xref: /openbmc/linux/drivers/mmc/core/block.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41 
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47 
48 #include <linux/uaccess.h>
49 
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
59 
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
65 
66 /*
67  * Set a 10 second timeout for polling write request busy state. Note, mmc core
68  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69  * second software timer to timeout the whole request, so 10 seconds should be
70  * ample.
71  */
72 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
73 #define MMC_SANITIZE_REQ_TIMEOUT 240000
74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
76 
77 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
78 				  (rq_data_dir(req) == WRITE))
79 static DEFINE_MUTEX(block_mutex);
80 
81 /*
82  * The defaults come from config options but can be overriden by module
83  * or bootarg options.
84  */
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86 
87 /*
88  * We've only got one major, so number of mmcblk devices is
89  * limited to (1 << 20) / number of minors per device.  It is also
90  * limited by the MAX_DEVICES below.
91  */
92 static int max_devices;
93 
94 #define MAX_DEVICES 256
95 
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
98 
99 /*
100  * There is one mmc_blk_data per slot.
101  */
102 struct mmc_blk_data {
103 	spinlock_t	lock;
104 	struct device	*parent;
105 	struct gendisk	*disk;
106 	struct mmc_queue queue;
107 	struct list_head part;
108 	struct list_head rpmbs;
109 
110 	unsigned int	flags;
111 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
112 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
113 
114 	unsigned int	usage;
115 	unsigned int	read_only;
116 	unsigned int	part_type;
117 	unsigned int	reset_done;
118 #define MMC_BLK_READ		BIT(0)
119 #define MMC_BLK_WRITE		BIT(1)
120 #define MMC_BLK_DISCARD		BIT(2)
121 #define MMC_BLK_SECDISCARD	BIT(3)
122 #define MMC_BLK_CQE_RECOVERY	BIT(4)
123 
124 	/*
125 	 * Only set in main mmc_blk_data associated
126 	 * with mmc_card with dev_set_drvdata, and keeps
127 	 * track of the current selected device partition.
128 	 */
129 	unsigned int	part_curr;
130 	struct device_attribute force_ro;
131 	struct device_attribute power_ro_lock;
132 	int	area_type;
133 
134 	/* debugfs files (only in main mmc_blk_data) */
135 	struct dentry *status_dentry;
136 	struct dentry *ext_csd_dentry;
137 };
138 
139 /* Device type for RPMB character devices */
140 static dev_t mmc_rpmb_devt;
141 
142 /* Bus type for RPMB character devices */
143 static struct bus_type mmc_rpmb_bus_type = {
144 	.name = "mmc_rpmb",
145 };
146 
147 /**
148  * struct mmc_rpmb_data - special RPMB device type for these areas
149  * @dev: the device for the RPMB area
150  * @chrdev: character device for the RPMB area
151  * @id: unique device ID number
152  * @part_index: partition index (0 on first)
153  * @md: parent MMC block device
154  * @node: list item, so we can put this device on a list
155  */
156 struct mmc_rpmb_data {
157 	struct device dev;
158 	struct cdev chrdev;
159 	int id;
160 	unsigned int part_index;
161 	struct mmc_blk_data *md;
162 	struct list_head node;
163 };
164 
165 static DEFINE_MUTEX(open_lock);
166 
167 module_param(perdev_minors, int, 0444);
168 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
169 
170 static inline int mmc_blk_part_switch(struct mmc_card *card,
171 				      unsigned int part_type);
172 
173 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
174 {
175 	struct mmc_blk_data *md;
176 
177 	mutex_lock(&open_lock);
178 	md = disk->private_data;
179 	if (md && md->usage == 0)
180 		md = NULL;
181 	if (md)
182 		md->usage++;
183 	mutex_unlock(&open_lock);
184 
185 	return md;
186 }
187 
188 static inline int mmc_get_devidx(struct gendisk *disk)
189 {
190 	int devidx = disk->first_minor / perdev_minors;
191 	return devidx;
192 }
193 
194 static void mmc_blk_put(struct mmc_blk_data *md)
195 {
196 	mutex_lock(&open_lock);
197 	md->usage--;
198 	if (md->usage == 0) {
199 		int devidx = mmc_get_devidx(md->disk);
200 		blk_put_queue(md->queue.queue);
201 		ida_simple_remove(&mmc_blk_ida, devidx);
202 		put_disk(md->disk);
203 		kfree(md);
204 	}
205 	mutex_unlock(&open_lock);
206 }
207 
208 static ssize_t power_ro_lock_show(struct device *dev,
209 		struct device_attribute *attr, char *buf)
210 {
211 	int ret;
212 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
213 	struct mmc_card *card = md->queue.card;
214 	int locked = 0;
215 
216 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
217 		locked = 2;
218 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
219 		locked = 1;
220 
221 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
222 
223 	mmc_blk_put(md);
224 
225 	return ret;
226 }
227 
228 static ssize_t power_ro_lock_store(struct device *dev,
229 		struct device_attribute *attr, const char *buf, size_t count)
230 {
231 	int ret;
232 	struct mmc_blk_data *md, *part_md;
233 	struct mmc_queue *mq;
234 	struct request *req;
235 	unsigned long set;
236 
237 	if (kstrtoul(buf, 0, &set))
238 		return -EINVAL;
239 
240 	if (set != 1)
241 		return count;
242 
243 	md = mmc_blk_get(dev_to_disk(dev));
244 	mq = &md->queue;
245 
246 	/* Dispatch locking to the block layer */
247 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
248 	if (IS_ERR(req)) {
249 		count = PTR_ERR(req);
250 		goto out_put;
251 	}
252 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
253 	blk_execute_rq(mq->queue, NULL, req, 0);
254 	ret = req_to_mmc_queue_req(req)->drv_op_result;
255 	blk_put_request(req);
256 
257 	if (!ret) {
258 		pr_info("%s: Locking boot partition ro until next power on\n",
259 			md->disk->disk_name);
260 		set_disk_ro(md->disk, 1);
261 
262 		list_for_each_entry(part_md, &md->part, part)
263 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
264 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
265 				set_disk_ro(part_md->disk, 1);
266 			}
267 	}
268 out_put:
269 	mmc_blk_put(md);
270 	return count;
271 }
272 
273 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
274 			     char *buf)
275 {
276 	int ret;
277 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
278 
279 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
280 		       get_disk_ro(dev_to_disk(dev)) ^
281 		       md->read_only);
282 	mmc_blk_put(md);
283 	return ret;
284 }
285 
286 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
287 			      const char *buf, size_t count)
288 {
289 	int ret;
290 	char *end;
291 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
292 	unsigned long set = simple_strtoul(buf, &end, 0);
293 	if (end == buf) {
294 		ret = -EINVAL;
295 		goto out;
296 	}
297 
298 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
299 	ret = count;
300 out:
301 	mmc_blk_put(md);
302 	return ret;
303 }
304 
305 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
306 {
307 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
308 	int ret = -ENXIO;
309 
310 	mutex_lock(&block_mutex);
311 	if (md) {
312 		if (md->usage == 2)
313 			check_disk_change(bdev);
314 		ret = 0;
315 
316 		if ((mode & FMODE_WRITE) && md->read_only) {
317 			mmc_blk_put(md);
318 			ret = -EROFS;
319 		}
320 	}
321 	mutex_unlock(&block_mutex);
322 
323 	return ret;
324 }
325 
326 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
327 {
328 	struct mmc_blk_data *md = disk->private_data;
329 
330 	mutex_lock(&block_mutex);
331 	mmc_blk_put(md);
332 	mutex_unlock(&block_mutex);
333 }
334 
335 static int
336 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
337 {
338 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
339 	geo->heads = 4;
340 	geo->sectors = 16;
341 	return 0;
342 }
343 
344 struct mmc_blk_ioc_data {
345 	struct mmc_ioc_cmd ic;
346 	unsigned char *buf;
347 	u64 buf_bytes;
348 	struct mmc_rpmb_data *rpmb;
349 };
350 
351 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
352 	struct mmc_ioc_cmd __user *user)
353 {
354 	struct mmc_blk_ioc_data *idata;
355 	int err;
356 
357 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
358 	if (!idata) {
359 		err = -ENOMEM;
360 		goto out;
361 	}
362 
363 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
364 		err = -EFAULT;
365 		goto idata_err;
366 	}
367 
368 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
369 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
370 		err = -EOVERFLOW;
371 		goto idata_err;
372 	}
373 
374 	if (!idata->buf_bytes) {
375 		idata->buf = NULL;
376 		return idata;
377 	}
378 
379 	idata->buf = memdup_user((void __user *)(unsigned long)
380 				 idata->ic.data_ptr, idata->buf_bytes);
381 	if (IS_ERR(idata->buf)) {
382 		err = PTR_ERR(idata->buf);
383 		goto idata_err;
384 	}
385 
386 	return idata;
387 
388 idata_err:
389 	kfree(idata);
390 out:
391 	return ERR_PTR(err);
392 }
393 
394 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
395 				      struct mmc_blk_ioc_data *idata)
396 {
397 	struct mmc_ioc_cmd *ic = &idata->ic;
398 
399 	if (copy_to_user(&(ic_ptr->response), ic->response,
400 			 sizeof(ic->response)))
401 		return -EFAULT;
402 
403 	if (!idata->ic.write_flag) {
404 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
405 				 idata->buf, idata->buf_bytes))
406 			return -EFAULT;
407 	}
408 
409 	return 0;
410 }
411 
412 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
413 				       u32 retries_max)
414 {
415 	int err;
416 	u32 retry_count = 0;
417 
418 	if (!status || !retries_max)
419 		return -EINVAL;
420 
421 	do {
422 		err = __mmc_send_status(card, status, 5);
423 		if (err)
424 			break;
425 
426 		if (!R1_STATUS(*status) &&
427 				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
428 			break; /* RPMB programming operation complete */
429 
430 		/*
431 		 * Rechedule to give the MMC device a chance to continue
432 		 * processing the previous command without being polled too
433 		 * frequently.
434 		 */
435 		usleep_range(1000, 5000);
436 	} while (++retry_count < retries_max);
437 
438 	if (retry_count == retries_max)
439 		err = -EPERM;
440 
441 	return err;
442 }
443 
444 static int ioctl_do_sanitize(struct mmc_card *card)
445 {
446 	int err;
447 
448 	if (!mmc_can_sanitize(card)) {
449 			pr_warn("%s: %s - SANITIZE is not supported\n",
450 				mmc_hostname(card->host), __func__);
451 			err = -EOPNOTSUPP;
452 			goto out;
453 	}
454 
455 	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
456 		mmc_hostname(card->host), __func__);
457 
458 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
459 					EXT_CSD_SANITIZE_START, 1,
460 					MMC_SANITIZE_REQ_TIMEOUT);
461 
462 	if (err)
463 		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
464 		       mmc_hostname(card->host), __func__, err);
465 
466 	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
467 					     __func__);
468 out:
469 	return err;
470 }
471 
472 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
473 			       struct mmc_blk_ioc_data *idata)
474 {
475 	struct mmc_command cmd = {};
476 	struct mmc_data data = {};
477 	struct mmc_request mrq = {};
478 	struct scatterlist sg;
479 	int err;
480 	unsigned int target_part;
481 	u32 status = 0;
482 
483 	if (!card || !md || !idata)
484 		return -EINVAL;
485 
486 	/*
487 	 * The RPMB accesses comes in from the character device, so we
488 	 * need to target these explicitly. Else we just target the
489 	 * partition type for the block device the ioctl() was issued
490 	 * on.
