xref: /openbmc/linux/drivers/mmc/core/block.c (revision 232b0b08)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/idr.h>
39 
40 #include <linux/mmc/ioctl.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/host.h>
43 #include <linux/mmc/mmc.h>
44 #include <linux/mmc/sd.h>
45 
46 #include <linux/uaccess.h>
47 
48 #include "queue.h"
49 #include "block.h"
50 #include "core.h"
51 #include "card.h"
52 #include "host.h"
53 #include "bus.h"
54 #include "mmc_ops.h"
55 #include "quirks.h"
56 #include "sd_ops.h"
57 
58 MODULE_ALIAS("mmc:block");
59 #ifdef MODULE_PARAM_PREFIX
60 #undef MODULE_PARAM_PREFIX
61 #endif
62 #define MODULE_PARAM_PREFIX "mmcblk."
63 
64 #define MMC_BLK_TIMEOUT_MS  (10 * 60 * 1000)        /* 10 minute timeout */
65 #define MMC_SANITIZE_REQ_TIMEOUT 240000
66 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
67 
68 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
69 				  (rq_data_dir(req) == WRITE))
70 static DEFINE_MUTEX(block_mutex);
71 
72 /*
73  * The defaults come from config options but can be overriden by module
74  * or bootarg options.
75  */
76 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
77 
78 /*
79  * We've only got one major, so number of mmcblk devices is
80  * limited to (1 << 20) / number of minors per device.  It is also
81  * limited by the MAX_DEVICES below.
82  */
83 static int max_devices;
84 
85 #define MAX_DEVICES 256
86 
87 static DEFINE_IDA(mmc_blk_ida);
88 
89 /*
90  * There is one mmc_blk_data per slot.
91  */
92 struct mmc_blk_data {
93 	spinlock_t	lock;
94 	struct device	*parent;
95 	struct gendisk	*disk;
96 	struct mmc_queue queue;
97 	struct list_head part;
98 
99 	unsigned int	flags;
100 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
101 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
102 
103 	unsigned int	usage;
104 	unsigned int	read_only;
105 	unsigned int	part_type;
106 	unsigned int	reset_done;
107 #define MMC_BLK_READ		BIT(0)
108 #define MMC_BLK_WRITE		BIT(1)
109 #define MMC_BLK_DISCARD		BIT(2)
110 #define MMC_BLK_SECDISCARD	BIT(3)
111 
112 	/*
113 	 * Only set in main mmc_blk_data associated
114 	 * with mmc_card with dev_set_drvdata, and keeps
115 	 * track of the current selected device partition.
116 	 */
117 	unsigned int	part_curr;
118 	struct device_attribute force_ro;
119 	struct device_attribute power_ro_lock;
120 	int	area_type;
121 };
122 
123 static DEFINE_MUTEX(open_lock);
124 
125 module_param(perdev_minors, int, 0444);
126 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
127 
128 static inline int mmc_blk_part_switch(struct mmc_card *card,
129 				      struct mmc_blk_data *md);
130 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
131 
132 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
133 {
134 	struct mmc_blk_data *md;
135 
136 	mutex_lock(&open_lock);
137 	md = disk->private_data;
138 	if (md && md->usage == 0)
139 		md = NULL;
140 	if (md)
141 		md->usage++;
142 	mutex_unlock(&open_lock);
143 
144 	return md;
145 }
146 
147 static inline int mmc_get_devidx(struct gendisk *disk)
148 {
149 	int devidx = disk->first_minor / perdev_minors;
150 	return devidx;
151 }
152 
153 static void mmc_blk_put(struct mmc_blk_data *md)
154 {
155 	mutex_lock(&open_lock);
156 	md->usage--;
157 	if (md->usage == 0) {
158 		int devidx = mmc_get_devidx(md->disk);
159 		blk_cleanup_queue(md->queue.queue);
160 		ida_simple_remove(&mmc_blk_ida, devidx);
161 		put_disk(md->disk);
162 		kfree(md);
163 	}
164 	mutex_unlock(&open_lock);
165 }
166 
167 static ssize_t power_ro_lock_show(struct device *dev,
168 		struct device_attribute *attr, char *buf)
169 {
170 	int ret;
171 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
172 	struct mmc_card *card = md->queue.card;
173 	int locked = 0;
174 
175 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
176 		locked = 2;
177 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
178 		locked = 1;
179 
180 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
181 
182 	mmc_blk_put(md);
183 
184 	return ret;
185 }
186 
187 static ssize_t power_ro_lock_store(struct device *dev,
188 		struct device_attribute *attr, const char *buf, size_t count)
189 {
190 	int ret;
191 	struct mmc_blk_data *md, *part_md;
192 	struct mmc_card *card;
193 	unsigned long set;
194 
195 	if (kstrtoul(buf, 0, &set))
196 		return -EINVAL;
197 
198 	if (set != 1)
199 		return count;
200 
201 	md = mmc_blk_get(dev_to_disk(dev));
202 	card = md->queue.card;
203 
204 	mmc_get_card(card);
205 
206 	ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
207 				card->ext_csd.boot_ro_lock |
208 				EXT_CSD_BOOT_WP_B_PWR_WP_EN,
209 				card->ext_csd.part_time);
210 	if (ret)
211 		pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
212 	else
213 		card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
214 
215 	mmc_put_card(card);
216 
217 	if (!ret) {
218 		pr_info("%s: Locking boot partition ro until next power on\n",
219 			md->disk->disk_name);
220 		set_disk_ro(md->disk, 1);
221 
222 		list_for_each_entry(part_md, &md->part, part)
223 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
224 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
225 				set_disk_ro(part_md->disk, 1);
226 			}
227 	}
228 
229 	mmc_blk_put(md);
230 	return count;
231 }
232 
233 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
234 			     char *buf)
235 {
236 	int ret;
237 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
238 
239 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
240 		       get_disk_ro(dev_to_disk(dev)) ^
241 		       md->read_only);
242 	mmc_blk_put(md);
243 	return ret;
244 }
245 
246 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
247 			      const char *buf, size_t count)
248 {
249 	int ret;
250 	char *end;
251 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
252 	unsigned long set = simple_strtoul(buf, &end, 0);
253 	if (end == buf) {
254 		ret = -EINVAL;
255 		goto out;
256 	}
257 
258 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
259 	ret = count;
260 out:
261 	mmc_blk_put(md);
262 	return ret;
263 }
264 
265 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
266 {
267 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
268 	int ret = -ENXIO;
269 
270 	mutex_lock(&block_mutex);
271 	if (md) {
272 		if (md->usage == 2)
273 			check_disk_change(bdev);
274 		ret = 0;
275 
276 		if ((mode & FMODE_WRITE) && md->read_only) {
277 			mmc_blk_put(md);
278 			ret = -EROFS;
279 		}
280 	}
281 	mutex_unlock(&block_mutex);
282 
283 	return ret;
284 }
285 
286 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
287 {
288 	struct mmc_blk_data *md = disk->private_data;
289 
290 	mutex_lock(&block_mutex);
291 	mmc_blk_put(md);
292 	mutex_unlock(&block_mutex);
293 }
294 
295 static int
296 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
297 {
298 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
299 	geo->heads = 4;
300 	geo->sectors = 16;
301 	return 0;
302 }
303 
304 struct mmc_blk_ioc_data {
305 	struct mmc_ioc_cmd ic;
306 	unsigned char *buf;
307 	u64 buf_bytes;
308 };
309 
310 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
311 	struct mmc_ioc_cmd __user *user)
312 {
313 	struct mmc_blk_ioc_data *idata;
314 	int err;
315 
316 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
317 	if (!idata) {
318 		err = -ENOMEM;
319 		goto out;
320 	}
321 
322 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
323 		err = -EFAULT;
324 		goto idata_err;
325 	}
326 
327 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
328 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
329 		err = -EOVERFLOW;
330 		goto idata_err;
331 	}
332 
333 	if (!idata->buf_bytes) {
334 		idata->buf = NULL;
335 		return idata;
336 	}
337 
338 	idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
339 	if (!idata->buf) {
340 		err = -ENOMEM;
341 		goto idata_err;
342 	}
343 
344 	if (copy_from_user(idata->buf, (void __user *)(unsigned long)
345 					idata->ic.data_ptr, idata->buf_bytes)) {
346 		err = -EFAULT;
347 		goto copy_err;
348 	}
349 
350 	return idata;
351 
352 copy_err:
353 	kfree(idata->buf);
354 idata_err:
355 	kfree(idata);
356 out:
357 	return ERR_PTR(err);
358 }
359 
360 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
361 				      struct mmc_blk_ioc_data *idata)
362 {
363 	struct mmc_ioc_cmd *ic = &idata->ic;
364 
365 	if (copy_to_user(&(ic_ptr->response), ic->response,
366 			 sizeof(ic->response)))
367 		return -EFAULT;
368 
369 	if (!idata->ic.write_flag) {
370 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
371 				 idata->buf, idata->buf_bytes))
372 			return -EFAULT;
373 	}
374 
375 	return 0;
376 }
377 
378 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
379 				       u32 retries_max)
380 {
381 	int err;
382 	u32 retry_count = 0;
383 
384 	if (!status || !retries_max)
385 		return -EINVAL;
386 
387 	do {
388 		err = get_card_status(card, status, 5);
389 		if (err)
390 			break;
391 
392 		if (!R1_STATUS(*status) &&
393 				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
394 			break; /* RPMB programming operation complete */
395 
396 		/*
397 		 * Rechedule to give the MMC device a chance to continue
398 		 * processing the previous command without being polled too
399 		 * frequently.
