1 /*
2  * VMware VMCI Driver
3  *
4  * Copyright (C) 2012 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  */
15 
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
31 
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
40 
41 /*
42  * In the following, we will distinguish between two kinds of VMX processes -
43  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44  * VMCI page files in the VMX and supporting VM to VM communication and the
45  * newer ones that use the guest memory directly. We will in the following
46  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47  * new-style VMX'en.
48  *
49  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50  * removed for readability) - see below for more details on the transtions:
51  *
52  *            --------------  NEW  -------------
53  *            |                                |
54  *           \_/                              \_/
55  *     CREATED_NO_MEM <-----------------> CREATED_MEM
56  *            |    |                           |
57  *            |    o-----------------------o   |
58  *            |                            |   |
59  *           \_/                          \_/ \_/
60  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61  *            |                            |   |
62  *            |     o----------------------o   |
63  *            |     |                          |
64  *           \_/   \_/                        \_/
65  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66  *            |                                |
67  *            |                                |
68  *            -------------> gone <-------------
69  *
70  * In more detail. When a VMCI queue pair is first created, it will be in the
71  * VMCIQPB_NEW state. It will then move into one of the following states:
72  *
73  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
74  *
75  *     - the created was performed by a host endpoint, in which case there is
76  *       no backing memory yet.
77  *
78  *     - the create was initiated by an old-style VMX, that uses
79  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80  *       a later point in time. This state can be distinguished from the one
81  *       above by the context ID of the creator. A host side is not allowed to
82  *       attach until the page store has been set.
83  *
84  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85  *     is created by a VMX using the queue pair device backend that
86  *     sets the UVAs of the queue pair immediately and stores the
87  *     information for later attachers. At this point, it is ready for
88  *     the host side to attach to it.
89  *
90  * Once the queue pair is in one of the created states (with the exception of
91  * the case mentioned for older VMX'en above), it is possible to attach to the
92  * queue pair. Again we have two new states possible:
93  *
94  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95  *   paths:
96  *
97  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98  *       pair, and attaches to a queue pair previously created by the host side.
99  *
100  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101  *       already created by a guest.
102  *
103  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104  *       vmci_qp_broker_set_page_store (see below).
105  *
106  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110  *     will be entered.
111  *
112  * From the attached queue pair, the queue pair can enter the shutdown states
113  * when either side of the queue pair detaches. If the guest side detaches
114  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115  * the content of the queue pair will no longer be available. If the host
116  * side detaches first, the queue pair will either enter the
117  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119  * (e.g., the host detaches while a guest is stunned).
120  *
121  * New-style VMX'en will also unmap guest memory, if the guest is
122  * quiesced, e.g., during a snapshot operation. In that case, the guest
123  * memory will no longer be available, and the queue pair will transition from
124  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125  * in which case the queue pair will transition from the *_NO_MEM state at that
126  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127  * since the peer may have either attached or detached in the meantime. The
128  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129  * *_MEM state, and vice versa.
130  */
131 
132 /*
133  * VMCIMemcpy{To,From}QueueFunc() prototypes.  Functions of these
134  * types are passed around to enqueue and dequeue routines.  Note that
135  * often the functions passed are simply wrappers around memcpy
136  * itself.
137  *
138  * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
139  * there's an unused last parameter for the hosted side.  In
140  * ESX, that parameter holds a buffer type.
141  */
142 typedef int vmci_memcpy_to_queue_func(struct vmci_queue *queue,
143 				      u64 queue_offset, const void *src,
144 				      size_t src_offset, size_t size);
145 typedef int vmci_memcpy_from_queue_func(void *dest, size_t dest_offset,
146 					const struct vmci_queue *queue,
147 					u64 queue_offset, size_t size);
148 
149 /* The Kernel specific component of the struct vmci_queue structure. */
150 struct vmci_queue_kern_if {
151 	struct mutex __mutex;	/* Protects the queue. */
152 	struct mutex *mutex;	/* Shared by producer and consumer queues. */
153 	size_t num_pages;	/* Number of pages incl. header. */
154 	bool host;		/* Host or guest? */
155 	union {
156 		struct {
157 			dma_addr_t *pas;
158 			void **vas;
159 		} g;		/* Used by the guest. */
160 		struct {
161 			struct page **page;
162 			struct page **header_page;
163 		} h;		/* Used by the host. */
164 	} u;
165 };
166 
167 /*
168  * This structure is opaque to the clients.
169  */
170 struct vmci_qp {
171 	struct vmci_handle handle;
172 	struct vmci_queue *produce_q;
173 	struct vmci_queue *consume_q;
174 	u64 produce_q_size;
175 	u64 consume_q_size;
176 	u32 peer;
177 	u32 flags;
178 	u32 priv_flags;
179 	bool guest_endpoint;
180 	unsigned int blocked;
181 	unsigned int generation;
182 	wait_queue_head_t event;
183 };
184 
185 enum qp_broker_state {
186 	VMCIQPB_NEW,
187 	VMCIQPB_CREATED_NO_MEM,
188 	VMCIQPB_CREATED_MEM,
189 	VMCIQPB_ATTACHED_NO_MEM,
190 	VMCIQPB_ATTACHED_MEM,
191 	VMCIQPB_SHUTDOWN_NO_MEM,
192 	VMCIQPB_SHUTDOWN_MEM,
193 	VMCIQPB_GONE
194 };
195 
196 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
197 				     _qpb->state == VMCIQPB_ATTACHED_MEM || \
198 				     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
199 
200 /*
201  * In the queue pair broker, we always use the guest point of view for
202  * the produce and consume queue values and references, e.g., the
203  * produce queue size stored is the guests produce queue size. The
204  * host endpoint will need to swap these around. The only exception is
205  * the local queue pairs on the host, in which case the host endpoint
206  * that creates the queue pair will have the right orientation, and
207  * the attaching host endpoint will need to swap.
208  */
209 struct qp_entry {
210 	struct list_head list_item;
211 	struct vmci_handle handle;
212 	u32 peer;
213 	u32 flags;
214 	u64 produce_size;
215 	u64 consume_size;
216 	u32 ref_count;
217 };
218 
219 struct qp_broker_entry {
220 	struct vmci_resource resource;
221 	struct qp_entry qp;
222 	u32 create_id;
223 	u32 attach_id;
224 	enum qp_broker_state state;
225 	bool require_trusted_attach;
226 	bool created_by_trusted;
227 	bool vmci_page_files;	/* Created by VMX using VMCI page files */
228 	struct vmci_queue *produce_q;
229 	struct vmci_queue *consume_q;
230 	struct vmci_queue_header saved_produce_q;
231 	struct vmci_queue_header saved_consume_q;
232 	vmci_event_release_cb wakeup_cb;
233 	void *client_data;
234 	void *local_mem;	/* Kernel memory for local queue pair */
235 };
236 
237 struct qp_guest_endpoint {
238 	struct vmci_resource resource;
239 	struct qp_entry qp;
240 	u64 num_ppns;
241 	void *produce_q;
242 	void *consume_q;
243 	struct ppn_set ppn_set;
244 };
245 
246 struct qp_list {
247 	struct list_head head;
248 	struct mutex mutex;	/* Protect queue list. */
249 };
250 
251 static struct qp_list qp_broker_list = {
252 	.head = LIST_HEAD_INIT(qp_broker_list.head),
253 	.mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
254 };
255 
256 static struct qp_list qp_guest_endpoints = {
257 	.head = LIST_HEAD_INIT(qp_guest_endpoints.head),
258 	.mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
259 };
260 
261 #define INVALID_VMCI_GUEST_MEM_ID  0
262 #define QPE_NUM_PAGES(_QPE) ((u32) \
263 			     (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
264 			      DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
265 
266 
267 /*
268  * Frees kernel VA space for a given queue and its queue header, and
269  * frees physical data pages.
270  */
271 static void qp_free_queue(void *q, u64 size)
272 {
273 	struct vmci_queue *queue = q;
274 
275 	if (queue) {
276 		u64 i;
277 
278 		/* Given size does not include header, so add in a page here. */
279 		for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
280 			dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
281 					  queue->kernel_if->u.g.vas[i],
282 					  queue->kernel_if->u.g.pas[i]);
283 		}
284 
285 		vfree(queue);
286 	}
287 }
288 
289 /*
290  * Allocates kernel queue pages of specified size with IOMMU mappings,
291  * plus space for the queue structure/kernel interface and the queue
292  * header.
293  */
294 static void *qp_alloc_queue(u64 size, u32 flags)
295 {
296 	u64 i;
297 	struct vmci_queue *queue;
298 	const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
299 	const size_t pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
300 	const size_t vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
301 	const size_t queue_size =
302 		sizeof(*queue) + sizeof(*queue->kernel_if) +
303 		pas_size + vas_size;
304 
305 	queue = vmalloc(queue_size);
306 	if (!queue)
307 		return NULL;
308 
309 	queue->q_header = NULL;
310 	queue->saved_header = NULL;
311 	queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
312 	queue->kernel_if->mutex = NULL;
313 	queue->kernel_if->num_pages = num_pages;
314 	queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
315 	queue->kernel_if->u.g.vas =
316 		(void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
317 	queue->kernel_if->host = false;
318 
319 	for (i = 0; i < num_pages; i++) {
320 		queue->kernel_if->u.g.vas[i] =
321 			dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
322 					   &queue->kernel_if->u.g.pas[i],
323 					   GFP_KERNEL);
324 		if (!queue->kernel_if->u.g.vas[i]) {
325 			/* Size excl. the header. */
326 			qp_free_queue(queue, i * PAGE_SIZE);
327 			return NULL;
328 		}
329 	}
330 
331 	/* Queue header is the first page. */
332 	queue->q_header = queue->kernel_if->u.g.vas[0];
333 
334 	return queue;
335 }
336 
337 /*
338  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
339  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
340  * by traversing the offset -> page translation structure for the queue.
341  * Assumes that offset + size does not wrap around in the queue.
342  */
343 static int __qp_memcpy_to_queue(struct vmci_queue *queue,
344 				u64 queue_offset,
345 				const void *src,
346 				size_t size,
347 				bool is_iovec)
348 {
349 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
350 	size_t bytes_copied = 0;
351 
352 	while (bytes_copied < size) {
353 		const u64 page_index =
354 			(queue_offset + bytes_copied) / PAGE_SIZE;
355 		const size_t page_offset =
356 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
357 		void *va;
358 		size_t to_copy;
359 
360 		if (kernel_if->host)
361 			va = kmap(kernel_if->u.h.page[page_index]);
362 		else
363 			va = kernel_if->u.g.vas[page_index + 1];
364 			/* Skip header. */
365 
366 		if (size - bytes_copied > PAGE_SIZE - page_offset)
367 			/* Enough payload to fill up from this page. */
368 			to_copy = PAGE_SIZE - page_offset;
369 		else
370 			to_copy = size - bytes_copied;
371 
372 		if (is_iovec) {
373 			struct iovec *iov = (struct iovec *)src;
374 			int err;
375 
376 			/* The iovec will track bytes_copied internally. */
377 			err = memcpy_fromiovec((u8 *)va + page_offset,
378 					       iov, to_copy);
379 			if (err != 0) {
380 				if (kernel_if->host)
381 					kunmap(kernel_if->u.h.page[page_index]);
382 				return VMCI_ERROR_INVALID_ARGS;
383 			}
384 		} else {
385 			memcpy((u8 *)va + page_offset,
386 			       (u8 *)src + bytes_copied, to_copy);
387 		}
388 
389 		bytes_copied += to_copy;
390 		if (kernel_if->host)
391 			kunmap(kernel_if->u.h.page[page_index]);
392 	}
393 
394 	return VMCI_SUCCESS;
395 }
396 
397 /*
398  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
399  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
400  * by traversing the offset -> page translation structure for the queue.
401  * Assumes that offset + size does not wrap around in the queue.
402  */
403 static int __qp_memcpy_from_queue(void *dest,
404 				  const struct vmci_queue *queue,
405 				  u64 queue_offset,
406 				  size_t size,
407 				  bool is_iovec)
408 {
409 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
410 	size_t bytes_copied = 0;
411 
412 	while (bytes_copied < size) {
413 		const u64 page_index =
414 			(queue_offset + bytes_copied) / PAGE_SIZE;
415 		const size_t page_offset =
416 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
417 		void *va;
418 		size_t to_copy;
419 
420 		if (kernel_if->host)
421 			va = kmap(kernel_if->u.h.page[page_index]);
422 		else
423 			va = kernel_if->u.g.vas[page_index + 1];
424 			/* Skip header. */
425 
426 		if (size - bytes_copied > PAGE_SIZE - page_offset)
427 			/* Enough payload to fill up this page. */
428 			to_copy = PAGE_SIZE - page_offset;
429 		else
430 			to_copy = size - bytes_copied;
431 
432 		if (is_iovec) {
433 			struct msghdr *msg = dest;
434 			int err;
435 
436 			/* The iovec will track bytes_copied internally. */
437 			err = memcpy_to_msg(msg, (u8 *)va + page_offset,
438 					     to_copy);
439 			if (err != 0) {
440 				if (kernel_if->host)
441 					kunmap(kernel_if->u.h.page[page_index]);
442 				return VMCI_ERROR_INVALID_ARGS;
443 			}
444 		} else {
445 			memcpy((u8 *)dest + bytes_copied,
446 			       (u8 *)va + page_offset, to_copy);
447 		}
448 
449 		bytes_copied += to_copy;
450 		if (kernel_if->host)
451 			kunmap(kernel_if->u.h.page[page_index]);
452 	}
453 
454 	return VMCI_SUCCESS;
455 }
456 
457 /*
458  * Allocates two list of PPNs --- one for the pages in the produce queue,
459  * and the other for the pages in the consume queue. Intializes the list
460  * of PPNs with the page frame numbers of the KVA for the two queues (and
461  * the queue headers).
