xref: /openbmc/linux/drivers/mmc/core/block.c (revision 26dd3e4f)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/idr.h>
39 
40 #include <linux/mmc/ioctl.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/host.h>
43 #include <linux/mmc/mmc.h>
44 #include <linux/mmc/sd.h>
45 
46 #include <linux/uaccess.h>
47 
48 #include "queue.h"
49 #include "block.h"
50 
51 MODULE_ALIAS("mmc:block");
52 #ifdef MODULE_PARAM_PREFIX
53 #undef MODULE_PARAM_PREFIX
54 #endif
55 #define MODULE_PARAM_PREFIX "mmcblk."
56 
57 #define INAND_CMD38_ARG_EXT_CSD  113
58 #define INAND_CMD38_ARG_ERASE    0x00
59 #define INAND_CMD38_ARG_TRIM     0x01
60 #define INAND_CMD38_ARG_SECERASE 0x80
61 #define INAND_CMD38_ARG_SECTRIM1 0x81
62 #define INAND_CMD38_ARG_SECTRIM2 0x88
63 #define MMC_BLK_TIMEOUT_MS  (10 * 60 * 1000)        /* 10 minute timeout */
64 #define MMC_SANITIZE_REQ_TIMEOUT 240000
65 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
66 
67 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
68 				  (rq_data_dir(req) == WRITE))
69 static DEFINE_MUTEX(block_mutex);
70 
71 /*
72  * The defaults come from config options but can be overriden by module
73  * or bootarg options.
74  */
75 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
76 
77 /*
78  * We've only got one major, so number of mmcblk devices is
79  * limited to (1 << 20) / number of minors per device.  It is also
80  * limited by the MAX_DEVICES below.
81  */
82 static int max_devices;
83 
84 #define MAX_DEVICES 256
85 
86 static DEFINE_IDA(mmc_blk_ida);
87 static DEFINE_SPINLOCK(mmc_blk_lock);
88 
89 /*
90  * There is one mmc_blk_data per slot.
91  */
92 struct mmc_blk_data {
93 	spinlock_t	lock;
94 	struct device	*parent;
95 	struct gendisk	*disk;
96 	struct mmc_queue queue;
97 	struct list_head part;
98 
99 	unsigned int	flags;
100 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
101 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
102 
103 	unsigned int	usage;
104 	unsigned int	read_only;
105 	unsigned int	part_type;
106 	unsigned int	reset_done;
107 #define MMC_BLK_READ		BIT(0)
108 #define MMC_BLK_WRITE		BIT(1)
109 #define MMC_BLK_DISCARD		BIT(2)
110 #define MMC_BLK_SECDISCARD	BIT(3)
111 
112 	/*
113 	 * Only set in main mmc_blk_data associated
114 	 * with mmc_card with dev_set_drvdata, and keeps
115 	 * track of the current selected device partition.
116 	 */
117 	unsigned int	part_curr;
118 	struct device_attribute force_ro;
119 	struct device_attribute power_ro_lock;
120 	int	area_type;
121 };
122 
123 static DEFINE_MUTEX(open_lock);
124 
125 module_param(perdev_minors, int, 0444);
126 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
127 
128 static inline int mmc_blk_part_switch(struct mmc_card *card,
129 				      struct mmc_blk_data *md);
130 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
131 
132 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
133 {
134 	struct mmc_blk_data *md;
135 
136 	mutex_lock(&open_lock);
137 	md = disk->private_data;
138 	if (md && md->usage == 0)
139 		md = NULL;
140 	if (md)
141 		md->usage++;
142 	mutex_unlock(&open_lock);
143 
144 	return md;
145 }
146 
147 static inline int mmc_get_devidx(struct gendisk *disk)
148 {
149 	int devidx = disk->first_minor / perdev_minors;
150 	return devidx;
151 }
152 
153 static void mmc_blk_put(struct mmc_blk_data *md)
154 {
155 	mutex_lock(&open_lock);
156 	md->usage--;
157 	if (md->usage == 0) {
158 		int devidx = mmc_get_devidx(md->disk);
159 		blk_cleanup_queue(md->queue.queue);
160 
161 		spin_lock(&mmc_blk_lock);
162 		ida_remove(&mmc_blk_ida, devidx);
163 		spin_unlock(&mmc_blk_lock);
164 
165 		put_disk(md->disk);
166 		kfree(md);
167 	}
168 	mutex_unlock(&open_lock);
169 }
170 
171 static ssize_t power_ro_lock_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	int ret;
175 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
176 	struct mmc_card *card = md->queue.card;
177 	int locked = 0;
178 
179 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
180 		locked = 2;
181 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
182 		locked = 1;
183 
184 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
185 
186 	mmc_blk_put(md);
187 
188 	return ret;
189 }
190 
191 static ssize_t power_ro_lock_store(struct device *dev,
192 		struct device_attribute *attr, const char *buf, size_t count)
193 {
194 	int ret;
195 	struct mmc_blk_data *md, *part_md;
196 	struct mmc_card *card;
197 	unsigned long set;
198 
199 	if (kstrtoul(buf, 0, &set))
200 		return -EINVAL;
201 
202 	if (set != 1)
203 		return count;
204 
205 	md = mmc_blk_get(dev_to_disk(dev));
206 	card = md->queue.card;
207 
208 	mmc_get_card(card);
209 
210 	ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
211 				card->ext_csd.boot_ro_lock |
212 				EXT_CSD_BOOT_WP_B_PWR_WP_EN,
213 				card->ext_csd.part_time);
214 	if (ret)
215 		pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
216 	else
217 		card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
218 
219 	mmc_put_card(card);
220 
221 	if (!ret) {
222 		pr_info("%s: Locking boot partition ro until next power on\n",
223 			md->disk->disk_name);
224 		set_disk_ro(md->disk, 1);
225 
226 		list_for_each_entry(part_md, &md->part, part)
227 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
228 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
229 				set_disk_ro(part_md->disk, 1);
230 			}
231 	}
232 
233 	mmc_blk_put(md);
234 	return count;
235 }
236 
237 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
238 			     char *buf)
239 {
240 	int ret;
241 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
242 
243 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
244 		       get_disk_ro(dev_to_disk(dev)) ^
245 		       md->read_only);
246 	mmc_blk_put(md);
247 	return ret;
248 }
249 
250 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
251 			      const char *buf, size_t count)
252 {
253 	int ret;
254 	char *end;
255 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
256 	unsigned long set = simple_strtoul(buf, &end, 0);
257 	if (end == buf) {
258 		ret = -EINVAL;
259 		goto out;
260 	}
261 
262 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
263 	ret = count;
264 out:
265 	mmc_blk_put(md);
266 	return ret;
267 }
268 
269 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
270 {
271 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
272 	int ret = -ENXIO;
273 
274 	mutex_lock(&block_mutex);
275 	if (md) {
276 		if (md->usage == 2)
277 			check_disk_change(bdev);
278 		ret = 0;
279 
280 		if ((mode & FMODE_WRITE) && md->read_only) {
281 			mmc_blk_put(md);
282 			ret = -EROFS;
283 		}
284 	}
285 	mutex_unlock(&block_mutex);
286 
287 	return ret;
288 }
289 
290 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
291 {
292 	struct mmc_blk_data *md = disk->private_data;
293 
294 	mutex_lock(&block_mutex);
295 	mmc_blk_put(md);
296 	mutex_unlock(&block_mutex);
297 }
298 
299 static int
300 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
301 {
302 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
303 	geo->heads = 4;
304 	geo->sectors = 16;
305 	return 0;
306 }
307 
308 struct mmc_blk_ioc_data {
309 	struct mmc_ioc_cmd ic;
310 	unsigned char *buf;
311 	u64 buf_bytes;
312 };
313 
314 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
315 	struct mmc_ioc_cmd __user *user)
316 {
317 	struct mmc_blk_ioc_data *idata;
318 	int err;
319 
320 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
321 	if (!idata) {
322 		err = -ENOMEM;
323 		goto out;
324 	}
325 
326 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
327 		err = -EFAULT;
328 		goto idata_err;
329 	}
330 
331 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
332 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
333 		err = -EOVERFLOW;
334 		goto idata_err;
335 	}
336 
337 	if (!idata->buf_bytes) {
338 		idata->buf = NULL;
339 		return idata;
340 	}
341 
342 	idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
343 	if (!idata->buf) {
344 		err = -ENOMEM;
345 		goto idata_err;
346 	}
347 
348 	if (copy_from_user(idata->buf, (void __user *)(unsigned long)
349 					idata->ic.data_ptr, idata->buf_bytes)) {
350 		err = -EFAULT;
351 		goto copy_err;
352 	}
353 
354 	return idata;
355 
356 copy_err:
357 	kfree(idata->buf);
358 idata_err:
359 	kfree(idata);
360 out:
361 	return ERR_PTR(err);
362 }
363 
364 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
365 				      struct mmc_blk_ioc_data *idata)
366 {
367 	struct mmc_ioc_cmd *ic = &idata->ic;
368 
369 	if (copy_to_user(&(ic_ptr->response), ic->response,
370 			 sizeof(ic->response)))
371 		return -EFAULT;
372 
373 	if (!idata->ic.write_flag) {
374 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
375 				 idata->buf, idata->buf_bytes))
376 			return -EFAULT;
377 	}
378 
379 	return 0;
380 }
381 
382 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
383 				       u32 retries_max)
384 {
385 	int err;
386 	u32 retry_count = 0;
387 
388 	if (!status || !retries_max)
389 		return -EINVAL;
390 
391 	do {
392 		err = get_card_status(card, status, 5);
393 		if (err)
394 			break;
395 
396 		if (!R1_STATUS(*status) &&
397 				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
398 			break; /* RPMB programming operation complete */
399 
400 		/*
401 		 * Rechedule to give the MMC device a chance to continue
402 		 * processing the previous command without being polled too
403 		 * frequently.
