1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * VMware VMCI Driver 4 * 5 * Copyright (C) 2012 VMware, Inc. All rights reserved. 6 */ 7 8 #include <linux/vmw_vmci_defs.h> 9 #include <linux/vmw_vmci_api.h> 10 #include <linux/highmem.h> 11 #include <linux/kernel.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/pagemap.h> 16 #include <linux/pci.h> 17 #include <linux/sched.h> 18 #include <linux/slab.h> 19 #include <linux/uio.h> 20 #include <linux/wait.h> 21 #include <linux/vmalloc.h> 22 #include <linux/skbuff.h> 23 24 #include "vmci_handle_array.h" 25 #include "vmci_queue_pair.h" 26 #include "vmci_datagram.h" 27 #include "vmci_resource.h" 28 #include "vmci_context.h" 29 #include "vmci_driver.h" 30 #include "vmci_event.h" 31 #include "vmci_route.h" 32 33 /* 34 * In the following, we will distinguish between two kinds of VMX processes - 35 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized 36 * VMCI page files in the VMX and supporting VM to VM communication and the 37 * newer ones that use the guest memory directly. We will in the following 38 * refer to the older VMX versions as old-style VMX'en, and the newer ones as 39 * new-style VMX'en. 40 * 41 * The state transition datagram is as follows (the VMCIQPB_ prefix has been 42 * removed for readability) - see below for more details on the transtions: 43 * 44 * -------------- NEW ------------- 45 * | | 46 * \_/ \_/ 47 * CREATED_NO_MEM <-----------------> CREATED_MEM 48 * | | | 49 * | o-----------------------o | 50 * | | | 51 * \_/ \_/ \_/ 52 * ATTACHED_NO_MEM <----------------> ATTACHED_MEM 53 * | | | 54 * | o----------------------o | 55 * | | | 56 * \_/ \_/ \_/ 57 * SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM 58 * | | 59 * | | 60 * -------------> gone <------------- 61 * 62 * In more detail. When a VMCI queue pair is first created, it will be in the 63 * VMCIQPB_NEW state. It will then move into one of the following states: 64 * 65 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either: 66 * 67 * - the created was performed by a host endpoint, in which case there is 68 * no backing memory yet. 69 * 70 * - the create was initiated by an old-style VMX, that uses 71 * vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at 72 * a later point in time. This state can be distinguished from the one 73 * above by the context ID of the creator. A host side is not allowed to 74 * attach until the page store has been set. 75 * 76 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair 77 * is created by a VMX using the queue pair device backend that 78 * sets the UVAs of the queue pair immediately and stores the 79 * information for later attachers. At this point, it is ready for 80 * the host side to attach to it. 81 * 82 * Once the queue pair is in one of the created states (with the exception of 83 * the case mentioned for older VMX'en above), it is possible to attach to the 84 * queue pair. Again we have two new states possible: 85 * 86 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following 87 * paths: 88 * 89 * - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue 90 * pair, and attaches to a queue pair previously created by the host side. 91 * 92 * - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair 93 * already created by a guest. 94 * 95 * - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls 96 * vmci_qp_broker_set_page_store (see below). 97 * 98 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the 99 * VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will 100 * bring the queue pair into this state. Once vmci_qp_broker_set_page_store 101 * is called to register the user memory, the VMCIQPB_ATTACH_MEM state 102 * will be entered. 103 * 104 * From the attached queue pair, the queue pair can enter the shutdown states 105 * when either side of the queue pair detaches. If the guest side detaches 106 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where 107 * the content of the queue pair will no longer be available. If the host 108 * side detaches first, the queue pair will either enter the 109 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or 110 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped 111 * (e.g., the host detaches while a guest is stunned). 112 * 113 * New-style VMX'en will also unmap guest memory, if the guest is 114 * quiesced, e.g., during a snapshot operation. In that case, the guest 115 * memory will no longer be available, and the queue pair will transition from 116 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more, 117 * in which case the queue pair will transition from the *_NO_MEM state at that 118 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed, 119 * since the peer may have either attached or detached in the meantime. The 120 * values are laid out such that ++ on a state will move from a *_NO_MEM to a 121 * *_MEM state, and vice versa. 122 */ 123 124 /* The Kernel specific component of the struct vmci_queue structure. */ 125 struct vmci_queue_kern_if { 126 struct mutex __mutex; /* Protects the queue. */ 127 struct mutex *mutex; /* Shared by producer and consumer queues. */ 128 size_t num_pages; /* Number of pages incl. header. */ 129 bool host; /* Host or guest? */ 130 union { 131 struct { 132 dma_addr_t *pas; 133 void **vas; 134 } g; /* Used by the guest. */ 135 struct { 136 struct page **page; 137 struct page **header_page; 138 } h; /* Used by the host. */ 139 } u; 140 }; 141 142 /* 143 * This structure is opaque to the clients. 144 */ 145 struct vmci_qp { 146 struct vmci_handle handle; 147 struct vmci_queue *produce_q; 148 struct vmci_queue *consume_q; 149 u64 produce_q_size; 150 u64 consume_q_size; 151 u32 peer; 152 u32 flags; 153 u32 priv_flags; 154 bool guest_endpoint; 155 unsigned int blocked; 156 unsigned int generation; 157 wait_queue_head_t event; 158 }; 159 160 enum qp_broker_state { 161 VMCIQPB_NEW, 162 VMCIQPB_CREATED_NO_MEM, 163 VMCIQPB_CREATED_MEM, 164 VMCIQPB_ATTACHED_NO_MEM, 165 VMCIQPB_ATTACHED_MEM, 166 VMCIQPB_SHUTDOWN_NO_MEM, 167 VMCIQPB_SHUTDOWN_MEM, 168 VMCIQPB_GONE 169 }; 170 171 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \ 172 _qpb->state == VMCIQPB_ATTACHED_MEM || \ 173 _qpb->state == VMCIQPB_SHUTDOWN_MEM) 174 175 /* 176 * In the queue pair broker, we always use the guest point of view for 177 * the produce and consume queue values and references, e.g., the 178 * produce queue size stored is the guests produce queue size. The 179 * host endpoint will need to swap these around. The only exception is 180 * the local queue pairs on the host, in which case the host endpoint 181 * that creates the queue pair will have the right orientation, and 182 * the attaching host endpoint will need to swap. 183 */ 184 struct qp_entry { 185 struct list_head list_item; 186 struct vmci_handle handle; 187 u32 peer; 188 u32 flags; 189 u64 produce_size; 190 u64 consume_size; 191 u32 ref_count; 192 }; 193 194 struct qp_broker_entry { 195 struct vmci_resource resource; 196 struct qp_entry qp; 197 u32 create_id; 198 u32 attach_id; 199 enum qp_broker_state state; 200 bool require_trusted_attach; 201 bool created_by_trusted; 202 bool vmci_page_files; /* Created by VMX using VMCI page files */ 203 struct vmci_queue *produce_q; 204 struct vmci_queue *consume_q; 205 struct vmci_queue_header saved_produce_q; 206 struct vmci_queue_header saved_consume_q; 207 vmci_event_release_cb wakeup_cb; 208 void *client_data; 209 void *local_mem; /* Kernel memory for local queue pair */ 210 }; 211 212 struct qp_guest_endpoint { 213 struct vmci_resource resource; 214 struct qp_entry qp; 215 u64 num_ppns; 216 void *produce_q; 217 void *consume_q; 218 struct ppn_set ppn_set; 219 }; 220 221 struct qp_list { 222 struct list_head head; 223 struct mutex mutex; /* Protect queue list. */ 224 }; 225 226 static struct qp_list qp_broker_list = { 227 .head = LIST_HEAD_INIT(qp_broker_list.head), 228 .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex), 229 }; 230 231 static struct qp_list qp_guest_endpoints = { 232 .head = LIST_HEAD_INIT(qp_guest_endpoints.head), 233 .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex), 234 }; 235 236 #define INVALID_VMCI_GUEST_MEM_ID 0 237 #define QPE_NUM_PAGES(_QPE) ((u32) \ 238 (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \ 239 DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2)) 240 #define QP_SIZES_ARE_VALID(_prod_qsize, _cons_qsize) \ 241 ((_prod_qsize) + (_cons_qsize) >= max(_prod_qsize, _cons_qsize) && \ 242 (_prod_qsize) + (_cons_qsize) <= VMCI_MAX_GUEST_QP_MEMORY) 243 244 /* 245 * Frees kernel VA space for a given queue and its queue header, and 246 * frees physical data pages. 247 */ 248 static void qp_free_queue(void *q, u64 size) 249 { 250 struct vmci_queue *queue = q; 251 252 if (queue) { 253 u64 i; 254 255 /* Given size does not include header, so add in a page here. */ 256 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) { 257 dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE, 258 queue->kernel_if->u.g.vas[i], 259 queue->kernel_if->u.g.pas[i]); 260 } 261 262 vfree(queue); 263 } 264 } 265 266 /* 267 * Allocates kernel queue pages of specified size with IOMMU mappings, 268 * plus space for the queue structure/kernel interface and the queue 269 * header. 270 */ 271 static void *qp_alloc_queue(u64 size, u32 flags) 272 { 273 u64 i; 274 struct vmci_queue *queue; 275 size_t pas_size; 276 size_t vas_size; 277 size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if); 278 u64 num_pages; 279 280 if (size > SIZE_MAX - PAGE_SIZE) 281 return NULL; 282 num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1; 283 if (num_pages > 284 (SIZE_MAX - queue_size) / 285 (sizeof(*queue->kernel_if->u.g.pas) + 286 sizeof(*queue->kernel_if->u.g.vas))) 287 return NULL; 288 289 pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas); 290 vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas); 291 queue_size += pas_size + vas_size; 292 293 queue = vmalloc(queue_size); 294 if (!queue) 295 return NULL; 296 297 queue->q_header = NULL; 298 queue->saved_header = NULL; 299 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1); 300 queue->kernel_if->mutex = NULL; 301 queue->kernel_if->num_pages = num_pages; 302 queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1); 303 queue->kernel_if->u.g.vas = 304 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size); 305 queue->kernel_if->host = false; 306 307 for (i = 0; i < num_pages; i++) { 308 queue->kernel_if->u.g.vas[i] = 309 dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE, 310 &queue->kernel_if->u.g.pas[i], 311 GFP_KERNEL); 312 if (!queue->kernel_if->u.g.vas[i]) { 313 /* Size excl. the header. */ 314 qp_free_queue(queue, i * PAGE_SIZE); 315 return NULL; 316 } 317 } 318 319 /* Queue header is the first page. */ 320 queue->q_header = queue->kernel_if->u.g.vas[0]; 321 322 return queue; 323 } 324 325 /* 326 * Copies from a given buffer or iovector to a VMCI Queue. Uses 327 * kmap_local_page() to dynamically map required portions of the queue 328 * by traversing the offset -> page translation structure for the queue. 329 * Assumes that offset + size does not wrap around in the queue. 330 */ 331 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue, 332 u64 queue_offset, 333 struct iov_iter *from, 334 size_t size) 335 { 336 struct vmci_queue_kern_if *kernel_if = queue->kernel_if; 337 size_t bytes_copied = 0; 338 339 while (bytes_copied < size) { 340 const u64 page_index = 341 (queue_offset + bytes_copied) / PAGE_SIZE; 342 const size_t page_offset = 343 (queue_offset + bytes_copied) & (PAGE_SIZE - 1); 344 void *va; 345 size_t to_copy; 346 347 if (kernel_if->host) 348 va = kmap_local_page(kernel_if->u.h.page[page_index]); 349 else 350 va = kernel_if->u.g.vas[page_index + 1]; 351 /* Skip header. */ 352 353 if (size - bytes_copied > PAGE_SIZE - page_offset) 354 /* Enough payload to fill up from this page. */ 355 to_copy = PAGE_SIZE - page_offset; 356 else 357 to_copy = size - bytes_copied; 358 359 if (!copy_from_iter_full((u8 *)va + page_offset, to_copy, 360 from)) { 361 if (kernel_if->host) 362 kunmap_local(va); 363 return VMCI_ERROR_INVALID_ARGS; 364 } 365 bytes_copied += to_copy; 366 if (kernel_if->host) 367 kunmap_local(va); 368 } 369 370 return VMCI_SUCCESS; 371 } 372 373 /* 374 * Copies to a given buffer or iovector from a VMCI Queue. Uses 375 * kmap_local_page() to dynamically map required portions of the queue 376 * by traversing the offset -> page translation structure for the queue. 377 * Assumes that offset + size does not wrap around in the queue. 