400 		 */
401 		usleep_range(1000, 5000);
402 	} while (++retry_count < retries_max);
403 
404 	if (retry_count == retries_max)
405 		err = -EPERM;
406 
407 	return err;
408 }
409 
410 static int ioctl_do_sanitize(struct mmc_card *card)
411 {
412 	int err;
413 
414 	if (!mmc_can_sanitize(card)) {
415 			pr_warn("%s: %s - SANITIZE is not supported\n",
416 				mmc_hostname(card->host), __func__);
417 			err = -EOPNOTSUPP;
418 			goto out;
419 	}
420 
421 	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
422 		mmc_hostname(card->host), __func__);
423 
424 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
425 					EXT_CSD_SANITIZE_START, 1,
426 					MMC_SANITIZE_REQ_TIMEOUT);
427 
428 	if (err)
429 		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
430 		       mmc_hostname(card->host), __func__, err);
431 
432 	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
433 					     __func__);
434 out:
435 	return err;
436 }
437 
438 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
439 			       struct mmc_blk_ioc_data *idata)
440 {
441 	struct mmc_command cmd = {};
442 	struct mmc_data data = {};
443 	struct mmc_request mrq = {};
444 	struct scatterlist sg;
445 	int err;
446 	int is_rpmb = false;
447 	u32 status = 0;
448 
449 	if (!card || !md || !idata)
450 		return -EINVAL;
451 
452 	if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
453 		is_rpmb = true;
454 
455 	cmd.opcode = idata->ic.opcode;
456 	cmd.arg = idata->ic.arg;
457 	cmd.flags = idata->ic.flags;
458 
459 	if (idata->buf_bytes) {
460 		data.sg = &sg;
461 		data.sg_len = 1;
462 		data.blksz = idata->ic.blksz;
463 		data.blocks = idata->ic.blocks;
464 
465 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
466 
467 		if (idata->ic.write_flag)
468 			data.flags = MMC_DATA_WRITE;
469 		else
470 			data.flags = MMC_DATA_READ;
471 
472 		/* data.flags must already be set before doing this. */
473 		mmc_set_data_timeout(&data, card);
474 
475 		/* Allow overriding the timeout_ns for empirical tuning. */
476 		if (idata->ic.data_timeout_ns)
477 			data.timeout_ns = idata->ic.data_timeout_ns;
478 
479 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
480 			/*
481 			 * Pretend this is a data transfer and rely on the
482 			 * host driver to compute timeout.  When all host
483 			 * drivers support cmd.cmd_timeout for R1B, this
484 			 * can be changed to:
485 			 *
486 			 *     mrq.data = NULL;
487 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
488 			 */
489 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
490 		}
491 
492 		mrq.data = &data;
493 	}
494 
495 	mrq.cmd = &cmd;
496 
497 	err = mmc_blk_part_switch(card, md);
498 	if (err)
499 		return err;
500 
501 	if (idata->ic.is_acmd) {
502 		err = mmc_app_cmd(card->host, card);
503 		if (err)
504 			return err;
505 	}
506 
507 	if (is_rpmb) {
508 		err = mmc_set_blockcount(card, data.blocks,
509 			idata->ic.write_flag & (1 << 31));
510 		if (err)
511 			return err;
512 	}
513 
514 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
515 	    (cmd.opcode == MMC_SWITCH)) {
516 		err = ioctl_do_sanitize(card);
517 
518 		if (err)
519 			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
520 			       __func__, err);
521 
522 		return err;
523 	}
524 
525 	mmc_wait_for_req(card->host, &mrq);
526 
527 	if (cmd.error) {
528 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
529 						__func__, cmd.error);
530 		return cmd.error;
531 	}
532 	if (data.error) {
533 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
534 						__func__, data.error);
535 		return data.error;
536 	}
537 
538 	/*
539 	 * According to the SD specs, some commands require a delay after
540 	 * issuing the command.
541 	 */
542 	if (idata->ic.postsleep_min_us)
543 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
544 
545 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
546 
547 	if (is_rpmb) {
548 		/*
549 		 * Ensure RPMB command has completed by polling CMD13
550 		 * "Send Status".
551 		 */
552 		err = ioctl_rpmb_card_status_poll(card, &status, 5);
553 		if (err)
554 			dev_err(mmc_dev(card->host),
555 					"%s: Card Status=0x%08X, error %d\n",
556 					__func__, status, err);
557 	}
558 
559 	return err;
560 }
561 
562 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
563 			     struct mmc_ioc_cmd __user *ic_ptr)
564 {
565 	struct mmc_blk_ioc_data *idata;
566 	struct mmc_blk_data *md;
567 	struct mmc_card *card;
568 	int err = 0, ioc_err = 0;
569 
570 	/*
571 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
572 	 * whole block device, not on a partition.  This prevents overspray
573 	 * between sibling partitions.
574 	 */
575 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
576 		return -EPERM;
577 
578 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
579 	if (IS_ERR(idata))
580 		return PTR_ERR(idata);
581 
582 	md = mmc_blk_get(bdev->bd_disk);
583 	if (!md) {
584 		err = -EINVAL;
585 		goto cmd_err;
586 	}
587 
588 	card = md->queue.card;
589 	if (IS_ERR(card)) {
590 		err = PTR_ERR(card);
591 		goto cmd_done;
592 	}
593 
594 	mmc_get_card(card);
595 
596 	ioc_err = __mmc_blk_ioctl_cmd(card, md, idata);
597 
598 	/* Always switch back to main area after RPMB access */
599 	if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
600 		mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
601 
602 	mmc_put_card(card);
603 
604 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
605 
606 cmd_done:
607 	mmc_blk_put(md);
608 cmd_err:
609 	kfree(idata->buf);
610 	kfree(idata);
611 	return ioc_err ? ioc_err : err;
612 }
613 
614 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
615 				   struct mmc_ioc_multi_cmd __user *user)
616 {
617 	struct mmc_blk_ioc_data **idata = NULL;
618 	struct mmc_ioc_cmd __user *cmds = user->cmds;
619 	struct mmc_card *card;
620 	struct mmc_blk_data *md;
621 	int i, err = 0, ioc_err = 0;
622 	__u64 num_of_cmds;
623 
624 	/*
625 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
626 	 * whole block device, not on a partition.  This prevents overspray
627 	 * between sibling partitions.
