xref: /openbmc/linux/drivers/mmc/core/block.c (revision 26721b02)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41 
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47 
48 #include <linux/uaccess.h>
49 
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
59 
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
65 
66 /*
67  * Set a 10 second timeout for polling write request busy state. Note, mmc core
68  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69  * second software timer to timeout the whole request, so 10 seconds should be
70  * ample.
71  */
72 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
73 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
74 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
75 
76 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
77 				  (rq_data_dir(req) == WRITE))
78 static DEFINE_MUTEX(block_mutex);
79 
80 /*
81  * The defaults come from config options but can be overriden by module
82  * or bootarg options.
83  */
84 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
85 
86 /*
87  * We've only got one major, so number of mmcblk devices is
88  * limited to (1 << 20) / number of minors per device.  It is also
89  * limited by the MAX_DEVICES below.
90  */
91 static int max_devices;
92 
93 #define MAX_DEVICES 256
94 
95 static DEFINE_IDA(mmc_blk_ida);
96 static DEFINE_IDA(mmc_rpmb_ida);
97 
98 /*
99  * There is one mmc_blk_data per slot.
100  */
101 struct mmc_blk_data {
102 	struct device	*parent;
103 	struct gendisk	*disk;
104 	struct mmc_queue queue;
105 	struct list_head part;
106 	struct list_head rpmbs;
107 
108 	unsigned int	flags;
109 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
110 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
111 
112 	unsigned int	usage;
113 	unsigned int	read_only;
114 	unsigned int	part_type;
115 	unsigned int	reset_done;
116 #define MMC_BLK_READ		BIT(0)
117 #define MMC_BLK_WRITE		BIT(1)
118 #define MMC_BLK_DISCARD		BIT(2)
119 #define MMC_BLK_SECDISCARD	BIT(3)
120 #define MMC_BLK_CQE_RECOVERY	BIT(4)
121 
122 	/*
123 	 * Only set in main mmc_blk_data associated
124 	 * with mmc_card with dev_set_drvdata, and keeps
125 	 * track of the current selected device partition.
126 	 */
127 	unsigned int	part_curr;
128 	struct device_attribute force_ro;
129 	struct device_attribute power_ro_lock;
130 	int	area_type;
131 
132 	/* debugfs files (only in main mmc_blk_data) */
133 	struct dentry *status_dentry;
134 	struct dentry *ext_csd_dentry;
135 };
136 
137 /* Device type for RPMB character devices */
138 static dev_t mmc_rpmb_devt;
139 
140 /* Bus type for RPMB character devices */
141 static struct bus_type mmc_rpmb_bus_type = {
142 	.name = "mmc_rpmb",
143 };
144 
145 /**
146  * struct mmc_rpmb_data - special RPMB device type for these areas
147  * @dev: the device for the RPMB area
148  * @chrdev: character device for the RPMB area
149  * @id: unique device ID number
150  * @part_index: partition index (0 on first)
151  * @md: parent MMC block device
152  * @node: list item, so we can put this device on a list
153  */
154 struct mmc_rpmb_data {
155 	struct device dev;
156 	struct cdev chrdev;
157 	int id;
158 	unsigned int part_index;
159 	struct mmc_blk_data *md;
160 	struct list_head node;
161 };
162 
163 static DEFINE_MUTEX(open_lock);
164 
165 module_param(perdev_minors, int, 0444);
166 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
167 
168 static inline int mmc_blk_part_switch(struct mmc_card *card,
169 				      unsigned int part_type);
170 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
171 			       struct mmc_card *card,
172 			       int disable_multi,
173 			       struct mmc_queue *mq);
174 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
175 
176 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
177 {
178 	struct mmc_blk_data *md;
179 
180 	mutex_lock(&open_lock);
181 	md = disk->private_data;
182 	if (md && md->usage == 0)
183 		md = NULL;
184 	if (md)
185 		md->usage++;
186 	mutex_unlock(&open_lock);
187 
188 	return md;
189 }
190 
191 static inline int mmc_get_devidx(struct gendisk *disk)
192 {
193 	int devidx = disk->first_minor / perdev_minors;
194 	return devidx;
195 }
196 
197 static void mmc_blk_put(struct mmc_blk_data *md)
198 {
199 	mutex_lock(&open_lock);
200 	md->usage--;
201 	if (md->usage == 0) {
202 		int devidx = mmc_get_devidx(md->disk);
203 		blk_put_queue(md->queue.queue);
204 		ida_simple_remove(&mmc_blk_ida, devidx);
205 		put_disk(md->disk);
206 		kfree(md);
207 	}
208 	mutex_unlock(&open_lock);
209 }
210 
211 static ssize_t power_ro_lock_show(struct device *dev,
212 		struct device_attribute *attr, char *buf)
213 {
214 	int ret;
215 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
216 	struct mmc_card *card = md->queue.card;
217 	int locked = 0;
218 
219 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
220 		locked = 2;
221 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
222 		locked = 1;
223 
224 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
225 
226 	mmc_blk_put(md);
227 
228 	return ret;
229 }
230 
231 static ssize_t power_ro_lock_store(struct device *dev,
232 		struct device_attribute *attr, const char *buf, size_t count)
233 {
234 	int ret;
235 	struct mmc_blk_data *md, *part_md;
236 	struct mmc_queue *mq;
237 	struct request *req;
238 	unsigned long set;
239 
240 	if (kstrtoul(buf, 0, &set))
241 		return -EINVAL;
242 
243 	if (set != 1)
244 		return count;
245 
246 	md = mmc_blk_get(dev_to_disk(dev));
247 	mq = &md->queue;
248 
249 	/* Dispatch locking to the block layer */
250 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
251 	if (IS_ERR(req)) {
252 		count = PTR_ERR(req);
253 		goto out_put;
254 	}
255 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
256 	blk_execute_rq(mq->queue, NULL, req, 0);
257 	ret = req_to_mmc_queue_req(req)->drv_op_result;
258 	blk_put_request(req);
259 
260 	if (!ret) {
261 		pr_info("%s: Locking boot partition ro until next power on\n",
262 			md->disk->disk_name);
263 		set_disk_ro(md->disk, 1);
264 
265 		list_for_each_entry(part_md, &md->part, part)
266 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
267 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
268 				set_disk_ro(part_md->disk, 1);
269 			}
270 	}
271 out_put:
272 	mmc_blk_put(md);
273 	return count;
274 }
275 
276 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
277 			     char *buf)
278 {
279 	int ret;
280 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
281 
282 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
283 		       get_disk_ro(dev_to_disk(dev)) ^
284 		       md->read_only);
285 	mmc_blk_put(md);
286 	return ret;
287 }
288 
289 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
290 			      const char *buf, size_t count)
291 {
292 	int ret;
293 	char *end;
294 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
295 	unsigned long set = simple_strtoul(buf, &end, 0);
296 	if (end == buf) {
297 		ret = -EINVAL;
298 		goto out;
299 	}
300 
301 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
302 	ret = count;
303 out:
304 	mmc_blk_put(md);
305 	return ret;
306 }
307 
308 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
309 {
310 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
311 	int ret = -ENXIO;
312 
313 	mutex_lock(&block_mutex);
314 	if (md) {
315 		ret = 0;
316 		if ((mode & FMODE_WRITE) && md->read_only) {
317 			mmc_blk_put(md);
318 			ret = -EROFS;
319 		}
320 	}
321 	mutex_unlock(&block_mutex);
322 
323 	return ret;
324 }
325 
326 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
327 {
328 	struct mmc_blk_data *md = disk->private_data;
329 
330 	mutex_lock(&block_mutex);
331 	mmc_blk_put(md);
332 	mutex_unlock(&block_mutex);
333 }
334 
335 static int
336 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
337 {
338 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
339 	geo->heads = 4;
340 	geo->sectors = 16;
341 	return 0;
342 }
343 
344 struct mmc_blk_ioc_data {
345 	struct mmc_ioc_cmd ic;
346 	unsigned char *buf;
347 	u64 buf_bytes;
348 	struct mmc_rpmb_data *rpmb;
349 };
350 
351 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
352 	struct mmc_ioc_cmd __user *user)
353 {
354 	struct mmc_blk_ioc_data *idata;
355 	int err;
356 
357 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
358 	if (!idata) {
359 		err = -ENOMEM;
360 		goto out;
361 	}
362 
363 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
364 		err = -EFAULT;
365 		goto idata_err;
366 	}
367 
368 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
369 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
370 		err = -EOVERFLOW;
371 		goto idata_err;
372 	}
373 
374 	if (!idata->buf_bytes) {
375 		idata->buf = NULL;
376 		return idata;
377 	}
378 
379 	idata->buf = memdup_user((void __user *)(unsigned long)
380 				 idata->ic.data_ptr, idata->buf_bytes);
381 	if (IS_ERR(idata->buf)) {
382 		err = PTR_ERR(idata->buf);
383 		goto idata_err;
384 	}
385 
386 	return idata;
387 
388 idata_err:
389 	kfree(idata);
390 out:
391 	return ERR_PTR(err);
392 }
393 
394 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
395 				      struct mmc_blk_ioc_data *idata)
396 {
397 	struct mmc_ioc_cmd *ic = &idata->ic;
398 
399 	if (copy_to_user(&(ic_ptr->response), ic->response,
400 			 sizeof(ic->response)))
401 		return -EFAULT;
402 
403 	if (!idata->ic.write_flag) {
404 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
405 				 idata->buf, idata->buf_bytes))
406 			return -EFAULT;
407 	}
408 
409 	return 0;
410 }
411 
412 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
413 			    u32 *resp_errs)
414 {
415 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
416 	int err = 0;
417 	u32 status;
418 
419 	do {
420 		bool done = time_after(jiffies, timeout);
421 
422 		err = __mmc_send_status(card, &status, 5);
423 		if (err) {
424 			dev_err(mmc_dev(card->host),
425 				"error %d requesting status\n", err);
426 			return err;
427 		}
428 
429 		/* Accumulate any response error bits seen */
430 		if (resp_errs)
431 			*resp_errs |= status;
432 
433 		/*
434 		 * Timeout if the device never becomes ready for data and never
435 		 * leaves the program state.
436 		 */
437 		if (done) {
438 			dev_err(mmc_dev(card->host),
439 				"Card stuck in wrong state! %s status: %#x\n",
440 				 __func__, status);
441 			return -ETIMEDOUT;
442 		}
443 	} while (!mmc_ready_for_data(status));
444 
445 	return err;
446 }
447 
448 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
449 			       struct mmc_blk_ioc_data *idata)
450 {
451 	struct mmc_command cmd = {}, sbc = {};
452 	struct mmc_data data = {};
453 	struct mmc_request mrq = {};
454 	struct scatterlist sg;
455 	int err;
456 	unsigned int target_part;
457 
458 	if (!card || !md || !idata)
459 		return -EINVAL;
460 
461 	/*
462 	 * The RPMB accesses comes in from the character device, so we
463 	 * need to target these explicitly. Else we just target the
464 	 * partition type for the block device the ioctl() was issued
465 	 * on.