378 */ 379 static int qp_memcpy_from_queue_iter(struct iov_iter *to, 380 const struct vmci_queue *queue, 381 u64 queue_offset, size_t size) 382 { 383 struct vmci_queue_kern_if *kernel_if = queue->kernel_if; 384 size_t bytes_copied = 0; 385 386 while (bytes_copied < size) { 387 const u64 page_index = 388 (queue_offset + bytes_copied) / PAGE_SIZE; 389 const size_t page_offset = 390 (queue_offset + bytes_copied) & (PAGE_SIZE - 1); 391 void *va; 392 size_t to_copy; 393 int err; 394 395 if (kernel_if->host) 396 va = kmap_local_page(kernel_if->u.h.page[page_index]); 397 else 398 va = kernel_if->u.g.vas[page_index + 1]; 399 /* Skip header. */ 400 401 if (size - bytes_copied > PAGE_SIZE - page_offset) 402 /* Enough payload to fill up this page. */ 403 to_copy = PAGE_SIZE - page_offset; 404 else 405 to_copy = size - bytes_copied; 406 407 err = copy_to_iter((u8 *)va + page_offset, to_copy, to); 408 if (err != to_copy) { 409 if (kernel_if->host) 410 kunmap_local(va); 411 return VMCI_ERROR_INVALID_ARGS; 412 } 413 bytes_copied += to_copy; 414 if (kernel_if->host) 415 kunmap_local(va); 416 } 417 418 return VMCI_SUCCESS; 419 } 420 421 /* 422 * Allocates two list of PPNs --- one for the pages in the produce queue, 423 * and the other for the pages in the consume queue. Intializes the list 424 * of PPNs with the page frame numbers of the KVA for the two queues (and 425 * the queue headers). 426 */ 427 static int qp_alloc_ppn_set(void *prod_q, 428 u64 num_produce_pages, 429 void *cons_q, 430 u64 num_consume_pages, struct ppn_set *ppn_set) 431 { 432 u64 *produce_ppns; 433 u64 *consume_ppns; 434 struct vmci_queue *produce_q = prod_q; 435 struct vmci_queue *consume_q = cons_q; 436 u64 i; 437 438 if (!produce_q || !num_produce_pages || !consume_q || 439 !num_consume_pages || !ppn_set) 440 return VMCI_ERROR_INVALID_ARGS; 441 442 if (ppn_set->initialized) 443 return VMCI_ERROR_ALREADY_EXISTS; 444 445 produce_ppns = 446 kmalloc_array(num_produce_pages, sizeof(*produce_ppns), 447 GFP_KERNEL); 448 if (!produce_ppns) 449 return VMCI_ERROR_NO_MEM; 450 451 consume_ppns = 452 kmalloc_array(num_consume_pages, sizeof(*consume_ppns), 453 GFP_KERNEL); 454 if (!consume_ppns) { 455 kfree(produce_ppns); 456 return VMCI_ERROR_NO_MEM; 457 } 458 459 for (i = 0; i < num_produce_pages; i++) 460 produce_ppns[i] = 461 produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT; 462 463 for (i = 0; i < num_consume_pages; i++) 464 consume_ppns[i] = 465 consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT; 466 467 ppn_set->num_produce_pages = num_produce_pages; 468 ppn_set->num_consume_pages = num_consume_pages; 469 ppn_set->produce_ppns = produce_ppns; 470 ppn_set->consume_ppns = consume_ppns; 471 ppn_set->initialized = true; 472 return VMCI_SUCCESS; 473 } 474 475 /* 476 * Frees the two list of PPNs for a queue pair. 477 */ 478 static void qp_free_ppn_set(struct ppn_set *ppn_set) 479 { 480 if (ppn_set->initialized) { 481 /* Do not call these functions on NULL inputs. */ 482 kfree(ppn_set->produce_ppns); 483 kfree(ppn_set->consume_ppns); 484 } 485 memset(ppn_set, 0, sizeof(*ppn_set)); 486 } 487 488 /* 489 * Populates the list of PPNs in the hypercall structure with the PPNS 490 * of the produce queue and the consume queue. 491 */ 492 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set) 493 { 494 if (vmci_use_ppn64()) { 495 memcpy(call_buf, ppn_set->produce_ppns, 496 ppn_set->num_produce_pages * 497 sizeof(*ppn_set->produce_ppns)); 498 memcpy(call_buf + 499 ppn_set->num_produce_pages * 500 sizeof(*ppn_set->produce_ppns), 501 ppn_set->consume_ppns, 502 ppn_set->num_consume_pages * 503 sizeof(*ppn_set->consume_ppns)); 504 } else { 505 int i; 506 u32 *ppns = (u32 *) call_buf; 507 508 for (i = 0; i < ppn_set->num_produce_pages; i++) 509 ppns[i] = (u32) ppn_set->produce_ppns[i]; 510 511 ppns = &ppns[ppn_set->num_produce_pages]; 512 513 for (i = 0; i < ppn_set->num_consume_pages; i++) 514 ppns[i] = (u32) ppn_set->consume_ppns[i]; 515 } 516 517 return VMCI_SUCCESS; 518 } 519 520 /* 521 * Allocates kernel VA space of specified size plus space for the queue 522 * and kernel interface. This is different from the guest queue allocator, 523 * because we do not allocate our own queue header/data pages here but 524 * share those of the guest. 525 */ 526 static struct vmci_queue *qp_host_alloc_queue(u64 size) 527 { 528 struct vmci_queue *queue; 529 size_t queue_page_size; 530 u64 num_pages; 531 const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if)); 532 533 if (size > min_t(size_t, VMCI_MAX_GUEST_QP_MEMORY, SIZE_MAX - PAGE_SIZE)) 534 return NULL; 535 num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1; 536 if (num_pages > (SIZE_MAX - queue_size) / 537 sizeof(*queue->kernel_if->u.h.page)) 538 return NULL; 539 540 queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page); 541 542 if (queue_size + queue_page_size > KMALLOC_MAX_SIZE) 543 return NULL; 544 545 queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL); 546 if (queue) { 547 queue->q_header = NULL; 548 queue->saved_header = NULL; 549 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1); 550 queue->kernel_if->host = true; 551 queue->kernel_if->mutex = NULL; 552 queue->kernel_if->num_pages = num_pages; 553 queue->kernel_if->u.h.header_page = 554 (struct page **)((u8 *)queue + queue_size); 555 queue->kernel_if->u.h.page = 556 &queue->kernel_if->u.h.header_page[1]; 557 } 558 559 return queue; 560 } 561 562 /* 563 * Frees kernel memory for a given queue (header plus translation 564 * structure). 565 */ 566 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size) 567 { 568 kfree(queue); 569 } 570 571 /* 572 * Initialize the mutex for the pair of queues. This mutex is used to 573 * protect the q_header and the buffer from changing out from under any 574 * users of either queue. Of course, it's only any good if the mutexes 575 * are actually acquired. Queue structure must lie on non-paged memory 576 * or we cannot guarantee access to the mutex. 577 */ 578 static void qp_init_queue_mutex(struct vmci_queue *produce_q, 579 struct vmci_queue *consume_q) 580 { 581 /* 582 * Only the host queue has shared state - the guest queues do not 583 * need to synchronize access using a queue mutex. 584 */ 585 586 if (produce_q->kernel_if->host) { 587 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex; 588 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex; 589 mutex_init(produce_q->kernel_if->mutex); 590 } 591 } 592 593 /* 594 * Cleans up the mutex for the pair of queues. 595 */ 596 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q, 597 struct vmci_queue *consume_q) 598 { 599 if (produce_q->kernel_if->host) { 600 produce_q->kernel_if->mutex = NULL; 601 consume_q->kernel_if->mutex = NULL; 602 } 603 } 604 605 /* 606 * Acquire the mutex for the queue. Note that the produce_q and 607 * the consume_q share a mutex. So, only one of the two need to 608 * be passed in to this routine. Either will work just fine. 609 */ 610 static void qp_acquire_queue_mutex(struct vmci_queue *queue) 611 { 612 if (queue->kernel_if->host) 613 mutex_lock(queue->kernel_if->mutex); 614 } 615 616 /* 617 * Release the mutex for the queue. Note that the produce_q and 618 * the consume_q share a mutex. So, only one of the two need to 619 * be passed in to this routine. Either will work just fine. 620 */ 621 static void qp_release_queue_mutex(struct vmci_queue *queue) 622 { 623 if (queue->kernel_if->host) 624 mutex_unlock(queue->kernel_if->mutex); 625 } 626 627 /* 628 * Helper function to release pages in the PageStoreAttachInfo 629 * previously obtained using get_user_pages. 630 */ 631 static void qp_release_pages(struct page **pages, 632 u64 num_pages, bool dirty) 633 { 634 int i; 635 636 for (i = 0; i < num_pages; i++) { 637 if (dirty) 638 set_page_dirty_lock(pages[i]); 639 640 put_page(pages[i]); 641 pages[i] = NULL; 642 } 643 } 644 645 /* 646 * Lock the user pages referenced by the {produce,consume}Buffer 647 * struct into memory and populate the {produce,consume}Pages 648 * arrays in the attach structure with them. 649 */ 650 static int qp_host_get_user_memory(u64 produce_uva, 651 u64 consume_uva, 652 struct vmci_queue *produce_q, 653 struct vmci_queue *consume_q) 654 { 655 int retval; 656 int err = VMCI_SUCCESS; 657 658 retval = get_user_pages_fast((uintptr_t) produce_uva, 659 produce_q->kernel_if->num_pages, 660 FOLL_WRITE, 661 produce_q->kernel_if->u.h.header_page); 662 if (retval < (int)produce_q->kernel_if->num_pages) { 663 pr_debug("get_user_pages_fast(produce) failed (retval=%d)", 664 retval); 665 if (retval > 0) 666 qp_release_pages(produce_q->kernel_if->u.h.header_page, 667 retval, false); 668 err = VMCI_ERROR_NO_MEM; 669 goto out; 670 } 671 672 retval = get_user_pages_fast((uintptr_t) consume_uva, 673 consume_q->kernel_if->num_pages, 674 FOLL_WRITE, 675 consume_q->kernel_if->u.h.header_page); 676 if (retval < (int)consume_q->kernel_if->num_pages) { 677 pr_debug("get_user_pages_fast(consume) failed (retval=%d)", 678 retval); 679 if (retval > 0) 680 qp_release_pages(consume_q->kernel_if->u.h.header_page, 681 retval, false); 682 qp_release_pages(produce_q->kernel_if->u.h.header_page, 683 produce_q->kernel_if->num_pages, false); 684 err = VMCI_ERROR_NO_MEM; 685 } 686 687 out: 688 return err; 689 } 690 691 /* 692 * Registers the specification of the user pages used for backing a queue 693 * pair. Enough information to map in pages is stored in the OS specific 694 * part of the struct vmci_queue structure. 695 */ 696 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store, 697 struct vmci_queue *produce_q, 698 struct vmci_queue *consume_q) 699 { 700 u64 produce_uva; 701 u64 consume_uva; 702 703 /* 704 * The new style and the old style mapping only differs in 705 * that we either get a single or two UVAs, so we split the 706 * single UVA range at the appropriate spot. 707 */ 708 produce_uva = page_store->pages; 709 consume_uva = page_store->pages + 710 produce_q->kernel_if->num_pages * PAGE_SIZE; 711 return qp_host_get_user_memory(produce_uva, consume_uva, produce_q, 712 consume_q); 713 } 714 715 /* 716 * Releases and removes the references to user pages stored in the attach 717 * struct. Pages are released from the page cache and may become 718 * swappable again. 719 */ 720 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q, 721 struct vmci_queue *consume_q) 722 { 723 qp_release_pages(produce_q->kernel_if->u.h.header_page, 724 produce_q->kernel_if->num_pages, true); 725 memset(produce_q->kernel_if->u.h.header_page, 0, 726 sizeof(*produce_q->kernel_if->u.h.header_page) * 727 produce_q->kernel_if->num_pages); 728 qp_release_pages(consume_q->kernel_if->u.h.header_page, 729 consume_q->kernel_if->num_pages, true); 730 memset(consume_q->kernel_if->u.h.header_page, 0, 731 sizeof(*consume_q->kernel_if->u.h.header_page) * 732 consume_q->kernel_if->num_pages); 733 } 734 735 /* 736 * Once qp_host_register_user_memory has been performed on a 737 * queue, the queue pair headers can be mapped into the 738 * kernel. Once mapped, they must be unmapped with 739 * qp_host_unmap_queues prior to calling 740 * qp_host_unregister_user_memory. 741 * Pages are pinned. 742 */ 743 static int qp_host_map_queues(struct vmci_queue *produce_q, 744 struct vmci_queue *consume_q) 745 { 746 int result; 747 748 if (!produce_q->q_header || !consume_q->q_header) { 749 struct page *headers[2]; 750 751 if (produce_q->q_header != consume_q->q_header) 752 return VMCI_ERROR_QUEUEPAIR_MISMATCH; 753 754 if (produce_q->kernel_if->u.h.header_page == NULL || 755 *produce_q->kernel_if->u.h.header_page == NULL) 756 return VMCI_ERROR_UNAVAILABLE; 757 758 headers[0] = *produce_q->kernel_if->u.h.header_page; 759 headers[1] = *consume_q->kernel_if->u.h.header_page; 760 761 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL); 762 if (produce_q->q_header != NULL) { 763 consume_q->q_header = 764 (struct vmci_queue_header *)((u8 *) 765 produce_q->q_header + 766 PAGE_SIZE); 767 result = VMCI_SUCCESS; 768 } else { 769 pr_warn("vmap failed\n"); 770 result = VMCI_ERROR_NO_MEM; 771 } 772 } else { 773 result = VMCI_SUCCESS; 774 } 775 776 return result; 777 } 778 779 /* 780 * Unmaps previously mapped queue pair headers from the kernel. 781 * Pages are unpinned. 782 */ 783 static int qp_host_unmap_queues(u32 gid, 784 struct vmci_queue *produce_q, 785 struct vmci_queue *consume_q) 786 { 787 if (produce_q->q_header) { 788 if (produce_q->q_header < consume_q->q_header) 789 vunmap(produce_q->q_header); 790 else 791 vunmap(consume_q->q_header); 792 793 produce_q->q_header = NULL; 794 consume_q->q_header = NULL; 795 } 796 797 return VMCI_SUCCESS; 798 } 799 800 /* 801 * Finds the entry in the list corresponding to a given handle. Assumes 802 * that the list is locked. 