xref: /openbmc/linux/drivers/misc/vmw_vmci/vmci_queue_pair.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * VMware VMCI Driver
3  *
4  * Copyright (C) 2012 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  */
15 
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
31 
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
40 
41 /*
42  * In the following, we will distinguish between two kinds of VMX processes -
43  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44  * VMCI page files in the VMX and supporting VM to VM communication and the
45  * newer ones that use the guest memory directly. We will in the following
46  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47  * new-style VMX'en.
48  *
49  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50  * removed for readability) - see below for more details on the transtions:
51  *
52  *            --------------  NEW  -------------
53  *            |                                |
54  *           \_/                              \_/
55  *     CREATED_NO_MEM <-----------------> CREATED_MEM
56  *            |    |                           |
57  *            |    o-----------------------o   |
58  *            |                            |   |
59  *           \_/                          \_/ \_/
60  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61  *            |                            |   |
62  *            |     o----------------------o   |
63  *            |     |                          |
64  *           \_/   \_/                        \_/
65  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66  *            |                                |
67  *            |                                |
68  *            -------------> gone <-------------
69  *
70  * In more detail. When a VMCI queue pair is first created, it will be in the
71  * VMCIQPB_NEW state. It will then move into one of the following states:
72  *
73  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
74  *
75  *     - the created was performed by a host endpoint, in which case there is
76  *       no backing memory yet.
77  *
78  *     - the create was initiated by an old-style VMX, that uses
79  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80  *       a later point in time. This state can be distinguished from the one
81  *       above by the context ID of the creator. A host side is not allowed to
82  *       attach until the page store has been set.
83  *
84  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85  *     is created by a VMX using the queue pair device backend that
86  *     sets the UVAs of the queue pair immediately and stores the
87  *     information for later attachers. At this point, it is ready for
88  *     the host side to attach to it.
89  *
90  * Once the queue pair is in one of the created states (with the exception of
91  * the case mentioned for older VMX'en above), it is possible to attach to the
92  * queue pair. Again we have two new states possible:
93  *
94  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95  *   paths:
96  *
97  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98  *       pair, and attaches to a queue pair previously created by the host side.
99  *
100  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101  *       already created by a guest.
102  *
103  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104  *       vmci_qp_broker_set_page_store (see below).
105  *
106  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110  *     will be entered.
111  *
112  * From the attached queue pair, the queue pair can enter the shutdown states
113  * when either side of the queue pair detaches. If the guest side detaches
114  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115  * the content of the queue pair will no longer be available. If the host
116  * side detaches first, the queue pair will either enter the
117  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119  * (e.g., the host detaches while a guest is stunned).
120  *
121  * New-style VMX'en will also unmap guest memory, if the guest is
122  * quiesced, e.g., during a snapshot operation. In that case, the guest
123  * memory will no longer be available, and the queue pair will transition from
124  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125  * in which case the queue pair will transition from the *_NO_MEM state at that
126  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127  * since the peer may have either attached or detached in the meantime. The
128  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129  * *_MEM state, and vice versa.
130  */
131 
132 /* The Kernel specific component of the struct vmci_queue structure. */
133 struct vmci_queue_kern_if {
134 	struct mutex __mutex;	/* Protects the queue. */
135 	struct mutex *mutex;	/* Shared by producer and consumer queues. */
136 	size_t num_pages;	/* Number of pages incl. header. */
137 	bool host;		/* Host or guest? */
138 	union {
139 		struct {
140 			dma_addr_t *pas;
141 			void **vas;
142 		} g;		/* Used by the guest. */
143 		struct {
144 			struct page **page;
145 			struct page **header_page;
146 		} h;		/* Used by the host. */
147 	} u;
148 };
149 
150 /*
151  * This structure is opaque to the clients.
152  */
153 struct vmci_qp {
154 	struct vmci_handle handle;
155 	struct vmci_queue *produce_q;
156 	struct vmci_queue *consume_q;
157 	u64 produce_q_size;
158 	u64 consume_q_size;
159 	u32 peer;
160 	u32 flags;
161 	u32 priv_flags;
162 	bool guest_endpoint;
163 	unsigned int blocked;
164 	unsigned int generation;
165 	wait_queue_head_t event;
166 };
167 
168 enum qp_broker_state {
169 	VMCIQPB_NEW,
170 	VMCIQPB_CREATED_NO_MEM,
171 	VMCIQPB_CREATED_MEM,
172 	VMCIQPB_ATTACHED_NO_MEM,
173 	VMCIQPB_ATTACHED_MEM,
174 	VMCIQPB_SHUTDOWN_NO_MEM,
175 	VMCIQPB_SHUTDOWN_MEM,
176 	VMCIQPB_GONE
177 };
178 
179 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
180 				     _qpb->state == VMCIQPB_ATTACHED_MEM || \
181 				     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
182 
183 /*
184  * In the queue pair broker, we always use the guest point of view for
185  * the produce and consume queue values and references, e.g., the
186  * produce queue size stored is the guests produce queue size. The
187  * host endpoint will need to swap these around. The only exception is
188  * the local queue pairs on the host, in which case the host endpoint
189  * that creates the queue pair will have the right orientation, and
190  * the attaching host endpoint will need to swap.
191  */
192 struct qp_entry {
193 	struct list_head list_item;
194 	struct vmci_handle handle;
195 	u32 peer;
196 	u32 flags;
197 	u64 produce_size;
198 	u64 consume_size;
199 	u32 ref_count;
200 };
201 
202 struct qp_broker_entry {
203 	struct vmci_resource resource;
204 	struct qp_entry qp;
205 	u32 create_id;
206 	u32 attach_id;
207 	enum qp_broker_state state;
208 	bool require_trusted_attach;
209 	bool created_by_trusted;
210 	bool vmci_page_files;	/* Created by VMX using VMCI page files */
211 	struct vmci_queue *produce_q;
212 	struct vmci_queue *consume_q;
213 	struct vmci_queue_header saved_produce_q;
214 	struct vmci_queue_header saved_consume_q;
215 	vmci_event_release_cb wakeup_cb;
216 	void *client_data;
217 	void *local_mem;	/* Kernel memory for local queue pair */
218 };
219 
220 struct qp_guest_endpoint {
221 	struct vmci_resource resource;
222 	struct qp_entry qp;
223 	u64 num_ppns;
224 	void *produce_q;
225 	void *consume_q;
226 	struct ppn_set ppn_set;
227 };
228 
229 struct qp_list {
230 	struct list_head head;
231 	struct mutex mutex;	/* Protect queue list. */
232 };
233 
234 static struct qp_list qp_broker_list = {
235 	.head = LIST_HEAD_INIT(qp_broker_list.head),
236 	.mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
237 };
238 
239 static struct qp_list qp_guest_endpoints = {
240 	.head = LIST_HEAD_INIT(qp_guest_endpoints.head),
241 	.mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
242 };
243 
244 #define INVALID_VMCI_GUEST_MEM_ID  0
245 #define QPE_NUM_PAGES(_QPE) ((u32) \
246 			     (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
247 			      DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
248 
249 
250 /*
251  * Frees kernel VA space for a given queue and its queue header, and
252  * frees physical data pages.
253  */
254 static void qp_free_queue(void *q, u64 size)
255 {
256 	struct vmci_queue *queue = q;
257 
258 	if (queue) {
259 		u64 i;
260 
261 		/* Given size does not include header, so add in a page here. */
262 		for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
263 			dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
264 					  queue->kernel_if->u.g.vas[i],
265 					  queue->kernel_if->u.g.pas[i]);
266 		}
267 
268 		vfree(queue);
269 	}
270 }
271 
272 /*
273  * Allocates kernel queue pages of specified size with IOMMU mappings,
274  * plus space for the queue structure/kernel interface and the queue
275  * header.
276  */
277 static void *qp_alloc_queue(u64 size, u32 flags)
278 {
279 	u64 i;
280 	struct vmci_queue *queue;
281 	size_t pas_size;
282 	size_t vas_size;
283 	size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
284 	u64 num_pages;
285 
286 	if (size > SIZE_MAX - PAGE_SIZE)
287 		return NULL;
288 	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
289 	if (num_pages >
290 		 (SIZE_MAX - queue_size) /
291 		 (sizeof(*queue->kernel_if->u.g.pas) +
292 		  sizeof(*queue->kernel_if->u.g.vas)))
293 		return NULL;
294 
295 	pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
296 	vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
297 	queue_size += pas_size + vas_size;
298 
299 	queue = vmalloc(queue_size);
300 	if (!queue)
301 		return NULL;
302 
303 	queue->q_header = NULL;
304 	queue->saved_header = NULL;
305 	queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
306 	queue->kernel_if->mutex = NULL;
307 	queue->kernel_if->num_pages = num_pages;
308 	queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
309 	queue->kernel_if->u.g.vas =
310 		(void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
311 	queue->kernel_if->host = false;
312 
313 	for (i = 0; i < num_pages; i++) {
314 		queue->kernel_if->u.g.vas[i] =
315 			dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
316 					   &queue->kernel_if->u.g.pas[i],
317 					   GFP_KERNEL);
318 		if (!queue->kernel_if->u.g.vas[i]) {
319 			/* Size excl. the header. */
320 			qp_free_queue(queue, i * PAGE_SIZE);
321 			return NULL;
322 		}
323 	}
324 
325 	/* Queue header is the first page. */
326 	queue->q_header = queue->kernel_if->u.g.vas[0];
327 
328 	return queue;
329 }
330 
331 /*
332  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
333  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
334  * by traversing the offset -> page translation structure for the queue.
335  * Assumes that offset + size does not wrap around in the queue.
336  */
337 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
338 				  u64 queue_offset,
339 				  struct iov_iter *from,
340 				  size_t size)
341 {
342 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
343 	size_t bytes_copied = 0;
344 
345 	while (bytes_copied < size) {
346 		const u64 page_index =
347 			(queue_offset + bytes_copied) / PAGE_SIZE;
348 		const size_t page_offset =
349 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
350 		void *va;
351 		size_t to_copy;
352 
353 		if (kernel_if->host)
354 			va = kmap(kernel_if->u.h.page[page_index]);
355 		else
356 			va = kernel_if->u.g.vas[page_index + 1];
357 			/* Skip header. */
358 
359 		if (size - bytes_copied > PAGE_SIZE - page_offset)
360 			/* Enough payload to fill up from this page. */
361 			to_copy = PAGE_SIZE - page_offset;
362 		else
363 			to_copy = size - bytes_copied;
364 
365 		if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
366 					 from)) {
367 			if (kernel_if->host)
368 				kunmap(kernel_if->u.h.page[page_index]);
369 			return VMCI_ERROR_INVALID_ARGS;
370 		}
371 		bytes_copied += to_copy;
372 		if (kernel_if->host)
373 			kunmap(kernel_if->u.h.page[page_index]);
374 	}
375 
376 	return VMCI_SUCCESS;
377 }
378 
379 /*
380  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
381  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
382  * by traversing the offset -> page translation structure for the queue.
383  * Assumes that offset + size does not wrap around in the queue.
384  */
385 static int qp_memcpy_from_queue_iter(struct iov_iter *to,
386 				    const struct vmci_queue *queue,
387 				    u64 queue_offset, size_t size)
388 {
389 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
390 	size_t bytes_copied = 0;
391 
392 	while (bytes_copied < size) {
393 		const u64 page_index =
394 			(queue_offset + bytes_copied) / PAGE_SIZE;
395 		const size_t page_offset =
396 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
397 		void *va;
398 		size_t to_copy;
399 		int err;
400 
401 		if (kernel_if->host)
402 			va = kmap(kernel_if->u.h.page[page_index]);
403 		else
404 			va = kernel_if->u.g.vas[page_index + 1];
405 			/* Skip header. */
406 
407 		if (size - bytes_copied > PAGE_SIZE - page_offset)
408 			/* Enough payload to fill up this page. */
409 			to_copy = PAGE_SIZE - page_offset;
410 		else
411 			to_copy = size - bytes_copied;
412 
413 		err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
414 		if (err != to_copy) {
415 			if (kernel_if->host)
416 				kunmap(kernel_if->u.h.page[page_index]);
417 			return VMCI_ERROR_INVALID_ARGS;
418 		}
419 		bytes_copied += to_copy;
420 		if (kernel_if->host)
421 			kunmap(kernel_if->u.h.page[page_index]);
422 	}
423 
424 	return VMCI_SUCCESS;
425 }
426 
427 /*
428  * Allocates two list of PPNs --- one for the pages in the produce queue,
429  * and the other for the pages in the consume queue. Intializes the list
430  * of PPNs with the page frame numbers of the KVA for the two queues (and
431  * the queue headers).