404 		 */
405 		usleep_range(1000, 5000);
406 	} while (++retry_count < retries_max);
407 
408 	if (retry_count == retries_max)
409 		err = -EPERM;
410 
411 	return err;
412 }
413 
414 static int ioctl_do_sanitize(struct mmc_card *card)
415 {
416 	int err;
417 
418 	if (!mmc_can_sanitize(card)) {
419 			pr_warn("%s: %s - SANITIZE is not supported\n",
420 				mmc_hostname(card->host), __func__);
421 			err = -EOPNOTSUPP;
422 			goto out;
423 	}
424 
425 	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
426 		mmc_hostname(card->host), __func__);
427 
428 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
429 					EXT_CSD_SANITIZE_START, 1,
430 					MMC_SANITIZE_REQ_TIMEOUT);
431 
432 	if (err)
433 		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
434 		       mmc_hostname(card->host), __func__, err);
435 
436 	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
437 					     __func__);
438 out:
439 	return err;
440 }
441 
442 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
443 			       struct mmc_blk_ioc_data *idata)
444 {
445 	struct mmc_command cmd = {0};
446 	struct mmc_data data = {0};
447 	struct mmc_request mrq = {NULL};
448 	struct scatterlist sg;
449 	int err;
450 	int is_rpmb = false;
451 	u32 status = 0;
452 
453 	if (!card || !md || !idata)
454 		return -EINVAL;
455 
456 	if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
457 		is_rpmb = true;
458 
459 	cmd.opcode = idata->ic.opcode;
460 	cmd.arg = idata->ic.arg;
461 	cmd.flags = idata->ic.flags;
462 
463 	if (idata->buf_bytes) {
464 		data.sg = &sg;
465 		data.sg_len = 1;
466 		data.blksz = idata->ic.blksz;
467 		data.blocks = idata->ic.blocks;
468 
469 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
470 
471 		if (idata->ic.write_flag)
472 			data.flags = MMC_DATA_WRITE;
473 		else
474 			data.flags = MMC_DATA_READ;
475 
476 		/* data.flags must already be set before doing this. */
477 		mmc_set_data_timeout(&data, card);
478 
479 		/* Allow overriding the timeout_ns for empirical tuning. */
480 		if (idata->ic.data_timeout_ns)
481 			data.timeout_ns = idata->ic.data_timeout_ns;
482 
483 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
484 			/*
485 			 * Pretend this is a data transfer and rely on the
486 			 * host driver to compute timeout.  When all host
487 			 * drivers support cmd.cmd_timeout for R1B, this
488 			 * can be changed to:
489 			 *
490 			 *     mrq.data = NULL;
491 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
492 			 */
493 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
494 		}
495 
496 		mrq.data = &data;
497 	}
498 
499 	mrq.cmd = &cmd;
500 
501 	err = mmc_blk_part_switch(card, md);
502 	if (err)
503 		return err;
504 
505 	if (idata->ic.is_acmd) {
506 		err = mmc_app_cmd(card->host, card);
507 		if (err)
508 			return err;
509 	}
510 
511 	if (is_rpmb) {
512 		err = mmc_set_blockcount(card, data.blocks,
513 			idata->ic.write_flag & (1 << 31));
514 		if (err)
515 			return err;
516 	}
517 
518 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
519 	    (cmd.opcode == MMC_SWITCH)) {
520 		err = ioctl_do_sanitize(card);
521 
522 		if (err)
523 			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
524 			       __func__, err);
525 
526 		return err;
527 	}
528 
529 	mmc_wait_for_req(card->host, &mrq);
530 
531 	if (cmd.error) {
532 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
533 						__func__, cmd.error);
534 		return cmd.error;
535 	}
536 	if (data.error) {
537 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
538 						__func__, data.error);
539 		return data.error;
540 	}
541 
542 	/*
543 	 * According to the SD specs, some commands require a delay after
544 	 * issuing the command.
545 	 */
546 	if (idata->ic.postsleep_min_us)
547 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
548 
549 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
550 
551 	if (is_rpmb) {
552 		/*
553 		 * Ensure RPMB command has completed by polling CMD13
554 		 * "Send Status".
555 		 */
556 		err = ioctl_rpmb_card_status_poll(card, &status, 5);
557 		if (err)
558 			dev_err(mmc_dev(card->host),
559 					"%s: Card Status=0x%08X, error %d\n",
560 					__func__, status, err);
561 	}
562 
563 	return err;
564 }
565 
566 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
567 			     struct mmc_ioc_cmd __user *ic_ptr)
568 {
569 	struct mmc_blk_ioc_data *idata;
570 	struct mmc_blk_data *md;
571 	struct mmc_card *card;
572 	int err = 0, ioc_err = 0;
573 
574 	/*
575 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
576 	 * whole block device, not on a partition.  This prevents overspray
577 	 * between sibling partitions.
578 	 */
579 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
580 		return -EPERM;
581 
582 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
583 	if (IS_ERR(idata))
584 		return PTR_ERR(idata);
585 
586 	md = mmc_blk_get(bdev->bd_disk);
587 	if (!md) {
588 		err = -EINVAL;
589 		goto cmd_err;
590 	}
591 
592 	card = md->queue.card;
593 	if (IS_ERR(card)) {
594 		err = PTR_ERR(card);
595 		goto cmd_done;
596 	}
597 
598 	mmc_get_card(card);
599 
600 	ioc_err = __mmc_blk_ioctl_cmd(card, md, idata);
601 
602 	/* Always switch back to main area after RPMB access */
603 	if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
604 		mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
605 
606 	mmc_put_card(card);
607 
608 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
609 
610 cmd_done:
611 	mmc_blk_put(md);
612 cmd_err:
613 	kfree(idata->buf);
614 	kfree(idata);
615 	return ioc_err ? ioc_err : err;
616 }
617 
618 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
619 				   struct mmc_ioc_multi_cmd __user *user)
620 {
621 	struct mmc_blk_ioc_data **idata = NULL;
622 	struct mmc_ioc_cmd __user *cmds = user->cmds;
623 	struct mmc_card *card;
624 	struct mmc_blk_data *md;
625 	int i, err = 0, ioc_err = 0;
626 	__u64 num_of_cmds;
627 
628 	/*
629 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
630 	 * whole block device, not on a partition.  This prevents overspray
631 	 * between sibling partitions.