803 */ 804 static struct qp_entry *qp_list_find(struct qp_list *qp_list, 805 struct vmci_handle handle) 806 { 807 struct qp_entry *entry; 808 809 if (vmci_handle_is_invalid(handle)) 810 return NULL; 811 812 list_for_each_entry(entry, &qp_list->head, list_item) { 813 if (vmci_handle_is_equal(entry->handle, handle)) 814 return entry; 815 } 816 817 return NULL; 818 } 819 820 /* 821 * Finds the entry in the list corresponding to a given handle. 822 */ 823 static struct qp_guest_endpoint * 824 qp_guest_handle_to_entry(struct vmci_handle handle) 825 { 826 struct qp_guest_endpoint *entry; 827 struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle); 828 829 entry = qp ? container_of( 830 qp, struct qp_guest_endpoint, qp) : NULL; 831 return entry; 832 } 833 834 /* 835 * Finds the entry in the list corresponding to a given handle. 836 */ 837 static struct qp_broker_entry * 838 qp_broker_handle_to_entry(struct vmci_handle handle) 839 { 840 struct qp_broker_entry *entry; 841 struct qp_entry *qp = qp_list_find(&qp_broker_list, handle); 842 843 entry = qp ? container_of( 844 qp, struct qp_broker_entry, qp) : NULL; 845 return entry; 846 } 847 848 /* 849 * Dispatches a queue pair event message directly into the local event 850 * queue. 851 */ 852 static int qp_notify_peer_local(bool attach, struct vmci_handle handle) 853 { 854 u32 context_id = vmci_get_context_id(); 855 struct vmci_event_qp ev; 856 857 memset(&ev, 0, sizeof(ev)); 858 ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER); 859 ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID, 860 VMCI_CONTEXT_RESOURCE_ID); 861 ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr); 862 ev.msg.event_data.event = 863 attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH; 864 ev.payload.peer_id = context_id; 865 ev.payload.handle = handle; 866 867 return vmci_event_dispatch(&ev.msg.hdr); 868 } 869 870 /* 871 * Allocates and initializes a qp_guest_endpoint structure. 872 * Allocates a queue_pair rid (and handle) iff the given entry has 873 * an invalid handle. 0 through VMCI_RESERVED_RESOURCE_ID_MAX 874 * are reserved handles. Assumes that the QP list mutex is held 875 * by the caller. 876 */ 877 static struct qp_guest_endpoint * 878 qp_guest_endpoint_create(struct vmci_handle handle, 879 u32 peer, 880 u32 flags, 881 u64 produce_size, 882 u64 consume_size, 883 void *produce_q, 884 void *consume_q) 885 { 886 int result; 887 struct qp_guest_endpoint *entry; 888 /* One page each for the queue headers. */ 889 const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) + 890 DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2; 891 892 if (vmci_handle_is_invalid(handle)) { 893 u32 context_id = vmci_get_context_id(); 894 895 handle = vmci_make_handle(context_id, VMCI_INVALID_ID); 896 } 897 898 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 899 if (entry) { 900 entry->qp.peer = peer; 901 entry->qp.flags = flags; 902 entry->qp.produce_size = produce_size; 903 entry->qp.consume_size = consume_size; 904 entry->qp.ref_count = 0; 905 entry->num_ppns = num_ppns; 906 entry->produce_q = produce_q; 907 entry->consume_q = consume_q; 908 INIT_LIST_HEAD(&entry->qp.list_item); 909 910 /* Add resource obj */ 911 result = vmci_resource_add(&entry->resource, 912 VMCI_RESOURCE_TYPE_QPAIR_GUEST, 913 handle); 914 entry->qp.handle = vmci_resource_handle(&entry->resource); 915 if ((result != VMCI_SUCCESS) || 916 qp_list_find(&qp_guest_endpoints, entry->qp.handle)) { 917 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d", 918 handle.context, handle.resource, result); 919 kfree(entry); 920 entry = NULL; 921 } 922 } 923 return entry; 924 } 925 926 /* 927 * Frees a qp_guest_endpoint structure. 928 */ 929 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry) 930 { 931 qp_free_ppn_set(&entry->ppn_set); 932 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q); 933 qp_free_queue(entry->produce_q, entry->qp.produce_size); 934 qp_free_queue(entry->consume_q, entry->qp.consume_size); 935 /* Unlink from resource hash table and free callback */ 936 vmci_resource_remove(&entry->resource); 937 938 kfree(entry); 939 } 940 941 /* 942 * Helper to make a queue_pairAlloc hypercall when the driver is 943 * supporting a guest device. 944 */ 945 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry) 946 { 947 struct vmci_qp_alloc_msg *alloc_msg; 948 size_t msg_size; 949 size_t ppn_size; 950 int result; 951 952 if (!entry || entry->num_ppns <= 2) 953 return VMCI_ERROR_INVALID_ARGS; 954 955 ppn_size = vmci_use_ppn64() ? sizeof(u64) : sizeof(u32); 956 msg_size = sizeof(*alloc_msg) + 957 (size_t) entry->num_ppns * ppn_size; 958 alloc_msg = kmalloc(msg_size, GFP_KERNEL); 959 if (!alloc_msg) 960 return VMCI_ERROR_NO_MEM; 961 962 alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID, 963 VMCI_QUEUEPAIR_ALLOC); 964 alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE; 965 alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE; 966 alloc_msg->handle = entry->qp.handle; 967 alloc_msg->peer = entry->qp.peer; 968 alloc_msg->flags = entry->qp.flags; 969 alloc_msg->produce_size = entry->qp.produce_size; 970 alloc_msg->consume_size = entry->qp.consume_size; 971 alloc_msg->num_ppns = entry->num_ppns; 972 973 result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg), 974 &entry->ppn_set); 975 if (result == VMCI_SUCCESS) 976 result = vmci_send_datagram(&alloc_msg->hdr); 977 978 kfree(alloc_msg); 979 980 return result; 981 } 982 983 /* 984 * Helper to make a queue_pairDetach hypercall when the driver is 985 * supporting a guest device. 986 */ 987 static int qp_detatch_hypercall(struct vmci_handle handle) 988 { 989 struct vmci_qp_detach_msg detach_msg; 990 991 detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID, 992 VMCI_QUEUEPAIR_DETACH); 993 detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE; 994 detach_msg.hdr.payload_size = sizeof(handle); 995 detach_msg.handle = handle; 996 997 return vmci_send_datagram(&detach_msg.hdr); 998 } 999 1000 /* 1001 * Adds the given entry to the list. Assumes that the list is locked. 1002 */ 1003 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry) 1004 { 1005 if (entry) 1006 list_add(&entry->list_item, &qp_list->head); 1007 } 1008 1009 /* 1010 * Removes the given entry from the list. Assumes that the list is locked. 1011 */ 1012 static void qp_list_remove_entry(struct qp_list *qp_list, 1013 struct qp_entry *entry) 1014 { 1015 if (entry) 1016 list_del(&entry->list_item); 1017 } 1018 1019 /* 1020 * Helper for VMCI queue_pair detach interface. Frees the physical 1021 * pages for the queue pair. 1022 */ 1023 static int qp_detatch_guest_work(struct vmci_handle handle) 1024 { 1025 int result; 1026 struct qp_guest_endpoint *entry; 1027 u32 ref_count = ~0; /* To avoid compiler warning below */ 1028 1029 mutex_lock(&qp_guest_endpoints.mutex); 1030 1031 entry = qp_guest_handle_to_entry(handle); 1032 if (!entry) { 1033 mutex_unlock(&qp_guest_endpoints.mutex); 1034 return VMCI_ERROR_NOT_FOUND; 1035 } 1036 1037 if (entry->qp.flags & VMCI_QPFLAG_LOCAL) { 1038 result = VMCI_SUCCESS; 1039 1040 if (entry->qp.ref_count > 1) { 1041 result = qp_notify_peer_local(false, handle); 1042 /* 1043 * We can fail to notify a local queuepair 1044 * because we can't allocate. We still want 1045 * to release the entry if that happens, so 1046 * don't bail out yet. 1047 */ 1048 } 1049 } else { 1050 result = qp_detatch_hypercall(handle); 1051 if (result < VMCI_SUCCESS) { 1052 /* 1053 * We failed to notify a non-local queuepair. 1054 * That other queuepair might still be 1055 * accessing the shared memory, so don't 1056 * release the entry yet. It will get cleaned 1057 * up by VMCIqueue_pair_Exit() if necessary 1058 * (assuming we are going away, otherwise why 1059 * did this fail?). 1060 */ 1061 1062 mutex_unlock(&qp_guest_endpoints.mutex); 1063 return result; 1064 } 1065 } 1066 1067 /* 1068 * If we get here then we either failed to notify a local queuepair, or 1069 * we succeeded in all cases. Release the entry if required. 1070 */ 1071 1072 entry->qp.ref_count--; 1073 if (entry->qp.ref_count == 0) 1074 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp); 1075 1076 /* If we didn't remove the entry, this could change once we unlock. */ 1077 if (entry) 1078 ref_count = entry->qp.ref_count; 1079 1080 mutex_unlock(&qp_guest_endpoints.mutex); 1081 1082 if (ref_count == 0) 1083 qp_guest_endpoint_destroy(entry); 1084 1085 return result; 1086 } 1087 1088 /* 1089 * This functions handles the actual allocation of a VMCI queue 1090 * pair guest endpoint. Allocates physical pages for the queue 1091 * pair. It makes OS dependent calls through generic wrappers. 1092 */ 1093 static int qp_alloc_guest_work(struct vmci_handle *handle, 1094 struct vmci_queue **produce_q, 1095 u64 produce_size, 1096 struct vmci_queue **consume_q, 1097 u64 consume_size, 1098 u32 peer, 1099 u32 flags, 1100 u32 priv_flags) 1101 { 1102 const u64 num_produce_pages = 1103 DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1; 1104 const u64 num_consume_pages = 1105 DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1; 1106 void *my_produce_q = NULL; 1107 void *my_consume_q = NULL; 1108 int result; 1109 struct qp_guest_endpoint *queue_pair_entry = NULL; 1110 1111 if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS) 1112 return VMCI_ERROR_NO_ACCESS; 1113 1114 mutex_lock(&qp_guest_endpoints.mutex); 1115 1116 queue_pair_entry = qp_guest_handle_to_entry(*handle); 1117 if (queue_pair_entry) { 1118 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) { 1119 /* Local attach case. */ 1120 if (queue_pair_entry->qp.ref_count > 1) { 1121 pr_devel("Error attempting to attach more than once\n"); 1122 result = VMCI_ERROR_UNAVAILABLE; 1123 goto error_keep_entry; 1124 } 1125 1126 if (queue_pair_entry->qp.produce_size != consume_size || 1127 queue_pair_entry->qp.consume_size != 1128 produce_size || 1129 queue_pair_entry->qp.flags != 1130 (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) { 1131 pr_devel("Error mismatched queue pair in local attach\n"); 1132 result = VMCI_ERROR_QUEUEPAIR_MISMATCH; 1133 goto error_keep_entry; 1134 } 1135 1136 /* 1137 * Do a local attach. We swap the consume and 1138 * produce queues for the attacher and deliver 1139 * an attach event. 1140 */ 1141 result = qp_notify_peer_local(true, *handle); 1142 if (result < VMCI_SUCCESS) 1143 goto error_keep_entry; 1144 1145 my_produce_q = queue_pair_entry->consume_q; 1146 my_consume_q = queue_pair_entry->produce_q; 1147 goto out; 1148 } 1149 1150 result = VMCI_ERROR_ALREADY_EXISTS; 1151 goto error_keep_entry; 1152 } 1153 1154 my_produce_q = qp_alloc_queue(produce_size, flags); 1155 if (!my_produce_q) { 1156 pr_warn("Error allocating pages for produce queue\n"); 1157 result = VMCI_ERROR_NO_MEM; 1158 goto error; 1159 } 1160 1161 my_consume_q = qp_alloc_queue(consume_size, flags); 1162 if (!my_consume_q) { 1163 pr_warn("Error allocating pages for consume queue\n"); 1164 result = VMCI_ERROR_NO_MEM; 1165 goto error; 1166 } 1167 1168 queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags, 1169 produce_size, consume_size, 1170 my_produce_q, my_consume_q); 1171 if (!queue_pair_entry) { 1172 pr_warn("Error allocating memory in %s\n", __func__); 1173 result = VMCI_ERROR_NO_MEM; 1174 goto error; 1175 } 1176 1177 result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q, 1178 num_consume_pages, 1179 &queue_pair_entry->ppn_set); 1180 if (result < VMCI_SUCCESS) { 1181 pr_warn("qp_alloc_ppn_set failed\n"); 1182 goto error; 1183 } 1184 1185 /* 1186 * It's only necessary to notify the host if this queue pair will be 1187 * attached to from another context. 