_SECTRIM2, 1213 0); 1214 if (err) 1215 goto out_retry; 1216 } 1217 1218 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1219 if (err == -EIO) 1220 goto out_retry; 1221 if (err) { 1222 status = BLK_STS_IOERR; 1223 goto out; 1224 } 1225 } 1226 1227 out_retry: 1228 if (err && !mmc_blk_reset(md, card->host, type)) 1229 goto retry; 1230 if (!err) 1231 mmc_blk_reset_success(md, type); 1232 out: 1233 blk_mq_end_request(req, status); 1234 } 1235 1236 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1237 { 1238 struct mmc_blk_data *md = mq->blkdata; 1239 struct mmc_card *card = md->queue.card; 1240 int ret = 0; 1241 1242 ret = mmc_flush_cache(card); 1243 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1244 } 1245 1246 /* 1247 * Reformat current write as a reliable write, supporting 1248 * both legacy and the enhanced reliable write MMC cards. 1249 * In each transfer we'll handle only as much as a single 1250 * reliable write can handle, thus finish the request in 1251 * partial completions. 1252 */ 1253 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1254 struct mmc_card *card, 1255 struct request *req) 1256 { 1257 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1258 /* Legacy mode imposes restrictions on transfers. */ 1259 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1260 brq->data.blocks = 1; 1261 1262 if (brq->data.blocks > card->ext_csd.rel_sectors) 1263 brq->data.blocks = card->ext_csd.rel_sectors; 1264 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1265 brq->data.blocks = 1; 1266 } 1267 } 1268 1269 #define CMD_ERRORS_EXCL_OOR \ 1270 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1271 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1272 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1273 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1274 R1_CC_ERROR | /* Card controller error */ \ 1275 R1_ERROR) /* General/unknown error */ 1276 1277 #define CMD_ERRORS \ 1278 (CMD_ERRORS_EXCL_OOR | \ 1279 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1280 1281 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1282 { 1283 u32 val; 1284 1285 /* 1286 * Per the SD specification(physical layer version 4.10)[1], 1287 * section 4.3.3, it explicitly states that "When the last 1288 * block of user area is read using CMD18, the host should 1289 * ignore OUT_OF_RANGE error that may occur even the sequence 1290 * is correct". And JESD84-B51 for eMMC also has a similar 1291 * statement on section 6.8.3. 1292 * 1293 * Multiple block read/write could be done by either predefined 1294 * method, namely CMD23, or open-ending mode. For open-ending mode, 1295 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1296 * 1297 * However the spec[1] doesn't tell us whether we should also 1298 * ignore that for predefined method. But per the spec[1], section 1299 * 4.15 Set Block Count Command, it says"If illegal block count 1300 * is set, out of range error will be indicated during read/write 1301 * operation (For example, data transfer is stopped at user area 1302 * boundary)." In another word, we could expect a out of range error 1303 * in the response for the following CMD18/25. And if argument of 1304 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1305 * we could also expect to get a -ETIMEDOUT or any error number from 1306 * the host drivers due to missing data response(for write)/data(for 1307 * read), as the cards will stop the data transfer by itself per the 1308 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1309 */ 1310 1311 if (!brq->stop.error) { 1312 bool oor_with_open_end; 1313 /* If there is no error yet, check R1 response */ 1314 1315 val = brq->stop.resp[0] & CMD_ERRORS; 1316 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1317 1318 if (val && !oor_with_open_end) 1319 brq->stop.error = -EIO; 1320 } 1321 } 1322 1323 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1324 int disable_multi, bool *do_rel_wr_p, 1325 bool *do_data_tag_p) 1326 { 1327 struct mmc_blk_data *md = mq->blkdata; 1328 struct mmc_card *card = md->queue.card; 1329 struct mmc_blk_request *brq = &mqrq->brq; 1330 struct request *req = mmc_queue_req_to_req(mqrq); 1331 bool do_rel_wr, do_data_tag; 1332 1333 /* 1334 * Reliable writes are used to implement Forced Unit Access and 1335 * are supported only on MMCs. 1336 */ 1337 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1338 rq_data_dir(req) == WRITE && 1339 (md->flags & MMC_BLK_REL_WR); 1340 1341 memset(brq, 0, sizeof(struct mmc_blk_request)); 1342 1343 brq->mrq.data = &brq->data; 1344 brq->mrq.tag = req->tag; 1345 1346 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1347 brq->stop.arg = 0; 1348 1349 if (rq_data_dir(req) == READ) { 1350 brq->data.flags = MMC_DATA_READ; 1351 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1352 } else { 1353 brq->data.flags = MMC_DATA_WRITE; 1354 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1355 } 1356 1357 brq->data.blksz = 512; 1358 brq->data.blocks = blk_rq_sectors(req); 1359 brq->data.blk_addr = blk_rq_pos(req); 1360 1361 /* 1362 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1363 * The eMMC will give "high" priority tasks priority over "simple" 1364 * priority tasks. Here we always set "simple" priority by not setting 1365 * MMC_DATA_PRIO. 1366 */ 1367 1368 /* 1369 * The block layer doesn't support all sector count 1370 * restrictions, so we need to be prepared for too big 1371 * requests. 1372 */ 1373 if (brq->data.blocks > card->host->max_blk_count) 1374 brq->data.blocks = card->host->max_blk_count; 1375 1376 if (brq->data.blocks > 1) { 1377 /* 1378 * Some SD cards in SPI mode return a CRC error or even lock up 1379 * completely when trying to read the last block using a 1380 * multiblock read command. 1381 */ 1382 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1383 (blk_rq_pos(req) + blk_rq_sectors(req) == 1384 get_capacity(md->disk))) 1385 brq->data.blocks--; 1386 1387 /* 1388 * After a read error, we redo the request one sector 1389 * at a time in order to accurately determine which 1390 * sectors can be read successfully. 1391 */ 1392 if (disable_multi) 1393 brq->data.blocks = 1; 1394 1395 /* 1396 * Some controllers have HW issues while operating 1397 * in multiple I/O mode 1398 */ 1399 if (card->host->ops->multi_io_quirk) 1400 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1401 (rq_data_dir(req) == READ) ? 