491 	 */
492 	if (idata->rpmb) {
493 		/* Support multiple RPMB partitions */
494 		target_part = idata->rpmb->part_index;
495 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
496 	} else {
497 		target_part = md->part_type;
498 	}
499 
500 	cmd.opcode = idata->ic.opcode;
501 	cmd.arg = idata->ic.arg;
502 	cmd.flags = idata->ic.flags;
503 
504 	if (idata->buf_bytes) {
505 		data.sg = &sg;
506 		data.sg_len = 1;
507 		data.blksz = idata->ic.blksz;
508 		data.blocks = idata->ic.blocks;
509 
510 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
511 
512 		if (idata->ic.write_flag)
513 			data.flags = MMC_DATA_WRITE;
514 		else
515 			data.flags = MMC_DATA_READ;
516 
517 		/* data.flags must already be set before doing this. */
518 		mmc_set_data_timeout(&data, card);
519 
520 		/* Allow overriding the timeout_ns for empirical tuning. */
521 		if (idata->ic.data_timeout_ns)
522 			data.timeout_ns = idata->ic.data_timeout_ns;
523 
524 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
525 			/*
526 			 * Pretend this is a data transfer and rely on the
527 			 * host driver to compute timeout.  When all host
528 			 * drivers support cmd.cmd_timeout for R1B, this
529 			 * can be changed to:
530 			 *
531 			 *     mrq.data = NULL;
532 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
533 			 */
534 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
535 		}
536 
537 		mrq.data = &data;
538 	}
539 
540 	mrq.cmd = &cmd;
541 
542 	err = mmc_blk_part_switch(card, target_part);
543 	if (err)
544 		return err;
545 
546 	if (idata->ic.is_acmd) {
547 		err = mmc_app_cmd(card->host, card);
548 		if (err)
549 			return err;
550 	}
551 
552 	if (idata->rpmb) {
553 		err = mmc_set_blockcount(card, data.blocks,
554 			idata->ic.write_flag & (1 << 31));
555 		if (err)
556 			return err;
557 	}
558 
559 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
560 	    (cmd.opcode == MMC_SWITCH)) {
561 		err = ioctl_do_sanitize(card);
562 
563 		if (err)
564 			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
565 			       __func__, err);
566 
567 		return err;
568 	}
569 
570 	mmc_wait_for_req(card->host, &mrq);
571 
572 	if (cmd.error) {
573 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
574 						__func__, cmd.error);
575 		return cmd.error;
576 	}
577 	if (data.error) {
578 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
579 						__func__, data.error);
580 		return data.error;
581 	}
582 
583 	/*
584 	 * Make sure the cache of the PARTITION_CONFIG register and
585 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
586 	 * changed it successfully.
587 	 */
588 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
589 	    (cmd.opcode == MMC_SWITCH)) {
590 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
591 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
592 
593 		/*
594 		 * Update cache so the next mmc_blk_part_switch call operates
595 		 * on up-to-date data.
596 		 */
597 		card->ext_csd.part_config = value;
598 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
599 	}
600 
601 	/*
602 	 * According to the SD specs, some commands require a delay after
603 	 * issuing the command.
604 	 */
605 	if (idata->ic.postsleep_min_us)
606 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
607 
608 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
609 
610 	if (idata->rpmb) {
611 		/*
612 		 * Ensure RPMB command has completed by polling CMD13
613 		 * "Send Status".
614 		 */
615 		err = ioctl_rpmb_card_status_poll(card, &status, 5);
616 		if (err)
617 			dev_err(mmc_dev(card->host),
618 					"%s: Card Status=0x%08X, error %d\n",
619 					__func__, status, err);
620 	}
621 
622 	return err;
623 }
624 
625 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
626 			     struct mmc_ioc_cmd __user *ic_ptr,
627 			     struct mmc_rpmb_data *rpmb)
628 {
629 	struct mmc_blk_ioc_data *idata;
630 	struct mmc_blk_ioc_data *idatas[1];
631 	struct mmc_queue *mq;
632 	struct mmc_card *card;
633 	int err = 0, ioc_err = 0;
634 	struct request *req;
635 
636 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
637 	if (IS_ERR(idata))
638 		return PTR_ERR(idata);
639 	/* This will be NULL on non-RPMB ioctl():s */
640 	idata->rpmb = rpmb;
641 
642 	card = md->queue.card;
643 	if (IS_ERR(card)) {
644 		err = PTR_ERR(card);
645 		goto cmd_done;
646 	}
647 
648 	/*
649 	 * Dispatch the ioctl() into the block request queue.
650 	 */
651 	mq = &md->queue;
652 	req = blk_get_request(mq->queue,
653 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
654 	if (IS_ERR(req)) {
655 		err = PTR_ERR(req);
656 		goto cmd_done;
657 	}
658 	idatas[0] = idata;
659 	req_to_mmc_queue_req(req)->drv_op =
660 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
661 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
662 	req_to_mmc_queue_req(req)->ioc_count = 1;
663 	blk_execute_rq(mq->queue, NULL, req, 0);
664 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
665 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
666 	blk_put_request(req);
667 
668 cmd_done:
669 	kfree(idata->buf);
670 	kfree(idata);
671 	return ioc_err ? ioc_err : err;
672 }
673 
674 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
675 				   struct mmc_ioc_multi_cmd __user *user,
676 				   struct mmc_rpmb_data *rpmb)
677 {
678 	struct mmc_blk_ioc_data **idata = NULL;
679 	struct mmc_ioc_cmd __user *cmds = user->cmds;
680 	struct mmc_card *card;
681 	struct mmc_queue *mq;
682 	int i, err = 0, ioc_err = 0;
683 	__u64 num_of_cmds;
684 	struct request *req;
685 
686 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
687 			   sizeof(num_of_cmds)))
688 		return -EFAULT;
689 
690 	if (!num_of_cmds)
691 		return 0;
692 
693 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
694 		return -EINVAL;
695 
696 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
697 	if (!idata)
698 		return -ENOMEM;
699 
700 	for (i = 0; i < num_of_cmds; i++) {
701 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
702 		if (IS_ERR(idata[i])) {
703 			err = PTR_ERR(idata[i]);
704 			num_of_cmds = i;
705 			goto cmd_err;
706 		}
707 		/* This will be NULL on non-RPMB ioctl():s */
708 		idata[i]->rpmb = rpmb;
709 	}
710 
711 	card = md->queue.card;
712 	if (IS_ERR(card)) {
713 		err = PTR_ERR(card);
714 		goto cmd_err;
715 	}
716 
717 
718 	/*
719 	 * Dispatch the ioctl()s into the block request queue.
720 	 */
721 	mq = &md->queue;
722 	req = blk_get_request(mq->queue,
723 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
724 	if (IS_ERR(req)) {
725 		err = PTR_ERR(req);
726 		goto cmd_err;
727 	}
728 	req_to_mmc_queue_req(req)->drv_op =
729 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
730 	req_to_mmc_queue_req(req)->drv_op_data = idata;
731 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
732 	blk_execute_rq(mq->queue, NULL, req, 0);
733 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
734 
735 	/* copy to user if data and response */
736 	for (i = 0; i < num_of_cmds && !err; i++)
737 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
738 
739 	blk_put_request(req);
740 
741 cmd_err:
742 	for (i = 0; i < num_of_cmds; i++) {
743 		kfree(idata[i]->buf);
744 		kfree(idata[i]);
745 	}
746 	kfree(idata);
747 	return ioc_err ? ioc_err : err;
748 }
749 
750 static int mmc_blk_check_blkdev(struct block_device *bdev)
751 {
752 	/*
753 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
754 	 * whole block device, not on a partition.  This prevents overspray
755 	 * between sibling partitions.
756 	 */
757 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
758 		return -EPERM;
759 	return 0;
760 }
761 
762 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
763 	unsigned int cmd, unsigned long arg)
764 {
765 	struct mmc_blk_data *md;
766 	int ret;
767 
768 	switch (cmd) {
769 	case MMC_IOC_CMD:
770 		ret = mmc_blk_check_blkdev(bdev);
771 		if (ret)
772 			return ret;
773 		md = mmc_blk_get(bdev->bd_disk);
774 		if (!md)
775 			return -EINVAL;
776 		ret = mmc_blk_ioctl_cmd(md,
777 					(struct mmc_ioc_cmd __user *)arg,
778 					NULL);
779 		mmc_blk_put(md);
780 		return ret;
781 	case MMC_IOC_MULTI_CMD:
782 		ret = mmc_blk_check_blkdev(bdev);
783 		if (ret)
784 			return ret;
785 		md = mmc_blk_get(bdev->bd_disk);
786 		if (!md)
787 			return -EINVAL;
788 		ret = mmc_blk_ioctl_multi_cmd(md,
789 					(struct mmc_ioc_multi_cmd __user *)arg,
790 					NULL);
791 		mmc_blk_put(md);
792 		return ret;
793 	default:
794 		return -EINVAL;
795 	}
796 }
797 
798 #ifdef CONFIG_COMPAT
799 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
800 	unsigned int cmd, unsigned long arg)
801 {
802 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
803 }
804 #endif
805 
806 static const struct block_device_operations mmc_bdops = {
807 	.open			= mmc_blk_open,
808 	.release		= mmc_blk_release,
809 	.getgeo			= mmc_blk_getgeo,
810 	.owner			= THIS_MODULE,
811 	.ioctl			= mmc_blk_ioctl,
812 #ifdef CONFIG_COMPAT
813 	.compat_ioctl		= mmc_blk_compat_ioctl,
814 #endif
815 };
816 
817 static int mmc_blk_part_switch_pre(struct mmc_card *card,
818 				   unsigned int part_type)
819 {
820 	int ret = 0;
821 
822 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
823 		if (card->ext_csd.cmdq_en) {
824 			ret = mmc_cmdq_disable(card);
825 			if (ret)
826 				return ret;
827 		}
828 		mmc_retune_pause(card->host);
829 	}
830 
831 	return ret;
832 }
833 
834 static int mmc_blk_part_switch_post(struct mmc_card *card,
835 				    unsigned int part_type)
836 {
837 	int ret = 0;
838 
839 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
840 		mmc_retune_unpause(card->host);
841 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
842 			ret = mmc_cmdq_enable(card);
843 	}
844 
845 	return ret;
846 }
847 
848 static inline int mmc_blk_part_switch(struct mmc_card *card,
849 				      unsigned int part_type)
850 {
851 	int ret = 0;
852 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
853 
854 	if (main_md->part_curr == part_type)
855 		return 0;
856 
857 	if (mmc_card_mmc(card)) {
858 		u8 part_config = card->ext_csd.part_config;
859 
860 		ret = mmc_blk_part_switch_pre(card, part_type);
861 		if (ret)
862 			return ret;
863 
864 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
865 		part_config |= part_type;
866 
867 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
868 				 EXT_CSD_PART_CONFIG, part_config,
869 				 card->ext_csd.part_time);
870 		if (ret) {
871 			mmc_blk_part_switch_post(card, part_type);
872 			return ret;
873 		}
874 
875 		card->ext_csd.part_config = part_config;
876 
877 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
878 	}
879 
880 	main_md->part_curr = part_type;
881 	return ret;
882 }
883 
884 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
885 {
886 	int err;
887 	u32 result;
888 	__be32 *blocks;
889 
890 	struct mmc_request mrq = {};
891 	struct mmc_command cmd = {};
892 	struct mmc_data data = {};
893 
894 	struct scatterlist sg;
895 
896 	cmd.opcode = MMC_APP_CMD;
897 	cmd.arg = card->rca << 16;
898 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
899 
900 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
901 	if (err)
902 		return err;
903 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
904 		return -EIO;
905 
906 	memset(&cmd, 0, sizeof(struct mmc_command));
907 
908 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
909 	cmd.arg = 0;
910 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
911 
912 	data.blksz = 4;
913 	data.blocks = 1;
914 	data.flags = MMC_DATA_READ;
915 	data.sg = &sg;
916 	data.sg_len = 1;
917 	mmc_set_data_timeout(&data, card);
918 
919 	mrq.cmd = &cmd;
920 	mrq.data = &data;
921 
922 	blocks = kmalloc(4, GFP_KERNEL);
923 	if (!blocks)
924 		return -ENOMEM;
925 
926 	sg_init_one(&sg, blocks, 4);
927 
928 	mmc_wait_for_req(card->host, &mrq);
929 
930 	result = ntohl(*blocks);
931 	kfree(blocks);
932 
933 	if (cmd.error || data.error)
934 		return -EIO;
935 
936 	*written_blocks = result;
937 
938 	return 0;
939 }
940 
941 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
942 {
943 	if (host->actual_clock)
944 		return host->actual_clock / 1000;
945 
946 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
947 	if (host->ios.clock)
948 		return host->ios.clock / 2000;
949 
950 	/* How can there be no clock */
951 	WARN_ON_ONCE(1);
952 	return 100; /* 100 kHz is minimum possible value */
953 }
954 
955 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
956 					    struct mmc_data *data)
957 {
958 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
959 	unsigned int khz;
960 
961 	if (data->timeout_clks) {
962 		khz = mmc_blk_clock_khz(host);
963 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
964 	}
965 
966 	return ms;
967 }
968 
969 static inline bool mmc_blk_in_tran_state(u32 status)
970 {
971 	/*
972 	 * Some cards mishandle the status bits, so make sure to check both the
973 	 * busy indication and the card state.