466 	 */
467 	if (idata->rpmb) {
468 		/* Support multiple RPMB partitions */
469 		target_part = idata->rpmb->part_index;
470 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
471 	} else {
472 		target_part = md->part_type;
473 	}
474 
475 	cmd.opcode = idata->ic.opcode;
476 	cmd.arg = idata->ic.arg;
477 	cmd.flags = idata->ic.flags;
478 
479 	if (idata->buf_bytes) {
480 		data.sg = &sg;
481 		data.sg_len = 1;
482 		data.blksz = idata->ic.blksz;
483 		data.blocks = idata->ic.blocks;
484 
485 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
486 
487 		if (idata->ic.write_flag)
488 			data.flags = MMC_DATA_WRITE;
489 		else
490 			data.flags = MMC_DATA_READ;
491 
492 		/* data.flags must already be set before doing this. */
493 		mmc_set_data_timeout(&data, card);
494 
495 		/* Allow overriding the timeout_ns for empirical tuning. */
496 		if (idata->ic.data_timeout_ns)
497 			data.timeout_ns = idata->ic.data_timeout_ns;
498 
499 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
500 			/*
501 			 * Pretend this is a data transfer and rely on the
502 			 * host driver to compute timeout.  When all host
503 			 * drivers support cmd.cmd_timeout for R1B, this
504 			 * can be changed to:
505 			 *
506 			 *     mrq.data = NULL;
507 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
508 			 */
509 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
510 		}
511 
512 		mrq.data = &data;
513 	}
514 
515 	mrq.cmd = &cmd;
516 
517 	err = mmc_blk_part_switch(card, target_part);
518 	if (err)
519 		return err;
520 
521 	if (idata->ic.is_acmd) {
522 		err = mmc_app_cmd(card->host, card);
523 		if (err)
524 			return err;
525 	}
526 
527 	if (idata->rpmb) {
528 		sbc.opcode = MMC_SET_BLOCK_COUNT;
529 		/*
530 		 * We don't do any blockcount validation because the max size
531 		 * may be increased by a future standard. We just copy the
532 		 * 'Reliable Write' bit here.
533 		 */
534 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
535 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
536 		mrq.sbc = &sbc;
537 	}
538 
539 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
540 	    (cmd.opcode == MMC_SWITCH))
541 		return mmc_sanitize(card);
542 
543 	mmc_wait_for_req(card->host, &mrq);
544 
545 	if (cmd.error) {
546 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
547 						__func__, cmd.error);
548 		return cmd.error;
549 	}
550 	if (data.error) {
551 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
552 						__func__, data.error);
553 		return data.error;
554 	}
555 
556 	/*
557 	 * Make sure the cache of the PARTITION_CONFIG register and
558 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
559 	 * changed it successfully.
560 	 */
561 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
562 	    (cmd.opcode == MMC_SWITCH)) {
563 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
564 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
565 
566 		/*
567 		 * Update cache so the next mmc_blk_part_switch call operates
568 		 * on up-to-date data.
569 		 */
570 		card->ext_csd.part_config = value;
571 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
572 	}
573 
574 	/*
575 	 * According to the SD specs, some commands require a delay after
576 	 * issuing the command.
577 	 */
578 	if (idata->ic.postsleep_min_us)
579 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
580 
581 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
582 
583 	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B)) {
584 		/*
585 		 * Ensure RPMB/R1B command has completed by polling CMD13
586 		 * "Send Status".
587 		 */
588 		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
589 	}
590 
591 	return err;
592 }
593 
594 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
595 			     struct mmc_ioc_cmd __user *ic_ptr,
596 			     struct mmc_rpmb_data *rpmb)
597 {
598 	struct mmc_blk_ioc_data *idata;
599 	struct mmc_blk_ioc_data *idatas[1];
600 	struct mmc_queue *mq;
601 	struct mmc_card *card;
602 	int err = 0, ioc_err = 0;
603 	struct request *req;
604 
605 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
606 	if (IS_ERR(idata))
607 		return PTR_ERR(idata);
608 	/* This will be NULL on non-RPMB ioctl():s */
609 	idata->rpmb = rpmb;
610 
611 	card = md->queue.card;
612 	if (IS_ERR(card)) {
613 		err = PTR_ERR(card);
614 		goto cmd_done;
615 	}
616 
617 	/*
618 	 * Dispatch the ioctl() into the block request queue.
619 	 */
620 	mq = &md->queue;
621 	req = blk_get_request(mq->queue,
622 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
623 	if (IS_ERR(req)) {
624 		err = PTR_ERR(req);
625 		goto cmd_done;
626 	}
627 	idatas[0] = idata;
628 	req_to_mmc_queue_req(req)->drv_op =
629 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
630 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
631 	req_to_mmc_queue_req(req)->ioc_count = 1;
632 	blk_execute_rq(mq->queue, NULL, req, 0);
633 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
634 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
635 	blk_put_request(req);
636 
637 cmd_done:
638 	kfree(idata->buf);
639 	kfree(idata);
640 	return ioc_err ? ioc_err : err;
641 }
642 
643 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
644 				   struct mmc_ioc_multi_cmd __user *user,
645 				   struct mmc_rpmb_data *rpmb)
646 {
647 	struct mmc_blk_ioc_data **idata = NULL;
648 	struct mmc_ioc_cmd __user *cmds = user->cmds;
649 	struct mmc_card *card;
650 	struct mmc_queue *mq;
651 	int i, err = 0, ioc_err = 0;
652 	__u64 num_of_cmds;
653 	struct request *req;
654 
655 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
656 			   sizeof(num_of_cmds)))
657 		return -EFAULT;
658 
659 	if (!num_of_cmds)
660 		return 0;
661 
662 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
663 		return -EINVAL;
664 
665 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
666 	if (!idata)
667 		return -ENOMEM;
668 
669 	for (i = 0; i < num_of_cmds; i++) {
670 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
671 		if (IS_ERR(idata[i])) {
672 			err = PTR_ERR(idata[i]);
673 			num_of_cmds = i;
674 			goto cmd_err;
675 		}
676 		/* This will be NULL on non-RPMB ioctl():s */
677 		idata[i]->rpmb = rpmb;
678 	}
679 
680 	card = md->queue.card;
681 	if (IS_ERR(card)) {
682 		err = PTR_ERR(card);
683 		goto cmd_err;
684 	}
685 
686 
687 	/*
688 	 * Dispatch the ioctl()s into the block request queue.
689 	 */
690 	mq = &md->queue;
691 	req = blk_get_request(mq->queue,
692 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
693 	if (IS_ERR(req)) {
694 		err = PTR_ERR(req);
695 		goto cmd_err;
696 	}
697 	req_to_mmc_queue_req(req)->drv_op =
698 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
699 	req_to_mmc_queue_req(req)->drv_op_data = idata;
700 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
701 	blk_execute_rq(mq->queue, NULL, req, 0);
702 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
703 
704 	/* copy to user if data and response */
705 	for (i = 0; i < num_of_cmds && !err; i++)
706 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
707 
708 	blk_put_request(req);
709 
710 cmd_err:
711 	for (i = 0; i < num_of_cmds; i++) {
712 		kfree(idata[i]->buf);
713 		kfree(idata[i]);
714 	}
715 	kfree(idata);
716 	return ioc_err ? ioc_err : err;
717 }
718 
719 static int mmc_blk_check_blkdev(struct block_device *bdev)
720 {
721 	/*
722 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
723 	 * whole block device, not on a partition.  This prevents overspray
724 	 * between sibling partitions.
725 	 */
726 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
727 		return -EPERM;
728 	return 0;
729 }
730 
731 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
732 	unsigned int cmd, unsigned long arg)
733 {
734 	struct mmc_blk_data *md;
735 	int ret;
736 
737 	switch (cmd) {
738 	case MMC_IOC_CMD:
739 		ret = mmc_blk_check_blkdev(bdev);
740 		if (ret)
741 			return ret;
742 		md = mmc_blk_get(bdev->bd_disk);
743 		if (!md)
744 			return -EINVAL;
745 		ret = mmc_blk_ioctl_cmd(md,
746 					(struct mmc_ioc_cmd __user *)arg,
747 					NULL);
748 		mmc_blk_put(md);
749 		return ret;
750 	case MMC_IOC_MULTI_CMD:
751 		ret = mmc_blk_check_blkdev(bdev);
752 		if (ret)
753 			return ret;
754 		md = mmc_blk_get(bdev->bd_disk);
755 		if (!md)
756 			return -EINVAL;
757 		ret = mmc_blk_ioctl_multi_cmd(md,
758 					(struct mmc_ioc_multi_cmd __user *)arg,
759 					NULL);
760 		mmc_blk_put(md);
761 		return ret;
762 	default:
763 		return -EINVAL;
764 	}
765 }
766 
767 #ifdef CONFIG_COMPAT
768 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
769 	unsigned int cmd, unsigned long arg)
770 {
771 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
772 }
773 #endif
774 
775 static const struct block_device_operations mmc_bdops = {
776 	.open			= mmc_blk_open,
777 	.release		= mmc_blk_release,
778 	.getgeo			= mmc_blk_getgeo,
779 	.owner			= THIS_MODULE,
780 	.ioctl			= mmc_blk_ioctl,
781 #ifdef CONFIG_COMPAT
782 	.compat_ioctl		= mmc_blk_compat_ioctl,
783 #endif
784 };
785 
786 static int mmc_blk_part_switch_pre(struct mmc_card *card,
787 				   unsigned int part_type)
788 {
789 	int ret = 0;
790 
791 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
792 		if (card->ext_csd.cmdq_en) {
793 			ret = mmc_cmdq_disable(card);
794 			if (ret)
795 				return ret;
796 		}
797 		mmc_retune_pause(card->host);
798 	}
799 
800 	return ret;
801 }
802 
803 static int mmc_blk_part_switch_post(struct mmc_card *card,
804 				    unsigned int part_type)
805 {
806 	int ret = 0;
807 
808 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
809 		mmc_retune_unpause(card->host);
810 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
811 			ret = mmc_cmdq_enable(card);
812 	}
813 
814 	return ret;
815 }
816 
817 static inline int mmc_blk_part_switch(struct mmc_card *card,
818 				      unsigned int part_type)
819 {
820 	int ret = 0;
821 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
822 
823 	if (main_md->part_curr == part_type)
824 		return 0;
825 
826 	if (mmc_card_mmc(card)) {
827 		u8 part_config = card->ext_csd.part_config;
828 
829 		ret = mmc_blk_part_switch_pre(card, part_type);
830 		if (ret)
831 			return ret;
832 
833 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
834 		part_config |= part_type;
835 
836 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
837 				 EXT_CSD_PART_CONFIG, part_config,
838 				 card->ext_csd.part_time);
839 		if (ret) {
840 			mmc_blk_part_switch_post(card, part_type);
841 			return ret;
842 		}
843 
844 		card->ext_csd.part_config = part_config;
845 
846 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
847 	}
848 
849 	main_md->part_curr = part_type;
850 	return ret;
851 }
852 
853 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
854 {
855 	int err;
856 	u32 result;
857 	__be32 *blocks;
858 
859 	struct mmc_request mrq = {};
860 	struct mmc_command cmd = {};
861 	struct mmc_data data = {};
862 
863 	struct scatterlist sg;
864 
865 	cmd.opcode = MMC_APP_CMD;
866 	cmd.arg = card->rca << 16;
867 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
868 
869 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
870 	if (err)
871 		return err;
872 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
873 		return -EIO;
874 
875 	memset(&cmd, 0, sizeof(struct mmc_command));
876 
877 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
878 	cmd.arg = 0;
879 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
880 
881 	data.blksz = 4;
882 	data.blocks = 1;
883 	data.flags = MMC_DATA_READ;
884 	data.sg = &sg;
885 	data.sg_len = 1;
886 	mmc_set_data_timeout(&data, card);
887 
888 	mrq.cmd = &cmd;
889 	mrq.data = &data;
890 
891 	blocks = kmalloc(4, GFP_KERNEL);
892 	if (!blocks)
893 		return -ENOMEM;
894 
895 	sg_init_one(&sg, blocks, 4);
896 
897 	mmc_wait_for_req(card->host, &mrq);
898 
899 	result = ntohl(*blocks);
900 	kfree(blocks);
901 
902 	if (cmd.error || data.error)
903 		return -EIO;
904 
905 	*written_blocks = result;
906 
907 	return 0;
908 }
909 
910 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
911 {
912 	if (host->actual_clock)
913 		return host->actual_clock / 1000;
914 
915 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
916 	if (host->ios.clock)
917 		return host->ios.clock / 2000;
918 
919 	/* How can there be no clock */
920 	WARN_ON_ONCE(1);
921 	return 100; /* 100 kHz is minimum possible value */
922 }
923 
924 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
925 					    struct mmc_data *data)
926 {
927 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
928 	unsigned int khz;
929 
930 	if (data->timeout_clks) {
931 		khz = mmc_blk_clock_khz(host);
932 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
933 	}
934 
935 	return ms;
936 }
937 
938 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
939 			 int type)
940 {
941 	int err;
942 
943 	if (md->reset_done & type)
944 		return -EEXIST;
945 
946 	md->reset_done |= type;
947 	err = mmc_hw_reset(host);
948 	/* Ensure we switch back to the correct partition */
949 	if (err != -EOPNOTSUPP) {
950 		struct mmc_blk_data *main_md =
951 			dev_get_drvdata(&host->card->dev);
952 		int part_err;
953 
954 		main_md->part_curr = main_md->part_type;
955 		part_err = mmc_blk_part_switch(host->card, md->part_type);
956 		if (part_err) {
957 			/*
958 			 * We have failed to get back into the correct
959 			 * partition, so we need to abort the whole request.