1402 MMC_DATA_READ : MMC_DATA_WRITE, 1403 brq->data.blocks); 1404 } 1405 1406 if (do_rel_wr) { 1407 mmc_apply_rel_rw(brq, card, req); 1408 brq->data.flags |= MMC_DATA_REL_WR; 1409 } 1410 1411 /* 1412 * Data tag is used only during writing meta data to speed 1413 * up write and any subsequent read of this meta data 1414 */ 1415 do_data_tag = card->ext_csd.data_tag_unit_size && 1416 (req->cmd_flags & REQ_META) && 1417 (rq_data_dir(req) == WRITE) && 1418 ((brq->data.blocks * brq->data.blksz) >= 1419 card->ext_csd.data_tag_unit_size); 1420 1421 if (do_data_tag) 1422 brq->data.flags |= MMC_DATA_DAT_TAG; 1423 1424 mmc_set_data_timeout(&brq->data, card); 1425 1426 brq->data.sg = mqrq->sg; 1427 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1428 1429 /* 1430 * Adjust the sg list so it is the same size as the 1431 * request. 1432 */ 1433 if (brq->data.blocks != blk_rq_sectors(req)) { 1434 int i, data_size = brq->data.blocks << 9; 1435 struct scatterlist *sg; 1436 1437 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1438 data_size -= sg->length; 1439 if (data_size <= 0) { 1440 sg->length += data_size; 1441 i++; 1442 break; 1443 } 1444 } 1445 brq->data.sg_len = i; 1446 } 1447 1448 if (do_rel_wr_p) 1449 *do_rel_wr_p = do_rel_wr; 1450 1451 if (do_data_tag_p) 1452 *do_data_tag_p = do_data_tag; 1453 } 1454 1455 #define MMC_CQE_RETRIES 2 1456 1457 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1458 { 1459 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1460 struct mmc_request *mrq = &mqrq->brq.mrq; 1461 struct request_queue *q = req->q; 1462 struct mmc_host *host = mq->card->host; 1463 unsigned long flags; 1464 bool put_card; 1465 int err; 1466 1467 mmc_cqe_post_req(host, mrq); 1468 1469 if (mrq->cmd && mrq->cmd->error) 1470 err = mrq->cmd->error; 1471 else if (mrq->data && mrq->data->error) 1472 err = mrq->data->error; 1473 else 1474 err = 0; 1475 1476 if (err) { 1477 if (mqrq->retries++ < MMC_CQE_RETRIES) 1478 blk_mq_requeue_request(req, true); 1479 else 1480 blk_mq_end_request(req, BLK_STS_IOERR); 1481 } else if (mrq->data) { 1482 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1483 blk_mq_requeue_request(req, true); 1484 else 1485 __blk_mq_end_request(req, BLK_STS_OK); 1486 } else { 1487 blk_mq_end_request(req, BLK_STS_OK); 1488 } 1489 1490 spin_lock_irqsave(&mq->lock, flags); 1491 1492 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1493 1494 put_card = (mmc_tot_in_flight(mq) == 0); 1495 1496 mmc_cqe_check_busy(mq); 1497 1498 spin_unlock_irqrestore(&mq->lock, flags); 1499 1500 if (!mq->cqe_busy) 1501 blk_mq_run_hw_queues(q, true); 1502 1503 if (put_card) 1504 mmc_put_card(mq->card, &mq->ctx); 1505 } 1506 1507 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1508 { 1509 struct mmc_card *card = mq->card; 1510 struct mmc_host *host = card->host; 1511 int err; 1512 1513 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1514 1515 err = mmc_cqe_recovery(host); 1516 if (err) 1517 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1518 else 1519 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1520 1521 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1522 } 1523 1524 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1525 { 1526 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1527 brq.mrq); 1528 struct request *req = mmc_queue_req_to_req(mqrq); 1529 struct request_queue *q = req->q; 1530 struct mmc_queue *mq = q->queuedata; 1531 1532 /* 1533 * Block layer timeouts race with completions which means the normal 1534 * completion path cannot be used during recovery. 1535 */ 1536 if (mq->in_recovery) 1537 mmc_blk_cqe_complete_rq(mq, req); 1538 else 1539 blk_mq_complete_request(req); 1540 } 1541 1542 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1543 { 1544 mrq->done = mmc_blk_cqe_req_done; 1545 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1546 1547 return mmc_cqe_start_req(host, mrq); 1548 } 1549 1550 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1551 struct request *req) 1552 { 1553 struct mmc_blk_request *brq = &mqrq->brq; 1554 1555 memset(brq, 0, sizeof(*brq)); 1556 1557 brq->mrq.cmd = &brq->cmd; 1558 brq->mrq.tag = req->tag; 1559 1560 return &brq->mrq; 1561 } 1562 1563 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1564 { 1565 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1566 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1567 1568 mrq->cmd->opcode = MMC_SWITCH; 1569 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1570 (EXT_CSD_FLUSH_CACHE << 16) | 1571 (1 << 8) | 1572 EXT_CSD_CMD_SET_NORMAL; 1573 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1574 1575 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1576 } 1577 1578 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1579 { 1580 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1581 1582 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1583 1584 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1585 } 1586 1587 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1588 struct mmc_card *card, 1589 int disable_multi, 1590 struct mmc_queue *mq) 1591 { 1592 u32 readcmd, writecmd; 1593 struct mmc_blk_request *brq = &mqrq->brq; 1594 struct request *req = mmc_queue_req_to_req(mqrq); 1595 struct mmc_blk_data *md = mq->blkdata; 1596 bool do_rel_wr, do_data_tag; 1597 1598 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1599 1600 brq->mrq.cmd = &brq->cmd; 1601 1602 brq->cmd.arg = blk_rq_pos(req); 1603 if (!mmc_card_blockaddr(card)) 1604 brq->cmd.arg <<= 9; 1605 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1606 1607 if (brq->data.blocks > 1 || do_rel_wr) { 1608 /* SPI multiblock writes terminate using a special 1609 * token, not a STOP_TRANSMISSION request. 1610 */ 1611 if (!mmc_host_is_spi(card->host) || 1612 rq_data_dir(req) == READ) 1613 brq->mrq.stop = &brq->stop; 1614 readcmd = MMC_READ_MULTIPLE_BLOCK; 1615 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1616 } else { 1617 brq->mrq.stop = NULL; 1618 readcmd = MMC_READ_SINGLE_BLOCK; 1619 writecmd = MMC_WRITE_BLOCK; 1620 } 1621 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1622 1623 /* 1624 * Pre-defined multi-block transfers are preferable to 1625 * open ended-ones (and necessary for reliable writes). 1626 * However, it is not sufficient to just send CMD23, 1627 * and avoid the final CMD12, as on an error condition 1628 * CMD12 (stop) needs to be sent anyway. This, coupled 1629 * with Auto-CMD23 enhancements provided by some 1630 * hosts, means that the complexity of dealing 1631 * with this is best left to the host. If CMD23 is 1632 * supported by card and host, we'll fill sbc in and let 1633 * the host deal with handling it correctly. This means 1634 * that for hosts that don't expose MMC_CAP_CMD23, no 1635 * change of behavior will be observed. 1636 * 1637 * N.B: Some MMC cards experience perf degradation. 1638 * We'll avoid using CMD23-bounded multiblock writes for 1639 * these, while retaining features like reliable writes. 