974 	 */
975 	return status & R1_READY_FOR_DATA &&
976 	       (R1_CURRENT_STATE(status) == R1_STATE_TRAN);
977 }
978 
979 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
980 			    struct request *req, u32 *resp_errs)
981 {
982 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
983 	int err = 0;
984 	u32 status;
985 
986 	do {
987 		bool done = time_after(jiffies, timeout);
988 
989 		err = __mmc_send_status(card, &status, 5);
990 		if (err) {
991 			pr_err("%s: error %d requesting status\n",
992 			       req->rq_disk->disk_name, err);
993 			return err;
994 		}
995 
996 		/* Accumulate any response error bits seen */
997 		if (resp_errs)
998 			*resp_errs |= status;
999 
1000 		/*
1001 		 * Timeout if the device never becomes ready for data and never
1002 		 * leaves the program state.
1003 		 */
1004 		if (done) {
1005 			pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n",
1006 				mmc_hostname(card->host),
1007 				req->rq_disk->disk_name, __func__, status);
1008 			return -ETIMEDOUT;
1009 		}
1010 
1011 		/*
1012 		 * Some cards mishandle the status bits,
1013 		 * so make sure to check both the busy
1014 		 * indication and the card state.
1015 		 */
1016 	} while (!mmc_blk_in_tran_state(status));
1017 
1018 	return err;
1019 }
1020 
1021 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1022 			 int type)
1023 {
1024 	int err;
1025 
1026 	if (md->reset_done & type)
1027 		return -EEXIST;
1028 
1029 	md->reset_done |= type;
1030 	err = mmc_hw_reset(host);
1031 	/* Ensure we switch back to the correct partition */
1032 	if (err != -EOPNOTSUPP) {
1033 		struct mmc_blk_data *main_md =
1034 			dev_get_drvdata(&host->card->dev);
1035 		int part_err;
1036 
1037 		main_md->part_curr = main_md->part_type;
1038 		part_err = mmc_blk_part_switch(host->card, md->part_type);
1039 		if (part_err) {
1040 			/*
1041 			 * We have failed to get back into the correct
1042 			 * partition, so we need to abort the whole request.
1043 			 */
1044 			return -ENODEV;
1045 		}
1046 	}
1047 	return err;
1048 }
1049 
1050 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1051 {
1052 	md->reset_done &= ~type;
1053 }
1054 
1055 /*
1056  * The non-block commands come back from the block layer after it queued it and
1057  * processed it with all other requests and then they get issued in this
1058  * function.
1059  */
1060 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1061 {
1062 	struct mmc_queue_req *mq_rq;
1063 	struct mmc_card *card = mq->card;
1064 	struct mmc_blk_data *md = mq->blkdata;
1065 	struct mmc_blk_ioc_data **idata;
1066 	bool rpmb_ioctl;
1067 	u8 **ext_csd;
1068 	u32 status;
1069 	int ret;
1070 	int i;
1071 
1072 	mq_rq = req_to_mmc_queue_req(req);
1073 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1074 
1075 	switch (mq_rq->drv_op) {
1076 	case MMC_DRV_OP_IOCTL:
1077 	case MMC_DRV_OP_IOCTL_RPMB:
1078 		idata = mq_rq->drv_op_data;
1079 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1080 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1081 			if (ret)
1082 				break;
1083 		}
1084 		/* Always switch back to main area after RPMB access */
1085 		if (rpmb_ioctl)
1086 			mmc_blk_part_switch(card, 0);
1087 		break;
1088 	case MMC_DRV_OP_BOOT_WP:
1089 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1090 				 card->ext_csd.boot_ro_lock |
1091 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1092 				 card->ext_csd.part_time);
1093 		if (ret)
1094 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1095 			       md->disk->disk_name, ret);
1096 		else
1097 			card->ext_csd.boot_ro_lock |=
1098 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1099 		break;
1100 	case MMC_DRV_OP_GET_CARD_STATUS:
1101 		ret = mmc_send_status(card, &status);
1102 		if (!ret)
1103 			ret = status;
1104 		break;
1105 	case MMC_DRV_OP_GET_EXT_CSD:
1106 		ext_csd = mq_rq->drv_op_data;
1107 		ret = mmc_get_ext_csd(card, ext_csd);
1108 		break;
1109 	default:
1110 		pr_err("%s: unknown driver specific operation\n",
1111 		       md->disk->disk_name);
1112 		ret = -EINVAL;
1113 		break;
1114 	}
1115 	mq_rq->drv_op_result = ret;
1116 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1117 }
1118 
1119 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1120 {
1121 	struct mmc_blk_data *md = mq->blkdata;
1122 	struct mmc_card *card = md->queue.card;
1123 	unsigned int from, nr, arg;
1124 	int err = 0, type = MMC_BLK_DISCARD;
1125 	blk_status_t status = BLK_STS_OK;
1126 
1127 	if (!mmc_can_erase(card)) {
1128 		status = BLK_STS_NOTSUPP;
1129 		goto fail;
1130 	}
1131 
1132 	from = blk_rq_pos(req);
1133 	nr = blk_rq_sectors(req);
1134 
1135 	if (mmc_can_discard(card))
1136 		arg = MMC_DISCARD_ARG;
1137 	else if (mmc_can_trim(card))
1138 		arg = MMC_TRIM_ARG;
1139 	else
1140 		arg = MMC_ERASE_ARG;
1141 	do {
1142 		err = 0;
1143 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1144 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1145 					 INAND_CMD38_ARG_EXT_CSD,
1146 					 arg == MMC_TRIM_ARG ?
1147 					 INAND_CMD38_ARG_TRIM :
1148 					 INAND_CMD38_ARG_ERASE,
1149 					 0);
1150 		}
1151 		if (!err)
1152 			err = mmc_erase(card, from, nr, arg);
1153 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1154 	if (err)
1155 		status = BLK_STS_IOERR;
1156 	else
1157 		mmc_blk_reset_success(md, type);
1158 fail:
1159 	blk_mq_end_request(req, status);
1160 }
1161 
1162 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1163 				       struct request *req)
1164 {
1165 	struct mmc_blk_data *md = mq->blkdata;
1166 	struct mmc_card *card = md->queue.card;
1167 	unsigned int from, nr, arg;
1168 	int err = 0, type = MMC_BLK_SECDISCARD;
1169 	blk_status_t status = BLK_STS_OK;
1170 
1171 	if (!(mmc_can_secure_erase_trim(card))) {
1172 		status = BLK_STS_NOTSUPP;
1173 		goto out;
1174 	}
1175 
1176 	from = blk_rq_pos(req);
1177 	nr = blk_rq_sectors(req);
1178 
1179 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1180 		arg = MMC_SECURE_TRIM1_ARG;
1181 	else
1182 		arg = MMC_SECURE_ERASE_ARG;
1183 
1184 retry:
1185 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1186 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1187 				 INAND_CMD38_ARG_EXT_CSD,
1188 				 arg == MMC_SECURE_TRIM1_ARG ?
1189 				 INAND_CMD38_ARG_SECTRIM1 :
1190 				 INAND_CMD38_ARG_SECERASE,
1191 				 0);
1192 		if (err)
1193 			goto out_retry;
1194 	}
1195 
1196 	err = mmc_erase(card, from, nr, arg);
1197 	if (err == -EIO)
1198 		goto out_retry;
1199 	if (err) {
1200 		status = BLK_STS_IOERR;
1201 		goto out;
1202 	}
1203 
1204 	if (arg == MMC_SECURE_TRIM1_ARG) {
1205 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1206 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1207 					 INAND_CMD38_ARG_EXT_CSD,
1208 					 INAND_CMD38_ARG_SECTRIM2,
1209 					 0);
1210 			if (err)
1211 				goto out_retry;
1212 		}
1213 
1214 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1215 		if (err == -EIO)
1216 			goto out_retry;
1217 		if (err) {
1218 			status = BLK_STS_IOERR;
1219 			goto out;
1220 		}
1221 	}
1222 
1223 out_retry:
1224 	if (err && !mmc_blk_reset(md, card->host, type))
1225 		goto retry;
1226 	if (!err)
1227 		mmc_blk_reset_success(md, type);
1228 out:
1229 	blk_mq_end_request(req, status);
1230 }
1231 
1232 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1233 {
1234 	struct mmc_blk_data *md = mq->blkdata;
1235 	struct mmc_card *card = md->queue.card;
1236 	int ret = 0;
1237 
1238 	ret = mmc_flush_cache(card);
1239 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1240 }
1241 
1242 /*
1243  * Reformat current write as a reliable write, supporting
1244  * both legacy and the enhanced reliable write MMC cards.
1245  * In each transfer we'll handle only as much as a single
1246  * reliable write can handle, thus finish the request in
1247  * partial completions.