632 	 */
633 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
634 		return -EPERM;
635 
636 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
637 			   sizeof(num_of_cmds)))
638 		return -EFAULT;
639 
640 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
641 		return -EINVAL;
642 
643 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
644 	if (!idata)
645 		return -ENOMEM;
646 
647 	for (i = 0; i < num_of_cmds; i++) {
648 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
649 		if (IS_ERR(idata[i])) {
650 			err = PTR_ERR(idata[i]);
651 			num_of_cmds = i;
652 			goto cmd_err;
653 		}
654 	}
655 
656 	md = mmc_blk_get(bdev->bd_disk);
657 	if (!md) {
658 		err = -EINVAL;
659 		goto cmd_err;
660 	}
661 
662 	card = md->queue.card;
663 	if (IS_ERR(card)) {
664 		err = PTR_ERR(card);
665 		goto cmd_done;
666 	}
667 
668 	mmc_get_card(card);
669 
670 	for (i = 0; i < num_of_cmds && !ioc_err; i++)
671 		ioc_err = __mmc_blk_ioctl_cmd(card, md, idata[i]);
672 
673 	/* Always switch back to main area after RPMB access */
674 	if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
675 		mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
676 
677 	mmc_put_card(card);
678 
679 	/* copy to user if data and response */
680 	for (i = 0; i < num_of_cmds && !err; i++)
681 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
682 
683 cmd_done:
684 	mmc_blk_put(md);
685 cmd_err:
686 	for (i = 0; i < num_of_cmds; i++) {
687 		kfree(idata[i]->buf);
688 		kfree(idata[i]);
689 	}
690 	kfree(idata);
691 	return ioc_err ? ioc_err : err;
692 }
693 
694 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
695 	unsigned int cmd, unsigned long arg)
696 {
697 	switch (cmd) {
698 	case MMC_IOC_CMD:
699 		return mmc_blk_ioctl_cmd(bdev,
700 				(struct mmc_ioc_cmd __user *)arg);
701 	case MMC_IOC_MULTI_CMD:
702 		return mmc_blk_ioctl_multi_cmd(bdev,
703 				(struct mmc_ioc_multi_cmd __user *)arg);
704 	default:
705 		return -EINVAL;
706 	}
707 }
708 
709 #ifdef CONFIG_COMPAT
710 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
711 	unsigned int cmd, unsigned long arg)
712 {
713 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
714 }
715 #endif
716 
717 static const struct block_device_operations mmc_bdops = {
718 	.open			= mmc_blk_open,
719 	.release		= mmc_blk_release,
720 	.getgeo			= mmc_blk_getgeo,
721 	.owner			= THIS_MODULE,
722 	.ioctl			= mmc_blk_ioctl,
723 #ifdef CONFIG_COMPAT
724 	.compat_ioctl		= mmc_blk_compat_ioctl,
725 #endif
726 };
727 
728 static inline int mmc_blk_part_switch(struct mmc_card *card,
729 				      struct mmc_blk_data *md)
730 {
731 	int ret;
732 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
733 
734 	if (main_md->part_curr == md->part_type)
735 		return 0;
736 
737 	if (mmc_card_mmc(card)) {
738 		u8 part_config = card->ext_csd.part_config;
739 
740 		if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
741 			mmc_retune_pause(card->host);
742 
743 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
744 		part_config |= md->part_type;
745 
746 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
747 				 EXT_CSD_PART_CONFIG, part_config,
748 				 card->ext_csd.part_time);
749 		if (ret) {
750 			if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
751 				mmc_retune_unpause(card->host);
752 			return ret;
753 		}
754 
755 		card->ext_csd.part_config = part_config;
756 
757 		if (main_md->part_curr == EXT_CSD_PART_CONFIG_ACC_RPMB)
758 			mmc_retune_unpause(card->host);
759 	}
760 
761 	main_md->part_curr = md->part_type;
762 	return 0;
763 }
764 
765 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
766 {
767 	int err;
768 	u32 result;
769 	__be32 *blocks;
770 
771 	struct mmc_request mrq = {NULL};
772 	struct mmc_command cmd = {0};
773 	struct mmc_data data = {0};
774 
775 	struct scatterlist sg;
776 
777 	cmd.opcode = MMC_APP_CMD;
778 	cmd.arg = card->rca << 16;
779 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
780 
781 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
782 	if (err)
783 		return (u32)-1;
784 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
785 		return (u32)-1;
786 
787 	memset(&cmd, 0, sizeof(struct mmc_command));
788 
789 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
790 	cmd.arg = 0;
791 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
792 
793 	data.blksz = 4;
794 	data.blocks = 1;
795 	data.flags = MMC_DATA_READ;
796 	data.sg = &sg;
797 	data.sg_len = 1;
798 	mmc_set_data_timeout(&data, card);
799 
800 	mrq.cmd = &cmd;
801 	mrq.data = &data;
802 
803 	blocks = kmalloc(4, GFP_KERNEL);
804 	if (!blocks)
805 		return (u32)-1;
806 
807 	sg_init_one(&sg, blocks, 4);
808 
809 	mmc_wait_for_req(card->host, &mrq);
810 
811 	result = ntohl(*blocks);
812 	kfree(blocks);
813 
814 	if (cmd.error || data.error)
815 		result = (u32)-1;
816 
817 	return result;
818 }
819 
820 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
821 {
822 	struct mmc_command cmd = {0};
823 	int err;
824 
825 	cmd.opcode = MMC_SEND_STATUS;
826 	if (!mmc_host_is_spi(card->host))
827 		cmd.arg = card->rca << 16;
828 	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
829 	err = mmc_wait_for_cmd(card->host, &cmd, retries);
830 	if (err == 0)
831 		*status = cmd.resp[0];
832 	return err;
833 }
834 
835 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
836 		bool hw_busy_detect, struct request *req, bool *gen_err)
837 {
838 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
839 	int err = 0;
840 	u32 status;
841 
842 	do {
843 		err = get_card_status(card, &status, 5);
844 		if (err) {
845 			pr_err("%s: error %d requesting status\n",
846 			       req->rq_disk->disk_name, err);
847 			return err;
848 		}
849 
850 		if (status & R1_ERROR) {
851 			pr_err("%s: %s: error sending status cmd, status %#x\n",
852 				req->rq_disk->disk_name, __func__, status);
853 			*gen_err = true;
854 		}
855 
856 		/* We may rely on the host hw to handle busy detection.*/
857 		if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
858 			hw_busy_detect)
859 			break;
860 
861 		/*
862 		 * Timeout if the device never becomes ready for data and never
863 		 * leaves the program state.
864 		 */
865 		if (time_after(jiffies, timeout)) {
866 			pr_err("%s: Card stuck in programming state! %s %s\n",
867 				mmc_hostname(card->host),
868 				req->rq_disk->disk_name, __func__);
869 			return -ETIMEDOUT;
870 		}
871 
872 		/*
873 		 * Some cards mishandle the status bits,
874 		 * so make sure to check both the busy
875 		 * indication and the card state.
876 		 */
877 	} while (!(status & R1_READY_FOR_DATA) ||
878 		 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
879 
880 	return err;
881 }
882 
883 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
884 		struct request *req, bool *gen_err, u32 *stop_status)
885 {
886 	struct mmc_host *host = card->host;
887 	struct mmc_command cmd = {0};
888 	int err;
889 	bool use_r1b_resp = rq_data_dir(req) == WRITE;
890 
891 	/*
892 	 * Normally we use R1B responses for WRITE, but in cases where the host
893 	 * has specified a max_busy_timeout we need to validate it. A failure
894 	 * means we need to prevent the host from doing hw busy detection, which
895 	 * is done by converting to a R1 response instead.
896 	 */
897 	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
898 		use_r1b_resp = false;
899 
900 	cmd.opcode = MMC_STOP_TRANSMISSION;
901 	if (use_r1b_resp) {
902 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
903 		cmd.busy_timeout = timeout_ms;
904 	} else {
905 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
906 	}
907 
908 	err = mmc_wait_for_cmd(host, &cmd, 5);
909 	if (err)
910 		return err;
911 
912 	*stop_status = cmd.resp[0];
913 
914 	/* No need to check card status in case of READ. */
915 	if (rq_data_dir(req) == READ)
916 		return 0;
917 
918 	if (!mmc_host_is_spi(host) &&
919 		(*stop_status & R1_ERROR)) {
920 		pr_err("%s: %s: general error sending stop command, resp %#x\n",
921 			req->rq_disk->disk_name, __func__, *stop_status);
922 		*gen_err = true;
923 	}
924 
925 	return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
926 }
927 
928 #define ERR_NOMEDIUM	3
929 #define ERR_RETRY	2
930 #define ERR_ABORT	1
931 #define ERR_CONTINUE	0
932 
933 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
934 	bool status_valid, u32 status)
935 {
936 	switch (error) {
937 	case -EILSEQ:
938 		/* response crc error, retry the r/w cmd */
939 		pr_err("%s: %s sending %s command, card status %#x\n",
940 			req->rq_disk->disk_name, "response CRC error",
941 			name, status);
942 		return ERR_RETRY;
943 
944 	case -ETIMEDOUT:
945 		pr_err("%s: %s sending %s command, card status %#x\n",
946 			req->rq_disk->disk_name, "timed out", name, status);
947 
948 		/* If the status cmd initially failed, retry the r/w cmd */
949 		if (!status_valid) {
950 			pr_err("%s: status not valid, retrying timeout\n",
951 				req->rq_disk->disk_name);
952 			return ERR_RETRY;
953 		}
954 
955 		/*
956 		 * If it was a r/w cmd crc error, or illegal command
957 		 * (eg, issued in wrong state) then retry - we should
958 		 * have corrected the state problem above.
959 		 */
960 		if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
961 			pr_err("%s: command error, retrying timeout\n",
962 				req->rq_disk->disk_name);
963 			return ERR_RETRY;
964 		}
965 
966 		/* Otherwise abort the command */
967 		return ERR_ABORT;
968 
969 	default:
970 		/* We don't understand the error code the driver gave us */
971 		pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
972 		       req->rq_disk->disk_name, error, status);
973 		return ERR_ABORT;
974 	}
975 }
976 
977 /*
978  * Initial r/w and stop cmd error recovery.
979  * We don't know whether the card received the r/w cmd or not, so try to
980  * restore things back to a sane state.  Essentially, we do this as follows:
981  * - Obtain card status.  If the first attempt to obtain card status fails,
982  *   the status word will reflect the failed status cmd, not the failed
983  *   r/w cmd.  If we fail to obtain card status, it suggests we can no
984  *   longer communicate with the card.
985  * - Check the card state.  If the card received the cmd but there was a
986  *   transient problem with the response, it might still be in a data transfer
987  *   mode.  Try to send it a stop command.  If this fails, we can't recover.
988  * - If the r/w cmd failed due to a response CRC error, it was probably
989  *   transient, so retry the cmd.
990  * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
991  * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
992  *   illegal cmd, retry.
993  * Otherwise we don't understand what happened, so abort.