960 			 */
961 			return -ENODEV;
962 		}
963 	}
964 	return err;
965 }
966 
967 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
968 {
969 	md->reset_done &= ~type;
970 }
971 
972 /*
973  * The non-block commands come back from the block layer after it queued it and
974  * processed it with all other requests and then they get issued in this
975  * function.
976  */
977 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
978 {
979 	struct mmc_queue_req *mq_rq;
980 	struct mmc_card *card = mq->card;
981 	struct mmc_blk_data *md = mq->blkdata;
982 	struct mmc_blk_ioc_data **idata;
983 	bool rpmb_ioctl;
984 	u8 **ext_csd;
985 	u32 status;
986 	int ret;
987 	int i;
988 
989 	mq_rq = req_to_mmc_queue_req(req);
990 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
991 
992 	switch (mq_rq->drv_op) {
993 	case MMC_DRV_OP_IOCTL:
994 	case MMC_DRV_OP_IOCTL_RPMB:
995 		idata = mq_rq->drv_op_data;
996 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
997 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
998 			if (ret)
999 				break;
1000 		}
1001 		/* Always switch back to main area after RPMB access */
1002 		if (rpmb_ioctl)
1003 			mmc_blk_part_switch(card, 0);
1004 		break;
1005 	case MMC_DRV_OP_BOOT_WP:
1006 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1007 				 card->ext_csd.boot_ro_lock |
1008 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1009 				 card->ext_csd.part_time);
1010 		if (ret)
1011 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1012 			       md->disk->disk_name, ret);
1013 		else
1014 			card->ext_csd.boot_ro_lock |=
1015 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1016 		break;
1017 	case MMC_DRV_OP_GET_CARD_STATUS:
1018 		ret = mmc_send_status(card, &status);
1019 		if (!ret)
1020 			ret = status;
1021 		break;
1022 	case MMC_DRV_OP_GET_EXT_CSD:
1023 		ext_csd = mq_rq->drv_op_data;
1024 		ret = mmc_get_ext_csd(card, ext_csd);
1025 		break;
1026 	default:
1027 		pr_err("%s: unknown driver specific operation\n",
1028 		       md->disk->disk_name);
1029 		ret = -EINVAL;
1030 		break;
1031 	}
1032 	mq_rq->drv_op_result = ret;
1033 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1034 }
1035 
1036 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1037 {
1038 	struct mmc_blk_data *md = mq->blkdata;
1039 	struct mmc_card *card = md->queue.card;
1040 	unsigned int from, nr;
1041 	int err = 0, type = MMC_BLK_DISCARD;
1042 	blk_status_t status = BLK_STS_OK;
1043 
1044 	if (!mmc_can_erase(card)) {
1045 		status = BLK_STS_NOTSUPP;
1046 		goto fail;
1047 	}
1048 
1049 	from = blk_rq_pos(req);
1050 	nr = blk_rq_sectors(req);
1051 
1052 	do {
1053 		err = 0;
1054 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1055 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1056 					 INAND_CMD38_ARG_EXT_CSD,
1057 					 card->erase_arg == MMC_TRIM_ARG ?
1058 					 INAND_CMD38_ARG_TRIM :
1059 					 INAND_CMD38_ARG_ERASE,
1060 					 card->ext_csd.generic_cmd6_time);
1061 		}
1062 		if (!err)
1063 			err = mmc_erase(card, from, nr, card->erase_arg);
1064 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1065 	if (err)
1066 		status = BLK_STS_IOERR;
1067 	else
1068 		mmc_blk_reset_success(md, type);
1069 fail:
1070 	blk_mq_end_request(req, status);
1071 }
1072 
1073 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1074 				       struct request *req)
1075 {
1076 	struct mmc_blk_data *md = mq->blkdata;
1077 	struct mmc_card *card = md->queue.card;
1078 	unsigned int from, nr, arg;
1079 	int err = 0, type = MMC_BLK_SECDISCARD;
1080 	blk_status_t status = BLK_STS_OK;
1081 
1082 	if (!(mmc_can_secure_erase_trim(card))) {
1083 		status = BLK_STS_NOTSUPP;
1084 		goto out;
1085 	}
1086 
1087 	from = blk_rq_pos(req);
1088 	nr = blk_rq_sectors(req);
1089 
1090 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1091 		arg = MMC_SECURE_TRIM1_ARG;
1092 	else
1093 		arg = MMC_SECURE_ERASE_ARG;
1094 
1095 retry:
1096 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1097 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1098 				 INAND_CMD38_ARG_EXT_CSD,
1099 				 arg == MMC_SECURE_TRIM1_ARG ?
1100 				 INAND_CMD38_ARG_SECTRIM1 :
1101 				 INAND_CMD38_ARG_SECERASE,
1102 				 card->ext_csd.generic_cmd6_time);
1103 		if (err)
1104 			goto out_retry;
1105 	}
1106 
1107 	err = mmc_erase(card, from, nr, arg);
1108 	if (err == -EIO)
1109 		goto out_retry;
1110 	if (err) {
1111 		status = BLK_STS_IOERR;
1112 		goto out;
1113 	}
1114 
1115 	if (arg == MMC_SECURE_TRIM1_ARG) {
1116 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1117 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1118 					 INAND_CMD38_ARG_EXT_CSD,
1119 					 INAND_CMD38_ARG_SECTRIM2,
1120 					 card->ext_csd.generic_cmd6_time);
1121 			if (err)
1122 				goto out_retry;
1123 		}
1124 
1125 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1126 		if (err == -EIO)
1127 			goto out_retry;
1128 		if (err) {
1129 			status = BLK_STS_IOERR;
1130 			goto out;
1131 		}
1132 	}
1133 
1134 out_retry:
1135 	if (err && !mmc_blk_reset(md, card->host, type))
1136 		goto retry;
1137 	if (!err)
1138 		mmc_blk_reset_success(md, type);
1139 out:
1140 	blk_mq_end_request(req, status);
1141 }
1142 
1143 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1144 {
1145 	struct mmc_blk_data *md = mq->blkdata;
1146 	struct mmc_card *card = md->queue.card;
1147 	int ret = 0;
1148 
1149 	ret = mmc_flush_cache(card);
1150 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1151 }
1152 
1153 /*
1154  * Reformat current write as a reliable write, supporting
1155  * both legacy and the enhanced reliable write MMC cards.
1156  * In each transfer we'll handle only as much as a single
1157  * reliable write can handle, thus finish the request in
1158  * partial completions.
1159  */
1160 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1161 				    struct mmc_card *card,
1162 				    struct request *req)
1163 {
1164 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1165 		/* Legacy mode imposes restrictions on transfers. */
1166 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1167 			brq->data.blocks = 1;
1168 
1169 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1170 			brq->data.blocks = card->ext_csd.rel_sectors;
1171 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1172 			brq->data.blocks = 1;
1173 	}
1174 }
1175 
1176 #define CMD_ERRORS_EXCL_OOR						\
1177 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1178 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1179 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1180 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1181 	 R1_CC_ERROR |		/* Card controller error */		\
1182 	 R1_ERROR)		/* General/unknown error */
1183 
1184 #define CMD_ERRORS							\
1185 	(CMD_ERRORS_EXCL_OOR |						\
1186 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1187 
1188 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1189 {
1190 	u32 val;
1191 
1192 	/*
1193 	 * Per the SD specification(physical layer version 4.10)[1],
1194 	 * section 4.3.3, it explicitly states that "When the last
1195 	 * block of user area is read using CMD18, the host should
1196 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1197 	 * is correct". And JESD84-B51 for eMMC also has a similar
1198 	 * statement on section 6.8.3.
1199 	 *
1200 	 * Multiple block read/write could be done by either predefined
1201 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1202 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1203 	 *
1204 	 * However the spec[1] doesn't tell us whether we should also
1205 	 * ignore that for predefined method. But per the spec[1], section
1206 	 * 4.15 Set Block Count Command, it says"If illegal block count
1207 	 * is set, out of range error will be indicated during read/write
1208 	 * operation (For example, data transfer is stopped at user area
1209 	 * boundary)." In another word, we could expect a out of range error
1210 	 * in the response for the following CMD18/25. And if argument of
1211 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1212 	 * we could also expect to get a -ETIMEDOUT or any error number from
1213 	 * the host drivers due to missing data response(for write)/data(for
1214 	 * read), as the cards will stop the data transfer by itself per the
1215 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1216 	 */
1217 
1218 	if (!brq->stop.error) {
1219 		bool oor_with_open_end;
1220 		/* If there is no error yet, check R1 response */
1221 
1222 		val = brq->stop.resp[0] & CMD_ERRORS;
1223 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1224 
1225 		if (val && !oor_with_open_end)
1226 			brq->stop.error = -EIO;
1227 	}
1228 }
1229 
1230 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1231 			      int disable_multi, bool *do_rel_wr_p,
1232 			      bool *do_data_tag_p)
1233 {
1234 	struct mmc_blk_data *md = mq->blkdata;
1235 	struct mmc_card *card = md->queue.card;
1236 	struct mmc_blk_request *brq = &mqrq->brq;
1237 	struct request *req = mmc_queue_req_to_req(mqrq);
1238 	bool do_rel_wr, do_data_tag;
1239 
1240 	/*
1241 	 * Reliable writes are used to implement Forced Unit Access and
1242 	 * are supported only on MMCs.
