1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/cdev.h> 32 #include <linux/mutex.h> 33 #include <linux/scatterlist.h> 34 #include <linux/string_helpers.h> 35 #include <linux/delay.h> 36 #include <linux/capability.h> 37 #include <linux/compat.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/idr.h> 40 #include <linux/debugfs.h> 41 42 #include <linux/mmc/ioctl.h> 43 #include <linux/mmc/card.h> 44 #include <linux/mmc/host.h> 45 #include <linux/mmc/mmc.h> 46 #include <linux/mmc/sd.h> 47 48 #include <linux/uaccess.h> 49 50 #include "queue.h" 51 #include "block.h" 52 #include "core.h" 53 #include "card.h" 54 #include "host.h" 55 #include "bus.h" 56 #include "mmc_ops.h" 57 #include "quirks.h" 58 #include "sd_ops.h" 59 60 MODULE_ALIAS("mmc:block"); 61 #ifdef MODULE_PARAM_PREFIX 62 #undef MODULE_PARAM_PREFIX 63 #endif 64 #define MODULE_PARAM_PREFIX "mmcblk." 65 66 /* 67 * Set a 10 second timeout for polling write request busy state. Note, mmc core 68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 69 * second software timer to timeout the whole request, so 10 seconds should be 70 * ample. 71 */ 72 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 73 #define MMC_SANITIZE_REQ_TIMEOUT 240000 74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 76 77 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 78 (rq_data_dir(req) == WRITE)) 79 static DEFINE_MUTEX(block_mutex); 80 81 /* 82 * The defaults come from config options but can be overriden by module 83 * or bootarg options. 84 */ 85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 86 87 /* 88 * We've only got one major, so number of mmcblk devices is 89 * limited to (1 << 20) / number of minors per device. It is also 90 * limited by the MAX_DEVICES below. 91 */ 92 static int max_devices; 93 94 #define MAX_DEVICES 256 95 96 static DEFINE_IDA(mmc_blk_ida); 97 static DEFINE_IDA(mmc_rpmb_ida); 98 99 /* 100 * There is one mmc_blk_data per slot. 101 */ 102 struct mmc_blk_data { 103 spinlock_t lock; 104 struct device *parent; 105 struct gendisk *disk; 106 struct mmc_queue queue; 107 struct list_head part; 108 struct list_head rpmbs; 109 110 unsigned int flags; 111 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 112 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 113 114 unsigned int usage; 115 unsigned int read_only; 116 unsigned int part_type; 117 unsigned int reset_done; 118 #define MMC_BLK_READ BIT(0) 119 #define MMC_BLK_WRITE BIT(1) 120 #define MMC_BLK_DISCARD BIT(2) 121 #define MMC_BLK_SECDISCARD BIT(3) 122 #define MMC_BLK_CQE_RECOVERY BIT(4) 123 124 /* 125 * Only set in main mmc_blk_data associated 126 * with mmc_card with dev_set_drvdata, and keeps 127 * track of the current selected device partition. 128 */ 129 unsigned int part_curr; 130 struct device_attribute force_ro; 131 struct device_attribute power_ro_lock; 132 int area_type; 133 134 /* debugfs files (only in main mmc_blk_data) */ 135 struct dentry *status_dentry; 136 struct dentry *ext_csd_dentry; 137 }; 138 139 /* Device type for RPMB character devices */ 140 static dev_t mmc_rpmb_devt; 141 142 /* Bus type for RPMB character devices */ 143 static struct bus_type mmc_rpmb_bus_type = { 144 .name = "mmc_rpmb", 145 }; 146 147 /** 148 * struct mmc_rpmb_data - special RPMB device type for these areas 149 * @dev: the device for the RPMB area 150 * @chrdev: character device for the RPMB area 151 * @id: unique device ID number 152 * @part_index: partition index (0 on first) 153 * @md: parent MMC block device 154 * @node: list item, so we can put this device on a list 155 */ 156 struct mmc_rpmb_data { 157 struct device dev; 158 struct cdev chrdev; 159 int id; 160 unsigned int part_index; 161 struct mmc_blk_data *md; 162 struct list_head node; 163 }; 164 165 static DEFINE_MUTEX(open_lock); 166 167 module_param(perdev_minors, int, 0444); 168 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 169 170 static inline int mmc_blk_part_switch(struct mmc_card *card, 171 unsigned int part_type); 172 173 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 174 { 175 struct mmc_blk_data *md; 176 177 mutex_lock(&open_lock); 178 md = disk->private_data; 179 if (md && md->usage == 0) 180 md = NULL; 181 if (md) 182 md->usage++; 183 mutex_unlock(&open_lock); 184 185 return md; 186 } 187 188 static inline int mmc_get_devidx(struct gendisk *disk) 189 { 190 int devidx = disk->first_minor / perdev_minors; 191 return devidx; 192 } 193 194 static void mmc_blk_put(struct mmc_blk_data *md) 195 { 196 mutex_lock(&open_lock); 197 md->usage--; 198 if (md->usage == 0) { 199 int devidx = mmc_get_devidx(md->disk); 200 blk_put_queue(md->queue.queue); 201 ida_simple_remove(&mmc_blk_ida, devidx); 202 put_disk(md->disk); 203 kfree(md); 204 } 205 mutex_unlock(&open_lock); 206 } 207 208 static ssize_t power_ro_lock_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 int ret; 212 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 213 struct mmc_card *card = md->queue.card; 214 int locked = 0; 215 216 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 217 locked = 2; 218 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 219 locked = 1; 220 221 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 222 223 mmc_blk_put(md); 224 225 return ret; 226 } 227 228 static ssize_t power_ro_lock_store(struct device *dev, 229 struct device_attribute *attr, const char *buf, size_t count) 230 { 231 int ret; 232 struct mmc_blk_data *md, *part_md; 233 struct mmc_queue *mq; 234 struct request *req; 235 unsigned long set; 236 237 if (kstrtoul(buf, 0, &set)) 238 return -EINVAL; 239 240 if (set != 1) 241 return count; 242 243 md = mmc_blk_get(dev_to_disk(dev)); 244 mq = &md->queue; 245 246 /* Dispatch locking to the block layer */ 247 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0); 248 if (IS_ERR(req)) { 249 count = PTR_ERR(req); 250 goto out_put; 251 } 252 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 253 blk_execute_rq(mq->queue, NULL, req, 0); 254 ret = req_to_mmc_queue_req(req)->drv_op_result; 255 blk_put_request(req); 256 257 if (!ret) { 258 pr_info("%s: Locking boot partition ro until next power on\n", 259 md->disk->disk_name); 260 set_disk_ro(md->disk, 1); 261 262 list_for_each_entry(part_md, &md->part, part) 263 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 264 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 265 set_disk_ro(part_md->disk, 1); 266 } 267 } 268 out_put: 269 mmc_blk_put(md); 270 return count; 271 } 272 273 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 274 char *buf) 275 { 276 int ret; 277 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 278 279 ret = snprintf(buf, PAGE_SIZE, "%d\n", 280 get_disk_ro(dev_to_disk(dev)) ^ 281 md->read_only); 282 mmc_blk_put(md); 283 return ret; 284 } 285 286 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 287 const char *buf, size_t count) 288 { 289 int ret; 290 char *end; 291 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 292 unsigned long set = simple_strtoul(buf, &end, 0); 293 if (end == buf) { 294 ret = -EINVAL; 295 goto out; 296 } 297 298 set_disk_ro(dev_to_disk(dev), set || md->read_only); 299 ret = count; 300 out: 301 mmc_blk_put(md); 302 return ret; 303 } 304 305 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 306 { 307 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 308 int ret = -ENXIO; 309 310 mutex_lock(&block_mutex); 311 if (md) { 312 if (md->usage == 2) 313 check_disk_change(bdev); 314 ret = 0; 315 316 if ((mode & FMODE_WRITE) && md->read_only) { 317 mmc_blk_put(md); 318 ret = -EROFS; 319 } 320 } 321 mutex_unlock(&block_mutex); 322 323 return ret; 324 } 325 326 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 327 { 328 struct mmc_blk_data *md = disk->private_data; 329 330 mutex_lock(&block_mutex); 331 mmc_blk_put(md); 332 mutex_unlock(&block_mutex); 333 } 334 335 static int 336 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 337 { 338 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 339 geo->heads = 4; 340 geo->sectors = 16; 341 return 0; 342 } 343 344 struct mmc_blk_ioc_data { 345 struct mmc_ioc_cmd ic; 346 unsigned char *buf; 347 u64 buf_bytes; 348 struct mmc_rpmb_data *rpmb; 349 }; 350 351 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 352 struct mmc_ioc_cmd __user *user) 353 { 354 struct mmc_blk_ioc_data *idata; 355 int err; 356 357 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 358 if (!idata) { 359 err = -ENOMEM; 360 goto out; 361 } 362 363 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 364 err = -EFAULT; 365 goto idata_err; 366 } 367 368 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 369 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 370 err = -EOVERFLOW; 371 goto idata_err; 372 } 373 374 if (!idata->buf_bytes) { 375 idata->buf = NULL; 376 return idata; 377 } 378 379 idata->buf = memdup_user((void __user *)(unsigned long) 380 idata->ic.data_ptr, idata->buf_bytes); 381 if (IS_ERR(idata->buf)) { 382 err = PTR_ERR(idata->buf); 383 goto idata_err; 384 } 385 386 return idata; 387 388 idata_err: 389 kfree(idata); 390 out: 391 return ERR_PTR(err); 392 } 393 394 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 395 struct mmc_blk_ioc_data *idata) 396 { 397 struct mmc_ioc_cmd *ic = &idata->ic; 398 399 if (copy_to_user(&(ic_ptr->response), ic->response, 400 sizeof(ic->response))) 401 return -EFAULT; 402 403 if (!idata->ic.write_flag) { 404 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 405 idata->buf, idata->buf_bytes)) 406 return -EFAULT; 407 } 408 409 return 0; 410 } 411 412 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status, 413 u32 retries_max) 414 { 415 int err; 416 u32 retry_count = 0; 417 418 if (!status || !retries_max) 419 return -EINVAL; 420 421 do { 422 err = __mmc_send_status(card, status, 5); 423 if (err) 424 break; 425 426 if (!R1_STATUS(*status) && 427 (R1_CURRENT_STATE(*status) != R1_STATE_PRG)) 428 break; /* RPMB programming operation complete */ 429 430 /* 431 * Rechedule to give the MMC device a chance to continue 432 * processing the previous command without being polled too 433 * frequently. 