1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/cdev.h> 32 #include <linux/mutex.h> 33 #include <linux/scatterlist.h> 34 #include <linux/string_helpers.h> 35 #include <linux/delay.h> 36 #include <linux/capability.h> 37 #include <linux/compat.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/idr.h> 40 #include <linux/debugfs.h> 41 42 #include <linux/mmc/ioctl.h> 43 #include <linux/mmc/card.h> 44 #include <linux/mmc/host.h> 45 #include <linux/mmc/mmc.h> 46 #include <linux/mmc/sd.h> 47 48 #include <linux/uaccess.h> 49 50 #include "queue.h" 51 #include "block.h" 52 #include "core.h" 53 #include "card.h" 54 #include "host.h" 55 #include "bus.h" 56 #include "mmc_ops.h" 57 #include "quirks.h" 58 #include "sd_ops.h" 59 60 MODULE_ALIAS("mmc:block"); 61 #ifdef MODULE_PARAM_PREFIX 62 #undef MODULE_PARAM_PREFIX 63 #endif 64 #define MODULE_PARAM_PREFIX "mmcblk." 65 66 /* 67 * Set a 10 second timeout for polling write request busy state. Note, mmc core 68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 69 * second software timer to timeout the whole request, so 10 seconds should be 70 * ample. 71 */ 72 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 73 #define MMC_SANITIZE_REQ_TIMEOUT 240000 74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 76 77 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 78 (rq_data_dir(req) == WRITE)) 79 static DEFINE_MUTEX(block_mutex); 80 81 /* 82 * The defaults come from config options but can be overriden by module 83 * or bootarg options. 84 */ 85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 86 87 /* 88 * We've only got one major, so number of mmcblk devices is 89 * limited to (1 << 20) / number of minors per device. It is also 90 * limited by the MAX_DEVICES below. 91 */ 92 static int max_devices; 93 94 #define MAX_DEVICES 256 95 96 static DEFINE_IDA(mmc_blk_ida); 97 static DEFINE_IDA(mmc_rpmb_ida); 98 99 /* 100 * There is one mmc_blk_data per slot. 101 */ 102 struct mmc_blk_data { 103 spinlock_t lock; 104 struct device *parent; 105 struct gendisk *disk; 106 struct mmc_queue queue; 107 struct list_head part; 108 struct list_head rpmbs; 109 110 unsigned int flags; 111 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 112 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 113 114 unsigned int usage; 115 unsigned int read_only; 116 unsigned int part_type; 117 unsigned int reset_done; 118 #define MMC_BLK_READ BIT(0) 119 #define MMC_BLK_WRITE BIT(1) 120 #define MMC_BLK_DISCARD BIT(2) 121 #define MMC_BLK_SECDISCARD BIT(3) 122 #define MMC_BLK_CQE_RECOVERY BIT(4) 123 124 /* 125 * Only set in main mmc_blk_data associated 126 * with mmc_card with dev_set_drvdata, and keeps 127 * track of the current selected device partition. 128 */ 129 unsigned int part_curr; 130 struct device_attribute force_ro; 131 struct device_attribute power_ro_lock; 132 int area_type; 133 134 /* debugfs files (only in main mmc_blk_data) */ 135 struct dentry *status_dentry; 136 struct dentry *ext_csd_dentry; 137 }; 138 139 /* Device type for RPMB character devices */ 140 static dev_t mmc_rpmb_devt; 141 142 /* Bus type for RPMB character devices */ 143 static struct bus_type mmc_rpmb_bus_type = { 144 .name = "mmc_rpmb", 145 }; 146 147 /** 148 * struct mmc_rpmb_data - special RPMB device type for these areas 149 * @dev: the device for the RPMB area 150 * @chrdev: character device for the RPMB area 151 * @id: unique device ID number 152 * @part_index: partition index (0 on first) 153 * @md: parent MMC block device 154 * @node: list item, so we can put this device on a list 155 */ 156 struct mmc_rpmb_data { 157 struct device dev; 158 struct cdev chrdev; 159 int id; 160 unsigned int part_index; 161 struct mmc_blk_data *md; 162 struct list_head node; 163 }; 164 165 static DEFINE_MUTEX(open_lock); 166 167 module_param(perdev_minors, int, 0444); 168 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 169 170 static inline int mmc_blk_part_switch(struct mmc_card *card, 171 unsigned int part_type); 172 173 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 174 { 175 struct mmc_blk_data *md; 176 177 mutex_lock(&open_lock); 178 md = disk->private_data; 179 if (md && md->usage == 0) 180 md = NULL; 181 if (md) 182 md->usage++; 183 mutex_unlock(&open_lock); 184 185 return md; 186 } 187 188 static inline int mmc_get_devidx(struct gendisk *disk) 189 { 190 int devidx = disk->first_minor / perdev_minors; 191 return devidx; 192 } 193 194 static void mmc_blk_put(struct mmc_blk_data *md) 195 { 196 mutex_lock(&open_lock); 197 md->usage--; 198 if (md->usage == 0) { 199 int devidx = mmc_get_devidx(md->disk); 200 blk_put_queue(md->queue.queue); 201 ida_simple_remove(&mmc_blk_ida, devidx); 202 put_disk(md->disk); 203 kfree(md); 204 } 205 mutex_unlock(&open_lock); 206 } 207 208 static ssize_t power_ro_lock_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 int ret; 212 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 213 struct mmc_card *card = md->queue.card; 214 int locked = 0; 215 216 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 217 locked = 2; 218 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 219 locked = 1; 220 221 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 222 223 mmc_blk_put(md); 224 225 return ret; 226 } 227 228 static ssize_t power_ro_lock_store(struct device *dev, 229 struct device_attribute *attr, const char *buf, size_t count) 230 { 231 int ret; 232 struct mmc_blk_data *md, *part_md; 233 struct mmc_queue *mq; 234 struct request *req; 235 unsigned long set; 236 237 if (kstrtoul(buf, 0, &set)) 238 return -EINVAL; 239 240 if (set != 1) 241 return count; 242 243 md = mmc_blk_get(dev_to_disk(dev)); 244 mq = &md->queue; 245 246 /* Dispatch locking to the block layer */ 247 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0); 248 if (IS_ERR(req)) { 249 count = PTR_ERR(req); 250 goto out_put; 251 } 252 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 253 blk_execute_rq(mq->queue, NULL, req, 0); 254 ret = req_to_mmc_queue_req(req)->drv_op_result; 255 blk_put_request(req); 256 257 if (!ret) { 258 pr_info("%s: Locking boot partition ro until next power on\n", 259 md->disk->disk_name); 260 set_disk_ro(md->disk, 1); 261 262 list_for_each_entry(part_md, &md->part, part) 263 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 264 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 265 set_disk_ro(part_md->disk, 1); 266 } 267 } 268 out_put: 269 mmc_blk_put(md); 270 return count; 271 } 272 273 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 274 char *buf) 275 { 276 int ret; 277 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 278 279 ret = snprintf(buf, PAGE_SIZE, "%d\n", 280 get_disk_ro(dev_to_disk(dev)) ^ 281 md->read_only); 282 mmc_blk_put(md); 283 return ret; 284 } 285 286 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 287 const char *buf, size_t count) 288 { 289 int ret; 290 char *end; 291 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 292 unsigned long set = simple_strtoul(buf, &end, 0); 293 if (end == buf) { 294 ret = -EINVAL; 295 goto out; 296 } 297 298 set_disk_ro(dev_to_disk(dev), set || md->read_only); 299 ret = count; 300 out: 301 mmc_blk_put(md); 302 return ret; 303 } 304 305 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 306 { 307 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 308 int ret = -ENXIO; 309 310 mutex_lock(&block_mutex); 311 if (md) { 312 if (md->usage == 2) 313 check_disk_change(bdev); 314 ret = 0; 315 316 if ((mode & FMODE_WRITE) && md->read_only) { 317 mmc_blk_put(md); 318 ret = -EROFS; 319 } 320 } 321 mutex_unlock(&block_mutex); 322 323 return ret; 324 } 325 326 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 327 { 328 struct mmc_blk_data *md = disk->private_data; 329 330 mutex_lock(&block_mutex); 331 mmc_blk_put(md); 332 mutex_unlock(&block_mutex); 333 } 334 335 static int 336 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 337 { 338 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 339 geo->heads = 4; 340 geo->sectors = 16; 341 return 0; 342 } 343 344 struct mmc_blk_ioc_data { 345 struct mmc_ioc_cmd ic; 346 unsigned char *buf; 347 u64 buf_bytes; 348 struct mmc_rpmb_data *rpmb; 349 }; 350 351 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 352 struct mmc_ioc_cmd __user *user) 353 { 354 struct mmc_blk_ioc_data *idata; 355 int err; 356 357 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 358 if (!idata) { 359 err = -ENOMEM; 360 goto out; 361 } 362 363 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 364 err = -EFAULT; 365 goto idata_err; 366 } 367 368 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 369 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 370 err = -EOVERFLOW; 371 goto idata_err; 372 } 373 374 if (!idata->buf_bytes) { 375 idata->buf = NULL; 376 return idata; 377 } 378 379 idata->buf = memdup_user((void __user *)(unsigned long) 380 idata->ic.data_ptr, idata->buf_bytes); 381 if (IS_ERR(idata->buf)) { 382 err = PTR_ERR(idata->buf); 383 goto idata_err; 384 } 385 386 return idata; 387 388 idata_err: 389 kfree(idata); 390 out: 391 return ERR_PTR(err); 392 } 393 394 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 395 struct mmc_blk_ioc_data *idata) 396 { 397 struct mmc_ioc_cmd *ic = &idata->ic; 398 399 if (copy_to_user(&(ic_ptr->response), ic->response, 400 sizeof(ic->response))) 401 return -EFAULT; 402 403 if (!idata->ic.write_flag) { 404 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 405 idata->buf, idata->buf_bytes)) 406 return -EFAULT; 407 } 408 409 return 0; 410 } 411 412 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status, 413 u32 retries_max) 414 { 415 int err; 416 u32 retry_count = 0; 417 418 if (!status || !retries_max) 419 return -EINVAL; 420 421 do { 422 err = __mmc_send_status(card, status, 5); 423 if (err) 424 break; 425 426 if (!R1_STATUS(*status) && 427 (R1_CURRENT_STATE(*status) != R1_STATE_PRG)) 428 break; /* RPMB programming operation complete */ 429 430 /* 431 * Rechedule to give the MMC device a chance to continue 432 * processing the previous command without being polled too 433 * frequently. 