1188 */ 1189 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) { 1190 /* Local create case. */ 1191 u32 context_id = vmci_get_context_id(); 1192 1193 /* 1194 * Enforce similar checks on local queue pairs as we 1195 * do for regular ones. The handle's context must 1196 * match the creator or attacher context id (here they 1197 * are both the current context id) and the 1198 * attach-only flag cannot exist during create. We 1199 * also ensure specified peer is this context or an 1200 * invalid one. 1201 */ 1202 if (queue_pair_entry->qp.handle.context != context_id || 1203 (queue_pair_entry->qp.peer != VMCI_INVALID_ID && 1204 queue_pair_entry->qp.peer != context_id)) { 1205 result = VMCI_ERROR_NO_ACCESS; 1206 goto error; 1207 } 1208 1209 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) { 1210 result = VMCI_ERROR_NOT_FOUND; 1211 goto error; 1212 } 1213 } else { 1214 result = qp_alloc_hypercall(queue_pair_entry); 1215 if (result < VMCI_SUCCESS) { 1216 pr_devel("qp_alloc_hypercall result = %d\n", result); 1217 goto error; 1218 } 1219 } 1220 1221 qp_init_queue_mutex((struct vmci_queue *)my_produce_q, 1222 (struct vmci_queue *)my_consume_q); 1223 1224 qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp); 1225 1226 out: 1227 queue_pair_entry->qp.ref_count++; 1228 *handle = queue_pair_entry->qp.handle; 1229 *produce_q = (struct vmci_queue *)my_produce_q; 1230 *consume_q = (struct vmci_queue *)my_consume_q; 1231 1232 /* 1233 * We should initialize the queue pair header pages on a local 1234 * queue pair create. For non-local queue pairs, the 1235 * hypervisor initializes the header pages in the create step. 1236 */ 1237 if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) && 1238 queue_pair_entry->qp.ref_count == 1) { 1239 vmci_q_header_init((*produce_q)->q_header, *handle); 1240 vmci_q_header_init((*consume_q)->q_header, *handle); 1241 } 1242 1243 mutex_unlock(&qp_guest_endpoints.mutex); 1244 1245 return VMCI_SUCCESS; 1246 1247 error: 1248 mutex_unlock(&qp_guest_endpoints.mutex); 1249 if (queue_pair_entry) { 1250 /* The queues will be freed inside the destroy routine. */ 1251 qp_guest_endpoint_destroy(queue_pair_entry); 1252 } else { 1253 qp_free_queue(my_produce_q, produce_size); 1254 qp_free_queue(my_consume_q, consume_size); 1255 } 1256 return result; 1257 1258 error_keep_entry: 1259 /* This path should only be used when an existing entry was found. */ 1260 mutex_unlock(&qp_guest_endpoints.mutex); 1261 return result; 1262 } 1263 1264 /* 1265 * The first endpoint issuing a queue pair allocation will create the state 1266 * of the queue pair in the queue pair broker. 1267 * 1268 * If the creator is a guest, it will associate a VMX virtual address range 1269 * with the queue pair as specified by the page_store. For compatibility with 1270 * older VMX'en, that would use a separate step to set the VMX virtual 1271 * address range, the virtual address range can be registered later using 1272 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be 1273 * used. 1274 * 1275 * If the creator is the host, a page_store of NULL should be used as well, 1276 * since the host is not able to supply a page store for the queue pair. 1277 * 1278 * For older VMX and host callers, the queue pair will be created in the 1279 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be 1280 * created in VMCOQPB_CREATED_MEM state. 1281 */ 1282 static int qp_broker_create(struct vmci_handle handle, 1283 u32 peer, 1284 u32 flags, 1285 u32 priv_flags, 1286 u64 produce_size, 1287 u64 consume_size, 1288 struct vmci_qp_page_store *page_store, 1289 struct vmci_ctx *context, 1290 vmci_event_release_cb wakeup_cb, 1291 void *client_data, struct qp_broker_entry **ent) 1292 { 1293 struct qp_broker_entry *entry = NULL; 1294 const u32 context_id = vmci_ctx_get_id(context); 1295 bool is_local = flags & VMCI_QPFLAG_LOCAL; 1296 int result; 1297 u64 guest_produce_size; 1298 u64 guest_consume_size; 1299 1300 /* Do not create if the caller asked not to. */ 1301 if (flags & VMCI_QPFLAG_ATTACH_ONLY) 1302 return VMCI_ERROR_NOT_FOUND; 1303 1304 /* 1305 * Creator's context ID should match handle's context ID or the creator 1306 * must allow the context in handle's context ID as the "peer". 1307 */ 1308 if (handle.context != context_id && handle.context != peer) 1309 return VMCI_ERROR_NO_ACCESS; 1310 1311 if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer)) 1312 return VMCI_ERROR_DST_UNREACHABLE; 1313 1314 /* 1315 * Creator's context ID for local queue pairs should match the 1316 * peer, if a peer is specified. 1317 */ 1318 if (is_local && peer != VMCI_INVALID_ID && context_id != peer) 1319 return VMCI_ERROR_NO_ACCESS; 1320 1321 entry = kzalloc(sizeof(*entry), GFP_ATOMIC); 1322 if (!entry) 1323 return VMCI_ERROR_NO_MEM; 1324 1325 if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) { 1326 /* 1327 * The queue pair broker entry stores values from the guest 1328 * point of view, so a creating host side endpoint should swap 1329 * produce and consume values -- unless it is a local queue 1330 * pair, in which case no swapping is necessary, since the local 1331 * attacher will swap queues. 1332 */ 1333 1334 guest_produce_size = consume_size; 1335 guest_consume_size = produce_size; 1336 } else { 1337 guest_produce_size = produce_size; 1338 guest_consume_size = consume_size; 1339 } 1340 1341 entry->qp.handle = handle; 1342 entry->qp.peer = peer; 1343 entry->qp.flags = flags; 1344 entry->qp.produce_size = guest_produce_size; 1345 entry->qp.consume_size = guest_consume_size; 1346 entry->qp.ref_count = 1; 1347 entry->create_id = context_id; 1348 entry->attach_id = VMCI_INVALID_ID; 1349 entry->state = VMCIQPB_NEW; 1350 entry->require_trusted_attach = 1351 !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED); 1352 entry->created_by_trusted = 1353 !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED); 1354 entry->vmci_page_files = false; 1355 entry->wakeup_cb = wakeup_cb; 1356 entry->client_data = client_data; 1357 entry->produce_q = qp_host_alloc_queue(guest_produce_size); 1358 if (entry->produce_q == NULL) { 1359 result = VMCI_ERROR_NO_MEM; 1360 goto error; 1361 } 1362 entry->consume_q = qp_host_alloc_queue(guest_consume_size); 1363 if (entry->consume_q == NULL) { 1364 result = VMCI_ERROR_NO_MEM; 1365 goto error; 1366 } 1367 1368 qp_init_queue_mutex(entry->produce_q, entry->consume_q); 1369 1370 INIT_LIST_HEAD(&entry->qp.list_item); 1371 1372 if (is_local) { 1373 u8 *tmp; 1374 1375 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp), 1376 PAGE_SIZE, GFP_KERNEL); 1377 if (entry->local_mem == NULL) { 1378 result = VMCI_ERROR_NO_MEM; 1379 goto error; 1380 } 1381 entry->state = VMCIQPB_CREATED_MEM; 1382 entry->produce_q->q_header = entry->local_mem; 1383 tmp = (u8 *)entry->local_mem + PAGE_SIZE * 1384 (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1); 1385 entry->consume_q->q_header = (struct vmci_queue_header *)tmp; 1386 } else if (page_store) { 1387 /* 1388 * The VMX already initialized the queue pair headers, so no 1389 * need for the kernel side to do that. 1390 */ 1391 result = qp_host_register_user_memory(page_store, 1392 entry->produce_q, 1393 entry->consume_q); 1394 if (result < VMCI_SUCCESS) 1395 goto error; 1396 1397 entry->state = VMCIQPB_CREATED_MEM; 1398 } else { 1399 /* 1400 * A create without a page_store may be either a host 1401 * side create (in which case we are waiting for the 1402 * guest side to supply the memory) or an old style 1403 * queue pair create (in which case we will expect a 1404 * set page store call as the next step). 1405 */ 1406 entry->state = VMCIQPB_CREATED_NO_MEM; 1407 } 1408 1409 qp_list_add_entry(&qp_broker_list, &entry->qp); 1410 if (ent != NULL) 1411 *ent = entry; 1412 1413 /* Add to resource obj */ 1414 result = vmci_resource_add(&entry->resource, 1415 VMCI_RESOURCE_TYPE_QPAIR_HOST, 1416 handle); 1417 if (result != VMCI_SUCCESS) { 1418 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d", 1419 handle.context, handle.resource, result); 1420 goto error; 1421 } 1422 1423 entry->qp.handle = vmci_resource_handle(&entry->resource); 1424 if (is_local) { 1425 vmci_q_header_init(entry->produce_q->q_header, 1426 entry->qp.handle); 1427 vmci_q_header_init(entry->consume_q->q_header, 1428 entry->qp.handle); 1429 } 1430 1431 vmci_ctx_qp_create(context, entry->qp.handle); 1432 1433 return VMCI_SUCCESS; 1434 1435 error: 1436 if (entry != NULL) { 1437 qp_host_free_queue(entry->produce_q, guest_produce_size); 1438 qp_host_free_queue(entry->consume_q, guest_consume_size); 1439 kfree(entry); 1440 } 1441 1442 return result; 1443 } 1444 1445 /* 1446 * Enqueues an event datagram to notify the peer VM attached to 1447 * the given queue pair handle about attach/detach event by the 1448 * given VM. Returns Payload size of datagram enqueued on 1449 * success, error code otherwise. 1450 */ 1451 static int qp_notify_peer(bool attach, 1452 struct vmci_handle handle, 1453 u32 my_id, 1454 u32 peer_id) 1455 { 1456 int rv; 1457 struct vmci_event_qp ev; 1458 1459 if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID || 1460 peer_id == VMCI_INVALID_ID) 1461 return VMCI_ERROR_INVALID_ARGS; 1462 1463 /* 1464 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on 1465 * number of pending events from the hypervisor to a given VM 1466 * otherwise a rogue VM could do an arbitrary number of attach 1467 * and detach operations causing memory pressure in the host 1468 * kernel. 1469 */ 1470 1471 memset(&ev, 0, sizeof(ev)); 1472 ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER); 1473 ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID, 1474 VMCI_CONTEXT_RESOURCE_ID); 1475 ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr); 1476 ev.msg.event_data.event = attach ? 1477 VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH; 1478 ev.payload.handle = handle; 1479 ev.payload.peer_id = my_id; 1480 1481 rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID, 1482 &ev.msg.hdr, false); 1483 if (rv < VMCI_SUCCESS) 1484 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n", 1485 attach ? "ATTACH" : "DETACH", peer_id); 1486 1487 return rv; 1488 } 1489 1490 /* 1491 * The second endpoint issuing a queue pair allocation will attach to 1492 * the queue pair registered with the queue pair broker. 1493 * 1494 * If the attacher is a guest, it will associate a VMX virtual address 1495 * range with the queue pair as specified by the page_store. At this 1496 * point, the already attach host endpoint may start using the queue 1497 * pair, and an attach event is sent to it. For compatibility with 1498 * older VMX'en, that used a separate step to set the VMX virtual 1499 * address range, the virtual address range can be registered later 1500 * using vmci_qp_broker_set_page_store. In that case, a page_store of 1501 * NULL should be used, and the attach event will be generated once 1502 * the actual page store has been set. 1503 * 1504 * If the attacher is the host, a page_store of NULL should be used as 1505 * well, since the page store information is already set by the guest. 1506 * 1507 * For new VMX and host callers, the queue pair will be moved to the 1508 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be 1509 * moved to the VMCOQPB_ATTACHED_NO_MEM state. 1510 */ 1511 static int qp_broker_attach(struct qp_broker_entry *entry, 1512 u32 peer, 1513 u32 flags, 1514 u32 priv_flags, 1515 u64 produce_size, 1516 u64 consume_size, 1517 struct vmci_qp_page_store *page_store, 1518 struct vmci_ctx *context, 1519 vmci_event_release_cb wakeup_cb, 1520 void *client_data, 1521 struct qp_broker_entry **ent) 1522 { 1523 const u32 context_id = vmci_ctx_get_id(context); 1524 bool is_local = flags & VMCI_QPFLAG_LOCAL; 1525 int result; 1526 1527 if (entry->state != VMCIQPB_CREATED_NO_MEM && 1528 entry->state != VMCIQPB_CREATED_MEM) 1529 return VMCI_ERROR_UNAVAILABLE; 1530 1531 if (is_local) { 1532 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) || 1533 context_id != entry->create_id) { 1534 return VMCI_ERROR_INVALID_ARGS; 1535 } 1536 } else if (context_id == entry->create_id || 1537 context_id == entry->attach_id) { 1538 return VMCI_ERROR_ALREADY_EXISTS; 1539 } 1540 1541 if (VMCI_CONTEXT_IS_VM(context_id) && 1542 VMCI_CONTEXT_IS_VM(entry->create_id)) 1543 return VMCI_ERROR_DST_UNREACHABLE; 1544 1545 /* 1546 * If we are attaching from a restricted context then the queuepair 1547 * must have been created by a trusted endpoint. 1548 */ 1549 if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) && 1550 !entry->created_by_trusted) 1551 return VMCI_ERROR_NO_ACCESS; 1552 1553 /* 1554 * If we are attaching to a queuepair that was created by a restricted 1555 * context then we must be trusted. 1556 */ 1557 if (entry->require_trusted_attach && 1558 (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED))) 1559 return VMCI_ERROR_NO_ACCESS; 1560 1561 /* 1562 * If the creator specifies VMCI_INVALID_ID in "peer" field, access 1563 * control check is not performed. 