434 */ 435 usleep_range(1000, 5000); 436 } while (++retry_count < retries_max); 437 438 if (retry_count == retries_max) 439 err = -EPERM; 440 441 return err; 442 } 443 444 static int ioctl_do_sanitize(struct mmc_card *card) 445 { 446 int err; 447 448 if (!mmc_can_sanitize(card)) { 449 pr_warn("%s: %s - SANITIZE is not supported\n", 450 mmc_hostname(card->host), __func__); 451 err = -EOPNOTSUPP; 452 goto out; 453 } 454 455 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n", 456 mmc_hostname(card->host), __func__); 457 458 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 459 EXT_CSD_SANITIZE_START, 1, 460 MMC_SANITIZE_REQ_TIMEOUT); 461 462 if (err) 463 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n", 464 mmc_hostname(card->host), __func__, err); 465 466 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host), 467 __func__); 468 out: 469 return err; 470 } 471 472 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 473 struct mmc_blk_ioc_data *idata) 474 { 475 struct mmc_command cmd = {}; 476 struct mmc_data data = {}; 477 struct mmc_request mrq = {}; 478 struct scatterlist sg; 479 int err; 480 unsigned int target_part; 481 u32 status = 0; 482 483 if (!card || !md || !idata) 484 return -EINVAL; 485 486 /* 487 * The RPMB accesses comes in from the character device, so we 488 * need to target these explicitly. Else we just target the 489 * partition type for the block device the ioctl() was issued 490 * on. 491 */ 492 if (idata->rpmb) { 493 /* Support multiple RPMB partitions */ 494 target_part = idata->rpmb->part_index; 495 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 496 } else { 497 target_part = md->part_type; 498 } 499 500 cmd.opcode = idata->ic.opcode; 501 cmd.arg = idata->ic.arg; 502 cmd.flags = idata->ic.flags; 503 504 if (idata->buf_bytes) { 505 data.sg = &sg; 506 data.sg_len = 1; 507 data.blksz = idata->ic.blksz; 508 data.blocks = idata->ic.blocks; 509 510 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 511 512 if (idata->ic.write_flag) 513 data.flags = MMC_DATA_WRITE; 514 else 515 data.flags = MMC_DATA_READ; 516 517 /* data.flags must already be set before doing this. */ 518 mmc_set_data_timeout(&data, card); 519 520 /* Allow overriding the timeout_ns for empirical tuning. */ 521 if (idata->ic.data_timeout_ns) 522 data.timeout_ns = idata->ic.data_timeout_ns; 523 524 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 525 /* 526 * Pretend this is a data transfer and rely on the 527 * host driver to compute timeout. When all host 528 * drivers support cmd.cmd_timeout for R1B, this 529 * can be changed to: 530 * 531 * mrq.data = NULL; 532 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 533 */ 534 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 535 } 536 537 mrq.data = &data; 538 } 539 540 mrq.cmd = &cmd; 541 542 err = mmc_blk_part_switch(card, target_part); 543 if (err) 544 return err; 545 546 if (idata->ic.is_acmd) { 547 err = mmc_app_cmd(card->host, card); 548 if (err) 549 return err; 550 } 551 552 if (idata->rpmb) { 553 err = mmc_set_blockcount(card, data.blocks, 554 idata->ic.write_flag & (1 << 31)); 555 if (err) 556 return err; 557 } 558 559 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 560 (cmd.opcode == MMC_SWITCH)) { 561 err = ioctl_do_sanitize(card); 562 563 if (err) 564 pr_err("%s: ioctl_do_sanitize() failed. err = %d", 565 __func__, err); 566 567 return err; 568 } 569 570 mmc_wait_for_req(card->host, &mrq); 571 572 if (cmd.error) { 573 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 574 __func__, cmd.error); 575 return cmd.error; 576 } 577 if (data.error) { 578 dev_err(mmc_dev(card->host), "%s: data error %d\n", 579 __func__, data.error); 580 return data.error; 581 } 582 583 /* 584 * Make sure the cache of the PARTITION_CONFIG register and 585 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 586 * changed it successfully. 587 */ 588 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 589 (cmd.opcode == MMC_SWITCH)) { 590 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 591 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 592 593 /* 594 * Update cache so the next mmc_blk_part_switch call operates 595 * on up-to-date data. 596 */ 597 card->ext_csd.part_config = value; 598 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 599 } 600 601 /* 602 * According to the SD specs, some commands require a delay after 603 * issuing the command. 604 */ 605 if (idata->ic.postsleep_min_us) 606 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 607 608 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 609 610 if (idata->rpmb) { 611 /* 612 * Ensure RPMB command has completed by polling CMD13 613 * "Send Status". 614 */ 615 err = ioctl_rpmb_card_status_poll(card, &status, 5); 616 if (err) 617 dev_err(mmc_dev(card->host), 618 "%s: Card Status=0x%08X, error %d\n", 619 __func__, status, err); 620 } 621 622 return err; 623 } 624 625 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 626 struct mmc_ioc_cmd __user *ic_ptr, 627 struct mmc_rpmb_data *rpmb) 628 { 629 struct mmc_blk_ioc_data *idata; 630 struct mmc_blk_ioc_data *idatas[1]; 631 struct mmc_queue *mq; 632 struct mmc_card *card; 633 int err = 0, ioc_err = 0; 634 struct request *req; 635 636 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 637 if (IS_ERR(idata)) 638 return PTR_ERR(idata); 639 /* This will be NULL on non-RPMB ioctl():s */ 640 idata->rpmb = rpmb; 641 642 card = md->queue.card; 643 if (IS_ERR(card)) { 644 err = PTR_ERR(card); 645 goto cmd_done; 646 } 647 648 /* 649 * Dispatch the ioctl() into the block request queue. 650 */ 651 mq = &md->queue; 652 req = blk_get_request(mq->queue, 653 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 654 if (IS_ERR(req)) { 655 err = PTR_ERR(req); 656 goto cmd_done; 657 } 658 idatas[0] = idata; 659 req_to_mmc_queue_req(req)->drv_op = 660 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 661 req_to_mmc_queue_req(req)->drv_op_data = idatas; 662 req_to_mmc_queue_req(req)->ioc_count = 1; 663 blk_execute_rq(mq->queue, NULL, req, 0); 664 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 665 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 666 blk_put_request(req); 667 668 cmd_done: 669 kfree(idata->buf); 670 kfree(idata); 671 return ioc_err ? ioc_err : err; 672 } 673 674 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 675 struct mmc_ioc_multi_cmd __user *user, 676 struct mmc_rpmb_data *rpmb) 677 { 678 struct mmc_blk_ioc_data **idata = NULL; 679 struct mmc_ioc_cmd __user *cmds = user->cmds; 680 struct mmc_card *card; 681 struct mmc_queue *mq; 682 int i, err = 0, ioc_err = 0; 683 __u64 num_of_cmds; 684 struct request *req; 685 686 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 687 sizeof(num_of_cmds))) 688 return -EFAULT; 689 690 if (!num_of_cmds) 691 return 0; 692 693 if (num_of_cmds > MMC_IOC_MAX_CMDS) 694 return -EINVAL; 695 696 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 697 if (!idata) 698 return -ENOMEM; 699 700 for (i = 0; i < num_of_cmds; i++) { 701 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 702 if (IS_ERR(idata[i])) { 703 err = PTR_ERR(idata[i]); 704 num_of_cmds = i; 705 goto cmd_err; 706 } 707 /* This will be NULL on non-RPMB ioctl():s */ 708 idata[i]->rpmb = rpmb; 709 } 710 711 card = md->queue.card; 712 if (IS_ERR(card)) { 713 err = PTR_ERR(card); 714 goto cmd_err; 715 } 716 717 718 /* 719 * Dispatch the ioctl()s into the block request queue. 720 */ 721 mq = &md->queue; 722 req = blk_get_request(mq->queue, 723 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 724 if (IS_ERR(req)) { 725 err = PTR_ERR(req); 726 goto cmd_err; 727 } 728 req_to_mmc_queue_req(req)->drv_op = 729 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 730 req_to_mmc_queue_req(req)->drv_op_data = idata; 731 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 732 blk_execute_rq(mq->queue, NULL, req, 0); 733 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 734 735 /* copy to user if data and response */ 736 for (i = 0; i < num_of_cmds && !err; i++) 737 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 738 739 blk_put_request(req); 740 741 cmd_err: 742 for (i = 0; i < num_of_cmds; i++) { 743 kfree(idata[i]->buf); 744 kfree(idata[i]); 745 } 746 kfree(idata); 747 return ioc_err ? ioc_err : err; 748 } 749 750 static int mmc_blk_check_blkdev(struct block_device *bdev) 751 { 752 /* 753 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 754 * whole block device, not on a partition. This prevents overspray 755 * between sibling partitions. 756 */ 757 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 758 return -EPERM; 759 return 0; 760 } 761 762 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 763 unsigned int cmd, unsigned long arg) 764 { 765 struct mmc_blk_data *md; 766 int ret; 767 768 switch (cmd) { 769 case MMC_IOC_CMD: 770 ret = mmc_blk_check_blkdev(bdev); 771 if (ret) 772 return ret; 773 md = mmc_blk_get(bdev->bd_disk); 774 if (!md) 775 return -EINVAL; 776 ret = mmc_blk_ioctl_cmd(md, 777 (struct mmc_ioc_cmd __user *)arg, 778 NULL); 779 mmc_blk_put(md); 780 return ret; 781 case MMC_IOC_MULTI_CMD: 782 ret = mmc_blk_check_blkdev(bdev); 783 if (ret) 784 return ret; 785 md = mmc_blk_get(bdev->bd_disk); 786 if (!md) 787 return -EINVAL; 788 ret = mmc_blk_ioctl_multi_cmd(md, 789 (struct mmc_ioc_multi_cmd __user *)arg, 790 NULL); 791 mmc_blk_put(md); 792 return ret; 793 default: 794 return -EINVAL; 795 } 796 } 797 798 #ifdef CONFIG_COMPAT 799 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 800 unsigned int cmd, unsigned long arg) 801 { 802 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 803 } 804 #endif 805 806 static const struct block_device_operations mmc_bdops = { 807 .open = mmc_blk_open, 808 .release = mmc_blk_release, 809 .getgeo = mmc_blk_getgeo, 810 .owner = THIS_MODULE, 811 .ioctl = mmc_blk_ioctl, 812 #ifdef CONFIG_COMPAT 813 .compat_ioctl = mmc_blk_compat_ioctl, 814 #endif 815 }; 816 817 static int mmc_blk_part_switch_pre(struct mmc_card *card, 818 unsigned int part_type) 819 { 820 int ret = 0; 821 822 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 823 if (card->ext_csd.cmdq_en) { 824 ret = mmc_cmdq_disable(card); 825 if (ret) 826 return ret; 827 } 828 mmc_retune_pause(card->host); 829 } 830 831 return ret; 832 } 833 834 static int mmc_blk_part_switch_post(struct mmc_card *card, 835 unsigned int part_type) 836 { 837 int ret = 0; 838 839 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 840 mmc_retune_unpause(card->host); 841 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 842 ret = mmc_cmdq_enable(card); 843 } 844 845 return ret; 846 } 847 848 static inline int mmc_blk_part_switch(struct mmc_card *card, 849 unsigned int part_type) 850 { 851 int ret = 0; 852 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 853 854 if (main_md->part_curr == part_type) 855 return 0; 856 857 if (mmc_card_mmc(card)) { 858 u8 part_config = card->ext_csd.part_config; 859 860 ret = mmc_blk_part_switch_pre(card, part_type); 861 if (ret) 862 return ret; 863 864 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 865 part_config |= part_type; 866 867 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 868 EXT_CSD_PART_CONFIG, part_config, 869 card->ext_csd.part_time); 870 if (ret) { 871 mmc_blk_part_switch_post(card, part_type); 872 return ret; 873 } 874 875 card->ext_csd.part_config = part_config; 876 877 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 878 } 879 880 main_md->part_curr = part_type; 881 return ret; 882 } 883 884 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 885 { 886 int err; 887 u32 result; 888 __be32 *blocks; 889 890 struct mmc_request mrq = {}; 891 struct mmc_command cmd = {}; 892 struct mmc_data data = {}; 893 894 struct scatterlist sg; 895 896 cmd.opcode = MMC_APP_CMD; 897 cmd.arg = card->rca << 16; 898 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 899 900 err = mmc_wait_for_cmd(card->host, &cmd, 0); 901 if (err) 902 return err; 903 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 904 return -EIO; 905 906 memset(&cmd, 0, sizeof(struct mmc_command)); 907 908 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 909 cmd.arg = 0; 910 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 911 912 data.blksz = 4; 913 data.blocks = 1; 914 data.flags = MMC_DATA_READ; 915 data.sg = &sg; 916 data.sg_len = 1; 917 mmc_set_data_timeout(&data, card); 918 919 mrq.cmd = &cmd; 920 mrq.data = &data; 921 922 blocks = kmalloc(4, GFP_KERNEL); 923 if (!blocks) 924 return -ENOMEM; 925 926 sg_init_one(&sg, blocks, 4); 927 928 mmc_wait_for_req(card->host, &mrq); 929 930 result = ntohl(*blocks); 931 kfree(blocks); 932 933 if (cmd.error || data.error) 934 return -EIO; 935 936 *written_blocks = result; 937 938 return 0; 939 } 940 941 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 942 { 943 if (host->actual_clock) 944 return host->actual_clock / 1000; 945 946 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 947 if (host->ios.clock) 948 return host->ios.clock / 2000; 949 950 /* How can there be no clock */ 951 WARN_ON_ONCE(1); 952 return 100; /* 100 kHz is minimum possible value */ 953 } 954 955 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 956 struct mmc_data *data) 957 { 958 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 959 unsigned int khz; 960 961 if (data->timeout_clks) { 962 khz = mmc_blk_clock_khz(host); 963 ms += DIV_ROUND_UP(data->timeout_clks, khz); 964 } 965 966 return ms; 967 } 968 969 static inline bool mmc_blk_in_tran_state(u32 status) 970 { 971 /* 972 * Some cards mishandle the status bits, so make sure to check both the 973 * busy indication and the card state. 974 */ 975 return status & R1_READY_FOR_DATA && 976 (R1_CURRENT_STATE(status) == R1_STATE_TRAN); 977 } 978 979 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 980 struct request *req, u32 *resp_errs) 981 { 982 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 983 int err = 0; 984 u32 status; 985 986 do { 987 bool done = time_after(jiffies, timeout); 988 989 err = __mmc_send_status(card, &status, 5); 990 if (err) { 991 pr_err("%s: error %d requesting status\n", 992 req->rq_disk->disk_name, err); 993 return err; 994 } 995 996 /* Accumulate any response error bits seen */ 997 if (resp_errs) 998 *resp_errs |= status; 999 1000 /* 1001 * Timeout if the device never becomes ready for data and never 1002 * leaves the program state. 1003 */ 1004 if (done) { 1005 pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n", 1006 mmc_hostname(card->host), 1007 req->rq_disk->disk_name, __func__, status); 1008 return -ETIMEDOUT; 1009 } 1010 1011 /* 1012 * Some cards mishandle the status bits, 1013 * so make sure to check both the busy 1014 * indication and the card state. 1015 */ 1016 } while (!mmc_blk_in_tran_state(status)); 1017 1018 return err; 1019 } 1020 1021 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1022 int type) 1023 { 1024 int err; 1025 1026 if (md->reset_done & type) 1027 return -EEXIST; 1028 1029 md->reset_done |= type; 1030 err = mmc_hw_reset(host); 1031 /* Ensure we switch back to the correct partition */ 1032 if (err != -EOPNOTSUPP) { 1033 struct mmc_blk_data *main_md = 1034 dev_get_drvdata(&host->card->dev); 1035 int part_err; 1036 1037 main_md->part_curr = main_md->part_type; 1038 part_err = mmc_blk_part_switch(host->card, md->part_type); 1039 if (part_err) { 1040 /* 1041 * We have failed to get back into the correct 1042 * partition, so we need to abort the whole request. 1043 */ 1044 return -ENODEV; 1045 } 1046 } 1047 return err; 1048 } 1049 1050 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1051 { 1052 md->reset_done &= ~type; 1053 } 1054 1055 /* 1056 * The non-block commands come back from the block layer after it queued it and 1057 * processed it with all other requests and then they get issued in this 1058 * function. 1059 */ 1060 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1061 { 1062 struct mmc_queue_req *mq_rq; 1063 struct mmc_card *card = mq->card; 1064 struct mmc_blk_data *md = mq->blkdata; 1065 struct mmc_blk_ioc_data **idata; 1066 bool rpmb_ioctl; 1067 u8 **ext_csd; 1068 u32 status; 1069 int ret; 1070 int i; 1071 1072 mq_rq = req_to_mmc_queue_req(req); 1073 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1074 1075 switch (mq_rq->drv_op) { 1076 case MMC_DRV_OP_IOCTL: 1077 case MMC_DRV_OP_IOCTL_RPMB: 1078 idata = mq_rq->drv_op_data; 1079 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1080 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1081 if (ret) 1082 break; 1083 } 1084 /* Always switch back to main area after RPMB access */ 1085 if (rpmb_ioctl) 1086 mmc_blk_part_switch(card, 0); 1087 break; 1088 case MMC_DRV_OP_BOOT_WP: 1089 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1090 card->ext_csd.boot_ro_lock | 1091 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1092 card->ext_csd.part_time); 1093 if (ret) 1094 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1095 md->disk->disk_name, ret); 1096 else 1097 card->ext_csd.boot_ro_lock |= 1098 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1099 break; 1100 case MMC_DRV_OP_GET_CARD_STATUS: 1101 ret = mmc_send_status(card, &status); 1102 if (!ret) 1103 ret = status; 1104 break; 1105 case MMC_DRV_OP_GET_EXT_CSD: 1106 ext_csd = mq_rq->drv_op_data; 1107 ret = mmc_get_ext_csd(card, ext_csd); 1108 break; 1109 default: 1110 pr_err("%s: unknown driver specific operation\n", 1111 md->disk->disk_name); 1112 ret = -EINVAL; 1113 break; 1114 } 1115 mq_rq->drv_op_result = ret; 1116 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1117 } 1118 1119 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1120 { 1121 struct mmc_blk_data *md = mq->blkdata; 1122 struct mmc_card *card = md->queue.card; 1123 unsigned int from, nr, arg; 1124 int err = 0, type = MMC_BLK_DISCARD; 1125 blk_status_t status = BLK_STS_OK; 1126 1127 if (!mmc_can_erase(card)) { 1128 status = BLK_STS_NOTSUPP; 1129 goto fail; 1130 } 1131 1132 from = blk_rq_pos(req); 1133 nr = blk_rq_sectors(req); 1134 1135 if (mmc_can_discard(card)) 1136 arg = MMC_DISCARD_ARG; 1137 else if (mmc_can_trim(card)) 1138 arg = MMC_TRIM_ARG; 1139 else 1140 arg = MMC_ERASE_ARG; 1141 do { 1142 err = 0; 1143 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1144 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1145 INAND_CMD38_ARG_EXT_CSD, 1146 arg == MMC_TRIM_ARG ? 1147 INAND_CMD38_ARG_TRIM : 1148 INAND_CMD38_ARG_ERASE, 1149 0); 1150 } 1151 if (!err) 1152 err = mmc_erase(card, from, nr, arg); 1153 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1154 if (err) 1155 status = BLK_STS_IOERR; 1156 else 1157 mmc_blk_reset_success(md, type); 1158 fail: 1159 blk_mq_end_request(req, status); 1160 } 1161 1162 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1163 struct request *req) 1164 { 1165 struct mmc_blk_data *md = mq->blkdata; 1166 struct mmc_card *card = md->queue.card; 1167 unsigned int from, nr, arg; 1168 int err = 0, type = MMC_BLK_SECDISCARD; 1169 blk_status_t status = BLK_STS_OK; 1170 1171 if (!(mmc_can_secure_erase_trim(card))) { 1172 status = BLK_STS_NOTSUPP; 1173 goto out; 1174 } 1175 1176 from = blk_rq_pos(req); 1177 nr = blk_rq_sectors(req); 1178 1179 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1180 arg = MMC_SECURE_TRIM1_ARG; 1181 else 1182 arg = MMC_SECURE_ERASE_ARG; 1183 1184 retry: 1185 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1186 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1187 INAND_CMD38_ARG_EXT_CSD, 1188 arg == MMC_SECURE_TRIM1_ARG ? 1189 INAND_CMD38_ARG_SECTRIM1 : 1190 INAND_CMD38_ARG_SECERASE, 1191 0); 1192 if (err) 1193 goto out_retry; 1194 } 1195 1196 err = mmc_erase(card, from, nr, arg); 1197 if (err == -EIO) 1198 goto out_retry; 1199 if (err) { 1200 status = BLK_STS_IOERR; 1201 goto out; 1202 } 1203 1204 if (arg == MMC_SECURE_TRIM1_ARG) { 1205 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1206 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1207 INAND_CMD38_ARG_EXT_CSD, 1208 INAND_CMD38_ARG_SECTRIM2, 1209 0); 1210 if (err) 1211 goto out_retry; 1212 } 1213 1214 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1215 if (err == -EIO) 1216 goto out_retry; 1217 if (err) { 1218 status = BLK_STS_IOERR; 1219 goto out; 1220 } 1221 } 1222 1223 out_retry: 1224 if (err && !mmc_blk_reset(md, card->host, type)) 1225 goto retry; 1226 if (!err) 1227 mmc_blk_reset_success(md, type); 1228 out: 1229 blk_mq_end_request(req, status); 1230 } 1231 1232 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1233 { 1234 struct mmc_blk_data *md = mq->blkdata; 1235 struct mmc_card *card = md->queue.card; 1236 int ret = 0; 1237 1238 ret = mmc_flush_cache(card); 1239 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1240 } 1241 1242 /* 1243 * Reformat current write as a reliable write, supporting 1244 * both legacy and the enhanced reliable write MMC cards. 1245 * In each transfer we'll handle only as much as a single 1246 * reliable write can handle, thus finish the request in 1247 * partial completions. 