994  */
995 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
996 	struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err)
997 {
998 	bool prev_cmd_status_valid = true;
999 	u32 status, stop_status = 0;
1000 	int err, retry;
1001 
1002 	if (mmc_card_removed(card))
1003 		return ERR_NOMEDIUM;
1004 
1005 	/*
1006 	 * Try to get card status which indicates both the card state
1007 	 * and why there was no response.  If the first attempt fails,
1008 	 * we can't be sure the returned status is for the r/w command.
1009 	 */
1010 	for (retry = 2; retry >= 0; retry--) {
1011 		err = get_card_status(card, &status, 0);
1012 		if (!err)
1013 			break;
1014 
1015 		/* Re-tune if needed */
1016 		mmc_retune_recheck(card->host);
1017 
1018 		prev_cmd_status_valid = false;
1019 		pr_err("%s: error %d sending status command, %sing\n",
1020 		       req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1021 	}
1022 
1023 	/* We couldn't get a response from the card.  Give up. */
1024 	if (err) {
1025 		/* Check if the card is removed */
1026 		if (mmc_detect_card_removed(card->host))
1027 			return ERR_NOMEDIUM;
1028 		return ERR_ABORT;
1029 	}
1030 
1031 	/* Flag ECC errors */
1032 	if ((status & R1_CARD_ECC_FAILED) ||
1033 	    (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1034 	    (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1035 		*ecc_err = true;
1036 
1037 	/* Flag General errors */
1038 	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1039 		if ((status & R1_ERROR) ||
1040 			(brq->stop.resp[0] & R1_ERROR)) {
1041 			pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1042 			       req->rq_disk->disk_name, __func__,
1043 			       brq->stop.resp[0], status);
1044 			*gen_err = true;
1045 		}
1046 
1047 	/*
1048 	 * Check the current card state.  If it is in some data transfer
1049 	 * mode, tell it to stop (and hopefully transition back to TRAN.)
1050 	 */
1051 	if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1052 	    R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1053 		err = send_stop(card,
1054 			DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1055 			req, gen_err, &stop_status);
1056 		if (err) {
1057 			pr_err("%s: error %d sending stop command\n",
1058 			       req->rq_disk->disk_name, err);
1059 			/*
1060 			 * If the stop cmd also timed out, the card is probably
1061 			 * not present, so abort. Other errors are bad news too.
1062 			 */
1063 			return ERR_ABORT;
1064 		}
1065 
1066 		if (stop_status & R1_CARD_ECC_FAILED)
1067 			*ecc_err = true;
1068 	}
1069 
1070 	/* Check for set block count errors */
1071 	if (brq->sbc.error)
1072 		return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1073 				prev_cmd_status_valid, status);
1074 
1075 	/* Check for r/w command errors */
1076 	if (brq->cmd.error)
1077 		return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1078 				prev_cmd_status_valid, status);
1079 
1080 	/* Data errors */
1081 	if (!brq->stop.error)
1082 		return ERR_CONTINUE;
1083 
1084 	/* Now for stop errors.  These aren't fatal to the transfer. */
1085 	pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1086 	       req->rq_disk->disk_name, brq->stop.error,
1087 	       brq->cmd.resp[0], status);
1088 
1089 	/*
1090 	 * Subsitute in our own stop status as this will give the error
1091 	 * state which happened during the execution of the r/w command.
1092 	 */
1093 	if (stop_status) {
1094 		brq->stop.resp[0] = stop_status;
1095 		brq->stop.error = 0;
1096 	}
1097 	return ERR_CONTINUE;
1098 }
1099 
1100 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1101 			 int type)
1102 {
1103 	int err;
1104 
1105 	if (md->reset_done & type)
1106 		return -EEXIST;
1107 
1108 	md->reset_done |= type;
1109 	err = mmc_hw_reset(host);
1110 	/* Ensure we switch back to the correct partition */
1111 	if (err != -EOPNOTSUPP) {
1112 		struct mmc_blk_data *main_md =
1113 			dev_get_drvdata(&host->card->dev);
1114 		int part_err;
1115 
1116 		main_md->part_curr = main_md->part_type;
1117 		part_err = mmc_blk_part_switch(host->card, md);
1118 		if (part_err) {
1119 			/*
1120 			 * We have failed to get back into the correct
1121 			 * partition, so we need to abort the whole request.
1122 			 */
1123 			return -ENODEV;
1124 		}
1125 	}
1126 	return err;
1127 }
1128 
1129 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1130 {
1131 	md->reset_done &= ~type;
1132 }
1133 
1134 int mmc_access_rpmb(struct mmc_queue *mq)
1135 {
1136 	struct mmc_blk_data *md = mq->blkdata;
1137 	/*
1138 	 * If this is a RPMB partition access, return ture
1139 	 */
1140 	if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1141 		return true;
1142 
1143 	return false;
1144 }
1145 
1146 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1147 {
1148 	struct mmc_blk_data *md = mq->blkdata;
1149 	struct mmc_card *card = md->queue.card;
1150 	unsigned int from, nr, arg;
1151 	int err = 0, type = MMC_BLK_DISCARD;
1152 
1153 	if (!mmc_can_erase(card)) {
1154 		err = -EOPNOTSUPP;
1155 		goto out;
1156 	}
1157 
1158 	from = blk_rq_pos(req);
1159 	nr = blk_rq_sectors(req);
1160 
1161 	if (mmc_can_discard(card))
1162 		arg = MMC_DISCARD_ARG;
1163 	else if (mmc_can_trim(card))
1164 		arg = MMC_TRIM_ARG;
1165 	else
1166 		arg = MMC_ERASE_ARG;
1167 retry:
1168 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1169 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1170 				 INAND_CMD38_ARG_EXT_CSD,
1171 				 arg == MMC_TRIM_ARG ?
1172 				 INAND_CMD38_ARG_TRIM :
1173 				 INAND_CMD38_ARG_ERASE,
1174 				 0);
1175 		if (err)
1176 			goto out;
1177 	}
1178 	err = mmc_erase(card, from, nr, arg);
1179 out:
1180 	if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1181 		goto retry;
1182 	if (!err)
1183 		mmc_blk_reset_success(md, type);
1184 	blk_end_request(req, err, blk_rq_bytes(req));
1185 
1186 	return err ? 0 : 1;
1187 }
1188 
1189 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1190 				       struct request *req)
1191 {
1192 	struct mmc_blk_data *md = mq->blkdata;
1193 	struct mmc_card *card = md->queue.card;
1194 	unsigned int from, nr, arg;
1195 	int err = 0, type = MMC_BLK_SECDISCARD;
1196 
1197 	if (!(mmc_can_secure_erase_trim(card))) {
1198 		err = -EOPNOTSUPP;
1199 		goto out;
1200 	}
1201 
1202 	from = blk_rq_pos(req);
1203 	nr = blk_rq_sectors(req);
1204 
1205 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1206 		arg = MMC_SECURE_TRIM1_ARG;
1207 	else
1208 		arg = MMC_SECURE_ERASE_ARG;
1209 
1210 retry:
1211 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1212 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1213 				 INAND_CMD38_ARG_EXT_CSD,
1214 				 arg == MMC_SECURE_TRIM1_ARG ?
1215 				 INAND_CMD38_ARG_SECTRIM1 :
1216 				 INAND_CMD38_ARG_SECERASE,
1217 				 0);
1218 		if (err)
1219 			goto out_retry;
1220 	}
1221 
1222 	err = mmc_erase(card, from, nr, arg);
1223 	if (err == -EIO)
1224 		goto out_retry;
1225 	if (err)
1226 		goto out;
1227 
1228 	if (arg == MMC_SECURE_TRIM1_ARG) {
1229 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1230 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1231 					 INAND_CMD38_ARG_EXT_CSD,
1232 					 INAND_CMD38_ARG_SECTRIM2,
1233 					 0);
1234 			if (err)
1235 				goto out_retry;
1236 		}
1237 
1238 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1239 		if (err == -EIO)
1240 			goto out_retry;
1241 		if (err)
1242 			goto out;
1243 	}
1244 
1245 out_retry:
1246 	if (err && !mmc_blk_reset(md, card->host, type))
1247 		goto retry;
1248 	if (!err)
1249 		mmc_blk_reset_success(md, type);
1250 out:
1251 	blk_end_request(req, err, blk_rq_bytes(req));
1252 
1253 	return err ? 0 : 1;
1254 }
1255 
1256 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1257 {
1258 	struct mmc_blk_data *md = mq->blkdata;
1259 	struct mmc_card *card = md->queue.card;
1260 	int ret = 0;
1261 
1262 	ret = mmc_flush_cache(card);
1263 	if (ret)
1264 		ret = -EIO;
1265 
1266 	blk_end_request_all(req, ret);
1267 
1268 	return ret ? 0 : 1;
1269 }
1270 
1271 /*
1272  * Reformat current write as a reliable write, supporting
1273  * both legacy and the enhanced reliable write MMC cards.
1274  * In each transfer we'll handle only as much as a single
1275  * reliable write can handle, thus finish the request in
1276  * partial completions.