462  */
463 static int qp_alloc_ppn_set(void *prod_q,
464 			    u64 num_produce_pages,
465 			    void *cons_q,
466 			    u64 num_consume_pages, struct ppn_set *ppn_set)
467 {
468 	u32 *produce_ppns;
469 	u32 *consume_ppns;
470 	struct vmci_queue *produce_q = prod_q;
471 	struct vmci_queue *consume_q = cons_q;
472 	u64 i;
473 
474 	if (!produce_q || !num_produce_pages || !consume_q ||
475 	    !num_consume_pages || !ppn_set)
476 		return VMCI_ERROR_INVALID_ARGS;
477 
478 	if (ppn_set->initialized)
479 		return VMCI_ERROR_ALREADY_EXISTS;
480 
481 	produce_ppns =
482 	    kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
483 	if (!produce_ppns)
484 		return VMCI_ERROR_NO_MEM;
485 
486 	consume_ppns =
487 	    kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
488 	if (!consume_ppns) {
489 		kfree(produce_ppns);
490 		return VMCI_ERROR_NO_MEM;
491 	}
492 
493 	for (i = 0; i < num_produce_pages; i++) {
494 		unsigned long pfn;
495 
496 		produce_ppns[i] =
497 			produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
498 		pfn = produce_ppns[i];
499 
500 		/* Fail allocation if PFN isn't supported by hypervisor. */
501 		if (sizeof(pfn) > sizeof(*produce_ppns)
502 		    && pfn != produce_ppns[i])
503 			goto ppn_error;
504 	}
505 
506 	for (i = 0; i < num_consume_pages; i++) {
507 		unsigned long pfn;
508 
509 		consume_ppns[i] =
510 			consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
511 		pfn = consume_ppns[i];
512 
513 		/* Fail allocation if PFN isn't supported by hypervisor. */
514 		if (sizeof(pfn) > sizeof(*consume_ppns)
515 		    && pfn != consume_ppns[i])
516 			goto ppn_error;
517 	}
518 
519 	ppn_set->num_produce_pages = num_produce_pages;
520 	ppn_set->num_consume_pages = num_consume_pages;
521 	ppn_set->produce_ppns = produce_ppns;
522 	ppn_set->consume_ppns = consume_ppns;
523 	ppn_set->initialized = true;
524 	return VMCI_SUCCESS;
525 
526  ppn_error:
527 	kfree(produce_ppns);
528 	kfree(consume_ppns);
529 	return VMCI_ERROR_INVALID_ARGS;
530 }
531 
532 /*
533  * Frees the two list of PPNs for a queue pair.
534  */
535 static void qp_free_ppn_set(struct ppn_set *ppn_set)
536 {
537 	if (ppn_set->initialized) {
538 		/* Do not call these functions on NULL inputs. */
539 		kfree(ppn_set->produce_ppns);
540 		kfree(ppn_set->consume_ppns);
541 	}
542 	memset(ppn_set, 0, sizeof(*ppn_set));
543 }
544 
545 /*
546  * Populates the list of PPNs in the hypercall structure with the PPNS
547  * of the produce queue and the consume queue.
548  */
549 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
550 {
551 	memcpy(call_buf, ppn_set->produce_ppns,
552 	       ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
553 	memcpy(call_buf +
554 	       ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
555 	       ppn_set->consume_ppns,
556 	       ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
557 
558 	return VMCI_SUCCESS;
559 }
560 
561 static int qp_memcpy_to_queue(struct vmci_queue *queue,
562 			      u64 queue_offset,
563 			      const void *src, size_t src_offset, size_t size)
564 {
565 	return __qp_memcpy_to_queue(queue, queue_offset,
566 				    (u8 *)src + src_offset, size, false);
567 }
568 
569 static int qp_memcpy_from_queue(void *dest,
570 				size_t dest_offset,
571 				const struct vmci_queue *queue,
572 				u64 queue_offset, size_t size)
573 {
574 	return __qp_memcpy_from_queue((u8 *)dest + dest_offset,
575 				      queue, queue_offset, size, false);
576 }
577 
578 /*
579  * Copies from a given iovec from a VMCI Queue.
580  */
581 static int qp_memcpy_to_queue_iov(struct vmci_queue *queue,
582 				  u64 queue_offset,
583 				  const void *src,
584 				  size_t src_offset, size_t size)
585 {
586 
587 	/*
588 	 * We ignore src_offset because src is really a struct iovec * and will
589 	 * maintain offset internally.
590 	 */
591 	return __qp_memcpy_to_queue(queue, queue_offset, src, size, true);
592 }
593 
594 /*
595  * Copies to a given iovec from a VMCI Queue.
596  */
597 static int qp_memcpy_from_queue_iov(void *dest,
598 				    size_t dest_offset,
599 				    const struct vmci_queue *queue,
600 				    u64 queue_offset, size_t size)
601 {
602 	/*
603 	 * We ignore dest_offset because dest is really a struct iovec * and
604 	 * will maintain offset internally.
605 	 */
606 	return __qp_memcpy_from_queue(dest, queue, queue_offset, size, true);
607 }
608 
609 /*
610  * Allocates kernel VA space of specified size plus space for the queue
611  * and kernel interface.  This is different from the guest queue allocator,
612  * because we do not allocate our own queue header/data pages here but
613  * share those of the guest.
614  */
615 static struct vmci_queue *qp_host_alloc_queue(u64 size)
616 {
617 	struct vmci_queue *queue;
618 	const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
619 	const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
620 	const size_t queue_page_size =
621 	    num_pages * sizeof(*queue->kernel_if->u.h.page);
622 
623 	queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
624 	if (queue) {
625 		queue->q_header = NULL;
626 		queue->saved_header = NULL;
627 		queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
628 		queue->kernel_if->host = true;
629 		queue->kernel_if->mutex = NULL;
630 		queue->kernel_if->num_pages = num_pages;
631 		queue->kernel_if->u.h.header_page =
632 		    (struct page **)((u8 *)queue + queue_size);
633 		queue->kernel_if->u.h.page =
634 			&queue->kernel_if->u.h.header_page[1];
635 	}
636 
637 	return queue;
638 }
639 
640 /*
641  * Frees kernel memory for a given queue (header plus translation
642  * structure).
643  */
644 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
645 {
646 	kfree(queue);
647 }
648 
649 /*
650  * Initialize the mutex for the pair of queues.  This mutex is used to
651  * protect the q_header and the buffer from changing out from under any
652  * users of either queue.  Of course, it's only any good if the mutexes
653  * are actually acquired.  Queue structure must lie on non-paged memory
654  * or we cannot guarantee access to the mutex.
655  */
656 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
657 				struct vmci_queue *consume_q)
658 {
659 	/*
660 	 * Only the host queue has shared state - the guest queues do not
661 	 * need to synchronize access using a queue mutex.
662 	 */
663 
664 	if (produce_q->kernel_if->host) {
665 		produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
666 		consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
667 		mutex_init(produce_q->kernel_if->mutex);
668 	}
669 }
670 
671 /*
672  * Cleans up the mutex for the pair of queues.
673  */
674 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
675 				   struct vmci_queue *consume_q)
676 {
677 	if (produce_q->kernel_if->host) {
678 		produce_q->kernel_if->mutex = NULL;
679 		consume_q->kernel_if->mutex = NULL;
680 	}
681 }
682 
683 /*
684  * Acquire the mutex for the queue.  Note that the produce_q and
685  * the consume_q share a mutex.  So, only one of the two need to
686  * be passed in to this routine.  Either will work just fine.
687  */
688 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
689 {
690 	if (queue->kernel_if->host)
691 		mutex_lock(queue->kernel_if->mutex);
692 }
693 
694 /*
695  * Release the mutex for the queue.  Note that the produce_q and
696  * the consume_q share a mutex.  So, only one of the two need to
697  * be passed in to this routine.  Either will work just fine.
698  */
699 static void qp_release_queue_mutex(struct vmci_queue *queue)
700 {
701 	if (queue->kernel_if->host)
702 		mutex_unlock(queue->kernel_if->mutex);
703 }
704 
705 /*
706  * Helper function to release pages in the PageStoreAttachInfo
707  * previously obtained using get_user_pages.
708  */
709 static void qp_release_pages(struct page **pages,
710 			     u64 num_pages, bool dirty)
711 {
712 	int i;
713 
714 	for (i = 0; i < num_pages; i++) {
715 		if (dirty)
716 			set_page_dirty(pages[i]);
717 
718 		page_cache_release(pages[i]);
719 		pages[i] = NULL;
720 	}
721 }
722 
723 /*
724  * Lock the user pages referenced by the {produce,consume}Buffer
725  * struct into memory and populate the {produce,consume}Pages
726  * arrays in the attach structure with them.
727  */
728 static int qp_host_get_user_memory(u64 produce_uva,
729 				   u64 consume_uva,
730 				   struct vmci_queue *produce_q,
731 				   struct vmci_queue *consume_q)
732 {
733 	int retval;
734 	int err = VMCI_SUCCESS;
735 
736 	retval = get_user_pages_fast((uintptr_t) produce_uva,
737 				     produce_q->kernel_if->num_pages, 1,
738 				     produce_q->kernel_if->u.h.header_page);
739 	if (retval < produce_q->kernel_if->num_pages) {
740 		pr_warn("get_user_pages(produce) failed (retval=%d)", retval);
741 		qp_release_pages(produce_q->kernel_if->u.h.header_page,
742 				 retval, false);
743 		err = VMCI_ERROR_NO_MEM;
744 		goto out;
745 	}
746 
747 	retval = get_user_pages_fast((uintptr_t) consume_uva,
748 				     consume_q->kernel_if->num_pages, 1,
749 				     consume_q->kernel_if->u.h.header_page);
750 	if (retval < consume_q->kernel_if->num_pages) {
751 		pr_warn("get_user_pages(consume) failed (retval=%d)", retval);
752 		qp_release_pages(consume_q->kernel_if->u.h.header_page,
753 				 retval, false);
754 		qp_release_pages(produce_q->kernel_if->u.h.header_page,
755 				 produce_q->kernel_if->num_pages, false);
756 		err = VMCI_ERROR_NO_MEM;
757 	}
758 
759  out:
760 	return err;
761 }
762 
763 /*
764  * Registers the specification of the user pages used for backing a queue
765  * pair. Enough information to map in pages is stored in the OS specific
766  * part of the struct vmci_queue structure.
767  */
768 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
769 					struct vmci_queue *produce_q,
770 					struct vmci_queue *consume_q)
771 {
772 	u64 produce_uva;
773 	u64 consume_uva;
774 
775 	/*
776 	 * The new style and the old style mapping only differs in
777 	 * that we either get a single or two UVAs, so we split the
778 	 * single UVA range at the appropriate spot.
779 	 */
780 	produce_uva = page_store->pages;
781 	consume_uva = page_store->pages +
782 	    produce_q->kernel_if->num_pages * PAGE_SIZE;
783 	return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
784 				       consume_q);
785 }
786 
787 /*
788  * Releases and removes the references to user pages stored in the attach
789  * struct.  Pages are released from the page cache and may become
790  * swappable again.
791  */
792 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
793 					   struct vmci_queue *consume_q)
794 {
795 	qp_release_pages(produce_q->kernel_if->u.h.header_page,
796 			 produce_q->kernel_if->num_pages, true);
797 	memset(produce_q->kernel_if->u.h.header_page, 0,
798 	       sizeof(*produce_q->kernel_if->u.h.header_page) *
799 	       produce_q->kernel_if->num_pages);
800 	qp_release_pages(consume_q->kernel_if->u.h.header_page,
801 			 consume_q->kernel_if->num_pages, true);
802 	memset(consume_q->kernel_if->u.h.header_page, 0,
803 	       sizeof(*consume_q->kernel_if->u.h.header_page) *
804 	       consume_q->kernel_if->num_pages);
805 }
806 
807 /*
808  * Once qp_host_register_user_memory has been performed on a
809  * queue, the queue pair headers can be mapped into the
810  * kernel. Once mapped, they must be unmapped with
811  * qp_host_unmap_queues prior to calling
812  * qp_host_unregister_user_memory.
813  * Pages are pinned.
814  */
815 static int qp_host_map_queues(struct vmci_queue *produce_q,
816 			      struct vmci_queue *consume_q)
817 {
818 	int result;
819 
820 	if (!produce_q->q_header || !consume_q->q_header) {
821 		struct page *headers[2];
822 
823 		if (produce_q->q_header != consume_q->q_header)
824 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
825 
826 		if (produce_q->kernel_if->u.h.header_page == NULL ||
827 		    *produce_q->kernel_if->u.h.header_page == NULL)
828 			return VMCI_ERROR_UNAVAILABLE;
829 
830 		headers[0] = *produce_q->kernel_if->u.h.header_page;
831 		headers[1] = *consume_q->kernel_if->u.h.header_page;
832 
833 		produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
834 		if (produce_q->q_header != NULL) {
835 			consume_q->q_header =
836 			    (struct vmci_queue_header *)((u8 *)
837 							 produce_q->q_header +
838 							 PAGE_SIZE);
839 			result = VMCI_SUCCESS;
840 		} else {
841 			pr_warn("vmap failed\n");
842 			result = VMCI_ERROR_NO_MEM;
843 		}
844 	} else {
845 		result = VMCI_SUCCESS;
846 	}
847 
848 	return result;
849 }
850 
851 /*
852  * Unmaps previously mapped queue pair headers from the kernel.
853  * Pages are unpinned.
854  */
855 static int qp_host_unmap_queues(u32 gid,
856 				struct vmci_queue *produce_q,
857 				struct vmci_queue *consume_q)
858 {
859 	if (produce_q->q_header) {
860 		if (produce_q->q_header < consume_q->q_header)
861 			vunmap(produce_q->q_header);
862 		else
863 			vunmap(consume_q->q_header);
864 
865 		produce_q->q_header = NULL;
866 		consume_q->q_header = NULL;
867 	}
868 
869 	return VMCI_SUCCESS;
870 }
871 
872 /*
873  * Finds the entry in the list corresponding to a given handle. Assumes
874  * that the list is locked.