1248 */ 1249 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1250 struct mmc_card *card, 1251 struct request *req) 1252 { 1253 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1254 /* Legacy mode imposes restrictions on transfers. */ 1255 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1256 brq->data.blocks = 1; 1257 1258 if (brq->data.blocks > card->ext_csd.rel_sectors) 1259 brq->data.blocks = card->ext_csd.rel_sectors; 1260 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1261 brq->data.blocks = 1; 1262 } 1263 } 1264 1265 #define CMD_ERRORS_EXCL_OOR \ 1266 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1267 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1268 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1269 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1270 R1_CC_ERROR | /* Card controller error */ \ 1271 R1_ERROR) /* General/unknown error */ 1272 1273 #define CMD_ERRORS \ 1274 (CMD_ERRORS_EXCL_OOR | \ 1275 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1276 1277 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1278 { 1279 u32 val; 1280 1281 /* 1282 * Per the SD specification(physical layer version 4.10)[1], 1283 * section 4.3.3, it explicitly states that "When the last 1284 * block of user area is read using CMD18, the host should 1285 * ignore OUT_OF_RANGE error that may occur even the sequence 1286 * is correct". And JESD84-B51 for eMMC also has a similar 1287 * statement on section 6.8.3. 1288 * 1289 * Multiple block read/write could be done by either predefined 1290 * method, namely CMD23, or open-ending mode. For open-ending mode, 1291 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1292 * 1293 * However the spec[1] doesn't tell us whether we should also 1294 * ignore that for predefined method. But per the spec[1], section 1295 * 4.15 Set Block Count Command, it says"If illegal block count 1296 * is set, out of range error will be indicated during read/write 1297 * operation (For example, data transfer is stopped at user area 1298 * boundary)." In another word, we could expect a out of range error 1299 * in the response for the following CMD18/25. And if argument of 1300 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1301 * we could also expect to get a -ETIMEDOUT or any error number from 1302 * the host drivers due to missing data response(for write)/data(for 1303 * read), as the cards will stop the data transfer by itself per the 1304 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1305 */ 1306 1307 if (!brq->stop.error) { 1308 bool oor_with_open_end; 1309 /* If there is no error yet, check R1 response */ 1310 1311 val = brq->stop.resp[0] & CMD_ERRORS; 1312 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1313 1314 if (val && !oor_with_open_end) 1315 brq->stop.error = -EIO; 1316 } 1317 } 1318 1319 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1320 int disable_multi, bool *do_rel_wr_p, 1321 bool *do_data_tag_p) 1322 { 1323 struct mmc_blk_data *md = mq->blkdata; 1324 struct mmc_card *card = md->queue.card; 1325 struct mmc_blk_request *brq = &mqrq->brq; 1326 struct request *req = mmc_queue_req_to_req(mqrq); 1327 bool do_rel_wr, do_data_tag; 1328 1329 /* 1330 * Reliable writes are used to implement Forced Unit Access and 1331 * are supported only on MMCs. 1332 */ 1333 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1334 rq_data_dir(req) == WRITE && 1335 (md->flags & MMC_BLK_REL_WR); 1336 1337 memset(brq, 0, sizeof(struct mmc_blk_request)); 1338 1339 brq->mrq.data = &brq->data; 1340 brq->mrq.tag = req->tag; 1341 1342 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1343 brq->stop.arg = 0; 1344 1345 if (rq_data_dir(req) == READ) { 1346 brq->data.flags = MMC_DATA_READ; 1347 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1348 } else { 1349 brq->data.flags = MMC_DATA_WRITE; 1350 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1351 } 1352 1353 brq->data.blksz = 512; 1354 brq->data.blocks = blk_rq_sectors(req); 1355 brq->data.blk_addr = blk_rq_pos(req); 1356 1357 /* 1358 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1359 * The eMMC will give "high" priority tasks priority over "simple" 1360 * priority tasks. Here we always set "simple" priority by not setting 1361 * MMC_DATA_PRIO. 1362 */ 1363 1364 /* 1365 * The block layer doesn't support all sector count 1366 * restrictions, so we need to be prepared for too big 1367 * requests. 1368 */ 1369 if (brq->data.blocks > card->host->max_blk_count) 1370 brq->data.blocks = card->host->max_blk_count; 1371 1372 if (brq->data.blocks > 1) { 1373 /* 1374 * After a read error, we redo the request one sector 1375 * at a time in order to accurately determine which 1376 * sectors can be read successfully. 1377 */ 1378 if (disable_multi) 1379 brq->data.blocks = 1; 1380 1381 /* 1382 * Some controllers have HW issues while operating 1383 * in multiple I/O mode 1384 */ 1385 if (card->host->ops->multi_io_quirk) 1386 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1387 (rq_data_dir(req) == READ) ? 1388 MMC_DATA_READ : MMC_DATA_WRITE, 1389 brq->data.blocks); 1390 } 1391 1392 if (do_rel_wr) { 1393 mmc_apply_rel_rw(brq, card, req); 1394 brq->data.flags |= MMC_DATA_REL_WR; 1395 } 1396 1397 /* 1398 * Data tag is used only during writing meta data to speed 1399 * up write and any subsequent read of this meta data 1400 */ 1401 do_data_tag = card->ext_csd.data_tag_unit_size && 1402 (req->cmd_flags & REQ_META) && 1403 (rq_data_dir(req) == WRITE) && 1404 ((brq->data.blocks * brq->data.blksz) >= 1405 card->ext_csd.data_tag_unit_size); 1406 1407 if (do_data_tag) 1408 brq->data.flags |= MMC_DATA_DAT_TAG; 1409 1410 mmc_set_data_timeout(&brq->data, card); 1411 1412 brq->data.sg = mqrq->sg; 1413 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1414 1415 /* 1416 * Adjust the sg list so it is the same size as the 1417 * request. 1418 */ 1419 if (brq->data.blocks != blk_rq_sectors(req)) { 1420 int i, data_size = brq->data.blocks << 9; 1421 struct scatterlist *sg; 1422 1423 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1424 data_size -= sg->length; 1425 if (data_size <= 0) { 1426 sg->length += data_size; 1427 i++; 1428 break; 1429 } 1430 } 1431 brq->data.sg_len = i; 1432 } 1433 1434 if (do_rel_wr_p) 1435 *do_rel_wr_p = do_rel_wr; 1436 1437 if (do_data_tag_p) 1438 *do_data_tag_p = do_data_tag; 1439 } 1440 1441 #define MMC_CQE_RETRIES 2 1442 1443 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1444 { 1445 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1446 struct mmc_request *mrq = &mqrq->brq.mrq; 1447 struct request_queue *q = req->q; 1448 struct mmc_host *host = mq->card->host; 1449 unsigned long flags; 1450 bool put_card; 1451 int err; 1452 1453 mmc_cqe_post_req(host, mrq); 1454 1455 if (mrq->cmd && mrq->cmd->error) 1456 err = mrq->cmd->error; 1457 else if (mrq->data && mrq->data->error) 1458 err = mrq->data->error; 1459 else 1460 err = 0; 1461 1462 if (err) { 1463 if (mqrq->retries++ < MMC_CQE_RETRIES) 1464 blk_mq_requeue_request(req, true); 1465 else 1466 blk_mq_end_request(req, BLK_STS_IOERR); 1467 } else if (mrq->data) { 1468 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1469 blk_mq_requeue_request(req, true); 1470 else 1471 __blk_mq_end_request(req, BLK_STS_OK); 1472 } else { 1473 blk_mq_end_request(req, BLK_STS_OK); 1474 } 1475 1476 spin_lock_irqsave(q->queue_lock, flags); 1477 1478 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1479 1480 put_card = (mmc_tot_in_flight(mq) == 0); 1481 1482 mmc_cqe_check_busy(mq); 1483 1484 spin_unlock_irqrestore(q->queue_lock, flags); 1485 1486 if (!mq->cqe_busy) 1487 blk_mq_run_hw_queues(q, true); 1488 1489 if (put_card) 1490 mmc_put_card(mq->card, &mq->ctx); 1491 } 1492 1493 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1494 { 1495 struct mmc_card *card = mq->card; 1496 struct mmc_host *host = card->host; 1497 int err; 1498 1499 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1500 1501 err = mmc_cqe_recovery(host); 1502 if (err) 1503 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1504 else 1505 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1506 1507 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1508 } 1509 1510 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1511 { 1512 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1513 brq.mrq); 1514 struct request *req = mmc_queue_req_to_req(mqrq); 1515 struct request_queue *q = req->q; 1516 struct mmc_queue *mq = q->queuedata; 1517 1518 /* 1519 * Block layer timeouts race with completions which means the normal 1520 * completion path cannot be used during recovery. 1521 */ 1522 if (mq->in_recovery) 1523 mmc_blk_cqe_complete_rq(mq, req); 1524 else 1525 blk_mq_complete_request(req); 1526 } 1527 1528 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1529 { 1530 mrq->done = mmc_blk_cqe_req_done; 1531 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1532 1533 return mmc_cqe_start_req(host, mrq); 1534 } 1535 1536 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1537 struct request *req) 1538 { 1539 struct mmc_blk_request *brq = &mqrq->brq; 1540 1541 memset(brq, 0, sizeof(*brq)); 1542 1543 brq->mrq.cmd = &brq->cmd; 1544 brq->mrq.tag = req->tag; 1545 1546 return &brq->mrq; 1547 } 1548 1549 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1550 { 1551 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1552 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1553 1554 mrq->cmd->opcode = MMC_SWITCH; 1555 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1556 (EXT_CSD_FLUSH_CACHE << 16) | 1557 (1 << 8) | 1558 EXT_CSD_CMD_SET_NORMAL; 1559 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1560 1561 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1562 } 1563 1564 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1565 { 1566 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1567 1568 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1569 1570 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1571 } 1572 1573 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1574 struct mmc_card *card, 1575 int disable_multi, 1576 struct mmc_queue *mq) 1577 { 1578 u32 readcmd, writecmd; 1579 struct mmc_blk_request *brq = &mqrq->brq; 1580 struct request *req = mmc_queue_req_to_req(mqrq); 1581 struct mmc_blk_data *md = mq->blkdata; 1582 bool do_rel_wr, do_data_tag; 1583 1584 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1585 1586 brq->mrq.cmd = &brq->cmd; 1587 1588 brq->cmd.arg = blk_rq_pos(req); 1589 if (!mmc_card_blockaddr(card)) 1590 brq->cmd.arg <<= 9; 1591 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1592 1593 if (brq->data.blocks > 1 || do_rel_wr) { 1594 /* SPI multiblock writes terminate using a special 1595 * token, not a STOP_TRANSMISSION request. 