1277  */
1278 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1279 				    struct mmc_card *card,
1280 				    struct request *req)
1281 {
1282 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1283 		/* Legacy mode imposes restrictions on transfers. */
1284 		if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1285 			brq->data.blocks = 1;
1286 
1287 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1288 			brq->data.blocks = card->ext_csd.rel_sectors;
1289 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1290 			brq->data.blocks = 1;
1291 	}
1292 }
1293 
1294 #define CMD_ERRORS							\
1295 	(R1_OUT_OF_RANGE |	/* Command argument out of range */	\
1296 	 R1_ADDRESS_ERROR |	/* Misaligned address */		\
1297 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1298 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1299 	 R1_CC_ERROR |		/* Card controller error */		\
1300 	 R1_ERROR)		/* General/unknown error */
1301 
1302 static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card,
1303 					     struct mmc_async_req *areq)
1304 {
1305 	struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1306 						    mmc_active);
1307 	struct mmc_blk_request *brq = &mq_mrq->brq;
1308 	struct request *req = mq_mrq->req;
1309 	int need_retune = card->host->need_retune;
1310 	bool ecc_err = false;
1311 	bool gen_err = false;
1312 
1313 	/*
1314 	 * sbc.error indicates a problem with the set block count
1315 	 * command.  No data will have been transferred.
1316 	 *
1317 	 * cmd.error indicates a problem with the r/w command.  No
1318 	 * data will have been transferred.
1319 	 *
1320 	 * stop.error indicates a problem with the stop command.  Data
1321 	 * may have been transferred, or may still be transferring.
1322 	 */
1323 	if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1324 	    brq->data.error) {
1325 		switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1326 		case ERR_RETRY:
1327 			return MMC_BLK_RETRY;
1328 		case ERR_ABORT:
1329 			return MMC_BLK_ABORT;
1330 		case ERR_NOMEDIUM:
1331 			return MMC_BLK_NOMEDIUM;
1332 		case ERR_CONTINUE:
1333 			break;
1334 		}
1335 	}
1336 
1337 	/*
1338 	 * Check for errors relating to the execution of the
1339 	 * initial command - such as address errors.  No data
1340 	 * has been transferred.
1341 	 */
1342 	if (brq->cmd.resp[0] & CMD_ERRORS) {
1343 		pr_err("%s: r/w command failed, status = %#x\n",
1344 		       req->rq_disk->disk_name, brq->cmd.resp[0]);
1345 		return MMC_BLK_ABORT;
1346 	}
1347 
1348 	/*
1349 	 * Everything else is either success, or a data error of some
1350 	 * kind.  If it was a write, we may have transitioned to
1351 	 * program mode, which we have to wait for it to complete.
1352 	 */
1353 	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1354 		int err;
1355 
1356 		/* Check stop command response */
1357 		if (brq->stop.resp[0] & R1_ERROR) {
1358 			pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1359 			       req->rq_disk->disk_name, __func__,
1360 			       brq->stop.resp[0]);
1361 			gen_err = true;
1362 		}
1363 
1364 		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1365 					&gen_err);
1366 		if (err)
1367 			return MMC_BLK_CMD_ERR;
1368 	}
1369 
1370 	/* if general error occurs, retry the write operation. */
1371 	if (gen_err) {
1372 		pr_warn("%s: retrying write for general error\n",
1373 				req->rq_disk->disk_name);
1374 		return MMC_BLK_RETRY;
1375 	}
1376 
1377 	if (brq->data.error) {
1378 		if (need_retune && !brq->retune_retry_done) {
1379 			pr_debug("%s: retrying because a re-tune was needed\n",
1380 				 req->rq_disk->disk_name);
1381 			brq->retune_retry_done = 1;
1382 			return MMC_BLK_RETRY;
1383 		}
1384 		pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1385 		       req->rq_disk->disk_name, brq->data.error,
1386 		       (unsigned)blk_rq_pos(req),
1387 		       (unsigned)blk_rq_sectors(req),
1388 		       brq->cmd.resp[0], brq->stop.resp[0]);
1389 
1390 		if (rq_data_dir(req) == READ) {
1391 			if (ecc_err)
1392 				return MMC_BLK_ECC_ERR;
1393 			return MMC_BLK_DATA_ERR;
1394 		} else {
1395 			return MMC_BLK_CMD_ERR;
1396 		}
1397 	}
1398 
1399 	if (!brq->data.bytes_xfered)
1400 		return MMC_BLK_RETRY;
1401 
1402 	if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1403 		return MMC_BLK_PARTIAL;
1404 
1405 	return MMC_BLK_SUCCESS;
1406 }
1407 
1408 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1409 			       struct mmc_card *card,
1410 			       int disable_multi,
1411 			       struct mmc_queue *mq)
1412 {
1413 	u32 readcmd, writecmd;
1414 	struct mmc_blk_request *brq = &mqrq->brq;
1415 	struct request *req = mqrq->req;
1416 	struct mmc_blk_data *md = mq->blkdata;
1417 	bool do_data_tag;
1418 
1419 	/*
1420 	 * Reliable writes are used to implement Forced Unit Access and
1421 	 * are supported only on MMCs.
1422 	 */
1423 	bool do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1424 		(rq_data_dir(req) == WRITE) &&
1425 		(md->flags & MMC_BLK_REL_WR);
1426 
1427 	memset(brq, 0, sizeof(struct mmc_blk_request));
1428 	brq->mrq.cmd = &brq->cmd;
1429 	brq->mrq.data = &brq->data;
1430 
1431 	brq->cmd.arg = blk_rq_pos(req);
1432 	if (!mmc_card_blockaddr(card))
1433 		brq->cmd.arg <<= 9;
1434 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1435 	brq->data.blksz = 512;
1436 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1437 	brq->stop.arg = 0;
1438 	brq->data.blocks = blk_rq_sectors(req);
1439 
1440 	/*
1441 	 * The block layer doesn't support all sector count
1442 	 * restrictions, so we need to be prepared for too big
1443 	 * requests.
1444 	 */
1445 	if (brq->data.blocks > card->host->max_blk_count)
1446 		brq->data.blocks = card->host->max_blk_count;
1447 
1448 	if (brq->data.blocks > 1) {
1449 		/*
1450 		 * After a read error, we redo the request one sector
1451 		 * at a time in order to accurately determine which
1452 		 * sectors can be read successfully.
1453 		 */
1454 		if (disable_multi)
1455 			brq->data.blocks = 1;
1456 
1457 		/*
1458 		 * Some controllers have HW issues while operating
1459 		 * in multiple I/O mode
1460 		 */
1461 		if (card->host->ops->multi_io_quirk)
1462 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1463 						(rq_data_dir(req) == READ) ?
1464 						MMC_DATA_READ : MMC_DATA_WRITE,
1465 						brq->data.blocks);
1466 	}
1467 
1468 	if (brq->data.blocks > 1 || do_rel_wr) {
1469 		/* SPI multiblock writes terminate using a special
1470 		 * token, not a STOP_TRANSMISSION request.
1471 		 */
1472 		if (!mmc_host_is_spi(card->host) ||
1473 		    rq_data_dir(req) == READ)
1474 			brq->mrq.stop = &brq->stop;
1475 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1476 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1477 	} else {
1478 		brq->mrq.stop = NULL;
1479 		readcmd = MMC_READ_SINGLE_BLOCK;
1480 		writecmd = MMC_WRITE_BLOCK;
1481 	}
1482 	if (rq_data_dir(req) == READ) {
1483 		brq->cmd.opcode = readcmd;
1484 		brq->data.flags = MMC_DATA_READ;
1485 		if (brq->mrq.stop)
1486 			brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1487 					MMC_CMD_AC;
1488 	} else {
1489 		brq->cmd.opcode = writecmd;
1490 		brq->data.flags = MMC_DATA_WRITE;
1491 		if (brq->mrq.stop)
1492 			brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1493 					MMC_CMD_AC;
1494 	}
1495 
1496 	if (do_rel_wr)
1497 		mmc_apply_rel_rw(brq, card, req);
1498 
1499 	/*
1500 	 * Data tag is used only during writing meta data to speed
1501 	 * up write and any subsequent read of this meta data
1502 	 */
1503 	do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1504 		(req->cmd_flags & REQ_META) &&
1505 		(rq_data_dir(req) == WRITE) &&
1506 		((brq->data.blocks * brq->data.blksz) >=
1507 		 card->ext_csd.data_tag_unit_size);
1508 
1509 	/*
1510 	 * Pre-defined multi-block transfers are preferable to
1511 	 * open ended-ones (and necessary for reliable writes).
1512 	 * However, it is not sufficient to just send CMD23,
1513 	 * and avoid the final CMD12, as on an error condition
1514 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1515 	 * with Auto-CMD23 enhancements provided by some
1516 	 * hosts, means that the complexity of dealing
1517 	 * with this is best left to the host. If CMD23 is
1518 	 * supported by card and host, we'll fill sbc in and let
1519 	 * the host deal with handling it correctly. This means
1520 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1521 	 * change of behavior will be observed.