434 */ 435 usleep_range(1000, 5000); 436 } while (++retry_count < retries_max); 437 438 if (retry_count == retries_max) 439 err = -EPERM; 440 441 return err; 442 } 443 444 static int ioctl_do_sanitize(struct mmc_card *card) 445 { 446 int err; 447 448 if (!mmc_can_sanitize(card)) { 449 pr_warn("%s: %s - SANITIZE is not supported\n", 450 mmc_hostname(card->host), __func__); 451 err = -EOPNOTSUPP; 452 goto out; 453 } 454 455 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n", 456 mmc_hostname(card->host), __func__); 457 458 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 459 EXT_CSD_SANITIZE_START, 1, 460 MMC_SANITIZE_REQ_TIMEOUT); 461 462 if (err) 463 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n", 464 mmc_hostname(card->host), __func__, err); 465 466 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host), 467 __func__); 468 out: 469 return err; 470 } 471 472 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 473 struct mmc_blk_ioc_data *idata) 474 { 475 struct mmc_command cmd = {}; 476 struct mmc_data data = {}; 477 struct mmc_request mrq = {}; 478 struct scatterlist sg; 479 int err; 480 unsigned int target_part; 481 u32 status = 0; 482 483 if (!card || !md || !idata) 484 return -EINVAL; 485 486 /* 487 * The RPMB accesses comes in from the character device, so we 488 * need to target these explicitly. Else we just target the 489 * partition type for the block device the ioctl() was issued 490 * on. 491 */ 492 if (idata->rpmb) { 493 /* Support multiple RPMB partitions */ 494 target_part = idata->rpmb->part_index; 495 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 496 } else { 497 target_part = md->part_type; 498 } 499 500 cmd.opcode = idata->ic.opcode; 501 cmd.arg = idata->ic.arg; 502 cmd.flags = idata->ic.flags; 503 504 if (idata->buf_bytes) { 505 data.sg = &sg; 506 data.sg_len = 1; 507 data.blksz = idata->ic.blksz; 508 data.blocks = idata->ic.blocks; 509 510 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 511 512 if (idata->ic.write_flag) 513 data.flags = MMC_DATA_WRITE; 514 else 515 data.flags = MMC_DATA_READ; 516 517 /* data.flags must already be set before doing this. */ 518 mmc_set_data_timeout(&data, card); 519 520 /* Allow overriding the timeout_ns for empirical tuning. */ 521 if (idata->ic.data_timeout_ns) 522 data.timeout_ns = idata->ic.data_timeout_ns; 523 524 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 525 /* 526 * Pretend this is a data transfer and rely on the 527 * host driver to compute timeout. When all host 528 * drivers support cmd.cmd_timeout for R1B, this 529 * can be changed to: 530 * 531 * mrq.data = NULL; 532 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 533 */ 534 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 535 } 536 537 mrq.data = &data; 538 } 539 540 mrq.cmd = &cmd; 541 542 err = mmc_blk_part_switch(card, target_part); 543 if (err) 544 return err; 545 546 if (idata->ic.is_acmd) { 547 err = mmc_app_cmd(card->host, card); 548 if (err) 549 return err; 550 } 551 552 if (idata->rpmb) { 553 err = mmc_set_blockcount(card, data.blocks, 554 idata->ic.write_flag & (1 << 31)); 555 if (err) 556 return err; 557 } 558 559 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 560 (cmd.opcode == MMC_SWITCH)) { 561 err = ioctl_do_sanitize(card); 562 563 if (err) 564 pr_err("%s: ioctl_do_sanitize() failed. err = %d", 565 __func__, err); 566 567 return err; 568 } 569 570 mmc_wait_for_req(card->host, &mrq); 571 572 if (cmd.error) { 573 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 574 __func__, cmd.error); 575 return cmd.error; 576 } 577 if (data.error) { 578 dev_err(mmc_dev(card->host), "%s: data error %d\n", 579 __func__, data.error); 580 return data.error; 581 } 582 583 /* 584 * Make sure the cache of the PARTITION_CONFIG register and 585 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 586 * changed it successfully. 587 */ 588 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 589 (cmd.opcode == MMC_SWITCH)) { 590 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 591 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 592 593 /* 594 * Update cache so the next mmc_blk_part_switch call operates 595 * on up-to-date data. 596 */ 597 card->ext_csd.part_config = value; 598 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 599 } 600 601 /* 602 * According to the SD specs, some commands require a delay after 603 * issuing the command. 604 */ 605 if (idata->ic.postsleep_min_us) 606 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 607 608 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 609 610 if (idata->rpmb) { 611 /* 612 * Ensure RPMB command has completed by polling CMD13 613 * "Send Status". 614 */ 615 err = ioctl_rpmb_card_status_poll(card, &status, 5); 616 if (err) 617 dev_err(mmc_dev(card->host), 618 "%s: Card Status=0x%08X, error %d\n", 619 __func__, status, err); 620 } 621 622 return err; 623 } 624 625 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 626 struct mmc_ioc_cmd __user *ic_ptr, 627 struct mmc_rpmb_data *rpmb) 628 { 629 struct mmc_blk_ioc_data *idata; 630 struct mmc_blk_ioc_data *idatas[1]; 631 struct mmc_queue *mq; 632 struct mmc_card *card; 633 int err = 0, ioc_err = 0; 634 struct request *req; 635 636 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 637 if (IS_ERR(idata)) 638 return PTR_ERR(idata); 639 /* This will be NULL on non-RPMB ioctl():s */ 640 idata->rpmb = rpmb; 641 642 card = md->queue.card; 643 if (IS_ERR(card)) { 644 err = PTR_ERR(card); 645 goto cmd_done; 646 } 647 648 /* 649 * Dispatch the ioctl() into the block request queue. 650 */ 651 mq = &md->queue; 652 req = blk_get_request(mq->queue, 653 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 654 if (IS_ERR(req)) { 655 err = PTR_ERR(req); 656 goto cmd_done; 657 } 658 idatas[0] = idata; 659 req_to_mmc_queue_req(req)->drv_op = 660 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 661 req_to_mmc_queue_req(req)->drv_op_data = idatas; 662 req_to_mmc_queue_req(req)->ioc_count = 1; 663 blk_execute_rq(mq->queue, NULL, req, 0); 664 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 665 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 666 blk_put_request(req); 667 668 cmd_done: 669 kfree(idata->buf); 670 kfree(idata); 671 return ioc_err ? ioc_err : err; 672 } 673 674 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 675 struct mmc_ioc_multi_cmd __user *user, 676 struct mmc_rpmb_data *rpmb) 677 { 678 struct mmc_blk_ioc_data **idata = NULL; 679 struct mmc_ioc_cmd __user *cmds = user->cmds; 680 struct mmc_card *card; 681 struct mmc_queue *mq; 682 int i, err = 0, ioc_err = 0; 683 __u64 num_of_cmds; 684 struct request *req; 685 686 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 687 sizeof(num_of_cmds))) 688 return -EFAULT; 689 690 if (!num_of_cmds) 691 return 0; 692 693 if (num_of_cmds > MMC_IOC_MAX_CMDS) 694 return -EINVAL; 695 696 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 697 if (!idata) 698 return -ENOMEM; 699 700 for (i = 0; i < num_of_cmds; i++) { 701 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 702 if (IS_ERR(idata[i])) { 703 err = PTR_ERR(idata[i]); 704 num_of_cmds = i; 705 goto cmd_err; 706 } 707 /* This will be NULL on non-RPMB ioctl():s */ 708 idata[i]->rpmb = rpmb; 709 } 710 711 card = md->queue.card; 712 if (IS_ERR(card)) { 713 err = PTR_ERR(card); 714 goto cmd_err; 715 } 716 717 718 /* 719 * Dispatch the ioctl()s into the block request queue. 720 */ 721 mq = &md->queue; 722 req = blk_get_request(mq->queue, 723 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 724 if (IS_ERR(req)) { 725 err = PTR_ERR(req); 726 goto cmd_err; 727 } 728 req_to_mmc_queue_req(req)->drv_op = 729 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 730 req_to_mmc_queue_req(req)->drv_op_data = idata; 731 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 732 blk_execute_rq(mq->queue, NULL, req, 0); 733 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 734 735 /* copy to user if data and response */ 736 for (i = 0; i < num_of_cmds && !err; i++) 737 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 738 739 blk_put_request(req); 740 741 cmd_err: 742 for (i = 0; i < num_of_cmds; i++) { 743 kfree(idata[i]->buf); 744 kfree(idata[i]); 745 } 746 kfree(idata); 747 return ioc_err ? ioc_err : err; 748 } 749 750 static int mmc_blk_check_blkdev(struct block_device *bdev) 751 { 752 /* 753 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 754 * whole block device, not on a partition. This prevents overspray 755 * between sibling partitions. 756 */ 757 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 758 return -EPERM; 759 return 0; 760 } 761 762 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 763 unsigned int cmd, unsigned long arg) 764 { 765 struct mmc_blk_data *md; 766 int ret; 767 768 switch (cmd) { 769 case MMC_IOC_CMD: 770 ret = mmc_blk_check_blkdev(bdev); 771 if (ret) 772 return ret; 773 md = mmc_blk_get(bdev->bd_disk); 774 if (!md) 775 return -EINVAL; 776 ret = mmc_blk_ioctl_cmd(md, 777 (struct mmc_ioc_cmd __user *)arg, 778 NULL); 779 mmc_blk_put(md); 780 return ret; 781 case MMC_IOC_MULTI_CMD: 782 ret = mmc_blk_check_blkdev(bdev); 783 if (ret) 784 return ret; 785 md = mmc_blk_get(bdev->bd_disk); 786 if (!md) 787 return -EINVAL; 788 ret = mmc_blk_ioctl_multi_cmd(md, 789 (struct mmc_ioc_multi_cmd __user *)arg, 790 NULL); 791 mmc_blk_put(md); 792 return ret; 793 default: 794 return -EINVAL; 795 } 796 } 797 798 #ifdef CONFIG_COMPAT 799 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 800 unsigned int cmd, unsigned long arg) 801 { 802 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 803 } 804 #endif 805 806 static const struct block_device_operations mmc_bdops = { 807 .open = mmc_blk_open, 808 .release = mmc_blk_release, 809 .getgeo = mmc_blk_getgeo, 810 .owner = THIS_MODULE, 811 .ioctl = mmc_blk_ioctl, 812 #ifdef CONFIG_COMPAT 813 .compat_ioctl = mmc_blk_compat_ioctl, 814 #endif 815 }; 816 817 static int mmc_blk_part_switch_pre(struct mmc_card *card, 818 unsigned int part_type) 819 { 820 int ret = 0; 821 822 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 823 if (card->ext_csd.cmdq_en) { 824 ret = mmc_cmdq_disable(card); 825 if (ret) 826 return ret; 827 } 828 mmc_retune_pause(card->host); 829 } 830 831 return ret; 832 } 833 834 static int mmc_blk_part_switch_post(struct mmc_card *card, 835 unsigned int part_type) 836 { 837 int ret = 0; 838 839 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 840 mmc_retune_unpause(card->host); 841 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 842 ret = mmc_cmdq_enable(card); 843 } 844 845 return ret; 846 } 847 848 static inline int mmc_blk_part_switch(struct mmc_card *card, 849 unsigned int part_type) 850 { 851 int ret = 0; 852 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 853 854 if (main_md->part_curr == part_type) 855 return 0; 856 857 if (mmc_card_mmc(card)) { 858 u8 part_config = card->ext_csd.part_config; 859 860 ret = mmc_blk_part_switch_pre(card, part_type); 861 if (ret) 862 return ret; 863 864 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 865 part_config |= part_type; 866 867 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 868 EXT_CSD_PART_CONFIG, part_config, 869 card->ext_csd.part_time); 870 if (ret) { 871 mmc_blk_part_switch_post(card, part_type); 872 return ret; 873 } 874 875 card->ext_csd.part_config = part_config; 876 877 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 878 } 879 880 main_md->part_curr = part_type; 881 return ret; 882 } 883 884 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 885 { 886 int err; 887 u32 result; 888 __be32 *blocks; 889 890 struct mmc_request mrq = {}; 891 struct mmc_command cmd = {}; 892 struct mmc_data data = {}; 893 894 struct scatterlist sg; 895 896 cmd.opcode = MMC_APP_CMD; 897 cmd.arg = card->rca << 16; 898 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 899 900 err = mmc_wait_for_cmd(card->host, &cmd, 0); 901 if (err) 902 return err; 903 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 904 return -EIO; 905 906 memset(&cmd, 0, sizeof(struct mmc_command)); 907 908 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 909 cmd.arg = 0; 910 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 911 912 data.blksz = 4; 913 data.blocks = 1; 914 data.flags = MMC_DATA_READ; 915 data.sg = &sg; 916 data.sg_len = 1; 917 mmc_set_data_timeout(&data, card); 918 919 mrq.cmd = &cmd; 920 mrq.data = &data; 921 922 blocks = kmalloc(4, GFP_KERNEL); 923 if (!blocks) 924 return -ENOMEM; 925 926 sg_init_one(&sg, blocks, 4); 927 928 mmc_wait_for_req(card->host, &mrq); 929 930 result = ntohl(*blocks); 931 kfree(blocks); 932 933 if (cmd.error || data.error) 934 return -EIO; 935 936 *written_blocks = result; 937 938 return 0; 939 } 940 941 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 942 { 943 if (host->actual_clock) 944 return host->actual_clock / 1000; 945 946 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 947 if (host->ios.clock) 948 return host->ios.clock / 2000; 949 950 /* How can there be no clock */ 951 WARN_ON_ONCE(1); 952 return 100; /* 100 kHz is minimum possible value */ 953 } 954 955 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 956 struct mmc_data *data) 957 { 958 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 959 unsigned int khz; 960 961 if (data->timeout_clks) { 962 khz = mmc_blk_clock_khz(host); 963 ms += DIV_ROUND_UP(data->timeout_clks, khz); 964 } 965 966 return ms; 967 } 968 969 static inline bool mmc_blk_in_tran_state(u32 status) 970 { 971 /* 972 * Some cards mishandle the status bits, so make sure to check both the 973 * busy indication and the card state. 974 */ 975 return status & R1_READY_FOR_DATA && 976 (R1_CURRENT_STATE(status) == R1_STATE_TRAN); 977 } 978 979 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 980 struct request *req, u32 *resp_errs) 981 { 982 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 983 int err = 0; 984 u32 status; 985 986 do { 987 bool done = time_after(jiffies, timeout); 988 989 err = __mmc_send_status(card, &status, 5); 990 if (err) { 991 pr_err("%s: error %d requesting status\n", 992 req->rq_disk->disk_name, err); 993 return err; 994 } 995 996 /* Accumulate any response error bits seen */ 997 if (resp_errs) 998 *resp_errs |= status; 999 1000 /* 1001 * Timeout if the device never becomes ready for data and never 1002 * leaves the program state. 1003 */ 1004 if (done) { 1005 pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n", 1006 mmc_hostname(card->host), 1007 req->rq_disk->disk_name, __func__, status); 1008 return -ETIMEDOUT; 1009 } 1010 1011 /* 1012 * Some cards mishandle the status bits, 1013 * so make sure to check both the busy 1014 * indication and the card state. 1015 */ 1016 } while (!mmc_blk_in_tran_state(status)); 1017 1018 return err; 1019 } 1020 1021 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1022 int type) 1023 { 1024 int err; 1025 1026 if (md->reset_done & type) 1027 return -EEXIST; 1028 1029 md->reset_done |= type; 1030 err = mmc_hw_reset(host); 1031 /* Ensure we switch back to the correct partition */ 1032 if (err != -EOPNOTSUPP) { 1033 struct mmc_blk_data *main_md = 1034 dev_get_drvdata(&host->card->dev); 1035 int part_err; 1036 1037 main_md->part_curr = main_md->part_type; 1038 part_err = mmc_blk_part_switch(host->card, md->part_type); 1039 if (part_err) { 1040 /* 1041 * We have failed to get back into the correct 1042 * partition, so we need to abort the whole request. 1043 */ 1044 return -ENODEV; 1045 } 1046 } 1047 return err; 1048 } 1049 1050 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1051 { 1052 md->reset_done &= ~type; 1053 } 1054 1055 /* 1056 * The non-block commands come back from the block layer after it queued it and 1057 * processed it with all other requests and then they get issued in this 1058 * function. 1059 */ 1060 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1061 { 1062 struct mmc_queue_req *mq_rq; 1063 struct mmc_card *card = mq->card; 1064 struct mmc_blk_data *md = mq->blkdata; 1065 struct mmc_blk_ioc_data **idata; 1066 bool rpmb_ioctl; 1067 u8 **ext_csd; 1068 u32 status; 1069 int ret; 1070 int i; 1071 1072 mq_rq = req_to_mmc_queue_req(req); 1073 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1074 1075 switch (mq_rq->drv_op) { 1076 case MMC_DRV_OP_IOCTL: 1077 case MMC_DRV_OP_IOCTL_RPMB: 1078 idata = mq_rq->drv_op_data; 1079 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1080 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1081 if (ret) 1082 break; 1083 } 1084 /* Always switch back to main area after RPMB access */ 1085 if (rpmb_ioctl) 1086 mmc_blk_part_switch(card, 0); 1087 break; 1088 case MMC_DRV_OP_BOOT_WP: 1089 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1090 card->ext_csd.boot_ro_lock | 1091 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1092 card->ext_csd.part_time); 1093 if (ret) 1094 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1095 md->disk->disk_name, ret); 1096 else 1097 card->ext_csd.boot_ro_lock |= 1098 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1099 break; 1100 case MMC_DRV_OP_GET_CARD_STATUS: 1101 ret = mmc_send_status(card, &status); 1102 if (!ret) 1103 ret = status; 1104 break; 1105 case MMC_DRV_OP_GET_EXT_CSD: 1106 ext_csd = mq_rq->drv_op_data; 1107 ret = mmc_get_ext_csd(card, ext_csd); 1108 break; 1109 default: 1110 pr_err("%s: unknown driver specific operation\n", 1111 md->disk->disk_name); 1112 ret = -EINVAL; 1113 break; 1114 } 1115 mq_rq->drv_op_result = ret; 1116 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1117 } 1118 1119 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1120 { 1121 struct mmc_blk_data *md = mq->blkdata; 1122 struct mmc_card *card = md->queue.card; 1123 unsigned int from, nr, arg; 1124 int err = 0, type = MMC_BLK_DISCARD; 1125 blk_status_t status = BLK_STS_OK; 1126 1127 if (!mmc_can_erase(card)) { 1128 status = BLK_STS_NOTSUPP; 1129 goto fail; 1130 } 1131 1132 from = blk_rq_pos(req); 1133 nr = blk_rq_sectors(req); 1134 1135 if (mmc_can_discard(card)) 1136 arg = MMC_DISCARD_ARG; 1137 else if (mmc_can_trim(card)) 1138 arg = MMC_TRIM_ARG; 1139 else 1140 arg = MMC_ERASE_ARG; 1141 do { 1142 err = 0; 1143 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1144 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1145 INAND_CMD38_ARG_EXT_CSD, 1146 arg == MMC_TRIM_ARG ? 1147 INAND_CMD38_ARG_TRIM : 1148 INAND_CMD38_ARG_ERASE, 1149 0); 1150 } 1151 if (!err) 1152 err = mmc_erase(card, from, nr, arg); 1153 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1154 if (err) 1155 status = BLK_STS_IOERR; 1156 else 1157 mmc_blk_reset_success(md, type); 1158 fail: 1159 blk_mq_end_request(req, status); 1160 } 1161 1162 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1163 struct request *req) 1164 { 1165 struct mmc_blk_data *md = mq->blkdata; 1166 struct mmc_card *card = md->queue.card; 1167 unsigned int from, nr, arg; 1168 int err = 0, type = MMC_BLK_SECDISCARD; 1169 blk_status_t status = BLK_STS_OK; 1170 1171 if (!(mmc_can_secure_erase_trim(card))) { 1172 status = BLK_STS_NOTSUPP; 1173 goto out; 1174 } 1175 1176 from = blk_rq_pos(req); 1177 nr = blk_rq_sectors(req); 1178 1179 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1180 arg = MMC_SECURE_TRIM1_ARG; 1181 else 1182 arg = MMC_SECURE_ERASE_ARG; 1183 1184 retry: 1185 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1186 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1187 INAND_CMD38_ARG_EXT_CSD, 1188 arg == MMC_SECURE_TRIM1_ARG ? 1189 INAND_CMD38_ARG_SECTRIM1 : 1190 INAND_CMD38_ARG_SECERASE, 1191 0); 1192 if (err) 1193 goto out_retry; 1194 } 1195 1196 err = mmc_erase(card, from, nr, arg); 1197 if (err == -EIO) 1198 goto out_retry; 1199 if (err) { 1200 status = BLK_STS_IOERR; 1201 goto out; 1202 } 1203 1204 if (arg == MMC_SECURE_TRIM1_ARG) { 1205 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1206 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1207 INAND_CMD38_ARG_EXT_CSD, 1208 INAND_CMD38_ARG_SECTRIM2, 1209 0); 1210 if (err) 1211 goto out_retry; 1212 } 1213 1214 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1215 if (err == -EIO) 1216 goto out_retry; 1217 if (err) { 1218 status = BLK_STS_IOERR; 1219 goto out; 1220 } 1221 } 1222 1223 out_retry: 1224 if (err && !mmc_blk_reset(md, card->host, type)) 1225 goto retry; 1226 if (!err) 1227 mmc_blk_reset_success(md, type); 1228 out: 1229 blk_mq_end_request(req, status); 1230 } 1231 1232 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1233 { 1234 struct mmc_blk_data *md = mq->blkdata; 1235 struct mmc_card *card = md->queue.card; 1236 int ret = 0; 1237 1238 ret = mmc_flush_cache(card); 1239 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1240 } 1241 1242 /* 1243 * Reformat current write as a reliable write, supporting 1244 * both legacy and the enhanced reliable write MMC cards. 1245 * In each transfer we'll handle only as much as a single 1246 * reliable write can handle, thus finish the request in 1247 * partial completions. 