432  */
433 static int qp_alloc_ppn_set(void *prod_q,
434 			    u64 num_produce_pages,
435 			    void *cons_q,
436 			    u64 num_consume_pages, struct ppn_set *ppn_set)
437 {
438 	u32 *produce_ppns;
439 	u32 *consume_ppns;
440 	struct vmci_queue *produce_q = prod_q;
441 	struct vmci_queue *consume_q = cons_q;
442 	u64 i;
443 
444 	if (!produce_q || !num_produce_pages || !consume_q ||
445 	    !num_consume_pages || !ppn_set)
446 		return VMCI_ERROR_INVALID_ARGS;
447 
448 	if (ppn_set->initialized)
449 		return VMCI_ERROR_ALREADY_EXISTS;
450 
451 	produce_ppns =
452 	    kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
453 	if (!produce_ppns)
454 		return VMCI_ERROR_NO_MEM;
455 
456 	consume_ppns =
457 	    kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
458 	if (!consume_ppns) {
459 		kfree(produce_ppns);
460 		return VMCI_ERROR_NO_MEM;
461 	}
462 
463 	for (i = 0; i < num_produce_pages; i++) {
464 		unsigned long pfn;
465 
466 		produce_ppns[i] =
467 			produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
468 		pfn = produce_ppns[i];
469 
470 		/* Fail allocation if PFN isn't supported by hypervisor. */
471 		if (sizeof(pfn) > sizeof(*produce_ppns)
472 		    && pfn != produce_ppns[i])
473 			goto ppn_error;
474 	}
475 
476 	for (i = 0; i < num_consume_pages; i++) {
477 		unsigned long pfn;
478 
479 		consume_ppns[i] =
480 			consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
481 		pfn = consume_ppns[i];
482 
483 		/* Fail allocation if PFN isn't supported by hypervisor. */
484 		if (sizeof(pfn) > sizeof(*consume_ppns)
485 		    && pfn != consume_ppns[i])
486 			goto ppn_error;
487 	}
488 
489 	ppn_set->num_produce_pages = num_produce_pages;
490 	ppn_set->num_consume_pages = num_consume_pages;
491 	ppn_set->produce_ppns = produce_ppns;
492 	ppn_set->consume_ppns = consume_ppns;
493 	ppn_set->initialized = true;
494 	return VMCI_SUCCESS;
495 
496  ppn_error:
497 	kfree(produce_ppns);
498 	kfree(consume_ppns);
499 	return VMCI_ERROR_INVALID_ARGS;
500 }
501 
502 /*
503  * Frees the two list of PPNs for a queue pair.
504  */
505 static void qp_free_ppn_set(struct ppn_set *ppn_set)
506 {
507 	if (ppn_set->initialized) {
508 		/* Do not call these functions on NULL inputs. */
509 		kfree(ppn_set->produce_ppns);
510 		kfree(ppn_set->consume_ppns);
511 	}
512 	memset(ppn_set, 0, sizeof(*ppn_set));
513 }
514 
515 /*
516  * Populates the list of PPNs in the hypercall structure with the PPNS
517  * of the produce queue and the consume queue.
518  */
519 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
520 {
521 	memcpy(call_buf, ppn_set->produce_ppns,
522 	       ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
523 	memcpy(call_buf +
524 	       ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
525 	       ppn_set->consume_ppns,
526 	       ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
527 
528 	return VMCI_SUCCESS;
529 }
530 
531 /*
532  * Allocates kernel VA space of specified size plus space for the queue
533  * and kernel interface.  This is different from the guest queue allocator,
534  * because we do not allocate our own queue header/data pages here but
535  * share those of the guest.
536  */
537 static struct vmci_queue *qp_host_alloc_queue(u64 size)
538 {
539 	struct vmci_queue *queue;
540 	size_t queue_page_size;
541 	u64 num_pages;
542 	const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
543 
544 	if (size > SIZE_MAX - PAGE_SIZE)
545 		return NULL;
546 	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
547 	if (num_pages > (SIZE_MAX - queue_size) /
548 		 sizeof(*queue->kernel_if->u.h.page))
549 		return NULL;
550 
551 	queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
552 
553 	queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
554 	if (queue) {
555 		queue->q_header = NULL;
556 		queue->saved_header = NULL;
557 		queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
558 		queue->kernel_if->host = true;
559 		queue->kernel_if->mutex = NULL;
560 		queue->kernel_if->num_pages = num_pages;
561 		queue->kernel_if->u.h.header_page =
562 		    (struct page **)((u8 *)queue + queue_size);
563 		queue->kernel_if->u.h.page =
564 			&queue->kernel_if->u.h.header_page[1];
565 	}
566 
567 	return queue;
568 }
569 
570 /*
571  * Frees kernel memory for a given queue (header plus translation
572  * structure).
573  */
574 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
575 {
576 	kfree(queue);
577 }
578 
579 /*
580  * Initialize the mutex for the pair of queues.  This mutex is used to
581  * protect the q_header and the buffer from changing out from under any
582  * users of either queue.  Of course, it's only any good if the mutexes
583  * are actually acquired.  Queue structure must lie on non-paged memory
584  * or we cannot guarantee access to the mutex.
585  */
586 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
587 				struct vmci_queue *consume_q)
588 {
589 	/*
590 	 * Only the host queue has shared state - the guest queues do not
591 	 * need to synchronize access using a queue mutex.
592 	 */
593 
594 	if (produce_q->kernel_if->host) {
595 		produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
596 		consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
597 		mutex_init(produce_q->kernel_if->mutex);
598 	}
599 }
600 
601 /*
602  * Cleans up the mutex for the pair of queues.
603  */
604 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
605 				   struct vmci_queue *consume_q)
606 {
607 	if (produce_q->kernel_if->host) {
608 		produce_q->kernel_if->mutex = NULL;
609 		consume_q->kernel_if->mutex = NULL;
610 	}
611 }
612 
613 /*
614  * Acquire the mutex for the queue.  Note that the produce_q and
615  * the consume_q share a mutex.  So, only one of the two need to
616  * be passed in to this routine.  Either will work just fine.
617  */
618 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
619 {
620 	if (queue->kernel_if->host)
621 		mutex_lock(queue->kernel_if->mutex);
622 }
623 
624 /*
625  * Release the mutex for the queue.  Note that the produce_q and
626  * the consume_q share a mutex.  So, only one of the two need to
627  * be passed in to this routine.  Either will work just fine.
628  */
629 static void qp_release_queue_mutex(struct vmci_queue *queue)
630 {
631 	if (queue->kernel_if->host)
632 		mutex_unlock(queue->kernel_if->mutex);
633 }
634 
635 /*
636  * Helper function to release pages in the PageStoreAttachInfo
637  * previously obtained using get_user_pages.
638  */
639 static void qp_release_pages(struct page **pages,
640 			     u64 num_pages, bool dirty)
641 {
642 	int i;
643 
644 	for (i = 0; i < num_pages; i++) {
645 		if (dirty)
646 			set_page_dirty(pages[i]);
647 
648 		put_page(pages[i]);
649 		pages[i] = NULL;
650 	}
651 }
652 
653 /*
654  * Lock the user pages referenced by the {produce,consume}Buffer
655  * struct into memory and populate the {produce,consume}Pages
656  * arrays in the attach structure with them.
657  */
658 static int qp_host_get_user_memory(u64 produce_uva,
659 				   u64 consume_uva,
660 				   struct vmci_queue *produce_q,
661 				   struct vmci_queue *consume_q)
662 {
663 	int retval;
664 	int err = VMCI_SUCCESS;
665 
666 	retval = get_user_pages_fast((uintptr_t) produce_uva,
667 				     produce_q->kernel_if->num_pages, 1,
668 				     produce_q->kernel_if->u.h.header_page);
669 	if (retval < produce_q->kernel_if->num_pages) {
670 		pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
671 			retval);
672 		qp_release_pages(produce_q->kernel_if->u.h.header_page,
673 				 retval, false);
674 		err = VMCI_ERROR_NO_MEM;
675 		goto out;
676 	}
677 
678 	retval = get_user_pages_fast((uintptr_t) consume_uva,
679 				     consume_q->kernel_if->num_pages, 1,
680 				     consume_q->kernel_if->u.h.header_page);
681 	if (retval < consume_q->kernel_if->num_pages) {
682 		pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
683 			retval);
684 		qp_release_pages(consume_q->kernel_if->u.h.header_page,
685 				 retval, false);
686 		qp_release_pages(produce_q->kernel_if->u.h.header_page,
687 				 produce_q->kernel_if->num_pages, false);
688 		err = VMCI_ERROR_NO_MEM;
689 	}
690 
691  out:
692 	return err;
693 }
694 
695 /*
696  * Registers the specification of the user pages used for backing a queue
697  * pair. Enough information to map in pages is stored in the OS specific
698  * part of the struct vmci_queue structure.
699  */
700 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
701 					struct vmci_queue *produce_q,
702 					struct vmci_queue *consume_q)
703 {
704 	u64 produce_uva;
705 	u64 consume_uva;
706 
707 	/*
708 	 * The new style and the old style mapping only differs in
709 	 * that we either get a single or two UVAs, so we split the
710 	 * single UVA range at the appropriate spot.
711 	 */
712 	produce_uva = page_store->pages;
713 	consume_uva = page_store->pages +
714 	    produce_q->kernel_if->num_pages * PAGE_SIZE;
715 	return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
716 				       consume_q);
717 }
718 
719 /*
720  * Releases and removes the references to user pages stored in the attach
721  * struct.  Pages are released from the page cache and may become
722  * swappable again.
723  */
724 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
725 					   struct vmci_queue *consume_q)
726 {
727 	qp_release_pages(produce_q->kernel_if->u.h.header_page,
728 			 produce_q->kernel_if->num_pages, true);
729 	memset(produce_q->kernel_if->u.h.header_page, 0,
730 	       sizeof(*produce_q->kernel_if->u.h.header_page) *
731 	       produce_q->kernel_if->num_pages);
732 	qp_release_pages(consume_q->kernel_if->u.h.header_page,
733 			 consume_q->kernel_if->num_pages, true);
734 	memset(consume_q->kernel_if->u.h.header_page, 0,
735 	       sizeof(*consume_q->kernel_if->u.h.header_page) *
736 	       consume_q->kernel_if->num_pages);
737 }
738 
739 /*
740  * Once qp_host_register_user_memory has been performed on a
741  * queue, the queue pair headers can be mapped into the
742  * kernel. Once mapped, they must be unmapped with
743  * qp_host_unmap_queues prior to calling
744  * qp_host_unregister_user_memory.
745  * Pages are pinned.
746  */
747 static int qp_host_map_queues(struct vmci_queue *produce_q,
748 			      struct vmci_queue *consume_q)
749 {
750 	int result;
751 
752 	if (!produce_q->q_header || !consume_q->q_header) {
753 		struct page *headers[2];
754 
755 		if (produce_q->q_header != consume_q->q_header)
756 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
757 
758 		if (produce_q->kernel_if->u.h.header_page == NULL ||
759 		    *produce_q->kernel_if->u.h.header_page == NULL)
760 			return VMCI_ERROR_UNAVAILABLE;
761 
762 		headers[0] = *produce_q->kernel_if->u.h.header_page;
763 		headers[1] = *consume_q->kernel_if->u.h.header_page;
764 
765 		produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
766 		if (produce_q->q_header != NULL) {
767 			consume_q->q_header =
768 			    (struct vmci_queue_header *)((u8 *)
769 							 produce_q->q_header +
770 							 PAGE_SIZE);
771 			result = VMCI_SUCCESS;
772 		} else {
773 			pr_warn("vmap failed\n");
774 			result = VMCI_ERROR_NO_MEM;
775 		}
776 	} else {
777 		result = VMCI_SUCCESS;
778 	}
779 
780 	return result;
781 }
782 
783 /*
784  * Unmaps previously mapped queue pair headers from the kernel.
785  * Pages are unpinned.
786  */
787 static int qp_host_unmap_queues(u32 gid,
788 				struct vmci_queue *produce_q,
789 				struct vmci_queue *consume_q)
790 {
791 	if (produce_q->q_header) {
792 		if (produce_q->q_header < consume_q->q_header)
793 			vunmap(produce_q->q_header);
794 		else
795 			vunmap(consume_q->q_header);
796 
797 		produce_q->q_header = NULL;
798 		consume_q->q_header = NULL;
799 	}
800 
801 	return VMCI_SUCCESS;
802 }
803 
804 /*
805  * Finds the entry in the list corresponding to a given handle. Assumes
806  * that the list is locked.
807  */
808 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
809 				     struct vmci_handle handle)
810 {
811 	struct qp_entry *entry;
812 
813 	if (vmci_handle_is_invalid(handle))
814 		return NULL;
815 
816 	list_for_each_entry(entry, &qp_list->head, list_item) {
817 		if (vmci_handle_is_equal(entry->handle, handle))
818 			return entry;
819 	}
820 
821 	return NULL;
822 }
823 
824 /*
825  * Finds the entry in the list corresponding to a given handle.
826  */
827 static struct qp_guest_endpoint *
828 qp_guest_handle_to_entry(struct vmci_handle handle)
829 {
830 	struct qp_guest_endpoint *entry;
831 	struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
832 
833 	entry = qp ? container_of(
834 		qp, struct qp_guest_endpoint, qp) : NULL;
835 	return entry;
836 }
837 
838 /*
839  * Finds the entry in the list corresponding to a given handle.
840  */
841 static struct qp_broker_entry *
842 qp_broker_handle_to_entry(struct vmci_handle handle)
843 {
844 	struct qp_broker_entry *entry;
845 	struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
846 
847 	entry = qp ? container_of(
848 		qp, struct qp_broker_entry, qp) : NULL;
849 	return entry;
850 }
851 
852 /*
853  * Dispatches a queue pair event message directly into the local event
854  * queue.
855  */
856 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
857 {
858 	u32 context_id = vmci_get_context_id();
859 	struct vmci_event_qp ev;
860 
861 	ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
862 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
863 					  VMCI_CONTEXT_RESOURCE_ID);
864 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
865 	ev.msg.event_data.event =
866 	    attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
867 	ev.payload.peer_id = context_id;
868 	ev.payload.handle = handle;
869 
870 	return vmci_event_dispatch(&ev.msg.hdr);
871 }
872 
873 /*
874  * Allocates and initializes a qp_guest_endpoint structure.
875  * Allocates a queue_pair rid (and handle) iff the given entry has
876  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
877  * are reserved handles.  Assumes that the QP list mutex is held
878  * by the caller.