1564 */ 1565 if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id) 1566 return VMCI_ERROR_NO_ACCESS; 1567 1568 if (entry->create_id == VMCI_HOST_CONTEXT_ID) { 1569 /* 1570 * Do not attach if the caller doesn't support Host Queue Pairs 1571 * and a host created this queue pair. 1572 */ 1573 1574 if (!vmci_ctx_supports_host_qp(context)) 1575 return VMCI_ERROR_INVALID_RESOURCE; 1576 1577 } else if (context_id == VMCI_HOST_CONTEXT_ID) { 1578 struct vmci_ctx *create_context; 1579 bool supports_host_qp; 1580 1581 /* 1582 * Do not attach a host to a user created queue pair if that 1583 * user doesn't support host queue pair end points. 1584 */ 1585 1586 create_context = vmci_ctx_get(entry->create_id); 1587 supports_host_qp = vmci_ctx_supports_host_qp(create_context); 1588 vmci_ctx_put(create_context); 1589 1590 if (!supports_host_qp) 1591 return VMCI_ERROR_INVALID_RESOURCE; 1592 } 1593 1594 if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER)) 1595 return VMCI_ERROR_QUEUEPAIR_MISMATCH; 1596 1597 if (context_id != VMCI_HOST_CONTEXT_ID) { 1598 /* 1599 * The queue pair broker entry stores values from the guest 1600 * point of view, so an attaching guest should match the values 1601 * stored in the entry. 1602 */ 1603 1604 if (entry->qp.produce_size != produce_size || 1605 entry->qp.consume_size != consume_size) { 1606 return VMCI_ERROR_QUEUEPAIR_MISMATCH; 1607 } 1608 } else if (entry->qp.produce_size != consume_size || 1609 entry->qp.consume_size != produce_size) { 1610 return VMCI_ERROR_QUEUEPAIR_MISMATCH; 1611 } 1612 1613 if (context_id != VMCI_HOST_CONTEXT_ID) { 1614 /* 1615 * If a guest attached to a queue pair, it will supply 1616 * the backing memory. If this is a pre NOVMVM vmx, 1617 * the backing memory will be supplied by calling 1618 * vmci_qp_broker_set_page_store() following the 1619 * return of the vmci_qp_broker_alloc() call. If it is 1620 * a vmx of version NOVMVM or later, the page store 1621 * must be supplied as part of the 1622 * vmci_qp_broker_alloc call. Under all circumstances 1623 * must the initially created queue pair not have any 1624 * memory associated with it already. 1625 */ 1626 1627 if (entry->state != VMCIQPB_CREATED_NO_MEM) 1628 return VMCI_ERROR_INVALID_ARGS; 1629 1630 if (page_store != NULL) { 1631 /* 1632 * Patch up host state to point to guest 1633 * supplied memory. The VMX already 1634 * initialized the queue pair headers, so no 1635 * need for the kernel side to do that. 1636 */ 1637 1638 result = qp_host_register_user_memory(page_store, 1639 entry->produce_q, 1640 entry->consume_q); 1641 if (result < VMCI_SUCCESS) 1642 return result; 1643 1644 entry->state = VMCIQPB_ATTACHED_MEM; 1645 } else { 1646 entry->state = VMCIQPB_ATTACHED_NO_MEM; 1647 } 1648 } else if (entry->state == VMCIQPB_CREATED_NO_MEM) { 1649 /* 1650 * The host side is attempting to attach to a queue 1651 * pair that doesn't have any memory associated with 1652 * it. This must be a pre NOVMVM vmx that hasn't set 1653 * the page store information yet, or a quiesced VM. 1654 */ 1655 1656 return VMCI_ERROR_UNAVAILABLE; 1657 } else { 1658 /* The host side has successfully attached to a queue pair. */ 1659 entry->state = VMCIQPB_ATTACHED_MEM; 1660 } 1661 1662 if (entry->state == VMCIQPB_ATTACHED_MEM) { 1663 result = 1664 qp_notify_peer(true, entry->qp.handle, context_id, 1665 entry->create_id); 1666 if (result < VMCI_SUCCESS) 1667 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n", 1668 entry->create_id, entry->qp.handle.context, 1669 entry->qp.handle.resource); 1670 } 1671 1672 entry->attach_id = context_id; 1673 entry->qp.ref_count++; 1674 if (wakeup_cb) { 1675 entry->wakeup_cb = wakeup_cb; 1676 entry->client_data = client_data; 1677 } 1678 1679 /* 1680 * When attaching to local queue pairs, the context already has 1681 * an entry tracking the queue pair, so don't add another one. 1682 */ 1683 if (!is_local) 1684 vmci_ctx_qp_create(context, entry->qp.handle); 1685 1686 if (ent != NULL) 1687 *ent = entry; 1688 1689 return VMCI_SUCCESS; 1690 } 1691 1692 /* 1693 * queue_pair_Alloc for use when setting up queue pair endpoints 1694 * on the host. 1695 */ 1696 static int qp_broker_alloc(struct vmci_handle handle, 1697 u32 peer, 1698 u32 flags, 1699 u32 priv_flags, 1700 u64 produce_size, 1701 u64 consume_size, 1702 struct vmci_qp_page_store *page_store, 1703 struct vmci_ctx *context, 1704 vmci_event_release_cb wakeup_cb, 1705 void *client_data, 1706 struct qp_broker_entry **ent, 1707 bool *swap) 1708 { 1709 const u32 context_id = vmci_ctx_get_id(context); 1710 bool create; 1711 struct qp_broker_entry *entry = NULL; 1712 bool is_local = flags & VMCI_QPFLAG_LOCAL; 1713 int result; 1714 1715 if (vmci_handle_is_invalid(handle) || 1716 (flags & ~VMCI_QP_ALL_FLAGS) || is_local || 1717 !(produce_size || consume_size) || 1718 !context || context_id == VMCI_INVALID_ID || 1719 handle.context == VMCI_INVALID_ID) { 1720 return VMCI_ERROR_INVALID_ARGS; 1721 } 1722 1723 if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store)) 1724 return VMCI_ERROR_INVALID_ARGS; 1725 1726 /* 1727 * In the initial argument check, we ensure that non-vmkernel hosts 1728 * are not allowed to create local queue pairs. 1729 */ 1730 1731 mutex_lock(&qp_broker_list.mutex); 1732 1733 if (!is_local && vmci_ctx_qp_exists(context, handle)) { 1734 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n", 1735 context_id, handle.context, handle.resource); 1736 mutex_unlock(&qp_broker_list.mutex); 1737 return VMCI_ERROR_ALREADY_EXISTS; 1738 } 1739 1740 if (handle.resource != VMCI_INVALID_ID) 1741 entry = qp_broker_handle_to_entry(handle); 1742 1743 if (!entry) { 1744 create = true; 1745 result = 1746 qp_broker_create(handle, peer, flags, priv_flags, 1747 produce_size, consume_size, page_store, 1748 context, wakeup_cb, client_data, ent); 1749 } else { 1750 create = false; 1751 result = 1752 qp_broker_attach(entry, peer, flags, priv_flags, 1753 produce_size, consume_size, page_store, 1754 context, wakeup_cb, client_data, ent); 1755 } 1756 1757 mutex_unlock(&qp_broker_list.mutex); 1758 1759 if (swap) 1760 *swap = (context_id == VMCI_HOST_CONTEXT_ID) && 1761 !(create && is_local); 1762 1763 return result; 1764 } 1765 1766 /* 1767 * This function implements the kernel API for allocating a queue 1768 * pair. 1769 */ 1770 static int qp_alloc_host_work(struct vmci_handle *handle, 1771 struct vmci_queue **produce_q, 1772 u64 produce_size, 1773 struct vmci_queue **consume_q, 1774 u64 consume_size, 1775 u32 peer, 1776 u32 flags, 1777 u32 priv_flags, 1778 vmci_event_release_cb wakeup_cb, 1779 void *client_data) 1780 { 1781 struct vmci_handle new_handle; 1782 struct vmci_ctx *context; 1783 struct qp_broker_entry *entry; 1784 int result; 1785 bool swap; 1786 1787 if (vmci_handle_is_invalid(*handle)) { 1788 new_handle = vmci_make_handle( 1789 VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID); 1790 } else 1791 new_handle = *handle; 1792 1793 context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID); 1794 entry = NULL; 1795 result = 1796 qp_broker_alloc(new_handle, peer, flags, priv_flags, 1797 produce_size, consume_size, NULL, context, 1798 wakeup_cb, client_data, &entry, &swap); 1799 if (result == VMCI_SUCCESS) { 1800 if (swap) { 1801 /* 1802 * If this is a local queue pair, the attacher 1803 * will swap around produce and consume 1804 * queues. 1805 */ 1806 1807 *produce_q = entry->consume_q; 1808 *consume_q = entry->produce_q; 1809 } else { 1810 *produce_q = entry->produce_q; 1811 *consume_q = entry->consume_q; 1812 } 1813 1814 *handle = vmci_resource_handle(&entry->resource); 1815 } else { 1816 *handle = VMCI_INVALID_HANDLE; 1817 pr_devel("queue pair broker failed to alloc (result=%d)\n", 1818 result); 1819 } 1820 vmci_ctx_put(context); 1821 return result; 1822 } 1823 1824 /* 1825 * Allocates a VMCI queue_pair. Only checks validity of input 1826 * arguments. The real work is done in the host or guest 1827 * specific function. 1828 */ 1829 int vmci_qp_alloc(struct vmci_handle *handle, 1830 struct vmci_queue **produce_q, 1831 u64 produce_size, 1832 struct vmci_queue **consume_q, 1833 u64 consume_size, 1834 u32 peer, 1835 u32 flags, 1836 u32 priv_flags, 1837 bool guest_endpoint, 1838 vmci_event_release_cb wakeup_cb, 1839 void *client_data) 1840 { 1841 if (!handle || !produce_q || !consume_q || 1842 (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS)) 1843 return VMCI_ERROR_INVALID_ARGS; 1844 1845 if (guest_endpoint) { 1846 return qp_alloc_guest_work(handle, produce_q, 1847 produce_size, consume_q, 1848 consume_size, peer, 1849 flags, priv_flags); 1850 } else { 1851 return qp_alloc_host_work(handle, produce_q, 1852 produce_size, consume_q, 1853 consume_size, peer, flags, 1854 priv_flags, wakeup_cb, client_data); 1855 } 1856 } 1857 1858 /* 1859 * This function implements the host kernel API for detaching from 1860 * a queue pair. 1861 */ 1862 static int qp_detatch_host_work(struct vmci_handle handle) 1863 { 1864 int result; 1865 struct vmci_ctx *context; 1866 1867 context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID); 1868 1869 result = vmci_qp_broker_detach(handle, context); 1870 1871 vmci_ctx_put(context); 1872 return result; 1873 } 1874 1875 /* 1876 * Detaches from a VMCI queue_pair. Only checks validity of input argument. 1877 * Real work is done in the host or guest specific function. 1878 */ 1879 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint) 1880 { 1881 if (vmci_handle_is_invalid(handle)) 1882 return VMCI_ERROR_INVALID_ARGS; 1883 1884 if (guest_endpoint) 1885 return qp_detatch_guest_work(handle); 1886 else 1887 return qp_detatch_host_work(handle); 1888 } 1889 1890 /* 1891 * Returns the entry from the head of the list. Assumes that the list is 1892 * locked. 1893 */ 1894 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list) 1895 { 1896 if (!list_empty(&qp_list->head)) { 1897 struct qp_entry *entry = 1898 list_first_entry(&qp_list->head, struct qp_entry, 1899 list_item); 1900 return entry; 1901 } 1902 1903 return NULL; 1904 } 1905 1906 void vmci_qp_broker_exit(void) 1907 { 1908 struct qp_entry *entry; 1909 struct qp_broker_entry *be; 1910 1911 mutex_lock(&qp_broker_list.mutex); 1912 1913 while ((entry = qp_list_get_head(&qp_broker_list))) { 1914 be = (struct qp_broker_entry *)entry; 1915 1916 qp_list_remove_entry(&qp_broker_list, entry); 1917 kfree(be); 1918 } 1919 1920 mutex_unlock(&qp_broker_list.mutex); 1921 } 1922 1923 /* 1924 * Requests that a queue pair be allocated with the VMCI queue 1925 * pair broker. Allocates a queue pair entry if one does not 1926 * exist. Attaches to one if it exists, and retrieves the page 1927 * files backing that queue_pair. Assumes that the queue pair 1928 * broker lock is held. 1929 */ 1930 int vmci_qp_broker_alloc(struct vmci_handle handle, 1931 u32 peer, 1932 u32 flags, 1933 u32 priv_flags, 1934 u64 produce_size, 1935 u64 consume_size, 1936 struct vmci_qp_page_store *page_store, 1937 struct vmci_ctx *context) 1938 { 1939 if (!QP_SIZES_ARE_VALID(produce_size, consume_size)) 1940 return VMCI_ERROR_NO_RESOURCES; 1941 1942 return qp_broker_alloc(handle, peer, flags, priv_flags, 1943 produce_size, consume_size, 1944 page_store, context, NULL, NULL, NULL, NULL); 1945 } 1946 1947 /* 1948 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate 1949 * step to add the UVAs of the VMX mapping of the queue pair. This function 1950 * provides backwards compatibility with such VMX'en, and takes care of 1951 * registering the page store for a queue pair previously allocated by the 1952 * VMX during create or attach. This function will move the queue pair state 1953 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or 1954 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the 1955 * attached state with memory, the queue pair is ready to be used by the 1956 * host peer, and an attached event will be generated. 1957 * 1958 * Assumes that the queue pair broker lock is held. 1959 * 1960 * This function is only used by the hosted platform, since there is no 1961 * issue with backwards compatibility for vmkernel. 1962 */ 1963 int vmci_qp_broker_set_page_store(struct vmci_handle handle, 1964 u64 produce_uva, 1965 u64 consume_uva, 1966 struct vmci_ctx *context) 1967 { 1968 struct qp_broker_entry *entry; 1969 int result; 1970 const u32 context_id = vmci_ctx_get_id(context); 1971 1972 if (vmci_handle_is_invalid(handle) || !context || 1973 context_id == VMCI_INVALID_ID) 1974 return VMCI_ERROR_INVALID_ARGS; 1975 1976 /* 1977 * We only support guest to host queue pairs, so the VMX must 1978 * supply UVAs for the mapped page files. 