1596 */ 1597 if (!mmc_host_is_spi(card->host) || 1598 rq_data_dir(req) == READ) 1599 brq->mrq.stop = &brq->stop; 1600 readcmd = MMC_READ_MULTIPLE_BLOCK; 1601 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1602 } else { 1603 brq->mrq.stop = NULL; 1604 readcmd = MMC_READ_SINGLE_BLOCK; 1605 writecmd = MMC_WRITE_BLOCK; 1606 } 1607 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1608 1609 /* 1610 * Pre-defined multi-block transfers are preferable to 1611 * open ended-ones (and necessary for reliable writes). 1612 * However, it is not sufficient to just send CMD23, 1613 * and avoid the final CMD12, as on an error condition 1614 * CMD12 (stop) needs to be sent anyway. This, coupled 1615 * with Auto-CMD23 enhancements provided by some 1616 * hosts, means that the complexity of dealing 1617 * with this is best left to the host. If CMD23 is 1618 * supported by card and host, we'll fill sbc in and let 1619 * the host deal with handling it correctly. This means 1620 * that for hosts that don't expose MMC_CAP_CMD23, no 1621 * change of behavior will be observed. 1622 * 1623 * N.B: Some MMC cards experience perf degradation. 1624 * We'll avoid using CMD23-bounded multiblock writes for 1625 * these, while retaining features like reliable writes. 1626 */ 1627 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1628 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1629 do_data_tag)) { 1630 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1631 brq->sbc.arg = brq->data.blocks | 1632 (do_rel_wr ? (1 << 31) : 0) | 1633 (do_data_tag ? (1 << 29) : 0); 1634 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1635 brq->mrq.sbc = &brq->sbc; 1636 } 1637 } 1638 1639 #define MMC_MAX_RETRIES 5 1640 #define MMC_DATA_RETRIES 2 1641 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1642 1643 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1644 { 1645 struct mmc_command cmd = { 1646 .opcode = MMC_STOP_TRANSMISSION, 1647 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1648 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1649 .busy_timeout = timeout, 1650 }; 1651 1652 return mmc_wait_for_cmd(card->host, &cmd, 5); 1653 } 1654 1655 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1656 { 1657 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1658 struct mmc_blk_request *brq = &mqrq->brq; 1659 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1660 int err; 1661 1662 mmc_retune_hold_now(card->host); 1663 1664 mmc_blk_send_stop(card, timeout); 1665 1666 err = card_busy_detect(card, timeout, req, NULL); 1667 1668 mmc_retune_release(card->host); 1669 1670 return err; 1671 } 1672 1673 #define MMC_READ_SINGLE_RETRIES 2 1674 1675 /* Single sector read during recovery */ 1676 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1677 { 1678 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1679 struct mmc_request *mrq = &mqrq->brq.mrq; 1680 struct mmc_card *card = mq->card; 1681 struct mmc_host *host = card->host; 1682 blk_status_t error = BLK_STS_OK; 1683 int retries = 0; 1684 1685 do { 1686 u32 status; 1687 int err; 1688 1689 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1690 1691 mmc_wait_for_req(host, mrq); 1692 1693 err = mmc_send_status(card, &status); 1694 if (err) 1695 goto error_exit; 1696 1697 if (!mmc_host_is_spi(host) && 1698 !mmc_blk_in_tran_state(status)) { 1699 err = mmc_blk_fix_state(card, req); 1700 if (err) 1701 goto error_exit; 1702 } 1703 1704 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES) 1705 continue; 1706 1707 retries = 0; 1708 1709 if (mrq->cmd->error || 1710 mrq->data->error || 1711 (!mmc_host_is_spi(host) && 1712 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1713 error = BLK_STS_IOERR; 1714 else 1715 error = BLK_STS_OK; 1716 1717 } while (blk_update_request(req, error, 512)); 1718 1719 return; 1720 1721 error_exit: 1722 mrq->data->bytes_xfered = 0; 1723 blk_update_request(req, BLK_STS_IOERR, 512); 1724 /* Let it try the remaining request again */ 1725 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1726 mqrq->retries = MMC_MAX_RETRIES - 1; 1727 } 1728 1729 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1730 { 1731 return !!brq->mrq.sbc; 1732 } 1733 1734 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1735 { 1736 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1737 } 1738 1739 /* 1740 * Check for errors the host controller driver might not have seen such as 1741 * response mode errors or invalid card state. 1742 */ 1743 static bool mmc_blk_status_error(struct request *req, u32 status) 1744 { 1745 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1746 struct mmc_blk_request *brq = &mqrq->brq; 1747 struct mmc_queue *mq = req->q->queuedata; 1748 u32 stop_err_bits; 1749 1750 if (mmc_host_is_spi(mq->card->host)) 1751 return false; 1752 1753 stop_err_bits = mmc_blk_stop_err_bits(brq); 1754 1755 return brq->cmd.resp[0] & CMD_ERRORS || 1756 brq->stop.resp[0] & stop_err_bits || 1757 status & stop_err_bits || 1758 (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status)); 1759 } 1760 1761 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1762 { 1763 return !brq->sbc.error && !brq->cmd.error && 1764 !(brq->cmd.resp[0] & CMD_ERRORS); 1765 } 1766 1767 /* 1768 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1769 * policy: 1770 * 1. A request that has transferred at least some data is considered 1771 * successful and will be requeued if there is remaining data to 1772 * transfer. 1773 * 2. Otherwise the number of retries is incremented and the request 1774 * will be requeued if there are remaining retries. 1775 * 3. Otherwise the request will be errored out. 1776 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1777 * mqrq->retries. So there are only 4 possible actions here: 1778 * 1. do not accept the bytes_xfered value i.e. set it to zero 1779 * 2. change mqrq->retries to determine the number of retries 1780 * 3. try to reset the card 1781 * 4. read one sector at a time 1782 */ 1783 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1784 { 1785 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1786 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1787 struct mmc_blk_request *brq = &mqrq->brq; 1788 struct mmc_blk_data *md = mq->blkdata; 1789 struct mmc_card *card = mq->card; 1790 u32 status; 1791 u32 blocks; 1792 int err; 1793 1794 /* 1795 * Some errors the host driver might not have seen. Set the number of 1796 * bytes transferred to zero in that case. 1797 */ 1798 err = __mmc_send_status(card, &status, 0); 1799 if (err || mmc_blk_status_error(req, status)) 1800 brq->data.bytes_xfered = 0; 1801 1802 mmc_retune_release(card->host); 1803 1804 /* 1805 * Try again to get the status. This also provides an opportunity for 1806 * re-tuning. 1807 */ 1808 if (err) 1809 err = __mmc_send_status(card, &status, 0); 1810 1811 /* 1812 * Nothing more to do after the number of bytes transferred has been 1813 * updated and there is no card. 1814 */ 1815 if (err && mmc_detect_card_removed(card->host)) 1816 return; 1817 1818 /* Try to get back to "tran" state */ 1819 if (!mmc_host_is_spi(mq->card->host) && 1820 (err || !mmc_blk_in_tran_state(status))) 1821 err = mmc_blk_fix_state(mq->card, req); 1822 1823 /* 1824 * Special case for SD cards where the card might record the number of 1825 * blocks written. 1826 */ 1827 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1828 rq_data_dir(req) == WRITE) { 1829 if (mmc_sd_num_wr_blocks(card, &blocks)) 1830 brq->data.bytes_xfered = 0; 1831 else 1832 brq->data.bytes_xfered = blocks << 9; 1833 } 1834 1835 /* Reset if the card is in a bad state */ 1836 if (!mmc_host_is_spi(mq->card->host) && 1837 err && mmc_blk_reset(md, card->host, type)) { 1838 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name); 1839 mqrq->retries = MMC_NO_RETRIES; 1840 return; 1841 } 1842 1843 /* 1844 * If anything was done, just return and if there is anything remaining 1845 * on the request it will get requeued. 1846 */ 1847 if (brq->data.bytes_xfered) 1848 return; 1849 1850 /* Reset before last retry */ 1851 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1852 mmc_blk_reset(md, card->host, type); 1853 1854 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1855 if (brq->sbc.error || brq->cmd.error) 1856 return; 1857 1858 /* Reduce the remaining retries for data errors */ 1859 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1860 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1861 return; 1862 } 1863 1864 /* FIXME: Missing single sector read for large sector size */ 1865 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1866 brq->data.blocks > 1) { 1867 /* Read one sector at a time */ 1868 mmc_blk_read_single(mq, req); 1869 return; 1870 } 1871 } 1872 1873 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1874 { 1875 mmc_blk_eval_resp_error(brq); 1876 1877 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1878 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1879 } 1880 1881 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1882 { 1883 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1884 u32 status = 0; 1885 int err; 1886 1887 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) 1888 return 0; 1889 1890 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status); 1891 1892 /* 1893 * Do not assume data transferred correctly if there are any error bits 1894 * set. 1895 */ 1896 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1897 mqrq->brq.data.bytes_xfered = 0; 1898 err = err ? err : -EIO; 1899 } 1900 1901 /* Copy the exception bit so it will be seen later on */ 1902 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT) 1903 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1904 1905 return err; 1906 } 1907 1908 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1909 struct request *req) 1910 { 1911 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1912 1913 mmc_blk_reset_success(mq->blkdata, type); 1914 } 1915 1916 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1917 { 1918 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1919 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1920 1921 if (nr_bytes) { 1922 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1923 blk_mq_requeue_request(req, true); 1924 else 1925 __blk_mq_end_request(req, BLK_STS_OK); 1926 } else if (!blk_rq_bytes(req)) { 1927 __blk_mq_end_request(req, BLK_STS_IOERR); 1928 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1929 blk_mq_requeue_request(req, true); 1930 } else { 1931 if (mmc_card_removed(mq->card)) 1932 req->rq_flags |= RQF_QUIET; 1933 blk_mq_end_request(req, BLK_STS_IOERR); 1934 } 1935 } 1936 1937 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1938 struct mmc_queue_req *mqrq) 1939 { 1940 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1941 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1942 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1943 } 1944 1945 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 1946 struct mmc_queue_req *mqrq) 1947 { 1948 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 1949 mmc_start_bkops(mq->card, true); 1950 } 1951 1952 void mmc_blk_mq_complete(struct request *req) 1953 { 1954 struct mmc_queue *mq = req->q->queuedata; 1955 1956 if (mq->use_cqe) 1957 mmc_blk_cqe_complete_rq(mq, req); 1958 else 1959 mmc_blk_mq_complete_rq(mq, req); 1960 } 1961 1962 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 1963 struct request *req) 1964 { 1965 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1966 struct mmc_host *host = mq->card->host; 1967 1968 if (mmc_blk_rq_error(&mqrq->brq) || 1969 mmc_blk_card_busy(mq->card, req)) { 1970 mmc_blk_mq_rw_recovery(mq, req); 1971 } else { 1972 mmc_blk_rw_reset_success(mq, req); 1973 mmc_retune_release(host); 1974 } 1975 1976 mmc_blk_urgent_bkops(mq, mqrq); 1977 } 1978 1979 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 1980 { 1981 struct request_queue *q = req->q; 1982 unsigned long flags; 1983 bool put_card; 1984 1985 spin_lock_irqsave(q->queue_lock, flags); 1986 1987 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1988 1989 put_card = (mmc_tot_in_flight(mq) == 0); 1990 1991 spin_unlock_irqrestore(q->queue_lock, flags); 1992 1993 if (put_card) 1994 mmc_put_card(mq->card, &mq->ctx); 1995 } 1996 1997 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req) 1998 { 1999 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2000 struct mmc_request *mrq = &mqrq->brq.mrq; 2001 struct mmc_host *host = mq->card->host; 2002 2003 mmc_post_req(host, mrq, 0); 2004 2005 /* 2006 * Block layer timeouts race with completions which means the normal 2007 * completion path cannot be used during recovery. 2008 */ 2009 if (mq->in_recovery) 2010 mmc_blk_mq_complete_rq(mq, req); 2011 else 2012 blk_mq_complete_request(req); 2013 2014 mmc_blk_mq_dec_in_flight(mq, req); 2015 } 2016 2017 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2018 { 2019 struct request *req = mq->recovery_req; 2020 struct mmc_host *host = mq->card->host; 2021 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2022 2023 mq->recovery_req = NULL; 2024 mq->rw_wait = false; 2025 2026 if (mmc_blk_rq_error(&mqrq->brq)) { 2027 mmc_retune_hold_now(host); 2028 mmc_blk_mq_rw_recovery(mq, req); 2029 } 2030 2031 mmc_blk_urgent_bkops(mq, mqrq); 2032 2033 mmc_blk_mq_post_req(mq, req); 2034 } 2035 2036 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2037 struct request **prev_req) 2038 { 2039 if (mmc_host_done_complete(mq->card->host)) 2040 return; 2041 2042 mutex_lock(&mq->complete_lock); 2043 2044 if (!mq->complete_req) 2045 goto out_unlock; 2046 2047 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2048 2049 if (prev_req) 2050 *prev_req = mq->complete_req; 2051 else 2052 mmc_blk_mq_post_req(mq, mq->complete_req); 2053 2054 mq->complete_req = NULL; 2055 2056 out_unlock: 2057 mutex_unlock(&mq->complete_lock); 2058 } 2059 2060 void mmc_blk_mq_complete_work(struct work_struct *work) 2061 { 2062 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2063 complete_work); 2064 2065 mmc_blk_mq_complete_prev_req(mq, NULL); 2066 } 2067 2068 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2069 { 2070 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2071 brq.mrq); 2072 struct request *req = mmc_queue_req_to_req(mqrq); 2073 struct request_queue *q = req->q; 2074 struct mmc_queue *mq = q->queuedata; 2075 struct mmc_host *host = mq->card->host; 2076 unsigned long flags; 2077 2078 if (!mmc_host_done_complete(host)) { 2079 bool waiting; 2080 2081 /* 2082 * We cannot complete the request in this context, so record 2083 * that there is a request to complete, and that a following 2084 * request does not need to wait (although it does need to 2085 * complete complete_req first). 2086 */ 2087 spin_lock_irqsave(q->queue_lock, flags); 2088 mq->complete_req = req; 2089 mq->rw_wait = false; 2090 waiting = mq->waiting; 2091 spin_unlock_irqrestore(q->queue_lock, flags); 2092 2093 /* 2094 * If 'waiting' then the waiting task will complete this 2095 * request, otherwise queue a work to do it. Note that 2096 * complete_work may still race with the dispatch of a following 2097 * request. 2098 */ 2099 if (waiting) 2100 wake_up(&mq->wait); 2101 else 2102 kblockd_schedule_work(&mq->complete_work); 2103 2104 return; 2105 } 2106 2107 /* Take the recovery path for errors or urgent background operations */ 2108 if (mmc_blk_rq_error(&mqrq->brq) || 2109 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2110 spin_lock_irqsave(q->queue_lock, flags); 2111 mq->recovery_needed = true; 2112 mq->recovery_req = req; 2113 spin_unlock_irqrestore(q->queue_lock, flags); 2114 wake_up(&mq->wait); 2115 schedule_work(&mq->recovery_work); 2116 return; 2117 } 2118 2119 mmc_blk_rw_reset_success(mq, req); 2120 2121 mq->rw_wait = false; 2122 wake_up(&mq->wait); 2123 2124 mmc_blk_mq_post_req(mq, req); 2125 } 2126 2127 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2128 { 2129 struct request_queue *q = mq->queue; 2130 unsigned long flags; 2131 bool done; 2132 2133 /* 2134 * Wait while there is another request in progress, but not if recovery 2135 * is needed. Also indicate whether there is a request waiting to start. 2136 */ 2137 spin_lock_irqsave(q->queue_lock, flags); 2138 if (mq->recovery_needed) { 2139 *err = -EBUSY; 2140 done = true; 2141 } else { 2142 done = !mq->rw_wait; 2143 } 2144 mq->waiting = !done; 2145 spin_unlock_irqrestore(q->queue_lock, flags); 2146 2147 return done; 2148 } 2149 2150 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2151 { 2152 int err = 0; 2153 2154 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2155 2156 /* Always complete the previous request if there is one */ 2157 mmc_blk_mq_complete_prev_req(mq, prev_req); 2158 2159 return err; 2160 } 2161 2162 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2163 struct request *req) 2164 { 2165 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2166 struct mmc_host *host = mq->card->host; 2167 struct request *prev_req = NULL; 2168 int err = 0; 2169 2170 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2171 2172 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2173 2174 mmc_pre_req(host, &mqrq->brq.mrq); 2175 2176 err = mmc_blk_rw_wait(mq, &prev_req); 2177 if (err) 2178 goto out_post_req; 2179 2180 mq->rw_wait = true; 2181 2182 err = mmc_start_request(host, &mqrq->brq.mrq); 2183 2184 if (prev_req) 2185 mmc_blk_mq_post_req(mq, prev_req); 2186 2187 if (err) 2188 mq->rw_wait = false; 2189 2190 /* Release re-tuning here where there is no synchronization required */ 2191 if (err || mmc_host_done_complete(host)) 2192 mmc_retune_release(host); 2193 2194 out_post_req: 2195 if (err) 2196 mmc_post_req(host, &mqrq->brq.mrq, err); 2197 2198 return err; 2199 } 2200 2201 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2202 { 2203 if (mq->use_cqe) 2204 return host->cqe_ops->cqe_wait_for_idle(host); 2205 2206 return mmc_blk_rw_wait(mq, NULL); 2207 } 2208 2209 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2210 { 2211 struct mmc_blk_data *md = mq->blkdata; 2212 struct mmc_card *card = md->queue.card; 2213 struct mmc_host *host = card->host; 2214 int ret; 2215 2216 ret = mmc_blk_part_switch(card, md->part_type); 2217 if (ret) 2218 return MMC_REQ_FAILED_TO_START; 2219 2220 switch (mmc_issue_type(mq, req)) { 2221 case MMC_ISSUE_SYNC: 2222 ret = mmc_blk_wait_for_idle(mq, host); 2223 if (ret) 2224 return MMC_REQ_BUSY; 2225 switch (req_op(req)) { 2226 case REQ_OP_DRV_IN: 2227 case REQ_OP_DRV_OUT: 2228 mmc_blk_issue_drv_op(mq, req); 2229 break; 2230 case REQ_OP_DISCARD: 2231 mmc_blk_issue_discard_rq(mq, req); 2232 break; 2233 case REQ_OP_SECURE_ERASE: 2234 mmc_blk_issue_secdiscard_rq(mq, req); 2235 break; 2236 case REQ_OP_FLUSH: 2237 mmc_blk_issue_flush(mq, req); 2238 break; 2239 default: 2240 WARN_ON_ONCE(1); 2241 return MMC_REQ_FAILED_TO_START; 2242 } 2243 return MMC_REQ_FINISHED; 2244 case MMC_ISSUE_DCMD: 2245 case MMC_ISSUE_ASYNC: 2246 switch (req_op(req)) { 2247 case REQ_OP_FLUSH: 2248 ret = mmc_blk_cqe_issue_flush(mq, req); 2249 break; 2250 case REQ_OP_READ: 2251 case REQ_OP_WRITE: 2252 if (mq->use_cqe) 2253 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2254 else 2255 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2256 break; 2257 default: 2258 WARN_ON_ONCE(1); 2259 ret = -EINVAL; 2260 } 2261 if (!ret) 2262 return MMC_REQ_STARTED; 2263 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2264 default: 2265 WARN_ON_ONCE(1); 2266 return MMC_REQ_FAILED_TO_START; 2267 } 2268 } 2269 2270 static inline int mmc_blk_readonly(struct mmc_card *card) 2271 { 2272 return mmc_card_readonly(card) || 2273 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2274 } 2275 2276 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2277 struct device *parent, 2278 sector_t size, 2279 bool default_ro, 2280 const char *subname, 2281 int area_type) 2282 { 2283 struct mmc_blk_data *md; 2284 int devidx, ret; 2285 2286 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2287 if (devidx < 0) { 2288 /* 2289 * We get -ENOSPC because there are no more any available 2290 * devidx. The reason may be that, either userspace haven't yet 2291 * unmounted the partitions, which postpones mmc_blk_release() 2292 * from being called, or the device has more partitions than 2293 * what we support. 2294 */ 2295 if (devidx == -ENOSPC) 2296 dev_err(mmc_dev(card->host), 2297 "no more device IDs available\n"); 2298 2299 return ERR_PTR(devidx); 2300 } 2301 2302 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2303 if (!md) { 2304 ret = -ENOMEM; 2305 goto out; 2306 } 2307 2308 md->area_type = area_type; 2309 2310 /* 2311 * Set the read-only status based on the supported commands 2312 * and the write protect switch. 