879  */
880 static struct qp_guest_endpoint *
881 qp_guest_endpoint_create(struct vmci_handle handle,
882 			 u32 peer,
883 			 u32 flags,
884 			 u64 produce_size,
885 			 u64 consume_size,
886 			 void *produce_q,
887 			 void *consume_q)
888 {
889 	int result;
890 	struct qp_guest_endpoint *entry;
891 	/* One page each for the queue headers. */
892 	const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
893 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
894 
895 	if (vmci_handle_is_invalid(handle)) {
896 		u32 context_id = vmci_get_context_id();
897 
898 		handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
899 	}
900 
901 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
902 	if (entry) {
903 		entry->qp.peer = peer;
904 		entry->qp.flags = flags;
905 		entry->qp.produce_size = produce_size;
906 		entry->qp.consume_size = consume_size;
907 		entry->qp.ref_count = 0;
908 		entry->num_ppns = num_ppns;
909 		entry->produce_q = produce_q;
910 		entry->consume_q = consume_q;
911 		INIT_LIST_HEAD(&entry->qp.list_item);
912 
913 		/* Add resource obj */
914 		result = vmci_resource_add(&entry->resource,
915 					   VMCI_RESOURCE_TYPE_QPAIR_GUEST,
916 					   handle);
917 		entry->qp.handle = vmci_resource_handle(&entry->resource);
918 		if ((result != VMCI_SUCCESS) ||
919 		    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
920 			pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
921 				handle.context, handle.resource, result);
922 			kfree(entry);
923 			entry = NULL;
924 		}
925 	}
926 	return entry;
927 }
928 
929 /*
930  * Frees a qp_guest_endpoint structure.
931  */
932 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
933 {
934 	qp_free_ppn_set(&entry->ppn_set);
935 	qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
936 	qp_free_queue(entry->produce_q, entry->qp.produce_size);
937 	qp_free_queue(entry->consume_q, entry->qp.consume_size);
938 	/* Unlink from resource hash table and free callback */
939 	vmci_resource_remove(&entry->resource);
940 
941 	kfree(entry);
942 }
943 
944 /*
945  * Helper to make a queue_pairAlloc hypercall when the driver is
946  * supporting a guest device.
947  */
948 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
949 {
950 	struct vmci_qp_alloc_msg *alloc_msg;
951 	size_t msg_size;
952 	int result;
953 
954 	if (!entry || entry->num_ppns <= 2)
955 		return VMCI_ERROR_INVALID_ARGS;
956 
957 	msg_size = sizeof(*alloc_msg) +
958 	    (size_t) entry->num_ppns * sizeof(u32);
959 	alloc_msg = kmalloc(msg_size, GFP_KERNEL);
960 	if (!alloc_msg)
961 		return VMCI_ERROR_NO_MEM;
962 
963 	alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
964 					      VMCI_QUEUEPAIR_ALLOC);
965 	alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
966 	alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
967 	alloc_msg->handle = entry->qp.handle;
968 	alloc_msg->peer = entry->qp.peer;
969 	alloc_msg->flags = entry->qp.flags;
970 	alloc_msg->produce_size = entry->qp.produce_size;
971 	alloc_msg->consume_size = entry->qp.consume_size;
972 	alloc_msg->num_ppns = entry->num_ppns;
973 
974 	result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
975 				     &entry->ppn_set);
976 	if (result == VMCI_SUCCESS)
977 		result = vmci_send_datagram(&alloc_msg->hdr);
978 
979 	kfree(alloc_msg);
980 
981 	return result;
982 }
983 
984 /*
985  * Helper to make a queue_pairDetach hypercall when the driver is
986  * supporting a guest device.
987  */
988 static int qp_detatch_hypercall(struct vmci_handle handle)
989 {
990 	struct vmci_qp_detach_msg detach_msg;
991 
992 	detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
993 					      VMCI_QUEUEPAIR_DETACH);
994 	detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
995 	detach_msg.hdr.payload_size = sizeof(handle);
996 	detach_msg.handle = handle;
997 
998 	return vmci_send_datagram(&detach_msg.hdr);
999 }
1000 
1001 /*
1002  * Adds the given entry to the list. Assumes that the list is locked.
1003  */
1004 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1005 {
1006 	if (entry)
1007 		list_add(&entry->list_item, &qp_list->head);
1008 }
1009 
1010 /*
1011  * Removes the given entry from the list. Assumes that the list is locked.
1012  */
1013 static void qp_list_remove_entry(struct qp_list *qp_list,
1014 				 struct qp_entry *entry)
1015 {
1016 	if (entry)
1017 		list_del(&entry->list_item);
1018 }
1019 
1020 /*
1021  * Helper for VMCI queue_pair detach interface. Frees the physical
1022  * pages for the queue pair.
1023  */
1024 static int qp_detatch_guest_work(struct vmci_handle handle)
1025 {
1026 	int result;
1027 	struct qp_guest_endpoint *entry;
1028 	u32 ref_count = ~0;	/* To avoid compiler warning below */
1029 
1030 	mutex_lock(&qp_guest_endpoints.mutex);
1031 
1032 	entry = qp_guest_handle_to_entry(handle);
1033 	if (!entry) {
1034 		mutex_unlock(&qp_guest_endpoints.mutex);
1035 		return VMCI_ERROR_NOT_FOUND;
1036 	}
1037 
1038 	if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1039 		result = VMCI_SUCCESS;
1040 
1041 		if (entry->qp.ref_count > 1) {
1042 			result = qp_notify_peer_local(false, handle);
1043 			/*
1044 			 * We can fail to notify a local queuepair
1045 			 * because we can't allocate.  We still want
1046 			 * to release the entry if that happens, so
1047 			 * don't bail out yet.
1048 			 */
1049 		}
1050 	} else {
1051 		result = qp_detatch_hypercall(handle);
1052 		if (result < VMCI_SUCCESS) {
1053 			/*
1054 			 * We failed to notify a non-local queuepair.
1055 			 * That other queuepair might still be
1056 			 * accessing the shared memory, so don't
1057 			 * release the entry yet.  It will get cleaned
1058 			 * up by VMCIqueue_pair_Exit() if necessary
1059 			 * (assuming we are going away, otherwise why
1060 			 * did this fail?).
1061 			 */
1062 
1063 			mutex_unlock(&qp_guest_endpoints.mutex);
1064 			return result;
1065 		}
1066 	}
1067 
1068 	/*
1069 	 * If we get here then we either failed to notify a local queuepair, or
1070 	 * we succeeded in all cases.  Release the entry if required.
1071 	 */
1072 
1073 	entry->qp.ref_count--;
1074 	if (entry->qp.ref_count == 0)
1075 		qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1076 
1077 	/* If we didn't remove the entry, this could change once we unlock. */
1078 	if (entry)
1079 		ref_count = entry->qp.ref_count;
1080 
1081 	mutex_unlock(&qp_guest_endpoints.mutex);
1082 
1083 	if (ref_count == 0)
1084 		qp_guest_endpoint_destroy(entry);
1085 
1086 	return result;
1087 }
1088 
1089 /*
1090  * This functions handles the actual allocation of a VMCI queue
1091  * pair guest endpoint. Allocates physical pages for the queue
1092  * pair. It makes OS dependent calls through generic wrappers.
1093  */
1094 static int qp_alloc_guest_work(struct vmci_handle *handle,
1095 			       struct vmci_queue **produce_q,
1096 			       u64 produce_size,
1097 			       struct vmci_queue **consume_q,
1098 			       u64 consume_size,
1099 			       u32 peer,
1100 			       u32 flags,
1101 			       u32 priv_flags)
1102 {
1103 	const u64 num_produce_pages =
1104 	    DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1105 	const u64 num_consume_pages =
1106 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1107 	void *my_produce_q = NULL;
1108 	void *my_consume_q = NULL;
1109 	int result;
1110 	struct qp_guest_endpoint *queue_pair_entry = NULL;
1111 
1112 	if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1113 		return VMCI_ERROR_NO_ACCESS;
1114 
1115 	mutex_lock(&qp_guest_endpoints.mutex);
1116 
1117 	queue_pair_entry = qp_guest_handle_to_entry(*handle);
1118 	if (queue_pair_entry) {
1119 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1120 			/* Local attach case. */
1121 			if (queue_pair_entry->qp.ref_count > 1) {
1122 				pr_devel("Error attempting to attach more than once\n");
1123 				result = VMCI_ERROR_UNAVAILABLE;
1124 				goto error_keep_entry;
1125 			}
1126 
1127 			if (queue_pair_entry->qp.produce_size != consume_size ||
1128 			    queue_pair_entry->qp.consume_size !=
1129 			    produce_size ||
1130 			    queue_pair_entry->qp.flags !=
1131 			    (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1132 				pr_devel("Error mismatched queue pair in local attach\n");
1133 				result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1134 				goto error_keep_entry;
1135 			}
1136 
1137 			/*
1138 			 * Do a local attach.  We swap the consume and
1139 			 * produce queues for the attacher and deliver
1140 			 * an attach event.
1141 			 */
1142 			result = qp_notify_peer_local(true, *handle);
1143 			if (result < VMCI_SUCCESS)
1144 				goto error_keep_entry;
1145 
1146 			my_produce_q = queue_pair_entry->consume_q;
1147 			my_consume_q = queue_pair_entry->produce_q;
1148 			goto out;
1149 		}
1150 
1151 		result = VMCI_ERROR_ALREADY_EXISTS;
1152 		goto error_keep_entry;
1153 	}
1154 
1155 	my_produce_q = qp_alloc_queue(produce_size, flags);
1156 	if (!my_produce_q) {
1157 		pr_warn("Error allocating pages for produce queue\n");
1158 		result = VMCI_ERROR_NO_MEM;
1159 		goto error;
1160 	}
1161 
1162 	my_consume_q = qp_alloc_queue(consume_size, flags);
1163 	if (!my_consume_q) {
1164 		pr_warn("Error allocating pages for consume queue\n");
1165 		result = VMCI_ERROR_NO_MEM;
1166 		goto error;
1167 	}
1168 
1169 	queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1170 						    produce_size, consume_size,
1171 						    my_produce_q, my_consume_q);
1172 	if (!queue_pair_entry) {
1173 		pr_warn("Error allocating memory in %s\n", __func__);
1174 		result = VMCI_ERROR_NO_MEM;
1175 		goto error;
1176 	}
1177 
1178 	result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1179 				  num_consume_pages,
1180 				  &queue_pair_entry->ppn_set);
1181 	if (result < VMCI_SUCCESS) {
1182 		pr_warn("qp_alloc_ppn_set failed\n");
1183 		goto error;
1184 	}
1185 
1186 	/*
1187 	 * It's only necessary to notify the host if this queue pair will be
1188 	 * attached to from another context.
1189 	 */
1190 	if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1191 		/* Local create case. */
1192 		u32 context_id = vmci_get_context_id();
1193 
1194 		/*
1195 		 * Enforce similar checks on local queue pairs as we
1196 		 * do for regular ones.  The handle's context must
1197 		 * match the creator or attacher context id (here they
1198 		 * are both the current context id) and the
1199 		 * attach-only flag cannot exist during create.  We
1200 		 * also ensure specified peer is this context or an
1201 		 * invalid one.
1202 		 */
1203 		if (queue_pair_entry->qp.handle.context != context_id ||
1204 		    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1205 		     queue_pair_entry->qp.peer != context_id)) {
1206 			result = VMCI_ERROR_NO_ACCESS;
1207 			goto error;
1208 		}
1209 
1210 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1211 			result = VMCI_ERROR_NOT_FOUND;
1212 			goto error;
1213 		}
1214 	} else {
1215 		result = qp_alloc_hypercall(queue_pair_entry);
1216 		if (result < VMCI_SUCCESS) {
1217 			pr_warn("qp_alloc_hypercall result = %d\n", result);
1218 			goto error;
1219 		}
1220 	}
1221 
1222 	qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1223 			    (struct vmci_queue *)my_consume_q);
1224 
1225 	qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1226 
1227  out:
1228 	queue_pair_entry->qp.ref_count++;
1229 	*handle = queue_pair_entry->qp.handle;
1230 	*produce_q = (struct vmci_queue *)my_produce_q;
1231 	*consume_q = (struct vmci_queue *)my_consume_q;
1232 
1233 	/*
1234 	 * We should initialize the queue pair header pages on a local
1235 	 * queue pair create.  For non-local queue pairs, the
1236 	 * hypervisor initializes the header pages in the create step.
1237 	 */
1238 	if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1239 	    queue_pair_entry->qp.ref_count == 1) {
1240 		vmci_q_header_init((*produce_q)->q_header, *handle);
1241 		vmci_q_header_init((*consume_q)->q_header, *handle);
1242 	}
1243 
1244 	mutex_unlock(&qp_guest_endpoints.mutex);
1245 
1246 	return VMCI_SUCCESS;
1247 
1248  error:
1249 	mutex_unlock(&qp_guest_endpoints.mutex);
1250 	if (queue_pair_entry) {
1251 		/* The queues will be freed inside the destroy routine. */
1252 		qp_guest_endpoint_destroy(queue_pair_entry);
1253 	} else {
1254 		qp_free_queue(my_produce_q, produce_size);
1255 		qp_free_queue(my_consume_q, consume_size);
1256 	}
1257 	return result;
1258 
1259  error_keep_entry:
1260 	/* This path should only be used when an existing entry was found. */
1261 	mutex_unlock(&qp_guest_endpoints.mutex);
1262 	return result;
1263 }
1264 
1265 /*
1266  * The first endpoint issuing a queue pair allocation will create the state
1267  * of the queue pair in the queue pair broker.