1979 */ 1980 1981 if (produce_uva == 0 || consume_uva == 0) 1982 return VMCI_ERROR_INVALID_ARGS; 1983 1984 mutex_lock(&qp_broker_list.mutex); 1985 1986 if (!vmci_ctx_qp_exists(context, handle)) { 1987 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n", 1988 context_id, handle.context, handle.resource); 1989 result = VMCI_ERROR_NOT_FOUND; 1990 goto out; 1991 } 1992 1993 entry = qp_broker_handle_to_entry(handle); 1994 if (!entry) { 1995 result = VMCI_ERROR_NOT_FOUND; 1996 goto out; 1997 } 1998 1999 /* 2000 * If I'm the owner then I can set the page store. 2001 * 2002 * Or, if a host created the queue_pair and I'm the attached peer 2003 * then I can set the page store. 2004 */ 2005 if (entry->create_id != context_id && 2006 (entry->create_id != VMCI_HOST_CONTEXT_ID || 2007 entry->attach_id != context_id)) { 2008 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER; 2009 goto out; 2010 } 2011 2012 if (entry->state != VMCIQPB_CREATED_NO_MEM && 2013 entry->state != VMCIQPB_ATTACHED_NO_MEM) { 2014 result = VMCI_ERROR_UNAVAILABLE; 2015 goto out; 2016 } 2017 2018 result = qp_host_get_user_memory(produce_uva, consume_uva, 2019 entry->produce_q, entry->consume_q); 2020 if (result < VMCI_SUCCESS) 2021 goto out; 2022 2023 result = qp_host_map_queues(entry->produce_q, entry->consume_q); 2024 if (result < VMCI_SUCCESS) { 2025 qp_host_unregister_user_memory(entry->produce_q, 2026 entry->consume_q); 2027 goto out; 2028 } 2029 2030 if (entry->state == VMCIQPB_CREATED_NO_MEM) 2031 entry->state = VMCIQPB_CREATED_MEM; 2032 else 2033 entry->state = VMCIQPB_ATTACHED_MEM; 2034 2035 entry->vmci_page_files = true; 2036 2037 if (entry->state == VMCIQPB_ATTACHED_MEM) { 2038 result = 2039 qp_notify_peer(true, handle, context_id, entry->create_id); 2040 if (result < VMCI_SUCCESS) { 2041 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n", 2042 entry->create_id, entry->qp.handle.context, 2043 entry->qp.handle.resource); 2044 } 2045 } 2046 2047 result = VMCI_SUCCESS; 2048 out: 2049 mutex_unlock(&qp_broker_list.mutex); 2050 return result; 2051 } 2052 2053 /* 2054 * Resets saved queue headers for the given QP broker 2055 * entry. Should be used when guest memory becomes available 2056 * again, or the guest detaches. 2057 */ 2058 static void qp_reset_saved_headers(struct qp_broker_entry *entry) 2059 { 2060 entry->produce_q->saved_header = NULL; 2061 entry->consume_q->saved_header = NULL; 2062 } 2063 2064 /* 2065 * The main entry point for detaching from a queue pair registered with the 2066 * queue pair broker. If more than one endpoint is attached to the queue 2067 * pair, the first endpoint will mainly decrement a reference count and 2068 * generate a notification to its peer. The last endpoint will clean up 2069 * the queue pair state registered with the broker. 2070 * 2071 * When a guest endpoint detaches, it will unmap and unregister the guest 2072 * memory backing the queue pair. If the host is still attached, it will 2073 * no longer be able to access the queue pair content. 2074 * 2075 * If the queue pair is already in a state where there is no memory 2076 * registered for the queue pair (any *_NO_MEM state), it will transition to 2077 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest 2078 * endpoint is the first of two endpoints to detach. If the host endpoint is 2079 * the first out of two to detach, the queue pair will move to the 2080 * VMCIQPB_SHUTDOWN_MEM state. 2081 */ 2082 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context) 2083 { 2084 struct qp_broker_entry *entry; 2085 const u32 context_id = vmci_ctx_get_id(context); 2086 u32 peer_id; 2087 bool is_local = false; 2088 int result; 2089 2090 if (vmci_handle_is_invalid(handle) || !context || 2091 context_id == VMCI_INVALID_ID) { 2092 return VMCI_ERROR_INVALID_ARGS; 2093 } 2094 2095 mutex_lock(&qp_broker_list.mutex); 2096 2097 if (!vmci_ctx_qp_exists(context, handle)) { 2098 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n", 2099 context_id, handle.context, handle.resource); 2100 result = VMCI_ERROR_NOT_FOUND; 2101 goto out; 2102 } 2103 2104 entry = qp_broker_handle_to_entry(handle); 2105 if (!entry) { 2106 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n", 2107 context_id, handle.context, handle.resource); 2108 result = VMCI_ERROR_NOT_FOUND; 2109 goto out; 2110 } 2111 2112 if (context_id != entry->create_id && context_id != entry->attach_id) { 2113 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED; 2114 goto out; 2115 } 2116 2117 if (context_id == entry->create_id) { 2118 peer_id = entry->attach_id; 2119 entry->create_id = VMCI_INVALID_ID; 2120 } else { 2121 peer_id = entry->create_id; 2122 entry->attach_id = VMCI_INVALID_ID; 2123 } 2124 entry->qp.ref_count--; 2125 2126 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL; 2127 2128 if (context_id != VMCI_HOST_CONTEXT_ID) { 2129 bool headers_mapped; 2130 2131 /* 2132 * Pre NOVMVM vmx'en may detach from a queue pair 2133 * before setting the page store, and in that case 2134 * there is no user memory to detach from. Also, more 2135 * recent VMX'en may detach from a queue pair in the 2136 * quiesced state. 2137 */ 2138 2139 qp_acquire_queue_mutex(entry->produce_q); 2140 headers_mapped = entry->produce_q->q_header || 2141 entry->consume_q->q_header; 2142 if (QPBROKERSTATE_HAS_MEM(entry)) { 2143 result = 2144 qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID, 2145 entry->produce_q, 2146 entry->consume_q); 2147 if (result < VMCI_SUCCESS) 2148 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n", 2149 handle.context, handle.resource, 2150 result); 2151 2152 qp_host_unregister_user_memory(entry->produce_q, 2153 entry->consume_q); 2154 2155 } 2156 2157 if (!headers_mapped) 2158 qp_reset_saved_headers(entry); 2159 2160 qp_release_queue_mutex(entry->produce_q); 2161 2162 if (!headers_mapped && entry->wakeup_cb) 2163 entry->wakeup_cb(entry->client_data); 2164 2165 } else { 2166 if (entry->wakeup_cb) { 2167 entry->wakeup_cb = NULL; 2168 entry->client_data = NULL; 2169 } 2170 } 2171 2172 if (entry->qp.ref_count == 0) { 2173 qp_list_remove_entry(&qp_broker_list, &entry->qp); 2174 2175 if (is_local) 2176 kfree(entry->local_mem); 2177 2178 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q); 2179 qp_host_free_queue(entry->produce_q, entry->qp.produce_size); 2180 qp_host_free_queue(entry->consume_q, entry->qp.consume_size); 2181 /* Unlink from resource hash table and free callback */ 2182 vmci_resource_remove(&entry->resource); 2183 2184 kfree(entry); 2185 2186 vmci_ctx_qp_destroy(context, handle); 2187 } else { 2188 qp_notify_peer(false, handle, context_id, peer_id); 2189 if (context_id == VMCI_HOST_CONTEXT_ID && 2190 QPBROKERSTATE_HAS_MEM(entry)) { 2191 entry->state = VMCIQPB_SHUTDOWN_MEM; 2192 } else { 2193 entry->state = VMCIQPB_SHUTDOWN_NO_MEM; 2194 } 2195 2196 if (!is_local) 2197 vmci_ctx_qp_destroy(context, handle); 2198 2199 } 2200 result = VMCI_SUCCESS; 2201 out: 2202 mutex_unlock(&qp_broker_list.mutex); 2203 return result; 2204 } 2205 2206 /* 2207 * Establishes the necessary mappings for a queue pair given a 2208 * reference to the queue pair guest memory. This is usually 2209 * called when a guest is unquiesced and the VMX is allowed to 2210 * map guest memory once again. 2211 */ 2212 int vmci_qp_broker_map(struct vmci_handle handle, 2213 struct vmci_ctx *context, 2214 u64 guest_mem) 2215 { 2216 struct qp_broker_entry *entry; 2217 const u32 context_id = vmci_ctx_get_id(context); 2218 int result; 2219 2220 if (vmci_handle_is_invalid(handle) || !context || 2221 context_id == VMCI_INVALID_ID) 2222 return VMCI_ERROR_INVALID_ARGS; 2223 2224 mutex_lock(&qp_broker_list.mutex); 2225 2226 if (!vmci_ctx_qp_exists(context, handle)) { 2227 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n", 2228 context_id, handle.context, handle.resource); 2229 result = VMCI_ERROR_NOT_FOUND; 2230 goto out; 2231 } 2232 2233 entry = qp_broker_handle_to_entry(handle); 2234 if (!entry) { 2235 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n", 2236 context_id, handle.context, handle.resource); 2237 result = VMCI_ERROR_NOT_FOUND; 2238 goto out; 2239 } 2240 2241 if (context_id != entry->create_id && context_id != entry->attach_id) { 2242 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED; 2243 goto out; 2244 } 2245 2246 result = VMCI_SUCCESS; 2247 2248 if (context_id != VMCI_HOST_CONTEXT_ID && 2249 !QPBROKERSTATE_HAS_MEM(entry)) { 2250 struct vmci_qp_page_store page_store; 2251 2252 page_store.pages = guest_mem; 2253 page_store.len = QPE_NUM_PAGES(entry->qp); 2254 2255 qp_acquire_queue_mutex(entry->produce_q); 2256 qp_reset_saved_headers(entry); 2257 result = 2258 qp_host_register_user_memory(&page_store, 2259 entry->produce_q, 2260 entry->consume_q); 2261 qp_release_queue_mutex(entry->produce_q); 2262 if (result == VMCI_SUCCESS) { 2263 /* Move state from *_NO_MEM to *_MEM */ 2264 2265 entry->state++; 2266 2267 if (entry->wakeup_cb) 2268 entry->wakeup_cb(entry->client_data); 2269 } 2270 } 2271 2272 out: 2273 mutex_unlock(&qp_broker_list.mutex); 2274 return result; 2275 } 2276 2277 /* 2278 * Saves a snapshot of the queue headers for the given QP broker 2279 * entry. Should be used when guest memory is unmapped. 2280 * Results: 2281 * VMCI_SUCCESS on success, appropriate error code if guest memory 2282 * can't be accessed.. 2283 */ 2284 static int qp_save_headers(struct qp_broker_entry *entry) 2285 { 2286 int result; 2287 2288 if (entry->produce_q->saved_header != NULL && 2289 entry->consume_q->saved_header != NULL) { 2290 /* 2291 * If the headers have already been saved, we don't need to do 2292 * it again, and we don't want to map in the headers 2293 * unnecessarily. 2294 */ 2295 2296 return VMCI_SUCCESS; 2297 } 2298 2299 if (NULL == entry->produce_q->q_header || 2300 NULL == entry->consume_q->q_header) { 2301 result = qp_host_map_queues(entry->produce_q, entry->consume_q); 2302 if (result < VMCI_SUCCESS) 2303 return result; 2304 } 2305 2306 memcpy(&entry->saved_produce_q, entry->produce_q->q_header, 2307 sizeof(entry->saved_produce_q)); 2308 entry->produce_q->saved_header = &entry->saved_produce_q; 2309 memcpy(&entry->saved_consume_q, entry->consume_q->q_header, 2310 sizeof(entry->saved_consume_q)); 2311 entry->consume_q->saved_header = &entry->saved_consume_q; 2312 2313 return VMCI_SUCCESS; 2314 } 2315 2316 /* 2317 * Removes all references to the guest memory of a given queue pair, and 2318 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually 2319 * called when a VM is being quiesced where access to guest memory should 2320 * avoided. 2321 */ 2322 int vmci_qp_broker_unmap(struct vmci_handle handle, 2323 struct vmci_ctx *context, 2324 u32 gid) 2325 { 2326 struct qp_broker_entry *entry; 2327 const u32 context_id = vmci_ctx_get_id(context); 2328 int result; 2329 2330 if (vmci_handle_is_invalid(handle) || !context || 2331 context_id == VMCI_INVALID_ID) 2332 return VMCI_ERROR_INVALID_ARGS; 2333 2334 mutex_lock(&qp_broker_list.mutex); 2335 2336 if (!vmci_ctx_qp_exists(context, handle)) { 2337 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n", 2338 context_id, handle.context, handle.resource); 2339 result = VMCI_ERROR_NOT_FOUND; 2340 goto out; 2341 } 2342 2343 entry = qp_broker_handle_to_entry(handle); 2344 if (!entry) { 2345 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n", 2346 context_id, handle.context, handle.resource); 2347 result = VMCI_ERROR_NOT_FOUND; 2348 goto out; 2349 } 2350 2351 if (context_id != entry->create_id && context_id != entry->attach_id) { 2352 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED; 2353 goto out; 2354 } 2355 2356 if (context_id != VMCI_HOST_CONTEXT_ID && 2357 QPBROKERSTATE_HAS_MEM(entry)) { 2358 qp_acquire_queue_mutex(entry->produce_q); 2359 result = qp_save_headers(entry); 2360 if (result < VMCI_SUCCESS) 2361 pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n", 2362 handle.context, handle.resource, result); 2363 2364 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q); 2365 2366 /* 2367 * On hosted, when we unmap queue pairs, the VMX will also 2368 * unmap the guest memory, so we invalidate the previously 2369 * registered memory. If the queue pair is mapped again at a 2370 * later point in time, we will need to reregister the user 2371 * memory with a possibly new user VA. 2372 */ 2373 qp_host_unregister_user_memory(entry->produce_q, 2374 entry->consume_q); 2375 2376 /* 2377 * Move state from *_MEM to *_NO_MEM. 2378 */ 2379 entry->state--; 2380 2381 qp_release_queue_mutex(entry->produce_q); 2382 } 2383 2384 result = VMCI_SUCCESS; 2385 2386 out: 2387 mutex_unlock(&qp_broker_list.mutex); 2388 return result; 2389 } 2390 2391 /* 2392 * Destroys all guest queue pair endpoints. If active guest queue 2393 * pairs still exist, hypercalls to attempt detach from these 2394 * queue pairs will be made. Any failure to detach is silently 2395 * ignored. 