1243 	 */
1244 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1245 		    rq_data_dir(req) == WRITE &&
1246 		    (md->flags & MMC_BLK_REL_WR);
1247 
1248 	memset(brq, 0, sizeof(struct mmc_blk_request));
1249 
1250 	brq->mrq.data = &brq->data;
1251 	brq->mrq.tag = req->tag;
1252 
1253 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1254 	brq->stop.arg = 0;
1255 
1256 	if (rq_data_dir(req) == READ) {
1257 		brq->data.flags = MMC_DATA_READ;
1258 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1259 	} else {
1260 		brq->data.flags = MMC_DATA_WRITE;
1261 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1262 	}
1263 
1264 	brq->data.blksz = 512;
1265 	brq->data.blocks = blk_rq_sectors(req);
1266 	brq->data.blk_addr = blk_rq_pos(req);
1267 
1268 	/*
1269 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1270 	 * The eMMC will give "high" priority tasks priority over "simple"
1271 	 * priority tasks. Here we always set "simple" priority by not setting
1272 	 * MMC_DATA_PRIO.
1273 	 */
1274 
1275 	/*
1276 	 * The block layer doesn't support all sector count
1277 	 * restrictions, so we need to be prepared for too big
1278 	 * requests.
1279 	 */
1280 	if (brq->data.blocks > card->host->max_blk_count)
1281 		brq->data.blocks = card->host->max_blk_count;
1282 
1283 	if (brq->data.blocks > 1) {
1284 		/*
1285 		 * Some SD cards in SPI mode return a CRC error or even lock up
1286 		 * completely when trying to read the last block using a
1287 		 * multiblock read command.
1288 		 */
1289 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1290 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1291 		     get_capacity(md->disk)))
1292 			brq->data.blocks--;
1293 
1294 		/*
1295 		 * After a read error, we redo the request one sector
1296 		 * at a time in order to accurately determine which
1297 		 * sectors can be read successfully.
1298 		 */
1299 		if (disable_multi)
1300 			brq->data.blocks = 1;
1301 
1302 		/*
1303 		 * Some controllers have HW issues while operating
1304 		 * in multiple I/O mode
1305 		 */
1306 		if (card->host->ops->multi_io_quirk)
1307 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1308 						(rq_data_dir(req) == READ) ?
1309 						MMC_DATA_READ : MMC_DATA_WRITE,
1310 						brq->data.blocks);
1311 	}
1312 
1313 	if (do_rel_wr) {
1314 		mmc_apply_rel_rw(brq, card, req);
1315 		brq->data.flags |= MMC_DATA_REL_WR;
1316 	}
1317 
1318 	/*
1319 	 * Data tag is used only during writing meta data to speed
1320 	 * up write and any subsequent read of this meta data
1321 	 */
1322 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1323 		      (req->cmd_flags & REQ_META) &&
1324 		      (rq_data_dir(req) == WRITE) &&
1325 		      ((brq->data.blocks * brq->data.blksz) >=
1326 		       card->ext_csd.data_tag_unit_size);
1327 
1328 	if (do_data_tag)
1329 		brq->data.flags |= MMC_DATA_DAT_TAG;
1330 
1331 	mmc_set_data_timeout(&brq->data, card);
1332 
1333 	brq->data.sg = mqrq->sg;
1334 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1335 
1336 	/*
1337 	 * Adjust the sg list so it is the same size as the
1338 	 * request.
1339 	 */
1340 	if (brq->data.blocks != blk_rq_sectors(req)) {
1341 		int i, data_size = brq->data.blocks << 9;
1342 		struct scatterlist *sg;
1343 
1344 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1345 			data_size -= sg->length;
1346 			if (data_size <= 0) {
1347 				sg->length += data_size;
1348 				i++;
1349 				break;
1350 			}
1351 		}
1352 		brq->data.sg_len = i;
1353 	}
1354 
1355 	if (do_rel_wr_p)
1356 		*do_rel_wr_p = do_rel_wr;
1357 
1358 	if (do_data_tag_p)
1359 		*do_data_tag_p = do_data_tag;
1360 }
1361 
1362 #define MMC_CQE_RETRIES 2
1363 
1364 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1365 {
1366 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1367 	struct mmc_request *mrq = &mqrq->brq.mrq;
1368 	struct request_queue *q = req->q;
1369 	struct mmc_host *host = mq->card->host;
1370 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1371 	unsigned long flags;
1372 	bool put_card;
1373 	int err;
1374 
1375 	mmc_cqe_post_req(host, mrq);
1376 
1377 	if (mrq->cmd && mrq->cmd->error)
1378 		err = mrq->cmd->error;
1379 	else if (mrq->data && mrq->data->error)
1380 		err = mrq->data->error;
1381 	else
1382 		err = 0;
1383 
1384 	if (err) {
1385 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1386 			blk_mq_requeue_request(req, true);
1387 		else
1388 			blk_mq_end_request(req, BLK_STS_IOERR);
1389 	} else if (mrq->data) {
1390 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1391 			blk_mq_requeue_request(req, true);
1392 		else
1393 			__blk_mq_end_request(req, BLK_STS_OK);
1394 	} else {
1395 		blk_mq_end_request(req, BLK_STS_OK);
1396 	}
1397 
1398 	spin_lock_irqsave(&mq->lock, flags);
1399 
1400 	mq->in_flight[issue_type] -= 1;
1401 
1402 	put_card = (mmc_tot_in_flight(mq) == 0);
1403 
1404 	mmc_cqe_check_busy(mq);
1405 
1406 	spin_unlock_irqrestore(&mq->lock, flags);
1407 
1408 	if (!mq->cqe_busy)
1409 		blk_mq_run_hw_queues(q, true);
1410 
1411 	if (put_card)
1412 		mmc_put_card(mq->card, &mq->ctx);
1413 }
1414 
1415 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1416 {
1417 	struct mmc_card *card = mq->card;
1418 	struct mmc_host *host = card->host;
1419 	int err;
1420 
1421 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1422 
1423 	err = mmc_cqe_recovery(host);
1424 	if (err)
1425 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1426 	else
1427 		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1428 
1429 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1430 }
1431 
1432 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1433 {
1434 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1435 						  brq.mrq);
1436 	struct request *req = mmc_queue_req_to_req(mqrq);
1437 	struct request_queue *q = req->q;
1438 	struct mmc_queue *mq = q->queuedata;
1439 
1440 	/*
1441 	 * Block layer timeouts race with completions which means the normal
1442 	 * completion path cannot be used during recovery.
1443 	 */
1444 	if (mq->in_recovery)
1445 		mmc_blk_cqe_complete_rq(mq, req);
1446 	else if (likely(!blk_should_fake_timeout(req->q)))
1447 		blk_mq_complete_request(req);
1448 }
1449 
1450 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1451 {
1452 	mrq->done		= mmc_blk_cqe_req_done;
1453 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1454 
1455 	return mmc_cqe_start_req(host, mrq);
1456 }
1457 
1458 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1459 						 struct request *req)
1460 {
1461 	struct mmc_blk_request *brq = &mqrq->brq;
1462 
1463 	memset(brq, 0, sizeof(*brq));
1464 
1465 	brq->mrq.cmd = &brq->cmd;
1466 	brq->mrq.tag = req->tag;
1467 
1468 	return &brq->mrq;
1469 }
1470 
1471 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1472 {
1473 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1474 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1475 
1476 	mrq->cmd->opcode = MMC_SWITCH;
1477 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1478 			(EXT_CSD_FLUSH_CACHE << 16) |
1479 			(1 << 8) |
1480 			EXT_CSD_CMD_SET_NORMAL;
1481 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1482 
1483 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1484 }
1485 
1486 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1487 {
1488 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1489 	struct mmc_host *host = mq->card->host;
1490 	int err;
1491 
1492 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1493 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1494 	mmc_pre_req(host, &mqrq->brq.mrq);
1495 
1496 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1497 	if (err)
1498 		mmc_post_req(host, &mqrq->brq.mrq, err);
1499 
1500 	return err;
1501 }
1502 
1503 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1504 {
1505 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1506 	struct mmc_host *host = mq->card->host;
1507 
1508 	if (host->hsq_enabled)
1509 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1510 
1511 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1512 
1513 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1514 }
1515 
1516 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1517 			       struct mmc_card *card,
1518 			       int disable_multi,
1519 			       struct mmc_queue *mq)
1520 {
1521 	u32 readcmd, writecmd;
1522 	struct mmc_blk_request *brq = &mqrq->brq;
1523 	struct request *req = mmc_queue_req_to_req(mqrq);
1524 	struct mmc_blk_data *md = mq->blkdata;
1525 	bool do_rel_wr, do_data_tag;
1526 
1527 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1528 
1529 	brq->mrq.cmd = &brq->cmd;
1530 
1531 	brq->cmd.arg = blk_rq_pos(req);
1532 	if (!mmc_card_blockaddr(card))
1533 		brq->cmd.arg <<= 9;
1534 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1535 
1536 	if (brq->data.blocks > 1 || do_rel_wr) {
1537 		/* SPI multiblock writes terminate using a special
1538 		 * token, not a STOP_TRANSMISSION request.
1539 		 */
1540 		if (!mmc_host_is_spi(card->host) ||
1541 		    rq_data_dir(req) == READ)
1542 			brq->mrq.stop = &brq->stop;
1543 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1544 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1545 	} else {
1546 		brq->mrq.stop = NULL;
1547 		readcmd = MMC_READ_SINGLE_BLOCK;
1548 		writecmd = MMC_WRITE_BLOCK;
1549 	}
1550 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1551 
1552 	/*
1553 	 * Pre-defined multi-block transfers are preferable to
1554 	 * open ended-ones (and necessary for reliable writes).
1555 	 * However, it is not sufficient to just send CMD23,
1556 	 * and avoid the final CMD12, as on an error condition
1557 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1558 	 * with Auto-CMD23 enhancements provided by some
1559 	 * hosts, means that the complexity of dealing
1560 	 * with this is best left to the host. If CMD23 is
1561 	 * supported by card and host, we'll fill sbc in and let
1562 	 * the host deal with handling it correctly. This means
1563 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1564 	 * change of behavior will be observed.
1565 	 *
1566 	 * N.B: Some MMC cards experience perf degradation.
1567 	 * We'll avoid using CMD23-bounded multiblock writes for
1568 	 * these, while retaining features like reliable writes.