1268  *
1269  * If the creator is a guest, it will associate a VMX virtual address range
1270  * with the queue pair as specified by the page_store. For compatibility with
1271  * older VMX'en, that would use a separate step to set the VMX virtual
1272  * address range, the virtual address range can be registered later using
1273  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1274  * used.
1275  *
1276  * If the creator is the host, a page_store of NULL should be used as well,
1277  * since the host is not able to supply a page store for the queue pair.
1278  *
1279  * For older VMX and host callers, the queue pair will be created in the
1280  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1281  * created in VMCOQPB_CREATED_MEM state.
1282  */
1283 static int qp_broker_create(struct vmci_handle handle,
1284 			    u32 peer,
1285 			    u32 flags,
1286 			    u32 priv_flags,
1287 			    u64 produce_size,
1288 			    u64 consume_size,
1289 			    struct vmci_qp_page_store *page_store,
1290 			    struct vmci_ctx *context,
1291 			    vmci_event_release_cb wakeup_cb,
1292 			    void *client_data, struct qp_broker_entry **ent)
1293 {
1294 	struct qp_broker_entry *entry = NULL;
1295 	const u32 context_id = vmci_ctx_get_id(context);
1296 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1297 	int result;
1298 	u64 guest_produce_size;
1299 	u64 guest_consume_size;
1300 
1301 	/* Do not create if the caller asked not to. */
1302 	if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1303 		return VMCI_ERROR_NOT_FOUND;
1304 
1305 	/*
1306 	 * Creator's context ID should match handle's context ID or the creator
1307 	 * must allow the context in handle's context ID as the "peer".
1308 	 */
1309 	if (handle.context != context_id && handle.context != peer)
1310 		return VMCI_ERROR_NO_ACCESS;
1311 
1312 	if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1313 		return VMCI_ERROR_DST_UNREACHABLE;
1314 
1315 	/*
1316 	 * Creator's context ID for local queue pairs should match the
1317 	 * peer, if a peer is specified.
1318 	 */
1319 	if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1320 		return VMCI_ERROR_NO_ACCESS;
1321 
1322 	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1323 	if (!entry)
1324 		return VMCI_ERROR_NO_MEM;
1325 
1326 	if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1327 		/*
1328 		 * The queue pair broker entry stores values from the guest
1329 		 * point of view, so a creating host side endpoint should swap
1330 		 * produce and consume values -- unless it is a local queue
1331 		 * pair, in which case no swapping is necessary, since the local
1332 		 * attacher will swap queues.
1333 		 */
1334 
1335 		guest_produce_size = consume_size;
1336 		guest_consume_size = produce_size;
1337 	} else {
1338 		guest_produce_size = produce_size;
1339 		guest_consume_size = consume_size;
1340 	}
1341 
1342 	entry->qp.handle = handle;
1343 	entry->qp.peer = peer;
1344 	entry->qp.flags = flags;
1345 	entry->qp.produce_size = guest_produce_size;
1346 	entry->qp.consume_size = guest_consume_size;
1347 	entry->qp.ref_count = 1;
1348 	entry->create_id = context_id;
1349 	entry->attach_id = VMCI_INVALID_ID;
1350 	entry->state = VMCIQPB_NEW;
1351 	entry->require_trusted_attach =
1352 	    !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1353 	entry->created_by_trusted =
1354 	    !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1355 	entry->vmci_page_files = false;
1356 	entry->wakeup_cb = wakeup_cb;
1357 	entry->client_data = client_data;
1358 	entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1359 	if (entry->produce_q == NULL) {
1360 		result = VMCI_ERROR_NO_MEM;
1361 		goto error;
1362 	}
1363 	entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1364 	if (entry->consume_q == NULL) {
1365 		result = VMCI_ERROR_NO_MEM;
1366 		goto error;
1367 	}
1368 
1369 	qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1370 
1371 	INIT_LIST_HEAD(&entry->qp.list_item);
1372 
1373 	if (is_local) {
1374 		u8 *tmp;
1375 
1376 		entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1377 					   PAGE_SIZE, GFP_KERNEL);
1378 		if (entry->local_mem == NULL) {
1379 			result = VMCI_ERROR_NO_MEM;
1380 			goto error;
1381 		}
1382 		entry->state = VMCIQPB_CREATED_MEM;
1383 		entry->produce_q->q_header = entry->local_mem;
1384 		tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1385 		    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1386 		entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1387 	} else if (page_store) {
1388 		/*
1389 		 * The VMX already initialized the queue pair headers, so no
1390 		 * need for the kernel side to do that.
1391 		 */
1392 		result = qp_host_register_user_memory(page_store,
1393 						      entry->produce_q,
1394 						      entry->consume_q);
1395 		if (result < VMCI_SUCCESS)
1396 			goto error;
1397 
1398 		entry->state = VMCIQPB_CREATED_MEM;
1399 	} else {
1400 		/*
1401 		 * A create without a page_store may be either a host
1402 		 * side create (in which case we are waiting for the
1403 		 * guest side to supply the memory) or an old style
1404 		 * queue pair create (in which case we will expect a
1405 		 * set page store call as the next step).
1406 		 */
1407 		entry->state = VMCIQPB_CREATED_NO_MEM;
1408 	}
1409 
1410 	qp_list_add_entry(&qp_broker_list, &entry->qp);
1411 	if (ent != NULL)
1412 		*ent = entry;
1413 
1414 	/* Add to resource obj */
1415 	result = vmci_resource_add(&entry->resource,
1416 				   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1417 				   handle);
1418 	if (result != VMCI_SUCCESS) {
1419 		pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1420 			handle.context, handle.resource, result);
1421 		goto error;
1422 	}
1423 
1424 	entry->qp.handle = vmci_resource_handle(&entry->resource);
1425 	if (is_local) {
1426 		vmci_q_header_init(entry->produce_q->q_header,
1427 				   entry->qp.handle);
1428 		vmci_q_header_init(entry->consume_q->q_header,
1429 				   entry->qp.handle);
1430 	}
1431 
1432 	vmci_ctx_qp_create(context, entry->qp.handle);
1433 
1434 	return VMCI_SUCCESS;
1435 
1436  error:
1437 	if (entry != NULL) {
1438 		qp_host_free_queue(entry->produce_q, guest_produce_size);
1439 		qp_host_free_queue(entry->consume_q, guest_consume_size);
1440 		kfree(entry);
1441 	}
1442 
1443 	return result;
1444 }
1445 
1446 /*
1447  * Enqueues an event datagram to notify the peer VM attached to
1448  * the given queue pair handle about attach/detach event by the
1449  * given VM.  Returns Payload size of datagram enqueued on
1450  * success, error code otherwise.
1451  */
1452 static int qp_notify_peer(bool attach,
1453 			  struct vmci_handle handle,
1454 			  u32 my_id,
1455 			  u32 peer_id)
1456 {
1457 	int rv;
1458 	struct vmci_event_qp ev;
1459 
1460 	if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1461 	    peer_id == VMCI_INVALID_ID)
1462 		return VMCI_ERROR_INVALID_ARGS;
1463 
1464 	/*
1465 	 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1466 	 * number of pending events from the hypervisor to a given VM
1467 	 * otherwise a rogue VM could do an arbitrary number of attach
1468 	 * and detach operations causing memory pressure in the host
1469 	 * kernel.
1470 	 */
1471 
1472 	ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1473 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1474 					  VMCI_CONTEXT_RESOURCE_ID);
1475 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1476 	ev.msg.event_data.event = attach ?
1477 	    VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1478 	ev.payload.handle = handle;
1479 	ev.payload.peer_id = my_id;
1480 
1481 	rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1482 				    &ev.msg.hdr, false);
1483 	if (rv < VMCI_SUCCESS)
1484 		pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1485 			attach ? "ATTACH" : "DETACH", peer_id);
1486 
1487 	return rv;
1488 }
1489 
1490 /*
1491  * The second endpoint issuing a queue pair allocation will attach to
1492  * the queue pair registered with the queue pair broker.
1493  *
1494  * If the attacher is a guest, it will associate a VMX virtual address
1495  * range with the queue pair as specified by the page_store. At this
1496  * point, the already attach host endpoint may start using the queue
1497  * pair, and an attach event is sent to it. For compatibility with
1498  * older VMX'en, that used a separate step to set the VMX virtual
1499  * address range, the virtual address range can be registered later
1500  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1501  * NULL should be used, and the attach event will be generated once
1502  * the actual page store has been set.
1503  *
1504  * If the attacher is the host, a page_store of NULL should be used as
1505  * well, since the page store information is already set by the guest.
1506  *
1507  * For new VMX and host callers, the queue pair will be moved to the
1508  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1509  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1510  */
1511 static int qp_broker_attach(struct qp_broker_entry *entry,
1512 			    u32 peer,
1513 			    u32 flags,
1514 			    u32 priv_flags,
1515 			    u64 produce_size,
1516 			    u64 consume_size,
1517 			    struct vmci_qp_page_store *page_store,
1518 			    struct vmci_ctx *context,
1519 			    vmci_event_release_cb wakeup_cb,
1520 			    void *client_data,
1521 			    struct qp_broker_entry **ent)
1522 {
1523 	const u32 context_id = vmci_ctx_get_id(context);
1524 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1525 	int result;
1526 
1527 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1528 	    entry->state != VMCIQPB_CREATED_MEM)
1529 		return VMCI_ERROR_UNAVAILABLE;
1530 
1531 	if (is_local) {
1532 		if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1533 		    context_id != entry->create_id) {
1534 			return VMCI_ERROR_INVALID_ARGS;
1535 		}
1536 	} else if (context_id == entry->create_id ||
1537 		   context_id == entry->attach_id) {
1538 		return VMCI_ERROR_ALREADY_EXISTS;
1539 	}
1540 
1541 	if (VMCI_CONTEXT_IS_VM(context_id) &&
1542 	    VMCI_CONTEXT_IS_VM(entry->create_id))
1543 		return VMCI_ERROR_DST_UNREACHABLE;
1544 
1545 	/*
1546 	 * If we are attaching from a restricted context then the queuepair
1547 	 * must have been created by a trusted endpoint.
1548 	 */
1549 	if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1550 	    !entry->created_by_trusted)
1551 		return VMCI_ERROR_NO_ACCESS;
1552 
1553 	/*
1554 	 * If we are attaching to a queuepair that was created by a restricted
1555 	 * context then we must be trusted.
1556 	 */
1557 	if (entry->require_trusted_attach &&
1558 	    (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1559 		return VMCI_ERROR_NO_ACCESS;
1560 
1561 	/*
1562 	 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1563 	 * control check is not performed.
1564 	 */
1565 	if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1566 		return VMCI_ERROR_NO_ACCESS;
1567 
1568 	if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1569 		/*
1570 		 * Do not attach if the caller doesn't support Host Queue Pairs
1571 		 * and a host created this queue pair.
1572 		 */
1573 
1574 		if (!vmci_ctx_supports_host_qp(context))
1575 			return VMCI_ERROR_INVALID_RESOURCE;
1576 
1577 	} else if (context_id == VMCI_HOST_CONTEXT_ID) {
1578 		struct vmci_ctx *create_context;
1579 		bool supports_host_qp;
1580 
1581 		/*
1582 		 * Do not attach a host to a user created queue pair if that
1583 		 * user doesn't support host queue pair end points.
1584 		 */
1585 
1586 		create_context = vmci_ctx_get(entry->create_id);
1587 		supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1588 		vmci_ctx_put(create_context);
1589 
1590 		if (!supports_host_qp)
1591 			return VMCI_ERROR_INVALID_RESOURCE;
1592 	}
1593 
1594 	if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1595 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1596 
1597 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1598 		/*
1599 		 * The queue pair broker entry stores values from the guest
1600 		 * point of view, so an attaching guest should match the values
1601 		 * stored in the entry.
1602 		 */
1603 
1604 		if (entry->qp.produce_size != produce_size ||
1605 		    entry->qp.consume_size != consume_size) {
1606 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1607 		}
1608 	} else if (entry->qp.produce_size != consume_size ||
1609 		   entry->qp.consume_size != produce_size) {
1610 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1611 	}
1612 
1613 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1614 		/*
1615 		 * If a guest attached to a queue pair, it will supply
1616 		 * the backing memory.  If this is a pre NOVMVM vmx,
1617 		 * the backing memory will be supplied by calling
1618 		 * vmci_qp_broker_set_page_store() following the
1619 		 * return of the vmci_qp_broker_alloc() call. If it is
1620 		 * a vmx of version NOVMVM or later, the page store
1621 		 * must be supplied as part of the
1622 		 * vmci_qp_broker_alloc call.  Under all circumstances
1623 		 * must the initially created queue pair not have any
1624 		 * memory associated with it already.
1625 		 */
1626 
1627 		if (entry->state != VMCIQPB_CREATED_NO_MEM)
1628 			return VMCI_ERROR_INVALID_ARGS;
1629 
1630 		if (page_store != NULL) {
1631 			/*
1632 			 * Patch up host state to point to guest
1633 			 * supplied memory. The VMX already
1634 			 * initialized the queue pair headers, so no
1635 			 * need for the kernel side to do that.