1640 */ 1641 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1642 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1643 do_data_tag)) { 1644 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1645 brq->sbc.arg = brq->data.blocks | 1646 (do_rel_wr ? (1 << 31) : 0) | 1647 (do_data_tag ? (1 << 29) : 0); 1648 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1649 brq->mrq.sbc = &brq->sbc; 1650 } 1651 } 1652 1653 #define MMC_MAX_RETRIES 5 1654 #define MMC_DATA_RETRIES 2 1655 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1656 1657 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1658 { 1659 struct mmc_command cmd = { 1660 .opcode = MMC_STOP_TRANSMISSION, 1661 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1662 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1663 .busy_timeout = timeout, 1664 }; 1665 1666 return mmc_wait_for_cmd(card->host, &cmd, 5); 1667 } 1668 1669 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1670 { 1671 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1672 struct mmc_blk_request *brq = &mqrq->brq; 1673 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1674 int err; 1675 1676 mmc_retune_hold_now(card->host); 1677 1678 mmc_blk_send_stop(card, timeout); 1679 1680 err = card_busy_detect(card, timeout, req, NULL); 1681 1682 mmc_retune_release(card->host); 1683 1684 return err; 1685 } 1686 1687 #define MMC_READ_SINGLE_RETRIES 2 1688 1689 /* Single sector read during recovery */ 1690 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1691 { 1692 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1693 struct mmc_request *mrq = &mqrq->brq.mrq; 1694 struct mmc_card *card = mq->card; 1695 struct mmc_host *host = card->host; 1696 blk_status_t error = BLK_STS_OK; 1697 int retries = 0; 1698 1699 do { 1700 u32 status; 1701 int err; 1702 1703 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1704 1705 mmc_wait_for_req(host, mrq); 1706 1707 err = mmc_send_status(card, &status); 1708 if (err) 1709 goto error_exit; 1710 1711 if (!mmc_host_is_spi(host) && 1712 !mmc_blk_in_tran_state(status)) { 1713 err = mmc_blk_fix_state(card, req); 1714 if (err) 1715 goto error_exit; 1716 } 1717 1718 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES) 1719 continue; 1720 1721 retries = 0; 1722 1723 if (mrq->cmd->error || 1724 mrq->data->error || 1725 (!mmc_host_is_spi(host) && 1726 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1727 error = BLK_STS_IOERR; 1728 else 1729 error = BLK_STS_OK; 1730 1731 } while (blk_update_request(req, error, 512)); 1732 1733 return; 1734 1735 error_exit: 1736 mrq->data->bytes_xfered = 0; 1737 blk_update_request(req, BLK_STS_IOERR, 512); 1738 /* Let it try the remaining request again */ 1739 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1740 mqrq->retries = MMC_MAX_RETRIES - 1; 1741 } 1742 1743 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1744 { 1745 return !!brq->mrq.sbc; 1746 } 1747 1748 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1749 { 1750 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1751 } 1752 1753 /* 1754 * Check for errors the host controller driver might not have seen such as 1755 * response mode errors or invalid card state. 1756 */ 1757 static bool mmc_blk_status_error(struct request *req, u32 status) 1758 { 1759 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1760 struct mmc_blk_request *brq = &mqrq->brq; 1761 struct mmc_queue *mq = req->q->queuedata; 1762 u32 stop_err_bits; 1763 1764 if (mmc_host_is_spi(mq->card->host)) 1765 return false; 1766 1767 stop_err_bits = mmc_blk_stop_err_bits(brq); 1768 1769 return brq->cmd.resp[0] & CMD_ERRORS || 1770 brq->stop.resp[0] & stop_err_bits || 1771 status & stop_err_bits || 1772 (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status)); 1773 } 1774 1775 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1776 { 1777 return !brq->sbc.error && !brq->cmd.error && 1778 !(brq->cmd.resp[0] & CMD_ERRORS); 1779 } 1780 1781 /* 1782 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1783 * policy: 1784 * 1. A request that has transferred at least some data is considered 1785 * successful and will be requeued if there is remaining data to 1786 * transfer. 1787 * 2. Otherwise the number of retries is incremented and the request 1788 * will be requeued if there are remaining retries. 1789 * 3. Otherwise the request will be errored out. 1790 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1791 * mqrq->retries. So there are only 4 possible actions here: 1792 * 1. do not accept the bytes_xfered value i.e. set it to zero 1793 * 2. change mqrq->retries to determine the number of retries 1794 * 3. try to reset the card 1795 * 4. read one sector at a time 1796 */ 1797 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1798 { 1799 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1800 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1801 struct mmc_blk_request *brq = &mqrq->brq; 1802 struct mmc_blk_data *md = mq->blkdata; 1803 struct mmc_card *card = mq->card; 1804 u32 status; 1805 u32 blocks; 1806 int err; 1807 1808 /* 1809 * Some errors the host driver might not have seen. Set the number of 1810 * bytes transferred to zero in that case. 1811 */ 1812 err = __mmc_send_status(card, &status, 0); 1813 if (err || mmc_blk_status_error(req, status)) 1814 brq->data.bytes_xfered = 0; 1815 1816 mmc_retune_release(card->host); 1817 1818 /* 1819 * Try again to get the status. This also provides an opportunity for 1820 * re-tuning. 1821 */ 1822 if (err) 1823 err = __mmc_send_status(card, &status, 0); 1824 1825 /* 1826 * Nothing more to do after the number of bytes transferred has been 1827 * updated and there is no card. 1828 */ 1829 if (err && mmc_detect_card_removed(card->host)) 1830 return; 1831 1832 /* Try to get back to "tran" state */ 1833 if (!mmc_host_is_spi(mq->card->host) && 1834 (err || !mmc_blk_in_tran_state(status))) 1835 err = mmc_blk_fix_state(mq->card, req); 1836 1837 /* 1838 * Special case for SD cards where the card might record the number of 1839 * blocks written. 1840 */ 1841 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1842 rq_data_dir(req) == WRITE) { 1843 if (mmc_sd_num_wr_blocks(card, &blocks)) 1844 brq->data.bytes_xfered = 0; 1845 else 1846 brq->data.bytes_xfered = blocks << 9; 1847 } 1848 1849 /* Reset if the card is in a bad state */ 1850 if (!mmc_host_is_spi(mq->card->host) && 1851 err && mmc_blk_reset(md, card->host, type)) { 1852 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name); 1853 mqrq->retries = MMC_NO_RETRIES; 1854 return; 1855 } 1856 1857 /* 1858 * If anything was done, just return and if there is anything remaining 1859 * on the request it will get requeued. 