2313 */ 2314 md->read_only = mmc_blk_readonly(card); 2315 2316 md->disk = alloc_disk(perdev_minors); 2317 if (md->disk == NULL) { 2318 ret = -ENOMEM; 2319 goto err_kfree; 2320 } 2321 2322 spin_lock_init(&md->lock); 2323 INIT_LIST_HEAD(&md->part); 2324 INIT_LIST_HEAD(&md->rpmbs); 2325 md->usage = 1; 2326 2327 ret = mmc_init_queue(&md->queue, card, &md->lock, subname); 2328 if (ret) 2329 goto err_putdisk; 2330 2331 md->queue.blkdata = md; 2332 2333 /* 2334 * Keep an extra reference to the queue so that we can shutdown the 2335 * queue (i.e. call blk_cleanup_queue()) while there are still 2336 * references to the 'md'. The corresponding blk_put_queue() is in 2337 * mmc_blk_put(). 2338 */ 2339 if (!blk_get_queue(md->queue.queue)) { 2340 mmc_cleanup_queue(&md->queue); 2341 ret = -ENODEV; 2342 goto err_putdisk; 2343 } 2344 2345 md->disk->major = MMC_BLOCK_MAJOR; 2346 md->disk->first_minor = devidx * perdev_minors; 2347 md->disk->fops = &mmc_bdops; 2348 md->disk->private_data = md; 2349 md->disk->queue = md->queue.queue; 2350 md->parent = parent; 2351 set_disk_ro(md->disk, md->read_only || default_ro); 2352 md->disk->flags = GENHD_FL_EXT_DEVT; 2353 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2354 md->disk->flags |= GENHD_FL_NO_PART_SCAN 2355 | GENHD_FL_SUPPRESS_PARTITION_INFO; 2356 2357 /* 2358 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2359 * 2360 * - be set for removable media with permanent block devices 2361 * - be unset for removable block devices with permanent media 2362 * 2363 * Since MMC block devices clearly fall under the second 2364 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2365 * should use the block device creation/destruction hotplug 2366 * messages to tell when the card is present. 2367 */ 2368 2369 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2370 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2371 2372 if (mmc_card_mmc(card)) 2373 blk_queue_logical_block_size(md->queue.queue, 2374 card->ext_csd.data_sector_size); 2375 else 2376 blk_queue_logical_block_size(md->queue.queue, 512); 2377 2378 set_capacity(md->disk, size); 2379 2380 if (mmc_host_cmd23(card->host)) { 2381 if ((mmc_card_mmc(card) && 2382 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2383 (mmc_card_sd(card) && 2384 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2385 md->flags |= MMC_BLK_CMD23; 2386 } 2387 2388 if (mmc_card_mmc(card) && 2389 md->flags & MMC_BLK_CMD23 && 2390 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2391 card->ext_csd.rel_sectors)) { 2392 md->flags |= MMC_BLK_REL_WR; 2393 blk_queue_write_cache(md->queue.queue, true, true); 2394 } 2395 2396 return md; 2397 2398 err_putdisk: 2399 put_disk(md->disk); 2400 err_kfree: 2401 kfree(md); 2402 out: 2403 ida_simple_remove(&mmc_blk_ida, devidx); 2404 return ERR_PTR(ret); 2405 } 2406 2407 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2408 { 2409 sector_t size; 2410 2411 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2412 /* 2413 * The EXT_CSD sector count is in number or 512 byte 2414 * sectors. 2415 */ 2416 size = card->ext_csd.sectors; 2417 } else { 2418 /* 2419 * The CSD capacity field is in units of read_blkbits. 2420 * set_capacity takes units of 512 bytes. 2421 */ 2422 size = (typeof(sector_t))card->csd.capacity 2423 << (card->csd.read_blkbits - 9); 2424 } 2425 2426 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2427 MMC_BLK_DATA_AREA_MAIN); 2428 } 2429 2430 static int mmc_blk_alloc_part(struct mmc_card *card, 2431 struct mmc_blk_data *md, 2432 unsigned int part_type, 2433 sector_t size, 2434 bool default_ro, 2435 const char *subname, 2436 int area_type) 2437 { 2438 char cap_str[10]; 2439 struct mmc_blk_data *part_md; 2440 2441 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2442 subname, area_type); 2443 if (IS_ERR(part_md)) 2444 return PTR_ERR(part_md); 2445 part_md->part_type = part_type; 2446 list_add(&part_md->part, &md->part); 2447 2448 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2449 cap_str, sizeof(cap_str)); 2450 pr_info("%s: %s %s partition %u %s\n", 2451 part_md->disk->disk_name, mmc_card_id(card), 2452 mmc_card_name(card), part_md->part_type, cap_str); 2453 return 0; 2454 } 2455 2456 /** 2457 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2458 * @filp: the character device file 2459 * @cmd: the ioctl() command 2460 * @arg: the argument from userspace 2461 * 2462 * This will essentially just redirect the ioctl()s coming in over to 2463 * the main block device spawning the RPMB character device. 2464 */ 2465 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2466 unsigned long arg) 2467 { 2468 struct mmc_rpmb_data *rpmb = filp->private_data; 2469 int ret; 2470 2471 switch (cmd) { 2472 case MMC_IOC_CMD: 2473 ret = mmc_blk_ioctl_cmd(rpmb->md, 2474 (struct mmc_ioc_cmd __user *)arg, 2475 rpmb); 2476 break; 2477 case MMC_IOC_MULTI_CMD: 2478 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2479 (struct mmc_ioc_multi_cmd __user *)arg, 2480 rpmb); 2481 break; 2482 default: 2483 ret = -EINVAL; 2484 break; 2485 } 2486 2487 return ret; 2488 } 2489 2490 #ifdef CONFIG_COMPAT 2491 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2492 unsigned long arg) 2493 { 2494 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2495 } 2496 #endif 2497 2498 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2499 { 2500 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2501 struct mmc_rpmb_data, chrdev); 2502 2503 get_device(&rpmb->dev); 2504 filp->private_data = rpmb; 2505 mmc_blk_get(rpmb->md->disk); 2506 2507 return nonseekable_open(inode, filp); 2508 } 2509 2510 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2511 { 2512 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2513 struct mmc_rpmb_data, chrdev); 2514 2515 put_device(&rpmb->dev); 2516 mmc_blk_put(rpmb->md); 2517 2518 return 0; 2519 } 2520 2521 static const struct file_operations mmc_rpmb_fileops = { 2522 .release = mmc_rpmb_chrdev_release, 2523 .open = mmc_rpmb_chrdev_open, 2524 .owner = THIS_MODULE, 2525 .llseek = no_llseek, 2526 .unlocked_ioctl = mmc_rpmb_ioctl, 2527 #ifdef CONFIG_COMPAT 2528 .compat_ioctl = mmc_rpmb_ioctl_compat, 2529 #endif 2530 }; 2531 2532 static void mmc_blk_rpmb_device_release(struct device *dev) 2533 { 2534 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2535 2536 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2537 kfree(rpmb); 2538 } 2539 2540 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2541 struct mmc_blk_data *md, 2542 unsigned int part_index, 2543 sector_t size, 2544 const char *subname) 2545 { 2546 int devidx, ret; 2547 char rpmb_name[DISK_NAME_LEN]; 2548 char cap_str[10]; 2549 struct mmc_rpmb_data *rpmb; 2550 2551 /* This creates the minor number for the RPMB char device */ 2552 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2553 if (devidx < 0) 2554 return devidx; 2555 2556 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2557 if (!rpmb) { 2558 ida_simple_remove(&mmc_rpmb_ida, devidx); 2559 return -ENOMEM; 2560 } 2561 2562 snprintf(rpmb_name, sizeof(rpmb_name), 2563 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2564 2565 rpmb->id = devidx; 2566 rpmb->part_index = part_index; 2567 rpmb->dev.init_name = rpmb_name; 2568 rpmb->dev.bus = &mmc_rpmb_bus_type; 2569 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2570 rpmb->dev.parent = &card->dev; 2571 rpmb->dev.release = mmc_blk_rpmb_device_release; 2572 device_initialize(&rpmb->dev); 2573 dev_set_drvdata(&rpmb->dev, rpmb); 2574 rpmb->md = md; 2575 2576 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2577 rpmb->chrdev.owner = THIS_MODULE; 2578 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2579 if (ret) { 2580 pr_err("%s: could not add character device\n", rpmb_name); 2581 goto out_put_device; 2582 } 2583 2584 list_add(&rpmb->node, &md->rpmbs); 2585 2586 string_get_size((u64)size, 512, STRING_UNITS_2, 2587 cap_str, sizeof(cap_str)); 2588 2589 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n", 2590 rpmb_name, mmc_card_id(card), 2591 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str, 2592 MAJOR(mmc_rpmb_devt), rpmb->id); 2593 2594 return 0; 2595 2596 out_put_device: 2597 put_device(&rpmb->dev); 2598 return ret; 2599 } 2600 2601 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2602 2603 { 2604 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2605 put_device(&rpmb->dev); 2606 } 2607 2608 /* MMC Physical partitions consist of two boot partitions and 2609 * up to four general purpose partitions. 2610 * For each partition enabled in EXT_CSD a block device will be allocatedi 2611 * to provide access to the partition. 2612 */ 2613 2614 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2615 { 2616 int idx, ret; 2617 2618 if (!mmc_card_mmc(card)) 2619 return 0; 2620 2621 for (idx = 0; idx < card->nr_parts; idx++) { 2622 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2623 /* 2624 * RPMB partitions does not provide block access, they 2625 * are only accessed using ioctl():s. Thus create 2626 * special RPMB block devices that do not have a 2627 * backing block queue for these. 2628 */ 2629 ret = mmc_blk_alloc_rpmb_part(card, md, 2630 card->part[idx].part_cfg, 2631 card->part[idx].size >> 9, 2632 card->part[idx].name); 2633 if (ret) 2634 return ret; 2635 } else if (card->part[idx].size) { 2636 ret = mmc_blk_alloc_part(card, md, 2637 card->part[idx].part_cfg, 2638 card->part[idx].size >> 9, 2639 card->part[idx].force_ro, 2640 card->part[idx].name, 2641 card->part[idx].area_type); 2642 if (ret) 2643 return ret; 2644 } 2645 } 2646 2647 return 0; 2648 } 2649 2650 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2651 { 2652 struct mmc_card *card; 2653 2654 if (md) { 2655 /* 2656 * Flush remaining requests and free queues. It 2657 * is freeing the queue that stops new requests 2658 * from being accepted. 