1522 	 *
1523 	 * N.B: Some MMC cards experience perf degradation.
1524 	 * We'll avoid using CMD23-bounded multiblock writes for
1525 	 * these, while retaining features like reliable writes.
1526 	 */
1527 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1528 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1529 	     do_data_tag)) {
1530 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1531 		brq->sbc.arg = brq->data.blocks |
1532 			(do_rel_wr ? (1 << 31) : 0) |
1533 			(do_data_tag ? (1 << 29) : 0);
1534 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1535 		brq->mrq.sbc = &brq->sbc;
1536 	}
1537 
1538 	mmc_set_data_timeout(&brq->data, card);
1539 
1540 	brq->data.sg = mqrq->sg;
1541 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1542 
1543 	/*
1544 	 * Adjust the sg list so it is the same size as the
1545 	 * request.
1546 	 */
1547 	if (brq->data.blocks != blk_rq_sectors(req)) {
1548 		int i, data_size = brq->data.blocks << 9;
1549 		struct scatterlist *sg;
1550 
1551 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1552 			data_size -= sg->length;
1553 			if (data_size <= 0) {
1554 				sg->length += data_size;
1555 				i++;
1556 				break;
1557 			}
1558 		}
1559 		brq->data.sg_len = i;
1560 	}
1561 
1562 	mqrq->mmc_active.mrq = &brq->mrq;
1563 	mqrq->mmc_active.err_check = mmc_blk_err_check;
1564 
1565 	mmc_queue_bounce_pre(mqrq);
1566 }
1567 
1568 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1569 			   struct mmc_blk_request *brq, struct request *req,
1570 			   int ret)
1571 {
1572 	struct mmc_queue_req *mq_rq;
1573 	mq_rq = container_of(brq, struct mmc_queue_req, brq);
1574 
1575 	/*
1576 	 * If this is an SD card and we're writing, we can first
1577 	 * mark the known good sectors as ok.
1578 	 *
1579 	 * If the card is not SD, we can still ok written sectors
1580 	 * as reported by the controller (which might be less than
1581 	 * the real number of written sectors, but never more).
1582 	 */
1583 	if (mmc_card_sd(card)) {
1584 		u32 blocks;
1585 
1586 		blocks = mmc_sd_num_wr_blocks(card);
1587 		if (blocks != (u32)-1) {
1588 			ret = blk_end_request(req, 0, blocks << 9);
1589 		}
1590 	} else {
1591 		ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1592 	}
1593 	return ret;
1594 }
1595 
1596 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1597 {
1598 	struct mmc_blk_data *md = mq->blkdata;
1599 	struct mmc_card *card = md->queue.card;
1600 	struct mmc_blk_request *brq;
1601 	int ret = 1, disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1602 	enum mmc_blk_status status;
1603 	struct mmc_queue_req *mq_rq;
1604 	struct request *req;
1605 	struct mmc_async_req *areq;
1606 
1607 	if (!rqc && !mq->mqrq_prev->req)
1608 		return 0;
1609 
1610 	do {
1611 		if (rqc) {
1612 			/*
1613 			 * When 4KB native sector is enabled, only 8 blocks
1614 			 * multiple read or write is allowed
1615 			 */
1616 			if (mmc_large_sector(card) &&
1617 				!IS_ALIGNED(blk_rq_sectors(rqc), 8)) {
1618 				pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1619 					rqc->rq_disk->disk_name);
1620 				mq_rq = mq->mqrq_cur;
1621 				req = rqc;
1622 				rqc = NULL;
1623 				goto cmd_abort;
1624 			}
1625 
1626 			mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1627 			areq = &mq->mqrq_cur->mmc_active;
1628 		} else
1629 			areq = NULL;
1630 		areq = mmc_start_req(card->host, areq, &status);
1631 		if (!areq) {
1632 			if (status == MMC_BLK_NEW_REQUEST)
1633 				mq->flags |= MMC_QUEUE_NEW_REQUEST;
1634 			return 0;
1635 		}
1636 
1637 		mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1638 		brq = &mq_rq->brq;
1639 		req = mq_rq->req;
1640 		type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1641 		mmc_queue_bounce_post(mq_rq);
1642 
1643 		switch (status) {
1644 		case MMC_BLK_SUCCESS:
1645 		case MMC_BLK_PARTIAL:
1646 			/*
1647 			 * A block was successfully transferred.
1648 			 */
1649 			mmc_blk_reset_success(md, type);
1650 
1651 			ret = blk_end_request(req, 0,
1652 					brq->data.bytes_xfered);
1653 
1654 			/*
1655 			 * If the blk_end_request function returns non-zero even
1656 			 * though all data has been transferred and no errors
1657 			 * were returned by the host controller, it's a bug.
1658 			 */
1659 			if (status == MMC_BLK_SUCCESS && ret) {
1660 				pr_err("%s BUG rq_tot %d d_xfer %d\n",
1661 				       __func__, blk_rq_bytes(req),
1662 				       brq->data.bytes_xfered);
1663 				rqc = NULL;
1664 				goto cmd_abort;
1665 			}
1666 			break;
1667 		case MMC_BLK_CMD_ERR:
1668 			ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1669 			if (mmc_blk_reset(md, card->host, type))
1670 				goto cmd_abort;
1671 			if (!ret)
1672 				goto start_new_req;
1673 			break;
1674 		case MMC_BLK_RETRY:
1675 			retune_retry_done = brq->retune_retry_done;
1676 			if (retry++ < 5)
1677 				break;
1678 			/* Fall through */
1679 		case MMC_BLK_ABORT:
1680 			if (!mmc_blk_reset(md, card->host, type))
1681 				break;
1682 			goto cmd_abort;
1683 		case MMC_BLK_DATA_ERR: {
1684 			int err;
1685 
1686 			err = mmc_blk_reset(md, card->host, type);
1687 			if (!err)
1688 				break;
1689 			if (err == -ENODEV)
1690 				goto cmd_abort;
1691 			/* Fall through */
1692 		}
1693 		case MMC_BLK_ECC_ERR:
1694 			if (brq->data.blocks > 1) {
1695 				/* Redo read one sector at a time */
1696 				pr_warn("%s: retrying using single block read\n",
1697 					req->rq_disk->disk_name);
1698 				disable_multi = 1;
1699 				break;
1700 			}
1701 			/*
1702 			 * After an error, we redo I/O one sector at a
1703 			 * time, so we only reach here after trying to
1704 			 * read a single sector.
1705 			 */
1706 			ret = blk_end_request(req, -EIO,
1707 						brq->data.blksz);
1708 			if (!ret)
1709 				goto start_new_req;
1710 			break;
1711 		case MMC_BLK_NOMEDIUM:
1712 			goto cmd_abort;
1713 		default:
1714 			pr_err("%s: Unhandled return value (%d)",
1715 					req->rq_disk->disk_name, status);
1716 			goto cmd_abort;
1717 		}
1718 
1719 		if (ret) {
1720 			/*
1721 			 * In case of a incomplete request
1722 			 * prepare it again and resend.
1723 			 */
1724 			mmc_blk_rw_rq_prep(mq_rq, card,
1725 					disable_multi, mq);
1726 			mmc_start_req(card->host,
1727 					&mq_rq->mmc_active, NULL);
1728 			mq_rq->brq.retune_retry_done = retune_retry_done;
1729 		}
1730 	} while (ret);
1731 
1732 	return 1;
1733 
1734  cmd_abort:
1735 	if (mmc_card_removed(card))
1736 		req->rq_flags |= RQF_QUIET;
1737 	while (ret)
1738 		ret = blk_end_request(req, -EIO,
1739 				blk_rq_cur_bytes(req));
1740 
1741  start_new_req:
1742 	if (rqc) {
1743 		if (mmc_card_removed(card)) {
1744 			rqc->rq_flags |= RQF_QUIET;
1745 			blk_end_request_all(rqc, -EIO);
1746 		} else {
1747 			mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1748 			mmc_start_req(card->host,
1749 				      &mq->mqrq_cur->mmc_active, NULL);
1750 		}
1751 	}
1752 
1753 	return 0;
1754 }
1755 
1756 int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1757 {
1758 	int ret;
1759 	struct mmc_blk_data *md = mq->blkdata;
1760 	struct mmc_card *card = md->queue.card;
1761 	bool req_is_special = mmc_req_is_special(req);
1762 
1763 	if (req && !mq->mqrq_prev->req)
1764 		/* claim host only for the first request */
1765 		mmc_get_card(card);
1766 
1767 	ret = mmc_blk_part_switch(card, md);
1768 	if (ret) {
1769 		if (req) {
1770 			blk_end_request_all(req, -EIO);
1771 		}
1772 		ret = 0;
1773 		goto out;
1774 	}
1775 
1776 	mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
1777 	if (req && req_op(req) == REQ_OP_DISCARD) {
1778 		/* complete ongoing async transfer before issuing discard */
1779 		if (card->host->areq)
1780 			mmc_blk_issue_rw_rq(mq, NULL);
1781 		ret = mmc_blk_issue_discard_rq(mq, req);
1782 	} else if (req && req_op(req) == REQ_OP_SECURE_ERASE) {
1783 		/* complete ongoing async transfer before issuing secure erase*/
1784 		if (card->host->areq)
1785 			mmc_blk_issue_rw_rq(mq, NULL);
1786 		ret = mmc_blk_issue_secdiscard_rq(mq, req);
1787 	} else if (req && req_op(req) == REQ_OP_FLUSH) {
1788 		/* complete ongoing async transfer before issuing flush */
1789 		if (card->host->areq)
1790 			mmc_blk_issue_rw_rq(mq, NULL);
1791 		ret = mmc_blk_issue_flush(mq, req);
1792 	} else {
1793 		ret = mmc_blk_issue_rw_rq(mq, req);
1794 	}
1795 
1796 out:
1797 	if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) || req_is_special)
1798 		/*
1799 		 * Release host when there are no more requests
1800 		 * and after special request(discard, flush) is done.