1860 */ 1861 if (brq->data.bytes_xfered) 1862 return; 1863 1864 /* Reset before last retry */ 1865 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1866 mmc_blk_reset(md, card->host, type); 1867 1868 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1869 if (brq->sbc.error || brq->cmd.error) 1870 return; 1871 1872 /* Reduce the remaining retries for data errors */ 1873 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1874 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1875 return; 1876 } 1877 1878 /* FIXME: Missing single sector read for large sector size */ 1879 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1880 brq->data.blocks > 1) { 1881 /* Read one sector at a time */ 1882 mmc_blk_read_single(mq, req); 1883 return; 1884 } 1885 } 1886 1887 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1888 { 1889 mmc_blk_eval_resp_error(brq); 1890 1891 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1892 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1893 } 1894 1895 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1896 { 1897 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1898 u32 status = 0; 1899 int err; 1900 1901 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) 1902 return 0; 1903 1904 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status); 1905 1906 /* 1907 * Do not assume data transferred correctly if there are any error bits 1908 * set. 1909 */ 1910 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1911 mqrq->brq.data.bytes_xfered = 0; 1912 err = err ? err : -EIO; 1913 } 1914 1915 /* Copy the exception bit so it will be seen later on */ 1916 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT) 1917 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1918 1919 return err; 1920 } 1921 1922 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1923 struct request *req) 1924 { 1925 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1926 1927 mmc_blk_reset_success(mq->blkdata, type); 1928 } 1929 1930 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1931 { 1932 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1933 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1934 1935 if (nr_bytes) { 1936 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1937 blk_mq_requeue_request(req, true); 1938 else 1939 __blk_mq_end_request(req, BLK_STS_OK); 1940 } else if (!blk_rq_bytes(req)) { 1941 __blk_mq_end_request(req, BLK_STS_IOERR); 1942 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1943 blk_mq_requeue_request(req, true); 1944 } else { 1945 if (mmc_card_removed(mq->card)) 1946 req->rq_flags |= RQF_QUIET; 1947 blk_mq_end_request(req, BLK_STS_IOERR); 1948 } 1949 } 1950 1951 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1952 struct mmc_queue_req *mqrq) 1953 { 1954 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1955 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1956 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1957 } 1958 1959 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 1960 struct mmc_queue_req *mqrq) 1961 { 1962 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 1963 mmc_run_bkops(mq->card); 1964 } 1965 1966 void mmc_blk_mq_complete(struct request *req) 1967 { 1968 struct mmc_queue *mq = req->q->queuedata; 1969 1970 if (mq->use_cqe) 1971 mmc_blk_cqe_complete_rq(mq, req); 1972 else 1973 mmc_blk_mq_complete_rq(mq, req); 1974 } 1975 1976 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 1977 struct request *req) 1978 { 1979 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1980 struct mmc_host *host = mq->card->host; 1981 1982 if (mmc_blk_rq_error(&mqrq->brq) || 1983 mmc_blk_card_busy(mq->card, req)) { 1984 mmc_blk_mq_rw_recovery(mq, req); 1985 } else { 1986 mmc_blk_rw_reset_success(mq, req); 1987 mmc_retune_release(host); 1988 } 1989 1990 mmc_blk_urgent_bkops(mq, mqrq); 1991 } 1992 1993 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 1994 { 1995 unsigned long flags; 1996 bool put_card; 1997 1998 spin_lock_irqsave(&mq->lock, flags); 1999 2000 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 2001 2002 put_card = (mmc_tot_in_flight(mq) == 0); 2003 2004 spin_unlock_irqrestore(&mq->lock, flags); 2005 2006 if (put_card) 2007 mmc_put_card(mq->card, &mq->ctx); 2008 } 2009 2010 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req) 2011 { 2012 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2013 struct mmc_request *mrq = &mqrq->brq.mrq; 2014 struct mmc_host *host = mq->card->host; 2015 2016 mmc_post_req(host, mrq, 0); 2017 2018 /* 2019 * Block layer timeouts race with completions which means the normal 2020 * completion path cannot be used during recovery. 2021 */ 2022 if (mq->in_recovery) 2023 mmc_blk_mq_complete_rq(mq, req); 2024 else 2025 blk_mq_complete_request(req); 2026 2027 mmc_blk_mq_dec_in_flight(mq, req); 2028 } 2029 2030 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2031 { 2032 struct request *req = mq->recovery_req; 2033 struct mmc_host *host = mq->card->host; 2034 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2035 2036 mq->recovery_req = NULL; 2037 mq->rw_wait = false; 2038 2039 if (mmc_blk_rq_error(&mqrq->brq)) { 2040 mmc_retune_hold_now(host); 2041 mmc_blk_mq_rw_recovery(mq, req); 2042 } 2043 2044 mmc_blk_urgent_bkops(mq, mqrq); 2045 2046 mmc_blk_mq_post_req(mq, req); 2047 } 2048 2049 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2050 struct request **prev_req) 2051 { 2052 if (mmc_host_done_complete(mq->card->host)) 2053 return; 2054 2055 mutex_lock(&mq->complete_lock); 2056 2057 if (!mq->complete_req) 2058 goto out_unlock; 2059 2060 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2061 2062 if (prev_req) 2063 *prev_req = mq->complete_req; 2064 else 2065 mmc_blk_mq_post_req(mq, mq->complete_req); 2066 2067 mq->complete_req = NULL; 2068 2069 out_unlock: 2070 mutex_unlock(&mq->complete_lock); 2071 } 2072 2073 void mmc_blk_mq_complete_work(struct work_struct *work) 2074 { 2075 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2076 complete_work); 2077 2078 mmc_blk_mq_complete_prev_req(mq, NULL); 2079 } 2080 2081 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2082 { 2083 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2084 brq.mrq); 2085 struct request *req = mmc_queue_req_to_req(mqrq); 2086 struct request_queue *q = req->q; 2087 struct mmc_queue *mq = q->queuedata; 2088 struct mmc_host *host = mq->card->host; 2089 unsigned long flags; 2090 2091 if (!mmc_host_done_complete(host)) { 2092 bool waiting; 2093 2094 /* 2095 * We cannot complete the request in this context, so record 2096 * that there is a request to complete, and that a following 2097 * request does not need to wait (although it does need to 2098 * complete complete_req first). 