2659 */ 2660 card = md->queue.card; 2661 if (md->disk->flags & GENHD_FL_UP) { 2662 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2663 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2664 card->ext_csd.boot_ro_lockable) 2665 device_remove_file(disk_to_dev(md->disk), 2666 &md->power_ro_lock); 2667 2668 del_gendisk(md->disk); 2669 } 2670 mmc_cleanup_queue(&md->queue); 2671 mmc_blk_put(md); 2672 } 2673 } 2674 2675 static void mmc_blk_remove_parts(struct mmc_card *card, 2676 struct mmc_blk_data *md) 2677 { 2678 struct list_head *pos, *q; 2679 struct mmc_blk_data *part_md; 2680 struct mmc_rpmb_data *rpmb; 2681 2682 /* Remove RPMB partitions */ 2683 list_for_each_safe(pos, q, &md->rpmbs) { 2684 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2685 list_del(pos); 2686 mmc_blk_remove_rpmb_part(rpmb); 2687 } 2688 /* Remove block partitions */ 2689 list_for_each_safe(pos, q, &md->part) { 2690 part_md = list_entry(pos, struct mmc_blk_data, part); 2691 list_del(pos); 2692 mmc_blk_remove_req(part_md); 2693 } 2694 } 2695 2696 static int mmc_add_disk(struct mmc_blk_data *md) 2697 { 2698 int ret; 2699 struct mmc_card *card = md->queue.card; 2700 2701 device_add_disk(md->parent, md->disk); 2702 md->force_ro.show = force_ro_show; 2703 md->force_ro.store = force_ro_store; 2704 sysfs_attr_init(&md->force_ro.attr); 2705 md->force_ro.attr.name = "force_ro"; 2706 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2707 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2708 if (ret) 2709 goto force_ro_fail; 2710 2711 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2712 card->ext_csd.boot_ro_lockable) { 2713 umode_t mode; 2714 2715 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2716 mode = S_IRUGO; 2717 else 2718 mode = S_IRUGO | S_IWUSR; 2719 2720 md->power_ro_lock.show = power_ro_lock_show; 2721 md->power_ro_lock.store = power_ro_lock_store; 2722 sysfs_attr_init(&md->power_ro_lock.attr); 2723 md->power_ro_lock.attr.mode = mode; 2724 md->power_ro_lock.attr.name = 2725 "ro_lock_until_next_power_on"; 2726 ret = device_create_file(disk_to_dev(md->disk), 2727 &md->power_ro_lock); 2728 if (ret) 2729 goto power_ro_lock_fail; 2730 } 2731 return ret; 2732 2733 power_ro_lock_fail: 2734 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2735 force_ro_fail: 2736 del_gendisk(md->disk); 2737 2738 return ret; 2739 } 2740 2741 #ifdef CONFIG_DEBUG_FS 2742 2743 static int mmc_dbg_card_status_get(void *data, u64 *val) 2744 { 2745 struct mmc_card *card = data; 2746 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2747 struct mmc_queue *mq = &md->queue; 2748 struct request *req; 2749 int ret; 2750 2751 /* Ask the block layer about the card status */ 2752 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2753 if (IS_ERR(req)) 2754 return PTR_ERR(req); 2755 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2756 blk_execute_rq(mq->queue, NULL, req, 0); 2757 ret = req_to_mmc_queue_req(req)->drv_op_result; 2758 if (ret >= 0) { 2759 *val = ret; 2760 ret = 0; 2761 } 2762 blk_put_request(req); 2763 2764 return ret; 2765 } 2766 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2767 NULL, "%08llx\n"); 2768 2769 /* That is two digits * 512 + 1 for newline */ 2770 #define EXT_CSD_STR_LEN 1025 2771 2772 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2773 { 2774 struct mmc_card *card = inode->i_private; 2775 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2776 struct mmc_queue *mq = &md->queue; 2777 struct request *req; 2778 char *buf; 2779 ssize_t n = 0; 2780 u8 *ext_csd; 2781 int err, i; 2782 2783 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2784 if (!buf) 2785 return -ENOMEM; 2786 2787 /* Ask the block layer for the EXT CSD */ 2788 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2789 if (IS_ERR(req)) { 2790 err = PTR_ERR(req); 2791 goto out_free; 2792 } 2793 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2794 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2795 blk_execute_rq(mq->queue, NULL, req, 0); 2796 err = req_to_mmc_queue_req(req)->drv_op_result; 2797 blk_put_request(req); 2798 if (err) { 2799 pr_err("FAILED %d\n", err); 2800 goto out_free; 2801 } 2802 2803 for (i = 0; i < 512; i++) 2804 n += sprintf(buf + n, "%02x", ext_csd[i]); 2805 n += sprintf(buf + n, "\n"); 2806 2807 if (n != EXT_CSD_STR_LEN) { 2808 err = -EINVAL; 2809 kfree(ext_csd); 2810 goto out_free; 2811 } 2812 2813 filp->private_data = buf; 2814 kfree(ext_csd); 2815 return 0; 2816 2817 out_free: 2818 kfree(buf); 2819 return err; 2820 } 2821 2822 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2823 size_t cnt, loff_t *ppos) 2824 { 2825 char *buf = filp->private_data; 2826 2827 return simple_read_from_buffer(ubuf, cnt, ppos, 2828 buf, EXT_CSD_STR_LEN); 2829 } 2830 2831 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2832 { 2833 kfree(file->private_data); 2834 return 0; 2835 } 2836 2837 static const struct file_operations mmc_dbg_ext_csd_fops = { 2838 .open = mmc_ext_csd_open, 2839 .read = mmc_ext_csd_read, 2840 .release = mmc_ext_csd_release, 2841 .llseek = default_llseek, 2842 }; 2843 2844 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2845 { 2846 struct dentry *root; 2847 2848 if (!card->debugfs_root) 2849 return 0; 2850 2851 root = card->debugfs_root; 2852 2853 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2854 md->status_dentry = 2855 debugfs_create_file("status", S_IRUSR, root, card, 2856 &mmc_dbg_card_status_fops); 2857 if (!md->status_dentry) 2858 return -EIO; 2859 } 2860 2861 if (mmc_card_mmc(card)) { 2862 md->ext_csd_dentry = 2863 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2864 &mmc_dbg_ext_csd_fops); 2865 if (!md->ext_csd_dentry) 2866 return -EIO; 2867 } 2868 2869 return 0; 2870 } 2871 2872 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2873 struct mmc_blk_data *md) 2874 { 2875 if (!card->debugfs_root) 2876 return; 2877 2878 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2879 debugfs_remove(md->status_dentry); 2880 md->status_dentry = NULL; 2881 } 2882 2883 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2884 debugfs_remove(md->ext_csd_dentry); 2885 md->ext_csd_dentry = NULL; 2886 } 2887 } 2888 2889 #else 2890 2891 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2892 { 2893 return 0; 2894 } 2895 2896 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2897 struct mmc_blk_data *md) 2898 { 2899 } 2900 2901 #endif /* CONFIG_DEBUG_FS */ 2902 2903 static int mmc_blk_probe(struct mmc_card *card) 2904 { 2905 struct mmc_blk_data *md, *part_md; 2906 char cap_str[10]; 2907 2908 /* 2909 * Check that the card supports the command class(es) we need. 2910 */ 2911 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2912 return -ENODEV; 2913 2914 mmc_fixup_device(card, mmc_blk_fixups); 2915 2916 md = mmc_blk_alloc(card); 2917 if (IS_ERR(md)) 2918 return PTR_ERR(md); 2919 2920 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2921 cap_str, sizeof(cap_str)); 2922 pr_info("%s: %s %s %s %s\n", 2923 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2924 cap_str, md->read_only ? "(ro)" : ""); 2925 2926 if (mmc_blk_alloc_parts(card, md)) 2927 goto out; 2928 2929 dev_set_drvdata(&card->dev, md); 2930 2931 if (mmc_add_disk(md)) 2932 goto out; 2933 2934 list_for_each_entry(part_md, &md->part, part) { 2935 if (mmc_add_disk(part_md)) 2936 goto out; 2937 } 2938 2939 /* Add two debugfs entries */ 2940 mmc_blk_add_debugfs(card, md); 2941 2942 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2943 pm_runtime_use_autosuspend(&card->dev); 2944 2945 /* 2946 * Don't enable runtime PM for SD-combo cards here. Leave that 2947 * decision to be taken during the SDIO init sequence instead. 2948 */ 2949 if (card->type != MMC_TYPE_SD_COMBO) { 2950 pm_runtime_set_active(&card->dev); 2951 pm_runtime_enable(&card->dev); 2952 } 2953 2954 return 0; 2955 2956 out: 2957 mmc_blk_remove_parts(card, md); 2958 mmc_blk_remove_req(md); 2959 return 0; 2960 } 2961 2962 static void mmc_blk_remove(struct mmc_card *card) 2963 { 2964 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2965 2966 mmc_blk_remove_debugfs(card, md); 2967 mmc_blk_remove_parts(card, md); 2968 pm_runtime_get_sync(&card->dev); 2969 if (md->part_curr != md->part_type) { 2970 mmc_claim_host(card->host); 2971 mmc_blk_part_switch(card, md->part_type); 2972 mmc_release_host(card->host); 2973 } 2974 if (card->type != MMC_TYPE_SD_COMBO) 2975 pm_runtime_disable(&card->dev); 2976 pm_runtime_put_noidle(&card->dev); 2977 mmc_blk_remove_req(md); 2978 dev_set_drvdata(&card->dev, NULL); 2979 } 2980 2981 static int _mmc_blk_suspend(struct mmc_card *card) 2982 { 2983 struct mmc_blk_data *part_md; 2984 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2985 2986 if (md) { 2987 mmc_queue_suspend(&md->queue); 2988 list_for_each_entry(part_md, &md->part, part) { 2989 mmc_queue_suspend(&part_md->queue); 2990 } 2991 } 2992 return 0; 2993 } 2994 2995 static void mmc_blk_shutdown(struct mmc_card *card) 2996 { 2997 _mmc_blk_suspend(card); 2998 } 2999 3000 #ifdef CONFIG_PM_SLEEP 3001 static int mmc_blk_suspend(struct device *dev) 3002 { 3003 struct mmc_card *card = mmc_dev_to_card(dev); 3004 3005 return _mmc_blk_suspend(card); 3006 } 3007 3008 static int mmc_blk_resume(struct device *dev) 3009 { 3010 struct mmc_blk_data *part_md; 3011 struct mmc_blk_data *md = dev_get_drvdata(dev); 3012 3013 if (md) { 3014 /* 3015 * Resume involves the card going into idle state, 3016 * so current partition is always the main one. 3017 */ 3018 md->part_curr = md->part_type; 3019 mmc_queue_resume(&md->queue); 3020 list_for_each_entry(part_md, &md->part, part) { 3021 mmc_queue_resume(&part_md->queue); 3022 } 3023 } 3024 return 0; 3025 } 3026 #endif 3027 3028 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3029 3030 static struct mmc_driver mmc_driver = { 3031 .drv = { 3032 .name = "mmcblk", 3033 .pm = &mmc_blk_pm_ops, 3034 }, 3035 .probe = mmc_blk_probe, 3036 .remove = mmc_blk_remove, 3037 .shutdown = mmc_blk_shutdown, 3038 }; 3039 3040 static int __init mmc_blk_init(void) 3041 { 3042 int res; 3043 3044 res = bus_register(&mmc_rpmb_bus_type); 3045 if (res < 0) { 3046 pr_err("mmcblk: could not register RPMB bus type\n"); 3047 return res; 3048 } 3049 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3050 if (res < 0) { 3051 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3052 goto out_bus_unreg; 3053 } 3054 3055 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3056 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3057 3058 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3059 3060 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3061 if (res) 3062 goto out_chrdev_unreg; 3063 3064 res = mmc_register_driver(&mmc_driver); 3065 if (res) 3066 goto out_blkdev_unreg; 3067 3068 return 0; 3069 3070 out_blkdev_unreg: 3071 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3072 out_chrdev_unreg: 3073 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3074 out_bus_unreg: 3075 bus_unregister(&mmc_rpmb_bus_type); 3076 return res; 3077 } 3078 3079 static void __exit mmc_blk_exit(void) 3080 { 3081 mmc_unregister_driver(&mmc_driver); 3082 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3083 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3084 bus_unregister(&mmc_rpmb_bus_type); 3085 } 3086 3087 module_init(mmc_blk_init); 3088 module_exit(mmc_blk_exit); 3089 3090 MODULE_LICENSE("GPL"); 3091 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3092 3093