1248 */ 1249 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1250 struct mmc_card *card, 1251 struct request *req) 1252 { 1253 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1254 /* Legacy mode imposes restrictions on transfers. */ 1255 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1256 brq->data.blocks = 1; 1257 1258 if (brq->data.blocks > card->ext_csd.rel_sectors) 1259 brq->data.blocks = card->ext_csd.rel_sectors; 1260 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1261 brq->data.blocks = 1; 1262 } 1263 } 1264 1265 #define CMD_ERRORS_EXCL_OOR \ 1266 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1267 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1268 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1269 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1270 R1_CC_ERROR | /* Card controller error */ \ 1271 R1_ERROR) /* General/unknown error */ 1272 1273 #define CMD_ERRORS \ 1274 (CMD_ERRORS_EXCL_OOR | \ 1275 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1276 1277 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1278 { 1279 u32 val; 1280 1281 /* 1282 * Per the SD specification(physical layer version 4.10)[1], 1283 * section 4.3.3, it explicitly states that "When the last 1284 * block of user area is read using CMD18, the host should 1285 * ignore OUT_OF_RANGE error that may occur even the sequence 1286 * is correct". And JESD84-B51 for eMMC also has a similar 1287 * statement on section 6.8.3. 1288 * 1289 * Multiple block read/write could be done by either predefined 1290 * method, namely CMD23, or open-ending mode. For open-ending mode, 1291 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1292 * 1293 * However the spec[1] doesn't tell us whether we should also 1294 * ignore that for predefined method. But per the spec[1], section 1295 * 4.15 Set Block Count Command, it says"If illegal block count 1296 * is set, out of range error will be indicated during read/write 1297 * operation (For example, data transfer is stopped at user area 1298 * boundary)." In another word, we could expect a out of range error 1299 * in the response for the following CMD18/25. And if argument of 1300 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1301 * we could also expect to get a -ETIMEDOUT or any error number from 1302 * the host drivers due to missing data response(for write)/data(for 1303 * read), as the cards will stop the data transfer by itself per the 1304 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1305 */ 1306 1307 if (!brq->stop.error) { 1308 bool oor_with_open_end; 1309 /* If there is no error yet, check R1 response */ 1310 1311 val = brq->stop.resp[0] & CMD_ERRORS; 1312 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1313 1314 if (val && !oor_with_open_end) 1315 brq->stop.error = -EIO; 1316 } 1317 } 1318 1319 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1320 int disable_multi, bool *do_rel_wr_p, 1321 bool *do_data_tag_p) 1322 { 1323 struct mmc_blk_data *md = mq->blkdata; 1324 struct mmc_card *card = md->queue.card; 1325 struct mmc_blk_request *brq = &mqrq->brq; 1326 struct request *req = mmc_queue_req_to_req(mqrq); 1327 bool do_rel_wr, do_data_tag; 1328 1329 /* 1330 * Reliable writes are used to implement Forced Unit Access and 1331 * are supported only on MMCs. 1332 */ 1333 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1334 rq_data_dir(req) == WRITE && 1335 (md->flags & MMC_BLK_REL_WR); 1336 1337 memset(brq, 0, sizeof(struct mmc_blk_request)); 1338 1339 brq->mrq.data = &brq->data; 1340 brq->mrq.tag = req->tag; 1341 1342 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1343 brq->stop.arg = 0; 1344 1345 if (rq_data_dir(req) == READ) { 1346 brq->data.flags = MMC_DATA_READ; 1347 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1348 } else { 1349 brq->data.flags = MMC_DATA_WRITE; 1350 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1351 } 1352 1353 brq->data.blksz = 512; 1354 brq->data.blocks = blk_rq_sectors(req); 1355 brq->data.blk_addr = blk_rq_pos(req); 1356 1357 /* 1358 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1359 * The eMMC will give "high" priority tasks priority over "simple" 1360 * priority tasks. Here we always set "simple" priority by not setting 1361 * MMC_DATA_PRIO. 1362 */ 1363 1364 /* 1365 * The block layer doesn't support all sector count 1366 * restrictions, so we need to be prepared for too big 1367 * requests. 1368 */ 1369 if (brq->data.blocks > card->host->max_blk_count) 1370 brq->data.blocks = card->host->max_blk_count; 1371 1372 if (brq->data.blocks > 1) { 1373 /* 1374 * Some SD cards in SPI mode return a CRC error or even lock up 1375 * completely when trying to read the last block using a 1376 * multiblock read command. 1377 */ 1378 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1379 (blk_rq_pos(req) + blk_rq_sectors(req) == 1380 get_capacity(md->disk))) 1381 brq->data.blocks--; 1382 1383 /* 1384 * After a read error, we redo the request one sector 1385 * at a time in order to accurately determine which 1386 * sectors can be read successfully. 1387 */ 1388 if (disable_multi) 1389 brq->data.blocks = 1; 1390 1391 /* 1392 * Some controllers have HW issues while operating 1393 * in multiple I/O mode 1394 */ 1395 if (card->host->ops->multi_io_quirk) 1396 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1397 (rq_data_dir(req) == READ) ? 1398 MMC_DATA_READ : MMC_DATA_WRITE, 1399 brq->data.blocks); 1400 } 1401 1402 if (do_rel_wr) { 1403 mmc_apply_rel_rw(brq, card, req); 1404 brq->data.flags |= MMC_DATA_REL_WR; 1405 } 1406 1407 /* 1408 * Data tag is used only during writing meta data to speed 1409 * up write and any subsequent read of this meta data 1410 */ 1411 do_data_tag = card->ext_csd.data_tag_unit_size && 1412 (req->cmd_flags & REQ_META) && 1413 (rq_data_dir(req) == WRITE) && 1414 ((brq->data.blocks * brq->data.blksz) >= 1415 card->ext_csd.data_tag_unit_size); 1416 1417 if (do_data_tag) 1418 brq->data.flags |= MMC_DATA_DAT_TAG; 1419 1420 mmc_set_data_timeout(&brq->data, card); 1421 1422 brq->data.sg = mqrq->sg; 1423 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1424 1425 /* 1426 * Adjust the sg list so it is the same size as the 1427 * request. 1428 */ 1429 if (brq->data.blocks != blk_rq_sectors(req)) { 1430 int i, data_size = brq->data.blocks << 9; 1431 struct scatterlist *sg; 1432 1433 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1434 data_size -= sg->length; 1435 if (data_size <= 0) { 1436 sg->length += data_size; 1437 i++; 1438 break; 1439 } 1440 } 1441 brq->data.sg_len = i; 1442 } 1443 1444 if (do_rel_wr_p) 1445 *do_rel_wr_p = do_rel_wr; 1446 1447 if (do_data_tag_p) 1448 *do_data_tag_p = do_data_tag; 1449 } 1450 1451 #define MMC_CQE_RETRIES 2 1452 1453 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1454 { 1455 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1456 struct mmc_request *mrq = &mqrq->brq.mrq; 1457 struct request_queue *q = req->q; 1458 struct mmc_host *host = mq->card->host; 1459 unsigned long flags; 1460 bool put_card; 1461 int err; 1462 1463 mmc_cqe_post_req(host, mrq); 1464 1465 if (mrq->cmd && mrq->cmd->error) 1466 err = mrq->cmd->error; 1467 else if (mrq->data && mrq->data->error) 1468 err = mrq->data->error; 1469 else 1470 err = 0; 1471 1472 if (err) { 1473 if (mqrq->retries++ < MMC_CQE_RETRIES) 1474 blk_mq_requeue_request(req, true); 1475 else 1476 blk_mq_end_request(req, BLK_STS_IOERR); 1477 } else if (mrq->data) { 1478 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1479 blk_mq_requeue_request(req, true); 1480 else 1481 __blk_mq_end_request(req, BLK_STS_OK); 1482 } else { 1483 blk_mq_end_request(req, BLK_STS_OK); 1484 } 1485 1486 spin_lock_irqsave(q->queue_lock, flags); 1487 1488 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1489 1490 put_card = (mmc_tot_in_flight(mq) == 0); 1491 1492 mmc_cqe_check_busy(mq); 1493 1494 spin_unlock_irqrestore(q->queue_lock, flags); 1495 1496 if (!mq->cqe_busy) 1497 blk_mq_run_hw_queues(q, true); 1498 1499 if (put_card) 1500 mmc_put_card(mq->card, &mq->ctx); 1501 } 1502 1503 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1504 { 1505 struct mmc_card *card = mq->card; 1506 struct mmc_host *host = card->host; 1507 int err; 1508 1509 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1510 1511 err = mmc_cqe_recovery(host); 1512 if (err) 1513 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1514 else 1515 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1516 1517 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1518 } 1519 1520 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1521 { 1522 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1523 brq.mrq); 1524 struct request *req = mmc_queue_req_to_req(mqrq); 1525 struct request_queue *q = req->q; 1526 struct mmc_queue *mq = q->queuedata; 1527 1528 /* 1529 * Block layer timeouts race with completions which means the normal 1530 * completion path cannot be used during recovery. 1531 */ 1532 if (mq->in_recovery) 1533 mmc_blk_cqe_complete_rq(mq, req); 1534 else 1535 blk_mq_complete_request(req); 1536 } 1537 1538 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1539 { 1540 mrq->done = mmc_blk_cqe_req_done; 1541 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1542 1543 return mmc_cqe_start_req(host, mrq); 1544 } 1545 1546 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1547 struct request *req) 1548 { 1549 struct mmc_blk_request *brq = &mqrq->brq; 1550 1551 memset(brq, 0, sizeof(*brq)); 1552 1553 brq->mrq.cmd = &brq->cmd; 1554 brq->mrq.tag = req->tag; 1555 1556 return &brq->mrq; 1557 } 1558 1559 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1560 { 1561 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1562 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1563 1564 mrq->cmd->opcode = MMC_SWITCH; 1565 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1566 (EXT_CSD_FLUSH_CACHE << 16) | 1567 (1 << 8) | 1568 EXT_CSD_CMD_SET_NORMAL; 1569 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1570 1571 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1572 } 1573 1574 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1575 { 1576 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1577 1578 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1579 1580 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1581 } 1582 1583 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1584 struct mmc_card *card, 1585 int disable_multi, 1586 struct mmc_queue *mq) 1587 { 1588 u32 readcmd, writecmd; 1589 struct mmc_blk_request *brq = &mqrq->brq; 1590 struct request *req = mmc_queue_req_to_req(mqrq); 1591 struct mmc_blk_data *md = mq->blkdata; 1592 bool do_rel_wr, do_data_tag; 1593 1594 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1595 1596 brq->mrq.cmd = &brq->cmd; 1597 1598 brq->cmd.arg = blk_rq_pos(req); 1599 if (!mmc_card_blockaddr(card)) 1600 brq->cmd.arg <<= 9; 1601 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1602 1603 if (brq->data.blocks > 1 || do_rel_wr) { 1604 /* SPI multiblock writes terminate using a special 1605 * token, not a STOP_TRANSMISSION request. 