2099 */ 2100 spin_lock_irqsave(&mq->lock, flags); 2101 mq->complete_req = req; 2102 mq->rw_wait = false; 2103 waiting = mq->waiting; 2104 spin_unlock_irqrestore(&mq->lock, flags); 2105 2106 /* 2107 * If 'waiting' then the waiting task will complete this 2108 * request, otherwise queue a work to do it. Note that 2109 * complete_work may still race with the dispatch of a following 2110 * request. 2111 */ 2112 if (waiting) 2113 wake_up(&mq->wait); 2114 else 2115 kblockd_schedule_work(&mq->complete_work); 2116 2117 return; 2118 } 2119 2120 /* Take the recovery path for errors or urgent background operations */ 2121 if (mmc_blk_rq_error(&mqrq->brq) || 2122 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2123 spin_lock_irqsave(&mq->lock, flags); 2124 mq->recovery_needed = true; 2125 mq->recovery_req = req; 2126 spin_unlock_irqrestore(&mq->lock, flags); 2127 wake_up(&mq->wait); 2128 schedule_work(&mq->recovery_work); 2129 return; 2130 } 2131 2132 mmc_blk_rw_reset_success(mq, req); 2133 2134 mq->rw_wait = false; 2135 wake_up(&mq->wait); 2136 2137 mmc_blk_mq_post_req(mq, req); 2138 } 2139 2140 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2141 { 2142 unsigned long flags; 2143 bool done; 2144 2145 /* 2146 * Wait while there is another request in progress, but not if recovery 2147 * is needed. Also indicate whether there is a request waiting to start. 2148 */ 2149 spin_lock_irqsave(&mq->lock, flags); 2150 if (mq->recovery_needed) { 2151 *err = -EBUSY; 2152 done = true; 2153 } else { 2154 done = !mq->rw_wait; 2155 } 2156 mq->waiting = !done; 2157 spin_unlock_irqrestore(&mq->lock, flags); 2158 2159 return done; 2160 } 2161 2162 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2163 { 2164 int err = 0; 2165 2166 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2167 2168 /* Always complete the previous request if there is one */ 2169 mmc_blk_mq_complete_prev_req(mq, prev_req); 2170 2171 return err; 2172 } 2173 2174 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2175 struct request *req) 2176 { 2177 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2178 struct mmc_host *host = mq->card->host; 2179 struct request *prev_req = NULL; 2180 int err = 0; 2181 2182 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2183 2184 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2185 2186 mmc_pre_req(host, &mqrq->brq.mrq); 2187 2188 err = mmc_blk_rw_wait(mq, &prev_req); 2189 if (err) 2190 goto out_post_req; 2191 2192 mq->rw_wait = true; 2193 2194 err = mmc_start_request(host, &mqrq->brq.mrq); 2195 2196 if (prev_req) 2197 mmc_blk_mq_post_req(mq, prev_req); 2198 2199 if (err) 2200 mq->rw_wait = false; 2201 2202 /* Release re-tuning here where there is no synchronization required */ 2203 if (err || mmc_host_done_complete(host)) 2204 mmc_retune_release(host); 2205 2206 out_post_req: 2207 if (err) 2208 mmc_post_req(host, &mqrq->brq.mrq, err); 2209 2210 return err; 2211 } 2212 2213 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2214 { 2215 if (mq->use_cqe) 2216 return host->cqe_ops->cqe_wait_for_idle(host); 2217 2218 return mmc_blk_rw_wait(mq, NULL); 2219 } 2220 2221 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2222 { 2223 struct mmc_blk_data *md = mq->blkdata; 2224 struct mmc_card *card = md->queue.card; 2225 struct mmc_host *host = card->host; 2226 int ret; 2227 2228 ret = mmc_blk_part_switch(card, md->part_type); 2229 if (ret) 2230 return MMC_REQ_FAILED_TO_START; 2231 2232 switch (mmc_issue_type(mq, req)) { 2233 case MMC_ISSUE_SYNC: 2234 ret = mmc_blk_wait_for_idle(mq, host); 2235 if (ret) 2236 return MMC_REQ_BUSY; 2237 switch (req_op(req)) { 2238 case REQ_OP_DRV_IN: 2239 case REQ_OP_DRV_OUT: 2240 mmc_blk_issue_drv_op(mq, req); 2241 break; 2242 case REQ_OP_DISCARD: 2243 mmc_blk_issue_discard_rq(mq, req); 2244 break; 2245 case REQ_OP_SECURE_ERASE: 2246 mmc_blk_issue_secdiscard_rq(mq, req); 2247 break; 2248 case REQ_OP_FLUSH: 2249 mmc_blk_issue_flush(mq, req); 2250 break; 2251 default: 2252 WARN_ON_ONCE(1); 2253 return MMC_REQ_FAILED_TO_START; 2254 } 2255 return MMC_REQ_FINISHED; 2256 case MMC_ISSUE_DCMD: 2257 case MMC_ISSUE_ASYNC: 2258 switch (req_op(req)) { 2259 case REQ_OP_FLUSH: 2260 ret = mmc_blk_cqe_issue_flush(mq, req); 2261 break; 2262 case REQ_OP_READ: 2263 case REQ_OP_WRITE: 2264 if (mq->use_cqe) 2265 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2266 else 2267 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2268 break; 2269 default: 2270 WARN_ON_ONCE(1); 2271 ret = -EINVAL; 2272 } 2273 if (!ret) 2274 return MMC_REQ_STARTED; 2275 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2276 default: 2277 WARN_ON_ONCE(1); 2278 return MMC_REQ_FAILED_TO_START; 2279 } 2280 } 2281 2282 static inline int mmc_blk_readonly(struct mmc_card *card) 2283 { 2284 return mmc_card_readonly(card) || 2285 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2286 } 2287 2288 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2289 struct device *parent, 2290 sector_t size, 2291 bool default_ro, 2292 const char *subname, 2293 int area_type) 2294 { 2295 struct mmc_blk_data *md; 2296 int devidx, ret; 2297 2298 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2299 if (devidx < 0) { 2300 /* 2301 * We get -ENOSPC because there are no more any available 2302 * devidx. The reason may be that, either userspace haven't yet 2303 * unmounted the partitions, which postpones mmc_blk_release() 2304 * from being called, or the device has more partitions than 2305 * what we support. 2306 */ 2307 if (devidx == -ENOSPC) 2308 dev_err(mmc_dev(card->host), 2309 "no more device IDs available\n"); 2310 2311 return ERR_PTR(devidx); 2312 } 2313 2314 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2315 if (!md) { 2316 ret = -ENOMEM; 2317 goto out; 2318 } 2319 2320 md->area_type = area_type; 2321 2322 /* 2323 * Set the read-only status based on the supported commands 2324 * and the write protect switch. 2325 */ 2326 md->read_only = mmc_blk_readonly(card); 2327 2328 md->disk = alloc_disk(perdev_minors); 2329 if (md->disk == NULL) { 2330 ret = -ENOMEM; 2331 goto err_kfree; 2332 } 2333 2334 INIT_LIST_HEAD(&md->part); 2335 INIT_LIST_HEAD(&md->rpmbs); 2336 md->usage = 1; 2337 2338 ret = mmc_init_queue(&md->queue, card); 2339 if (ret) 2340 goto err_putdisk; 2341 2342 md->queue.blkdata = md; 2343 2344 /* 2345 * Keep an extra reference to the queue so that we can shutdown the 2346 * queue (i.e. call blk_cleanup_queue()) while there are still 2347 * references to the 'md'. The corresponding blk_put_queue() is in 2348 * mmc_blk_put(). 