1636 			 */
1637 
1638 			result = qp_host_register_user_memory(page_store,
1639 							      entry->produce_q,
1640 							      entry->consume_q);
1641 			if (result < VMCI_SUCCESS)
1642 				return result;
1643 
1644 			entry->state = VMCIQPB_ATTACHED_MEM;
1645 		} else {
1646 			entry->state = VMCIQPB_ATTACHED_NO_MEM;
1647 		}
1648 	} else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1649 		/*
1650 		 * The host side is attempting to attach to a queue
1651 		 * pair that doesn't have any memory associated with
1652 		 * it. This must be a pre NOVMVM vmx that hasn't set
1653 		 * the page store information yet, or a quiesced VM.
1654 		 */
1655 
1656 		return VMCI_ERROR_UNAVAILABLE;
1657 	} else {
1658 		/* The host side has successfully attached to a queue pair. */
1659 		entry->state = VMCIQPB_ATTACHED_MEM;
1660 	}
1661 
1662 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
1663 		result =
1664 		    qp_notify_peer(true, entry->qp.handle, context_id,
1665 				   entry->create_id);
1666 		if (result < VMCI_SUCCESS)
1667 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1668 				entry->create_id, entry->qp.handle.context,
1669 				entry->qp.handle.resource);
1670 	}
1671 
1672 	entry->attach_id = context_id;
1673 	entry->qp.ref_count++;
1674 	if (wakeup_cb) {
1675 		entry->wakeup_cb = wakeup_cb;
1676 		entry->client_data = client_data;
1677 	}
1678 
1679 	/*
1680 	 * When attaching to local queue pairs, the context already has
1681 	 * an entry tracking the queue pair, so don't add another one.
1682 	 */
1683 	if (!is_local)
1684 		vmci_ctx_qp_create(context, entry->qp.handle);
1685 
1686 	if (ent != NULL)
1687 		*ent = entry;
1688 
1689 	return VMCI_SUCCESS;
1690 }
1691 
1692 /*
1693  * queue_pair_Alloc for use when setting up queue pair endpoints
1694  * on the host.
1695  */
1696 static int qp_broker_alloc(struct vmci_handle handle,
1697 			   u32 peer,
1698 			   u32 flags,
1699 			   u32 priv_flags,
1700 			   u64 produce_size,
1701 			   u64 consume_size,
1702 			   struct vmci_qp_page_store *page_store,
1703 			   struct vmci_ctx *context,
1704 			   vmci_event_release_cb wakeup_cb,
1705 			   void *client_data,
1706 			   struct qp_broker_entry **ent,
1707 			   bool *swap)
1708 {
1709 	const u32 context_id = vmci_ctx_get_id(context);
1710 	bool create;
1711 	struct qp_broker_entry *entry = NULL;
1712 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1713 	int result;
1714 
1715 	if (vmci_handle_is_invalid(handle) ||
1716 	    (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1717 	    !(produce_size || consume_size) ||
1718 	    !context || context_id == VMCI_INVALID_ID ||
1719 	    handle.context == VMCI_INVALID_ID) {
1720 		return VMCI_ERROR_INVALID_ARGS;
1721 	}
1722 
1723 	if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1724 		return VMCI_ERROR_INVALID_ARGS;
1725 
1726 	/*
1727 	 * In the initial argument check, we ensure that non-vmkernel hosts
1728 	 * are not allowed to create local queue pairs.
1729 	 */
1730 
1731 	mutex_lock(&qp_broker_list.mutex);
1732 
1733 	if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1734 		pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1735 			 context_id, handle.context, handle.resource);
1736 		mutex_unlock(&qp_broker_list.mutex);
1737 		return VMCI_ERROR_ALREADY_EXISTS;
1738 	}
1739 
1740 	if (handle.resource != VMCI_INVALID_ID)
1741 		entry = qp_broker_handle_to_entry(handle);
1742 
1743 	if (!entry) {
1744 		create = true;
1745 		result =
1746 		    qp_broker_create(handle, peer, flags, priv_flags,
1747 				     produce_size, consume_size, page_store,
1748 				     context, wakeup_cb, client_data, ent);
1749 	} else {
1750 		create = false;
1751 		result =
1752 		    qp_broker_attach(entry, peer, flags, priv_flags,
1753 				     produce_size, consume_size, page_store,
1754 				     context, wakeup_cb, client_data, ent);
1755 	}
1756 
1757 	mutex_unlock(&qp_broker_list.mutex);
1758 
1759 	if (swap)
1760 		*swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1761 		    !(create && is_local);
1762 
1763 	return result;
1764 }
1765 
1766 /*
1767  * This function implements the kernel API for allocating a queue
1768  * pair.
1769  */
1770 static int qp_alloc_host_work(struct vmci_handle *handle,
1771 			      struct vmci_queue **produce_q,
1772 			      u64 produce_size,
1773 			      struct vmci_queue **consume_q,
1774 			      u64 consume_size,
1775 			      u32 peer,
1776 			      u32 flags,
1777 			      u32 priv_flags,
1778 			      vmci_event_release_cb wakeup_cb,
1779 			      void *client_data)
1780 {
1781 	struct vmci_handle new_handle;
1782 	struct vmci_ctx *context;
1783 	struct qp_broker_entry *entry;
1784 	int result;
1785 	bool swap;
1786 
1787 	if (vmci_handle_is_invalid(*handle)) {
1788 		new_handle = vmci_make_handle(
1789 			VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1790 	} else
1791 		new_handle = *handle;
1792 
1793 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1794 	entry = NULL;
1795 	result =
1796 	    qp_broker_alloc(new_handle, peer, flags, priv_flags,
1797 			    produce_size, consume_size, NULL, context,
1798 			    wakeup_cb, client_data, &entry, &swap);
1799 	if (result == VMCI_SUCCESS) {
1800 		if (swap) {
1801 			/*
1802 			 * If this is a local queue pair, the attacher
1803 			 * will swap around produce and consume
1804 			 * queues.
1805 			 */
1806 
1807 			*produce_q = entry->consume_q;
1808 			*consume_q = entry->produce_q;
1809 		} else {
1810 			*produce_q = entry->produce_q;
1811 			*consume_q = entry->consume_q;
1812 		}
1813 
1814 		*handle = vmci_resource_handle(&entry->resource);
1815 	} else {
1816 		*handle = VMCI_INVALID_HANDLE;
1817 		pr_devel("queue pair broker failed to alloc (result=%d)\n",
1818 			 result);
1819 	}
1820 	vmci_ctx_put(context);
1821 	return result;
1822 }
1823 
1824 /*
1825  * Allocates a VMCI queue_pair. Only checks validity of input
1826  * arguments. The real work is done in the host or guest
1827  * specific function.
1828  */
1829 int vmci_qp_alloc(struct vmci_handle *handle,
1830 		  struct vmci_queue **produce_q,
1831 		  u64 produce_size,
1832 		  struct vmci_queue **consume_q,
1833 		  u64 consume_size,
1834 		  u32 peer,
1835 		  u32 flags,
1836 		  u32 priv_flags,
1837 		  bool guest_endpoint,
1838 		  vmci_event_release_cb wakeup_cb,
1839 		  void *client_data)
1840 {
1841 	if (!handle || !produce_q || !consume_q ||
1842 	    (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1843 		return VMCI_ERROR_INVALID_ARGS;
1844 
1845 	if (guest_endpoint) {
1846 		return qp_alloc_guest_work(handle, produce_q,
1847 					   produce_size, consume_q,
1848 					   consume_size, peer,
1849 					   flags, priv_flags);
1850 	} else {
1851 		return qp_alloc_host_work(handle, produce_q,
1852 					  produce_size, consume_q,
1853 					  consume_size, peer, flags,
1854 					  priv_flags, wakeup_cb, client_data);
1855 	}
1856 }
1857 
1858 /*
1859  * This function implements the host kernel API for detaching from
1860  * a queue pair.
1861  */
1862 static int qp_detatch_host_work(struct vmci_handle handle)
1863 {
1864 	int result;
1865 	struct vmci_ctx *context;
1866 
1867 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1868 
1869 	result = vmci_qp_broker_detach(handle, context);
1870 
1871 	vmci_ctx_put(context);
1872 	return result;
1873 }
1874 
1875 /*
1876  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1877  * Real work is done in the host or guest specific function.
1878  */
1879 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1880 {
1881 	if (vmci_handle_is_invalid(handle))
1882 		return VMCI_ERROR_INVALID_ARGS;
1883 
1884 	if (guest_endpoint)
1885 		return qp_detatch_guest_work(handle);
1886 	else
1887 		return qp_detatch_host_work(handle);
1888 }
1889 
1890 /*
1891  * Returns the entry from the head of the list. Assumes that the list is
1892  * locked.
1893  */
1894 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1895 {
1896 	if (!list_empty(&qp_list->head)) {
1897 		struct qp_entry *entry =
1898 		    list_first_entry(&qp_list->head, struct qp_entry,
1899 				     list_item);
1900 		return entry;
1901 	}
1902 
1903 	return NULL;
1904 }
1905 
1906 void vmci_qp_broker_exit(void)
1907 {
1908 	struct qp_entry *entry;
1909 	struct qp_broker_entry *be;
1910 
1911 	mutex_lock(&qp_broker_list.mutex);
1912 
1913 	while ((entry = qp_list_get_head(&qp_broker_list))) {
1914 		be = (struct qp_broker_entry *)entry;
1915 
1916 		qp_list_remove_entry(&qp_broker_list, entry);
1917 		kfree(be);
1918 	}
1919 
1920 	mutex_unlock(&qp_broker_list.mutex);
1921 }
1922 
1923 /*
1924  * Requests that a queue pair be allocated with the VMCI queue
1925  * pair broker. Allocates a queue pair entry if one does not
1926  * exist. Attaches to one if it exists, and retrieves the page
1927  * files backing that queue_pair.  Assumes that the queue pair
1928  * broker lock is held.
1929  */
1930 int vmci_qp_broker_alloc(struct vmci_handle handle,
1931 			 u32 peer,
1932 			 u32 flags,
1933 			 u32 priv_flags,
1934 			 u64 produce_size,
1935 			 u64 consume_size,
1936 			 struct vmci_qp_page_store *page_store,
1937 			 struct vmci_ctx *context)
1938 {
1939 	return qp_broker_alloc(handle, peer, flags, priv_flags,
1940 			       produce_size, consume_size,
1941 			       page_store, context, NULL, NULL, NULL, NULL);
1942 }
1943 
1944 /*
1945  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1946  * step to add the UVAs of the VMX mapping of the queue pair. This function
1947  * provides backwards compatibility with such VMX'en, and takes care of
1948  * registering the page store for a queue pair previously allocated by the
1949  * VMX during create or attach. This function will move the queue pair state
1950  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1951  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1952  * attached state with memory, the queue pair is ready to be used by the
1953  * host peer, and an attached event will be generated.
1954  *
1955  * Assumes that the queue pair broker lock is held.
1956  *
1957  * This function is only used by the hosted platform, since there is no
1958  * issue with backwards compatibility for vmkernel.
1959  */
1960 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1961 				  u64 produce_uva,
1962 				  u64 consume_uva,
1963 				  struct vmci_ctx *context)
1964 {
1965 	struct qp_broker_entry *entry;
1966 	int result;
1967 	const u32 context_id = vmci_ctx_get_id(context);
1968 
1969 	if (vmci_handle_is_invalid(handle) || !context ||
1970 	    context_id == VMCI_INVALID_ID)
1971 		return VMCI_ERROR_INVALID_ARGS;
1972 
1973 	/*
1974 	 * We only support guest to host queue pairs, so the VMX must
1975 	 * supply UVAs for the mapped page files.
1976 	 */
1977 
1978 	if (produce_uva == 0 || consume_uva == 0)
1979 		return VMCI_ERROR_INVALID_ARGS;
1980 
1981 	mutex_lock(&qp_broker_list.mutex);
1982 
1983 	if (!vmci_ctx_qp_exists(context, handle)) {
1984 		pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1985 			context_id, handle.context, handle.resource);
1986 		result = VMCI_ERROR_NOT_FOUND;
1987 		goto out;
1988 	}
1989 
1990 	entry = qp_broker_handle_to_entry(handle);
1991 	if (!entry) {
1992 		result = VMCI_ERROR_NOT_FOUND;
1993 		goto out;
1994 	}
1995 
1996 	/*
1997 	 * If I'm the owner then I can set the page store.
1998 	 *
1999 	 * Or, if a host created the queue_pair and I'm the attached peer
2000 	 * then I can set the page store.
2001 	 */
2002 	if (entry->create_id != context_id &&
2003 	    (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2004 	     entry->attach_id != context_id)) {
2005 		result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2006 		goto out;
2007 	}
2008 
2009 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2010 	    entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2011 		result = VMCI_ERROR_UNAVAILABLE;
2012 		goto out;
2013 	}
2014 
2015 	result = qp_host_get_user_memory(produce_uva, consume_uva,
2016 					 entry->produce_q, entry->consume_q);
2017 	if (result < VMCI_SUCCESS)
2018 		goto out;
2019 
2020 	result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2021 	if (result < VMCI_SUCCESS) {
2022 		qp_host_unregister_user_memory(entry->produce_q,
2023 					       entry->consume_q);
2024 		goto out;
2025 	}
2026 
2027 	if (entry->state == VMCIQPB_CREATED_NO_MEM)
2028 		entry->state = VMCIQPB_CREATED_MEM;
2029 	else
2030 		entry->state = VMCIQPB_ATTACHED_MEM;
2031 
2032 	entry->vmci_page_files = true;
2033 
2034 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
2035 		result =
2036 		    qp_notify_peer(true, handle, context_id, entry->create_id);
2037 		if (result < VMCI_SUCCESS) {
2038 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2039 				entry->create_id, entry->qp.handle.context,
2040 				entry->qp.handle.resource);
2041 		}
2042 	}
2043 
2044 	result = VMCI_SUCCESS;
2045  out:
2046 	mutex_unlock(&qp_broker_list.mutex);
2047 	return result;
2048 }
2049 
2050 /*
2051  * Resets saved queue headers for the given QP broker
2052  * entry. Should be used when guest memory becomes available
2053  * again, or the guest detaches.