1606 */ 1607 if (!mmc_host_is_spi(card->host) || 1608 rq_data_dir(req) == READ) 1609 brq->mrq.stop = &brq->stop; 1610 readcmd = MMC_READ_MULTIPLE_BLOCK; 1611 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1612 } else { 1613 brq->mrq.stop = NULL; 1614 readcmd = MMC_READ_SINGLE_BLOCK; 1615 writecmd = MMC_WRITE_BLOCK; 1616 } 1617 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1618 1619 /* 1620 * Pre-defined multi-block transfers are preferable to 1621 * open ended-ones (and necessary for reliable writes). 1622 * However, it is not sufficient to just send CMD23, 1623 * and avoid the final CMD12, as on an error condition 1624 * CMD12 (stop) needs to be sent anyway. This, coupled 1625 * with Auto-CMD23 enhancements provided by some 1626 * hosts, means that the complexity of dealing 1627 * with this is best left to the host. If CMD23 is 1628 * supported by card and host, we'll fill sbc in and let 1629 * the host deal with handling it correctly. This means 1630 * that for hosts that don't expose MMC_CAP_CMD23, no 1631 * change of behavior will be observed. 1632 * 1633 * N.B: Some MMC cards experience perf degradation. 1634 * We'll avoid using CMD23-bounded multiblock writes for 1635 * these, while retaining features like reliable writes. 1636 */ 1637 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1638 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1639 do_data_tag)) { 1640 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1641 brq->sbc.arg = brq->data.blocks | 1642 (do_rel_wr ? (1 << 31) : 0) | 1643 (do_data_tag ? (1 << 29) : 0); 1644 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1645 brq->mrq.sbc = &brq->sbc; 1646 } 1647 } 1648 1649 #define MMC_MAX_RETRIES 5 1650 #define MMC_DATA_RETRIES 2 1651 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1652 1653 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1654 { 1655 struct mmc_command cmd = { 1656 .opcode = MMC_STOP_TRANSMISSION, 1657 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1658 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1659 .busy_timeout = timeout, 1660 }; 1661 1662 return mmc_wait_for_cmd(card->host, &cmd, 5); 1663 } 1664 1665 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1666 { 1667 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1668 struct mmc_blk_request *brq = &mqrq->brq; 1669 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1670 int err; 1671 1672 mmc_retune_hold_now(card->host); 1673 1674 mmc_blk_send_stop(card, timeout); 1675 1676 err = card_busy_detect(card, timeout, req, NULL); 1677 1678 mmc_retune_release(card->host); 1679 1680 return err; 1681 } 1682 1683 #define MMC_READ_SINGLE_RETRIES 2 1684 1685 /* Single sector read during recovery */ 1686 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1687 { 1688 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1689 struct mmc_request *mrq = &mqrq->brq.mrq; 1690 struct mmc_card *card = mq->card; 1691 struct mmc_host *host = card->host; 1692 blk_status_t error = BLK_STS_OK; 1693 int retries = 0; 1694 1695 do { 1696 u32 status; 1697 int err; 1698 1699 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1700 1701 mmc_wait_for_req(host, mrq); 1702 1703 err = mmc_send_status(card, &status); 1704 if (err) 1705 goto error_exit; 1706 1707 if (!mmc_host_is_spi(host) && 1708 !mmc_blk_in_tran_state(status)) { 1709 err = mmc_blk_fix_state(card, req); 1710 if (err) 1711 goto error_exit; 1712 } 1713 1714 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES) 1715 continue; 1716 1717 retries = 0; 1718 1719 if (mrq->cmd->error || 1720 mrq->data->error || 1721 (!mmc_host_is_spi(host) && 1722 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1723 error = BLK_STS_IOERR; 1724 else 1725 error = BLK_STS_OK; 1726 1727 } while (blk_update_request(req, error, 512)); 1728 1729 return; 1730 1731 error_exit: 1732 mrq->data->bytes_xfered = 0; 1733 blk_update_request(req, BLK_STS_IOERR, 512); 1734 /* Let it try the remaining request again */ 1735 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1736 mqrq->retries = MMC_MAX_RETRIES - 1; 1737 } 1738 1739 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1740 { 1741 return !!brq->mrq.sbc; 1742 } 1743 1744 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1745 { 1746 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1747 } 1748 1749 /* 1750 * Check for errors the host controller driver might not have seen such as 1751 * response mode errors or invalid card state. 1752 */ 1753 static bool mmc_blk_status_error(struct request *req, u32 status) 1754 { 1755 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1756 struct mmc_blk_request *brq = &mqrq->brq; 1757 struct mmc_queue *mq = req->q->queuedata; 1758 u32 stop_err_bits; 1759 1760 if (mmc_host_is_spi(mq->card->host)) 1761 return false; 1762 1763 stop_err_bits = mmc_blk_stop_err_bits(brq); 1764 1765 return brq->cmd.resp[0] & CMD_ERRORS || 1766 brq->stop.resp[0] & stop_err_bits || 1767 status & stop_err_bits || 1768 (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status)); 1769 } 1770 1771 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1772 { 1773 return !brq->sbc.error && !brq->cmd.error && 1774 !(brq->cmd.resp[0] & CMD_ERRORS); 1775 } 1776 1777 /* 1778 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1779 * policy: 1780 * 1. A request that has transferred at least some data is considered 1781 * successful and will be requeued if there is remaining data to 1782 * transfer. 1783 * 2. Otherwise the number of retries is incremented and the request 1784 * will be requeued if there are remaining retries. 1785 * 3. Otherwise the request will be errored out. 1786 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1787 * mqrq->retries. So there are only 4 possible actions here: 1788 * 1. do not accept the bytes_xfered value i.e. set it to zero 1789 * 2. change mqrq->retries to determine the number of retries 1790 * 3. try to reset the card 1791 * 4. read one sector at a time 1792 */ 1793 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1794 { 1795 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1796 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1797 struct mmc_blk_request *brq = &mqrq->brq; 1798 struct mmc_blk_data *md = mq->blkdata; 1799 struct mmc_card *card = mq->card; 1800 u32 status; 1801 u32 blocks; 1802 int err; 1803 1804 /* 1805 * Some errors the host driver might not have seen. Set the number of 1806 * bytes transferred to zero in that case. 1807 */ 1808 err = __mmc_send_status(card, &status, 0); 1809 if (err || mmc_blk_status_error(req, status)) 1810 brq->data.bytes_xfered = 0; 1811 1812 mmc_retune_release(card->host); 1813 1814 /* 1815 * Try again to get the status. This also provides an opportunity for 1816 * re-tuning. 1817 */ 1818 if (err) 1819 err = __mmc_send_status(card, &status, 0); 1820 1821 /* 1822 * Nothing more to do after the number of bytes transferred has been 1823 * updated and there is no card. 1824 */ 1825 if (err && mmc_detect_card_removed(card->host)) 1826 return; 1827 1828 /* Try to get back to "tran" state */ 1829 if (!mmc_host_is_spi(mq->card->host) && 1830 (err || !mmc_blk_in_tran_state(status))) 1831 err = mmc_blk_fix_state(mq->card, req); 1832 1833 /* 1834 * Special case for SD cards where the card might record the number of 1835 * blocks written. 1836 */ 1837 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1838 rq_data_dir(req) == WRITE) { 1839 if (mmc_sd_num_wr_blocks(card, &blocks)) 1840 brq->data.bytes_xfered = 0; 1841 else 1842 brq->data.bytes_xfered = blocks << 9; 1843 } 1844 1845 /* Reset if the card is in a bad state */ 1846 if (!mmc_host_is_spi(mq->card->host) && 1847 err && mmc_blk_reset(md, card->host, type)) { 1848 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name); 1849 mqrq->retries = MMC_NO_RETRIES; 1850 return; 1851 } 1852 1853 /* 1854 * If anything was done, just return and if there is anything remaining 1855 * on the request it will get requeued. 1856 */ 1857 if (brq->data.bytes_xfered) 1858 return; 1859 1860 /* Reset before last retry */ 1861 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1862 mmc_blk_reset(md, card->host, type); 1863 1864 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1865 if (brq->sbc.error || brq->cmd.error) 1866 return; 1867 1868 /* Reduce the remaining retries for data errors */ 1869 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1870 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1871 return; 1872 } 1873 1874 /* FIXME: Missing single sector read for large sector size */ 1875 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1876 brq->data.blocks > 1) { 1877 /* Read one sector at a time */ 1878 mmc_blk_read_single(mq, req); 1879 return; 1880 } 1881 } 1882 1883 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1884 { 1885 mmc_blk_eval_resp_error(brq); 1886 1887 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1888 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1889 } 1890 1891 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1892 { 1893 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1894 u32 status = 0; 1895 int err; 1896 1897 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) 1898 return 0; 1899 1900 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status); 1901 1902 /* 1903 * Do not assume data transferred correctly if there are any error bits 1904 * set. 1905 */ 1906 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1907 mqrq->brq.data.bytes_xfered = 0; 1908 err = err ? err : -EIO; 1909 } 1910 1911 /* Copy the exception bit so it will be seen later on */ 1912 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT) 1913 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1914 1915 return err; 1916 } 1917 1918 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1919 struct request *req) 1920 { 1921 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1922 1923 mmc_blk_reset_success(mq->blkdata, type); 1924 } 1925 1926 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1927 { 1928 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1929 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1930 1931 if (nr_bytes) { 1932 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1933 blk_mq_requeue_request(req, true); 1934 else 1935 __blk_mq_end_request(req, BLK_STS_OK); 1936 } else if (!blk_rq_bytes(req)) { 1937 __blk_mq_end_request(req, BLK_STS_IOERR); 1938 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1939 