2349 */ 2350 if (!blk_get_queue(md->queue.queue)) { 2351 mmc_cleanup_queue(&md->queue); 2352 ret = -ENODEV; 2353 goto err_putdisk; 2354 } 2355 2356 md->disk->major = MMC_BLOCK_MAJOR; 2357 md->disk->first_minor = devidx * perdev_minors; 2358 md->disk->fops = &mmc_bdops; 2359 md->disk->private_data = md; 2360 md->disk->queue = md->queue.queue; 2361 md->parent = parent; 2362 set_disk_ro(md->disk, md->read_only || default_ro); 2363 md->disk->flags = GENHD_FL_EXT_DEVT; 2364 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2365 md->disk->flags |= GENHD_FL_NO_PART_SCAN 2366 | GENHD_FL_SUPPRESS_PARTITION_INFO; 2367 2368 /* 2369 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2370 * 2371 * - be set for removable media with permanent block devices 2372 * - be unset for removable block devices with permanent media 2373 * 2374 * Since MMC block devices clearly fall under the second 2375 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2376 * should use the block device creation/destruction hotplug 2377 * messages to tell when the card is present. 2378 */ 2379 2380 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2381 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2382 2383 if (mmc_card_mmc(card)) 2384 blk_queue_logical_block_size(md->queue.queue, 2385 card->ext_csd.data_sector_size); 2386 else 2387 blk_queue_logical_block_size(md->queue.queue, 512); 2388 2389 set_capacity(md->disk, size); 2390 2391 if (mmc_host_cmd23(card->host)) { 2392 if ((mmc_card_mmc(card) && 2393 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2394 (mmc_card_sd(card) && 2395 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2396 md->flags |= MMC_BLK_CMD23; 2397 } 2398 2399 if (mmc_card_mmc(card) && 2400 md->flags & MMC_BLK_CMD23 && 2401 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2402 card->ext_csd.rel_sectors)) { 2403 md->flags |= MMC_BLK_REL_WR; 2404 blk_queue_write_cache(md->queue.queue, true, true); 2405 } 2406 2407 return md; 2408 2409 err_putdisk: 2410 put_disk(md->disk); 2411 err_kfree: 2412 kfree(md); 2413 out: 2414 ida_simple_remove(&mmc_blk_ida, devidx); 2415 return ERR_PTR(ret); 2416 } 2417 2418 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2419 { 2420 sector_t size; 2421 2422 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2423 /* 2424 * The EXT_CSD sector count is in number or 512 byte 2425 * sectors. 2426 */ 2427 size = card->ext_csd.sectors; 2428 } else { 2429 /* 2430 * The CSD capacity field is in units of read_blkbits. 2431 * set_capacity takes units of 512 bytes. 2432 */ 2433 size = (typeof(sector_t))card->csd.capacity 2434 << (card->csd.read_blkbits - 9); 2435 } 2436 2437 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2438 MMC_BLK_DATA_AREA_MAIN); 2439 } 2440 2441 static int mmc_blk_alloc_part(struct mmc_card *card, 2442 struct mmc_blk_data *md, 2443 unsigned int part_type, 2444 sector_t size, 2445 bool default_ro, 2446 const char *subname, 2447 int area_type) 2448 { 2449 char cap_str[10]; 2450 struct mmc_blk_data *part_md; 2451 2452 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2453 subname, area_type); 2454 if (IS_ERR(part_md)) 2455 return PTR_ERR(part_md); 2456 part_md->part_type = part_type; 2457 list_add(&part_md->part, &md->part); 2458 2459 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2460 cap_str, sizeof(cap_str)); 2461 pr_info("%s: %s %s partition %u %s\n", 2462 part_md->disk->disk_name, mmc_card_id(card), 2463 mmc_card_name(card), part_md->part_type, cap_str); 2464 return 0; 2465 } 2466 2467 /** 2468 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2469 * @filp: the character device file 2470 * @cmd: the ioctl() command 2471 * @arg: the argument from userspace 2472 * 2473 * This will essentially just redirect the ioctl()s coming in over to 2474 * the main block device spawning the RPMB character device. 2475 */ 2476 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2477 unsigned long arg) 2478 { 2479 struct mmc_rpmb_data *rpmb = filp->private_data; 2480 int ret; 2481 2482 switch (cmd) { 2483 case MMC_IOC_CMD: 2484 ret = mmc_blk_ioctl_cmd(rpmb->md, 2485 (struct mmc_ioc_cmd __user *)arg, 2486 rpmb); 2487 break; 2488 case MMC_IOC_MULTI_CMD: 2489 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2490 (struct mmc_ioc_multi_cmd __user *)arg, 2491 rpmb); 2492 break; 2493 default: 2494 ret = -EINVAL; 2495 break; 2496 } 2497 2498 return ret; 2499 } 2500 2501 #ifdef CONFIG_COMPAT 2502 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2503 unsigned long arg) 2504 { 2505 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2506 } 2507 #endif 2508 2509 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2510 { 2511 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2512 struct mmc_rpmb_data, chrdev); 2513 2514 get_device(&rpmb->dev); 2515 filp->private_data = rpmb; 2516 mmc_blk_get(rpmb->md->disk); 2517 2518 return nonseekable_open(inode, filp); 2519 } 2520 2521 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2522 { 2523 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2524 struct mmc_rpmb_data, chrdev); 2525 2526 put_device(&rpmb->dev); 2527 mmc_blk_put(rpmb->md); 2528 2529 return 0; 2530 } 2531 2532 static const struct file_operations mmc_rpmb_fileops = { 2533 .release = mmc_rpmb_chrdev_release, 2534 .open = mmc_rpmb_chrdev_open, 2535 .owner = THIS_MODULE, 2536 .llseek = no_llseek, 2537 .unlocked_ioctl = mmc_rpmb_ioctl, 2538 #ifdef CONFIG_COMPAT 2539 .compat_ioctl = mmc_rpmb_ioctl_compat, 2540 #endif 2541 }; 2542 2543 static void mmc_blk_rpmb_device_release(struct device *dev) 2544 { 2545 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2546 2547 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2548 kfree(rpmb); 2549 } 2550 2551 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2552 struct mmc_blk_data *md, 2553 unsigned int part_index, 2554 sector_t size, 2555 const char *subname) 2556 { 2557 int devidx, ret; 2558 char rpmb_name[DISK_NAME_LEN]; 2559 char cap_str[10]; 2560 struct mmc_rpmb_data *rpmb; 2561 2562 /* This creates the minor number for the RPMB char device */ 2563 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2564 if (devidx < 0) 2565 return devidx; 2566 2567 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2568 if (!rpmb) { 2569 ida_simple_remove(&mmc_rpmb_ida, devidx); 2570 return -ENOMEM; 2571 } 2572 2573 snprintf(rpmb_name, sizeof(rpmb_name), 2574 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2575 2576 rpmb->id = devidx; 2577 rpmb->part_index = part_index; 2578 rpmb->dev.init_name = rpmb_name; 2579 rpmb->dev.bus = &mmc_rpmb_bus_type; 2580 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2581 rpmb->dev.parent = &card->dev; 2582 rpmb->dev.release = mmc_blk_rpmb_device_release; 2583 device_initialize(&rpmb->dev); 2584 dev_set_drvdata(&rpmb->dev, rpmb); 2585 rpmb->md = md; 2586 2587 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2588 rpmb->chrdev.owner = THIS_MODULE; 2589 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2590 if (ret) { 2591 pr_err("%s: could not add character device\n", rpmb_name); 2592 goto out_put_device; 2593 } 2594 2595 list_add(&rpmb->node, &md->rpmbs); 2596 2597 string_get_size((u64)size, 512, STRING_UNITS_2, 2598 cap_str, sizeof(cap_str)); 2599 2600 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n", 2601 rpmb_name, mmc_card_id(card), 2602 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str, 2603 MAJOR(mmc_rpmb_devt), rpmb->id); 2604 2605 return 0; 2606 2607 out_put_device: 2608 put_device(&rpmb->dev); 2609 return ret; 2610 } 2611 2612 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2613 2614 { 2615 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2616 put_device(&rpmb->dev); 2617 } 2618 2619 /* MMC Physical partitions consist of two boot partitions and 2620 * up to four general purpose partitions. 