1248  */
1249 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1250 				    struct mmc_card *card,
1251 				    struct request *req)
1252 {
1253 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1254 		/* Legacy mode imposes restrictions on transfers. */
1255 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1256 			brq->data.blocks = 1;
1257 
1258 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1259 			brq->data.blocks = card->ext_csd.rel_sectors;
1260 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1261 			brq->data.blocks = 1;
1262 	}
1263 }
1264 
1265 #define CMD_ERRORS_EXCL_OOR						\
1266 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1267 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1268 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1269 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1270 	 R1_CC_ERROR |		/* Card controller error */		\
1271 	 R1_ERROR)		/* General/unknown error */
1272 
1273 #define CMD_ERRORS							\
1274 	(CMD_ERRORS_EXCL_OOR |						\
1275 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1276 
1277 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1278 {
1279 	u32 val;
1280 
1281 	/*
1282 	 * Per the SD specification(physical layer version 4.10)[1],
1283 	 * section 4.3.3, it explicitly states that "When the last
1284 	 * block of user area is read using CMD18, the host should
1285 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1286 	 * is correct". And JESD84-B51 for eMMC also has a similar
1287 	 * statement on section 6.8.3.
1288 	 *
1289 	 * Multiple block read/write could be done by either predefined
1290 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1291 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1292 	 *
1293 	 * However the spec[1] doesn't tell us whether we should also
1294 	 * ignore that for predefined method. But per the spec[1], section
1295 	 * 4.15 Set Block Count Command, it says"If illegal block count
1296 	 * is set, out of range error will be indicated during read/write
1297 	 * operation (For example, data transfer is stopped at user area
1298 	 * boundary)." In another word, we could expect a out of range error
1299 	 * in the response for the following CMD18/25. And if argument of
1300 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1301 	 * we could also expect to get a -ETIMEDOUT or any error number from
1302 	 * the host drivers due to missing data response(for write)/data(for
1303 	 * read), as the cards will stop the data transfer by itself per the
1304 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1305 	 */
1306 
1307 	if (!brq->stop.error) {
1308 		bool oor_with_open_end;
1309 		/* If there is no error yet, check R1 response */
1310 
1311 		val = brq->stop.resp[0] & CMD_ERRORS;
1312 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1313 
1314 		if (val && !oor_with_open_end)
1315 			brq->stop.error = -EIO;
1316 	}
1317 }
1318 
1319 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1320 			      int disable_multi, bool *do_rel_wr_p,
1321 			      bool *do_data_tag_p)
1322 {
1323 	struct mmc_blk_data *md = mq->blkdata;
1324 	struct mmc_card *card = md->queue.card;
1325 	struct mmc_blk_request *brq = &mqrq->brq;
1326 	struct request *req = mmc_queue_req_to_req(mqrq);
1327 	bool do_rel_wr, do_data_tag;
1328 
1329 	/*
1330 	 * Reliable writes are used to implement Forced Unit Access and
1331 	 * are supported only on MMCs.
1332 	 */
1333 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1334 		    rq_data_dir(req) == WRITE &&
1335 		    (md->flags & MMC_BLK_REL_WR);
1336 
1337 	memset(brq, 0, sizeof(struct mmc_blk_request));
1338 
1339 	brq->mrq.data = &brq->data;
1340 	brq->mrq.tag = req->tag;
1341 
1342 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1343 	brq->stop.arg = 0;
1344 
1345 	if (rq_data_dir(req) == READ) {
1346 		brq->data.flags = MMC_DATA_READ;
1347 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1348 	} else {
1349 		brq->data.flags = MMC_DATA_WRITE;
1350 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1351 	}
1352 
1353 	brq->data.blksz = 512;
1354 	brq->data.blocks = blk_rq_sectors(req);
1355 	brq->data.blk_addr = blk_rq_pos(req);
1356 
1357 	/*
1358 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1359 	 * The eMMC will give "high" priority tasks priority over "simple"
1360 	 * priority tasks. Here we always set "simple" priority by not setting
1361 	 * MMC_DATA_PRIO.
1362 	 */
1363 
1364 	/*
1365 	 * The block layer doesn't support all sector count
1366 	 * restrictions, so we need to be prepared for too big
1367 	 * requests.
1368 	 */
1369 	if (brq->data.blocks > card->host->max_blk_count)
1370 		brq->data.blocks = card->host->max_blk_count;
1371 
1372 	if (brq->data.blocks > 1) {
1373 		/*
1374 		 * Some SD cards in SPI mode return a CRC error or even lock up
1375 		 * completely when trying to read the last block using a
1376 		 * multiblock read command.
1377 		 */
1378 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1379 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1380 		     get_capacity(md->disk)))
1381 			brq->data.blocks--;
1382 
1383 		/*
1384 		 * After a read error, we redo the request one sector
1385 		 * at a time in order to accurately determine which
1386 		 * sectors can be read successfully.
1387 		 */
1388 		if (disable_multi)
1389 			brq->data.blocks = 1;
1390 
1391 		/*
1392 		 * Some controllers have HW issues while operating
1393 		 * in multiple I/O mode
1394 		 */
1395 		if (card->host->ops->multi_io_quirk)
1396 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1397 						(rq_data_dir(req) == READ) ?
1398 						MMC_DATA_READ : MMC_DATA_WRITE,
1399 						brq->data.blocks);
1400 	}
1401 
1402 	if (do_rel_wr) {
1403 		mmc_apply_rel_rw(brq, card, req);
1404 		brq->data.flags |= MMC_DATA_REL_WR;
1405 	}
1406 
1407 	/*
1408 	 * Data tag is used only during writing meta data to speed
1409 	 * up write and any subsequent read of this meta data
1410 	 */
1411 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1412 		      (req->cmd_flags & REQ_META) &&
1413 		      (rq_data_dir(req) == WRITE) &&
1414 		      ((brq->data.blocks * brq->data.blksz) >=
1415 		       card->ext_csd.data_tag_unit_size);
1416 
1417 	if (do_data_tag)
1418 		brq->data.flags |= MMC_DATA_DAT_TAG;
1419 
1420 	mmc_set_data_timeout(&brq->data, card);
1421 
1422 	brq->data.sg = mqrq->sg;
1423 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1424 
1425 	/*
1426 	 * Adjust the sg list so it is the same size as the
1427 	 * request.
1428 	 */
1429 	if (brq->data.blocks != blk_rq_sectors(req)) {
1430 		int i, data_size = brq->data.blocks << 9;
1431 		struct scatterlist *sg;
1432 
1433 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1434 			data_size -= sg->length;
1435 			if (data_size <= 0) {
1436 				sg->length += data_size;
1437 				i++;
1438 				break;
1439 			}
1440 		}
1441 		brq->data.sg_len = i;
1442 	}
1443 
1444 	if (do_rel_wr_p)
1445 		*do_rel_wr_p = do_rel_wr;
1446 
1447 	if (do_data_tag_p)
1448 		*do_data_tag_p = do_data_tag;
1449 }
1450 
1451 #define MMC_CQE_RETRIES 2
1452 
1453 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1454 {
1455 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1456 	struct mmc_request *mrq = &mqrq->brq.mrq;
1457 	struct request_queue *q = req->q;
1458 	struct mmc_host *host = mq->card->host;
1459 	unsigned long flags;
1460 	bool put_card;
1461 	int err;
1462 
1463 	mmc_cqe_post_req(host, mrq);
1464 
1465 	if (mrq->cmd && mrq->cmd->error)
1466 		err = mrq->cmd->error;
1467 	else if (mrq->data && mrq->data->error)
1468 		err = mrq->data->error;
1469 	else
1470 		err = 0;
1471 
1472 	if (err) {
1473 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1474 			blk_mq_requeue_request(req, true);
1475 		else
1476 			blk_mq_end_request(req, BLK_STS_IOERR);
1477 	} else if (mrq->data) {
1478 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1479 			blk_mq_requeue_request(req, true);
1480 		else
1481 			__blk_mq_end_request(req, BLK_STS_OK);
1482 	} else {
1483 		blk_mq_end_request(req, BLK_STS_OK);
1484 	}
1485 
1486 	spin_lock_irqsave(q->queue_lock, flags);
1487 
1488 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1489 
1490 	put_card = (mmc_tot_in_flight(mq) == 0);
1491 
1492 	mmc_cqe_check_busy(mq);
1493 
1494 	spin_unlock_irqrestore(q->queue_lock, flags);
1495 
1496 	if (!mq->cqe_busy)
1497 		blk_mq_run_hw_queues(q, true);
1498 
1499 	if (put_card)
1500 		mmc_put_card(mq->card, &mq->ctx);
1501 }
1502 
1503 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1504 {
1505 	struct mmc_card *card = mq->card;
1506 	struct mmc_host *host = card->host;
1507 	int err;
1508 
1509 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1510 
1511 	err = mmc_cqe_recovery(host);
1512 	if (err)
1513 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1514 	else
1515 		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1516 
1517 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1518 }
1519 
1520 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1521 {
1522 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1523 						  brq.mrq);
1524 	struct request *req = mmc_queue_req_to_req(mqrq);
1525 	struct request_queue *q = req->q;
1526 	struct mmc_queue *mq = q->queuedata;
1527 
1528 	/*
1529 	 * Block layer timeouts race with completions which means the normal
1530 	 * completion path cannot be used during recovery.
1531 	 */
1532 	if (mq->in_recovery)
1533 		mmc_blk_cqe_complete_rq(mq, req);
1534 	else
1535 		blk_mq_complete_request(req);
1536 }
1537 
1538 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1539 {
1540 	mrq->done		= mmc_blk_cqe_req_done;
1541 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1542 
1543 	return mmc_cqe_start_req(host, mrq);
1544 }
1545 
1546 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1547 						 struct request *req)
1548 {
1549 	struct mmc_blk_request *brq = &mqrq->brq;
1550 
1551 	memset(brq, 0, sizeof(*brq));
1552 
1553 	brq->mrq.cmd = &brq->cmd;
1554 	brq->mrq.tag = req->tag;
1555 
1556 	return &brq->mrq;
1557 }
1558 
1559 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1560 {
1561 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1562 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1563 
1564 	mrq->cmd->opcode = MMC_SWITCH;
1565 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1566 			(EXT_CSD_FLUSH_CACHE << 16) |
1567 			(1 << 8) |
1568 			EXT_CSD_CMD_SET_NORMAL;
1569 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1570 
1571 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1572 }
1573 
1574 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1575 {
1576 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1577 
1578 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1579 
1580 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1581 }
1582 
1583 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1584 			       struct mmc_card *card,
1585 			       int disable_multi,
1586 			       struct mmc_queue *mq)
1587 {
1588 	u32 readcmd, writecmd;
1589 	struct mmc_blk_request *brq = &mqrq->brq;
1590 	struct request *req = mmc_queue_req_to_req(mqrq);
1591 	struct mmc_blk_data *md = mq->blkdata;
1592 	bool do_rel_wr, do_data_tag;
1593 
1594 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1595 
1596 	brq->mrq.cmd = &brq->cmd;
1597 
1598 	brq->cmd.arg = blk_rq_pos(req);
1599 	if (!mmc_card_blockaddr(card))
1600 		brq->cmd.arg <<= 9;
1601 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1602 
1603 	if (brq->data.blocks > 1 || do_rel_wr) {
1604 		/* SPI multiblock writes terminate using a special
1605 		 * token, not a STOP_TRANSMISSION request.