628 	 */
629 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
630 		return -EPERM;
631 
632 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
633 			   sizeof(num_of_cmds)))
634 		return -EFAULT;
635 
636 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
637 		return -EINVAL;
638 
639 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
640 	if (!idata)
641 		return -ENOMEM;
642 
643 	for (i = 0; i < num_of_cmds; i++) {
644 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
645 		if (IS_ERR(idata[i])) {
646 			err = PTR_ERR(idata[i]);
647 			num_of_cmds = i;
648 			goto cmd_err;
649 		}
650 	}
651 
652 	md = mmc_blk_get(bdev->bd_disk);
653 	if (!md) {
654 		err = -EINVAL;
655 		goto cmd_err;
656 	}
657 
658 	card = md->queue.card;
659 	if (IS_ERR(card)) {
660 		err = PTR_ERR(card);
661 		goto cmd_done;
662 	}
663 
664 	mmc_get_card(card);
665 
666 	for (i = 0; i < num_of_cmds && !ioc_err; i++)
667 		ioc_err = __mmc_blk_ioctl_cmd(card, md, idata[i]);
668 
669 	/* Always switch back to main area after RPMB access */
670 	if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
671 		mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
672 
673 	mmc_put_card(card);
674 
675 	/* copy to user if data and response */
676 	for (i = 0; i < num_of_cmds && !err; i++)
677 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
678 
679 cmd_done:
680 	mmc_blk_put(md);
681 cmd_err:
682 	for (i = 0; i < num_of_cmds; i++) {
683 		kfree(idata[i]->buf);
684 		kfree(idata[i]);
685 	}
686 	kfree(idata);
687 	return ioc_err ? ioc_err : err;
688 }
689 
690 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
691 	unsigned int cmd, unsigned long arg)
692 {
693 	switch (cmd) {
694 	case MMC_IOC_CMD:
695 		return mmc_blk_ioctl_cmd(bdev,
696 				(struct mmc_ioc_cmd __user *)arg);
697 	case MMC_IOC_MULTI_CMD:
698 		return mmc_blk_ioctl_multi_cmd(bdev,
699 				(struct mmc_ioc_multi_cmd __user *)arg);
700 	default:
701 		return -EINVAL;
702 	}
703 }
704 
705 #ifdef CONFIG_COMPAT
706 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
707 	unsigned int cmd, unsigned long arg)
708 {
709 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
710 }
711 #endif
712 
713 static const struct block_device_operations mmc_bdops = {
714 	.open			= mmc_blk_open,
715 	.release		= mmc_blk_release,
716 	.getgeo			= mmc_blk_getgeo,
717 	.owner			= THIS_MODULE,
718 	.ioctl			= mmc_blk_ioctl,
719 #ifdef CONFIG_COMPAT
720 	.compat_ioctl		= mmc_blk_compat_ioctl,
721 #endif
722 };
723 
724 static inline int mmc_blk_part_switch(struct mmc_card *card,
725 				      struct mmc_blk_data *md)
726 {
727 	int ret;
728 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
729 
730 	if (main_md->part_curr == md->part_type)
731 		return 0;
732 
733 	if (mmc_card_mmc(card)) {
734 		u8 part_config = card->ext_csd.part_config;
735 
736 		if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
737 			mmc_retune_pause(card->host);
738 
739 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
740 		part_config |= md->part_type;
741 
742 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
743 				 EXT_CSD_PART_CONFIG, part_config,
744 				 card->ext_csd.part_time);
745 		if (ret) {
746 			if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
747 				mmc_retune_unpause(card->host);
748 			return ret;
749 		}
750 
751 		card->ext_csd.part_config = part_config;
752 
753 		if (main_md->part_curr == EXT_CSD_PART_CONFIG_ACC_RPMB)
754 			mmc_retune_unpause(card->host);
755 	}
756 
757 	main_md->part_curr = md->part_type;
758 	return 0;
759 }
760 
761 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
762 {
763 	int err;
764 	u32 result;
765 	__be32 *blocks;
766 
767 	struct mmc_request mrq = {};
768 	struct mmc_command cmd = {};
769 	struct mmc_data data = {};
770 
771 	struct scatterlist sg;
772 
773 	cmd.opcode = MMC_APP_CMD;
774 	cmd.arg = card->rca << 16;
775 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
776 
777 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
778 	if (err)
779 		return err;
780 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
781 		return -EIO;
782 
783 	memset(&cmd, 0, sizeof(struct mmc_command));
784 
785 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
786 	cmd.arg = 0;
787 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
788 
789 	data.blksz = 4;
790 	data.blocks = 1;
791 	data.flags = MMC_DATA_READ;
792 	data.sg = &sg;
793 	data.sg_len = 1;
794 	mmc_set_data_timeout(&data, card);
795 
796 	mrq.cmd = &cmd;
797 	mrq.data = &data;
798 
799 	blocks = kmalloc(4, GFP_KERNEL);
800 	if (!blocks)
801 		return -ENOMEM;
802 
803 	sg_init_one(&sg, blocks, 4);
804 
805 	mmc_wait_for_req(card->host, &mrq);
806 
807 	result = ntohl(*blocks);
808 	kfree(blocks);
809 
810 	if (cmd.error || data.error)
811 		return -EIO;
812 
813 	*written_blocks = result;
814 
815 	return 0;
816 }
817 
818 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
819 {
820 	struct mmc_command cmd = {};
821 	int err;
822 
823 	cmd.opcode = MMC_SEND_STATUS;
824 	if (!mmc_host_is_spi(card->host))
825 		cmd.arg = card->rca << 16;
826 	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
827 	err = mmc_wait_for_cmd(card->host, &cmd, retries);
828 	if (err == 0)
829 		*status = cmd.resp[0];
830 	return err;
831 }
832 
833 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
834 		bool hw_busy_detect, struct request *req, bool *gen_err)
835 {
836 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
837 	int err = 0;
838 	u32 status;
839 
840 	do {
841 		err = get_card_status(card, &status, 5);
842 		if (err) {
843 			pr_err("%s: error %d requesting status\n",
844 			       req->rq_disk->disk_name, err);
845 			return err;
846 		}
847 
848 		if (status & R1_ERROR) {
849 			pr_err("%s: %s: error sending status cmd, status %#x\n",
850 				req->rq_disk->disk_name, __func__, status);
851 			*gen_err = true;
852 		}
853 
854 		/* We may rely on the host hw to handle busy detection.*/
855 		if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
856 			hw_busy_detect)
857 			break;
858 
859 		/*
860 		 * Timeout if the device never becomes ready for data and never
861 		 * leaves the program state.
862 		 */
863 		if (time_after(jiffies, timeout)) {
864 			pr_err("%s: Card stuck in programming state! %s %s\n",
865 				mmc_hostname(card->host),
866 				req->rq_disk->disk_name, __func__);
867 			return -ETIMEDOUT;
868 		}
869 
870 		/*
871 		 * Some cards mishandle the status bits,
872 		 * so make sure to check both the busy
873 		 * indication and the card state.
874 		 */
875 	} while (!(status & R1_READY_FOR_DATA) ||
876 		 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
877 
878 	return err;
879 }
880 
881 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
882 		struct request *req, bool *gen_err, u32 *stop_status)
883 {
884 	struct mmc_host *host = card->host;
885 	struct mmc_command cmd = {};
886 	int err;
887 	bool use_r1b_resp = rq_data_dir(req) == WRITE;
888 
889 	/*
890 	 * Normally we use R1B responses for WRITE, but in cases where the host
891 	 * has specified a max_busy_timeout we need to validate it. A failure
892 	 * means we need to prevent the host from doing hw busy detection, which
893 	 * is done by converting to a R1 response instead.
894 	 */
895 	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
896 		use_r1b_resp = false;
897 
898 	cmd.opcode = MMC_STOP_TRANSMISSION;
899 	if (use_r1b_resp) {
900 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
901 		cmd.busy_timeout = timeout_ms;
902 	} else {
903 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
904 	}
905 
906 	err = mmc_wait_for_cmd(host, &cmd, 5);
907 	if (err)
908 		return err;
909 
910 	*stop_status = cmd.resp[0];
911 
912 	/* No need to check card status in case of READ. */
913 	if (rq_data_dir(req) == READ)
914 		return 0;
915 
916 	if (!mmc_host_is_spi(host) &&
917 		(*stop_status & R1_ERROR)) {
918 		pr_err("%s: %s: general error sending stop command, resp %#x\n",
919 			req->rq_disk->disk_name, __func__, *stop_status);
920 		*gen_err = true;
921 	}
922 
923 	return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
924 }
925 
926 #define ERR_NOMEDIUM	3
927 #define ERR_RETRY	2
928 #define ERR_ABORT	1
929 #define ERR_CONTINUE	0
930 
931 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
932 	bool status_valid, u32 status)
933 {
934 	switch (error) {
935 	case -EILSEQ:
936 		/* response crc error, retry the r/w cmd */
937 		pr_err("%s: %s sending %s command, card status %#x\n",
938 			req->rq_disk->disk_name, "response CRC error",
939 			name, status);
940 		return ERR_RETRY;
941 
942 	case -ETIMEDOUT:
943 		pr_err("%s: %s sending %s command, card status %#x\n",
944 			req->rq_disk->disk_name, "timed out", name, status);
945 
946 		/* If the status cmd initially failed, retry the r/w cmd */
947 		if (!status_valid) {
948 			pr_err("%s: status not valid, retrying timeout\n",
949 				req->rq_disk->disk_name);
950 			return ERR_RETRY;
951 		}
952 
953 		/*
954 		 * If it was a r/w cmd crc error, or illegal command
955 		 * (eg, issued in wrong state) then retry - we should
956 		 * have corrected the state problem above.
957 		 */
958 		if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
959 			pr_err("%s: command error, retrying timeout\n",
960 				req->rq_disk->disk_name);
961 			return ERR_RETRY;
962 		}
963 
964 		/* Otherwise abort the command */
965 		return ERR_ABORT;
966 
967 	default:
968 		/* We don't understand the error code the driver gave us */
969 		pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
970 		       req->rq_disk->disk_name, error, status);
971 		return ERR_ABORT;
972 	}
973 }
974 
975 /*
976  * Initial r/w and stop cmd error recovery.
977  * We don't know whether the card received the r/w cmd or not, so try to
978  * restore things back to a sane state.  Essentially, we do this as follows:
979  * - Obtain card status.  If the first attempt to obtain card status fails,
980  *   the status word will reflect the failed status cmd, not the failed
981  *   r/w cmd.  If we fail to obtain card status, it suggests we can no
982  *   longer communicate with the card.