1801 		 * In case sepecial request, there is no reentry to
1802 		 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
1803 		 */
1804 		mmc_put_card(card);
1805 	return ret;
1806 }
1807 
1808 static inline int mmc_blk_readonly(struct mmc_card *card)
1809 {
1810 	return mmc_card_readonly(card) ||
1811 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1812 }
1813 
1814 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1815 					      struct device *parent,
1816 					      sector_t size,
1817 					      bool default_ro,
1818 					      const char *subname,
1819 					      int area_type)
1820 {
1821 	struct mmc_blk_data *md;
1822 	int devidx, ret;
1823 
1824 again:
1825 	if (!ida_pre_get(&mmc_blk_ida, GFP_KERNEL))
1826 		return ERR_PTR(-ENOMEM);
1827 
1828 	spin_lock(&mmc_blk_lock);
1829 	ret = ida_get_new(&mmc_blk_ida, &devidx);
1830 	spin_unlock(&mmc_blk_lock);
1831 
1832 	if (ret == -EAGAIN)
1833 		goto again;
1834 	else if (ret)
1835 		return ERR_PTR(ret);
1836 
1837 	if (devidx >= max_devices) {
1838 		ret = -ENOSPC;
1839 		goto out;
1840 	}
1841 
1842 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1843 	if (!md) {
1844 		ret = -ENOMEM;
1845 		goto out;
1846 	}
1847 
1848 	md->area_type = area_type;
1849 
1850 	/*
1851 	 * Set the read-only status based on the supported commands
1852 	 * and the write protect switch.
1853 	 */
1854 	md->read_only = mmc_blk_readonly(card);
1855 
1856 	md->disk = alloc_disk(perdev_minors);
1857 	if (md->disk == NULL) {
1858 		ret = -ENOMEM;
1859 		goto err_kfree;
1860 	}
1861 
1862 	spin_lock_init(&md->lock);
1863 	INIT_LIST_HEAD(&md->part);
1864 	md->usage = 1;
1865 
1866 	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1867 	if (ret)
1868 		goto err_putdisk;
1869 
1870 	md->queue.blkdata = md;
1871 
1872 	md->disk->major	= MMC_BLOCK_MAJOR;
1873 	md->disk->first_minor = devidx * perdev_minors;
1874 	md->disk->fops = &mmc_bdops;
1875 	md->disk->private_data = md;
1876 	md->disk->queue = md->queue.queue;
1877 	md->parent = parent;
1878 	set_disk_ro(md->disk, md->read_only || default_ro);
1879 	md->disk->flags = GENHD_FL_EXT_DEVT;
1880 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
1881 		md->disk->flags |= GENHD_FL_NO_PART_SCAN;
1882 
1883 	/*
1884 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1885 	 *
1886 	 * - be set for removable media with permanent block devices
1887 	 * - be unset for removable block devices with permanent media
1888 	 *
1889 	 * Since MMC block devices clearly fall under the second
1890 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
1891 	 * should use the block device creation/destruction hotplug
1892 	 * messages to tell when the card is present.
1893 	 */
1894 
1895 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1896 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
1897 
1898 	if (mmc_card_mmc(card))
1899 		blk_queue_logical_block_size(md->queue.queue,
1900 					     card->ext_csd.data_sector_size);
1901 	else
1902 		blk_queue_logical_block_size(md->queue.queue, 512);
1903 
1904 	set_capacity(md->disk, size);
1905 
1906 	if (mmc_host_cmd23(card->host)) {
1907 		if ((mmc_card_mmc(card) &&
1908 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
1909 		    (mmc_card_sd(card) &&
1910 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1911 			md->flags |= MMC_BLK_CMD23;
1912 	}
1913 
1914 	if (mmc_card_mmc(card) &&
1915 	    md->flags & MMC_BLK_CMD23 &&
1916 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1917 	     card->ext_csd.rel_sectors)) {
1918 		md->flags |= MMC_BLK_REL_WR;
1919 		blk_queue_write_cache(md->queue.queue, true, true);
1920 	}
1921 
1922 	return md;
1923 
1924  err_putdisk:
1925 	put_disk(md->disk);
1926  err_kfree:
1927 	kfree(md);
1928  out:
1929 	spin_lock(&mmc_blk_lock);
1930 	ida_remove(&mmc_blk_ida, devidx);
1931 	spin_unlock(&mmc_blk_lock);
1932 	return ERR_PTR(ret);
1933 }
1934 
1935 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1936 {
1937 	sector_t size;
1938 
1939 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1940 		/*
1941 		 * The EXT_CSD sector count is in number or 512 byte
1942 		 * sectors.
1943 		 */
1944 		size = card->ext_csd.sectors;
1945 	} else {
1946 		/*
1947 		 * The CSD capacity field is in units of read_blkbits.
1948 		 * set_capacity takes units of 512 bytes.
1949 		 */
1950 		size = (typeof(sector_t))card->csd.capacity
1951 			<< (card->csd.read_blkbits - 9);
1952 	}
1953 
1954 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
1955 					MMC_BLK_DATA_AREA_MAIN);
1956 }
1957 
1958 static int mmc_blk_alloc_part(struct mmc_card *card,
1959 			      struct mmc_blk_data *md,
1960 			      unsigned int part_type,
1961 			      sector_t size,
1962 			      bool default_ro,
1963 			      const char *subname,
1964 			      int area_type)
1965 {
1966 	char cap_str[10];
1967 	struct mmc_blk_data *part_md;
1968 
1969 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1970 				    subname, area_type);
1971 	if (IS_ERR(part_md))
1972 		return PTR_ERR(part_md);
1973 	part_md->part_type = part_type;
1974 	list_add(&part_md->part, &md->part);
1975 
1976 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
1977 			cap_str, sizeof(cap_str));
1978 	pr_info("%s: %s %s partition %u %s\n",
1979 	       part_md->disk->disk_name, mmc_card_id(card),
1980 	       mmc_card_name(card), part_md->part_type, cap_str);
1981 	return 0;
1982 }
1983 
1984 /* MMC Physical partitions consist of two boot partitions and
1985  * up to four general purpose partitions.
1986  * For each partition enabled in EXT_CSD a block device will be allocatedi
1987  * to provide access to the partition.
1988  */
1989 
1990 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1991 {
1992 	int idx, ret = 0;
1993 
1994 	if (!mmc_card_mmc(card))
1995 		return 0;
1996 
1997 	for (idx = 0; idx < card->nr_parts; idx++) {
1998 		if (card->part[idx].size) {
1999 			ret = mmc_blk_alloc_part(card, md,
2000 				card->part[idx].part_cfg,
2001 				card->part[idx].size >> 9,
2002 				card->part[idx].force_ro,
2003 				card->part[idx].name,
2004 				card->part[idx].area_type);
2005 			if (ret)
2006 				return ret;
2007 		}
2008 	}
2009 
2010 	return ret;
2011 }
2012 
2013 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2014 {
2015 	struct mmc_card *card;
2016 
2017 	if (md) {
2018 		/*
2019 		 * Flush remaining requests and free queues. It
2020 		 * is freeing the queue that stops new requests
2021 		 * from being accepted.