1606 		 */
1607 		if (!mmc_host_is_spi(card->host) ||
1608 		    rq_data_dir(req) == READ)
1609 			brq->mrq.stop = &brq->stop;
1610 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1611 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1612 	} else {
1613 		brq->mrq.stop = NULL;
1614 		readcmd = MMC_READ_SINGLE_BLOCK;
1615 		writecmd = MMC_WRITE_BLOCK;
1616 	}
1617 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1618 
1619 	/*
1620 	 * Pre-defined multi-block transfers are preferable to
1621 	 * open ended-ones (and necessary for reliable writes).
1622 	 * However, it is not sufficient to just send CMD23,
1623 	 * and avoid the final CMD12, as on an error condition
1624 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1625 	 * with Auto-CMD23 enhancements provided by some
1626 	 * hosts, means that the complexity of dealing
1627 	 * with this is best left to the host. If CMD23 is
1628 	 * supported by card and host, we'll fill sbc in and let
1629 	 * the host deal with handling it correctly. This means
1630 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1631 	 * change of behavior will be observed.
1632 	 *
1633 	 * N.B: Some MMC cards experience perf degradation.
1634 	 * We'll avoid using CMD23-bounded multiblock writes for
1635 	 * these, while retaining features like reliable writes.
1636 	 */
1637 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1638 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1639 	     do_data_tag)) {
1640 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1641 		brq->sbc.arg = brq->data.blocks |
1642 			(do_rel_wr ? (1 << 31) : 0) |
1643 			(do_data_tag ? (1 << 29) : 0);
1644 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1645 		brq->mrq.sbc = &brq->sbc;
1646 	}
1647 }
1648 
1649 #define MMC_MAX_RETRIES		5
1650 #define MMC_DATA_RETRIES	2
1651 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1652 
1653 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1654 {
1655 	struct mmc_command cmd = {
1656 		.opcode = MMC_STOP_TRANSMISSION,
1657 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1658 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1659 		.busy_timeout = timeout,
1660 	};
1661 
1662 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1663 }
1664 
1665 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1666 {
1667 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1668 	struct mmc_blk_request *brq = &mqrq->brq;
1669 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1670 	int err;
1671 
1672 	mmc_retune_hold_now(card->host);
1673 
1674 	mmc_blk_send_stop(card, timeout);
1675 
1676 	err = card_busy_detect(card, timeout, req, NULL);
1677 
1678 	mmc_retune_release(card->host);
1679 
1680 	return err;
1681 }
1682 
1683 #define MMC_READ_SINGLE_RETRIES	2
1684 
1685 /* Single sector read during recovery */
1686 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1687 {
1688 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1689 	struct mmc_request *mrq = &mqrq->brq.mrq;
1690 	struct mmc_card *card = mq->card;
1691 	struct mmc_host *host = card->host;
1692 	blk_status_t error = BLK_STS_OK;
1693 	int retries = 0;
1694 
1695 	do {
1696 		u32 status;
1697 		int err;
1698 
1699 		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1700 
1701 		mmc_wait_for_req(host, mrq);
1702 
1703 		err = mmc_send_status(card, &status);
1704 		if (err)
1705 			goto error_exit;
1706 
1707 		if (!mmc_host_is_spi(host) &&
1708 		    !mmc_blk_in_tran_state(status)) {
1709 			err = mmc_blk_fix_state(card, req);
1710 			if (err)
1711 				goto error_exit;
1712 		}
1713 
1714 		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1715 			continue;
1716 
1717 		retries = 0;
1718 
1719 		if (mrq->cmd->error ||
1720 		    mrq->data->error ||
1721 		    (!mmc_host_is_spi(host) &&
1722 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1723 			error = BLK_STS_IOERR;
1724 		else
1725 			error = BLK_STS_OK;
1726 
1727 	} while (blk_update_request(req, error, 512));
1728 
1729 	return;
1730 
1731 error_exit:
1732 	mrq->data->bytes_xfered = 0;
1733 	blk_update_request(req, BLK_STS_IOERR, 512);
1734 	/* Let it try the remaining request again */
1735 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1736 		mqrq->retries = MMC_MAX_RETRIES - 1;
1737 }
1738 
1739 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1740 {
1741 	return !!brq->mrq.sbc;
1742 }
1743 
1744 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1745 {
1746 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1747 }
1748 
1749 /*
1750  * Check for errors the host controller driver might not have seen such as
1751  * response mode errors or invalid card state.
1752  */
1753 static bool mmc_blk_status_error(struct request *req, u32 status)
1754 {
1755 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1756 	struct mmc_blk_request *brq = &mqrq->brq;
1757 	struct mmc_queue *mq = req->q->queuedata;
1758 	u32 stop_err_bits;
1759 
1760 	if (mmc_host_is_spi(mq->card->host))
1761 		return false;
1762 
1763 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1764 
1765 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1766 	       brq->stop.resp[0] & stop_err_bits ||
1767 	       status            & stop_err_bits ||
1768 	       (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status));
1769 }
1770 
1771 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1772 {
1773 	return !brq->sbc.error && !brq->cmd.error &&
1774 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1775 }
1776 
1777 /*
1778  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1779  * policy:
1780  * 1. A request that has transferred at least some data is considered
1781  * successful and will be requeued if there is remaining data to
1782  * transfer.
1783  * 2. Otherwise the number of retries is incremented and the request
1784  * will be requeued if there are remaining retries.
1785  * 3. Otherwise the request will be errored out.
1786  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1787  * mqrq->retries. So there are only 4 possible actions here:
1788  *	1. do not accept the bytes_xfered value i.e. set it to zero
1789  *	2. change mqrq->retries to determine the number of retries
1790  *	3. try to reset the card
1791  *	4. read one sector at a time
1792  */
1793 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1794 {
1795 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1796 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1797 	struct mmc_blk_request *brq = &mqrq->brq;
1798 	struct mmc_blk_data *md = mq->blkdata;
1799 	struct mmc_card *card = mq->card;
1800 	u32 status;
1801 	u32 blocks;
1802 	int err;
1803 
1804 	/*
1805 	 * Some errors the host driver might not have seen. Set the number of
1806 	 * bytes transferred to zero in that case.
1807 	 */
1808 	err = __mmc_send_status(card, &status, 0);
1809 	if (err || mmc_blk_status_error(req, status))
1810 		brq->data.bytes_xfered = 0;
1811 
1812 	mmc_retune_release(card->host);
1813 
1814 	/*
1815 	 * Try again to get the status. This also provides an opportunity for
1816 	 * re-tuning.
1817 	 */
1818 	if (err)
1819 		err = __mmc_send_status(card, &status, 0);
1820 
1821 	/*
1822 	 * Nothing more to do after the number of bytes transferred has been
1823 	 * updated and there is no card.
1824 	 */
1825 	if (err && mmc_detect_card_removed(card->host))
1826 		return;
1827 
1828 	/* Try to get back to "tran" state */
1829 	if (!mmc_host_is_spi(mq->card->host) &&
1830 	    (err || !mmc_blk_in_tran_state(status)))
1831 		err = mmc_blk_fix_state(mq->card, req);
1832 
1833 	/*
1834 	 * Special case for SD cards where the card might record the number of
1835 	 * blocks written.
1836 	 */
1837 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1838 	    rq_data_dir(req) == WRITE) {
1839 		if (mmc_sd_num_wr_blocks(card, &blocks))
1840 			brq->data.bytes_xfered = 0;
1841 		else
1842 			brq->data.bytes_xfered = blocks << 9;
1843 	}
1844 
1845 	/* Reset if the card is in a bad state */
1846 	if (!mmc_host_is_spi(mq->card->host) &&
1847 	    err && mmc_blk_reset(md, card->host, type)) {
1848 		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1849 		mqrq->retries = MMC_NO_RETRIES;
1850 		return;
1851 	}
1852 
1853 	/*
1854 	 * If anything was done, just return and if there is anything remaining
1855 	 * on the request it will get requeued.
1856 	 */
1857 	if (brq->data.bytes_xfered)
1858 		return;
1859 
1860 	/* Reset before last retry */
1861 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1862 		mmc_blk_reset(md, card->host, type);
1863 
1864 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1865 	if (brq->sbc.error || brq->cmd.error)
1866 		return;
1867 
1868 	/* Reduce the remaining retries for data errors */
1869 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1870 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1871 		return;
1872 	}
1873 
1874 	/* FIXME: Missing single sector read for large sector size */
1875 	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1876 	    brq->data.blocks > 1) {
1877 		/* Read one sector at a time */
1878 		mmc_blk_read_single(mq, req);
1879 		return;
1880 	}
1881 }
1882 
1883 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1884 {
1885 	mmc_blk_eval_resp_error(brq);
1886 
1887 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1888 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1889 }
1890 
1891 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1892 {
1893 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1894 	u32 status = 0;
1895 	int err;
1896 
1897 	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1898 		return 0;
1899 
1900 	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status);
1901 
1902 	/*
1903 	 * Do not assume data transferred correctly if there are any error bits
1904 	 * set.
1905 	 */
1906 	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1907 		mqrq->brq.data.bytes_xfered = 0;
1908 		err = err ? err : -EIO;
1909 	}
1910 
1911 	/* Copy the exception bit so it will be seen later on */
1912 	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1913 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1914 
1915 	return err;
1916 }
1917 
1918 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1919 					    struct request *req)
1920 {
1921 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1922 
1923 	mmc_blk_reset_success(mq->blkdata, type);
1924 }
1925 
1926 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1927 {
1928 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1929 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1930 
1931 	if (nr_bytes) {
1932 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1933 			blk_mq_requeue_request(req, true);
1934 		else
1935 			__blk_mq_end_request(req, BLK_STS_OK);
1936 	} else if (!blk_rq_bytes(req)) {
1937 		__blk_mq_end_request(req, BLK_STS_IOERR);
1938 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1939 		blk_mq_requeue_request(req, true);
1940 	} else {
1941 		if (mmc_card_removed(mq->card))
1942 			req->rq_flags |= RQF_QUIET;
1943 		blk_mq_end_request(req, BLK_STS_IOERR);
1944 	}
1945 }
1946 
1947 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1948 					struct mmc_queue_req *mqrq)
1949 {
1950 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1951 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1952 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1953 }
1954 
1955 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1956 				 struct mmc_queue_req *mqrq)
1957 {
1958 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1959 		mmc_start_bkops(mq->card, true);
1960 }
1961 
1962 void mmc_blk_mq_complete(struct request *req)
1963 {
1964 	struct mmc_queue *mq = req->q->queuedata;
1965 
1966 	if (mq->use_cqe)
1967 		mmc_blk_cqe_complete_rq(mq, req);
1968 	else
1969 		mmc_blk_mq_complete_rq(mq, req);
1970 }
1971 
1972 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1973 				       struct request *req)
1974 {
1975 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1976 	struct mmc_host *host = mq->card->host;
1977 
1978 	if (mmc_blk_rq_error(&mqrq->brq) ||
1979 	    mmc_blk_card_busy(mq->card, req)) {
1980 		mmc_blk_mq_rw_recovery(mq, req);
1981 	} else {
1982 		mmc_blk_rw_reset_success(mq, req);
1983 		mmc_retune_release(host);
1984 	}
1985 
1986 	mmc_blk_urgent_bkops(mq, mqrq);
1987 }
1988 
1989 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1990 {
1991 	struct request_queue *q = req->q;
1992 	unsigned long flags;
1993 	bool put_card;
1994 
1995 	spin_lock_irqsave(q->queue_lock, flags);
1996 
1997 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1998 
1999 	put_card = (mmc_tot_in_flight(mq) == 0);
2000 
2001 	spin_unlock_irqrestore(q->queue_lock, flags);
2002 
2003 	if (put_card)
2004 		mmc_put_card(mq->card, &mq->ctx);
2005 }
2006 
2007 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2008 {
2009 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2010 	struct mmc_request *mrq = &mqrq->brq.mrq;
2011 	struct mmc_host *host = mq->card->host;
2012 
2013 	mmc_post_req(host, mrq, 0);
2014 
2015 	/*
2016 	 * Block layer timeouts race with completions which means the normal
2017 	 * completion path cannot be used during recovery.