1569 	 */
1570 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1571 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1572 	     do_data_tag)) {
1573 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1574 		brq->sbc.arg = brq->data.blocks |
1575 			(do_rel_wr ? (1 << 31) : 0) |
1576 			(do_data_tag ? (1 << 29) : 0);
1577 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1578 		brq->mrq.sbc = &brq->sbc;
1579 	}
1580 }
1581 
1582 #define MMC_MAX_RETRIES		5
1583 #define MMC_DATA_RETRIES	2
1584 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1585 
1586 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1587 {
1588 	struct mmc_command cmd = {
1589 		.opcode = MMC_STOP_TRANSMISSION,
1590 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1591 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1592 		.busy_timeout = timeout,
1593 	};
1594 
1595 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1596 }
1597 
1598 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1599 {
1600 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1601 	struct mmc_blk_request *brq = &mqrq->brq;
1602 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1603 	int err;
1604 
1605 	mmc_retune_hold_now(card->host);
1606 
1607 	mmc_blk_send_stop(card, timeout);
1608 
1609 	err = card_busy_detect(card, timeout, NULL);
1610 
1611 	mmc_retune_release(card->host);
1612 
1613 	return err;
1614 }
1615 
1616 #define MMC_READ_SINGLE_RETRIES	2
1617 
1618 /* Single sector read during recovery */
1619 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1620 {
1621 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1622 	struct mmc_request *mrq = &mqrq->brq.mrq;
1623 	struct mmc_card *card = mq->card;
1624 	struct mmc_host *host = card->host;
1625 	blk_status_t error = BLK_STS_OK;
1626 	int retries = 0;
1627 
1628 	do {
1629 		u32 status;
1630 		int err;
1631 
1632 		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1633 
1634 		mmc_wait_for_req(host, mrq);
1635 
1636 		err = mmc_send_status(card, &status);
1637 		if (err)
1638 			goto error_exit;
1639 
1640 		if (!mmc_host_is_spi(host) &&
1641 		    !mmc_ready_for_data(status)) {
1642 			err = mmc_blk_fix_state(card, req);
1643 			if (err)
1644 				goto error_exit;
1645 		}
1646 
1647 		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1648 			continue;
1649 
1650 		retries = 0;
1651 
1652 		if (mrq->cmd->error ||
1653 		    mrq->data->error ||
1654 		    (!mmc_host_is_spi(host) &&
1655 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1656 			error = BLK_STS_IOERR;
1657 		else
1658 			error = BLK_STS_OK;
1659 
1660 	} while (blk_update_request(req, error, 512));
1661 
1662 	return;
1663 
1664 error_exit:
1665 	mrq->data->bytes_xfered = 0;
1666 	blk_update_request(req, BLK_STS_IOERR, 512);
1667 	/* Let it try the remaining request again */
1668 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1669 		mqrq->retries = MMC_MAX_RETRIES - 1;
1670 }
1671 
1672 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1673 {
1674 	return !!brq->mrq.sbc;
1675 }
1676 
1677 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1678 {
1679 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1680 }
1681 
1682 /*
1683  * Check for errors the host controller driver might not have seen such as
1684  * response mode errors or invalid card state.
1685  */
1686 static bool mmc_blk_status_error(struct request *req, u32 status)
1687 {
1688 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1689 	struct mmc_blk_request *brq = &mqrq->brq;
1690 	struct mmc_queue *mq = req->q->queuedata;
1691 	u32 stop_err_bits;
1692 
1693 	if (mmc_host_is_spi(mq->card->host))
1694 		return false;
1695 
1696 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1697 
1698 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1699 	       brq->stop.resp[0] & stop_err_bits ||
1700 	       status            & stop_err_bits ||
1701 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1702 }
1703 
1704 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1705 {
1706 	return !brq->sbc.error && !brq->cmd.error &&
1707 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1708 }
1709 
1710 /*
1711  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1712  * policy:
1713  * 1. A request that has transferred at least some data is considered
1714  * successful and will be requeued if there is remaining data to
1715  * transfer.
1716  * 2. Otherwise the number of retries is incremented and the request
1717  * will be requeued if there are remaining retries.
1718  * 3. Otherwise the request will be errored out.
1719  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1720  * mqrq->retries. So there are only 4 possible actions here:
1721  *	1. do not accept the bytes_xfered value i.e. set it to zero
1722  *	2. change mqrq->retries to determine the number of retries
1723  *	3. try to reset the card
1724  *	4. read one sector at a time
1725  */
1726 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1727 {
1728 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1729 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1730 	struct mmc_blk_request *brq = &mqrq->brq;
1731 	struct mmc_blk_data *md = mq->blkdata;
1732 	struct mmc_card *card = mq->card;
1733 	u32 status;
1734 	u32 blocks;
1735 	int err;
1736 
1737 	/*
1738 	 * Some errors the host driver might not have seen. Set the number of
1739 	 * bytes transferred to zero in that case.
1740 	 */
1741 	err = __mmc_send_status(card, &status, 0);
1742 	if (err || mmc_blk_status_error(req, status))
1743 		brq->data.bytes_xfered = 0;
1744 
1745 	mmc_retune_release(card->host);
1746 
1747 	/*
1748 	 * Try again to get the status. This also provides an opportunity for
1749 	 * re-tuning.
1750 	 */
1751 	if (err)
1752 		err = __mmc_send_status(card, &status, 0);
1753 
1754 	/*
1755 	 * Nothing more to do after the number of bytes transferred has been
1756 	 * updated and there is no card.
1757 	 */
1758 	if (err && mmc_detect_card_removed(card->host))
1759 		return;
1760 
1761 	/* Try to get back to "tran" state */
1762 	if (!mmc_host_is_spi(mq->card->host) &&
1763 	    (err || !mmc_ready_for_data(status)))
1764 		err = mmc_blk_fix_state(mq->card, req);
1765 
1766 	/*
1767 	 * Special case for SD cards where the card might record the number of
1768 	 * blocks written.
1769 	 */
1770 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1771 	    rq_data_dir(req) == WRITE) {
1772 		if (mmc_sd_num_wr_blocks(card, &blocks))
1773 			brq->data.bytes_xfered = 0;
1774 		else
1775 			brq->data.bytes_xfered = blocks << 9;
1776 	}
1777 
1778 	/* Reset if the card is in a bad state */
1779 	if (!mmc_host_is_spi(mq->card->host) &&
1780 	    err && mmc_blk_reset(md, card->host, type)) {
1781 		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1782 		mqrq->retries = MMC_NO_RETRIES;
1783 		return;
1784 	}
1785 
1786 	/*
1787 	 * If anything was done, just return and if there is anything remaining
1788 	 * on the request it will get requeued.
1789 	 */
1790 	if (brq->data.bytes_xfered)
1791 		return;
1792 
1793 	/* Reset before last retry */
1794 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1795 		mmc_blk_reset(md, card->host, type);
1796 
1797 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1798 	if (brq->sbc.error || brq->cmd.error)
1799 		return;
1800 
1801 	/* Reduce the remaining retries for data errors */
1802 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1803 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1804 		return;
1805 	}
1806 
1807 	/* FIXME: Missing single sector read for large sector size */
1808 	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1809 	    brq->data.blocks > 1) {
1810 		/* Read one sector at a time */
1811 		mmc_blk_read_single(mq, req);
1812 		return;
1813 	}
1814 }
1815 
1816 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1817 {
1818 	mmc_blk_eval_resp_error(brq);
1819 
1820 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1821 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1822 }
1823 
1824 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1825 {
1826 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1827 	u32 status = 0;
1828 	int err;
1829 
1830 	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1831 		return 0;
1832 
1833 	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1834 
1835 	/*
1836 	 * Do not assume data transferred correctly if there are any error bits
1837 	 * set.
1838 	 */
1839 	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1840 		mqrq->brq.data.bytes_xfered = 0;
1841 		err = err ? err : -EIO;
1842 	}
1843 
1844 	/* Copy the exception bit so it will be seen later on */
1845 	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1846 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1847 
1848 	return err;
1849 }
1850 
1851 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1852 					    struct request *req)
1853 {
1854 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1855 
1856 	mmc_blk_reset_success(mq->blkdata, type);
1857 }
1858 
1859 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1860 {
1861 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1862 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1863 
1864 	if (nr_bytes) {
1865 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1866 			blk_mq_requeue_request(req, true);
1867 		else
1868 			__blk_mq_end_request(req, BLK_STS_OK);
1869 	} else if (!blk_rq_bytes(req)) {
1870 		__blk_mq_end_request(req, BLK_STS_IOERR);
1871 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1872 		blk_mq_requeue_request(req, true);
1873 	} else {
1874 		if (mmc_card_removed(mq->card))
1875 			req->rq_flags |= RQF_QUIET;
1876 		blk_mq_end_request(req, BLK_STS_IOERR);
1877 	}
1878 }
1879 
1880 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1881 					struct mmc_queue_req *mqrq)
1882 {
1883 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1884 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1885 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1886 }
1887 
1888 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1889 				 struct mmc_queue_req *mqrq)
1890 {
1891 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1892 		mmc_run_bkops(mq->card);
1893 }
1894 
1895 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1896 {
1897 	struct mmc_queue_req *mqrq =
1898 		container_of(mrq, struct mmc_queue_req, brq.mrq);
1899 	struct request *req = mmc_queue_req_to_req(mqrq);
1900 	struct request_queue *q = req->q;
1901 	struct mmc_queue *mq = q->queuedata;
1902 	struct mmc_host *host = mq->card->host;
1903 	unsigned long flags;
1904 
1905 	if (mmc_blk_rq_error(&mqrq->brq) ||
1906 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1907 		spin_lock_irqsave(&mq->lock, flags);
1908 		mq->recovery_needed = true;
1909 		mq->recovery_req = req;
1910 		spin_unlock_irqrestore(&mq->lock, flags);
1911 
1912 		host->cqe_ops->cqe_recovery_start(host);
1913 
1914 		schedule_work(&mq->recovery_work);
1915 		return;
1916 	}
1917 
1918 	mmc_blk_rw_reset_success(mq, req);
1919 
1920 	/*
1921 	 * Block layer timeouts race with completions which means the normal
1922 	 * completion path cannot be used during recovery.
1923 	 */
1924 	if (mq->in_recovery)
1925 		mmc_blk_cqe_complete_rq(mq, req);
1926 	else if (likely(!blk_should_fake_timeout(req->q)))
1927 		blk_mq_complete_request(req);
1928 }
1929 
1930 void mmc_blk_mq_complete(struct request *req)
1931 {
1932 	struct mmc_queue *mq = req->q->queuedata;
1933 
1934 	if (mq->use_cqe)
1935 		mmc_blk_cqe_complete_rq(mq, req);
1936 	else if (likely(!blk_should_fake_timeout(req->q)))
1937 		mmc_blk_mq_complete_rq(mq, req);
1938 }
1939 
1940 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1941 				       struct request *req)
1942 {
1943 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1944 	struct mmc_host *host = mq->card->host;
1945 
1946 	if (mmc_blk_rq_error(&mqrq->brq) ||
1947 	    mmc_blk_card_busy(mq->card, req)) {
1948 		mmc_blk_mq_rw_recovery(mq, req);
1949 	} else {
1950 		mmc_blk_rw_reset_success(mq, req);
1951 		mmc_retune_release(host);
1952 	}
1953 
1954 	mmc_blk_urgent_bkops(mq, mqrq);
1955 }
1956 
1957 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1958 {
1959 	unsigned long flags;
1960 	bool put_card;
1961 
1962 	spin_lock_irqsave(&mq->lock, flags);
1963 
1964 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1965 
1966 	put_card = (mmc_tot_in_flight(mq) == 0);
1967 
1968 	spin_unlock_irqrestore(&mq->lock, flags);
1969 
1970 	if (put_card)
1971 		mmc_put_card(mq->card, &mq->ctx);
1972 }
1973 
1974 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1975 {
1976 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1977 	struct mmc_request *mrq = &mqrq->brq.mrq;
1978 	struct mmc_host *host = mq->card->host;
1979 
1980 	mmc_post_req(host, mrq, 0);
1981 
1982 	/*
1983 	 * Block layer timeouts race with completions which means the normal
1984 	 * completion path cannot be used during recovery.