2396 */ 2397 void vmci_qp_guest_endpoints_exit(void) 2398 { 2399 struct qp_entry *entry; 2400 struct qp_guest_endpoint *ep; 2401 2402 mutex_lock(&qp_guest_endpoints.mutex); 2403 2404 while ((entry = qp_list_get_head(&qp_guest_endpoints))) { 2405 ep = (struct qp_guest_endpoint *)entry; 2406 2407 /* Don't make a hypercall for local queue_pairs. */ 2408 if (!(entry->flags & VMCI_QPFLAG_LOCAL)) 2409 qp_detatch_hypercall(entry->handle); 2410 2411 /* We cannot fail the exit, so let's reset ref_count. */ 2412 entry->ref_count = 0; 2413 qp_list_remove_entry(&qp_guest_endpoints, entry); 2414 2415 qp_guest_endpoint_destroy(ep); 2416 } 2417 2418 mutex_unlock(&qp_guest_endpoints.mutex); 2419 } 2420 2421 /* 2422 * Helper routine that will lock the queue pair before subsequent 2423 * operations. 2424 * Note: Non-blocking on the host side is currently only implemented in ESX. 2425 * Since non-blocking isn't yet implemented on the host personality we 2426 * have no reason to acquire a spin lock. So to avoid the use of an 2427 * unnecessary lock only acquire the mutex if we can block. 2428 */ 2429 static void qp_lock(const struct vmci_qp *qpair) 2430 { 2431 qp_acquire_queue_mutex(qpair->produce_q); 2432 } 2433 2434 /* 2435 * Helper routine that unlocks the queue pair after calling 2436 * qp_lock. 2437 */ 2438 static void qp_unlock(const struct vmci_qp *qpair) 2439 { 2440 qp_release_queue_mutex(qpair->produce_q); 2441 } 2442 2443 /* 2444 * The queue headers may not be mapped at all times. If a queue is 2445 * currently not mapped, it will be attempted to do so. 2446 */ 2447 static int qp_map_queue_headers(struct vmci_queue *produce_q, 2448 struct vmci_queue *consume_q) 2449 { 2450 int result; 2451 2452 if (NULL == produce_q->q_header || NULL == consume_q->q_header) { 2453 result = qp_host_map_queues(produce_q, consume_q); 2454 if (result < VMCI_SUCCESS) 2455 return (produce_q->saved_header && 2456 consume_q->saved_header) ? 2457 VMCI_ERROR_QUEUEPAIR_NOT_READY : 2458 VMCI_ERROR_QUEUEPAIR_NOTATTACHED; 2459 } 2460 2461 return VMCI_SUCCESS; 2462 } 2463 2464 /* 2465 * Helper routine that will retrieve the produce and consume 2466 * headers of a given queue pair. If the guest memory of the 2467 * queue pair is currently not available, the saved queue headers 2468 * will be returned, if these are available. 2469 */ 2470 static int qp_get_queue_headers(const struct vmci_qp *qpair, 2471 struct vmci_queue_header **produce_q_header, 2472 struct vmci_queue_header **consume_q_header) 2473 { 2474 int result; 2475 2476 result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q); 2477 if (result == VMCI_SUCCESS) { 2478 *produce_q_header = qpair->produce_q->q_header; 2479 *consume_q_header = qpair->consume_q->q_header; 2480 } else if (qpair->produce_q->saved_header && 2481 qpair->consume_q->saved_header) { 2482 *produce_q_header = qpair->produce_q->saved_header; 2483 *consume_q_header = qpair->consume_q->saved_header; 2484 result = VMCI_SUCCESS; 2485 } 2486 2487 return result; 2488 } 2489 2490 /* 2491 * Callback from VMCI queue pair broker indicating that a queue 2492 * pair that was previously not ready, now either is ready or 2493 * gone forever. 2494 */ 2495 static int qp_wakeup_cb(void *client_data) 2496 { 2497 struct vmci_qp *qpair = (struct vmci_qp *)client_data; 2498 2499 qp_lock(qpair); 2500 while (qpair->blocked > 0) { 2501 qpair->blocked--; 2502 qpair->generation++; 2503 wake_up(&qpair->event); 2504 } 2505 qp_unlock(qpair); 2506 2507 return VMCI_SUCCESS; 2508 } 2509 2510 /* 2511 * Makes the calling thread wait for the queue pair to become 2512 * ready for host side access. Returns true when thread is 2513 * woken up after queue pair state change, false otherwise. 2514 */ 2515 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair) 2516 { 2517 unsigned int generation; 2518 2519 qpair->blocked++; 2520 generation = qpair->generation; 2521 qp_unlock(qpair); 2522 wait_event(qpair->event, generation != qpair->generation); 2523 qp_lock(qpair); 2524 2525 return true; 2526 } 2527 2528 /* 2529 * Enqueues a given buffer to the produce queue using the provided 2530 * function. As many bytes as possible (space available in the queue) 2531 * are enqueued. Assumes the queue->mutex has been acquired. Returns 2532 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue 2533 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the 2534 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if 2535 * an error occured when accessing the buffer, 2536 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't 2537 * available. Otherwise, the number of bytes written to the queue is 2538 * returned. Updates the tail pointer of the produce queue. 2539 */ 2540 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q, 2541 struct vmci_queue *consume_q, 2542 const u64 produce_q_size, 2543 struct iov_iter *from) 2544 { 2545 s64 free_space; 2546 u64 tail; 2547 size_t buf_size = iov_iter_count(from); 2548 size_t written; 2549 ssize_t result; 2550 2551 result = qp_map_queue_headers(produce_q, consume_q); 2552 if (unlikely(result != VMCI_SUCCESS)) 2553 return result; 2554 2555 free_space = vmci_q_header_free_space(produce_q->q_header, 2556 consume_q->q_header, 2557 produce_q_size); 2558 if (free_space == 0) 2559 return VMCI_ERROR_QUEUEPAIR_NOSPACE; 2560 2561 if (free_space < VMCI_SUCCESS) 2562 return (ssize_t) free_space; 2563 2564 written = (size_t) (free_space > buf_size ? buf_size : free_space); 2565 tail = vmci_q_header_producer_tail(produce_q->q_header); 2566 if (likely(tail + written < produce_q_size)) { 2567 result = qp_memcpy_to_queue_iter(produce_q, tail, from, written); 2568 } else { 2569 /* Tail pointer wraps around. */ 2570 2571 const size_t tmp = (size_t) (produce_q_size - tail); 2572 2573 result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp); 2574 if (result >= VMCI_SUCCESS) 2575 result = qp_memcpy_to_queue_iter(produce_q, 0, from, 2576 written - tmp); 2577 } 2578 2579 if (result < VMCI_SUCCESS) 2580 return result; 2581 2582 /* 2583 * This virt_wmb() ensures that data written to the queue 2584 * is observable before the new producer_tail is. 2585 */ 2586 virt_wmb(); 2587 2588 vmci_q_header_add_producer_tail(produce_q->q_header, written, 2589 produce_q_size); 2590 return written; 2591 } 2592 2593 /* 2594 * Dequeues data (if available) from the given consume queue. Writes data 2595 * to the user provided buffer using the provided function. 2596 * Assumes the queue->mutex has been acquired. 2597 * Results: 2598 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue. 2599 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue 2600 * (as defined by the queue size). 2601 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer. 2602 * Otherwise the number of bytes dequeued is returned. 2603 * Side effects: 2604 * Updates the head pointer of the consume queue. 2605 */ 2606 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q, 2607 struct vmci_queue *consume_q, 2608 const u64 consume_q_size, 2609 struct iov_iter *to, 2610 bool update_consumer) 2611 { 2612 size_t buf_size = iov_iter_count(to); 2613 s64 buf_ready; 2614 u64 head; 2615 size_t read; 2616 ssize_t result; 2617 2618 result = qp_map_queue_headers(produce_q, consume_q); 2619 if (unlikely(result != VMCI_SUCCESS)) 2620 return result; 2621 2622 buf_ready = vmci_q_header_buf_ready(consume_q->q_header, 2623 produce_q->q_header, 2624 consume_q_size); 2625 if (buf_ready == 0) 2626 return VMCI_ERROR_QUEUEPAIR_NODATA; 2627 2628 if (buf_ready < VMCI_SUCCESS) 2629 return (ssize_t) buf_ready; 2630 2631 /* 2632 * This virt_rmb() ensures that data from the queue will be read 2633 * after we have determined how much is ready to be consumed. 2634 */ 2635 virt_rmb(); 2636 2637 read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready); 2638 head = vmci_q_header_consumer_head(produce_q->q_header); 2639 if (likely(head + read < consume_q_size)) { 2640 result = qp_memcpy_from_queue_iter(to, consume_q, head, read); 2641 } else { 2642 /* Head pointer wraps around. */ 2643 2644 const size_t tmp = (size_t) (consume_q_size - head); 2645 2646 result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp); 2647 if (result >= VMCI_SUCCESS) 2648 result = qp_memcpy_from_queue_iter(to, consume_q, 0, 2649 read - tmp); 2650 2651 } 2652 2653 if (result < VMCI_SUCCESS) 2654 return result; 2655 2656 if (update_consumer) 2657 vmci_q_header_add_consumer_head(produce_q->q_header, 2658 read, consume_q_size); 2659 2660 return read; 2661 } 2662 2663 /* 2664 * vmci_qpair_alloc() - Allocates a queue pair. 2665 * @qpair: Pointer for the new vmci_qp struct. 2666 * @handle: Handle to track the resource. 2667 * @produce_qsize: Desired size of the producer queue. 2668 * @consume_qsize: Desired size of the consumer queue. 2669 * @peer: ContextID of the peer. 2670 * @flags: VMCI flags. 2671 * @priv_flags: VMCI priviledge flags. 2672 * 2673 * This is the client interface for allocating the memory for a 2674 * vmci_qp structure and then attaching to the underlying 2675 * queue. If an error occurs allocating the memory for the 2676 * vmci_qp structure no attempt is made to attach. If an 2677 * error occurs attaching, then the structure is freed. 2678 */ 2679 int vmci_qpair_alloc(struct vmci_qp **qpair, 2680 struct vmci_handle *handle, 2681 u64 produce_qsize, 2682 u64 consume_qsize, 2683 u32 peer, 2684 u32 flags, 2685 u32 priv_flags) 2686 { 2687 struct vmci_qp *my_qpair; 2688 int retval; 2689 struct vmci_handle src = VMCI_INVALID_HANDLE; 2690 struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID); 2691 enum vmci_route route; 2692 vmci_event_release_cb wakeup_cb; 2693 void *client_data; 2694 2695 /* 2696 * Restrict the size of a queuepair. The device already 2697 * enforces a limit on the total amount of memory that can be 2698 * allocated to queuepairs for a guest. However, we try to 2699 * allocate this memory before we make the queuepair 2700 * allocation hypercall. On Linux, we allocate each page 2701 * separately, which means rather than fail, the guest will 2702 * thrash while it tries to allocate, and will become 2703 * increasingly unresponsive to the point where it appears to 2704 * be hung. So we place a limit on the size of an individual 2705 * queuepair here, and leave the device to enforce the 2706 * restriction on total queuepair memory. (Note that this 2707 * doesn't prevent all cases; a user with only this much 2708 * physical memory could still get into trouble.) The error 2709 * used by the device is NO_RESOURCES, so use that here too. 2710 */ 2711 2712 if (!QP_SIZES_ARE_VALID(produce_qsize, consume_qsize)) 2713 return VMCI_ERROR_NO_RESOURCES; 2714 2715 retval = vmci_route(&src, &dst, false, &route); 2716 if (retval < VMCI_SUCCESS) 2717 route = vmci_guest_code_active() ? 2718 VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST; 2719 2720 if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) { 2721 pr_devel("NONBLOCK OR PINNED set"); 2722 return VMCI_ERROR_INVALID_ARGS; 2723 } 2724 2725 my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL); 2726 if (!my_qpair) 2727 return VMCI_ERROR_NO_MEM; 2728 2729 my_qpair->produce_q_size = produce_qsize; 2730 my_qpair->consume_q_size = consume_qsize; 2731 my_qpair->peer = peer; 2732 my_qpair->flags = flags; 2733 my_qpair->priv_flags = priv_flags; 2734 2735 wakeup_cb = NULL; 2736 client_data = NULL; 2737 2738 if (VMCI_ROUTE_AS_HOST == route) { 2739 my_qpair->guest_endpoint = false; 2740 if (!(flags & VMCI_QPFLAG_LOCAL)) { 2741 my_qpair->blocked = 0; 2742 my_qpair->generation = 0; 2743 init_waitqueue_head(&my_qpair->event); 2744 wakeup_cb = qp_wakeup_cb; 2745 client_data = (void *)my_qpair; 2746 } 2747 } else { 2748 my_qpair->guest_endpoint = true; 2749 } 2750 2751 retval = vmci_qp_alloc(handle, 2752 &my_qpair->produce_q, 2753 my_qpair->produce_q_size, 2754 &my_qpair->consume_q, 2755 my_qpair->consume_q_size, 2756 my_qpair->peer, 2757 my_qpair->flags, 2758 my_qpair->priv_flags, 2759 my_qpair->guest_endpoint, 2760 wakeup_cb, client_data); 2761 2762 if (retval < VMCI_SUCCESS) { 2763 kfree(my_qpair); 2764 return retval; 2765 } 2766 2767 *qpair = my_qpair; 2768 my_qpair->handle = *handle; 2769 2770 return retval; 2771 } 2772 EXPORT_SYMBOL_GPL(vmci_qpair_alloc); 2773 2774 /* 2775 * vmci_qpair_detach() - Detatches the client from a queue pair. 2776 * @qpair: Reference of a pointer to the qpair struct. 