2018 	 */
2019 	if (mq->in_recovery)
2020 		mmc_blk_mq_complete_rq(mq, req);
2021 	else
2022 		blk_mq_complete_request(req);
2023 
2024 	mmc_blk_mq_dec_in_flight(mq, req);
2025 }
2026 
2027 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2028 {
2029 	struct request *req = mq->recovery_req;
2030 	struct mmc_host *host = mq->card->host;
2031 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2032 
2033 	mq->recovery_req = NULL;
2034 	mq->rw_wait = false;
2035 
2036 	if (mmc_blk_rq_error(&mqrq->brq)) {
2037 		mmc_retune_hold_now(host);
2038 		mmc_blk_mq_rw_recovery(mq, req);
2039 	}
2040 
2041 	mmc_blk_urgent_bkops(mq, mqrq);
2042 
2043 	mmc_blk_mq_post_req(mq, req);
2044 }
2045 
2046 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2047 					 struct request **prev_req)
2048 {
2049 	if (mmc_host_done_complete(mq->card->host))
2050 		return;
2051 
2052 	mutex_lock(&mq->complete_lock);
2053 
2054 	if (!mq->complete_req)
2055 		goto out_unlock;
2056 
2057 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2058 
2059 	if (prev_req)
2060 		*prev_req = mq->complete_req;
2061 	else
2062 		mmc_blk_mq_post_req(mq, mq->complete_req);
2063 
2064 	mq->complete_req = NULL;
2065 
2066 out_unlock:
2067 	mutex_unlock(&mq->complete_lock);
2068 }
2069 
2070 void mmc_blk_mq_complete_work(struct work_struct *work)
2071 {
2072 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2073 					    complete_work);
2074 
2075 	mmc_blk_mq_complete_prev_req(mq, NULL);
2076 }
2077 
2078 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2079 {
2080 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2081 						  brq.mrq);
2082 	struct request *req = mmc_queue_req_to_req(mqrq);
2083 	struct request_queue *q = req->q;
2084 	struct mmc_queue *mq = q->queuedata;
2085 	struct mmc_host *host = mq->card->host;
2086 	unsigned long flags;
2087 
2088 	if (!mmc_host_done_complete(host)) {
2089 		bool waiting;
2090 
2091 		/*
2092 		 * We cannot complete the request in this context, so record
2093 		 * that there is a request to complete, and that a following
2094 		 * request does not need to wait (although it does need to
2095 		 * complete complete_req first).
2096 		 */
2097 		spin_lock_irqsave(q->queue_lock, flags);
2098 		mq->complete_req = req;
2099 		mq->rw_wait = false;
2100 		waiting = mq->waiting;
2101 		spin_unlock_irqrestore(q->queue_lock, flags);
2102 
2103 		/*
2104 		 * If 'waiting' then the waiting task will complete this
2105 		 * request, otherwise queue a work to do it. Note that
2106 		 * complete_work may still race with the dispatch of a following
2107 		 * request.
2108 		 */
2109 		if (waiting)
2110 			wake_up(&mq->wait);
2111 		else
2112 			kblockd_schedule_work(&mq->complete_work);
2113 
2114 		return;
2115 	}
2116 
2117 	/* Take the recovery path for errors or urgent background operations */
2118 	if (mmc_blk_rq_error(&mqrq->brq) ||
2119 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2120 		spin_lock_irqsave(q->queue_lock, flags);
2121 		mq->recovery_needed = true;
2122 		mq->recovery_req = req;
2123 		spin_unlock_irqrestore(q->queue_lock, flags);
2124 		wake_up(&mq->wait);
2125 		schedule_work(&mq->recovery_work);
2126 		return;
2127 	}
2128 
2129 	mmc_blk_rw_reset_success(mq, req);
2130 
2131 	mq->rw_wait = false;
2132 	wake_up(&mq->wait);
2133 
2134 	mmc_blk_mq_post_req(mq, req);
2135 }
2136 
2137 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2138 {
2139 	struct request_queue *q = mq->queue;
2140 	unsigned long flags;
2141 	bool done;
2142 
2143 	/*
2144 	 * Wait while there is another request in progress, but not if recovery
2145 	 * is needed. Also indicate whether there is a request waiting to start.
2146 	 */
2147 	spin_lock_irqsave(q->queue_lock, flags);
2148 	if (mq->recovery_needed) {
2149 		*err = -EBUSY;
2150 		done = true;
2151 	} else {
2152 		done = !mq->rw_wait;
2153 	}
2154 	mq->waiting = !done;
2155 	spin_unlock_irqrestore(q->queue_lock, flags);
2156 
2157 	return done;
2158 }
2159 
2160 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2161 {
2162 	int err = 0;
2163 
2164 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2165 
2166 	/* Always complete the previous request if there is one */
2167 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2168 
2169 	return err;
2170 }
2171 
2172 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2173 				  struct request *req)
2174 {
2175 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2176 	struct mmc_host *host = mq->card->host;
2177 	struct request *prev_req = NULL;
2178 	int err = 0;
2179 
2180 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2181 
2182 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2183 
2184 	mmc_pre_req(host, &mqrq->brq.mrq);
2185 
2186 	err = mmc_blk_rw_wait(mq, &prev_req);
2187 	if (err)
2188 		goto out_post_req;
2189 
2190 	mq->rw_wait = true;
2191 
2192 	err = mmc_start_request(host, &mqrq->brq.mrq);
2193 
2194 	if (prev_req)
2195 		mmc_blk_mq_post_req(mq, prev_req);
2196 
2197 	if (err)
2198 		mq->rw_wait = false;
2199 
2200 	/* Release re-tuning here where there is no synchronization required */
2201 	if (err || mmc_host_done_complete(host))
2202 		mmc_retune_release(host);
2203 
2204 out_post_req:
2205 	if (err)
2206 		mmc_post_req(host, &mqrq->brq.mrq, err);
2207 
2208 	return err;
2209 }
2210 
2211 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2212 {
2213 	if (mq->use_cqe)
2214 		return host->cqe_ops->cqe_wait_for_idle(host);
2215 
2216 	return mmc_blk_rw_wait(mq, NULL);
2217 }
2218 
2219 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2220 {
2221 	struct mmc_blk_data *md = mq->blkdata;
2222 	struct mmc_card *card = md->queue.card;
2223 	struct mmc_host *host = card->host;
2224 	int ret;
2225 
2226 	ret = mmc_blk_part_switch(card, md->part_type);
2227 	if (ret)
2228 		return MMC_REQ_FAILED_TO_START;
2229 
2230 	switch (mmc_issue_type(mq, req)) {
2231 	case MMC_ISSUE_SYNC:
2232 		ret = mmc_blk_wait_for_idle(mq, host);
2233 		if (ret)
2234 			return MMC_REQ_BUSY;
2235 		switch (req_op(req)) {
2236 		case REQ_OP_DRV_IN:
2237 		case REQ_OP_DRV_OUT:
2238 			mmc_blk_issue_drv_op(mq, req);
2239 			break;
2240 		case REQ_OP_DISCARD:
2241 			mmc_blk_issue_discard_rq(mq, req);
2242 			break;
2243 		case REQ_OP_SECURE_ERASE:
2244 			mmc_blk_issue_secdiscard_rq(mq, req);
2245 			break;
2246 		case REQ_OP_FLUSH:
2247 			mmc_blk_issue_flush(mq, req);
2248 			break;
2249 		default:
2250 			WARN_ON_ONCE(1);
2251 			return MMC_REQ_FAILED_TO_START;
2252 		}
2253 		return MMC_REQ_FINISHED;
2254 	case MMC_ISSUE_DCMD:
2255 	case MMC_ISSUE_ASYNC:
2256 		switch (req_op(req)) {
2257 		case REQ_OP_FLUSH:
2258 			ret = mmc_blk_cqe_issue_flush(mq, req);
2259 			break;
2260 		case REQ_OP_READ:
2261 		case REQ_OP_WRITE:
2262 			if (mq->use_cqe)
2263 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2264 			else
2265 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2266 			break;
2267 		default:
2268 			WARN_ON_ONCE(1);
2269 			ret = -EINVAL;
2270 		}
2271 		if (!ret)
2272 			return MMC_REQ_STARTED;
2273 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2274 	default:
2275 		WARN_ON_ONCE(1);
2276 		return MMC_REQ_FAILED_TO_START;
2277 	}
2278 }
2279 
2280 static inline int mmc_blk_readonly(struct mmc_card *card)
2281 {
2282 	return mmc_card_readonly(card) ||
2283 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2284 }
2285 
2286 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2287 					      struct device *parent,
2288 					      sector_t size,
2289 					      bool default_ro,
2290 					      const char *subname,
2291 					      int area_type)
2292 {
2293 	struct mmc_blk_data *md;
2294 	int devidx, ret;
2295 
2296 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2297 	if (devidx < 0) {
2298 		/*
2299 		 * We get -ENOSPC because there are no more any available
2300 		 * devidx. The reason may be that, either userspace haven't yet
2301 		 * unmounted the partitions, which postpones mmc_blk_release()
2302 		 * from being called, or the device has more partitions than
2303 		 * what we support.
2304 		 */
2305 		if (devidx == -ENOSPC)
2306 			dev_err(mmc_dev(card->host),
2307 				"no more device IDs available\n");
2308 
2309 		return ERR_PTR(devidx);
2310 	}
2311 
2312 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2313 	if (!md) {
2314 		ret = -ENOMEM;
2315 		goto out;
2316 	}
2317 
2318 	md->area_type = area_type;
2319 
2320 	/*
2321 	 * Set the read-only status based on the supported commands
2322 	 * and the write protect switch.
2323 	 */
2324 	md->read_only = mmc_blk_readonly(card);
2325 
2326 	md->disk = alloc_disk(perdev_minors);
2327 	if (md->disk == NULL) {
2328 		ret = -ENOMEM;
2329 		goto err_kfree;
2330 	}
2331 
2332 	spin_lock_init(&md->lock);
2333 	INIT_LIST_HEAD(&md->part);
2334 	INIT_LIST_HEAD(&md->rpmbs);
2335 	md->usage = 1;
2336 
2337 	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2338 	if (ret)
2339 		goto err_putdisk;
2340 
2341 	md->queue.blkdata = md;
2342 
2343 	/*
2344 	 * Keep an extra reference to the queue so that we can shutdown the
2345 	 * queue (i.e. call blk_cleanup_queue()) while there are still
2346 	 * references to the 'md'. The corresponding blk_put_queue() is in
2347 	 * mmc_blk_put().