blk_mq_requeue_request(req, true); 1940 } else { 1941 if (mmc_card_removed(mq->card)) 1942 req->rq_flags |= RQF_QUIET; 1943 blk_mq_end_request(req, BLK_STS_IOERR); 1944 } 1945 } 1946 1947 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1948 struct mmc_queue_req *mqrq) 1949 { 1950 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1951 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1952 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1953 } 1954 1955 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 1956 struct mmc_queue_req *mqrq) 1957 { 1958 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 1959 mmc_start_bkops(mq->card, true); 1960 } 1961 1962 void mmc_blk_mq_complete(struct request *req) 1963 { 1964 struct mmc_queue *mq = req->q->queuedata; 1965 1966 if (mq->use_cqe) 1967 mmc_blk_cqe_complete_rq(mq, req); 1968 else 1969 mmc_blk_mq_complete_rq(mq, req); 1970 } 1971 1972 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 1973 struct request *req) 1974 { 1975 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1976 struct mmc_host *host = mq->card->host; 1977 1978 if (mmc_blk_rq_error(&mqrq->brq) || 1979 mmc_blk_card_busy(mq->card, req)) { 1980 mmc_blk_mq_rw_recovery(mq, req); 1981 } else { 1982 mmc_blk_rw_reset_success(mq, req); 1983 mmc_retune_release(host); 1984 } 1985 1986 mmc_blk_urgent_bkops(mq, mqrq); 1987 } 1988 1989 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 1990 { 1991 struct request_queue *q = req->q; 1992 unsigned long flags; 1993 bool put_card; 1994 1995 spin_lock_irqsave(q->queue_lock, flags); 1996 1997 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1998 1999 put_card = (mmc_tot_in_flight(mq) == 0); 2000 2001 spin_unlock_irqrestore(q->queue_lock, flags); 2002 2003 if (put_card) 2004 mmc_put_card(mq->card, &mq->ctx); 2005 } 2006 2007 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req) 2008 { 2009 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2010 struct mmc_request *mrq = &mqrq->brq.mrq; 2011 struct mmc_host *host = mq->card->host; 2012 2013 mmc_post_req(host, mrq, 0); 2014 2015 /* 2016 * Block layer timeouts race with completions which means the normal 2017 * completion path cannot be used during recovery. 2018 */ 2019 if (mq->in_recovery) 2020 mmc_blk_mq_complete_rq(mq, req); 2021 else 2022 blk_mq_complete_request(req); 2023 2024 mmc_blk_mq_dec_in_flight(mq, req); 2025 } 2026 2027 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2028 { 2029 struct request *req = mq->recovery_req; 2030 struct mmc_host *host = mq->card->host; 2031 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2032 2033 mq->recovery_req = NULL; 2034 mq->rw_wait = false; 2035 2036 if (mmc_blk_rq_error(&mqrq->brq)) { 2037 mmc_retune_hold_now(host); 2038 mmc_blk_mq_rw_recovery(mq, req); 2039 } 2040 2041 mmc_blk_urgent_bkops(mq, mqrq); 2042 2043 mmc_blk_mq_post_req(mq, req); 2044 } 2045 2046 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2047 struct request **prev_req) 2048 { 2049 if (mmc_host_done_complete(mq->card->host)) 2050 return; 2051 2052 mutex_lock(&mq->complete_lock); 2053 2054 if (!mq->complete_req) 2055 goto out_unlock; 2056 2057 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2058 2059 if (prev_req) 2060 *prev_req = mq->complete_req; 2061 else 2062 mmc_blk_mq_post_req(mq, mq->complete_req); 2063 2064 mq->complete_req = NULL; 2065 2066 out_unlock: 2067 mutex_unlock(&mq->complete_lock); 2068 } 2069 2070 void mmc_blk_mq_complete_work(struct work_struct *work) 2071 { 2072 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2073 complete_work); 2074 2075 mmc_blk_mq_complete_prev_req(mq, NULL); 2076 } 2077 2078 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2079 { 2080 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2081 brq.mrq); 2082 struct request *req = mmc_queue_req_to_req(mqrq); 2083 struct request_queue *q = req->q; 2084 struct mmc_queue *mq = q->queuedata; 2085 struct mmc_host *host = mq->card->host; 2086 unsigned long flags; 2087 2088 if (!mmc_host_done_complete(host)) { 2089 bool waiting; 2090 2091 /* 2092 * We cannot complete the request in this context, so record 2093 * that there is a request to complete, and that a following 2094 * request does not need to wait (although it does need to 2095 * complete complete_req first). 2096 */ 2097 spin_lock_irqsave(q->queue_lock, flags); 2098 mq->complete_req = req; 2099 mq->rw_wait = false; 2100 waiting = mq->waiting; 2101 spin_unlock_irqrestore(q->queue_lock, flags); 2102 2103 /* 2104 * If 'waiting' then the waiting task will complete this 2105 * request, otherwise queue a work to do it. Note that 2106 * complete_work may still race with the dispatch of a following 2107 * request. 2108 */ 2109 if (waiting) 2110 wake_up(&mq->wait); 2111 else 2112 kblockd_schedule_work(&mq->complete_work); 2113 2114 return; 2115 } 2116 2117 /* Take the recovery path for errors or urgent background operations */ 2118 if (mmc_blk_rq_error(&mqrq->brq) || 2119 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2120 spin_lock_irqsave(q->queue_lock, flags); 2121 mq->recovery_needed = true; 2122 mq->recovery_req = req; 2123 spin_unlock_irqrestore(q->queue_lock, flags); 2124 wake_up(&mq->wait); 2125 schedule_work(&mq->recovery_work); 2126 return; 2127 } 2128 2129 mmc_blk_rw_reset_success(mq, req); 2130 2131 mq->rw_wait = false; 2132 wake_up(&mq->wait); 2133 2134 mmc_blk_mq_post_req(mq, req); 2135 } 2136 2137 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2138 { 2139 struct request_queue *q = mq->queue; 2140 unsigned long flags; 2141 bool done; 2142 2143 /* 2144 * Wait while there is another request in progress, but not if recovery 2145 * is needed. Also indicate whether there is a request waiting to start. 2146 */ 2147 spin_lock_irqsave(q->queue_lock, flags); 2148 if (mq->recovery_needed) { 2149 *err = -EBUSY; 2150 done = true; 2151 } else { 2152 done = !mq->rw_wait; 2153 } 2154 mq->waiting = !done; 2155 spin_unlock_irqrestore(q->queue_lock, flags); 2156 2157 return done; 2158 } 2159 2160 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2161 { 2162 int err = 0; 2163 2164 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2165 2166 /* Always complete the previous request if there is one */ 2167 mmc_blk_mq_complete_prev_req(mq, prev_req); 2168 2169 return err; 2170 } 2171 2172 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2173 struct request *req) 2174 { 2175 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2176 struct mmc_host *host = mq->card->host; 2177 struct request *prev_req = NULL; 2178 int err = 0; 2179 2180 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2181 2182 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2183 2184 mmc_pre_req(host, &mqrq->brq.mrq); 2185 2186 err = mmc_blk_rw_wait(mq, &prev_req); 2187 if (err) 2188 goto out_post_req; 2189 2190 mq->rw_wait = true; 2191 2192 err = mmc_start_request(host, &mqrq->brq.mrq); 2193 2194 if (prev_req) 2195 mmc_blk_mq_post_req(mq, prev_req); 2196 2197 if (err) 2198 mq->rw_wait = false; 2199 2200 /* Release re-tuning here where there is no synchronization required */ 2201 if (err || mmc_host_done_complete(host)) 2202 mmc_retune_release(host); 2203 2204 out_post_req: 2205 if (err) 2206 mmc_post_req(host, &mqrq->brq.mrq, err); 2207 2208 return err; 2209 } 2210 2211 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2212 { 2213 if (mq->use_cqe) 2214 return host->cqe_ops->cqe_wait_for_idle(host); 2215 2216 return mmc_blk_rw_wait(mq, NULL); 2217 } 2218 2219 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2220 { 2221 struct mmc_blk_data *md = mq->blkdata; 2222 struct mmc_card *card = md->queue.card; 2223 struct mmc_host *host = card->host; 2224 int ret; 2225 2226 ret = mmc_blk_part_switch(card, md->part_type); 2227 if (ret) 2228 return MMC_REQ_FAILED_TO_START; 2229 2230 switch (mmc_issue_type(mq, req)) { 2231 case MMC_ISSUE_SYNC: 2232 ret = mmc_blk_wait_for_idle(mq, host); 2233 if (ret) 2234 return MMC_REQ_BUSY; 2235 switch (req_op(req)) { 2236 case REQ_OP_DRV_IN: 2237 case REQ_OP_DRV_OUT: 2238 mmc_blk_issue_drv_op(mq, req); 2239 break; 2240 case REQ_OP_DISCARD: 2241 mmc_blk_issue_discard_rq(mq, req); 2242 break; 2243 case REQ_OP_SECURE_ERASE: 2244 mmc_blk_issue_secdiscard_rq(mq, req); 2245 break; 2246 case REQ_OP_FLUSH: 2247 mmc_blk_issue_flush(mq, req); 2248 break; 2249 default: 2250 WARN_ON_ONCE(1); 2251 return MMC_REQ_FAILED_TO_START; 2252 } 2253 return MMC_REQ_FINISHED; 2254 case MMC_ISSUE_DCMD: 2255 case MMC_ISSUE_ASYNC: 2256 switch (req_op(req)) { 2257 case REQ_OP_FLUSH: 2258 ret = mmc_blk_cqe_issue_flush(mq, req); 2259 break; 2260 case REQ_OP_READ: 2261 case REQ_OP_WRITE: 2262 if (mq->use_cqe) 2263 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2264 else 2265 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2266 break; 2267 default: 2268 WARN_ON_ONCE(1); 2269 ret = -EINVAL; 2270 } 2271 if (!ret) 2272 return MMC_REQ_STARTED; 2273 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2274 default: 2275 WARN_ON_ONCE(1); 2276 return MMC_REQ_FAILED_TO_START; 2277 } 2278 } 2279 2280 static inline int mmc_blk_readonly(struct mmc_card *card) 2281 { 2282 return mmc_card_readonly(card) || 2283 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2284 } 2285 2286 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2287 struct device *parent, 2288 sector_t size, 2289 bool default_ro, 2290 const char *subname, 2291 int area_type) 2292 { 2293 struct mmc_blk_data *md; 2294 int devidx, ret; 2295 2296 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2297 if (devidx < 0) { 2298 /* 2299 * We get -ENOSPC because there are no more any available 2300 * devidx. The reason may be that, either userspace haven't yet 2301 * unmounted the partitions, which postpones mmc_blk_release() 2302 * from being called, or the device has more partitions than 2303 * what we support. 2304 */ 2305 if (devidx == -ENOSPC) 2306 dev_err(mmc_dev(card->host), 2307 "no more device IDs available\n"); 2308 2309 return ERR_PTR(devidx); 2310 } 2311 2312 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2313 if (!md) { 2314 ret = -ENOMEM; 2315 goto out; 2316 } 2317 2318 md->area_type = area_type; 2319 2320 /* 2321 * Set the read-only status based on the supported commands 2322 * and the write protect switch. 