875  */
876 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
877 				     struct vmci_handle handle)
878 {
879 	struct qp_entry *entry;
880 
881 	if (vmci_handle_is_invalid(handle))
882 		return NULL;
883 
884 	list_for_each_entry(entry, &qp_list->head, list_item) {
885 		if (vmci_handle_is_equal(entry->handle, handle))
886 			return entry;
887 	}
888 
889 	return NULL;
890 }
891 
892 /*
893  * Finds the entry in the list corresponding to a given handle.
894  */
895 static struct qp_guest_endpoint *
896 qp_guest_handle_to_entry(struct vmci_handle handle)
897 {
898 	struct qp_guest_endpoint *entry;
899 	struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
900 
901 	entry = qp ? container_of(
902 		qp, struct qp_guest_endpoint, qp) : NULL;
903 	return entry;
904 }
905 
906 /*
907  * Finds the entry in the list corresponding to a given handle.
908  */
909 static struct qp_broker_entry *
910 qp_broker_handle_to_entry(struct vmci_handle handle)
911 {
912 	struct qp_broker_entry *entry;
913 	struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
914 
915 	entry = qp ? container_of(
916 		qp, struct qp_broker_entry, qp) : NULL;
917 	return entry;
918 }
919 
920 /*
921  * Dispatches a queue pair event message directly into the local event
922  * queue.
923  */
924 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
925 {
926 	u32 context_id = vmci_get_context_id();
927 	struct vmci_event_qp ev;
928 
929 	ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
930 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
931 					  VMCI_CONTEXT_RESOURCE_ID);
932 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
933 	ev.msg.event_data.event =
934 	    attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
935 	ev.payload.peer_id = context_id;
936 	ev.payload.handle = handle;
937 
938 	return vmci_event_dispatch(&ev.msg.hdr);
939 }
940 
941 /*
942  * Allocates and initializes a qp_guest_endpoint structure.
943  * Allocates a queue_pair rid (and handle) iff the given entry has
944  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
945  * are reserved handles.  Assumes that the QP list mutex is held
946  * by the caller.
947  */
948 static struct qp_guest_endpoint *
949 qp_guest_endpoint_create(struct vmci_handle handle,
950 			 u32 peer,
951 			 u32 flags,
952 			 u64 produce_size,
953 			 u64 consume_size,
954 			 void *produce_q,
955 			 void *consume_q)
956 {
957 	int result;
958 	struct qp_guest_endpoint *entry;
959 	/* One page each for the queue headers. */
960 	const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
961 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
962 
963 	if (vmci_handle_is_invalid(handle)) {
964 		u32 context_id = vmci_get_context_id();
965 
966 		handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
967 	}
968 
969 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
970 	if (entry) {
971 		entry->qp.peer = peer;
972 		entry->qp.flags = flags;
973 		entry->qp.produce_size = produce_size;
974 		entry->qp.consume_size = consume_size;
975 		entry->qp.ref_count = 0;
976 		entry->num_ppns = num_ppns;
977 		entry->produce_q = produce_q;
978 		entry->consume_q = consume_q;
979 		INIT_LIST_HEAD(&entry->qp.list_item);
980 
981 		/* Add resource obj */
982 		result = vmci_resource_add(&entry->resource,
983 					   VMCI_RESOURCE_TYPE_QPAIR_GUEST,
984 					   handle);
985 		entry->qp.handle = vmci_resource_handle(&entry->resource);
986 		if ((result != VMCI_SUCCESS) ||
987 		    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
988 			pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
989 				handle.context, handle.resource, result);
990 			kfree(entry);
991 			entry = NULL;
992 		}
993 	}
994 	return entry;
995 }
996 
997 /*
998  * Frees a qp_guest_endpoint structure.
999  */
1000 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
1001 {
1002 	qp_free_ppn_set(&entry->ppn_set);
1003 	qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
1004 	qp_free_queue(entry->produce_q, entry->qp.produce_size);
1005 	qp_free_queue(entry->consume_q, entry->qp.consume_size);
1006 	/* Unlink from resource hash table and free callback */
1007 	vmci_resource_remove(&entry->resource);
1008 
1009 	kfree(entry);
1010 }
1011 
1012 /*
1013  * Helper to make a queue_pairAlloc hypercall when the driver is
1014  * supporting a guest device.
1015  */
1016 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
1017 {
1018 	struct vmci_qp_alloc_msg *alloc_msg;
1019 	size_t msg_size;
1020 	int result;
1021 
1022 	if (!entry || entry->num_ppns <= 2)
1023 		return VMCI_ERROR_INVALID_ARGS;
1024 
1025 	msg_size = sizeof(*alloc_msg) +
1026 	    (size_t) entry->num_ppns * sizeof(u32);
1027 	alloc_msg = kmalloc(msg_size, GFP_KERNEL);
1028 	if (!alloc_msg)
1029 		return VMCI_ERROR_NO_MEM;
1030 
1031 	alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1032 					      VMCI_QUEUEPAIR_ALLOC);
1033 	alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
1034 	alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
1035 	alloc_msg->handle = entry->qp.handle;
1036 	alloc_msg->peer = entry->qp.peer;
1037 	alloc_msg->flags = entry->qp.flags;
1038 	alloc_msg->produce_size = entry->qp.produce_size;
1039 	alloc_msg->consume_size = entry->qp.consume_size;
1040 	alloc_msg->num_ppns = entry->num_ppns;
1041 
1042 	result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
1043 				     &entry->ppn_set);
1044 	if (result == VMCI_SUCCESS)
1045 		result = vmci_send_datagram(&alloc_msg->hdr);
1046 
1047 	kfree(alloc_msg);
1048 
1049 	return result;
1050 }
1051 
1052 /*
1053  * Helper to make a queue_pairDetach hypercall when the driver is
1054  * supporting a guest device.
1055  */
1056 static int qp_detatch_hypercall(struct vmci_handle handle)
1057 {
1058 	struct vmci_qp_detach_msg detach_msg;
1059 
1060 	detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1061 					      VMCI_QUEUEPAIR_DETACH);
1062 	detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1063 	detach_msg.hdr.payload_size = sizeof(handle);
1064 	detach_msg.handle = handle;
1065 
1066 	return vmci_send_datagram(&detach_msg.hdr);
1067 }
1068 
1069 /*
1070  * Adds the given entry to the list. Assumes that the list is locked.
1071  */
1072 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1073 {
1074 	if (entry)
1075 		list_add(&entry->list_item, &qp_list->head);
1076 }
1077 
1078 /*
1079  * Removes the given entry from the list. Assumes that the list is locked.
1080  */
1081 static void qp_list_remove_entry(struct qp_list *qp_list,
1082 				 struct qp_entry *entry)
1083 {
1084 	if (entry)
1085 		list_del(&entry->list_item);
1086 }
1087 
1088 /*
1089  * Helper for VMCI queue_pair detach interface. Frees the physical
1090  * pages for the queue pair.
1091  */
1092 static int qp_detatch_guest_work(struct vmci_handle handle)
1093 {
1094 	int result;
1095 	struct qp_guest_endpoint *entry;
1096 	u32 ref_count = ~0;	/* To avoid compiler warning below */
1097 
1098 	mutex_lock(&qp_guest_endpoints.mutex);
1099 
1100 	entry = qp_guest_handle_to_entry(handle);
1101 	if (!entry) {
1102 		mutex_unlock(&qp_guest_endpoints.mutex);
1103 		return VMCI_ERROR_NOT_FOUND;
1104 	}
1105 
1106 	if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1107 		result = VMCI_SUCCESS;
1108 
1109 		if (entry->qp.ref_count > 1) {
1110 			result = qp_notify_peer_local(false, handle);
1111 			/*
1112 			 * We can fail to notify a local queuepair
1113 			 * because we can't allocate.  We still want
1114 			 * to release the entry if that happens, so
1115 			 * don't bail out yet.
1116 			 */
1117 		}
1118 	} else {
1119 		result = qp_detatch_hypercall(handle);
1120 		if (result < VMCI_SUCCESS) {
1121 			/*
1122 			 * We failed to notify a non-local queuepair.
1123 			 * That other queuepair might still be
1124 			 * accessing the shared memory, so don't
1125 			 * release the entry yet.  It will get cleaned
1126 			 * up by VMCIqueue_pair_Exit() if necessary
1127 			 * (assuming we are going away, otherwise why
1128 			 * did this fail?).
1129 			 */
1130 
1131 			mutex_unlock(&qp_guest_endpoints.mutex);
1132 			return result;
1133 		}
1134 	}
1135 
1136 	/*
1137 	 * If we get here then we either failed to notify a local queuepair, or
1138 	 * we succeeded in all cases.  Release the entry if required.
1139 	 */
1140 
1141 	entry->qp.ref_count--;
1142 	if (entry->qp.ref_count == 0)
1143 		qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1144 
1145 	/* If we didn't remove the entry, this could change once we unlock. */
1146 	if (entry)
1147 		ref_count = entry->qp.ref_count;
1148 
1149 	mutex_unlock(&qp_guest_endpoints.mutex);
1150 
1151 	if (ref_count == 0)
1152 		qp_guest_endpoint_destroy(entry);
1153 
1154 	return result;
1155 }
1156 
1157 /*
1158  * This functions handles the actual allocation of a VMCI queue
1159  * pair guest endpoint. Allocates physical pages for the queue
1160  * pair. It makes OS dependent calls through generic wrappers.
1161  */
1162 static int qp_alloc_guest_work(struct vmci_handle *handle,
1163 			       struct vmci_queue **produce_q,
1164 			       u64 produce_size,
1165 			       struct vmci_queue **consume_q,
1166 			       u64 consume_size,
1167 			       u32 peer,
1168 			       u32 flags,
1169 			       u32 priv_flags)
1170 {
1171 	const u64 num_produce_pages =
1172 	    DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1173 	const u64 num_consume_pages =
1174 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1175 	void *my_produce_q = NULL;
1176 	void *my_consume_q = NULL;
1177 	int result;
1178 	struct qp_guest_endpoint *queue_pair_entry = NULL;
1179 
1180 	if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1181 		return VMCI_ERROR_NO_ACCESS;
1182 
1183 	mutex_lock(&qp_guest_endpoints.mutex);
1184 
1185 	queue_pair_entry = qp_guest_handle_to_entry(*handle);
1186 	if (queue_pair_entry) {
1187 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1188 			/* Local attach case. */
1189 			if (queue_pair_entry->qp.ref_count > 1) {
1190 				pr_devel("Error attempting to attach more than once\n");
1191 				result = VMCI_ERROR_UNAVAILABLE;
1192 				goto error_keep_entry;
1193 			}
1194 
1195 			if (queue_pair_entry->qp.produce_size != consume_size ||
1196 			    queue_pair_entry->qp.consume_size !=
1197 			    produce_size ||
1198 			    queue_pair_entry->qp.flags !=
1199 			    (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1200 				pr_devel("Error mismatched queue pair in local attach\n");
1201 				result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1202 				goto error_keep_entry;
1203 			}
1204 
1205 			/*
1206 			 * Do a local attach.  We swap the consume and
1207 			 * produce queues for the attacher and deliver
1208 			 * an attach event.
1209 			 */
1210 			result = qp_notify_peer_local(true, *handle);
1211 			if (result < VMCI_SUCCESS)
1212 				goto error_keep_entry;
1213 
1214 			my_produce_q = queue_pair_entry->consume_q;
1215 			my_consume_q = queue_pair_entry->produce_q;
1216 			goto out;
1217 		}
1218 
1219 		result = VMCI_ERROR_ALREADY_EXISTS;
1220 		goto error_keep_entry;
1221 	}
1222 
1223 	my_produce_q = qp_alloc_queue(produce_size, flags);
1224 	if (!my_produce_q) {
1225 		pr_warn("Error allocating pages for produce queue\n");
1226 		result = VMCI_ERROR_NO_MEM;
1227 		goto error;
1228 	}
1229 
1230 	my_consume_q = qp_alloc_queue(consume_size, flags);
1231 	if (!my_consume_q) {
1232 		pr_warn("Error allocating pages for consume queue\n");
1233 		result = VMCI_ERROR_NO_MEM;
1234 		goto error;
1235 	}
1236 
1237 	queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1238 						    produce_size, consume_size,
1239 						    my_produce_q, my_consume_q);
1240 	if (!queue_pair_entry) {
1241 		pr_warn("Error allocating memory in %s\n", __func__);
1242 		result = VMCI_ERROR_NO_MEM;
1243 		goto error;
1244 	}
1245 
1246 	result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1247 				  num_consume_pages,
1248 				  &queue_pair_entry->ppn_set);
1249 	if (result < VMCI_SUCCESS) {
1250 		pr_warn("qp_alloc_ppn_set failed\n");
1251 		goto error;
1252 	}
1253 
1254 	/*
1255 	 * It's only necessary to notify the host if this queue pair will be
1256 	 * attached to from another context.
1257 	 */
1258 	if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1259 		/* Local create case. */
1260 		u32 context_id = vmci_get_context_id();
1261 
1262 		/*
1263 		 * Enforce similar checks on local queue pairs as we
1264 		 * do for regular ones.  The handle's context must
1265 		 * match the creator or attacher context id (here they
1266 		 * are both the current context id) and the
1267 		 * attach-only flag cannot exist during create.  We
1268 		 * also ensure specified peer is this context or an
1269 		 * invalid one.
1270 		 */
1271 		if (queue_pair_entry->qp.handle.context != context_id ||
1272 		    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1273 		     queue_pair_entry->qp.peer != context_id)) {
1274 			result = VMCI_ERROR_NO_ACCESS;
1275 			goto error;
1276 		}
1277 
1278 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1279 			result = VMCI_ERROR_NOT_FOUND;
1280 			goto error;
1281 		}
1282 	} else {
1283 		result = qp_alloc_hypercall(queue_pair_entry);
1284 		if (result < VMCI_SUCCESS) {
1285 			pr_warn("qp_alloc_hypercall result = %d\n", result);
1286 			goto error;
1287 		}
1288 	}
1289 
1290 	qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1291 			    (struct vmci_queue *)my_consume_q);
1292 
1293 	qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1294 
1295  out:
1296 	queue_pair_entry->qp.ref_count++;
1297 	*handle = queue_pair_entry->qp.handle;
1298 	*produce_q = (struct vmci_queue *)my_produce_q;
1299 	*consume_q = (struct vmci_queue *)my_consume_q;
1300 
1301 	/*
1302 	 * We should initialize the queue pair header pages on a local
1303 	 * queue pair create.  For non-local queue pairs, the
1304 	 * hypervisor initializes the header pages in the create step.