2348 	 */
2349 	if (!blk_get_queue(md->queue.queue)) {
2350 		mmc_cleanup_queue(&md->queue);
2351 		ret = -ENODEV;
2352 		goto err_putdisk;
2353 	}
2354 
2355 	md->disk->major	= MMC_BLOCK_MAJOR;
2356 	md->disk->first_minor = devidx * perdev_minors;
2357 	md->disk->fops = &mmc_bdops;
2358 	md->disk->private_data = md;
2359 	md->disk->queue = md->queue.queue;
2360 	md->parent = parent;
2361 	set_disk_ro(md->disk, md->read_only || default_ro);
2362 	md->disk->flags = GENHD_FL_EXT_DEVT;
2363 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2364 		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2365 				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2366 
2367 	/*
2368 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2369 	 *
2370 	 * - be set for removable media with permanent block devices
2371 	 * - be unset for removable block devices with permanent media
2372 	 *
2373 	 * Since MMC block devices clearly fall under the second
2374 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2375 	 * should use the block device creation/destruction hotplug
2376 	 * messages to tell when the card is present.
2377 	 */
2378 
2379 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2380 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2381 
2382 	if (mmc_card_mmc(card))
2383 		blk_queue_logical_block_size(md->queue.queue,
2384 					     card->ext_csd.data_sector_size);
2385 	else
2386 		blk_queue_logical_block_size(md->queue.queue, 512);
2387 
2388 	set_capacity(md->disk, size);
2389 
2390 	if (mmc_host_cmd23(card->host)) {
2391 		if ((mmc_card_mmc(card) &&
2392 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2393 		    (mmc_card_sd(card) &&
2394 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2395 			md->flags |= MMC_BLK_CMD23;
2396 	}
2397 
2398 	if (mmc_card_mmc(card) &&
2399 	    md->flags & MMC_BLK_CMD23 &&
2400 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2401 	     card->ext_csd.rel_sectors)) {
2402 		md->flags |= MMC_BLK_REL_WR;
2403 		blk_queue_write_cache(md->queue.queue, true, true);
2404 	}
2405 
2406 	return md;
2407 
2408  err_putdisk:
2409 	put_disk(md->disk);
2410  err_kfree:
2411 	kfree(md);
2412  out:
2413 	ida_simple_remove(&mmc_blk_ida, devidx);
2414 	return ERR_PTR(ret);
2415 }
2416 
2417 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2418 {
2419 	sector_t size;
2420 
2421 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2422 		/*
2423 		 * The EXT_CSD sector count is in number or 512 byte
2424 		 * sectors.
2425 		 */
2426 		size = card->ext_csd.sectors;
2427 	} else {
2428 		/*
2429 		 * The CSD capacity field is in units of read_blkbits.
2430 		 * set_capacity takes units of 512 bytes.
2431 		 */
2432 		size = (typeof(sector_t))card->csd.capacity
2433 			<< (card->csd.read_blkbits - 9);
2434 	}
2435 
2436 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2437 					MMC_BLK_DATA_AREA_MAIN);
2438 }
2439 
2440 static int mmc_blk_alloc_part(struct mmc_card *card,
2441 			      struct mmc_blk_data *md,
2442 			      unsigned int part_type,
2443 			      sector_t size,
2444 			      bool default_ro,
2445 			      const char *subname,
2446 			      int area_type)
2447 {
2448 	char cap_str[10];
2449 	struct mmc_blk_data *part_md;
2450 
2451 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2452 				    subname, area_type);
2453 	if (IS_ERR(part_md))
2454 		return PTR_ERR(part_md);
2455 	part_md->part_type = part_type;
2456 	list_add(&part_md->part, &md->part);
2457 
2458 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2459 			cap_str, sizeof(cap_str));
2460 	pr_info("%s: %s %s partition %u %s\n",
2461 	       part_md->disk->disk_name, mmc_card_id(card),
2462 	       mmc_card_name(card), part_md->part_type, cap_str);
2463 	return 0;
2464 }
2465 
2466 /**
2467  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2468  * @filp: the character device file
2469  * @cmd: the ioctl() command
2470  * @arg: the argument from userspace
2471  *
2472  * This will essentially just redirect the ioctl()s coming in over to
2473  * the main block device spawning the RPMB character device.
2474  */
2475 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2476 			   unsigned long arg)
2477 {
2478 	struct mmc_rpmb_data *rpmb = filp->private_data;
2479 	int ret;
2480 
2481 	switch (cmd) {
2482 	case MMC_IOC_CMD:
2483 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2484 					(struct mmc_ioc_cmd __user *)arg,
2485 					rpmb);
2486 		break;
2487 	case MMC_IOC_MULTI_CMD:
2488 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2489 					(struct mmc_ioc_multi_cmd __user *)arg,
2490 					rpmb);
2491 		break;
2492 	default:
2493 		ret = -EINVAL;
2494 		break;
2495 	}
2496 
2497 	return ret;
2498 }
2499 
2500 #ifdef CONFIG_COMPAT
2501 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2502 			      unsigned long arg)
2503 {
2504 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2505 }
2506 #endif
2507 
2508 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2509 {
2510 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2511 						  struct mmc_rpmb_data, chrdev);
2512 
2513 	get_device(&rpmb->dev);
2514 	filp->private_data = rpmb;
2515 	mmc_blk_get(rpmb->md->disk);
2516 
2517 	return nonseekable_open(inode, filp);
2518 }
2519 
2520 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2521 {
2522 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2523 						  struct mmc_rpmb_data, chrdev);
2524 
2525 	put_device(&rpmb->dev);
2526 	mmc_blk_put(rpmb->md);
2527 
2528 	return 0;
2529 }
2530 
2531 static const struct file_operations mmc_rpmb_fileops = {
2532 	.release = mmc_rpmb_chrdev_release,
2533 	.open = mmc_rpmb_chrdev_open,
2534 	.owner = THIS_MODULE,
2535 	.llseek = no_llseek,
2536 	.unlocked_ioctl = mmc_rpmb_ioctl,
2537 #ifdef CONFIG_COMPAT
2538 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2539 #endif
2540 };
2541 
2542 static void mmc_blk_rpmb_device_release(struct device *dev)
2543 {
2544 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2545 
2546 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2547 	kfree(rpmb);
2548 }
2549 
2550 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2551 				   struct mmc_blk_data *md,
2552 				   unsigned int part_index,
2553 				   sector_t size,
2554 				   const char *subname)
2555 {
2556 	int devidx, ret;
2557 	char rpmb_name[DISK_NAME_LEN];
2558 	char cap_str[10];
2559 	struct mmc_rpmb_data *rpmb;
2560 
2561 	/* This creates the minor number for the RPMB char device */
2562 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2563 	if (devidx < 0)
2564 		return devidx;
2565 
2566 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2567 	if (!rpmb) {
2568 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2569 		return -ENOMEM;
2570 	}
2571 
2572 	snprintf(rpmb_name, sizeof(rpmb_name),
2573 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2574 
2575 	rpmb->id = devidx;
2576 	rpmb->part_index = part_index;
2577 	rpmb->dev.init_name = rpmb_name;
2578 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2579 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2580 	rpmb->dev.parent = &card->dev;
2581 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2582 	device_initialize(&rpmb->dev);
2583 	dev_set_drvdata(&rpmb->dev, rpmb);
2584 	rpmb->md = md;
2585 
2586 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2587 	rpmb->chrdev.owner = THIS_MODULE;
2588 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2589 	if (ret) {
2590 		pr_err("%s: could not add character device\n", rpmb_name);
2591 		goto out_put_device;
2592 	}
2593 
2594 	list_add(&rpmb->node, &md->rpmbs);
2595 
2596 	string_get_size((u64)size, 512, STRING_UNITS_2,
2597 			cap_str, sizeof(cap_str));
2598 
2599 	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2600 		rpmb_name, mmc_card_id(card),
2601 		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2602 		MAJOR(mmc_rpmb_devt), rpmb->id);
2603 
2604 	return 0;
2605 
2606 out_put_device:
2607 	put_device(&rpmb->dev);
2608 	return ret;
2609 }
2610 
2611 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2612 
2613 {
2614 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2615 	put_device(&rpmb->dev);
2616 }
2617 
2618 /* MMC Physical partitions consist of two boot partitions and
2619  * up to four general purpose partitions.
2620  * For each partition enabled in EXT_CSD a block device will be allocatedi
2621  * to provide access to the partition.
2622  */
2623 
2624 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2625 {
2626 	int idx, ret;
2627 
2628 	if (!mmc_card_mmc(card))
2629 		return 0;
2630 
2631 	for (idx = 0; idx < card->nr_parts; idx++) {
2632 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2633 			/*
2634 			 * RPMB partitions does not provide block access, they
2635 			 * are only accessed using ioctl():s. Thus create
2636 			 * special RPMB block devices that do not have a
2637 			 * backing block queue for these.
2638 			 */
2639 			ret = mmc_blk_alloc_rpmb_part(card, md,
2640 				card->part[idx].part_cfg,
2641 				card->part[idx].size >> 9,
2642 				card->part[idx].name);
2643 			if (ret)
2644 				return ret;
2645 		} else if (card->part[idx].size) {
2646 			ret = mmc_blk_alloc_part(card, md,
2647 				card->part[idx].part_cfg,
2648 				card->part[idx].size >> 9,
2649 				card->part[idx].force_ro,
2650 				card->part[idx].name,
2651 				card->part[idx].area_type);
2652 			if (ret)
2653 				return ret;
2654 		}
2655 	}
2656 
2657 	return 0;
2658 }
2659 
2660 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2661 {
2662 	struct mmc_card *card;
2663 
2664 	if (md) {
2665 		/*
2666 		 * Flush remaining requests and free queues. It
2667 		 * is freeing the queue that stops new requests
2668 		 * from being accepted.