2621 * For each partition enabled in EXT_CSD a block device will be allocatedi 2622 * to provide access to the partition. 2623 */ 2624 2625 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2626 { 2627 int idx, ret; 2628 2629 if (!mmc_card_mmc(card)) 2630 return 0; 2631 2632 for (idx = 0; idx < card->nr_parts; idx++) { 2633 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2634 /* 2635 * RPMB partitions does not provide block access, they 2636 * are only accessed using ioctl():s. Thus create 2637 * special RPMB block devices that do not have a 2638 * backing block queue for these. 2639 */ 2640 ret = mmc_blk_alloc_rpmb_part(card, md, 2641 card->part[idx].part_cfg, 2642 card->part[idx].size >> 9, 2643 card->part[idx].name); 2644 if (ret) 2645 return ret; 2646 } else if (card->part[idx].size) { 2647 ret = mmc_blk_alloc_part(card, md, 2648 card->part[idx].part_cfg, 2649 card->part[idx].size >> 9, 2650 card->part[idx].force_ro, 2651 card->part[idx].name, 2652 card->part[idx].area_type); 2653 if (ret) 2654 return ret; 2655 } 2656 } 2657 2658 return 0; 2659 } 2660 2661 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2662 { 2663 struct mmc_card *card; 2664 2665 if (md) { 2666 /* 2667 * Flush remaining requests and free queues. It 2668 * is freeing the queue that stops new requests 2669 * from being accepted. 2670 */ 2671 card = md->queue.card; 2672 if (md->disk->flags & GENHD_FL_UP) { 2673 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2674 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2675 card->ext_csd.boot_ro_lockable) 2676 device_remove_file(disk_to_dev(md->disk), 2677 &md->power_ro_lock); 2678 2679 del_gendisk(md->disk); 2680 } 2681 mmc_cleanup_queue(&md->queue); 2682 mmc_blk_put(md); 2683 } 2684 } 2685 2686 static void mmc_blk_remove_parts(struct mmc_card *card, 2687 struct mmc_blk_data *md) 2688 { 2689 struct list_head *pos, *q; 2690 struct mmc_blk_data *part_md; 2691 struct mmc_rpmb_data *rpmb; 2692 2693 /* Remove RPMB partitions */ 2694 list_for_each_safe(pos, q, &md->rpmbs) { 2695 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2696 list_del(pos); 2697 mmc_blk_remove_rpmb_part(rpmb); 2698 } 2699 /* Remove block partitions */ 2700 list_for_each_safe(pos, q, &md->part) { 2701 part_md = list_entry(pos, struct mmc_blk_data, part); 2702 list_del(pos); 2703 mmc_blk_remove_req(part_md); 2704 } 2705 } 2706 2707 static int mmc_add_disk(struct mmc_blk_data *md) 2708 { 2709 int ret; 2710 struct mmc_card *card = md->queue.card; 2711 2712 device_add_disk(md->parent, md->disk, NULL); 2713 md->force_ro.show = force_ro_show; 2714 md->force_ro.store = force_ro_store; 2715 sysfs_attr_init(&md->force_ro.attr); 2716 md->force_ro.attr.name = "force_ro"; 2717 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2718 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2719 if (ret) 2720 goto force_ro_fail; 2721 2722 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2723 card->ext_csd.boot_ro_lockable) { 2724 umode_t mode; 2725 2726 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2727 mode = S_IRUGO; 2728 else 2729 mode = S_IRUGO | S_IWUSR; 2730 2731 md->power_ro_lock.show = power_ro_lock_show; 2732 md->power_ro_lock.store = power_ro_lock_store; 2733 sysfs_attr_init(&md->power_ro_lock.attr); 2734 md->power_ro_lock.attr.mode = mode; 2735 md->power_ro_lock.attr.name = 2736 "ro_lock_until_next_power_on"; 2737 ret = device_create_file(disk_to_dev(md->disk), 2738 &md->power_ro_lock); 2739 if (ret) 2740 goto power_ro_lock_fail; 2741 } 2742 return ret; 2743 2744 power_ro_lock_fail: 2745 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2746 force_ro_fail: 2747 del_gendisk(md->disk); 2748 2749 return ret; 2750 } 2751 2752 #ifdef CONFIG_DEBUG_FS 2753 2754 static int mmc_dbg_card_status_get(void *data, u64 *val) 2755 { 2756 struct mmc_card *card = data; 2757 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2758 struct mmc_queue *mq = &md->queue; 2759 struct request *req; 2760 int ret; 2761 2762 /* Ask the block layer about the card status */ 2763 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2764 if (IS_ERR(req)) 2765 return PTR_ERR(req); 2766 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2767 blk_execute_rq(mq->queue, NULL, req, 0); 2768 ret = req_to_mmc_queue_req(req)->drv_op_result; 2769 if (ret >= 0) { 2770 *val = ret; 2771 ret = 0; 2772 } 2773 blk_put_request(req); 2774 2775 return ret; 2776 } 2777 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2778 NULL, "%08llx\n"); 2779 2780 /* That is two digits * 512 + 1 for newline */ 2781 #define EXT_CSD_STR_LEN 1025 2782 2783 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2784 { 2785 struct mmc_card *card = inode->i_private; 2786 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2787 struct mmc_queue *mq = &md->queue; 2788 struct request *req; 2789 char *buf; 2790 ssize_t n = 0; 2791 u8 *ext_csd; 2792 int err, i; 2793 2794 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2795 if (!buf) 2796 return -ENOMEM; 2797 2798 /* Ask the block layer for the EXT CSD */ 2799 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2800 if (IS_ERR(req)) { 2801 err = PTR_ERR(req); 2802 goto out_free; 2803 } 2804 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2805 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2806 blk_execute_rq(mq->queue, NULL, req, 0); 2807 err = req_to_mmc_queue_req(req)->drv_op_result; 2808 blk_put_request(req); 2809 if (err) { 2810 pr_err("FAILED %d\n", err); 2811 goto out_free; 2812 } 2813 2814 for (i = 0; i < 512; i++) 2815 n += sprintf(buf + n, "%02x", ext_csd[i]); 2816 n += sprintf(buf + n, "\n"); 2817 2818 if (n != EXT_CSD_STR_LEN) { 2819 err = -EINVAL; 2820 kfree(ext_csd); 2821 goto out_free; 2822 } 2823 2824 filp->private_data = buf; 2825 kfree(ext_csd); 2826 return 0; 2827 2828 out_free: 2829 kfree(buf); 2830 return err; 2831 } 2832 2833 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2834 size_t cnt, loff_t *ppos) 2835 { 2836 char *buf = filp->private_data; 2837 2838 return simple_read_from_buffer(ubuf, cnt, ppos, 