1305 	 */
1306 	if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1307 	    queue_pair_entry->qp.ref_count == 1) {
1308 		vmci_q_header_init((*produce_q)->q_header, *handle);
1309 		vmci_q_header_init((*consume_q)->q_header, *handle);
1310 	}
1311 
1312 	mutex_unlock(&qp_guest_endpoints.mutex);
1313 
1314 	return VMCI_SUCCESS;
1315 
1316  error:
1317 	mutex_unlock(&qp_guest_endpoints.mutex);
1318 	if (queue_pair_entry) {
1319 		/* The queues will be freed inside the destroy routine. */
1320 		qp_guest_endpoint_destroy(queue_pair_entry);
1321 	} else {
1322 		qp_free_queue(my_produce_q, produce_size);
1323 		qp_free_queue(my_consume_q, consume_size);
1324 	}
1325 	return result;
1326 
1327  error_keep_entry:
1328 	/* This path should only be used when an existing entry was found. */
1329 	mutex_unlock(&qp_guest_endpoints.mutex);
1330 	return result;
1331 }
1332 
1333 /*
1334  * The first endpoint issuing a queue pair allocation will create the state
1335  * of the queue pair in the queue pair broker.
1336  *
1337  * If the creator is a guest, it will associate a VMX virtual address range
1338  * with the queue pair as specified by the page_store. For compatibility with
1339  * older VMX'en, that would use a separate step to set the VMX virtual
1340  * address range, the virtual address range can be registered later using
1341  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1342  * used.
1343  *
1344  * If the creator is the host, a page_store of NULL should be used as well,
1345  * since the host is not able to supply a page store for the queue pair.
1346  *
1347  * For older VMX and host callers, the queue pair will be created in the
1348  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1349  * created in VMCOQPB_CREATED_MEM state.
1350  */
1351 static int qp_broker_create(struct vmci_handle handle,
1352 			    u32 peer,
1353 			    u32 flags,
1354 			    u32 priv_flags,
1355 			    u64 produce_size,
1356 			    u64 consume_size,
1357 			    struct vmci_qp_page_store *page_store,
1358 			    struct vmci_ctx *context,
1359 			    vmci_event_release_cb wakeup_cb,
1360 			    void *client_data, struct qp_broker_entry **ent)
1361 {
1362 	struct qp_broker_entry *entry = NULL;
1363 	const u32 context_id = vmci_ctx_get_id(context);
1364 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1365 	int result;
1366 	u64 guest_produce_size;
1367 	u64 guest_consume_size;
1368 
1369 	/* Do not create if the caller asked not to. */
1370 	if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1371 		return VMCI_ERROR_NOT_FOUND;
1372 
1373 	/*
1374 	 * Creator's context ID should match handle's context ID or the creator
1375 	 * must allow the context in handle's context ID as the "peer".
1376 	 */
1377 	if (handle.context != context_id && handle.context != peer)
1378 		return VMCI_ERROR_NO_ACCESS;
1379 
1380 	if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1381 		return VMCI_ERROR_DST_UNREACHABLE;
1382 
1383 	/*
1384 	 * Creator's context ID for local queue pairs should match the
1385 	 * peer, if a peer is specified.
1386 	 */
1387 	if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1388 		return VMCI_ERROR_NO_ACCESS;
1389 
1390 	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1391 	if (!entry)
1392 		return VMCI_ERROR_NO_MEM;
1393 
1394 	if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1395 		/*
1396 		 * The queue pair broker entry stores values from the guest
1397 		 * point of view, so a creating host side endpoint should swap
1398 		 * produce and consume values -- unless it is a local queue
1399 		 * pair, in which case no swapping is necessary, since the local
1400 		 * attacher will swap queues.
1401 		 */
1402 
1403 		guest_produce_size = consume_size;
1404 		guest_consume_size = produce_size;
1405 	} else {
1406 		guest_produce_size = produce_size;
1407 		guest_consume_size = consume_size;
1408 	}
1409 
1410 	entry->qp.handle = handle;
1411 	entry->qp.peer = peer;
1412 	entry->qp.flags = flags;
1413 	entry->qp.produce_size = guest_produce_size;
1414 	entry->qp.consume_size = guest_consume_size;
1415 	entry->qp.ref_count = 1;
1416 	entry->create_id = context_id;
1417 	entry->attach_id = VMCI_INVALID_ID;
1418 	entry->state = VMCIQPB_NEW;
1419 	entry->require_trusted_attach =
1420 	    !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1421 	entry->created_by_trusted =
1422 	    !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1423 	entry->vmci_page_files = false;
1424 	entry->wakeup_cb = wakeup_cb;
1425 	entry->client_data = client_data;
1426 	entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1427 	if (entry->produce_q == NULL) {
1428 		result = VMCI_ERROR_NO_MEM;
1429 		goto error;
1430 	}
1431 	entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1432 	if (entry->consume_q == NULL) {
1433 		result = VMCI_ERROR_NO_MEM;
1434 		goto error;
1435 	}
1436 
1437 	qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1438 
1439 	INIT_LIST_HEAD(&entry->qp.list_item);
1440 
1441 	if (is_local) {
1442 		u8 *tmp;
1443 
1444 		entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1445 					   PAGE_SIZE, GFP_KERNEL);
1446 		if (entry->local_mem == NULL) {
1447 			result = VMCI_ERROR_NO_MEM;
1448 			goto error;
1449 		}
1450 		entry->state = VMCIQPB_CREATED_MEM;
1451 		entry->produce_q->q_header = entry->local_mem;
1452 		tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1453 		    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1454 		entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1455 	} else if (page_store) {
1456 		/*
1457 		 * The VMX already initialized the queue pair headers, so no
1458 		 * need for the kernel side to do that.
1459 		 */
1460 		result = qp_host_register_user_memory(page_store,
1461 						      entry->produce_q,
1462 						      entry->consume_q);
1463 		if (result < VMCI_SUCCESS)
1464 			goto error;
1465 
1466 		entry->state = VMCIQPB_CREATED_MEM;
1467 	} else {
1468 		/*
1469 		 * A create without a page_store may be either a host
1470 		 * side create (in which case we are waiting for the
1471 		 * guest side to supply the memory) or an old style
1472 		 * queue pair create (in which case we will expect a
1473 		 * set page store call as the next step).
1474 		 */
1475 		entry->state = VMCIQPB_CREATED_NO_MEM;
1476 	}
1477 
1478 	qp_list_add_entry(&qp_broker_list, &entry->qp);
1479 	if (ent != NULL)
1480 		*ent = entry;
1481 
1482 	/* Add to resource obj */
1483 	result = vmci_resource_add(&entry->resource,
1484 				   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1485 				   handle);
1486 	if (result != VMCI_SUCCESS) {
1487 		pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1488 			handle.context, handle.resource, result);
1489 		goto error;
1490 	}
1491 
1492 	entry->qp.handle = vmci_resource_handle(&entry->resource);
1493 	if (is_local) {
1494 		vmci_q_header_init(entry->produce_q->q_header,
1495 				   entry->qp.handle);
1496 		vmci_q_header_init(entry->consume_q->q_header,
1497 				   entry->qp.handle);
1498 	}
1499 
1500 	vmci_ctx_qp_create(context, entry->qp.handle);
1501 
1502 	return VMCI_SUCCESS;
1503 
1504  error:
1505 	if (entry != NULL) {
1506 		qp_host_free_queue(entry->produce_q, guest_produce_size);
1507 		qp_host_free_queue(entry->consume_q, guest_consume_size);
1508 		kfree(entry);
1509 	}
1510 
1511 	return result;
1512 }
1513 
1514 /*
1515  * Enqueues an event datagram to notify the peer VM attached to
1516  * the given queue pair handle about attach/detach event by the
1517  * given VM.  Returns Payload size of datagram enqueued on
1518  * success, error code otherwise.
1519  */
1520 static int qp_notify_peer(bool attach,
1521 			  struct vmci_handle handle,
1522 			  u32 my_id,
1523 			  u32 peer_id)
1524 {
1525 	int rv;
1526 	struct vmci_event_qp ev;
1527 
1528 	if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1529 	    peer_id == VMCI_INVALID_ID)
1530 		return VMCI_ERROR_INVALID_ARGS;
1531 
1532 	/*
1533 	 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1534 	 * number of pending events from the hypervisor to a given VM
1535 	 * otherwise a rogue VM could do an arbitrary number of attach
1536 	 * and detach operations causing memory pressure in the host
1537 	 * kernel.
1538 	 */
1539 
1540 	ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1541 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1542 					  VMCI_CONTEXT_RESOURCE_ID);
1543 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1544 	ev.msg.event_data.event = attach ?
1545 	    VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1546 	ev.payload.handle = handle;
1547 	ev.payload.peer_id = my_id;
1548 
1549 	rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1550 				    &ev.msg.hdr, false);
1551 	if (rv < VMCI_SUCCESS)
1552 		pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1553 			attach ? "ATTACH" : "DETACH", peer_id);
1554 
1555 	return rv;
1556 }
1557 
1558 /*
1559  * The second endpoint issuing a queue pair allocation will attach to
1560  * the queue pair registered with the queue pair broker.
1561  *
1562  * If the attacher is a guest, it will associate a VMX virtual address
1563  * range with the queue pair as specified by the page_store. At this
1564  * point, the already attach host endpoint may start using the queue
1565  * pair, and an attach event is sent to it. For compatibility with
1566  * older VMX'en, that used a separate step to set the VMX virtual
1567  * address range, the virtual address range can be registered later
1568  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1569  * NULL should be used, and the attach event will be generated once
1570  * the actual page store has been set.
1571  *
1572  * If the attacher is the host, a page_store of NULL should be used as
1573  * well, since the page store information is already set by the guest.
1574  *
1575  * For new VMX and host callers, the queue pair will be moved to the
1576  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1577  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1578  */
1579 static int qp_broker_attach(struct qp_broker_entry *entry,
1580 			    u32 peer,
1581 			    u32 flags,
1582 			    u32 priv_flags,
1583 			    u64 produce_size,
1584 			    u64 consume_size,
1585 			    struct vmci_qp_page_store *page_store,
1586 			    struct vmci_ctx *context,
1587 			    vmci_event_release_cb wakeup_cb,
1588 			    void *client_data,
1589 			    struct qp_broker_entry **ent)
1590 {
1591 	const u32 context_id = vmci_ctx_get_id(context);
1592 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1593 	int result;
1594 
1595 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1596 	    entry->state != VMCIQPB_CREATED_MEM)
1597 		return VMCI_ERROR_UNAVAILABLE;
1598 
1599 	if (is_local) {
1600 		if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1601 		    context_id != entry->create_id) {
1602 			return VMCI_ERROR_INVALID_ARGS;
1603 		}
1604 	} else if (context_id == entry->create_id ||
1605 		   context_id == entry->attach_id) {
1606 		return VMCI_ERROR_ALREADY_EXISTS;
1607 	}
1608 
1609 	if (VMCI_CONTEXT_IS_VM(context_id) &&
1610 	    VMCI_CONTEXT_IS_VM(entry->create_id))
1611 		return VMCI_ERROR_DST_UNREACHABLE;
1612 
1613 	/*
1614 	 * If we are attaching from a restricted context then the queuepair
1615 	 * must have been created by a trusted endpoint.
1616 	 */
1617 	if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1618 	    !entry->created_by_trusted)
1619 		return VMCI_ERROR_NO_ACCESS;
1620 
1621 	/*
1622 	 * If we are attaching to a queuepair that was created by a restricted
1623 	 * context then we must be trusted.
1624 	 */
1625 	if (entry->require_trusted_attach &&
1626 	    (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1627 		return VMCI_ERROR_NO_ACCESS;
1628 
1629 	/*
1630 	 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1631 	 * control check is not performed.
1632 	 */
1633 	if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1634 		return VMCI_ERROR_NO_ACCESS;
1635 
1636 	if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1637 		/*
1638 		 * Do not attach if the caller doesn't support Host Queue Pairs
1639 		 * and a host created this queue pair.
1640 		 */
1641 
1642 		if (!vmci_ctx_supports_host_qp(context))
1643 			return VMCI_ERROR_INVALID_RESOURCE;
1644 
1645 	} else if (context_id == VMCI_HOST_CONTEXT_ID) {
1646 		struct vmci_ctx *create_context;
1647 		bool supports_host_qp;
1648 
1649 		/*
1650 		 * Do not attach a host to a user created queue pair if that
1651 		 * user doesn't support host queue pair end points.
1652 		 */
1653 
1654 		create_context = vmci_ctx_get(entry->create_id);
1655 		supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1656 		vmci_ctx_put(create_context);
1657 
1658 		if (!supports_host_qp)
1659 			return VMCI_ERROR_INVALID_RESOURCE;
1660 	}
1661 
1662 	if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1663 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1664 
1665 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1666 		/*
1667 		 * The queue pair broker entry stores values from the guest
1668 		 * point of view, so an attaching guest should match the values
1669 		 * stored in the entry.