2323 */ 2324 md->read_only = mmc_blk_readonly(card); 2325 2326 md->disk = alloc_disk(perdev_minors); 2327 if (md->disk == NULL) { 2328 ret = -ENOMEM; 2329 goto err_kfree; 2330 } 2331 2332 spin_lock_init(&md->lock); 2333 INIT_LIST_HEAD(&md->part); 2334 INIT_LIST_HEAD(&md->rpmbs); 2335 md->usage = 1; 2336 2337 ret = mmc_init_queue(&md->queue, card, &md->lock, subname); 2338 if (ret) 2339 goto err_putdisk; 2340 2341 md->queue.blkdata = md; 2342 2343 /* 2344 * Keep an extra reference to the queue so that we can shutdown the 2345 * queue (i.e. call blk_cleanup_queue()) while there are still 2346 * references to the 'md'. The corresponding blk_put_queue() is in 2347 * mmc_blk_put(). 2348 */ 2349 if (!blk_get_queue(md->queue.queue)) { 2350 mmc_cleanup_queue(&md->queue); 2351 ret = -ENODEV; 2352 goto err_putdisk; 2353 } 2354 2355 md->disk->major = MMC_BLOCK_MAJOR; 2356 md->disk->first_minor = devidx * perdev_minors; 2357 md->disk->fops = &mmc_bdops; 2358 md->disk->private_data = md; 2359 md->disk->queue = md->queue.queue; 2360 md->parent = parent; 2361 set_disk_ro(md->disk, md->read_only || default_ro); 2362 md->disk->flags = GENHD_FL_EXT_DEVT; 2363 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2364 md->disk->flags |= GENHD_FL_NO_PART_SCAN 2365 | GENHD_FL_SUPPRESS_PARTITION_INFO; 2366 2367 /* 2368 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2369 * 2370 * - be set for removable media with permanent block devices 2371 * - be unset for removable block devices with permanent media 2372 * 2373 * Since MMC block devices clearly fall under the second 2374 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2375 * should use the block device creation/destruction hotplug 2376 * messages to tell when the card is present. 2377 */ 2378 2379 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2380 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2381 2382 if (mmc_card_mmc(card)) 2383 blk_queue_logical_block_size(md->queue.queue, 2384 card->ext_csd.data_sector_size); 2385 else 2386 blk_queue_logical_block_size(md->queue.queue, 512); 2387 2388 set_capacity(md->disk, size); 2389 2390 if (mmc_host_cmd23(card->host)) { 2391 if ((mmc_card_mmc(card) && 2392 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2393 (mmc_card_sd(card) && 2394 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2395 md->flags |= MMC_BLK_CMD23; 2396 } 2397 2398 if (mmc_card_mmc(card) && 2399 md->flags & MMC_BLK_CMD23 && 2400 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2401 card->ext_csd.rel_sectors)) { 2402 md->flags |= MMC_BLK_REL_WR; 2403 blk_queue_write_cache(md->queue.queue, true, true); 2404 } 2405 2406 return md; 2407 2408 err_putdisk: 2409 put_disk(md->disk); 2410 err_kfree: 2411 kfree(md); 2412 out: 2413 ida_simple_remove(&mmc_blk_ida, devidx); 2414 return ERR_PTR(ret); 2415 } 2416 2417 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2418 { 2419 sector_t size; 2420 2421 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2422 /* 2423 * The EXT_CSD sector count is in number or 512 byte 2424 * sectors. 2425 */ 2426 size = card->ext_csd.sectors; 2427 } else { 2428 /* 2429 * The CSD capacity field is in units of read_blkbits. 2430 * set_capacity takes units of 512 bytes. 2431 */ 2432 size = (typeof(sector_t))card->csd.capacity 2433 << (card->csd.read_blkbits - 9); 2434 } 2435 2436 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2437 MMC_BLK_DATA_AREA_MAIN); 2438 } 2439 2440 static int mmc_blk_alloc_part(struct mmc_card *card, 2441 struct mmc_blk_data *md, 2442 unsigned int part_type, 2443 sector_t size, 2444 bool default_ro, 2445 const char *subname, 2446 int area_type) 2447 { 2448 char cap_str[10]; 2449 struct mmc_blk_data *part_md; 2450 2451 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2452 subname, area_type); 2453 if (IS_ERR(part_md)) 2454 return PTR_ERR(part_md); 2455 part_md->part_type = part_type; 2456 list_add(&part_md->part, &md->part); 2457 2458 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2459 cap_str, sizeof(cap_str)); 2460 pr_info("%s: %s %s partition %u %s\n", 2461 part_md->disk->disk_name, mmc_card_id(card), 2462 mmc_card_name(card), part_md->part_type, cap_str); 2463 return 0; 2464 } 2465 2466 /** 2467 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2468 * @filp: the character device file 2469 * @cmd: the ioctl() command 2470 * @arg: the argument from userspace 2471 * 2472 * This will essentially just redirect the ioctl()s coming in over to 2473 * the main block device spawning the RPMB character device. 2474 */ 2475 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2476 unsigned long arg) 2477 { 2478 struct mmc_rpmb_data *rpmb = filp->private_data; 2479 int ret; 2480 2481 switch (cmd) { 2482 case MMC_IOC_CMD: 2483 ret = mmc_blk_ioctl_cmd(rpmb->md, 2484 (struct mmc_ioc_cmd __user *)arg, 2485 rpmb); 2486 break; 2487 case MMC_IOC_MULTI_CMD: 2488 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2489 (struct mmc_ioc_multi_cmd __user *)arg, 2490 rpmb); 2491 break; 2492 default: 2493 ret = -EINVAL; 2494 break; 2495 } 2496 2497 return ret; 2498 } 2499 2500 #ifdef CONFIG_COMPAT 2501 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2502 unsigned long arg) 2503 { 2504 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2505 } 2506 #endif 2507 2508 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2509 { 2510 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2511 struct mmc_rpmb_data, chrdev); 2512 2513 get_device(&rpmb->dev); 2514 filp->private_data = rpmb; 2515 mmc_blk_get(rpmb->md->disk); 2516 2517 return nonseekable_open(inode, filp); 2518 } 2519 2520 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2521 { 2522 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2523 struct mmc_rpmb_data, chrdev); 2524 2525 put_device(&rpmb->dev); 2526 mmc_blk_put(rpmb->md); 2527 2528 return 0; 2529 } 2530 2531 static const struct file_operations mmc_rpmb_fileops = { 2532 .release = mmc_rpmb_chrdev_release, 2533 .open = mmc_rpmb_chrdev_open, 2534 .owner = THIS_MODULE, 2535 .llseek = no_llseek, 2536 .unlocked_ioctl = mmc_rpmb_ioctl, 2537 #ifdef CONFIG_COMPAT 2538 .compat_ioctl = mmc_rpmb_ioctl_compat, 2539 #endif 2540 }; 2541 2542 static void mmc_blk_rpmb_device_release(struct device *dev) 2543 { 2544 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2545 2546 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2547 kfree(rpmb); 2548 } 2549 2550 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2551 struct mmc_blk_data *md, 2552 unsigned int part_index, 2553 sector_t size, 2554 const char *subname) 2555 { 2556 int devidx, ret; 2557 char rpmb_name[DISK_NAME_LEN]; 2558 char cap_str[10]; 2559 struct mmc_rpmb_data *rpmb; 2560 2561 /* This creates the minor number for the RPMB char device */ 2562 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2563 if (devidx < 0) 2564 return devidx; 2565 2566 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2567 if (!rpmb) { 2568 ida_simple_remove(&mmc_rpmb_ida, devidx); 2569 return -ENOMEM; 2570 } 2571 2572 snprintf(rpmb_name, sizeof(rpmb_name), 2573 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2574 2575 rpmb->id = devidx; 2576 rpmb->part_index = part_index; 2577 rpmb->dev.init_name = rpmb_name; 2578 rpmb->dev.bus = &mmc_rpmb_bus_type; 2579 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2580 rpmb->dev.parent = &card->dev; 2581 rpmb->dev.release = mmc_blk_rpmb_device_release; 2582 device_initialize(&rpmb->dev); 2583 dev_set_drvdata(&rpmb->dev, rpmb); 2584 rpmb->md = md; 2585 2586 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2587 rpmb->chrdev.owner = THIS_MODULE; 2588 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2589 if (ret) { 2590 pr_err("%s: could not add character device\n", rpmb_name); 2591 goto out_put_device; 2592 } 2593 2594 list_add(&rpmb->node, &md->rpmbs); 2595 2596 string_get_size((u64)size, 512, STRING_UNITS_2, 2597 cap_str, sizeof(cap_str)); 2598 2599 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n", 2600 rpmb_name, mmc_card_id(card), 2601 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str, 2602 MAJOR(mmc_rpmb_devt), rpmb->id); 2603 2604 return 0; 2605 2606 out_put_device: 2607 put_device(&rpmb->dev); 2608 return ret; 2609 } 2610 2611 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2612 2613 { 2614 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2615 put_device(&rpmb->dev); 2616 } 2617 2618 /* MMC Physical partitions consist of two boot partitions and 2619 * up to four general purpose partitions. 2620 * For each partition enabled in EXT_CSD a block device will be allocatedi 2621 * to provide access to the partition. 2622 */ 2623 2624 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2625 { 2626 int idx, ret; 2627 2628 if (!mmc_card_mmc(card)) 2629 return 0; 2630 2631 for (idx = 0; idx < card->nr_parts; idx++) { 2632 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2633 /* 2634 * RPMB partitions does not provide block access, they 2635 * are only accessed using ioctl():s. Thus create 2636 * special RPMB block devices that do not have a 2637 * backing block queue for these. 2638 */ 2639 ret = mmc_blk_alloc_rpmb_part(card, md, 2640 card->part[idx].part_cfg, 2641 card->part[idx].size >> 9, 2642 card->part[idx].name); 2643 if (ret) 2644 return ret; 2645 } else if (card->part[idx].size) { 2646 ret = mmc_blk_alloc_part(card, md, 2647 card->part[idx].part_cfg, 2648 card->part[idx].size >> 9, 2649 card->part[idx].force_ro, 2650 card->part[idx].name, 2651 card->part[idx].area_type); 2652 if (ret) 2653 return ret; 2654 } 2655 } 2656 2657 return 0; 2658 } 2659 2660 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2661 { 2662 struct mmc_card *card; 2663 2664 if (md) { 2665 /* 2666 * Flush remaining requests and free queues. It 2667 * is freeing the queue that stops new requests 2668 * from being accepted. 