2054  */
2055 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2056 {
2057 	entry->produce_q->saved_header = NULL;
2058 	entry->consume_q->saved_header = NULL;
2059 }
2060 
2061 /*
2062  * The main entry point for detaching from a queue pair registered with the
2063  * queue pair broker. If more than one endpoint is attached to the queue
2064  * pair, the first endpoint will mainly decrement a reference count and
2065  * generate a notification to its peer. The last endpoint will clean up
2066  * the queue pair state registered with the broker.
2067  *
2068  * When a guest endpoint detaches, it will unmap and unregister the guest
2069  * memory backing the queue pair. If the host is still attached, it will
2070  * no longer be able to access the queue pair content.
2071  *
2072  * If the queue pair is already in a state where there is no memory
2073  * registered for the queue pair (any *_NO_MEM state), it will transition to
2074  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2075  * endpoint is the first of two endpoints to detach. If the host endpoint is
2076  * the first out of two to detach, the queue pair will move to the
2077  * VMCIQPB_SHUTDOWN_MEM state.
2078  */
2079 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2080 {
2081 	struct qp_broker_entry *entry;
2082 	const u32 context_id = vmci_ctx_get_id(context);
2083 	u32 peer_id;
2084 	bool is_local = false;
2085 	int result;
2086 
2087 	if (vmci_handle_is_invalid(handle) || !context ||
2088 	    context_id == VMCI_INVALID_ID) {
2089 		return VMCI_ERROR_INVALID_ARGS;
2090 	}
2091 
2092 	mutex_lock(&qp_broker_list.mutex);
2093 
2094 	if (!vmci_ctx_qp_exists(context, handle)) {
2095 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2096 			 context_id, handle.context, handle.resource);
2097 		result = VMCI_ERROR_NOT_FOUND;
2098 		goto out;
2099 	}
2100 
2101 	entry = qp_broker_handle_to_entry(handle);
2102 	if (!entry) {
2103 		pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2104 			 context_id, handle.context, handle.resource);
2105 		result = VMCI_ERROR_NOT_FOUND;
2106 		goto out;
2107 	}
2108 
2109 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2110 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2111 		goto out;
2112 	}
2113 
2114 	if (context_id == entry->create_id) {
2115 		peer_id = entry->attach_id;
2116 		entry->create_id = VMCI_INVALID_ID;
2117 	} else {
2118 		peer_id = entry->create_id;
2119 		entry->attach_id = VMCI_INVALID_ID;
2120 	}
2121 	entry->qp.ref_count--;
2122 
2123 	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2124 
2125 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2126 		bool headers_mapped;
2127 
2128 		/*
2129 		 * Pre NOVMVM vmx'en may detach from a queue pair
2130 		 * before setting the page store, and in that case
2131 		 * there is no user memory to detach from. Also, more
2132 		 * recent VMX'en may detach from a queue pair in the
2133 		 * quiesced state.
2134 		 */
2135 
2136 		qp_acquire_queue_mutex(entry->produce_q);
2137 		headers_mapped = entry->produce_q->q_header ||
2138 		    entry->consume_q->q_header;
2139 		if (QPBROKERSTATE_HAS_MEM(entry)) {
2140 			result =
2141 			    qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2142 						 entry->produce_q,
2143 						 entry->consume_q);
2144 			if (result < VMCI_SUCCESS)
2145 				pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2146 					handle.context, handle.resource,
2147 					result);
2148 
2149 			qp_host_unregister_user_memory(entry->produce_q,
2150 						       entry->consume_q);
2151 
2152 		}
2153 
2154 		if (!headers_mapped)
2155 			qp_reset_saved_headers(entry);
2156 
2157 		qp_release_queue_mutex(entry->produce_q);
2158 
2159 		if (!headers_mapped && entry->wakeup_cb)
2160 			entry->wakeup_cb(entry->client_data);
2161 
2162 	} else {
2163 		if (entry->wakeup_cb) {
2164 			entry->wakeup_cb = NULL;
2165 			entry->client_data = NULL;
2166 		}
2167 	}
2168 
2169 	if (entry->qp.ref_count == 0) {
2170 		qp_list_remove_entry(&qp_broker_list, &entry->qp);
2171 
2172 		if (is_local)
2173 			kfree(entry->local_mem);
2174 
2175 		qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2176 		qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2177 		qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2178 		/* Unlink from resource hash table and free callback */
2179 		vmci_resource_remove(&entry->resource);
2180 
2181 		kfree(entry);
2182 
2183 		vmci_ctx_qp_destroy(context, handle);
2184 	} else {
2185 		qp_notify_peer(false, handle, context_id, peer_id);
2186 		if (context_id == VMCI_HOST_CONTEXT_ID &&
2187 		    QPBROKERSTATE_HAS_MEM(entry)) {
2188 			entry->state = VMCIQPB_SHUTDOWN_MEM;
2189 		} else {
2190 			entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2191 		}
2192 
2193 		if (!is_local)
2194 			vmci_ctx_qp_destroy(context, handle);
2195 
2196 	}
2197 	result = VMCI_SUCCESS;
2198  out:
2199 	mutex_unlock(&qp_broker_list.mutex);
2200 	return result;
2201 }
2202 
2203 /*
2204  * Establishes the necessary mappings for a queue pair given a
2205  * reference to the queue pair guest memory. This is usually
2206  * called when a guest is unquiesced and the VMX is allowed to
2207  * map guest memory once again.
2208  */
2209 int vmci_qp_broker_map(struct vmci_handle handle,
2210 		       struct vmci_ctx *context,
2211 		       u64 guest_mem)
2212 {
2213 	struct qp_broker_entry *entry;
2214 	const u32 context_id = vmci_ctx_get_id(context);
2215 	bool is_local = false;
2216 	int result;
2217 
2218 	if (vmci_handle_is_invalid(handle) || !context ||
2219 	    context_id == VMCI_INVALID_ID)
2220 		return VMCI_ERROR_INVALID_ARGS;
2221 
2222 	mutex_lock(&qp_broker_list.mutex);
2223 
2224 	if (!vmci_ctx_qp_exists(context, handle)) {
2225 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2226 			 context_id, handle.context, handle.resource);
2227 		result = VMCI_ERROR_NOT_FOUND;
2228 		goto out;
2229 	}
2230 
2231 	entry = qp_broker_handle_to_entry(handle);
2232 	if (!entry) {
2233 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2234 			 context_id, handle.context, handle.resource);
2235 		result = VMCI_ERROR_NOT_FOUND;
2236 		goto out;
2237 	}
2238 
2239 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2240 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2241 		goto out;
2242 	}
2243 
2244 	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2245 	result = VMCI_SUCCESS;
2246 
2247 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2248 		struct vmci_qp_page_store page_store;
2249 
2250 		page_store.pages = guest_mem;
2251 		page_store.len = QPE_NUM_PAGES(entry->qp);
2252 
2253 		qp_acquire_queue_mutex(entry->produce_q);
2254 		qp_reset_saved_headers(entry);
2255 		result =
2256 		    qp_host_register_user_memory(&page_store,
2257 						 entry->produce_q,
2258 						 entry->consume_q);
2259 		qp_release_queue_mutex(entry->produce_q);
2260 		if (result == VMCI_SUCCESS) {
2261 			/* Move state from *_NO_MEM to *_MEM */
2262 
2263 			entry->state++;
2264 
2265 			if (entry->wakeup_cb)
2266 				entry->wakeup_cb(entry->client_data);
2267 		}
2268 	}
2269 
2270  out:
2271 	mutex_unlock(&qp_broker_list.mutex);
2272 	return result;
2273 }
2274 
2275 /*
2276  * Saves a snapshot of the queue headers for the given QP broker
2277  * entry. Should be used when guest memory is unmapped.
2278  * Results:
2279  * VMCI_SUCCESS on success, appropriate error code if guest memory
2280  * can't be accessed..
2281  */
2282 static int qp_save_headers(struct qp_broker_entry *entry)
2283 {
2284 	int result;
2285 
2286 	if (entry->produce_q->saved_header != NULL &&
2287 	    entry->consume_q->saved_header != NULL) {
2288 		/*
2289 		 *  If the headers have already been saved, we don't need to do
2290 		 *  it again, and we don't want to map in the headers
2291 		 *  unnecessarily.
2292 		 */
2293 
2294 		return VMCI_SUCCESS;
2295 	}
2296 
2297 	if (NULL == entry->produce_q->q_header ||
2298 	    NULL == entry->consume_q->q_header) {
2299 		result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2300 		if (result < VMCI_SUCCESS)
2301 			return result;
2302 	}
2303 
2304 	memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2305 	       sizeof(entry->saved_produce_q));
2306 	entry->produce_q->saved_header = &entry->saved_produce_q;
2307 	memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2308 	       sizeof(entry->saved_consume_q));
2309 	entry->consume_q->saved_header = &entry->saved_consume_q;
2310 
2311 	return VMCI_SUCCESS;
2312 }
2313 
2314 /*
2315  * Removes all references to the guest memory of a given queue pair, and
2316  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2317  * called when a VM is being quiesced where access to guest memory should
2318  * avoided.
2319  */
2320 int vmci_qp_broker_unmap(struct vmci_handle handle,
2321 			 struct vmci_ctx *context,
2322 			 u32 gid)
2323 {
2324 	struct qp_broker_entry *entry;
2325 	const u32 context_id = vmci_ctx_get_id(context);
2326 	bool is_local = false;
2327 	int result;
2328 
2329 	if (vmci_handle_is_invalid(handle) || !context ||
2330 	    context_id == VMCI_INVALID_ID)
2331 		return VMCI_ERROR_INVALID_ARGS;
2332 
2333 	mutex_lock(&qp_broker_list.mutex);
2334 
2335 	if (!vmci_ctx_qp_exists(context, handle)) {
2336 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2337 			 context_id, handle.context, handle.resource);
2338 		result = VMCI_ERROR_NOT_FOUND;
2339 		goto out;
2340 	}
2341 
2342 	entry = qp_broker_handle_to_entry(handle);
2343 	if (!entry) {
2344 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2345 			 context_id, handle.context, handle.resource);
2346 		result = VMCI_ERROR_NOT_FOUND;
2347 		goto out;
2348 	}
2349 
2350 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2351 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2352 		goto out;
2353 	}
2354 
2355 	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2356 
2357 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2358 		qp_acquire_queue_mutex(entry->produce_q);
2359 		result = qp_save_headers(entry);
2360 		if (result < VMCI_SUCCESS)
2361 			pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2362 				handle.context, handle.resource, result);
2363 
2364 		qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2365 
2366 		/*
2367 		 * On hosted, when we unmap queue pairs, the VMX will also
2368 		 * unmap the guest memory, so we invalidate the previously
2369 		 * registered memory. If the queue pair is mapped again at a
2370 		 * later point in time, we will need to reregister the user
2371 		 * memory with a possibly new user VA.
2372 		 */
2373 		qp_host_unregister_user_memory(entry->produce_q,
2374 					       entry->consume_q);
2375 
2376 		/*
2377 		 * Move state from *_MEM to *_NO_MEM.
2378 		 */
2379 		entry->state--;
2380 
2381 		qp_release_queue_mutex(entry->produce_q);
2382 	}
2383 
2384 	result = VMCI_SUCCESS;
2385 
2386  out:
2387 	mutex_unlock(&qp_broker_list.mutex);
2388 	return result;
2389 }
2390 
2391 /*
2392  * Destroys all guest queue pair endpoints. If active guest queue
2393  * pairs still exist, hypercalls to attempt detach from these
2394  * queue pairs will be made. Any failure to detach is silently
2395  * ignored.
2396  */
2397 void vmci_qp_guest_endpoints_exit(void)
2398 {
2399 	struct qp_entry *entry;
2400 	struct qp_guest_endpoint *ep;
2401 
2402 	mutex_lock(&qp_guest_endpoints.mutex);
2403 
2404 	while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2405 		ep = (struct qp_guest_endpoint *)entry;
2406 
2407 		/* Don't make a hypercall for local queue_pairs. */
2408 		if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2409 			qp_detatch_hypercall(entry->handle);
2410 
2411 		/* We cannot fail the exit, so let's reset ref_count. */
2412 		entry->ref_count = 0;
2413 		qp_list_remove_entry(&qp_guest_endpoints, entry);
2414 
2415 		qp_guest_endpoint_destroy(ep);
2416 	}
2417 
2418 	mutex_unlock(&qp_guest_endpoints.mutex);
2419 }
2420 
2421 /*
2422  * Helper routine that will lock the queue pair before subsequent
2423  * operations.
2424  * Note: Non-blocking on the host side is currently only implemented in ESX.
2425  * Since non-blocking isn't yet implemented on the host personality we
2426  * have no reason to acquire a spin lock.  So to avoid the use of an
2427  * unnecessary lock only acquire the mutex if we can block.
2428  */
2429 static void qp_lock(const struct vmci_qp *qpair)
2430 {
2431 	qp_acquire_queue_mutex(qpair->produce_q);
2432 }
2433 
2434 /*
2435  * Helper routine that unlocks the queue pair after calling
2436  * qp_lock.