2022 		 */
2023 		card = md->queue.card;
2024 		mmc_cleanup_queue(&md->queue);
2025 		if (md->disk->flags & GENHD_FL_UP) {
2026 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2027 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2028 					card->ext_csd.boot_ro_lockable)
2029 				device_remove_file(disk_to_dev(md->disk),
2030 					&md->power_ro_lock);
2031 
2032 			del_gendisk(md->disk);
2033 		}
2034 		mmc_blk_put(md);
2035 	}
2036 }
2037 
2038 static void mmc_blk_remove_parts(struct mmc_card *card,
2039 				 struct mmc_blk_data *md)
2040 {
2041 	struct list_head *pos, *q;
2042 	struct mmc_blk_data *part_md;
2043 
2044 	list_for_each_safe(pos, q, &md->part) {
2045 		part_md = list_entry(pos, struct mmc_blk_data, part);
2046 		list_del(pos);
2047 		mmc_blk_remove_req(part_md);
2048 	}
2049 }
2050 
2051 static int mmc_add_disk(struct mmc_blk_data *md)
2052 {
2053 	int ret;
2054 	struct mmc_card *card = md->queue.card;
2055 
2056 	device_add_disk(md->parent, md->disk);
2057 	md->force_ro.show = force_ro_show;
2058 	md->force_ro.store = force_ro_store;
2059 	sysfs_attr_init(&md->force_ro.attr);
2060 	md->force_ro.attr.name = "force_ro";
2061 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2062 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2063 	if (ret)
2064 		goto force_ro_fail;
2065 
2066 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2067 	     card->ext_csd.boot_ro_lockable) {
2068 		umode_t mode;
2069 
2070 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2071 			mode = S_IRUGO;
2072 		else
2073 			mode = S_IRUGO | S_IWUSR;
2074 
2075 		md->power_ro_lock.show = power_ro_lock_show;
2076 		md->power_ro_lock.store = power_ro_lock_store;
2077 		sysfs_attr_init(&md->power_ro_lock.attr);
2078 		md->power_ro_lock.attr.mode = mode;
2079 		md->power_ro_lock.attr.name =
2080 					"ro_lock_until_next_power_on";
2081 		ret = device_create_file(disk_to_dev(md->disk),
2082 				&md->power_ro_lock);
2083 		if (ret)
2084 			goto power_ro_lock_fail;
2085 	}
2086 	return ret;
2087 
2088 power_ro_lock_fail:
2089 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2090 force_ro_fail:
2091 	del_gendisk(md->disk);
2092 
2093 	return ret;
2094 }
2095 
2096 static const struct mmc_fixup blk_fixups[] =
2097 {
2098 	MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2099 		  MMC_QUIRK_INAND_CMD38),
2100 	MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2101 		  MMC_QUIRK_INAND_CMD38),
2102 	MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2103 		  MMC_QUIRK_INAND_CMD38),
2104 	MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2105 		  MMC_QUIRK_INAND_CMD38),
2106 	MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2107 		  MMC_QUIRK_INAND_CMD38),
2108 
2109 	/*
2110 	 * Some MMC cards experience performance degradation with CMD23
2111 	 * instead of CMD12-bounded multiblock transfers. For now we'll
2112 	 * black list what's bad...
2113 	 * - Certain Toshiba cards.
2114 	 *
2115 	 * N.B. This doesn't affect SD cards.
2116 	 */
2117 	MMC_FIXUP("SDMB-32", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2118 		  MMC_QUIRK_BLK_NO_CMD23),
2119 	MMC_FIXUP("SDM032", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc,
2120 		  MMC_QUIRK_BLK_NO_CMD23),
2121 	MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2122 		  MMC_QUIRK_BLK_NO_CMD23),
2123 	MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2124 		  MMC_QUIRK_BLK_NO_CMD23),
2125 	MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2126 		  MMC_QUIRK_BLK_NO_CMD23),
2127 
2128 	/*
2129 	 * Some MMC cards need longer data read timeout than indicated in CSD.
2130 	 */
2131 	MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2132 		  MMC_QUIRK_LONG_READ_TIME),
2133 	MMC_FIXUP("008GE0", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2134 		  MMC_QUIRK_LONG_READ_TIME),
2135 
2136 	/*
2137 	 * On these Samsung MoviNAND parts, performing secure erase or
2138 	 * secure trim can result in unrecoverable corruption due to a
2139 	 * firmware bug.
2140 	 */
2141 	MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2142 		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2143 	MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2144 		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2145 	MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2146 		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2147 	MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2148 		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2149 	MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2150 		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2151 	MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2152 		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2153 	MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2154 		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2155 	MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2156 		  MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2157 
2158 	/*
2159 	 *  On Some Kingston eMMCs, performing trim can result in
2160 	 *  unrecoverable data conrruption occasionally due to a firmware bug.
2161 	 */
2162 	MMC_FIXUP("V10008", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2163 		  MMC_QUIRK_TRIM_BROKEN),
2164 	MMC_FIXUP("V10016", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc,
2165 		  MMC_QUIRK_TRIM_BROKEN),
2166 
2167 	END_FIXUP
2168 };
2169 
2170 static int mmc_blk_probe(struct mmc_card *card)
2171 {
2172 	struct mmc_blk_data *md, *part_md;
2173 	char cap_str[10];
2174 
2175 	/*
2176 	 * Check that the card supports the command class(es) we need.
2177 	 */
2178 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2179 		return -ENODEV;
2180 
2181 	mmc_fixup_device(card, blk_fixups);
2182 
2183 	md = mmc_blk_alloc(card);
2184 	if (IS_ERR(md))
2185 		return PTR_ERR(md);
2186 
2187 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2188 			cap_str, sizeof(cap_str));
2189 	pr_info("%s: %s %s %s %s\n",
2190 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2191 		cap_str, md->read_only ? "(ro)" : "");
2192 
2193 	if (mmc_blk_alloc_parts(card, md))
2194 		goto out;
2195 
2196 	dev_set_drvdata(&card->dev, md);
2197 
2198 	if (mmc_add_disk(md))
2199 		goto out;
2200 
2201 	list_for_each_entry(part_md, &md->part, part) {
2202 		if (mmc_add_disk(part_md))
2203 			goto out;
2204 	}
2205 
2206 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2207 	pm_runtime_use_autosuspend(&card->dev);
2208 
2209 	/*
2210 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2211 	 * decision to be taken during the SDIO init sequence instead.
2212 	 */
2213 	if (card->type != MMC_TYPE_SD_COMBO) {
2214 		pm_runtime_set_active(&card->dev);
2215 		pm_runtime_enable(&card->dev);
2216 	}
2217 
2218 	return 0;
2219 
2220  out:
2221 	mmc_blk_remove_parts(card, md);
2222 	mmc_blk_remove_req(md);
2223 	return 0;
2224 }
2225 
2226 static void mmc_blk_remove(struct mmc_card *card)
2227 {
2228 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2229 
2230 	mmc_blk_remove_parts(card, md);
2231 	pm_runtime_get_sync(&card->dev);
2232 	mmc_claim_host(card->host);
2233 	mmc_blk_part_switch(card, md);
2234 	mmc_release_host(card->host);
2235 	if (card->type != MMC_TYPE_SD_COMBO)
2236 		pm_runtime_disable(&card->dev);
2237 	pm_runtime_put_noidle(&card->dev);
2238 	mmc_blk_remove_req(md);
2239 	dev_set_drvdata(&card->dev, NULL);
2240 }
2241 
2242 static int _mmc_blk_suspend(struct mmc_card *card)
2243 {
2244 	struct mmc_blk_data *part_md;
2245 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2246 
2247 	if (md) {
2248 		mmc_queue_suspend(&md->queue);
2249 		list_for_each_entry(part_md, &md->part, part) {
2250 			mmc_queue_suspend(&part_md->queue);
2251 		}
2252 	}
2253 	return 0;
2254 }
2255 
2256 static void mmc_blk_shutdown(struct mmc_card *card)
2257 {
2258 	_mmc_blk_suspend(card);
2259 }
2260 
2261 #ifdef CONFIG_PM_SLEEP
2262 static int mmc_blk_suspend(struct device *dev)
2263 {
2264 	struct mmc_card *card = mmc_dev_to_card(dev);
2265 
2266 	return _mmc_blk_suspend(card);
2267 }
2268 
2269 static int mmc_blk_resume(struct device *dev)
2270 {
2271 	struct mmc_blk_data *part_md;
2272 	struct mmc_blk_data *md = dev_get_drvdata(dev);
2273 
2274 	if (md) {
2275 		/*
2276 		 * Resume involves the card going into idle state,
2277 		 * so current partition is always the main one.
2278 		 */
2279 		md->part_curr = md->part_type;
2280 		mmc_queue_resume(&md->queue);
2281 		list_for_each_entry(part_md, &md->part, part) {
2282 			mmc_queue_resume(&part_md->queue);
2283 		}
2284 	}
2285 	return 0;
2286 }
2287 #endif
2288 
2289 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2290 
2291 static struct mmc_driver mmc_driver = {
2292 	.drv		= {
2293 		.name	= "mmcblk",
2294 		.pm	= &mmc_blk_pm_ops,
2295 	},
2296 	.probe		= mmc_blk_probe,
2297 	.remove		= mmc_blk_remove,
2298 	.shutdown	= mmc_blk_shutdown,
2299 };
2300 
2301 static int __init mmc_blk_init(void)
2302 {
2303 	int res;
2304 
2305 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2306 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2307 
2308 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2309 
2310 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2311 	if (res)
2312 		goto out;
2313 
2314 	res = mmc_register_driver(&mmc_driver);
2315 	if (res)
2316 		goto out2;
2317 
2318 	return 0;
2319  out2:
2320 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2321  out:
2322 	return res;
2323 }
2324 
2325 static void __exit mmc_blk_exit(void)
2326 {
2327 	mmc_unregister_driver(&mmc_driver);
2328 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2329 }
2330 
2331 module_init(mmc_blk_init);
2332 module_exit(mmc_blk_exit);
2333 
2334 MODULE_LICENSE("GPL");
2335 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2336 
2337