983  * - Check the card state.  If the card received the cmd but there was a
984  *   transient problem with the response, it might still be in a data transfer
985  *   mode.  Try to send it a stop command.  If this fails, we can't recover.
986  * - If the r/w cmd failed due to a response CRC error, it was probably
987  *   transient, so retry the cmd.
988  * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
989  * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
990  *   illegal cmd, retry.
991  * Otherwise we don't understand what happened, so abort.
992  */
993 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
994 	struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err)
995 {
996 	bool prev_cmd_status_valid = true;
997 	u32 status, stop_status = 0;
998 	int err, retry;
999 
1000 	if (mmc_card_removed(card))
1001 		return ERR_NOMEDIUM;
1002 
1003 	/*
1004 	 * Try to get card status which indicates both the card state
1005 	 * and why there was no response.  If the first attempt fails,
1006 	 * we can't be sure the returned status is for the r/w command.
1007 	 */
1008 	for (retry = 2; retry >= 0; retry--) {
1009 		err = get_card_status(card, &status, 0);
1010 		if (!err)
1011 			break;
1012 
1013 		/* Re-tune if needed */
1014 		mmc_retune_recheck(card->host);
1015 
1016 		prev_cmd_status_valid = false;
1017 		pr_err("%s: error %d sending status command, %sing\n",
1018 		       req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1019 	}
1020 
1021 	/* We couldn't get a response from the card.  Give up. */
1022 	if (err) {
1023 		/* Check if the card is removed */
1024 		if (mmc_detect_card_removed(card->host))
1025 			return ERR_NOMEDIUM;
1026 		return ERR_ABORT;
1027 	}
1028 
1029 	/* Flag ECC errors */
1030 	if ((status & R1_CARD_ECC_FAILED) ||
1031 	    (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1032 	    (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1033 		*ecc_err = true;
1034 
1035 	/* Flag General errors */
1036 	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1037 		if ((status & R1_ERROR) ||
1038 			(brq->stop.resp[0] & R1_ERROR)) {
1039 			pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1040 			       req->rq_disk->disk_name, __func__,
1041 			       brq->stop.resp[0], status);
1042 			*gen_err = true;
1043 		}
1044 
1045 	/*
1046 	 * Check the current card state.  If it is in some data transfer
1047 	 * mode, tell it to stop (and hopefully transition back to TRAN.)
1048 	 */
1049 	if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1050 	    R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1051 		err = send_stop(card,
1052 			DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1053 			req, gen_err, &stop_status);
1054 		if (err) {
1055 			pr_err("%s: error %d sending stop command\n",
1056 			       req->rq_disk->disk_name, err);
1057 			/*
1058 			 * If the stop cmd also timed out, the card is probably
1059 			 * not present, so abort. Other errors are bad news too.
1060 			 */
1061 			return ERR_ABORT;
1062 		}
1063 
1064 		if (stop_status & R1_CARD_ECC_FAILED)
1065 			*ecc_err = true;
1066 	}
1067 
1068 	/* Check for set block count errors */
1069 	if (brq->sbc.error)
1070 		return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1071 				prev_cmd_status_valid, status);
1072 
1073 	/* Check for r/w command errors */
1074 	if (brq->cmd.error)
1075 		return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1076 				prev_cmd_status_valid, status);
1077 
1078 	/* Data errors */
1079 	if (!brq->stop.error)
1080 		return ERR_CONTINUE;
1081 
1082 	/* Now for stop errors.  These aren't fatal to the transfer. */
1083 	pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1084 	       req->rq_disk->disk_name, brq->stop.error,
1085 	       brq->cmd.resp[0], status);
1086 
1087 	/*
1088 	 * Subsitute in our own stop status as this will give the error
1089 	 * state which happened during the execution of the r/w command.
1090 	 */
1091 	if (stop_status) {
1092 		brq->stop.resp[0] = stop_status;
1093 		brq->stop.error = 0;
1094 	}
1095 	return ERR_CONTINUE;
1096 }
1097 
1098 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1099 			 int type)
1100 {
1101 	int err;
1102 
1103 	if (md->reset_done & type)
1104 		return -EEXIST;
1105 
1106 	md->reset_done |= type;
1107 	err = mmc_hw_reset(host);
1108 	/* Ensure we switch back to the correct partition */
1109 	if (err != -EOPNOTSUPP) {
1110 		struct mmc_blk_data *main_md =
1111 			dev_get_drvdata(&host->card->dev);
1112 		int part_err;
1113 
1114 		main_md->part_curr = main_md->part_type;
1115 		part_err = mmc_blk_part_switch(host->card, md);
1116 		if (part_err) {
1117 			/*
1118 			 * We have failed to get back into the correct
1119 			 * partition, so we need to abort the whole request.
1120 			 */
1121 			return -ENODEV;
1122 		}
1123 	}
1124 	return err;
1125 }
1126 
1127 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1128 {
1129 	md->reset_done &= ~type;
1130 }
1131 
1132 int mmc_access_rpmb(struct mmc_queue *mq)
1133 {
1134 	struct mmc_blk_data *md = mq->blkdata;
1135 	/*
1136 	 * If this is a RPMB partition access, return ture
1137 	 */
1138 	if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1139 		return true;
1140 
1141 	return false;
1142 }
1143 
1144 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1145 {
1146 	struct mmc_blk_data *md = mq->blkdata;
1147 	struct mmc_card *card = md->queue.card;
1148 	unsigned int from, nr, arg;
1149 	int err = 0, type = MMC_BLK_DISCARD;
1150 
1151 	if (!mmc_can_erase(card)) {
1152 		err = -EOPNOTSUPP;
1153 		goto fail;
1154 	}
1155 
1156 	from = blk_rq_pos(req);
1157 	nr = blk_rq_sectors(req);
1158 
1159 	if (mmc_can_discard(card))
1160 		arg = MMC_DISCARD_ARG;
1161 	else if (mmc_can_trim(card))
1162 		arg = MMC_TRIM_ARG;
1163 	else
1164 		arg = MMC_ERASE_ARG;
1165 	do {
1166 		err = 0;
1167 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1168 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1169 					 INAND_CMD38_ARG_EXT_CSD,
1170 					 arg == MMC_TRIM_ARG ?
1171 					 INAND_CMD38_ARG_TRIM :
1172 					 INAND_CMD38_ARG_ERASE,
1173 					 0);
1174 		}
1175 		if (!err)
1176 			err = mmc_erase(card, from, nr, arg);
1177 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1178 	if (!err)
1179 		mmc_blk_reset_success(md, type);
1180 fail:
1181 	blk_end_request(req, err, blk_rq_bytes(req));
1182 }
1183 
1184 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1185 				       struct request *req)
1186 {
1187 	struct mmc_blk_data *md = mq->blkdata;
1188 	struct mmc_card *card = md->queue.card;
1189 	unsigned int from, nr, arg;
1190 	int err = 0, type = MMC_BLK_SECDISCARD;
1191 
1192 	if (!(mmc_can_secure_erase_trim(card))) {
1193 		err = -EOPNOTSUPP;
1194 		goto out;
1195 	}
1196 
1197 	from = blk_rq_pos(req);
1198 	nr = blk_rq_sectors(req);
1199 
1200 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1201 		arg = MMC_SECURE_TRIM1_ARG;
1202 	else
1203 		arg = MMC_SECURE_ERASE_ARG;
1204 
1205 retry:
1206 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1207 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1208 				 INAND_CMD38_ARG_EXT_CSD,
1209 				 arg == MMC_SECURE_TRIM1_ARG ?
1210 				 INAND_CMD38_ARG_SECTRIM1 :
1211 				 INAND_CMD38_ARG_SECERASE,
1212 				 0);
1213 		if (err)
1214 			goto out_retry;
1215 	}
1216 
1217 	err = mmc_erase(card, from, nr, arg);
1218 	if (err == -EIO)
1219 		goto out_retry;
1220 	if (err)
1221 		goto out;
1222 
1223 	if (arg == MMC_SECURE_TRIM1_ARG) {
1224 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1225 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1226 					 INAND_CMD38_ARG_EXT_CSD,
1227 					 INAND_CMD38_ARG_SECTRIM2,
1228 					 0);
1229 			if (err)
1230 				goto out_retry;
1231 		}
1232 
1233 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1234 		if (err == -EIO)
1235 			goto out_retry;
1236 		if (err)
1237 			goto out;
1238 	}
1239 
1240 out_retry:
1241 	if (err && !mmc_blk_reset(md, card->host, type))
1242 		goto retry;
1243 	if (!err)
1244 		mmc_blk_reset_success(md, type);
1245 out:
1246 	blk_end_request(req, err, blk_rq_bytes(req));
1247 }
1248 
1249 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1250 {
1251 	struct mmc_blk_data *md = mq->blkdata;
1252 	struct mmc_card *card = md->queue.card;
1253 	int ret = 0;
1254 
1255 	ret = mmc_flush_cache(card);
1256 	if (ret)
1257 		ret = -EIO;
1258 
1259 	blk_end_request_all(req, ret);
1260 }
1261 
1262 /*
1263  * Reformat current write as a reliable write, supporting
1264  * both legacy and the enhanced reliable write MMC cards.