1985 	 */
1986 	if (mq->in_recovery)
1987 		mmc_blk_mq_complete_rq(mq, req);
1988 	else if (likely(!blk_should_fake_timeout(req->q)))
1989 		blk_mq_complete_request(req);
1990 
1991 	mmc_blk_mq_dec_in_flight(mq, req);
1992 }
1993 
1994 void mmc_blk_mq_recovery(struct mmc_queue *mq)
1995 {
1996 	struct request *req = mq->recovery_req;
1997 	struct mmc_host *host = mq->card->host;
1998 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1999 
2000 	mq->recovery_req = NULL;
2001 	mq->rw_wait = false;
2002 
2003 	if (mmc_blk_rq_error(&mqrq->brq)) {
2004 		mmc_retune_hold_now(host);
2005 		mmc_blk_mq_rw_recovery(mq, req);
2006 	}
2007 
2008 	mmc_blk_urgent_bkops(mq, mqrq);
2009 
2010 	mmc_blk_mq_post_req(mq, req);
2011 }
2012 
2013 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2014 					 struct request **prev_req)
2015 {
2016 	if (mmc_host_done_complete(mq->card->host))
2017 		return;
2018 
2019 	mutex_lock(&mq->complete_lock);
2020 
2021 	if (!mq->complete_req)
2022 		goto out_unlock;
2023 
2024 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2025 
2026 	if (prev_req)
2027 		*prev_req = mq->complete_req;
2028 	else
2029 		mmc_blk_mq_post_req(mq, mq->complete_req);
2030 
2031 	mq->complete_req = NULL;
2032 
2033 out_unlock:
2034 	mutex_unlock(&mq->complete_lock);
2035 }
2036 
2037 void mmc_blk_mq_complete_work(struct work_struct *work)
2038 {
2039 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2040 					    complete_work);
2041 
2042 	mmc_blk_mq_complete_prev_req(mq, NULL);
2043 }
2044 
2045 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2046 {
2047 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2048 						  brq.mrq);
2049 	struct request *req = mmc_queue_req_to_req(mqrq);
2050 	struct request_queue *q = req->q;
2051 	struct mmc_queue *mq = q->queuedata;
2052 	struct mmc_host *host = mq->card->host;
2053 	unsigned long flags;
2054 
2055 	if (!mmc_host_done_complete(host)) {
2056 		bool waiting;
2057 
2058 		/*
2059 		 * We cannot complete the request in this context, so record
2060 		 * that there is a request to complete, and that a following
2061 		 * request does not need to wait (although it does need to
2062 		 * complete complete_req first).
2063 		 */
2064 		spin_lock_irqsave(&mq->lock, flags);
2065 		mq->complete_req = req;
2066 		mq->rw_wait = false;
2067 		waiting = mq->waiting;
2068 		spin_unlock_irqrestore(&mq->lock, flags);
2069 
2070 		/*
2071 		 * If 'waiting' then the waiting task will complete this
2072 		 * request, otherwise queue a work to do it. Note that
2073 		 * complete_work may still race with the dispatch of a following
2074 		 * request.
2075 		 */
2076 		if (waiting)
2077 			wake_up(&mq->wait);
2078 		else
2079 			queue_work(mq->card->complete_wq, &mq->complete_work);
2080 
2081 		return;
2082 	}
2083 
2084 	/* Take the recovery path for errors or urgent background operations */
2085 	if (mmc_blk_rq_error(&mqrq->brq) ||
2086 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2087 		spin_lock_irqsave(&mq->lock, flags);
2088 		mq->recovery_needed = true;
2089 		mq->recovery_req = req;
2090 		spin_unlock_irqrestore(&mq->lock, flags);
2091 		wake_up(&mq->wait);
2092 		schedule_work(&mq->recovery_work);
2093 		return;
2094 	}
2095 
2096 	mmc_blk_rw_reset_success(mq, req);
2097 
2098 	mq->rw_wait = false;
2099 	wake_up(&mq->wait);
2100 
2101 	mmc_blk_mq_post_req(mq, req);
2102 }
2103 
2104 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2105 {
2106 	unsigned long flags;
2107 	bool done;
2108 
2109 	/*
2110 	 * Wait while there is another request in progress, but not if recovery
2111 	 * is needed. Also indicate whether there is a request waiting to start.
2112 	 */
2113 	spin_lock_irqsave(&mq->lock, flags);
2114 	if (mq->recovery_needed) {
2115 		*err = -EBUSY;
2116 		done = true;
2117 	} else {
2118 		done = !mq->rw_wait;
2119 	}
2120 	mq->waiting = !done;
2121 	spin_unlock_irqrestore(&mq->lock, flags);
2122 
2123 	return done;
2124 }
2125 
2126 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2127 {
2128 	int err = 0;
2129 
2130 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2131 
2132 	/* Always complete the previous request if there is one */
2133 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2134 
2135 	return err;
2136 }
2137 
2138 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2139 				  struct request *req)
2140 {
2141 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2142 	struct mmc_host *host = mq->card->host;
2143 	struct request *prev_req = NULL;
2144 	int err = 0;
2145 
2146 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2147 
2148 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2149 
2150 	mmc_pre_req(host, &mqrq->brq.mrq);
2151 
2152 	err = mmc_blk_rw_wait(mq, &prev_req);
2153 	if (err)
2154 		goto out_post_req;
2155 
2156 	mq->rw_wait = true;
2157 
2158 	err = mmc_start_request(host, &mqrq->brq.mrq);
2159 
2160 	if (prev_req)
2161 		mmc_blk_mq_post_req(mq, prev_req);
2162 
2163 	if (err)
2164 		mq->rw_wait = false;
2165 
2166 	/* Release re-tuning here where there is no synchronization required */
2167 	if (err || mmc_host_done_complete(host))
2168 		mmc_retune_release(host);
2169 
2170 out_post_req:
2171 	if (err)
2172 		mmc_post_req(host, &mqrq->brq.mrq, err);
2173 
2174 	return err;
2175 }
2176 
2177 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2178 {
2179 	if (mq->use_cqe)
2180 		return host->cqe_ops->cqe_wait_for_idle(host);
2181 
2182 	return mmc_blk_rw_wait(mq, NULL);
2183 }
2184 
2185 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2186 {
2187 	struct mmc_blk_data *md = mq->blkdata;
2188 	struct mmc_card *card = md->queue.card;
2189 	struct mmc_host *host = card->host;
2190 	int ret;
2191 
2192 	ret = mmc_blk_part_switch(card, md->part_type);
2193 	if (ret)
2194 		return MMC_REQ_FAILED_TO_START;
2195 
2196 	switch (mmc_issue_type(mq, req)) {
2197 	case MMC_ISSUE_SYNC:
2198 		ret = mmc_blk_wait_for_idle(mq, host);
2199 		if (ret)
2200 			return MMC_REQ_BUSY;
2201 		switch (req_op(req)) {
2202 		case REQ_OP_DRV_IN:
2203 		case REQ_OP_DRV_OUT:
2204 			mmc_blk_issue_drv_op(mq, req);
2205 			break;
2206 		case REQ_OP_DISCARD:
2207 			mmc_blk_issue_discard_rq(mq, req);
2208 			break;
2209 		case REQ_OP_SECURE_ERASE:
2210 			mmc_blk_issue_secdiscard_rq(mq, req);
2211 			break;
2212 		case REQ_OP_FLUSH:
2213 			mmc_blk_issue_flush(mq, req);
2214 			break;
2215 		default:
2216 			WARN_ON_ONCE(1);
2217 			return MMC_REQ_FAILED_TO_START;
2218 		}
2219 		return MMC_REQ_FINISHED;
2220 	case MMC_ISSUE_DCMD:
2221 	case MMC_ISSUE_ASYNC:
2222 		switch (req_op(req)) {
2223 		case REQ_OP_FLUSH:
2224 			ret = mmc_blk_cqe_issue_flush(mq, req);
2225 			break;
2226 		case REQ_OP_READ:
2227 		case REQ_OP_WRITE:
2228 			if (mq->use_cqe)
2229 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2230 			else
2231 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2232 			break;
2233 		default:
2234 			WARN_ON_ONCE(1);
2235 			ret = -EINVAL;
2236 		}
2237 		if (!ret)
2238 			return MMC_REQ_STARTED;
2239 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2240 	default:
2241 		WARN_ON_ONCE(1);
2242 		return MMC_REQ_FAILED_TO_START;
2243 	}
2244 }
2245 
2246 static inline int mmc_blk_readonly(struct mmc_card *card)
2247 {
2248 	return mmc_card_readonly(card) ||
2249 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2250 }
2251 
2252 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2253 					      struct device *parent,
2254 					      sector_t size,
2255 					      bool default_ro,
2256 					      const char *subname,
2257 					      int area_type)
2258 {
2259 	struct mmc_blk_data *md;
2260 	int devidx, ret;
2261 
2262 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2263 	if (devidx < 0) {
2264 		/*
2265 		 * We get -ENOSPC because there are no more any available
2266 		 * devidx. The reason may be that, either userspace haven't yet
2267 		 * unmounted the partitions, which postpones mmc_blk_release()
2268 		 * from being called, or the device has more partitions than
2269 		 * what we support.
2270 		 */
2271 		if (devidx == -ENOSPC)
2272 			dev_err(mmc_dev(card->host),
2273 				"no more device IDs available\n");
2274 
2275 		return ERR_PTR(devidx);
2276 	}
2277 
2278 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2279 	if (!md) {
2280 		ret = -ENOMEM;
2281 		goto out;
2282 	}
2283 
2284 	md->area_type = area_type;
2285 
2286 	/*
2287 	 * Set the read-only status based on the supported commands
2288 	 * and the write protect switch.
2289 	 */
2290 	md->read_only = mmc_blk_readonly(card);
2291 
2292 	md->disk = alloc_disk(perdev_minors);
2293 	if (md->disk == NULL) {
2294 		ret = -ENOMEM;
2295 		goto err_kfree;
2296 	}
2297 
2298 	INIT_LIST_HEAD(&md->part);
2299 	INIT_LIST_HEAD(&md->rpmbs);
2300 	md->usage = 1;
2301 
2302 	ret = mmc_init_queue(&md->queue, card);
2303 	if (ret)
2304 		goto err_putdisk;
2305 
2306 	md->queue.blkdata = md;
2307 
2308 	/*
2309 	 * Keep an extra reference to the queue so that we can shutdown the
2310 	 * queue (i.e. call blk_cleanup_queue()) while there are still
2311 	 * references to the 'md'. The corresponding blk_put_queue() is in
2312 	 * mmc_blk_put().