1670 		 */
1671 
1672 		if (entry->qp.produce_size != produce_size ||
1673 		    entry->qp.consume_size != consume_size) {
1674 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1675 		}
1676 	} else if (entry->qp.produce_size != consume_size ||
1677 		   entry->qp.consume_size != produce_size) {
1678 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1679 	}
1680 
1681 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1682 		/*
1683 		 * If a guest attached to a queue pair, it will supply
1684 		 * the backing memory.  If this is a pre NOVMVM vmx,
1685 		 * the backing memory will be supplied by calling
1686 		 * vmci_qp_broker_set_page_store() following the
1687 		 * return of the vmci_qp_broker_alloc() call. If it is
1688 		 * a vmx of version NOVMVM or later, the page store
1689 		 * must be supplied as part of the
1690 		 * vmci_qp_broker_alloc call.  Under all circumstances
1691 		 * must the initially created queue pair not have any
1692 		 * memory associated with it already.
1693 		 */
1694 
1695 		if (entry->state != VMCIQPB_CREATED_NO_MEM)
1696 			return VMCI_ERROR_INVALID_ARGS;
1697 
1698 		if (page_store != NULL) {
1699 			/*
1700 			 * Patch up host state to point to guest
1701 			 * supplied memory. The VMX already
1702 			 * initialized the queue pair headers, so no
1703 			 * need for the kernel side to do that.
1704 			 */
1705 
1706 			result = qp_host_register_user_memory(page_store,
1707 							      entry->produce_q,
1708 							      entry->consume_q);
1709 			if (result < VMCI_SUCCESS)
1710 				return result;
1711 
1712 			entry->state = VMCIQPB_ATTACHED_MEM;
1713 		} else {
1714 			entry->state = VMCIQPB_ATTACHED_NO_MEM;
1715 		}
1716 	} else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1717 		/*
1718 		 * The host side is attempting to attach to a queue
1719 		 * pair that doesn't have any memory associated with
1720 		 * it. This must be a pre NOVMVM vmx that hasn't set
1721 		 * the page store information yet, or a quiesced VM.
1722 		 */
1723 
1724 		return VMCI_ERROR_UNAVAILABLE;
1725 	} else {
1726 		/* The host side has successfully attached to a queue pair. */
1727 		entry->state = VMCIQPB_ATTACHED_MEM;
1728 	}
1729 
1730 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
1731 		result =
1732 		    qp_notify_peer(true, entry->qp.handle, context_id,
1733 				   entry->create_id);
1734 		if (result < VMCI_SUCCESS)
1735 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1736 				entry->create_id, entry->qp.handle.context,
1737 				entry->qp.handle.resource);
1738 	}
1739 
1740 	entry->attach_id = context_id;
1741 	entry->qp.ref_count++;
1742 	if (wakeup_cb) {
1743 		entry->wakeup_cb = wakeup_cb;
1744 		entry->client_data = client_data;
1745 	}
1746 
1747 	/*
1748 	 * When attaching to local queue pairs, the context already has
1749 	 * an entry tracking the queue pair, so don't add another one.
1750 	 */
1751 	if (!is_local)
1752 		vmci_ctx_qp_create(context, entry->qp.handle);
1753 
1754 	if (ent != NULL)
1755 		*ent = entry;
1756 
1757 	return VMCI_SUCCESS;
1758 }
1759 
1760 /*
1761  * queue_pair_Alloc for use when setting up queue pair endpoints
1762  * on the host.
1763  */
1764 static int qp_broker_alloc(struct vmci_handle handle,
1765 			   u32 peer,
1766 			   u32 flags,
1767 			   u32 priv_flags,
1768 			   u64 produce_size,
1769 			   u64 consume_size,
1770 			   struct vmci_qp_page_store *page_store,
1771 			   struct vmci_ctx *context,
1772 			   vmci_event_release_cb wakeup_cb,
1773 			   void *client_data,
1774 			   struct qp_broker_entry **ent,
1775 			   bool *swap)
1776 {
1777 	const u32 context_id = vmci_ctx_get_id(context);
1778 	bool create;
1779 	struct qp_broker_entry *entry = NULL;
1780 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1781 	int result;
1782 
1783 	if (vmci_handle_is_invalid(handle) ||
1784 	    (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1785 	    !(produce_size || consume_size) ||
1786 	    !context || context_id == VMCI_INVALID_ID ||
1787 	    handle.context == VMCI_INVALID_ID) {
1788 		return VMCI_ERROR_INVALID_ARGS;
1789 	}
1790 
1791 	if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1792 		return VMCI_ERROR_INVALID_ARGS;
1793 
1794 	/*
1795 	 * In the initial argument check, we ensure that non-vmkernel hosts
1796 	 * are not allowed to create local queue pairs.
1797 	 */
1798 
1799 	mutex_lock(&qp_broker_list.mutex);
1800 
1801 	if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1802 		pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1803 			 context_id, handle.context, handle.resource);
1804 		mutex_unlock(&qp_broker_list.mutex);
1805 		return VMCI_ERROR_ALREADY_EXISTS;
1806 	}
1807 
1808 	if (handle.resource != VMCI_INVALID_ID)
1809 		entry = qp_broker_handle_to_entry(handle);
1810 
1811 	if (!entry) {
1812 		create = true;
1813 		result =
1814 		    qp_broker_create(handle, peer, flags, priv_flags,
1815 				     produce_size, consume_size, page_store,
1816 				     context, wakeup_cb, client_data, ent);
1817 	} else {
1818 		create = false;
1819 		result =
1820 		    qp_broker_attach(entry, peer, flags, priv_flags,
1821 				     produce_size, consume_size, page_store,
1822 				     context, wakeup_cb, client_data, ent);
1823 	}
1824 
1825 	mutex_unlock(&qp_broker_list.mutex);
1826 
1827 	if (swap)
1828 		*swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1829 		    !(create && is_local);
1830 
1831 	return result;
1832 }
1833 
1834 /*
1835  * This function implements the kernel API for allocating a queue
1836  * pair.
1837  */
1838 static int qp_alloc_host_work(struct vmci_handle *handle,
1839 			      struct vmci_queue **produce_q,
1840 			      u64 produce_size,
1841 			      struct vmci_queue **consume_q,
1842 			      u64 consume_size,
1843 			      u32 peer,
1844 			      u32 flags,
1845 			      u32 priv_flags,
1846 			      vmci_event_release_cb wakeup_cb,
1847 			      void *client_data)
1848 {
1849 	struct vmci_handle new_handle;
1850 	struct vmci_ctx *context;
1851 	struct qp_broker_entry *entry;
1852 	int result;
1853 	bool swap;
1854 
1855 	if (vmci_handle_is_invalid(*handle)) {
1856 		new_handle = vmci_make_handle(
1857 			VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1858 	} else
1859 		new_handle = *handle;
1860 
1861 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1862 	entry = NULL;
1863 	result =
1864 	    qp_broker_alloc(new_handle, peer, flags, priv_flags,
1865 			    produce_size, consume_size, NULL, context,
1866 			    wakeup_cb, client_data, &entry, &swap);
1867 	if (result == VMCI_SUCCESS) {
1868 		if (swap) {
1869 			/*
1870 			 * If this is a local queue pair, the attacher
1871 			 * will swap around produce and consume
1872 			 * queues.
1873 			 */
1874 
1875 			*produce_q = entry->consume_q;
1876 			*consume_q = entry->produce_q;
1877 		} else {
1878 			*produce_q = entry->produce_q;
1879 			*consume_q = entry->consume_q;
1880 		}
1881 
1882 		*handle = vmci_resource_handle(&entry->resource);
1883 	} else {
1884 		*handle = VMCI_INVALID_HANDLE;
1885 		pr_devel("queue pair broker failed to alloc (result=%d)\n",
1886 			 result);
1887 	}
1888 	vmci_ctx_put(context);
1889 	return result;
1890 }
1891 
1892 /*
1893  * Allocates a VMCI queue_pair. Only checks validity of input
1894  * arguments. The real work is done in the host or guest
1895  * specific function.
1896  */
1897 int vmci_qp_alloc(struct vmci_handle *handle,
1898 		  struct vmci_queue **produce_q,
1899 		  u64 produce_size,
1900 		  struct vmci_queue **consume_q,
1901 		  u64 consume_size,
1902 		  u32 peer,
1903 		  u32 flags,
1904 		  u32 priv_flags,
1905 		  bool guest_endpoint,
1906 		  vmci_event_release_cb wakeup_cb,
1907 		  void *client_data)
1908 {
1909 	if (!handle || !produce_q || !consume_q ||
1910 	    (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1911 		return VMCI_ERROR_INVALID_ARGS;
1912 
1913 	if (guest_endpoint) {
1914 		return qp_alloc_guest_work(handle, produce_q,
1915 					   produce_size, consume_q,
1916 					   consume_size, peer,
1917 					   flags, priv_flags);
1918 	} else {
1919 		return qp_alloc_host_work(handle, produce_q,
1920 					  produce_size, consume_q,
1921 					  consume_size, peer, flags,
1922 					  priv_flags, wakeup_cb, client_data);
1923 	}
1924 }
1925 
1926 /*
1927  * This function implements the host kernel API for detaching from
1928  * a queue pair.
1929  */
1930 static int qp_detatch_host_work(struct vmci_handle handle)
1931 {
1932 	int result;
1933 	struct vmci_ctx *context;
1934 
1935 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1936 
1937 	result = vmci_qp_broker_detach(handle, context);
1938 
1939 	vmci_ctx_put(context);
1940 	return result;
1941 }
1942 
1943 /*
1944  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1945  * Real work is done in the host or guest specific function.
1946  */
1947 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1948 {
1949 	if (vmci_handle_is_invalid(handle))
1950 		return VMCI_ERROR_INVALID_ARGS;
1951 
1952 	if (guest_endpoint)
1953 		return qp_detatch_guest_work(handle);
1954 	else
1955 		return qp_detatch_host_work(handle);
1956 }
1957 
1958 /*
1959  * Returns the entry from the head of the list. Assumes that the list is
1960  * locked.
1961  */
1962 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1963 {
1964 	if (!list_empty(&qp_list->head)) {
1965 		struct qp_entry *entry =
1966 		    list_first_entry(&qp_list->head, struct qp_entry,
1967 				     list_item);
1968 		return entry;
1969 	}
1970 
1971 	return NULL;
1972 }
1973 
1974 void vmci_qp_broker_exit(void)
1975 {
1976 	struct qp_entry *entry;
1977 	struct qp_broker_entry *be;
1978 
1979 	mutex_lock(&qp_broker_list.mutex);
1980 
1981 	while ((entry = qp_list_get_head(&qp_broker_list))) {
1982 		be = (struct qp_broker_entry *)entry;
1983 
1984 		qp_list_remove_entry(&qp_broker_list, entry);
1985 		kfree(be);
1986 	}
1987 
1988 	mutex_unlock(&qp_broker_list.mutex);
1989 }
1990 
1991 /*
1992  * Requests that a queue pair be allocated with the VMCI queue
1993  * pair broker. Allocates a queue pair entry if one does not
1994  * exist. Attaches to one if it exists, and retrieves the page
1995  * files backing that queue_pair.  Assumes that the queue pair
1996  * broker lock is held.
1997  */
1998 int vmci_qp_broker_alloc(struct vmci_handle handle,
1999 			 u32 peer,
2000 			 u32 flags,
2001 			 u32 priv_flags,
2002 			 u64 produce_size,
2003 			 u64 consume_size,
2004 			 struct vmci_qp_page_store *page_store,
2005 			 struct vmci_ctx *context)
2006 {
2007 	return qp_broker_alloc(handle, peer, flags, priv_flags,
2008 			       produce_size, consume_size,
2009 			       page_store, context, NULL, NULL, NULL, NULL);
2010 }
2011 
2012 /*
2013  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2014  * step to add the UVAs of the VMX mapping of the queue pair. This function
2015  * provides backwards compatibility with such VMX'en, and takes care of
2016  * registering the page store for a queue pair previously allocated by the
2017  * VMX during create or attach. This function will move the queue pair state
2018  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2019  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2020  * attached state with memory, the queue pair is ready to be used by the
2021  * host peer, and an attached event will be generated.
2022  *
2023  * Assumes that the queue pair broker lock is held.
2024  *
2025  * This function is only used by the hosted platform, since there is no
2026  * issue with backwards compatibility for vmkernel.
2027  */
2028 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
2029 				  u64 produce_uva,
2030 				  u64 consume_uva,
2031 				  struct vmci_ctx *context)
2032 {
2033 	struct qp_broker_entry *entry;
2034 	int result;
2035 	const u32 context_id = vmci_ctx_get_id(context);
2036 
2037 	if (vmci_handle_is_invalid(handle) || !context ||
2038 	    context_id == VMCI_INVALID_ID)
2039 		return VMCI_ERROR_INVALID_ARGS;
2040 
2041 	/*
2042 	 * We only support guest to host queue pairs, so the VMX must
2043 	 * supply UVAs for the mapped page files.
2044 	 */
2045 
2046 	if (produce_uva == 0 || consume_uva == 0)
2047 		return VMCI_ERROR_INVALID_ARGS;
2048 
2049 	mutex_lock(&qp_broker_list.mutex);
2050 
2051 	if (!vmci_ctx_qp_exists(context, handle)) {
2052 		pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2053 			context_id, handle.context, handle.resource);
2054 		result = VMCI_ERROR_NOT_FOUND;
2055 		goto out;
2056 	}
2057 
2058 	entry = qp_broker_handle_to_entry(handle);
2059 	if (!entry) {
2060 		result = VMCI_ERROR_NOT_FOUND;
2061 		goto out;
2062 	}
2063 
2064 	/*
2065 	 * If I'm the owner then I can set the page store.
2066 	 *
2067 	 * Or, if a host created the queue_pair and I'm the attached peer
2068 	 * then I can set the page store.