2437  */
2438 static void qp_unlock(const struct vmci_qp *qpair)
2439 {
2440 	qp_release_queue_mutex(qpair->produce_q);
2441 }
2442 
2443 /*
2444  * The queue headers may not be mapped at all times. If a queue is
2445  * currently not mapped, it will be attempted to do so.
2446  */
2447 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2448 				struct vmci_queue *consume_q)
2449 {
2450 	int result;
2451 
2452 	if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2453 		result = qp_host_map_queues(produce_q, consume_q);
2454 		if (result < VMCI_SUCCESS)
2455 			return (produce_q->saved_header &&
2456 				consume_q->saved_header) ?
2457 			    VMCI_ERROR_QUEUEPAIR_NOT_READY :
2458 			    VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2459 	}
2460 
2461 	return VMCI_SUCCESS;
2462 }
2463 
2464 /*
2465  * Helper routine that will retrieve the produce and consume
2466  * headers of a given queue pair. If the guest memory of the
2467  * queue pair is currently not available, the saved queue headers
2468  * will be returned, if these are available.
2469  */
2470 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2471 				struct vmci_queue_header **produce_q_header,
2472 				struct vmci_queue_header **consume_q_header)
2473 {
2474 	int result;
2475 
2476 	result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2477 	if (result == VMCI_SUCCESS) {
2478 		*produce_q_header = qpair->produce_q->q_header;
2479 		*consume_q_header = qpair->consume_q->q_header;
2480 	} else if (qpair->produce_q->saved_header &&
2481 		   qpair->consume_q->saved_header) {
2482 		*produce_q_header = qpair->produce_q->saved_header;
2483 		*consume_q_header = qpair->consume_q->saved_header;
2484 		result = VMCI_SUCCESS;
2485 	}
2486 
2487 	return result;
2488 }
2489 
2490 /*
2491  * Callback from VMCI queue pair broker indicating that a queue
2492  * pair that was previously not ready, now either is ready or
2493  * gone forever.
2494  */
2495 static int qp_wakeup_cb(void *client_data)
2496 {
2497 	struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2498 
2499 	qp_lock(qpair);
2500 	while (qpair->blocked > 0) {
2501 		qpair->blocked--;
2502 		qpair->generation++;
2503 		wake_up(&qpair->event);
2504 	}
2505 	qp_unlock(qpair);
2506 
2507 	return VMCI_SUCCESS;
2508 }
2509 
2510 /*
2511  * Makes the calling thread wait for the queue pair to become
2512  * ready for host side access.  Returns true when thread is
2513  * woken up after queue pair state change, false otherwise.
2514  */
2515 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2516 {
2517 	unsigned int generation;
2518 
2519 	qpair->blocked++;
2520 	generation = qpair->generation;
2521 	qp_unlock(qpair);
2522 	wait_event(qpair->event, generation != qpair->generation);
2523 	qp_lock(qpair);
2524 
2525 	return true;
2526 }
2527 
2528 /*
2529  * Enqueues a given buffer to the produce queue using the provided
2530  * function. As many bytes as possible (space available in the queue)
2531  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2532  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2533  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2534  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2535  * an error occured when accessing the buffer,
2536  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2537  * available.  Otherwise, the number of bytes written to the queue is
2538  * returned.  Updates the tail pointer of the produce queue.
2539  */
2540 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2541 				 struct vmci_queue *consume_q,
2542 				 const u64 produce_q_size,
2543 				 struct iov_iter *from)
2544 {
2545 	s64 free_space;
2546 	u64 tail;
2547 	size_t buf_size = iov_iter_count(from);
2548 	size_t written;
2549 	ssize_t result;
2550 
2551 	result = qp_map_queue_headers(produce_q, consume_q);
2552 	if (unlikely(result != VMCI_SUCCESS))
2553 		return result;
2554 
2555 	free_space = vmci_q_header_free_space(produce_q->q_header,
2556 					      consume_q->q_header,
2557 					      produce_q_size);
2558 	if (free_space == 0)
2559 		return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2560 
2561 	if (free_space < VMCI_SUCCESS)
2562 		return (ssize_t) free_space;
2563 
2564 	written = (size_t) (free_space > buf_size ? buf_size : free_space);
2565 	tail = vmci_q_header_producer_tail(produce_q->q_header);
2566 	if (likely(tail + written < produce_q_size)) {
2567 		result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2568 	} else {
2569 		/* Tail pointer wraps around. */
2570 
2571 		const size_t tmp = (size_t) (produce_q_size - tail);
2572 
2573 		result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2574 		if (result >= VMCI_SUCCESS)
2575 			result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2576 						 written - tmp);
2577 	}
2578 
2579 	if (result < VMCI_SUCCESS)
2580 		return result;
2581 
2582 	vmci_q_header_add_producer_tail(produce_q->q_header, written,
2583 					produce_q_size);
2584 	return written;
2585 }
2586 
2587 /*
2588  * Dequeues data (if available) from the given consume queue. Writes data
2589  * to the user provided buffer using the provided function.
2590  * Assumes the queue->mutex has been acquired.
2591  * Results:
2592  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2593  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2594  * (as defined by the queue size).
2595  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2596  * Otherwise the number of bytes dequeued is returned.
2597  * Side effects:
2598  * Updates the head pointer of the consume queue.
2599  */
2600 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2601 				 struct vmci_queue *consume_q,
2602 				 const u64 consume_q_size,
2603 				 struct iov_iter *to,
2604 				 bool update_consumer)
2605 {
2606 	size_t buf_size = iov_iter_count(to);
2607 	s64 buf_ready;
2608 	u64 head;
2609 	size_t read;
2610 	ssize_t result;
2611 
2612 	result = qp_map_queue_headers(produce_q, consume_q);
2613 	if (unlikely(result != VMCI_SUCCESS))
2614 		return result;
2615 
2616 	buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2617 					    produce_q->q_header,
2618 					    consume_q_size);
2619 	if (buf_ready == 0)
2620 		return VMCI_ERROR_QUEUEPAIR_NODATA;
2621 
2622 	if (buf_ready < VMCI_SUCCESS)
2623 		return (ssize_t) buf_ready;
2624 
2625 	read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2626 	head = vmci_q_header_consumer_head(produce_q->q_header);
2627 	if (likely(head + read < consume_q_size)) {
2628 		result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2629 	} else {
2630 		/* Head pointer wraps around. */
2631 
2632 		const size_t tmp = (size_t) (consume_q_size - head);
2633 
2634 		result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2635 		if (result >= VMCI_SUCCESS)
2636 			result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2637 						   read - tmp);
2638 
2639 	}
2640 
2641 	if (result < VMCI_SUCCESS)
2642 		return result;
2643 
2644 	if (update_consumer)
2645 		vmci_q_header_add_consumer_head(produce_q->q_header,
2646 						read, consume_q_size);
2647 
2648 	return read;
2649 }
2650 
2651 /*
2652  * vmci_qpair_alloc() - Allocates a queue pair.
2653  * @qpair:      Pointer for the new vmci_qp struct.
2654  * @handle:     Handle to track the resource.
2655  * @produce_qsize:      Desired size of the producer queue.
2656  * @consume_qsize:      Desired size of the consumer queue.
2657  * @peer:       ContextID of the peer.
2658  * @flags:      VMCI flags.
2659  * @priv_flags: VMCI priviledge flags.
2660  *
2661  * This is the client interface for allocating the memory for a
2662  * vmci_qp structure and then attaching to the underlying
2663  * queue.  If an error occurs allocating the memory for the
2664  * vmci_qp structure no attempt is made to attach.  If an
2665  * error occurs attaching, then the structure is freed.
2666  */
2667 int vmci_qpair_alloc(struct vmci_qp **qpair,
2668 		     struct vmci_handle *handle,
2669 		     u64 produce_qsize,
2670 		     u64 consume_qsize,
2671 		     u32 peer,
2672 		     u32 flags,
2673 		     u32 priv_flags)
2674 {
2675 	struct vmci_qp *my_qpair;
2676 	int retval;
2677 	struct vmci_handle src = VMCI_INVALID_HANDLE;
2678 	struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2679 	enum vmci_route route;
2680 	vmci_event_release_cb wakeup_cb;
2681 	void *client_data;
2682 
2683 	/*
2684 	 * Restrict the size of a queuepair.  The device already
2685 	 * enforces a limit on the total amount of memory that can be
2686 	 * allocated to queuepairs for a guest.  However, we try to
2687 	 * allocate this memory before we make the queuepair
2688 	 * allocation hypercall.  On Linux, we allocate each page
2689 	 * separately, which means rather than fail, the guest will
2690 	 * thrash while it tries to allocate, and will become
2691 	 * increasingly unresponsive to the point where it appears to
2692 	 * be hung.  So we place a limit on the size of an individual
2693 	 * queuepair here, and leave the device to enforce the
2694 	 * restriction on total queuepair memory.  (Note that this
2695 	 * doesn't prevent all cases; a user with only this much
2696 	 * physical memory could still get into trouble.)  The error
2697 	 * used by the device is NO_RESOURCES, so use that here too.
2698 	 */
2699 
2700 	if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2701 	    produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2702 		return VMCI_ERROR_NO_RESOURCES;
2703 
2704 	retval = vmci_route(&src, &dst, false, &route);
2705 	if (retval < VMCI_SUCCESS)
2706 		route = vmci_guest_code_active() ?
2707 		    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2708 
2709 	if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2710 		pr_devel("NONBLOCK OR PINNED set");
2711 		return VMCI_ERROR_INVALID_ARGS;
2712 	}
2713 
2714 	my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2715 	if (!my_qpair)
2716 		return VMCI_ERROR_NO_MEM;
2717 
2718 	my_qpair->produce_q_size = produce_qsize;
2719 	my_qpair->consume_q_size = consume_qsize;
2720 	my_qpair->peer = peer;
2721 	my_qpair->flags = flags;
2722 	my_qpair->priv_flags = priv_flags;
2723 
2724 	wakeup_cb = NULL;
2725 	client_data = NULL;
2726 
2727 	if (VMCI_ROUTE_AS_HOST == route) {
2728 		my_qpair->guest_endpoint = false;
2729 		if (!(flags & VMCI_QPFLAG_LOCAL)) {
2730 			my_qpair->blocked = 0;
2731 			my_qpair->generation = 0;
2732 			init_waitqueue_head(&my_qpair->event);
2733 			wakeup_cb = qp_wakeup_cb;
2734 			client_data = (void *)my_qpair;
2735 		}
2736 	} else {
2737 		my_qpair->guest_endpoint = true;
2738 	}
2739 
2740 	retval = vmci_qp_alloc(handle,
2741 			       &my_qpair->produce_q,
2742 			       my_qpair->produce_q_size,
2743 			       &my_qpair->consume_q,
2744 			       my_qpair->consume_q_size,
2745 			       my_qpair->peer,
2746 			       my_qpair->flags,
2747 			       my_qpair->priv_flags,
2748 			       my_qpair->guest_endpoint,
2749 			       wakeup_cb, client_data);
2750 
2751 	if (retval < VMCI_SUCCESS) {
2752 		kfree(my_qpair);
2753 		return retval;
2754 	}
2755 
2756 	*qpair = my_qpair;
2757 	my_qpair->handle = *handle;
2758 
2759 	return retval;
2760 }
2761 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2762 
2763 /*
2764  * vmci_qpair_detach() - Detatches the client from a queue pair.
2765  * @qpair:      Reference of a pointer to the qpair struct.
2766  *
2767  * This is the client interface for detaching from a VMCIQPair.
2768  * Note that this routine will free the memory allocated for the
2769  * vmci_qp structure too.
2770  */
2771 int vmci_qpair_detach(struct vmci_qp **qpair)
2772 {
2773 	int result;
2774 	struct vmci_qp *old_qpair;
2775 
2776 	if (!qpair || !(*qpair))
2777 		return VMCI_ERROR_INVALID_ARGS;
2778 
2779 	old_qpair = *qpair;
2780 	result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2781 
2782 	/*
2783 	 * The guest can fail to detach for a number of reasons, and
2784 	 * if it does so, it will cleanup the entry (if there is one).
2785 	 * The host can fail too, but it won't cleanup the entry
2786 	 * immediately, it will do that later when the context is
2787 	 * freed.  Either way, we need to release the qpair struct
2788 	 * here; there isn't much the caller can do, and we don't want
2789 	 * to leak.
2790 	 */
2791 
2792 	memset(old_qpair, 0, sizeof(*old_qpair));
2793 	old_qpair->handle = VMCI_INVALID_HANDLE;
2794 	old_qpair->peer = VMCI_INVALID_ID;
2795 	kfree(old_qpair);
2796 	*qpair = NULL;
2797 
2798 	return result;
2799 }
2800 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2801 
2802 /*
2803  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2804  * @qpair:      Pointer to the queue pair struct.
2805  * @producer_tail:      Reference used for storing producer tail index.
2806  * @consumer_head:      Reference used for storing the consumer head index.
2807  *
2808  * This is the client interface for getting the current indexes of the
2809  * QPair from the point of the view of the caller as the producer.
2810  */
2811 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2812 				   u64 *producer_tail,
2813 				   u64 *consumer_head)
2814 {
2815 	struct vmci_queue_header *produce_q_header;
2816 	struct vmci_queue_header *consume_q_header;
2817 	int result;
2818 
2819 	if (!qpair)
2820 		return VMCI_ERROR_INVALID_ARGS;
2821 
2822 	qp_lock(qpair);
2823 	result =
2824 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2825 	if (result == VMCI_SUCCESS)
2826 		vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2827 					   producer_tail, consumer_head);
2828 	qp_unlock(qpair);
2829 
2830 	if (result == VMCI_SUCCESS &&
2831 	    ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2832 	     (consumer_head && *consumer_head >= qpair->produce_q_size)))
2833 		return VMCI_ERROR_INVALID_SIZE;
2834 
2835 	return result;
2836 }
2837 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2838 
2839 /*
2840  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2841  * @qpair:      Pointer to the queue pair struct.