2313 	 */
2314 	if (!blk_get_queue(md->queue.queue)) {
2315 		mmc_cleanup_queue(&md->queue);
2316 		ret = -ENODEV;
2317 		goto err_putdisk;
2318 	}
2319 
2320 	md->disk->major	= MMC_BLOCK_MAJOR;
2321 	md->disk->first_minor = devidx * perdev_minors;
2322 	md->disk->fops = &mmc_bdops;
2323 	md->disk->private_data = md;
2324 	md->disk->queue = md->queue.queue;
2325 	md->parent = parent;
2326 	set_disk_ro(md->disk, md->read_only || default_ro);
2327 	md->disk->flags = GENHD_FL_EXT_DEVT;
2328 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2329 		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2330 				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2331 
2332 	/*
2333 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2334 	 *
2335 	 * - be set for removable media with permanent block devices
2336 	 * - be unset for removable block devices with permanent media
2337 	 *
2338 	 * Since MMC block devices clearly fall under the second
2339 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2340 	 * should use the block device creation/destruction hotplug
2341 	 * messages to tell when the card is present.
2342 	 */
2343 
2344 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2345 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2346 
2347 	set_capacity(md->disk, size);
2348 
2349 	if (mmc_host_cmd23(card->host)) {
2350 		if ((mmc_card_mmc(card) &&
2351 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2352 		    (mmc_card_sd(card) &&
2353 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2354 			md->flags |= MMC_BLK_CMD23;
2355 	}
2356 
2357 	if (mmc_card_mmc(card) &&
2358 	    md->flags & MMC_BLK_CMD23 &&
2359 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2360 	     card->ext_csd.rel_sectors)) {
2361 		md->flags |= MMC_BLK_REL_WR;
2362 		blk_queue_write_cache(md->queue.queue, true, true);
2363 	}
2364 
2365 	return md;
2366 
2367  err_putdisk:
2368 	put_disk(md->disk);
2369  err_kfree:
2370 	kfree(md);
2371  out:
2372 	ida_simple_remove(&mmc_blk_ida, devidx);
2373 	return ERR_PTR(ret);
2374 }
2375 
2376 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2377 {
2378 	sector_t size;
2379 
2380 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2381 		/*
2382 		 * The EXT_CSD sector count is in number or 512 byte
2383 		 * sectors.
2384 		 */
2385 		size = card->ext_csd.sectors;
2386 	} else {
2387 		/*
2388 		 * The CSD capacity field is in units of read_blkbits.
2389 		 * set_capacity takes units of 512 bytes.
2390 		 */
2391 		size = (typeof(sector_t))card->csd.capacity
2392 			<< (card->csd.read_blkbits - 9);
2393 	}
2394 
2395 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2396 					MMC_BLK_DATA_AREA_MAIN);
2397 }
2398 
2399 static int mmc_blk_alloc_part(struct mmc_card *card,
2400 			      struct mmc_blk_data *md,
2401 			      unsigned int part_type,
2402 			      sector_t size,
2403 			      bool default_ro,
2404 			      const char *subname,
2405 			      int area_type)
2406 {
2407 	char cap_str[10];
2408 	struct mmc_blk_data *part_md;
2409 
2410 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2411 				    subname, area_type);
2412 	if (IS_ERR(part_md))
2413 		return PTR_ERR(part_md);
2414 	part_md->part_type = part_type;
2415 	list_add(&part_md->part, &md->part);
2416 
2417 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2418 			cap_str, sizeof(cap_str));
2419 	pr_info("%s: %s %s partition %u %s\n",
2420 	       part_md->disk->disk_name, mmc_card_id(card),
2421 	       mmc_card_name(card), part_md->part_type, cap_str);
2422 	return 0;
2423 }
2424 
2425 /**
2426  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2427  * @filp: the character device file
2428  * @cmd: the ioctl() command
2429  * @arg: the argument from userspace
2430  *
2431  * This will essentially just redirect the ioctl()s coming in over to
2432  * the main block device spawning the RPMB character device.
2433  */
2434 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2435 			   unsigned long arg)
2436 {
2437 	struct mmc_rpmb_data *rpmb = filp->private_data;
2438 	int ret;
2439 
2440 	switch (cmd) {
2441 	case MMC_IOC_CMD:
2442 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2443 					(struct mmc_ioc_cmd __user *)arg,
2444 					rpmb);
2445 		break;
2446 	case MMC_IOC_MULTI_CMD:
2447 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2448 					(struct mmc_ioc_multi_cmd __user *)arg,
2449 					rpmb);
2450 		break;
2451 	default:
2452 		ret = -EINVAL;
2453 		break;
2454 	}
2455 
2456 	return ret;
2457 }
2458 
2459 #ifdef CONFIG_COMPAT
2460 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2461 			      unsigned long arg)
2462 {
2463 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2464 }
2465 #endif
2466 
2467 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2468 {
2469 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2470 						  struct mmc_rpmb_data, chrdev);
2471 
2472 	get_device(&rpmb->dev);
2473 	filp->private_data = rpmb;
2474 	mmc_blk_get(rpmb->md->disk);
2475 
2476 	return nonseekable_open(inode, filp);
2477 }
2478 
2479 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2480 {
2481 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2482 						  struct mmc_rpmb_data, chrdev);
2483 
2484 	mmc_blk_put(rpmb->md);
2485 	put_device(&rpmb->dev);
2486 
2487 	return 0;
2488 }
2489 
2490 static const struct file_operations mmc_rpmb_fileops = {
2491 	.release = mmc_rpmb_chrdev_release,
2492 	.open = mmc_rpmb_chrdev_open,
2493 	.owner = THIS_MODULE,
2494 	.llseek = no_llseek,
2495 	.unlocked_ioctl = mmc_rpmb_ioctl,
2496 #ifdef CONFIG_COMPAT
2497 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2498 #endif
2499 };
2500 
2501 static void mmc_blk_rpmb_device_release(struct device *dev)
2502 {
2503 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2504 
2505 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2506 	kfree(rpmb);
2507 }
2508 
2509 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2510 				   struct mmc_blk_data *md,
2511 				   unsigned int part_index,
2512 				   sector_t size,
2513 				   const char *subname)
2514 {
2515 	int devidx, ret;
2516 	char rpmb_name[DISK_NAME_LEN];
2517 	char cap_str[10];
2518 	struct mmc_rpmb_data *rpmb;
2519 
2520 	/* This creates the minor number for the RPMB char device */
2521 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2522 	if (devidx < 0)
2523 		return devidx;
2524 
2525 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2526 	if (!rpmb) {
2527 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2528 		return -ENOMEM;
2529 	}
2530 
2531 	snprintf(rpmb_name, sizeof(rpmb_name),
2532 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2533 
2534 	rpmb->id = devidx;
2535 	rpmb->part_index = part_index;
2536 	rpmb->dev.init_name = rpmb_name;
2537 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2538 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2539 	rpmb->dev.parent = &card->dev;
2540 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2541 	device_initialize(&rpmb->dev);
2542 	dev_set_drvdata(&rpmb->dev, rpmb);
2543 	rpmb->md = md;
2544 
2545 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2546 	rpmb->chrdev.owner = THIS_MODULE;
2547 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2548 	if (ret) {
2549 		pr_err("%s: could not add character device\n", rpmb_name);
2550 		goto out_put_device;
2551 	}
2552 
2553 	list_add(&rpmb->node, &md->rpmbs);
2554 
2555 	string_get_size((u64)size, 512, STRING_UNITS_2,
2556 			cap_str, sizeof(cap_str));
2557 
2558 	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2559 		rpmb_name, mmc_card_id(card),
2560 		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2561 		MAJOR(mmc_rpmb_devt), rpmb->id);
2562 
2563 	return 0;
2564 
2565 out_put_device:
2566 	put_device(&rpmb->dev);
2567 	return ret;
2568 }
2569 
2570 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2571 
2572 {
2573 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2574 	put_device(&rpmb->dev);
2575 }
2576 
2577 /* MMC Physical partitions consist of two boot partitions and
2578  * up to four general purpose partitions.
2579  * For each partition enabled in EXT_CSD a block device will be allocatedi
2580  * to provide access to the partition.
2581  */
2582 
2583 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2584 {
2585 	int idx, ret;
2586 
2587 	if (!mmc_card_mmc(card))
2588 		return 0;
2589 
2590 	for (idx = 0; idx < card->nr_parts; idx++) {
2591 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2592 			/*
2593 			 * RPMB partitions does not provide block access, they
2594 			 * are only accessed using ioctl():s. Thus create
2595 			 * special RPMB block devices that do not have a
2596 			 * backing block queue for these.
2597 			 */
2598 			ret = mmc_blk_alloc_rpmb_part(card, md,
2599 				card->part[idx].part_cfg,
2600 				card->part[idx].size >> 9,
2601 				card->part[idx].name);
2602 			if (ret)
2603 				return ret;
2604 		} else if (card->part[idx].size) {
2605 			ret = mmc_blk_alloc_part(card, md,
2606 				card->part[idx].part_cfg,
2607 				card->part[idx].size >> 9,
2608 				card->part[idx].force_ro,
2609 				card->part[idx].name,
2610 				card->part[idx].area_type);
2611 			if (ret)
2612 				return ret;
2613 		}
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2620 {
2621 	struct mmc_card *card;
2622 
2623 	if (md) {
2624 		/*
2625 		 * Flush remaining requests and free queues. It
2626 		 * is freeing the queue that stops new requests
2627 		 * from being accepted.