2069 	 */
2070 	if (entry->create_id != context_id &&
2071 	    (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2072 	     entry->attach_id != context_id)) {
2073 		result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2074 		goto out;
2075 	}
2076 
2077 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2078 	    entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2079 		result = VMCI_ERROR_UNAVAILABLE;
2080 		goto out;
2081 	}
2082 
2083 	result = qp_host_get_user_memory(produce_uva, consume_uva,
2084 					 entry->produce_q, entry->consume_q);
2085 	if (result < VMCI_SUCCESS)
2086 		goto out;
2087 
2088 	result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2089 	if (result < VMCI_SUCCESS) {
2090 		qp_host_unregister_user_memory(entry->produce_q,
2091 					       entry->consume_q);
2092 		goto out;
2093 	}
2094 
2095 	if (entry->state == VMCIQPB_CREATED_NO_MEM)
2096 		entry->state = VMCIQPB_CREATED_MEM;
2097 	else
2098 		entry->state = VMCIQPB_ATTACHED_MEM;
2099 
2100 	entry->vmci_page_files = true;
2101 
2102 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
2103 		result =
2104 		    qp_notify_peer(true, handle, context_id, entry->create_id);
2105 		if (result < VMCI_SUCCESS) {
2106 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2107 				entry->create_id, entry->qp.handle.context,
2108 				entry->qp.handle.resource);
2109 		}
2110 	}
2111 
2112 	result = VMCI_SUCCESS;
2113  out:
2114 	mutex_unlock(&qp_broker_list.mutex);
2115 	return result;
2116 }
2117 
2118 /*
2119  * Resets saved queue headers for the given QP broker
2120  * entry. Should be used when guest memory becomes available
2121  * again, or the guest detaches.
2122  */
2123 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2124 {
2125 	entry->produce_q->saved_header = NULL;
2126 	entry->consume_q->saved_header = NULL;
2127 }
2128 
2129 /*
2130  * The main entry point for detaching from a queue pair registered with the
2131  * queue pair broker. If more than one endpoint is attached to the queue
2132  * pair, the first endpoint will mainly decrement a reference count and
2133  * generate a notification to its peer. The last endpoint will clean up
2134  * the queue pair state registered with the broker.
2135  *
2136  * When a guest endpoint detaches, it will unmap and unregister the guest
2137  * memory backing the queue pair. If the host is still attached, it will
2138  * no longer be able to access the queue pair content.
2139  *
2140  * If the queue pair is already in a state where there is no memory
2141  * registered for the queue pair (any *_NO_MEM state), it will transition to
2142  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2143  * endpoint is the first of two endpoints to detach. If the host endpoint is
2144  * the first out of two to detach, the queue pair will move to the
2145  * VMCIQPB_SHUTDOWN_MEM state.
2146  */
2147 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2148 {
2149 	struct qp_broker_entry *entry;
2150 	const u32 context_id = vmci_ctx_get_id(context);
2151 	u32 peer_id;
2152 	bool is_local = false;
2153 	int result;
2154 
2155 	if (vmci_handle_is_invalid(handle) || !context ||
2156 	    context_id == VMCI_INVALID_ID) {
2157 		return VMCI_ERROR_INVALID_ARGS;
2158 	}
2159 
2160 	mutex_lock(&qp_broker_list.mutex);
2161 
2162 	if (!vmci_ctx_qp_exists(context, handle)) {
2163 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2164 			 context_id, handle.context, handle.resource);
2165 		result = VMCI_ERROR_NOT_FOUND;
2166 		goto out;
2167 	}
2168 
2169 	entry = qp_broker_handle_to_entry(handle);
2170 	if (!entry) {
2171 		pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2172 			 context_id, handle.context, handle.resource);
2173 		result = VMCI_ERROR_NOT_FOUND;
2174 		goto out;
2175 	}
2176 
2177 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2178 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2179 		goto out;
2180 	}
2181 
2182 	if (context_id == entry->create_id) {
2183 		peer_id = entry->attach_id;
2184 		entry->create_id = VMCI_INVALID_ID;
2185 	} else {
2186 		peer_id = entry->create_id;
2187 		entry->attach_id = VMCI_INVALID_ID;
2188 	}
2189 	entry->qp.ref_count--;
2190 
2191 	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2192 
2193 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2194 		bool headers_mapped;
2195 
2196 		/*
2197 		 * Pre NOVMVM vmx'en may detach from a queue pair
2198 		 * before setting the page store, and in that case
2199 		 * there is no user memory to detach from. Also, more
2200 		 * recent VMX'en may detach from a queue pair in the
2201 		 * quiesced state.
2202 		 */
2203 
2204 		qp_acquire_queue_mutex(entry->produce_q);
2205 		headers_mapped = entry->produce_q->q_header ||
2206 		    entry->consume_q->q_header;
2207 		if (QPBROKERSTATE_HAS_MEM(entry)) {
2208 			result =
2209 			    qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2210 						 entry->produce_q,
2211 						 entry->consume_q);
2212 			if (result < VMCI_SUCCESS)
2213 				pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2214 					handle.context, handle.resource,
2215 					result);
2216 
2217 			if (entry->vmci_page_files)
2218 				qp_host_unregister_user_memory(entry->produce_q,
2219 							       entry->
2220 							       consume_q);
2221 			else
2222 				qp_host_unregister_user_memory(entry->produce_q,
2223 							       entry->
2224 							       consume_q);
2225 
2226 		}
2227 
2228 		if (!headers_mapped)
2229 			qp_reset_saved_headers(entry);
2230 
2231 		qp_release_queue_mutex(entry->produce_q);
2232 
2233 		if (!headers_mapped && entry->wakeup_cb)
2234 			entry->wakeup_cb(entry->client_data);
2235 
2236 	} else {
2237 		if (entry->wakeup_cb) {
2238 			entry->wakeup_cb = NULL;
2239 			entry->client_data = NULL;
2240 		}
2241 	}
2242 
2243 	if (entry->qp.ref_count == 0) {
2244 		qp_list_remove_entry(&qp_broker_list, &entry->qp);
2245 
2246 		if (is_local)
2247 			kfree(entry->local_mem);
2248 
2249 		qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2250 		qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2251 		qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2252 		/* Unlink from resource hash table and free callback */
2253 		vmci_resource_remove(&entry->resource);
2254 
2255 		kfree(entry);
2256 
2257 		vmci_ctx_qp_destroy(context, handle);
2258 	} else {
2259 		qp_notify_peer(false, handle, context_id, peer_id);
2260 		if (context_id == VMCI_HOST_CONTEXT_ID &&
2261 		    QPBROKERSTATE_HAS_MEM(entry)) {
2262 			entry->state = VMCIQPB_SHUTDOWN_MEM;
2263 		} else {
2264 			entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2265 		}
2266 
2267 		if (!is_local)
2268 			vmci_ctx_qp_destroy(context, handle);
2269 
2270 	}
2271 	result = VMCI_SUCCESS;
2272  out:
2273 	mutex_unlock(&qp_broker_list.mutex);
2274 	return result;
2275 }
2276 
2277 /*
2278  * Establishes the necessary mappings for a queue pair given a
2279  * reference to the queue pair guest memory. This is usually
2280  * called when a guest is unquiesced and the VMX is allowed to
2281  * map guest memory once again.
2282  */
2283 int vmci_qp_broker_map(struct vmci_handle handle,
2284 		       struct vmci_ctx *context,
2285 		       u64 guest_mem)
2286 {
2287 	struct qp_broker_entry *entry;
2288 	const u32 context_id = vmci_ctx_get_id(context);
2289 	bool is_local = false;
2290 	int result;
2291 
2292 	if (vmci_handle_is_invalid(handle) || !context ||
2293 	    context_id == VMCI_INVALID_ID)
2294 		return VMCI_ERROR_INVALID_ARGS;
2295 
2296 	mutex_lock(&qp_broker_list.mutex);
2297 
2298 	if (!vmci_ctx_qp_exists(context, handle)) {
2299 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2300 			 context_id, handle.context, handle.resource);
2301 		result = VMCI_ERROR_NOT_FOUND;
2302 		goto out;
2303 	}
2304 
2305 	entry = qp_broker_handle_to_entry(handle);
2306 	if (!entry) {
2307 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2308 			 context_id, handle.context, handle.resource);
2309 		result = VMCI_ERROR_NOT_FOUND;
2310 		goto out;
2311 	}
2312 
2313 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2314 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2315 		goto out;
2316 	}
2317 
2318 	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2319 	result = VMCI_SUCCESS;
2320 
2321 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2322 		struct vmci_qp_page_store page_store;
2323 
2324 		page_store.pages = guest_mem;
2325 		page_store.len = QPE_NUM_PAGES(entry->qp);
2326 
2327 		qp_acquire_queue_mutex(entry->produce_q);
2328 		qp_reset_saved_headers(entry);
2329 		result =
2330 		    qp_host_register_user_memory(&page_store,
2331 						 entry->produce_q,
2332 						 entry->consume_q);
2333 		qp_release_queue_mutex(entry->produce_q);
2334 		if (result == VMCI_SUCCESS) {
2335 			/* Move state from *_NO_MEM to *_MEM */
2336 
2337 			entry->state++;
2338 
2339 			if (entry->wakeup_cb)
2340 				entry->wakeup_cb(entry->client_data);
2341 		}
2342 	}
2343 
2344  out:
2345 	mutex_unlock(&qp_broker_list.mutex);
2346 	return result;
2347 }
2348 
2349 /*
2350  * Saves a snapshot of the queue headers for the given QP broker
2351  * entry. Should be used when guest memory is unmapped.
2352  * Results:
2353  * VMCI_SUCCESS on success, appropriate error code if guest memory
2354  * can't be accessed..
2355  */
2356 static int qp_save_headers(struct qp_broker_entry *entry)
2357 {
2358 	int result;
2359 
2360 	if (entry->produce_q->saved_header != NULL &&
2361 	    entry->consume_q->saved_header != NULL) {
2362 		/*
2363 		 *  If the headers have already been saved, we don't need to do
2364 		 *  it again, and we don't want to map in the headers
2365 		 *  unnecessarily.
2366 		 */
2367 
2368 		return VMCI_SUCCESS;
2369 	}
2370 
2371 	if (NULL == entry->produce_q->q_header ||
2372 	    NULL == entry->consume_q->q_header) {
2373 		result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2374 		if (result < VMCI_SUCCESS)
2375 			return result;
2376 	}
2377 
2378 	memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2379 	       sizeof(entry->saved_produce_q));
2380 	entry->produce_q->saved_header = &entry->saved_produce_q;
2381 	memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2382 	       sizeof(entry->saved_consume_q));
2383 	entry->consume_q->saved_header = &entry->saved_consume_q;
2384 
2385 	return VMCI_SUCCESS;
2386 }
2387 
2388 /*
2389  * Removes all references to the guest memory of a given queue pair, and
2390  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2391  * called when a VM is being quiesced where access to guest memory should
2392  * avoided.
2393  */
2394 int vmci_qp_broker_unmap(struct vmci_handle handle,
2395 			 struct vmci_ctx *context,
2396 			 u32 gid)
2397 {
2398 	struct qp_broker_entry *entry;
2399 	const u32 context_id = vmci_ctx_get_id(context);
2400 	bool is_local = false;
2401 	int result;
2402 
2403 	if (vmci_handle_is_invalid(handle) || !context ||
2404 	    context_id == VMCI_INVALID_ID)
2405 		return VMCI_ERROR_INVALID_ARGS;
2406 
2407 	mutex_lock(&qp_broker_list.mutex);
2408 
2409 	if (!vmci_ctx_qp_exists(context, handle)) {
2410 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2411 			 context_id, handle.context, handle.resource);
2412 		result = VMCI_ERROR_NOT_FOUND;
2413 		goto out;
2414 	}
2415 
2416 	entry = qp_broker_handle_to_entry(handle);
2417 	if (!entry) {
2418 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2419 			 context_id, handle.context, handle.resource);
2420 		result = VMCI_ERROR_NOT_FOUND;
2421 		goto out;
2422 	}
2423 
2424 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2425 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2426 		goto out;
2427 	}
2428 
2429 	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2430 
2431 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2432 		qp_acquire_queue_mutex(entry->produce_q);
2433 		result = qp_save_headers(entry);
2434 		if (result < VMCI_SUCCESS)
2435 			pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2436 				handle.context, handle.resource, result);
2437 
2438 		qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2439 
2440 		/*
2441 		 * On hosted, when we unmap queue pairs, the VMX will also
2442 		 * unmap the guest memory, so we invalidate the previously
2443 		 * registered memory. If the queue pair is mapped again at a
2444 		 * later point in time, we will need to reregister the user
2445 		 * memory with a possibly new user VA.
2446 		 */
2447 		qp_host_unregister_user_memory(entry->produce_q,
2448 					       entry->consume_q);
2449 
2450 		/*
2451 		 * Move state from *_MEM to *_NO_MEM.
2452 		 */
2453 		entry->state--;
2454 
2455 		qp_release_queue_mutex(entry->produce_q);
2456 	}
2457 
2458 	result = VMCI_SUCCESS;
2459 
2460  out:
2461 	mutex_unlock(&qp_broker_list.mutex);
2462 	return result;
2463 }
2464 
2465 /*
2466  * Destroys all guest queue pair endpoints. If active guest queue
2467  * pairs still exist, hypercalls to attempt detach from these
2468  * queue pairs will be made. Any failure to detach is silently
2469  * ignored.
2470  */
2471 void vmci_qp_guest_endpoints_exit(void)
2472 {
2473 	struct qp_entry *entry;
2474 	struct qp_guest_endpoint *ep;
2475 
2476 	mutex_lock(&qp_guest_endpoints.mutex);
2477 
2478 	while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2479 		ep = (struct qp_guest_endpoint *)entry;
2480 
2481 		/* Don't make a hypercall for local queue_pairs. */
2482 		if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2483 			qp_detatch_hypercall(entry->handle);
2484 
2485 		/* We cannot fail the exit, so let's reset ref_count. */
2486 		entry->ref_count = 0;
2487 		qp_list_remove_entry(&qp_guest_endpoints, entry);
2488 
2489 		qp_guest_endpoint_destroy(ep);
2490 	}
2491 
2492 	mutex_unlock(&qp_guest_endpoints.mutex);
2493 }
2494 
2495 /*
2496  * Helper routine that will lock the queue pair before subsequent
2497  * operations.
2498  * Note: Non-blocking on the host side is currently only implemented in ESX.