2839 buf, EXT_CSD_STR_LEN); 2840 } 2841 2842 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2843 { 2844 kfree(file->private_data); 2845 return 0; 2846 } 2847 2848 static const struct file_operations mmc_dbg_ext_csd_fops = { 2849 .open = mmc_ext_csd_open, 2850 .read = mmc_ext_csd_read, 2851 .release = mmc_ext_csd_release, 2852 .llseek = default_llseek, 2853 }; 2854 2855 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2856 { 2857 struct dentry *root; 2858 2859 if (!card->debugfs_root) 2860 return 0; 2861 2862 root = card->debugfs_root; 2863 2864 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2865 md->status_dentry = 2866 debugfs_create_file("status", S_IRUSR, root, card, 2867 &mmc_dbg_card_status_fops); 2868 if (!md->status_dentry) 2869 return -EIO; 2870 } 2871 2872 if (mmc_card_mmc(card)) { 2873 md->ext_csd_dentry = 2874 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2875 &mmc_dbg_ext_csd_fops); 2876 if (!md->ext_csd_dentry) 2877 return -EIO; 2878 } 2879 2880 return 0; 2881 } 2882 2883 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2884 struct mmc_blk_data *md) 2885 { 2886 if (!card->debugfs_root) 2887 return; 2888 2889 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2890 debugfs_remove(md->status_dentry); 2891 md->status_dentry = NULL; 2892 } 2893 2894 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2895 debugfs_remove(md->ext_csd_dentry); 2896 md->ext_csd_dentry = NULL; 2897 } 2898 } 2899 2900 #else 2901 2902 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2903 { 2904 return 0; 2905 } 2906 2907 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2908 struct mmc_blk_data *md) 2909 { 2910 } 2911 2912 #endif /* CONFIG_DEBUG_FS */ 2913 2914 static int mmc_blk_probe(struct mmc_card *card) 2915 { 2916 struct mmc_blk_data *md, *part_md; 2917 char cap_str[10]; 2918 2919 /* 2920 * Check that the card supports the command class(es) we need. 2921 */ 2922 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2923 return -ENODEV; 2924 2925 mmc_fixup_device(card, mmc_blk_fixups); 2926 2927 md = mmc_blk_alloc(card); 2928 if (IS_ERR(md)) 2929 return PTR_ERR(md); 2930 2931 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2932 cap_str, sizeof(cap_str)); 2933 pr_info("%s: %s %s %s %s\n", 2934 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2935 cap_str, md->read_only ? "(ro)" : ""); 2936 2937 if (mmc_blk_alloc_parts(card, md)) 2938 goto out; 2939 2940 dev_set_drvdata(&card->dev, md); 2941 2942 if (mmc_add_disk(md)) 2943 goto out; 2944 2945 list_for_each_entry(part_md, &md->part, part) { 2946 if (mmc_add_disk(part_md)) 2947 goto out; 2948 } 2949 2950 /* Add two debugfs entries */ 2951 mmc_blk_add_debugfs(card, md); 2952 2953 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2954 pm_runtime_use_autosuspend(&card->dev); 2955 2956 /* 2957 * Don't enable runtime PM for SD-combo cards here. Leave that 2958 * decision to be taken during the SDIO init sequence instead. 2959 */ 2960 if (card->type != MMC_TYPE_SD_COMBO) { 2961 pm_runtime_set_active(&card->dev); 2962 pm_runtime_enable(&card->dev); 2963 } 2964 2965 return 0; 2966 2967 out: 2968 mmc_blk_remove_parts(card, md); 2969 mmc_blk_remove_req(md); 2970 return 0; 2971 } 2972 2973 static void mmc_blk_remove(struct mmc_card *card) 2974 { 2975 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2976 2977 mmc_blk_remove_debugfs(card, md); 2978 mmc_blk_remove_parts(card, md); 2979 pm_runtime_get_sync(&card->dev); 2980 if (md->part_curr != md->part_type) { 2981 mmc_claim_host(card->host); 2982 mmc_blk_part_switch(card, md->part_type); 2983 mmc_release_host(card->host); 2984 } 2985 if (card->type != MMC_TYPE_SD_COMBO) 2986 pm_runtime_disable(&card->dev); 2987 pm_runtime_put_noidle(&card->dev); 2988 mmc_blk_remove_req(md); 2989 dev_set_drvdata(&card->dev, NULL); 2990 } 2991 2992 static int _mmc_blk_suspend(struct mmc_card *card) 2993 { 2994 struct mmc_blk_data *part_md; 2995 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2996 2997 if (md) { 2998 mmc_queue_suspend(&md->queue); 2999 list_for_each_entry(part_md, &md->part, part) { 3000 mmc_queue_suspend(&part_md->queue); 3001 } 3002 } 3003 return 0; 3004 } 3005 3006 static void mmc_blk_shutdown(struct mmc_card *card) 3007 { 3008 _mmc_blk_suspend(card); 3009 } 3010 3011 #ifdef CONFIG_PM_SLEEP 3012 static int mmc_blk_suspend(struct device *dev) 3013 { 3014 struct mmc_card *card = mmc_dev_to_card(dev); 3015 3016 return _mmc_blk_suspend(card); 3017 } 3018 3019 static int mmc_blk_resume(struct device *dev) 3020 { 3021 struct mmc_blk_data *part_md; 3022 struct mmc_blk_data *md = dev_get_drvdata(dev); 3023 3024 if (md) { 3025 /* 3026 * Resume involves the card going into idle state, 3027 * so current partition is always the main one. 3028 */ 3029 md->part_curr = md->part_type; 3030 mmc_queue_resume(&md->queue); 3031 list_for_each_entry(part_md, &md->part, part) { 3032 mmc_queue_resume(&part_md->queue); 3033 } 3034 } 3035 return 0; 3036 } 3037 #endif 3038 3039 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3040 3041 static struct mmc_driver mmc_driver = { 3042 .drv = { 3043 .name = "mmcblk", 3044 .pm = &mmc_blk_pm_ops, 3045 }, 3046 .probe = mmc_blk_probe, 3047 .remove = mmc_blk_remove, 3048 .shutdown = mmc_blk_shutdown, 3049 }; 3050 3051 static int __init mmc_blk_init(void) 3052 { 3053 int res; 3054 3055 res = bus_register(&mmc_rpmb_bus_type); 3056 if (res < 0) { 3057 pr_err("mmcblk: could not register RPMB bus type\n"); 3058 return res; 3059 } 3060 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3061 if (res < 0) { 3062 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3063 goto out_bus_unreg; 3064 } 3065 3066 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3067 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3068 3069 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3070 3071 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3072 if (res) 3073 goto out_chrdev_unreg; 3074 3075 res = mmc_register_driver(&mmc_driver); 3076 if (res) 3077 goto out_blkdev_unreg; 3078 3079 return 0; 3080 3081 out_blkdev_unreg: 3082 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3083 out_chrdev_unreg: 3084 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3085 out_bus_unreg: 3086 bus_unregister(&mmc_rpmb_bus_type); 3087 return res; 3088 } 3089 3090 static void __exit mmc_blk_exit(void) 3091 { 3092 mmc_unregister_driver(&mmc_driver); 3093 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3094 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3095 bus_unregister(&mmc_rpmb_bus_type); 3096 } 3097 3098 module_init(mmc_blk_init); 3099 module_exit(mmc_blk_exit); 3100 3101 MODULE_LICENSE("GPL"); 3102 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3103 3104