2842  * @consumer_tail:      Reference used for storing consumer tail index.
2843  * @producer_head:      Reference used for storing the producer head index.
2844  *
2845  * This is the client interface for getting the current indexes of the
2846  * QPair from the point of the view of the caller as the consumer.
2847  */
2848 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2849 				   u64 *consumer_tail,
2850 				   u64 *producer_head)
2851 {
2852 	struct vmci_queue_header *produce_q_header;
2853 	struct vmci_queue_header *consume_q_header;
2854 	int result;
2855 
2856 	if (!qpair)
2857 		return VMCI_ERROR_INVALID_ARGS;
2858 
2859 	qp_lock(qpair);
2860 	result =
2861 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2862 	if (result == VMCI_SUCCESS)
2863 		vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2864 					   consumer_tail, producer_head);
2865 	qp_unlock(qpair);
2866 
2867 	if (result == VMCI_SUCCESS &&
2868 	    ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2869 	     (producer_head && *producer_head >= qpair->consume_q_size)))
2870 		return VMCI_ERROR_INVALID_SIZE;
2871 
2872 	return result;
2873 }
2874 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2875 
2876 /*
2877  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2878  * @qpair:      Pointer to the queue pair struct.
2879  *
2880  * This is the client interface for getting the amount of free
2881  * space in the QPair from the point of the view of the caller as
2882  * the producer which is the common case.  Returns < 0 if err, else
2883  * available bytes into which data can be enqueued if > 0.
2884  */
2885 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2886 {
2887 	struct vmci_queue_header *produce_q_header;
2888 	struct vmci_queue_header *consume_q_header;
2889 	s64 result;
2890 
2891 	if (!qpair)
2892 		return VMCI_ERROR_INVALID_ARGS;
2893 
2894 	qp_lock(qpair);
2895 	result =
2896 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2897 	if (result == VMCI_SUCCESS)
2898 		result = vmci_q_header_free_space(produce_q_header,
2899 						  consume_q_header,
2900 						  qpair->produce_q_size);
2901 	else
2902 		result = 0;
2903 
2904 	qp_unlock(qpair);
2905 
2906 	return result;
2907 }
2908 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2909 
2910 /*
2911  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2912  * @qpair:      Pointer to the queue pair struct.
2913  *
2914  * This is the client interface for getting the amount of free
2915  * space in the QPair from the point of the view of the caller as
2916  * the consumer which is not the common case.  Returns < 0 if err, else
2917  * available bytes into which data can be enqueued if > 0.
2918  */
2919 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2920 {
2921 	struct vmci_queue_header *produce_q_header;
2922 	struct vmci_queue_header *consume_q_header;
2923 	s64 result;
2924 
2925 	if (!qpair)
2926 		return VMCI_ERROR_INVALID_ARGS;
2927 
2928 	qp_lock(qpair);
2929 	result =
2930 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2931 	if (result == VMCI_SUCCESS)
2932 		result = vmci_q_header_free_space(consume_q_header,
2933 						  produce_q_header,
2934 						  qpair->consume_q_size);
2935 	else
2936 		result = 0;
2937 
2938 	qp_unlock(qpair);
2939 
2940 	return result;
2941 }
2942 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2943 
2944 /*
2945  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2946  * producer queue.
2947  * @qpair:      Pointer to the queue pair struct.
2948  *
2949  * This is the client interface for getting the amount of
2950  * enqueued data in the QPair from the point of the view of the
2951  * caller as the producer which is not the common case.  Returns < 0 if err,
2952  * else available bytes that may be read.
2953  */
2954 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2955 {
2956 	struct vmci_queue_header *produce_q_header;
2957 	struct vmci_queue_header *consume_q_header;
2958 	s64 result;
2959 
2960 	if (!qpair)
2961 		return VMCI_ERROR_INVALID_ARGS;
2962 
2963 	qp_lock(qpair);
2964 	result =
2965 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2966 	if (result == VMCI_SUCCESS)
2967 		result = vmci_q_header_buf_ready(produce_q_header,
2968 						 consume_q_header,
2969 						 qpair->produce_q_size);
2970 	else
2971 		result = 0;
2972 
2973 	qp_unlock(qpair);
2974 
2975 	return result;
2976 }
2977 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2978 
2979 /*
2980  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2981  * consumer queue.
2982  * @qpair:      Pointer to the queue pair struct.
2983  *
2984  * This is the client interface for getting the amount of
2985  * enqueued data in the QPair from the point of the view of the
2986  * caller as the consumer which is the normal case.  Returns < 0 if err,
2987  * else available bytes that may be read.
2988  */
2989 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2990 {
2991 	struct vmci_queue_header *produce_q_header;
2992 	struct vmci_queue_header *consume_q_header;
2993 	s64 result;
2994 
2995 	if (!qpair)
2996 		return VMCI_ERROR_INVALID_ARGS;
2997 
2998 	qp_lock(qpair);
2999 	result =
3000 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3001 	if (result == VMCI_SUCCESS)
3002 		result = vmci_q_header_buf_ready(consume_q_header,
3003 						 produce_q_header,
3004 						 qpair->consume_q_size);
3005 	else
3006 		result = 0;
3007 
3008 	qp_unlock(qpair);
3009 
3010 	return result;
3011 }
3012 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3013 
3014 /*
3015  * vmci_qpair_enqueue() - Throw data on the queue.
3016  * @qpair:      Pointer to the queue pair struct.
3017  * @buf:        Pointer to buffer containing data
3018  * @buf_size:   Length of buffer.
3019  * @buf_type:   Buffer type (Unused).
3020  *
3021  * This is the client interface for enqueueing data into the queue.
3022  * Returns number of bytes enqueued or < 0 on error.
3023  */
3024 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3025 			   const void *buf,
3026 			   size_t buf_size,
3027 			   int buf_type)
3028 {
3029 	ssize_t result;
3030 	struct iov_iter from;
3031 	struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3032 
3033 	if (!qpair || !buf)
3034 		return VMCI_ERROR_INVALID_ARGS;
3035 
3036 	iov_iter_kvec(&from, WRITE | ITER_KVEC, &v, 1, buf_size);
3037 
3038 	qp_lock(qpair);
3039 
3040 	do {
3041 		result = qp_enqueue_locked(qpair->produce_q,
3042 					   qpair->consume_q,
3043 					   qpair->produce_q_size,
3044 					   &from);
3045 
3046 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3047 		    !qp_wait_for_ready_queue(qpair))
3048 			result = VMCI_ERROR_WOULD_BLOCK;
3049 
3050 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3051 
3052 	qp_unlock(qpair);
3053 
3054 	return result;
3055 }
3056 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3057 
3058 /*
3059  * vmci_qpair_dequeue() - Get data from the queue.
3060  * @qpair:      Pointer to the queue pair struct.
3061  * @buf:        Pointer to buffer for the data
3062  * @buf_size:   Length of buffer.
3063  * @buf_type:   Buffer type (Unused).
3064  *
3065  * This is the client interface for dequeueing data from the queue.
3066  * Returns number of bytes dequeued or < 0 on error.
3067  */
3068 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3069 			   void *buf,
3070 			   size_t buf_size,
3071 			   int buf_type)
3072 {
3073 	ssize_t result;
3074 	struct iov_iter to;
3075 	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3076 
3077 	if (!qpair || !buf)
3078 		return VMCI_ERROR_INVALID_ARGS;
3079 
3080 	iov_iter_kvec(&to, READ | ITER_KVEC, &v, 1, buf_size);
3081 
3082 	qp_lock(qpair);
3083 
3084 	do {
3085 		result = qp_dequeue_locked(qpair->produce_q,
3086 					   qpair->consume_q,
3087 					   qpair->consume_q_size,
3088 					   &to, true);
3089 
3090 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3091 		    !qp_wait_for_ready_queue(qpair))
3092 			result = VMCI_ERROR_WOULD_BLOCK;
3093 
3094 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3095 
3096 	qp_unlock(qpair);
3097 
3098 	return result;
3099 }
3100 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3101 
3102 /*
3103  * vmci_qpair_peek() - Peek at the data in the queue.
3104  * @qpair:      Pointer to the queue pair struct.
3105  * @buf:        Pointer to buffer for the data
3106  * @buf_size:   Length of buffer.
3107  * @buf_type:   Buffer type (Unused on Linux).
3108  *
3109  * This is the client interface for peeking into a queue.  (I.e.,
3110  * copy data from the queue without updating the head pointer.)
3111  * Returns number of bytes dequeued or < 0 on error.
3112  */
3113 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3114 			void *buf,
3115 			size_t buf_size,
3116 			int buf_type)
3117 {
3118 	struct iov_iter to;
3119 	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3120 	ssize_t result;
3121 
3122 	if (!qpair || !buf)
3123 		return VMCI_ERROR_INVALID_ARGS;
3124 
3125 	iov_iter_kvec(&to, READ | ITER_KVEC, &v, 1, buf_size);
3126 
3127 	qp_lock(qpair);
3128 
3129 	do {
3130 		result = qp_dequeue_locked(qpair->produce_q,
3131 					   qpair->consume_q,
3132 					   qpair->consume_q_size,
3133 					   &to, false);
3134 
3135 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3136 		    !qp_wait_for_ready_queue(qpair))
3137 			result = VMCI_ERROR_WOULD_BLOCK;
3138 
3139 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3140 
3141 	qp_unlock(qpair);
3142 
3143 	return result;
3144 }
3145 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3146 
3147 /*
3148  * vmci_qpair_enquev() - Throw data on the queue using iov.
3149  * @qpair:      Pointer to the queue pair struct.
3150  * @iov:        Pointer to buffer containing data
3151  * @iov_size:   Length of buffer.
3152  * @buf_type:   Buffer type (Unused).
3153  *
3154  * This is the client interface for enqueueing data into the queue.
3155  * This function uses IO vectors to handle the work. Returns number
3156  * of bytes enqueued or < 0 on error.
3157  */
3158 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3159 			  struct msghdr *msg,
3160 			  size_t iov_size,
3161 			  int buf_type)
3162 {
3163 	ssize_t result;
3164 
3165 	if (!qpair)
3166 		return VMCI_ERROR_INVALID_ARGS;
3167 
3168 	qp_lock(qpair);
3169 
3170 	do {
3171 		result = qp_enqueue_locked(qpair->produce_q,
3172 					   qpair->consume_q,
3173 					   qpair->produce_q_size,
3174 					   &msg->msg_iter);
3175 
3176 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3177 		    !qp_wait_for_ready_queue(qpair))
3178 			result = VMCI_ERROR_WOULD_BLOCK;
3179 
3180 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3181 
3182 	qp_unlock(qpair);
3183 
3184 	return result;
3185 }
3186 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3187 
3188 /*
3189  * vmci_qpair_dequev() - Get data from the queue using iov.
3190  * @qpair:      Pointer to the queue pair struct.
3191  * @iov:        Pointer to buffer for the data
3192  * @iov_size:   Length of buffer.
3193  * @buf_type:   Buffer type (Unused).
3194  *
3195  * This is the client interface for dequeueing data from the queue.
3196  * This function uses IO vectors to handle the work. Returns number
3197  * of bytes dequeued or < 0 on error.
3198  */
3199 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3200 			  struct msghdr *msg,
3201 			  size_t iov_size,
3202 			  int buf_type)
3203 {
3204 	ssize_t result;
3205 
3206 	if (!qpair)
3207 		return VMCI_ERROR_INVALID_ARGS;
3208 
3209 	qp_lock(qpair);
3210 
3211 	do {
3212 		result = qp_dequeue_locked(qpair->produce_q,
3213 					   qpair->consume_q,
3214 					   qpair->consume_q_size,
3215 					   &msg->msg_iter, true);
3216 
3217 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3218 		    !qp_wait_for_ready_queue(qpair))
3219 			result = VMCI_ERROR_WOULD_BLOCK;
3220 
3221 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3222 
3223 	qp_unlock(qpair);
3224 
3225 	return result;
3226 }
3227 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3228 
3229 /*
3230  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3231  * @qpair:      Pointer to the queue pair struct.
3232  * @iov:        Pointer to buffer for the data
3233  * @iov_size:   Length of buffer.
3234  * @buf_type:   Buffer type (Unused on Linux).
3235  *
3236  * This is the client interface for peeking into a queue.  (I.e.,
3237  * copy data from the queue without updating the head pointer.)
3238  * This function uses IO vectors to handle the work. Returns number
3239  * of bytes peeked or < 0 on error.
3240  */
3241 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3242 			 struct msghdr *msg,
3243 			 size_t iov_size,
3244 			 int buf_type)
3245 {
3246 	ssize_t result;
3247 
3248 	if (!qpair)
3249 		return VMCI_ERROR_INVALID_ARGS;
3250 
3251 	qp_lock(qpair);
3252 
3253 	do {
3254 		result = qp_dequeue_locked(qpair->produce_q,
3255 					   qpair->consume_q,
3256 					   qpair->consume_q_size,
3257 					   &msg->msg_iter, false);
3258 
3259 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3260 		    !qp_wait_for_ready_queue(qpair))
3261 			result = VMCI_ERROR_WOULD_BLOCK;
3262 
3263 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3264 
3265 	qp_unlock(qpair);
3266 	return result;
3267 }
3268 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3269