2499  * Since non-blocking isn't yet implemented on the host personality we
2500  * have no reason to acquire a spin lock.  So to avoid the use of an
2501  * unnecessary lock only acquire the mutex if we can block.
2502  */
2503 static void qp_lock(const struct vmci_qp *qpair)
2504 {
2505 	qp_acquire_queue_mutex(qpair->produce_q);
2506 }
2507 
2508 /*
2509  * Helper routine that unlocks the queue pair after calling
2510  * qp_lock.
2511  */
2512 static void qp_unlock(const struct vmci_qp *qpair)
2513 {
2514 	qp_release_queue_mutex(qpair->produce_q);
2515 }
2516 
2517 /*
2518  * The queue headers may not be mapped at all times. If a queue is
2519  * currently not mapped, it will be attempted to do so.
2520  */
2521 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2522 				struct vmci_queue *consume_q)
2523 {
2524 	int result;
2525 
2526 	if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2527 		result = qp_host_map_queues(produce_q, consume_q);
2528 		if (result < VMCI_SUCCESS)
2529 			return (produce_q->saved_header &&
2530 				consume_q->saved_header) ?
2531 			    VMCI_ERROR_QUEUEPAIR_NOT_READY :
2532 			    VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2533 	}
2534 
2535 	return VMCI_SUCCESS;
2536 }
2537 
2538 /*
2539  * Helper routine that will retrieve the produce and consume
2540  * headers of a given queue pair. If the guest memory of the
2541  * queue pair is currently not available, the saved queue headers
2542  * will be returned, if these are available.
2543  */
2544 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2545 				struct vmci_queue_header **produce_q_header,
2546 				struct vmci_queue_header **consume_q_header)
2547 {
2548 	int result;
2549 
2550 	result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2551 	if (result == VMCI_SUCCESS) {
2552 		*produce_q_header = qpair->produce_q->q_header;
2553 		*consume_q_header = qpair->consume_q->q_header;
2554 	} else if (qpair->produce_q->saved_header &&
2555 		   qpair->consume_q->saved_header) {
2556 		*produce_q_header = qpair->produce_q->saved_header;
2557 		*consume_q_header = qpair->consume_q->saved_header;
2558 		result = VMCI_SUCCESS;
2559 	}
2560 
2561 	return result;
2562 }
2563 
2564 /*
2565  * Callback from VMCI queue pair broker indicating that a queue
2566  * pair that was previously not ready, now either is ready or
2567  * gone forever.
2568  */
2569 static int qp_wakeup_cb(void *client_data)
2570 {
2571 	struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2572 
2573 	qp_lock(qpair);
2574 	while (qpair->blocked > 0) {
2575 		qpair->blocked--;
2576 		qpair->generation++;
2577 		wake_up(&qpair->event);
2578 	}
2579 	qp_unlock(qpair);
2580 
2581 	return VMCI_SUCCESS;
2582 }
2583 
2584 /*
2585  * Makes the calling thread wait for the queue pair to become
2586  * ready for host side access.  Returns true when thread is
2587  * woken up after queue pair state change, false otherwise.
2588  */
2589 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2590 {
2591 	unsigned int generation;
2592 
2593 	qpair->blocked++;
2594 	generation = qpair->generation;
2595 	qp_unlock(qpair);
2596 	wait_event(qpair->event, generation != qpair->generation);
2597 	qp_lock(qpair);
2598 
2599 	return true;
2600 }
2601 
2602 /*
2603  * Enqueues a given buffer to the produce queue using the provided
2604  * function. As many bytes as possible (space available in the queue)
2605  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2606  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2607  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2608  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2609  * an error occured when accessing the buffer,
2610  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2611  * available.  Otherwise, the number of bytes written to the queue is
2612  * returned.  Updates the tail pointer of the produce queue.
2613  */
2614 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2615 				 struct vmci_queue *consume_q,
2616 				 const u64 produce_q_size,
2617 				 const void *buf,
2618 				 size_t buf_size,
2619 				 vmci_memcpy_to_queue_func memcpy_to_queue)
2620 {
2621 	s64 free_space;
2622 	u64 tail;
2623 	size_t written;
2624 	ssize_t result;
2625 
2626 	result = qp_map_queue_headers(produce_q, consume_q);
2627 	if (unlikely(result != VMCI_SUCCESS))
2628 		return result;
2629 
2630 	free_space = vmci_q_header_free_space(produce_q->q_header,
2631 					      consume_q->q_header,
2632 					      produce_q_size);
2633 	if (free_space == 0)
2634 		return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2635 
2636 	if (free_space < VMCI_SUCCESS)
2637 		return (ssize_t) free_space;
2638 
2639 	written = (size_t) (free_space > buf_size ? buf_size : free_space);
2640 	tail = vmci_q_header_producer_tail(produce_q->q_header);
2641 	if (likely(tail + written < produce_q_size)) {
2642 		result = memcpy_to_queue(produce_q, tail, buf, 0, written);
2643 	} else {
2644 		/* Tail pointer wraps around. */
2645 
2646 		const size_t tmp = (size_t) (produce_q_size - tail);
2647 
2648 		result = memcpy_to_queue(produce_q, tail, buf, 0, tmp);
2649 		if (result >= VMCI_SUCCESS)
2650 			result = memcpy_to_queue(produce_q, 0, buf, tmp,
2651 						 written - tmp);
2652 	}
2653 
2654 	if (result < VMCI_SUCCESS)
2655 		return result;
2656 
2657 	vmci_q_header_add_producer_tail(produce_q->q_header, written,
2658 					produce_q_size);
2659 	return written;
2660 }
2661 
2662 /*
2663  * Dequeues data (if available) from the given consume queue. Writes data
2664  * to the user provided buffer using the provided function.
2665  * Assumes the queue->mutex has been acquired.
2666  * Results:
2667  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2668  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2669  * (as defined by the queue size).
2670  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2671  * Otherwise the number of bytes dequeued is returned.
2672  * Side effects:
2673  * Updates the head pointer of the consume queue.
2674  */
2675 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2676 				 struct vmci_queue *consume_q,
2677 				 const u64 consume_q_size,
2678 				 void *buf,
2679 				 size_t buf_size,
2680 				 vmci_memcpy_from_queue_func memcpy_from_queue,
2681 				 bool update_consumer)
2682 {
2683 	s64 buf_ready;
2684 	u64 head;
2685 	size_t read;
2686 	ssize_t result;
2687 
2688 	result = qp_map_queue_headers(produce_q, consume_q);
2689 	if (unlikely(result != VMCI_SUCCESS))
2690 		return result;
2691 
2692 	buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2693 					    produce_q->q_header,
2694 					    consume_q_size);
2695 	if (buf_ready == 0)
2696 		return VMCI_ERROR_QUEUEPAIR_NODATA;
2697 
2698 	if (buf_ready < VMCI_SUCCESS)
2699 		return (ssize_t) buf_ready;
2700 
2701 	read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2702 	head = vmci_q_header_consumer_head(produce_q->q_header);
2703 	if (likely(head + read < consume_q_size)) {
2704 		result = memcpy_from_queue(buf, 0, consume_q, head, read);
2705 	} else {
2706 		/* Head pointer wraps around. */
2707 
2708 		const size_t tmp = (size_t) (consume_q_size - head);
2709 
2710 		result = memcpy_from_queue(buf, 0, consume_q, head, tmp);
2711 		if (result >= VMCI_SUCCESS)
2712 			result = memcpy_from_queue(buf, tmp, consume_q, 0,
2713 						   read - tmp);
2714 
2715 	}
2716 
2717 	if (result < VMCI_SUCCESS)
2718 		return result;
2719 
2720 	if (update_consumer)
2721 		vmci_q_header_add_consumer_head(produce_q->q_header,
2722 						read, consume_q_size);
2723 
2724 	return read;
2725 }
2726 
2727 /*
2728  * vmci_qpair_alloc() - Allocates a queue pair.
2729  * @qpair:      Pointer for the new vmci_qp struct.
2730  * @handle:     Handle to track the resource.
2731  * @produce_qsize:      Desired size of the producer queue.
2732  * @consume_qsize:      Desired size of the consumer queue.
2733  * @peer:       ContextID of the peer.
2734  * @flags:      VMCI flags.
2735  * @priv_flags: VMCI priviledge flags.
2736  *
2737  * This is the client interface for allocating the memory for a
2738  * vmci_qp structure and then attaching to the underlying
2739  * queue.  If an error occurs allocating the memory for the
2740  * vmci_qp structure no attempt is made to attach.  If an
2741  * error occurs attaching, then the structure is freed.
2742  */
2743 int vmci_qpair_alloc(struct vmci_qp **qpair,
2744 		     struct vmci_handle *handle,
2745 		     u64 produce_qsize,
2746 		     u64 consume_qsize,
2747 		     u32 peer,
2748 		     u32 flags,
2749 		     u32 priv_flags)
2750 {
2751 	struct vmci_qp *my_qpair;
2752 	int retval;
2753 	struct vmci_handle src = VMCI_INVALID_HANDLE;
2754 	struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2755 	enum vmci_route route;
2756 	vmci_event_release_cb wakeup_cb;
2757 	void *client_data;
2758 
2759 	/*
2760 	 * Restrict the size of a queuepair.  The device already
2761 	 * enforces a limit on the total amount of memory that can be
2762 	 * allocated to queuepairs for a guest.  However, we try to
2763 	 * allocate this memory before we make the queuepair
2764 	 * allocation hypercall.  On Linux, we allocate each page
2765 	 * separately, which means rather than fail, the guest will
2766 	 * thrash while it tries to allocate, and will become
2767 	 * increasingly unresponsive to the point where it appears to
2768 	 * be hung.  So we place a limit on the size of an individual
2769 	 * queuepair here, and leave the device to enforce the
2770 	 * restriction on total queuepair memory.  (Note that this
2771 	 * doesn't prevent all cases; a user with only this much
2772 	 * physical memory could still get into trouble.)  The error
2773 	 * used by the device is NO_RESOURCES, so use that here too.
2774 	 */
2775 
2776 	if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2777 	    produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2778 		return VMCI_ERROR_NO_RESOURCES;
2779 
2780 	retval = vmci_route(&src, &dst, false, &route);
2781 	if (retval < VMCI_SUCCESS)
2782 		route = vmci_guest_code_active() ?
2783 		    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2784 
2785 	if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2786 		pr_devel("NONBLOCK OR PINNED set");
2787 		return VMCI_ERROR_INVALID_ARGS;
2788 	}
2789 
2790 	my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2791 	if (!my_qpair)
2792 		return VMCI_ERROR_NO_MEM;
2793 
2794 	my_qpair->produce_q_size = produce_qsize;
2795 	my_qpair->consume_q_size = consume_qsize;
2796 	my_qpair->peer = peer;
2797 	my_qpair->flags = flags;
2798 	my_qpair->priv_flags = priv_flags;
2799 
2800 	wakeup_cb = NULL;
2801 	client_data = NULL;
2802 
2803 	if (VMCI_ROUTE_AS_HOST == route) {
2804 		my_qpair->guest_endpoint = false;
2805 		if (!(flags & VMCI_QPFLAG_LOCAL)) {
2806 			my_qpair->blocked = 0;
2807 			my_qpair->generation = 0;
2808 			init_waitqueue_head(&my_qpair->event);
2809 			wakeup_cb = qp_wakeup_cb;
2810 			client_data = (void *)my_qpair;
2811 		}
2812 	} else {
2813 		my_qpair->guest_endpoint = true;
2814 	}
2815 
2816 	retval = vmci_qp_alloc(handle,
2817 			       &my_qpair->produce_q,
2818 			       my_qpair->produce_q_size,
2819 			       &my_qpair->consume_q,
2820 			       my_qpair->consume_q_size,
2821 			       my_qpair->peer,
2822 			       my_qpair->flags,
2823 			       my_qpair->priv_flags,
2824 			       my_qpair->guest_endpoint,
2825 			       wakeup_cb, client_data);
2826 
2827 	if (retval < VMCI_SUCCESS) {
2828 		kfree(my_qpair);
2829 		return retval;
2830 	}
2831 
2832 	*qpair = my_qpair;
2833 	my_qpair->handle = *handle;
2834 
2835 	return retval;
2836 }
2837 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2838 
2839 /*
2840  * vmci_qpair_detach() - Detatches the client from a queue pair.
2841  * @qpair:      Reference of a pointer to the qpair struct.
2842  *
2843  * This is the client interface for detaching from a VMCIQPair.
2844  * Note that this routine will free the memory allocated for the
2845  * vmci_qp structure too.
2846  */
2847 int vmci_qpair_detach(struct vmci_qp **qpair)
2848 {
2849 	int result;
2850 	struct vmci_qp *old_qpair;
2851 
2852 	if (!qpair || !(*qpair))
2853 		return VMCI_ERROR_INVALID_ARGS;
2854 
2855 	old_qpair = *qpair;
2856 	result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2857 
2858 	/*
2859 	 * The guest can fail to detach for a number of reasons, and
2860 	 * if it does so, it will cleanup the entry (if there is one).
2861 	 * The host can fail too, but it won't cleanup the entry
2862 	 * immediately, it will do that later when the context is
2863 	 * freed.  Either way, we need to release the qpair struct
2864 	 * here; there isn't much the caller can do, and we don't want
2865 	 * to leak.
2866 	 */
2867 
2868 	memset(old_qpair, 0, sizeof(*old_qpair));
2869 	old_qpair->handle = VMCI_INVALID_HANDLE;
2870 	old_qpair->peer = VMCI_INVALID_ID;
2871 	kfree(old_qpair);
2872 	*qpair = NULL;
2873 
2874 	return result;
2875 }
2876 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2877 
2878 /*
2879  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2880  * @qpair:      Pointer to the queue pair struct.
2881  * @producer_tail:      Reference used for storing producer tail index.
2882  * @consumer_head:      Reference used for storing the consumer head index.
2883  *
2884  * This is the client interface for getting the current indexes of the
2885  * QPair from the point of the view of the caller as the producer.