2669 		 */
2670 		card = md->queue.card;
2671 		if (md->disk->flags & GENHD_FL_UP) {
2672 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2673 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2674 					card->ext_csd.boot_ro_lockable)
2675 				device_remove_file(disk_to_dev(md->disk),
2676 					&md->power_ro_lock);
2677 
2678 			del_gendisk(md->disk);
2679 		}
2680 		mmc_cleanup_queue(&md->queue);
2681 		mmc_blk_put(md);
2682 	}
2683 }
2684 
2685 static void mmc_blk_remove_parts(struct mmc_card *card,
2686 				 struct mmc_blk_data *md)
2687 {
2688 	struct list_head *pos, *q;
2689 	struct mmc_blk_data *part_md;
2690 	struct mmc_rpmb_data *rpmb;
2691 
2692 	/* Remove RPMB partitions */
2693 	list_for_each_safe(pos, q, &md->rpmbs) {
2694 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2695 		list_del(pos);
2696 		mmc_blk_remove_rpmb_part(rpmb);
2697 	}
2698 	/* Remove block partitions */
2699 	list_for_each_safe(pos, q, &md->part) {
2700 		part_md = list_entry(pos, struct mmc_blk_data, part);
2701 		list_del(pos);
2702 		mmc_blk_remove_req(part_md);
2703 	}
2704 }
2705 
2706 static int mmc_add_disk(struct mmc_blk_data *md)
2707 {
2708 	int ret;
2709 	struct mmc_card *card = md->queue.card;
2710 
2711 	device_add_disk(md->parent, md->disk, NULL);
2712 	md->force_ro.show = force_ro_show;
2713 	md->force_ro.store = force_ro_store;
2714 	sysfs_attr_init(&md->force_ro.attr);
2715 	md->force_ro.attr.name = "force_ro";
2716 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2717 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2718 	if (ret)
2719 		goto force_ro_fail;
2720 
2721 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2722 	     card->ext_csd.boot_ro_lockable) {
2723 		umode_t mode;
2724 
2725 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2726 			mode = S_IRUGO;
2727 		else
2728 			mode = S_IRUGO | S_IWUSR;
2729 
2730 		md->power_ro_lock.show = power_ro_lock_show;
2731 		md->power_ro_lock.store = power_ro_lock_store;
2732 		sysfs_attr_init(&md->power_ro_lock.attr);
2733 		md->power_ro_lock.attr.mode = mode;
2734 		md->power_ro_lock.attr.name =
2735 					"ro_lock_until_next_power_on";
2736 		ret = device_create_file(disk_to_dev(md->disk),
2737 				&md->power_ro_lock);
2738 		if (ret)
2739 			goto power_ro_lock_fail;
2740 	}
2741 	return ret;
2742 
2743 power_ro_lock_fail:
2744 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2745 force_ro_fail:
2746 	del_gendisk(md->disk);
2747 
2748 	return ret;
2749 }
2750 
2751 #ifdef CONFIG_DEBUG_FS
2752 
2753 static int mmc_dbg_card_status_get(void *data, u64 *val)
2754 {
2755 	struct mmc_card *card = data;
2756 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2757 	struct mmc_queue *mq = &md->queue;
2758 	struct request *req;
2759 	int ret;
2760 
2761 	/* Ask the block layer about the card status */
2762 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2763 	if (IS_ERR(req))
2764 		return PTR_ERR(req);
2765 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2766 	blk_execute_rq(mq->queue, NULL, req, 0);
2767 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2768 	if (ret >= 0) {
2769 		*val = ret;
2770 		ret = 0;
2771 	}
2772 	blk_put_request(req);
2773 
2774 	return ret;
2775 }
2776 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2777 		NULL, "%08llx\n");
2778 
2779 /* That is two digits * 512 + 1 for newline */
2780 #define EXT_CSD_STR_LEN 1025
2781 
2782 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2783 {
2784 	struct mmc_card *card = inode->i_private;
2785 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2786 	struct mmc_queue *mq = &md->queue;
2787 	struct request *req;
2788 	char *buf;
2789 	ssize_t n = 0;
2790 	u8 *ext_csd;
2791 	int err, i;
2792 
2793 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2794 	if (!buf)
2795 		return -ENOMEM;
2796 
2797 	/* Ask the block layer for the EXT CSD */
2798 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2799 	if (IS_ERR(req)) {
2800 		err = PTR_ERR(req);
2801 		goto out_free;
2802 	}
2803 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2804 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2805 	blk_execute_rq(mq->queue, NULL, req, 0);
2806 	err = req_to_mmc_queue_req(req)->drv_op_result;
2807 	blk_put_request(req);
2808 	if (err) {
2809 		pr_err("FAILED %d\n", err);
2810 		goto out_free;
2811 	}
2812 
2813 	for (i = 0; i < 512; i++)
2814 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2815 	n += sprintf(buf + n, "\n");
2816 
2817 	if (n != EXT_CSD_STR_LEN) {
2818 		err = -EINVAL;
2819 		kfree(ext_csd);
2820 		goto out_free;
2821 	}
2822 
2823 	filp->private_data = buf;
2824 	kfree(ext_csd);
2825 	return 0;
2826 
2827 out_free:
2828 	kfree(buf);
2829 	return err;
2830 }
2831 
2832 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2833 				size_t cnt, loff_t *ppos)
2834 {
2835 	char *buf = filp->private_data;
2836 
2837 	return simple_read_from_buffer(ubuf, cnt, ppos,
2838 				       buf, EXT_CSD_STR_LEN);
2839 }
2840 
2841 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2842 {
2843 	kfree(file->private_data);
2844 	return 0;
2845 }
2846 
2847 static const struct file_operations mmc_dbg_ext_csd_fops = {
2848 	.open		= mmc_ext_csd_open,
2849 	.read		= mmc_ext_csd_read,
2850 	.release	= mmc_ext_csd_release,
2851 	.llseek		= default_llseek,
2852 };
2853 
2854 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2855 {
2856 	struct dentry *root;
2857 
2858 	if (!card->debugfs_root)
2859 		return 0;
2860 
2861 	root = card->debugfs_root;
2862 
2863 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2864 		md->status_dentry =
2865 			debugfs_create_file("status", S_IRUSR, root, card,
2866 					    &mmc_dbg_card_status_fops);
2867 		if (!md->status_dentry)
2868 			return -EIO;
2869 	}
2870 
2871 	if (mmc_card_mmc(card)) {
2872 		md->ext_csd_dentry =
2873 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2874 					    &mmc_dbg_ext_csd_fops);
2875 		if (!md->ext_csd_dentry)
2876 			return -EIO;
2877 	}
2878 
2879 	return 0;
2880 }
2881 
2882 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2883 				   struct mmc_blk_data *md)
2884 {
2885 	if (!card->debugfs_root)
2886 		return;
2887 
2888 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2889 		debugfs_remove(md->status_dentry);
2890 		md->status_dentry = NULL;
2891 	}
2892 
2893 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2894 		debugfs_remove(md->ext_csd_dentry);
2895 		md->ext_csd_dentry = NULL;
2896 	}
2897 }
2898 
2899 #else
2900 
2901 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2902 {
2903 	return 0;
2904 }
2905 
2906 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2907 				   struct mmc_blk_data *md)
2908 {
2909 }
2910 
2911 #endif /* CONFIG_DEBUG_FS */
2912 
2913 static int mmc_blk_probe(struct mmc_card *card)
2914 {
2915 	struct mmc_blk_data *md, *part_md;
2916 	char cap_str[10];
2917 
2918 	/*
2919 	 * Check that the card supports the command class(es) we need.
2920 	 */
2921 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2922 		return -ENODEV;
2923 
2924 	mmc_fixup_device(card, mmc_blk_fixups);
2925 
2926 	md = mmc_blk_alloc(card);
2927 	if (IS_ERR(md))
2928 		return PTR_ERR(md);
2929 
2930 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2931 			cap_str, sizeof(cap_str));
2932 	pr_info("%s: %s %s %s %s\n",
2933 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2934 		cap_str, md->read_only ? "(ro)" : "");
2935 
2936 	if (mmc_blk_alloc_parts(card, md))
2937 		goto out;
2938 
2939 	dev_set_drvdata(&card->dev, md);
2940 
2941 	if (mmc_add_disk(md))
2942 		goto out;
2943 
2944 	list_for_each_entry(part_md, &md->part, part) {
2945 		if (mmc_add_disk(part_md))
2946 			goto out;
2947 	}
2948 
2949 	/* Add two debugfs entries */
2950 	mmc_blk_add_debugfs(card, md);
2951 
2952 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2953 	pm_runtime_use_autosuspend(&card->dev);
2954 
2955 	/*
2956 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2957 	 * decision to be taken during the SDIO init sequence instead.
2958 	 */
2959 	if (card->type != MMC_TYPE_SD_COMBO) {
2960 		pm_runtime_set_active(&card->dev);
2961 		pm_runtime_enable(&card->dev);
2962 	}
2963 
2964 	return 0;
2965 
2966  out:
2967 	mmc_blk_remove_parts(card, md);
2968 	mmc_blk_remove_req(md);
2969 	return 0;
2970 }
2971 
2972 static void mmc_blk_remove(struct mmc_card *card)
2973 {
2974 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2975 
2976 	mmc_blk_remove_debugfs(card, md);
2977 	mmc_blk_remove_parts(card, md);
2978 	pm_runtime_get_sync(&card->dev);
2979 	if (md->part_curr != md->part_type) {
2980 		mmc_claim_host(card->host);
2981 		mmc_blk_part_switch(card, md->part_type);
2982 		mmc_release_host(card->host);
2983 	}
2984 	if (card->type != MMC_TYPE_SD_COMBO)
2985 		pm_runtime_disable(&card->dev);
2986 	pm_runtime_put_noidle(&card->dev);
2987 	mmc_blk_remove_req(md);
2988 	dev_set_drvdata(&card->dev, NULL);
2989 }
2990 
2991 static int _mmc_blk_suspend(struct mmc_card *card)
2992 {
2993 	struct mmc_blk_data *part_md;
2994 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2995 
2996 	if (md) {
2997 		mmc_queue_suspend(&md->queue);
2998 		list_for_each_entry(part_md, &md->part, part) {
2999 			mmc_queue_suspend(&part_md->queue);
3000 		}
3001 	}
3002 	return 0;
3003 }
3004 
3005 static void mmc_blk_shutdown(struct mmc_card *card)
3006 {
3007 	_mmc_blk_suspend(card);
3008 }
3009 
3010 #ifdef CONFIG_PM_SLEEP
3011 static int mmc_blk_suspend(struct device *dev)
3012 {
3013 	struct mmc_card *card = mmc_dev_to_card(dev);
3014 
3015 	return _mmc_blk_suspend(card);
3016 }
3017 
3018 static int mmc_blk_resume(struct device *dev)
3019 {
3020 	struct mmc_blk_data *part_md;
3021 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3022 
3023 	if (md) {
3024 		/*
3025 		 * Resume involves the card going into idle state,
3026 		 * so current partition is always the main one.
3027 		 */
3028 		md->part_curr = md->part_type;
3029 		mmc_queue_resume(&md->queue);
3030 		list_for_each_entry(part_md, &md->part, part) {
3031 			mmc_queue_resume(&part_md->queue);
3032 		}
3033 	}
3034 	return 0;
3035 }
3036 #endif
3037 
3038 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3039 
3040 static struct mmc_driver mmc_driver = {
3041 	.drv		= {
3042 		.name	= "mmcblk",
3043 		.pm	= &mmc_blk_pm_ops,
3044 	},
3045 	.probe		= mmc_blk_probe,
3046 	.remove		= mmc_blk_remove,
3047 	.shutdown	= mmc_blk_shutdown,
3048 };
3049 
3050 static int __init mmc_blk_init(void)
3051 {
3052 	int res;
3053 
3054 	res  = bus_register(&mmc_rpmb_bus_type);
3055 	if (res < 0) {
3056 		pr_err("mmcblk: could not register RPMB bus type\n");
3057 		return res;
3058 	}
3059 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3060 	if (res < 0) {
3061 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3062 		goto out_bus_unreg;
3063 	}
3064 
3065 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3066 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3067 
3068 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3069 
3070 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3071 	if (res)
3072 		goto out_chrdev_unreg;
3073 
3074 	res = mmc_register_driver(&mmc_driver);
3075 	if (res)
3076 		goto out_blkdev_unreg;
3077 
3078 	return 0;
3079 
3080 out_blkdev_unreg:
3081 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3082 out_chrdev_unreg:
3083 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3084 out_bus_unreg:
3085 	bus_unregister(&mmc_rpmb_bus_type);
3086 	return res;
3087 }
3088 
3089 static void __exit mmc_blk_exit(void)
3090 {
3091 	mmc_unregister_driver(&mmc_driver);
3092 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3093 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3094 	bus_unregister(&mmc_rpmb_bus_type);
3095 }
3096 
3097 module_init(mmc_blk_init);
3098 module_exit(mmc_blk_exit);
3099 
3100 MODULE_LICENSE("GPL");
3101 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3102 
3103