1265  * In each transfer we'll handle only as much as a single
1266  * reliable write can handle, thus finish the request in
1267  * partial completions.
1268  */
1269 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1270 				    struct mmc_card *card,
1271 				    struct request *req)
1272 {
1273 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1274 		/* Legacy mode imposes restrictions on transfers. */
1275 		if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1276 			brq->data.blocks = 1;
1277 
1278 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1279 			brq->data.blocks = card->ext_csd.rel_sectors;
1280 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1281 			brq->data.blocks = 1;
1282 	}
1283 }
1284 
1285 #define CMD_ERRORS							\
1286 	(R1_OUT_OF_RANGE |	/* Command argument out of range */	\
1287 	 R1_ADDRESS_ERROR |	/* Misaligned address */		\
1288 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1289 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1290 	 R1_CC_ERROR |		/* Card controller error */		\
1291 	 R1_ERROR)		/* General/unknown error */
1292 
1293 static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card,
1294 					     struct mmc_async_req *areq)
1295 {
1296 	struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1297 						    areq);
1298 	struct mmc_blk_request *brq = &mq_mrq->brq;
1299 	struct request *req = mq_mrq->req;
1300 	int need_retune = card->host->need_retune;
1301 	bool ecc_err = false;
1302 	bool gen_err = false;
1303 
1304 	/*
1305 	 * sbc.error indicates a problem with the set block count
1306 	 * command.  No data will have been transferred.
1307 	 *
1308 	 * cmd.error indicates a problem with the r/w command.  No
1309 	 * data will have been transferred.
1310 	 *
1311 	 * stop.error indicates a problem with the stop command.  Data
1312 	 * may have been transferred, or may still be transferring.
1313 	 */
1314 	if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1315 	    brq->data.error) {
1316 		switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1317 		case ERR_RETRY:
1318 			return MMC_BLK_RETRY;
1319 		case ERR_ABORT:
1320 			return MMC_BLK_ABORT;
1321 		case ERR_NOMEDIUM:
1322 			return MMC_BLK_NOMEDIUM;
1323 		case ERR_CONTINUE:
1324 			break;
1325 		}
1326 	}
1327 
1328 	/*
1329 	 * Check for errors relating to the execution of the
1330 	 * initial command - such as address errors.  No data
1331 	 * has been transferred.
1332 	 */
1333 	if (brq->cmd.resp[0] & CMD_ERRORS) {
1334 		pr_err("%s: r/w command failed, status = %#x\n",
1335 		       req->rq_disk->disk_name, brq->cmd.resp[0]);
1336 		return MMC_BLK_ABORT;
1337 	}
1338 
1339 	/*
1340 	 * Everything else is either success, or a data error of some
1341 	 * kind.  If it was a write, we may have transitioned to
1342 	 * program mode, which we have to wait for it to complete.
1343 	 */
1344 	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1345 		int err;
1346 
1347 		/* Check stop command response */
1348 		if (brq->stop.resp[0] & R1_ERROR) {
1349 			pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1350 			       req->rq_disk->disk_name, __func__,
1351 			       brq->stop.resp[0]);
1352 			gen_err = true;
1353 		}
1354 
1355 		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1356 					&gen_err);
1357 		if (err)
1358 			return MMC_BLK_CMD_ERR;
1359 	}
1360 
1361 	/* if general error occurs, retry the write operation. */
1362 	if (gen_err) {
1363 		pr_warn("%s: retrying write for general error\n",
1364 				req->rq_disk->disk_name);
1365 		return MMC_BLK_RETRY;
1366 	}
1367 
1368 	if (brq->data.error) {
1369 		if (need_retune && !brq->retune_retry_done) {
1370 			pr_debug("%s: retrying because a re-tune was needed\n",
1371 				 req->rq_disk->disk_name);
1372 			brq->retune_retry_done = 1;
1373 			return MMC_BLK_RETRY;
1374 		}
1375 		pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1376 		       req->rq_disk->disk_name, brq->data.error,
1377 		       (unsigned)blk_rq_pos(req),
1378 		       (unsigned)blk_rq_sectors(req),
1379 		       brq->cmd.resp[0], brq->stop.resp[0]);
1380 
1381 		if (rq_data_dir(req) == READ) {
1382 			if (ecc_err)
1383 				return MMC_BLK_ECC_ERR;
1384 			return MMC_BLK_DATA_ERR;
1385 		} else {
1386 			return MMC_BLK_CMD_ERR;
1387 		}
1388 	}
1389 
1390 	if (!brq->data.bytes_xfered)
1391 		return MMC_BLK_RETRY;
1392 
1393 	if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1394 		return MMC_BLK_PARTIAL;
1395 
1396 	return MMC_BLK_SUCCESS;
1397 }
1398 
1399 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1400 			       struct mmc_card *card,
1401 			       int disable_multi,
1402 			       struct mmc_queue *mq)
1403 {
1404 	u32 readcmd, writecmd;
1405 	struct mmc_blk_request *brq = &mqrq->brq;
1406 	struct request *req = mqrq->req;
1407 	struct mmc_blk_data *md = mq->blkdata;
1408 	bool do_data_tag;
1409 
1410 	/*
1411 	 * Reliable writes are used to implement Forced Unit Access and
1412 	 * are supported only on MMCs.
1413 	 */
1414 	bool do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1415 		(rq_data_dir(req) == WRITE) &&
1416 		(md->flags & MMC_BLK_REL_WR);
1417 
1418 	memset(brq, 0, sizeof(struct mmc_blk_request));
1419 	brq->mrq.cmd = &brq->cmd;
1420 	brq->mrq.data = &brq->data;
1421 
1422 	brq->cmd.arg = blk_rq_pos(req);
1423 	if (!mmc_card_blockaddr(card))
1424 		brq->cmd.arg <<= 9;
1425 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1426 	brq->data.blksz = 512;
1427 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1428 	brq->stop.arg = 0;
1429 	brq->data.blocks = blk_rq_sectors(req);
1430 
1431 	/*
1432 	 * The block layer doesn't support all sector count
1433 	 * restrictions, so we need to be prepared for too big
1434 	 * requests.
1435 	 */
1436 	if (brq->data.blocks > card->host->max_blk_count)
1437 		brq->data.blocks = card->host->max_blk_count;
1438 
1439 	if (brq->data.blocks > 1) {
1440 		/*
1441 		 * After a read error, we redo the request one sector
1442 		 * at a time in order to accurately determine which
1443 		 * sectors can be read successfully.
1444 		 */
1445 		if (disable_multi)
1446 			brq->data.blocks = 1;
1447 
1448 		/*
1449 		 * Some controllers have HW issues while operating
1450 		 * in multiple I/O mode
1451 		 */
1452 		if (card->host->ops->multi_io_quirk)
1453 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1454 						(rq_data_dir(req) == READ) ?
1455 						MMC_DATA_READ : MMC_DATA_WRITE,
1456 						brq->data.blocks);
1457 	}
1458 
1459 	if (brq->data.blocks > 1 || do_rel_wr) {
1460 		/* SPI multiblock writes terminate using a special
1461 		 * token, not a STOP_TRANSMISSION request.
1462 		 */
1463 		if (!mmc_host_is_spi(card->host) ||
1464 		    rq_data_dir(req) == READ)
1465 			brq->mrq.stop = &brq->stop;
1466 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1467 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1468 	} else {
1469 		brq->mrq.stop = NULL;
1470 		readcmd = MMC_READ_SINGLE_BLOCK;
1471 		writecmd = MMC_WRITE_BLOCK;
1472 	}
1473 	if (rq_data_dir(req) == READ) {
1474 		brq->cmd.opcode = readcmd;
1475 		brq->data.flags = MMC_DATA_READ;
1476 		if (brq->mrq.stop)
1477 			brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1478 					MMC_CMD_AC;
1479 	} else {
1480 		brq->cmd.opcode = writecmd;
1481 		brq->data.flags = MMC_DATA_WRITE;
1482 		if (brq->mrq.stop)
1483 			brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1484 					MMC_CMD_AC;
1485 	}
1486 
1487 	if (do_rel_wr)
1488 		mmc_apply_rel_rw(brq, card, req);
1489 
1490 	/*
1491 	 * Data tag is used only during writing meta data to speed
1492 	 * up write and any subsequent read of this meta data
1493 	 */
1494 	do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1495 		(req->cmd_flags & REQ_META) &&
1496 		(rq_data_dir(req) == WRITE) &&
1497 		((brq->data.blocks * brq->data.blksz) >=
1498 		 card->ext_csd.data_tag_unit_size);
1499 
1500 	/*
1501 	 * Pre-defined multi-block transfers are preferable to
1502 	 * open ended-ones (and necessary for reliable writes).