2669 */ 2670 card = md->queue.card; 2671 if (md->disk->flags & GENHD_FL_UP) { 2672 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2673 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2674 card->ext_csd.boot_ro_lockable) 2675 device_remove_file(disk_to_dev(md->disk), 2676 &md->power_ro_lock); 2677 2678 del_gendisk(md->disk); 2679 } 2680 mmc_cleanup_queue(&md->queue); 2681 mmc_blk_put(md); 2682 } 2683 } 2684 2685 static void mmc_blk_remove_parts(struct mmc_card *card, 2686 struct mmc_blk_data *md) 2687 { 2688 struct list_head *pos, *q; 2689 struct mmc_blk_data *part_md; 2690 struct mmc_rpmb_data *rpmb; 2691 2692 /* Remove RPMB partitions */ 2693 list_for_each_safe(pos, q, &md->rpmbs) { 2694 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2695 list_del(pos); 2696 mmc_blk_remove_rpmb_part(rpmb); 2697 } 2698 /* Remove block partitions */ 2699 list_for_each_safe(pos, q, &md->part) { 2700 part_md = list_entry(pos, struct mmc_blk_data, part); 2701 list_del(pos); 2702 mmc_blk_remove_req(part_md); 2703 } 2704 } 2705 2706 static int mmc_add_disk(struct mmc_blk_data *md) 2707 { 2708 int ret; 2709 struct mmc_card *card = md->queue.card; 2710 2711 device_add_disk(md->parent, md->disk, NULL); 2712 md->force_ro.show = force_ro_show; 2713 md->force_ro.store = force_ro_store; 2714 sysfs_attr_init(&md->force_ro.attr); 2715 md->force_ro.attr.name = "force_ro"; 2716 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2717 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2718 if (ret) 2719 goto force_ro_fail; 2720 2721 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2722 card->ext_csd.boot_ro_lockable) { 2723 umode_t mode; 2724 2725 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2726 mode = S_IRUGO; 2727 else 2728 mode = S_IRUGO | S_IWUSR; 2729 2730 md->power_ro_lock.show = power_ro_lock_show; 2731 md->power_ro_lock.store = power_ro_lock_store; 2732 sysfs_attr_init(&md->power_ro_lock.attr); 2733 md->power_ro_lock.attr.mode = mode; 2734 md->power_ro_lock.attr.name = 2735 "ro_lock_until_next_power_on"; 2736 ret = device_create_file(disk_to_dev(md->disk), 2737 &md->power_ro_lock); 2738 if (ret) 2739 goto power_ro_lock_fail; 2740 } 2741 return ret; 2742 2743 power_ro_lock_fail: 2744 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2745 force_ro_fail: 2746 del_gendisk(md->disk); 2747 2748 return ret; 2749 } 2750 2751 #ifdef CONFIG_DEBUG_FS 2752 2753 static int mmc_dbg_card_status_get(void *data, u64 *val) 2754 { 2755 struct mmc_card *card = data; 2756 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2757 struct mmc_queue *mq = &md->queue; 2758 struct request *req; 2759 int ret; 2760 2761 /* Ask the block layer about the card status */ 2762 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2763 if (IS_ERR(req)) 2764 return PTR_ERR(req); 2765 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2766 blk_execute_rq(mq->queue, NULL, req, 0); 2767 ret = req_to_mmc_queue_req(req)->drv_op_result; 2768 if (ret >= 0) { 2769 *val = ret; 2770 ret = 0; 2771 } 2772 blk_put_request(req); 2773 2774 return ret; 2775 } 2776 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2777 NULL, "%08llx\n"); 2778 2779 /* That is two digits * 512 + 1 for newline */ 2780 #define EXT_CSD_STR_LEN 1025 2781 2782 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2783 { 2784 struct mmc_card *card = inode->i_private; 2785 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2786 struct mmc_queue *mq = &md->queue; 2787 struct request *req; 2788 char *buf; 2789 ssize_t n = 0; 2790 u8 *ext_csd; 2791 int err, i; 2792 2793 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2794 if (!buf) 2795 return -ENOMEM; 2796 2797 /* Ask the block layer for the EXT CSD */ 2798 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2799 if (IS_ERR(req)) { 2800 err = PTR_ERR(req); 2801 goto out_free; 2802 } 2803 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2804 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2805 blk_execute_rq(mq->queue, NULL, req, 0); 2806 err = req_to_mmc_queue_req(req)->drv_op_result; 2807 blk_put_request(req); 2808 if (err) { 2809 pr_err("FAILED %d\n", err); 2810 goto out_free; 2811 } 2812 2813 for (i = 0; i < 512; i++) 2814 n += sprintf(buf + n, "%02x", ext_csd[i]); 2815 n += sprintf(buf + n, "\n"); 2816 2817 if (n != EXT_CSD_STR_LEN) { 2818 err = -EINVAL; 2819 kfree(ext_csd); 2820 goto out_free; 2821 } 2822 2823 filp->private_data = buf; 2824 kfree(ext_csd); 2825 return 0; 2826 2827 out_free: 2828 kfree(buf); 2829 return err; 2830 } 2831 2832 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2833 size_t cnt, loff_t *ppos) 2834 { 2835 char *buf = filp->private_data; 2836 2837 return simple_read_from_buffer(ubuf, cnt, ppos, 2838 buf, EXT_CSD_STR_LEN); 2839 } 2840 2841 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2842 { 2843 kfree(file->private_data); 2844 return 0; 2845 } 2846 2847 static const struct file_operations mmc_dbg_ext_csd_fops = { 2848 .open = mmc_ext_csd_open, 2849 .read = mmc_ext_csd_read, 2850 .release = mmc_ext_csd_release, 2851 .llseek = default_llseek, 2852 }; 2853 2854 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2855 { 2856 struct dentry *root; 2857 2858 if (!card->debugfs_root) 2859 return 0; 2860 2861 root = card->debugfs_root; 2862 2863 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2864 md->status_dentry = 2865 debugfs_create_file("status", S_IRUSR, root, card, 2866 &mmc_dbg_card_status_fops); 2867 if (!md->status_dentry) 2868 return -EIO; 2869 } 2870 2871 if (mmc_card_mmc(card)) { 2872 md->ext_csd_dentry = 2873 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2874 &mmc_dbg_ext_csd_fops); 2875 if (!md->ext_csd_dentry) 2876 return -EIO; 2877 } 2878 2879 return 0; 2880 } 2881 2882 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2883 struct mmc_blk_data *md) 2884 { 2885 if (!card->debugfs_root) 2886 return; 2887 2888 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2889 debugfs_remove(md->status_dentry); 2890 md->status_dentry = NULL; 2891 } 2892 2893 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2894 debugfs_remove(md->ext_csd_dentry); 2895 md->ext_csd_dentry = NULL; 2896 } 2897 } 2898 2899 #else 2900 2901 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2902 { 2903 return 0; 2904 } 2905 2906 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2907 struct mmc_blk_data *md) 2908 { 2909 } 2910 2911 #endif /* CONFIG_DEBUG_FS */ 2912 2913 static int mmc_blk_probe(struct mmc_card *card) 2914 { 2915 struct mmc_blk_data *md, *part_md; 2916 char cap_str[10]; 2917 2918 /* 2919 * Check that the card supports the command class(es) we need. 2920 */ 2921 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2922 return -ENODEV; 2923 2924 mmc_fixup_device(card, mmc_blk_fixups); 2925 2926 md = mmc_blk_alloc(card); 2927 if (IS_ERR(md)) 2928 return PTR_ERR(md); 2929 2930 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2931 cap_str, sizeof(cap_str)); 2932 pr_info("%s: %s %s %s %s\n", 2933 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2934 cap_str, md->read_only ? "(ro)" : ""); 2935 2936 if (mmc_blk_alloc_parts(card, md)) 2937 goto out; 2938 2939 dev_set_drvdata(&card->dev, md); 2940 2941 if (mmc_add_disk(md)) 2942 goto out; 2943 2944 list_for_each_entry(part_md, &md->part, part) { 2945 if (mmc_add_disk(part_md)) 2946 goto out; 2947 } 2948 2949 /* Add two debugfs entries */ 2950 mmc_blk_add_debugfs(card, md); 2951 2952 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2953 pm_runtime_use_autosuspend(&card->dev); 2954 2955 /* 2956 * Don't enable runtime PM for SD-combo cards here. Leave that 2957 * decision to be taken during the SDIO init sequence instead. 2958 */ 2959 if (card->type != MMC_TYPE_SD_COMBO) { 2960 pm_runtime_set_active(&card->dev); 2961 pm_runtime_enable(&card->dev); 2962 } 2963 2964 return 0; 2965 2966 out: 2967 mmc_blk_remove_parts(card, md); 2968 mmc_blk_remove_req(md); 2969 return 0; 2970 } 2971 2972 static void mmc_blk_remove(struct mmc_card *card) 2973 { 2974 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2975 2976 mmc_blk_remove_debugfs(card, md); 2977 mmc_blk_remove_parts(card, md); 2978 pm_runtime_get_sync(&card->dev); 2979 if (md->part_curr != md->part_type) { 2980 mmc_claim_host(card->host); 2981 mmc_blk_part_switch(card, md->part_type); 2982 mmc_release_host(card->host); 2983 } 2984 if (card->type != MMC_TYPE_SD_COMBO) 2985 pm_runtime_disable(&card->dev); 2986 pm_runtime_put_noidle(&card->dev); 2987 mmc_blk_remove_req(md); 2988 dev_set_drvdata(&card->dev, NULL); 2989 } 2990 2991 static int _mmc_blk_suspend(struct mmc_card *card) 2992 { 2993 struct mmc_blk_data *part_md; 2994 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2995 2996 if (md) { 2997 mmc_queue_suspend(&md->queue); 2998 list_for_each_entry(part_md, &md->part, part) { 2999 mmc_queue_suspend(&part_md->queue); 3000 } 3001 } 3002 return 0; 3003 } 3004 3005 static void mmc_blk_shutdown(struct mmc_card *card) 3006 { 3007 _mmc_blk_suspend(card); 3008 } 3009 3010 #ifdef CONFIG_PM_SLEEP 3011 static int mmc_blk_suspend(struct device *dev) 3012 { 3013 struct mmc_card *card = mmc_dev_to_card(dev); 3014 3015 return _mmc_blk_suspend(card); 3016 } 3017 3018 static int mmc_blk_resume(struct device *dev) 3019 { 3020 struct mmc_blk_data *part_md; 3021 struct mmc_blk_data *md = dev_get_drvdata(dev); 3022 3023 if (md) { 3024 /* 3025 * Resume involves the card going into idle state, 3026 * so current partition is always the main one. 3027 */ 3028 md->part_curr = md->part_type; 3029 mmc_queue_resume(&md->queue); 3030 list_for_each_entry(part_md, &md->part, part) { 3031 mmc_queue_resume(&part_md->queue); 3032 } 3033 } 3034 return 0; 3035 } 3036 #endif 3037 3038 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3039 3040 static struct mmc_driver mmc_driver = { 3041 .drv = { 3042 .name = "mmcblk", 3043 .pm = &mmc_blk_pm_ops, 3044 }, 3045 .probe = mmc_blk_probe, 3046 .remove = mmc_blk_remove, 3047 .shutdown = mmc_blk_shutdown, 3048 }; 3049 3050 static int __init mmc_blk_init(void) 3051 { 3052 int res; 3053 3054 res = bus_register(&mmc_rpmb_bus_type); 3055 if (res < 0) { 3056 pr_err("mmcblk: could not register RPMB bus type\n"); 3057 return res; 3058 } 3059 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3060 if (res < 0) { 3061 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3062 goto out_bus_unreg; 3063 } 3064 3065 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3066 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3067 3068 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3069 3070 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3071 if (res) 3072 goto out_chrdev_unreg; 3073 3074 res = mmc_register_driver(&mmc_driver); 3075 if (res) 3076 goto out_blkdev_unreg; 3077 3078 return 0; 3079 3080 out_blkdev_unreg: 3081 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3082 out_chrdev_unreg: 3083 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3084 out_bus_unreg: 3085 bus_unregister(&mmc_rpmb_bus_type); 3086 return res; 3087 } 3088 3089 static void __exit mmc_blk_exit(void) 3090 { 3091 mmc_unregister_driver(&mmc_driver); 3092 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3093 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3094 bus_unregister(&mmc_rpmb_bus_type); 3095 } 3096 3097 module_init(mmc_blk_init); 3098 module_exit(mmc_blk_exit); 3099 3100 MODULE_LICENSE("GPL"); 3101 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3102 3103