2886  */
2887 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2888 				   u64 *producer_tail,
2889 				   u64 *consumer_head)
2890 {
2891 	struct vmci_queue_header *produce_q_header;
2892 	struct vmci_queue_header *consume_q_header;
2893 	int result;
2894 
2895 	if (!qpair)
2896 		return VMCI_ERROR_INVALID_ARGS;
2897 
2898 	qp_lock(qpair);
2899 	result =
2900 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2901 	if (result == VMCI_SUCCESS)
2902 		vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2903 					   producer_tail, consumer_head);
2904 	qp_unlock(qpair);
2905 
2906 	if (result == VMCI_SUCCESS &&
2907 	    ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2908 	     (consumer_head && *consumer_head >= qpair->produce_q_size)))
2909 		return VMCI_ERROR_INVALID_SIZE;
2910 
2911 	return result;
2912 }
2913 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2914 
2915 /*
2916  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2917  * @qpair:      Pointer to the queue pair struct.
2918  * @consumer_tail:      Reference used for storing consumer tail index.
2919  * @producer_head:      Reference used for storing the producer head index.
2920  *
2921  * This is the client interface for getting the current indexes of the
2922  * QPair from the point of the view of the caller as the consumer.
2923  */
2924 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2925 				   u64 *consumer_tail,
2926 				   u64 *producer_head)
2927 {
2928 	struct vmci_queue_header *produce_q_header;
2929 	struct vmci_queue_header *consume_q_header;
2930 	int result;
2931 
2932 	if (!qpair)
2933 		return VMCI_ERROR_INVALID_ARGS;
2934 
2935 	qp_lock(qpair);
2936 	result =
2937 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2938 	if (result == VMCI_SUCCESS)
2939 		vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2940 					   consumer_tail, producer_head);
2941 	qp_unlock(qpair);
2942 
2943 	if (result == VMCI_SUCCESS &&
2944 	    ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2945 	     (producer_head && *producer_head >= qpair->consume_q_size)))
2946 		return VMCI_ERROR_INVALID_SIZE;
2947 
2948 	return result;
2949 }
2950 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2951 
2952 /*
2953  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2954  * @qpair:      Pointer to the queue pair struct.
2955  *
2956  * This is the client interface for getting the amount of free
2957  * space in the QPair from the point of the view of the caller as
2958  * the producer which is the common case.  Returns < 0 if err, else
2959  * available bytes into which data can be enqueued if > 0.
2960  */
2961 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2962 {
2963 	struct vmci_queue_header *produce_q_header;
2964 	struct vmci_queue_header *consume_q_header;
2965 	s64 result;
2966 
2967 	if (!qpair)
2968 		return VMCI_ERROR_INVALID_ARGS;
2969 
2970 	qp_lock(qpair);
2971 	result =
2972 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2973 	if (result == VMCI_SUCCESS)
2974 		result = vmci_q_header_free_space(produce_q_header,
2975 						  consume_q_header,
2976 						  qpair->produce_q_size);
2977 	else
2978 		result = 0;
2979 
2980 	qp_unlock(qpair);
2981 
2982 	return result;
2983 }
2984 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2985 
2986 /*
2987  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2988  * @qpair:      Pointer to the queue pair struct.
2989  *
2990  * This is the client interface for getting the amount of free
2991  * space in the QPair from the point of the view of the caller as
2992  * the consumer which is not the common case.  Returns < 0 if err, else
2993  * available bytes into which data can be enqueued if > 0.
2994  */
2995 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2996 {
2997 	struct vmci_queue_header *produce_q_header;
2998 	struct vmci_queue_header *consume_q_header;
2999 	s64 result;
3000 
3001 	if (!qpair)
3002 		return VMCI_ERROR_INVALID_ARGS;
3003 
3004 	qp_lock(qpair);
3005 	result =
3006 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3007 	if (result == VMCI_SUCCESS)
3008 		result = vmci_q_header_free_space(consume_q_header,
3009 						  produce_q_header,
3010 						  qpair->consume_q_size);
3011 	else
3012 		result = 0;
3013 
3014 	qp_unlock(qpair);
3015 
3016 	return result;
3017 }
3018 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
3019 
3020 /*
3021  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3022  * producer queue.
3023  * @qpair:      Pointer to the queue pair struct.
3024  *
3025  * This is the client interface for getting the amount of
3026  * enqueued data in the QPair from the point of the view of the
3027  * caller as the producer which is not the common case.  Returns < 0 if err,
3028  * else available bytes that may be read.
3029  */
3030 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
3031 {
3032 	struct vmci_queue_header *produce_q_header;
3033 	struct vmci_queue_header *consume_q_header;
3034 	s64 result;
3035 
3036 	if (!qpair)
3037 		return VMCI_ERROR_INVALID_ARGS;
3038 
3039 	qp_lock(qpair);
3040 	result =
3041 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3042 	if (result == VMCI_SUCCESS)
3043 		result = vmci_q_header_buf_ready(produce_q_header,
3044 						 consume_q_header,
3045 						 qpair->produce_q_size);
3046 	else
3047 		result = 0;
3048 
3049 	qp_unlock(qpair);
3050 
3051 	return result;
3052 }
3053 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
3054 
3055 /*
3056  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3057  * consumer queue.
3058  * @qpair:      Pointer to the queue pair struct.
3059  *
3060  * This is the client interface for getting the amount of
3061  * enqueued data in the QPair from the point of the view of the
3062  * caller as the consumer which is the normal case.  Returns < 0 if err,
3063  * else available bytes that may be read.
3064  */
3065 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3066 {
3067 	struct vmci_queue_header *produce_q_header;
3068 	struct vmci_queue_header *consume_q_header;
3069 	s64 result;
3070 
3071 	if (!qpair)
3072 		return VMCI_ERROR_INVALID_ARGS;
3073 
3074 	qp_lock(qpair);
3075 	result =
3076 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3077 	if (result == VMCI_SUCCESS)
3078 		result = vmci_q_header_buf_ready(consume_q_header,
3079 						 produce_q_header,
3080 						 qpair->consume_q_size);
3081 	else
3082 		result = 0;
3083 
3084 	qp_unlock(qpair);
3085 
3086 	return result;
3087 }
3088 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3089 
3090 /*
3091  * vmci_qpair_enqueue() - Throw data on the queue.
3092  * @qpair:      Pointer to the queue pair struct.
3093  * @buf:        Pointer to buffer containing data
3094  * @buf_size:   Length of buffer.
3095  * @buf_type:   Buffer type (Unused).
3096  *
3097  * This is the client interface for enqueueing data into the queue.
3098  * Returns number of bytes enqueued or < 0 on error.
3099  */
3100 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3101 			   const void *buf,
3102 			   size_t buf_size,
3103 			   int buf_type)
3104 {
3105 	ssize_t result;
3106 
3107 	if (!qpair || !buf)
3108 		return VMCI_ERROR_INVALID_ARGS;
3109 
3110 	qp_lock(qpair);
3111 
3112 	do {
3113 		result = qp_enqueue_locked(qpair->produce_q,
3114 					   qpair->consume_q,
3115 					   qpair->produce_q_size,
3116 					   buf, buf_size,
3117 					   qp_memcpy_to_queue);
3118 
3119 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3120 		    !qp_wait_for_ready_queue(qpair))
3121 			result = VMCI_ERROR_WOULD_BLOCK;
3122 
3123 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3124 
3125 	qp_unlock(qpair);
3126 
3127 	return result;
3128 }
3129 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3130 
3131 /*
3132  * vmci_qpair_dequeue() - Get data from the queue.
3133  * @qpair:      Pointer to the queue pair struct.
3134  * @buf:        Pointer to buffer for the data
3135  * @buf_size:   Length of buffer.
3136  * @buf_type:   Buffer type (Unused).
3137  *
3138  * This is the client interface for dequeueing data from the queue.
3139  * Returns number of bytes dequeued or < 0 on error.
3140  */
3141 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3142 			   void *buf,
3143 			   size_t buf_size,
3144 			   int buf_type)
3145 {
3146 	ssize_t result;
3147 
3148 	if (!qpair || !buf)
3149 		return VMCI_ERROR_INVALID_ARGS;
3150 
3151 	qp_lock(qpair);
3152 
3153 	do {
3154 		result = qp_dequeue_locked(qpair->produce_q,
3155 					   qpair->consume_q,
3156 					   qpair->consume_q_size,
3157 					   buf, buf_size,
3158 					   qp_memcpy_from_queue, true);
3159 
3160 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3161 		    !qp_wait_for_ready_queue(qpair))
3162 			result = VMCI_ERROR_WOULD_BLOCK;
3163 
3164 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3165 
3166 	qp_unlock(qpair);
3167 
3168 	return result;
3169 }
3170 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3171 
3172 /*
3173  * vmci_qpair_peek() - Peek at the data in the queue.
3174  * @qpair:      Pointer to the queue pair struct.
3175  * @buf:        Pointer to buffer for the data
3176  * @buf_size:   Length of buffer.
3177  * @buf_type:   Buffer type (Unused on Linux).
3178  *
3179  * This is the client interface for peeking into a queue.  (I.e.,
3180  * copy data from the queue without updating the head pointer.)
3181  * Returns number of bytes dequeued or < 0 on error.
3182  */
3183 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3184 			void *buf,
3185 			size_t buf_size,
3186 			int buf_type)
3187 {
3188 	ssize_t result;
3189 
3190 	if (!qpair || !buf)
3191 		return VMCI_ERROR_INVALID_ARGS;
3192 
3193 	qp_lock(qpair);
3194 
3195 	do {
3196 		result = qp_dequeue_locked(qpair->produce_q,
3197 					   qpair->consume_q,
3198 					   qpair->consume_q_size,
3199 					   buf, buf_size,
3200 					   qp_memcpy_from_queue, false);
3201 
3202 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3203 		    !qp_wait_for_ready_queue(qpair))
3204 			result = VMCI_ERROR_WOULD_BLOCK;
3205 
3206 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3207 
3208 	qp_unlock(qpair);
3209 
3210 	return result;
3211 }
3212 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3213 
3214 /*
3215  * vmci_qpair_enquev() - Throw data on the queue using iov.
3216  * @qpair:      Pointer to the queue pair struct.
3217  * @iov:        Pointer to buffer containing data
3218  * @iov_size:   Length of buffer.
3219  * @buf_type:   Buffer type (Unused).
3220  *
3221  * This is the client interface for enqueueing data into the queue.
3222  * This function uses IO vectors to handle the work. Returns number
3223  * of bytes enqueued or < 0 on error.
3224  */
3225 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3226 			  void *iov,
3227 			  size_t iov_size,
3228 			  int buf_type)
3229 {
3230 	ssize_t result;
3231 
3232 	if (!qpair || !iov)
3233 		return VMCI_ERROR_INVALID_ARGS;
3234 
3235 	qp_lock(qpair);
3236 
3237 	do {
3238 		result = qp_enqueue_locked(qpair->produce_q,
3239 					   qpair->consume_q,
3240 					   qpair->produce_q_size,
3241 					   iov, iov_size,
3242 					   qp_memcpy_to_queue_iov);
3243 
3244 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3245 		    !qp_wait_for_ready_queue(qpair))
3246 			result = VMCI_ERROR_WOULD_BLOCK;
3247 
3248 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3249 
3250 	qp_unlock(qpair);
3251 
3252 	return result;
3253 }
3254 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3255 
3256 /*
3257  * vmci_qpair_dequev() - Get data from the queue using iov.
3258  * @qpair:      Pointer to the queue pair struct.
3259  * @iov:        Pointer to buffer for the data
3260  * @iov_size:   Length of buffer.
3261  * @buf_type:   Buffer type (Unused).
3262  *
3263  * This is the client interface for dequeueing data from the queue.
3264  * This function uses IO vectors to handle the work. Returns number
3265  * of bytes dequeued or < 0 on error.
3266  */
3267 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3268 			  struct msghdr *msg,
3269 			  size_t iov_size,
3270 			  int buf_type)
3271 {
3272 	ssize_t result;
3273 
3274 	if (!qpair)
3275 		return VMCI_ERROR_INVALID_ARGS;
3276 
3277 	qp_lock(qpair);
3278 
3279 	do {
3280 		result = qp_dequeue_locked(qpair->produce_q,
3281 					   qpair->consume_q,
3282 					   qpair->consume_q_size,
3283 					   msg, iov_size,
3284 					   qp_memcpy_from_queue_iov,
3285 					   true);
3286 
3287 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3288 		    !qp_wait_for_ready_queue(qpair))
3289 			result = VMCI_ERROR_WOULD_BLOCK;
3290 
3291 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3292 
3293 	qp_unlock(qpair);
3294 
3295 	return result;
3296 }
3297 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3298 
3299 /*
3300  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3301  * @qpair:      Pointer to the queue pair struct.
3302  * @iov:        Pointer to buffer for the data
3303  * @iov_size:   Length of buffer.
3304  * @buf_type:   Buffer type (Unused on Linux).
3305  *
3306  * This is the client interface for peeking into a queue.  (I.e.,
3307  * copy data from the queue without updating the head pointer.)
3308  * This function uses IO vectors to handle the work. Returns number
3309  * of bytes peeked or < 0 on error.
3310  */
3311 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3312 			 struct msghdr *msg,
3313 			 size_t iov_size,
3314 			 int buf_type)
3315 {
3316 	ssize_t result;
3317 
3318 	if (!qpair)
3319 		return VMCI_ERROR_INVALID_ARGS;
3320 
3321 	qp_lock(qpair);
3322 
3323 	do {
3324 		result = qp_dequeue_locked(qpair->produce_q,
3325 					   qpair->consume_q,
3326 					   qpair->consume_q_size,
3327 					   msg, iov_size,
3328 					   qp_memcpy_from_queue_iov,
3329 					   false);
3330 
3331 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3332 		    !qp_wait_for_ready_queue(qpair))
3333 			result = VMCI_ERROR_WOULD_BLOCK;
3334 
3335 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3336 
3337 	qp_unlock(qpair);
3338 	return result;
3339 }
3340 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3341