1503 	 * However, it is not sufficient to just send CMD23,
1504 	 * and avoid the final CMD12, as on an error condition
1505 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1506 	 * with Auto-CMD23 enhancements provided by some
1507 	 * hosts, means that the complexity of dealing
1508 	 * with this is best left to the host. If CMD23 is
1509 	 * supported by card and host, we'll fill sbc in and let
1510 	 * the host deal with handling it correctly. This means
1511 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1512 	 * change of behavior will be observed.
1513 	 *
1514 	 * N.B: Some MMC cards experience perf degradation.
1515 	 * We'll avoid using CMD23-bounded multiblock writes for
1516 	 * these, while retaining features like reliable writes.
1517 	 */
1518 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1519 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1520 	     do_data_tag)) {
1521 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1522 		brq->sbc.arg = brq->data.blocks |
1523 			(do_rel_wr ? (1 << 31) : 0) |
1524 			(do_data_tag ? (1 << 29) : 0);
1525 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1526 		brq->mrq.sbc = &brq->sbc;
1527 	}
1528 
1529 	mmc_set_data_timeout(&brq->data, card);
1530 
1531 	brq->data.sg = mqrq->sg;
1532 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1533 
1534 	/*
1535 	 * Adjust the sg list so it is the same size as the
1536 	 * request.
1537 	 */
1538 	if (brq->data.blocks != blk_rq_sectors(req)) {
1539 		int i, data_size = brq->data.blocks << 9;
1540 		struct scatterlist *sg;
1541 
1542 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1543 			data_size -= sg->length;
1544 			if (data_size <= 0) {
1545 				sg->length += data_size;
1546 				i++;
1547 				break;
1548 			}
1549 		}
1550 		brq->data.sg_len = i;
1551 	}
1552 
1553 	mqrq->areq.mrq = &brq->mrq;
1554 	mqrq->areq.err_check = mmc_blk_err_check;
1555 
1556 	mmc_queue_bounce_pre(mqrq);
1557 }
1558 
1559 static bool mmc_blk_rw_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1560 			       struct mmc_blk_request *brq, struct request *req,
1561 			       bool old_req_pending)
1562 {
1563 	bool req_pending;
1564 
1565 	/*
1566 	 * If this is an SD card and we're writing, we can first
1567 	 * mark the known good sectors as ok.
1568 	 *
1569 	 * If the card is not SD, we can still ok written sectors
1570 	 * as reported by the controller (which might be less than
1571 	 * the real number of written sectors, but never more).
1572 	 */
1573 	if (mmc_card_sd(card)) {
1574 		u32 blocks;
1575 		int err;
1576 
1577 		err = mmc_sd_num_wr_blocks(card, &blocks);
1578 		if (err)
1579 			req_pending = old_req_pending;
1580 		else
1581 			req_pending = blk_end_request(req, 0, blocks << 9);
1582 	} else {
1583 		req_pending = blk_end_request(req, 0, brq->data.bytes_xfered);
1584 	}
1585 	return req_pending;
1586 }
1587 
1588 static void mmc_blk_rw_cmd_abort(struct mmc_card *card, struct request *req)
1589 {
1590 	if (mmc_card_removed(card))
1591 		req->rq_flags |= RQF_QUIET;
1592 	while (blk_end_request(req, -EIO, blk_rq_cur_bytes(req)));
1593 }
1594 
1595 /**
1596  * mmc_blk_rw_try_restart() - tries to restart the current async request
1597  * @mq: the queue with the card and host to restart
1598  * @req: a new request that want to be started after the current one
1599  */
1600 static void mmc_blk_rw_try_restart(struct mmc_queue *mq, struct request *req)
1601 {
1602 	if (!req)
1603 		return;
1604 
1605 	/*
1606 	 * If the card was removed, just cancel everything and return.
1607 	 */
1608 	if (mmc_card_removed(mq->card)) {
1609 		req->rq_flags |= RQF_QUIET;
1610 		blk_end_request_all(req, -EIO);
1611 		return;
1612 	}
1613 	/* Else proceed and try to restart the current async request */
1614 	mmc_blk_rw_rq_prep(mq->mqrq_cur, mq->card, 0, mq);
1615 	mmc_start_areq(mq->card->host, &mq->mqrq_cur->areq, NULL);
1616 }
1617 
1618 static void mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *new_req)
1619 {
1620 	struct mmc_blk_data *md = mq->blkdata;
1621 	struct mmc_card *card = md->queue.card;
1622 	struct mmc_blk_request *brq;
1623 	int disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1624 	enum mmc_blk_status status;
1625 	struct mmc_queue_req *mq_rq;
1626 	struct request *old_req;
1627 	struct mmc_async_req *new_areq;
1628 	struct mmc_async_req *old_areq;
1629 	bool req_pending = true;
1630 
1631 	if (!new_req && !mq->mqrq_prev->req)
1632 		return;
1633 
1634 	do {
1635 		if (new_req) {
1636 			/*
1637 			 * When 4KB native sector is enabled, only 8 blocks
1638 			 * multiple read or write is allowed
1639 			 */
1640 			if (mmc_large_sector(card) &&
1641 				!IS_ALIGNED(blk_rq_sectors(new_req), 8)) {
1642 				pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1643 					new_req->rq_disk->disk_name);
1644 				mmc_blk_rw_cmd_abort(card, new_req);
1645 				return;
1646 			}
1647 
1648 			mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1649 			new_areq = &mq->mqrq_cur->areq;
1650 		} else
1651 			new_areq = NULL;
1652 
1653 		old_areq = mmc_start_areq(card->host, new_areq, &status);
1654 		if (!old_areq) {
1655 			/*
1656 			 * We have just put the first request into the pipeline
1657 			 * and there is nothing more to do until it is
1658 			 * complete.
1659 			 */
1660 			if (status == MMC_BLK_NEW_REQUEST)
1661 				mq->new_request = true;
1662 			return;
1663 		}
1664 
1665 		/*
1666 		 * An asynchronous request has been completed and we proceed
1667 		 * to handle the result of it.
1668 		 */
1669 		mq_rq =	container_of(old_areq, struct mmc_queue_req, areq);
1670 		brq = &mq_rq->brq;
1671 		old_req = mq_rq->req;
1672 		type = rq_data_dir(old_req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1673 		mmc_queue_bounce_post(mq_rq);
1674 
1675 		switch (status) {
1676 		case MMC_BLK_SUCCESS:
1677 		case MMC_BLK_PARTIAL:
1678 			/*
1679 			 * A block was successfully transferred.
1680 			 */
1681 			mmc_blk_reset_success(md, type);
1682 
1683 			req_pending = blk_end_request(old_req, 0,
1684 						      brq->data.bytes_xfered);
1685 			/*
1686 			 * If the blk_end_request function returns non-zero even
1687 			 * though all data has been transferred and no errors
1688 			 * were returned by the host controller, it's a bug.
1689 			 */
1690 			if (status == MMC_BLK_SUCCESS && req_pending) {
1691 				pr_err("%s BUG rq_tot %d d_xfer %d\n",
1692 				       __func__, blk_rq_bytes(old_req),
1693 				       brq->data.bytes_xfered);
1694 				mmc_blk_rw_cmd_abort(card, old_req);
1695 				return;
1696 			}
1697 			break;
1698 		case MMC_BLK_CMD_ERR:
1699 			req_pending = mmc_blk_rw_cmd_err(md, card, brq, old_req, req_pending);
1700 			if (mmc_blk_reset(md, card->host, type)) {
1701 				if (req_pending)
1702 					mmc_blk_rw_cmd_abort(card, old_req);
1703 				mmc_blk_rw_try_restart(mq, new_req);
1704 				return;
1705 			}
1706 			if (!req_pending) {
1707 				mmc_blk_rw_try_restart(mq, new_req);
1708 				return;
1709 			}
1710 			break;
1711 		case MMC_BLK_RETRY:
1712 			retune_retry_done = brq->retune_retry_done;
1713 			if (retry++ < 5)
1714 				break;
1715 			/* Fall through */
1716 		case MMC_BLK_ABORT:
1717 			if (!mmc_blk_reset(md, card->host, type))
1718 				break;
1719 			mmc_blk_rw_cmd_abort(card, old_req);
1720 			mmc_blk_rw_try_restart(mq, new_req);
1721 			return;
1722 		case MMC_BLK_DATA_ERR: {
1723 			int err;
1724 
1725 			err = mmc_blk_reset(md, card->host, type);
1726 			if (!err)
1727 				break;
1728 			if (err == -ENODEV) {
1729 				mmc_blk_rw_cmd_abort(card, old_req);
1730 				mmc_blk_rw_try_restart(mq, new_req);
1731 				return;
1732 			}
1733 			/* Fall through */
1734 		}
1735 		case MMC_BLK_ECC_ERR:
1736 			if (brq->data.blocks > 1) {
1737 				/* Redo read one sector at a time */
1738 				pr_warn("%s: retrying using single block read\n",
1739 					old_req->rq_disk->disk_name);
1740 				disable_multi = 1;
1741 				break;
1742 			}
1743 			/*
1744 			 * After an error, we redo I/O one sector at a
1745 			 * time, so we only reach here after trying to
1746 			 * read a single sector.