2628 		 */
2629 		card = md->queue.card;
2630 		if (md->disk->flags & GENHD_FL_UP) {
2631 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2632 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2633 					card->ext_csd.boot_ro_lockable)
2634 				device_remove_file(disk_to_dev(md->disk),
2635 					&md->power_ro_lock);
2636 
2637 			del_gendisk(md->disk);
2638 		}
2639 		mmc_cleanup_queue(&md->queue);
2640 		mmc_blk_put(md);
2641 	}
2642 }
2643 
2644 static void mmc_blk_remove_parts(struct mmc_card *card,
2645 				 struct mmc_blk_data *md)
2646 {
2647 	struct list_head *pos, *q;
2648 	struct mmc_blk_data *part_md;
2649 	struct mmc_rpmb_data *rpmb;
2650 
2651 	/* Remove RPMB partitions */
2652 	list_for_each_safe(pos, q, &md->rpmbs) {
2653 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2654 		list_del(pos);
2655 		mmc_blk_remove_rpmb_part(rpmb);
2656 	}
2657 	/* Remove block partitions */
2658 	list_for_each_safe(pos, q, &md->part) {
2659 		part_md = list_entry(pos, struct mmc_blk_data, part);
2660 		list_del(pos);
2661 		mmc_blk_remove_req(part_md);
2662 	}
2663 }
2664 
2665 static int mmc_add_disk(struct mmc_blk_data *md)
2666 {
2667 	int ret;
2668 	struct mmc_card *card = md->queue.card;
2669 
2670 	device_add_disk(md->parent, md->disk, NULL);
2671 	md->force_ro.show = force_ro_show;
2672 	md->force_ro.store = force_ro_store;
2673 	sysfs_attr_init(&md->force_ro.attr);
2674 	md->force_ro.attr.name = "force_ro";
2675 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2676 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2677 	if (ret)
2678 		goto force_ro_fail;
2679 
2680 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2681 	     card->ext_csd.boot_ro_lockable) {
2682 		umode_t mode;
2683 
2684 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2685 			mode = S_IRUGO;
2686 		else
2687 			mode = S_IRUGO | S_IWUSR;
2688 
2689 		md->power_ro_lock.show = power_ro_lock_show;
2690 		md->power_ro_lock.store = power_ro_lock_store;
2691 		sysfs_attr_init(&md->power_ro_lock.attr);
2692 		md->power_ro_lock.attr.mode = mode;
2693 		md->power_ro_lock.attr.name =
2694 					"ro_lock_until_next_power_on";
2695 		ret = device_create_file(disk_to_dev(md->disk),
2696 				&md->power_ro_lock);
2697 		if (ret)
2698 			goto power_ro_lock_fail;
2699 	}
2700 	return ret;
2701 
2702 power_ro_lock_fail:
2703 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2704 force_ro_fail:
2705 	del_gendisk(md->disk);
2706 
2707 	return ret;
2708 }
2709 
2710 #ifdef CONFIG_DEBUG_FS
2711 
2712 static int mmc_dbg_card_status_get(void *data, u64 *val)
2713 {
2714 	struct mmc_card *card = data;
2715 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2716 	struct mmc_queue *mq = &md->queue;
2717 	struct request *req;
2718 	int ret;
2719 
2720 	/* Ask the block layer about the card status */
2721 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2722 	if (IS_ERR(req))
2723 		return PTR_ERR(req);
2724 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2725 	blk_execute_rq(mq->queue, NULL, req, 0);
2726 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2727 	if (ret >= 0) {
2728 		*val = ret;
2729 		ret = 0;
2730 	}
2731 	blk_put_request(req);
2732 
2733 	return ret;
2734 }
2735 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2736 			 NULL, "%08llx\n");
2737 
2738 /* That is two digits * 512 + 1 for newline */
2739 #define EXT_CSD_STR_LEN 1025
2740 
2741 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2742 {
2743 	struct mmc_card *card = inode->i_private;
2744 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2745 	struct mmc_queue *mq = &md->queue;
2746 	struct request *req;
2747 	char *buf;
2748 	ssize_t n = 0;
2749 	u8 *ext_csd;
2750 	int err, i;
2751 
2752 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2753 	if (!buf)
2754 		return -ENOMEM;
2755 
2756 	/* Ask the block layer for the EXT CSD */
2757 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2758 	if (IS_ERR(req)) {
2759 		err = PTR_ERR(req);
2760 		goto out_free;
2761 	}
2762 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2763 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2764 	blk_execute_rq(mq->queue, NULL, req, 0);
2765 	err = req_to_mmc_queue_req(req)->drv_op_result;
2766 	blk_put_request(req);
2767 	if (err) {
2768 		pr_err("FAILED %d\n", err);
2769 		goto out_free;
2770 	}
2771 
2772 	for (i = 0; i < 512; i++)
2773 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2774 	n += sprintf(buf + n, "\n");
2775 
2776 	if (n != EXT_CSD_STR_LEN) {
2777 		err = -EINVAL;
2778 		kfree(ext_csd);
2779 		goto out_free;
2780 	}
2781 
2782 	filp->private_data = buf;
2783 	kfree(ext_csd);
2784 	return 0;
2785 
2786 out_free:
2787 	kfree(buf);
2788 	return err;
2789 }
2790 
2791 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2792 				size_t cnt, loff_t *ppos)
2793 {
2794 	char *buf = filp->private_data;
2795 
2796 	return simple_read_from_buffer(ubuf, cnt, ppos,
2797 				       buf, EXT_CSD_STR_LEN);
2798 }
2799 
2800 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2801 {
2802 	kfree(file->private_data);
2803 	return 0;
2804 }
2805 
2806 static const struct file_operations mmc_dbg_ext_csd_fops = {
2807 	.open		= mmc_ext_csd_open,
2808 	.read		= mmc_ext_csd_read,
2809 	.release	= mmc_ext_csd_release,
2810 	.llseek		= default_llseek,
2811 };
2812 
2813 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2814 {
2815 	struct dentry *root;
2816 
2817 	if (!card->debugfs_root)
2818 		return 0;
2819 
2820 	root = card->debugfs_root;
2821 
2822 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2823 		md->status_dentry =
2824 			debugfs_create_file_unsafe("status", 0400, root,
2825 						   card,
2826 						   &mmc_dbg_card_status_fops);
2827 		if (!md->status_dentry)
2828 			return -EIO;
2829 	}
2830 
2831 	if (mmc_card_mmc(card)) {
2832 		md->ext_csd_dentry =
2833 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2834 					    &mmc_dbg_ext_csd_fops);
2835 		if (!md->ext_csd_dentry)
2836 			return -EIO;
2837 	}
2838 
2839 	return 0;
2840 }
2841 
2842 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2843 				   struct mmc_blk_data *md)
2844 {
2845 	if (!card->debugfs_root)
2846 		return;
2847 
2848 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2849 		debugfs_remove(md->status_dentry);
2850 		md->status_dentry = NULL;
2851 	}
2852 
2853 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2854 		debugfs_remove(md->ext_csd_dentry);
2855 		md->ext_csd_dentry = NULL;
2856 	}
2857 }
2858 
2859 #else
2860 
2861 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2862 {
2863 	return 0;
2864 }
2865 
2866 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2867 				   struct mmc_blk_data *md)
2868 {
2869 }
2870 
2871 #endif /* CONFIG_DEBUG_FS */
2872 
2873 static int mmc_blk_probe(struct mmc_card *card)
2874 {
2875 	struct mmc_blk_data *md, *part_md;
2876 	char cap_str[10];
2877 
2878 	/*
2879 	 * Check that the card supports the command class(es) we need.
2880 	 */
2881 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2882 		return -ENODEV;
2883 
2884 	mmc_fixup_device(card, mmc_blk_fixups);
2885 
2886 	card->complete_wq = alloc_workqueue("mmc_complete",
2887 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2888 	if (unlikely(!card->complete_wq)) {
2889 		pr_err("Failed to create mmc completion workqueue");
2890 		return -ENOMEM;
2891 	}
2892 
2893 	md = mmc_blk_alloc(card);
2894 	if (IS_ERR(md))
2895 		return PTR_ERR(md);
2896 
2897 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2898 			cap_str, sizeof(cap_str));
2899 	pr_info("%s: %s %s %s %s\n",
2900 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2901 		cap_str, md->read_only ? "(ro)" : "");
2902 
2903 	if (mmc_blk_alloc_parts(card, md))
2904 		goto out;
2905 
2906 	dev_set_drvdata(&card->dev, md);
2907 
2908 	if (mmc_add_disk(md))
2909 		goto out;
2910 
2911 	list_for_each_entry(part_md, &md->part, part) {
2912 		if (mmc_add_disk(part_md))
2913 			goto out;
2914 	}
2915 
2916 	/* Add two debugfs entries */
2917 	mmc_blk_add_debugfs(card, md);
2918 
2919 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2920 	pm_runtime_use_autosuspend(&card->dev);
2921 
2922 	/*
2923 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2924 	 * decision to be taken during the SDIO init sequence instead.
2925 	 */
2926 	if (card->type != MMC_TYPE_SD_COMBO) {
2927 		pm_runtime_set_active(&card->dev);
2928 		pm_runtime_enable(&card->dev);
2929 	}
2930 
2931 	return 0;
2932 
2933  out:
2934 	mmc_blk_remove_parts(card, md);
2935 	mmc_blk_remove_req(md);
2936 	return 0;
2937 }
2938 
2939 static void mmc_blk_remove(struct mmc_card *card)
2940 {
2941 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2942 
2943 	mmc_blk_remove_debugfs(card, md);
2944 	mmc_blk_remove_parts(card, md);
2945 	pm_runtime_get_sync(&card->dev);
2946 	if (md->part_curr != md->part_type) {
2947 		mmc_claim_host(card->host);
2948 		mmc_blk_part_switch(card, md->part_type);
2949 		mmc_release_host(card->host);
2950 	}
2951 	if (card->type != MMC_TYPE_SD_COMBO)
2952 		pm_runtime_disable(&card->dev);
2953 	pm_runtime_put_noidle(&card->dev);
2954 	mmc_blk_remove_req(md);
2955 	dev_set_drvdata(&card->dev, NULL);
2956 	destroy_workqueue(card->complete_wq);
2957 }
2958 
2959 static int _mmc_blk_suspend(struct mmc_card *card)
2960 {
2961 	struct mmc_blk_data *part_md;
2962 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2963 
2964 	if (md) {
2965 		mmc_queue_suspend(&md->queue);
2966 		list_for_each_entry(part_md, &md->part, part) {
2967 			mmc_queue_suspend(&part_md->queue);
2968 		}
2969 	}
2970 	return 0;
2971 }
2972 
2973 static void mmc_blk_shutdown(struct mmc_card *card)
2974 {
2975 	_mmc_blk_suspend(card);
2976 }
2977 
2978 #ifdef CONFIG_PM_SLEEP
2979 static int mmc_blk_suspend(struct device *dev)
2980 {
2981 	struct mmc_card *card = mmc_dev_to_card(dev);
2982 
2983 	return _mmc_blk_suspend(card);
2984 }
2985 
2986 static int mmc_blk_resume(struct device *dev)
2987 {
2988 	struct mmc_blk_data *part_md;
2989 	struct mmc_blk_data *md = dev_get_drvdata(dev);
2990 
2991 	if (md) {
2992 		/*
2993 		 * Resume involves the card going into idle state,
2994 		 * so current partition is always the main one.
2995 		 */
2996 		md->part_curr = md->part_type;
2997 		mmc_queue_resume(&md->queue);
2998 		list_for_each_entry(part_md, &md->part, part) {
2999 			mmc_queue_resume(&part_md->queue);
3000 		}
3001 	}
3002 	return 0;
3003 }
3004 #endif
3005 
3006 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3007 
3008 static struct mmc_driver mmc_driver = {
3009 	.drv		= {
3010 		.name	= "mmcblk",
3011 		.pm	= &mmc_blk_pm_ops,
3012 	},
3013 	.probe		= mmc_blk_probe,
3014 	.remove		= mmc_blk_remove,
3015 	.shutdown	= mmc_blk_shutdown,
3016 };
3017 
3018 static int __init mmc_blk_init(void)
3019 {
3020 	int res;
3021 
3022 	res  = bus_register(&mmc_rpmb_bus_type);
3023 	if (res < 0) {
3024 		pr_err("mmcblk: could not register RPMB bus type\n");
3025 		return res;
3026 	}
3027 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3028 	if (res < 0) {
3029 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3030 		goto out_bus_unreg;
3031 	}
3032 
3033 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3034 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3035 
3036 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3037 
3038 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3039 	if (res)
3040 		goto out_chrdev_unreg;
3041 
3042 	res = mmc_register_driver(&mmc_driver);
3043 	if (res)
3044 		goto out_blkdev_unreg;
3045 
3046 	return 0;
3047 
3048 out_blkdev_unreg:
3049 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3050 out_chrdev_unreg:
3051 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3052 out_bus_unreg:
3053 	bus_unregister(&mmc_rpmb_bus_type);
3054 	return res;
3055 }
3056 
3057 static void __exit mmc_blk_exit(void)
3058 {
3059 	mmc_unregister_driver(&mmc_driver);
3060 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3061 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3062 	bus_unregister(&mmc_rpmb_bus_type);
3063 }
3064 
3065 module_init(mmc_blk_init);
3066 module_exit(mmc_blk_exit);
3067 
3068 MODULE_LICENSE("GPL");
3069 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3070 
3071