1747 			 */
1748 			req_pending = blk_end_request(old_req, -EIO,
1749 						      brq->data.blksz);
1750 			if (!req_pending) {
1751 				mmc_blk_rw_try_restart(mq, new_req);
1752 				return;
1753 			}
1754 			break;
1755 		case MMC_BLK_NOMEDIUM:
1756 			mmc_blk_rw_cmd_abort(card, old_req);
1757 			mmc_blk_rw_try_restart(mq, new_req);
1758 			return;
1759 		default:
1760 			pr_err("%s: Unhandled return value (%d)",
1761 					old_req->rq_disk->disk_name, status);
1762 			mmc_blk_rw_cmd_abort(card, old_req);
1763 			mmc_blk_rw_try_restart(mq, new_req);
1764 			return;
1765 		}
1766 
1767 		if (req_pending) {
1768 			/*
1769 			 * In case of a incomplete request
1770 			 * prepare it again and resend.
1771 			 */
1772 			mmc_blk_rw_rq_prep(mq_rq, card,
1773 					disable_multi, mq);
1774 			mmc_start_areq(card->host,
1775 					&mq_rq->areq, NULL);
1776 			mq_rq->brq.retune_retry_done = retune_retry_done;
1777 		}
1778 	} while (req_pending);
1779 }
1780 
1781 void mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1782 {
1783 	int ret;
1784 	struct mmc_blk_data *md = mq->blkdata;
1785 	struct mmc_card *card = md->queue.card;
1786 	bool req_is_special = mmc_req_is_special(req);
1787 
1788 	if (req && !mq->mqrq_prev->req)
1789 		/* claim host only for the first request */
1790 		mmc_get_card(card);
1791 
1792 	ret = mmc_blk_part_switch(card, md);
1793 	if (ret) {
1794 		if (req) {
1795 			blk_end_request_all(req, -EIO);
1796 		}
1797 		goto out;
1798 	}
1799 
1800 	mq->new_request = false;
1801 	if (req && req_op(req) == REQ_OP_DISCARD) {
1802 		/* complete ongoing async transfer before issuing discard */
1803 		if (card->host->areq)
1804 			mmc_blk_issue_rw_rq(mq, NULL);
1805 		mmc_blk_issue_discard_rq(mq, req);
1806 	} else if (req && req_op(req) == REQ_OP_SECURE_ERASE) {
1807 		/* complete ongoing async transfer before issuing secure erase*/
1808 		if (card->host->areq)
1809 			mmc_blk_issue_rw_rq(mq, NULL);
1810 		mmc_blk_issue_secdiscard_rq(mq, req);
1811 	} else if (req && req_op(req) == REQ_OP_FLUSH) {
1812 		/* complete ongoing async transfer before issuing flush */
1813 		if (card->host->areq)
1814 			mmc_blk_issue_rw_rq(mq, NULL);
1815 		mmc_blk_issue_flush(mq, req);
1816 	} else {
1817 		mmc_blk_issue_rw_rq(mq, req);
1818 		card->host->context_info.is_waiting_last_req = false;
1819 	}
1820 
1821 out:
1822 	if ((!req && !mq->new_request) || req_is_special)
1823 		/*
1824 		 * Release host when there are no more requests
1825 		 * and after special request(discard, flush) is done.
1826 		 * In case sepecial request, there is no reentry to
1827 		 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
1828 		 */
1829 		mmc_put_card(card);
1830 }
1831 
1832 static inline int mmc_blk_readonly(struct mmc_card *card)
1833 {
1834 	return mmc_card_readonly(card) ||
1835 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1836 }
1837 
1838 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1839 					      struct device *parent,
1840 					      sector_t size,
1841 					      bool default_ro,
1842 					      const char *subname,
1843 					      int area_type)
1844 {
1845 	struct mmc_blk_data *md;
1846 	int devidx, ret;
1847 
1848 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
1849 	if (devidx < 0)
1850 		return ERR_PTR(devidx);
1851 
1852 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1853 	if (!md) {
1854 		ret = -ENOMEM;
1855 		goto out;
1856 	}
1857 
1858 	md->area_type = area_type;
1859 
1860 	/*
1861 	 * Set the read-only status based on the supported commands
1862 	 * and the write protect switch.
1863 	 */
1864 	md->read_only = mmc_blk_readonly(card);
1865 
1866 	md->disk = alloc_disk(perdev_minors);
1867 	if (md->disk == NULL) {
1868 		ret = -ENOMEM;
1869 		goto err_kfree;
1870 	}
1871 
1872 	spin_lock_init(&md->lock);
1873 	INIT_LIST_HEAD(&md->part);
1874 	md->usage = 1;
1875 
1876 	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1877 	if (ret)
1878 		goto err_putdisk;
1879 
1880 	md->queue.blkdata = md;
1881 
1882 	md->disk->major	= MMC_BLOCK_MAJOR;
1883 	md->disk->first_minor = devidx * perdev_minors;
1884 	md->disk->fops = &mmc_bdops;
1885 	md->disk->private_data = md;
1886 	md->disk->queue = md->queue.queue;
1887 	md->parent = parent;
1888 	set_disk_ro(md->disk, md->read_only || default_ro);
1889 	md->disk->flags = GENHD_FL_EXT_DEVT;
1890 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
1891 		md->disk->flags |= GENHD_FL_NO_PART_SCAN;
1892 
1893 	/*
1894 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1895 	 *
1896 	 * - be set for removable media with permanent block devices
1897 	 * - be unset for removable block devices with permanent media
1898 	 *
1899 	 * Since MMC block devices clearly fall under the second
1900 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
1901 	 * should use the block device creation/destruction hotplug
1902 	 * messages to tell when the card is present.
1903 	 */
1904 
1905 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1906 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
1907 
1908 	if (mmc_card_mmc(card))
1909 		blk_queue_logical_block_size(md->queue.queue,
1910 					     card->ext_csd.data_sector_size);
1911 	else
1912 		blk_queue_logical_block_size(md->queue.queue, 512);
1913 
1914 	set_capacity(md->disk, size);
1915 
1916 	if (mmc_host_cmd23(card->host)) {
1917 		if ((mmc_card_mmc(card) &&
1918 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
1919 		    (mmc_card_sd(card) &&
1920 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1921 			md->flags |= MMC_BLK_CMD23;
1922 	}
1923 
1924 	if (mmc_card_mmc(card) &&
1925 	    md->flags & MMC_BLK_CMD23 &&
1926 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1927 	     card->ext_csd.rel_sectors)) {
1928 		md->flags |= MMC_BLK_REL_WR;
1929 		blk_queue_write_cache(md->queue.queue, true, true);
1930 	}
1931 
1932 	return md;
1933 
1934  err_putdisk:
1935 	put_disk(md->disk);
1936  err_kfree:
1937 	kfree(md);
1938  out:
1939 	ida_simple_remove(&mmc_blk_ida, devidx);
1940 	return ERR_PTR(ret);
1941 }
1942 
1943 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1944 {
1945 	sector_t size;
1946 
1947 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1948 		/*
1949 		 * The EXT_CSD sector count is in number or 512 byte
1950 		 * sectors.
1951 		 */
1952 		size = card->ext_csd.sectors;
1953 	} else {
1954 		/*
1955 		 * The CSD capacity field is in units of read_blkbits.
1956 		 * set_capacity takes units of 512 bytes.
1957 		 */
1958 		size = (typeof(sector_t))card->csd.capacity
1959 			<< (card->csd.read_blkbits - 9);
1960 	}
1961 
1962 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
1963 					MMC_BLK_DATA_AREA_MAIN);
1964 }
1965 
1966 static int mmc_blk_alloc_part(struct mmc_card *card,
1967 			      struct mmc_blk_data *md,
1968 			      unsigned int part_type,
1969 			      sector_t size,
1970 			      bool default_ro,
1971 			      const char *subname,
1972 			      int area_type)
1973 {
1974 	char cap_str[10];
1975 	struct mmc_blk_data *part_md;
1976 
1977 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1978 				    subname, area_type);
1979 	if (IS_ERR(part_md))
1980 		return PTR_ERR(part_md);
1981 	part_md->part_type = part_type;
1982 	list_add(&part_md->part, &md->part);
1983 
1984 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
1985 			cap_str, sizeof(cap_str));
1986 	pr_info("%s: %s %s partition %u %s\n",
1987 	       part_md->disk->disk_name, mmc_card_id(card),
1988 	       mmc_card_name(card), part_md->part_type, cap_str);
1989 	return 0;
1990 }
1991 
1992 /* MMC Physical partitions consist of two boot partitions and
1993  * up to four general purpose partitions.
1994  * For each partition enabled in EXT_CSD a block device will be allocatedi
1995  * to provide access to the partition.
1996  */
1997 
1998 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1999 {
2000 	int idx, ret = 0;
2001 
2002 	if (!mmc_card_mmc(card))
2003 		return 0;
2004 
2005 	for (idx = 0; idx < card->nr_parts; idx++) {
2006 		if (card->part[idx].size) {
2007 			ret = mmc_blk_alloc_part(card, md,
2008 				card->part[idx].part_cfg,
2009 				card->part[idx].size >> 9,
2010 				card->part[idx].force_ro,
2011 				card->part[idx].name,
2012 				card->part[idx].area_type);
2013 			if (ret)
2014 				return ret;
2015 		}
2016 	}
2017 
2018 	return ret;
2019 }
2020 
2021 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2022 {
2023 	struct mmc_card *card;
2024 
2025 	if (md) {
2026 		/*
2027 		 * Flush remaining requests and free queues. It
2028 		 * is freeing the queue that stops new requests
2029 		 * from being accepted.
2030 		 */
2031 		card = md->queue.card;
2032 		mmc_cleanup_queue(&md->queue);
2033 		if (md->disk->flags & GENHD_FL_UP) {
2034 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2035 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2036 					card->ext_csd.boot_ro_lockable)
2037 				device_remove_file(disk_to_dev(md->disk),
2038 					&md->power_ro_lock);
2039 
2040 			del_gendisk(md->disk);
2041 		}
2042 		mmc_blk_put(md);
2043 	}
2044 }
2045 
2046 static void mmc_blk_remove_parts(struct mmc_card *card,
2047 				 struct mmc_blk_data *md)
2048 {
2049 	struct list_head *pos, *q;
2050 	struct mmc_blk_data *part_md;
2051 
2052 	list_for_each_safe(pos, q, &md->part) {
2053 		part_md = list_entry(pos, struct mmc_blk_data, part);
2054 		list_del(pos);
2055 		mmc_blk_remove_req(part_md);
2056 	}
2057 }
2058 
2059 static int mmc_add_disk(struct mmc_blk_data *md)
2060 {
2061 	int ret;
2062 	struct mmc_card *card = md->queue.card;
2063 
2064 	device_add_disk(md->parent, md->disk);
2065 	md->force_ro.show = force_ro_show;
2066 	md->force_ro.store = force_ro_store;
2067 	sysfs_attr_init(&md->force_ro.attr);
2068 	md->force_ro.attr.name = "force_ro";
2069 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2070 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2071 	if (ret)
2072 		goto force_ro_fail;
2073 
2074 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2075 	     card->ext_csd.boot_ro_lockable) {
2076 		umode_t mode;
2077 
2078 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2079 			mode = S_IRUGO;
2080 		else
2081 			mode = S_IRUGO | S_IWUSR;
2082 
2083 		md->power_ro_lock.show = power_ro_lock_show;
2084 		md->power_ro_lock.store = power_ro_lock_store;
2085 		sysfs_attr_init(&md->power_ro_lock.attr);
2086 		md->power_ro_lock.attr.mode = mode;
2087 		md->power_ro_lock.attr.name =
2088 					"ro_lock_until_next_power_on";
2089 		ret = device_create_file(disk_to_dev(md->disk),
2090 				&md->power_ro_lock);
2091 		if (ret)
2092 			goto power_ro_lock_fail;
2093 	}
2094 	return ret;
2095 
2096 power_ro_lock_fail:
2097 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2098 force_ro_fail:
2099 	del_gendisk(md->disk);
2100 
2101 	return ret;
2102 }
2103 
2104 static int mmc_blk_probe(struct mmc_card *card)
2105 {
2106 	struct mmc_blk_data *md, *part_md;
2107 	char cap_str[10];
2108 
2109 	/*
2110 	 * Check that the card supports the command class(es) we need.
2111 	 */
2112 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2113 		return -ENODEV;
2114 
2115 	mmc_fixup_device(card, mmc_blk_fixups);
2116 
2117 	md = mmc_blk_alloc(card);
2118 	if (IS_ERR(md))
2119 		return PTR_ERR(md);
2120 
2121 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2122 			cap_str, sizeof(cap_str));
2123 	pr_info("%s: %s %s %s %s\n",
2124 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2125 		cap_str, md->read_only ? "(ro)" : "");
2126 
2127 	if (mmc_blk_alloc_parts(card, md))
2128 		goto out;
2129 
2130 	dev_set_drvdata(&card->dev, md);
2131 
2132 	if (mmc_add_disk(md))
2133 		goto out;
2134 
2135 	list_for_each_entry(part_md, &md->part, part) {
2136 		if (mmc_add_disk(part_md))
2137 			goto out;
2138 	}
2139 
2140 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2141 	pm_runtime_use_autosuspend(&card->dev);
2142 
2143 	/*
2144 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2145 	 * decision to be taken during the SDIO init sequence instead.
2146 	 */
2147 	if (card->type != MMC_TYPE_SD_COMBO) {
2148 		pm_runtime_set_active(&card->dev);
2149 		pm_runtime_enable(&card->dev);
2150 	}
2151 
2152 	return 0;
2153 
2154  out:
2155 	mmc_blk_remove_parts(card, md);
2156 	mmc_blk_remove_req(md);
2157 	return 0;
2158 }
2159 
2160 static void mmc_blk_remove(struct mmc_card *card)
2161 {
2162 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2163 
2164 	mmc_blk_remove_parts(card, md);
2165 	pm_runtime_get_sync(&card->dev);
2166 	mmc_claim_host(card->host);
2167 	mmc_blk_part_switch(card, md);
2168 	mmc_release_host(card->host);
2169 	if (card->type != MMC_TYPE_SD_COMBO)
2170 		pm_runtime_disable(&card->dev);
2171 	pm_runtime_put_noidle(&card->dev);
2172 	mmc_blk_remove_req(md);
2173 	dev_set_drvdata(&card->dev, NULL);
2174 }
2175 
2176 static int _mmc_blk_suspend(struct mmc_card *card)
2177 {
2178 	struct mmc_blk_data *part_md;
2179 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2180 
2181 	if (md) {
2182 		mmc_queue_suspend(&md->queue);
2183 		list_for_each_entry(part_md, &md->part, part) {
2184 			mmc_queue_suspend(&part_md->queue);
2185 		}
2186 	}
2187 	return 0;
2188 }
2189 
2190 static void mmc_blk_shutdown(struct mmc_card *card)
2191 {
2192 	_mmc_blk_suspend(card);
2193 }
2194 
2195 #ifdef CONFIG_PM_SLEEP
2196 static int mmc_blk_suspend(struct device *dev)
2197 {
2198 	struct mmc_card *card = mmc_dev_to_card(dev);
2199 
2200 	return _mmc_blk_suspend(card);
2201 }
2202 
2203 static int mmc_blk_resume(struct device *dev)
2204 {
2205 	struct mmc_blk_data *part_md;
2206 	struct mmc_blk_data *md = dev_get_drvdata(dev);
2207 
2208 	if (md) {
2209 		/*
2210 		 * Resume involves the card going into idle state,
2211 		 * so current partition is always the main one.
2212 		 */
2213 		md->part_curr = md->part_type;
2214 		mmc_queue_resume(&md->queue);
2215 		list_for_each_entry(part_md, &md->part, part) {
2216 			mmc_queue_resume(&part_md->queue);
2217 		}
2218 	}
2219 	return 0;
2220 }
2221 #endif
2222 
2223 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2224 
2225 static struct mmc_driver mmc_driver = {
2226 	.drv		= {
2227 		.name	= "mmcblk",
2228 		.pm	= &mmc_blk_pm_ops,
2229 	},
2230 	.probe		= mmc_blk_probe,
2231 	.remove		= mmc_blk_remove,
2232 	.shutdown	= mmc_blk_shutdown,
2233 };
2234 
2235 static int __init mmc_blk_init(void)
2236 {
2237 	int res;
2238 
2239 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2240 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2241 
2242 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2243 
2244 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2245 	if (res)
2246 		goto out;
2247 
2248 	res = mmc_register_driver(&mmc_driver);
2249 	if (res)
2250 		goto out2;
2251 
2252 	return 0;
2253  out2:
2254 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2255  out:
2256 	return res;
2257 }
2258 
2259 static void __exit mmc_blk_exit(void)
2260 {
2261 	mmc_unregister_driver(&mmc_driver);
2262 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2263 }
2264 
2265 module_init(mmc_blk_init);
2266 module_exit(mmc_blk_exit);
2267 
2268 MODULE_LICENSE("GPL");
2269 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2270 
2271