2777 * 2778 * This is the client interface for detaching from a VMCIQPair. 2779 * Note that this routine will free the memory allocated for the 2780 * vmci_qp structure too. 2781 */ 2782 int vmci_qpair_detach(struct vmci_qp **qpair) 2783 { 2784 int result; 2785 struct vmci_qp *old_qpair; 2786 2787 if (!qpair || !(*qpair)) 2788 return VMCI_ERROR_INVALID_ARGS; 2789 2790 old_qpair = *qpair; 2791 result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint); 2792 2793 /* 2794 * The guest can fail to detach for a number of reasons, and 2795 * if it does so, it will cleanup the entry (if there is one). 2796 * The host can fail too, but it won't cleanup the entry 2797 * immediately, it will do that later when the context is 2798 * freed. Either way, we need to release the qpair struct 2799 * here; there isn't much the caller can do, and we don't want 2800 * to leak. 2801 */ 2802 2803 memset(old_qpair, 0, sizeof(*old_qpair)); 2804 old_qpair->handle = VMCI_INVALID_HANDLE; 2805 old_qpair->peer = VMCI_INVALID_ID; 2806 kfree(old_qpair); 2807 *qpair = NULL; 2808 2809 return result; 2810 } 2811 EXPORT_SYMBOL_GPL(vmci_qpair_detach); 2812 2813 /* 2814 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer. 2815 * @qpair: Pointer to the queue pair struct. 2816 * @producer_tail: Reference used for storing producer tail index. 2817 * @consumer_head: Reference used for storing the consumer head index. 2818 * 2819 * This is the client interface for getting the current indexes of the 2820 * QPair from the point of the view of the caller as the producer. 2821 */ 2822 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair, 2823 u64 *producer_tail, 2824 u64 *consumer_head) 2825 { 2826 struct vmci_queue_header *produce_q_header; 2827 struct vmci_queue_header *consume_q_header; 2828 int result; 2829 2830 if (!qpair) 2831 return VMCI_ERROR_INVALID_ARGS; 2832 2833 qp_lock(qpair); 2834 result = 2835 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header); 2836 if (result == VMCI_SUCCESS) 2837 vmci_q_header_get_pointers(produce_q_header, consume_q_header, 2838 producer_tail, consumer_head); 2839 qp_unlock(qpair); 2840 2841 if (result == VMCI_SUCCESS && 2842 ((producer_tail && *producer_tail >= qpair->produce_q_size) || 2843 (consumer_head && *consumer_head >= qpair->produce_q_size))) 2844 return VMCI_ERROR_INVALID_SIZE; 2845 2846 return result; 2847 } 2848 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes); 2849 2850 /* 2851 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer. 2852 * @qpair: Pointer to the queue pair struct. 2853 * @consumer_tail: Reference used for storing consumer tail index. 2854 * @producer_head: Reference used for storing the producer head index. 2855 * 2856 * This is the client interface for getting the current indexes of the 2857 * QPair from the point of the view of the caller as the consumer. 2858 */ 2859 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair, 2860 u64 *consumer_tail, 2861 u64 *producer_head) 2862 { 2863 struct vmci_queue_header *produce_q_header; 2864 struct vmci_queue_header *consume_q_header; 2865 int result; 2866 2867 if (!qpair) 2868 return VMCI_ERROR_INVALID_ARGS; 2869 2870 qp_lock(qpair); 2871 result = 2872 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header); 2873 if (result == VMCI_SUCCESS) 2874 vmci_q_header_get_pointers(consume_q_header, produce_q_header, 2875 consumer_tail, producer_head); 2876 qp_unlock(qpair); 2877 2878 if (result == VMCI_SUCCESS && 2879 ((consumer_tail && *consumer_tail >= qpair->consume_q_size) || 2880 (producer_head && *producer_head >= qpair->consume_q_size))) 2881 return VMCI_ERROR_INVALID_SIZE; 2882 2883 return result; 2884 } 2885 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes); 2886 2887 /* 2888 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue. 2889 * @qpair: Pointer to the queue pair struct. 2890 * 2891 * This is the client interface for getting the amount of free 2892 * space in the QPair from the point of the view of the caller as 2893 * the producer which is the common case. Returns < 0 if err, else 2894 * available bytes into which data can be enqueued if > 0. 2895 */ 2896 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair) 2897 { 2898 struct vmci_queue_header *produce_q_header; 2899 struct vmci_queue_header *consume_q_header; 2900 s64 result; 2901 2902 if (!qpair) 2903 return VMCI_ERROR_INVALID_ARGS; 2904 2905 qp_lock(qpair); 2906 result = 2907 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header); 2908 if (result == VMCI_SUCCESS) 2909 result = vmci_q_header_free_space(produce_q_header, 2910 consume_q_header, 2911 qpair->produce_q_size); 2912 else 2913 result = 0; 2914 2915 qp_unlock(qpair); 2916 2917 return result; 2918 } 2919 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space); 2920 2921 /* 2922 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue. 2923 * @qpair: Pointer to the queue pair struct. 2924 * 2925 * This is the client interface for getting the amount of free 2926 * space in the QPair from the point of the view of the caller as 2927 * the consumer which is not the common case. Returns < 0 if err, else 2928 * available bytes into which data can be enqueued if > 0. 2929 */ 2930 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair) 2931 { 2932 struct vmci_queue_header *produce_q_header; 2933 struct vmci_queue_header *consume_q_header; 2934 s64 result; 2935 2936 if (!qpair) 2937 return VMCI_ERROR_INVALID_ARGS; 2938 2939 qp_lock(qpair); 2940 result = 2941 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header); 2942 if (result == VMCI_SUCCESS) 2943 result = vmci_q_header_free_space(consume_q_header, 2944 produce_q_header, 2945 qpair->consume_q_size); 2946 else 2947 result = 0; 2948 2949 qp_unlock(qpair); 2950 2951 return result; 2952 } 2953 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space); 2954 2955 /* 2956 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from 2957 * producer queue. 2958 * @qpair: Pointer to the queue pair struct. 2959 * 2960 * This is the client interface for getting the amount of 2961 * enqueued data in the QPair from the point of the view of the 2962 * caller as the producer which is not the common case. Returns < 0 if err, 2963 * else available bytes that may be read. 2964 */ 2965 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair) 2966 { 2967 struct vmci_queue_header *produce_q_header; 2968 struct vmci_queue_header *consume_q_header; 2969 s64 result; 2970 2971 if (!qpair) 2972 return VMCI_ERROR_INVALID_ARGS; 2973 2974 qp_lock(qpair); 2975 result = 2976 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header); 2977 if (result == VMCI_SUCCESS) 2978 result = vmci_q_header_buf_ready(produce_q_header, 2979 consume_q_header, 2980 qpair->produce_q_size); 2981 else 2982 result = 0; 2983 2984 qp_unlock(qpair); 2985 2986 return result; 2987 } 2988 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready); 2989 2990 /* 2991 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from 2992 * consumer queue. 2993 * @qpair: Pointer to the queue pair struct. 2994 * 2995 * This is the client interface for getting the amount of 2996 * enqueued data in the QPair from the point of the view of the 2997 * caller as the consumer which is the normal case. Returns < 0 if err, 2998 * else available bytes that may be read. 2999 */ 3000 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair) 3001 { 3002 struct vmci_queue_header *produce_q_header; 3003 struct vmci_queue_header *consume_q_header; 3004 s64 result; 3005 3006 if (!qpair) 3007 return VMCI_ERROR_INVALID_ARGS; 3008 3009 qp_lock(qpair); 3010 result = 3011 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header); 3012 if (result == VMCI_SUCCESS) 3013 result = vmci_q_header_buf_ready(consume_q_header, 3014 produce_q_header, 3015 qpair->consume_q_size); 3016 else 3017 result = 0; 3018 3019 qp_unlock(qpair); 3020 3021 return result; 3022 } 3023 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready); 3024 3025 /* 3026 * vmci_qpair_enqueue() - Throw data on the queue. 3027 * @qpair: Pointer to the queue pair struct. 3028 * @buf: Pointer to buffer containing data 3029 * @buf_size: Length of buffer. 3030 * @buf_type: Buffer type (Unused). 3031 * 3032 * This is the client interface for enqueueing data into the queue. 3033 * Returns number of bytes enqueued or < 0 on error. 3034 */ 3035 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair, 3036 const void *buf, 3037 size_t buf_size, 3038 int buf_type) 3039 { 3040 ssize_t result; 3041 struct iov_iter from; 3042 struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size}; 3043 3044 if (!qpair || !buf) 3045 return VMCI_ERROR_INVALID_ARGS; 3046 3047 iov_iter_kvec(&from, WRITE, &v, 1, buf_size); 3048 3049 qp_lock(qpair); 3050 3051 do { 3052 result = qp_enqueue_locked(qpair->produce_q, 3053 qpair->consume_q, 3054 qpair->produce_q_size, 3055 &from); 3056 3057 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY && 3058 !qp_wait_for_ready_queue(qpair)) 3059 result = VMCI_ERROR_WOULD_BLOCK; 3060 3061 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY); 3062 3063 qp_unlock(qpair); 3064 3065 return result; 3066 } 3067 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue); 3068 3069 /* 3070 * vmci_qpair_dequeue() - Get data from the queue. 3071 * @qpair: Pointer to the queue pair struct. 3072 * @buf: Pointer to buffer for the data 3073 * @buf_size: Length of buffer. 3074 * @buf_type: Buffer type (Unused). 3075 * 3076 * This is the client interface for dequeueing data from the queue. 3077 * Returns number of bytes dequeued or < 0 on error. 3078 */ 3079 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair, 3080 void *buf, 3081 size_t buf_size, 3082 int buf_type) 3083 { 3084 ssize_t result; 3085 struct iov_iter to; 3086 struct kvec v = {.iov_base = buf, .iov_len = buf_size}; 3087 3088 if (!qpair || !buf) 3089 return VMCI_ERROR_INVALID_ARGS; 3090 3091 iov_iter_kvec(&to, READ, &v, 1, buf_size); 3092 3093 qp_lock(qpair); 3094 3095 do { 3096 result = qp_dequeue_locked(qpair->produce_q, 3097 qpair->consume_q, 3098 qpair->consume_q_size, 3099 &to, true); 3100 3101 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY && 3102 !qp_wait_for_ready_queue(qpair)) 3103 result = VMCI_ERROR_WOULD_BLOCK; 3104 3105 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY); 3106 3107 qp_unlock(qpair); 3108 3109 return result; 3110 } 3111 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue); 3112 3113 /* 3114 * vmci_qpair_peek() - Peek at the data in the queue. 3115 * @qpair: Pointer to the queue pair struct. 3116 * @buf: Pointer to buffer for the data 3117 * @buf_size: Length of buffer. 3118 * @buf_type: Buffer type (Unused on Linux). 3119 * 3120 * This is the client interface for peeking into a queue. (I.e., 3121 * copy data from the queue without updating the head pointer.) 3122 * Returns number of bytes dequeued or < 0 on error. 3123 */ 3124 ssize_t vmci_qpair_peek(struct vmci_qp *qpair, 3125 void *buf, 3126 size_t buf_size, 3127 int buf_type) 3128 { 3129 struct iov_iter to; 3130 struct kvec v = {.iov_base = buf, .iov_len = buf_size}; 3131 ssize_t result; 3132 3133 if (!qpair || !buf) 3134 return VMCI_ERROR_INVALID_ARGS; 3135 3136 iov_iter_kvec(&to, READ, &v, 1, buf_size); 3137 3138 qp_lock(qpair); 3139 3140 do { 3141 result = qp_dequeue_locked(qpair->produce_q, 3142 qpair->consume_q, 3143 qpair->consume_q_size, 3144 &to, false); 3145 3146 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY && 3147 !qp_wait_for_ready_queue(qpair)) 3148 result = VMCI_ERROR_WOULD_BLOCK; 3149 3150 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY); 3151 3152 qp_unlock(qpair); 3153 3154 return result; 3155 } 3156 EXPORT_SYMBOL_GPL(vmci_qpair_peek); 3157 3158 /* 3159 * vmci_qpair_enquev() - Throw data on the queue using iov. 3160 * @qpair: Pointer to the queue pair struct. 3161 * @iov: Pointer to buffer containing data 3162 * @iov_size: Length of buffer. 3163 * @buf_type: Buffer type (Unused). 3164 * 3165 * This is the client interface for enqueueing data into the queue. 3166 * This function uses IO vectors to handle the work. Returns number 3167 * of bytes enqueued or < 0 on error. 3168 */ 3169 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair, 3170 struct msghdr *msg, 3171 size_t iov_size, 3172 int buf_type) 3173 { 3174 ssize_t result; 3175 3176 if (!qpair) 3177 return VMCI_ERROR_INVALID_ARGS; 3178 3179 qp_lock(qpair); 3180 3181 do { 3182 result = qp_enqueue_locked(qpair->produce_q, 3183 qpair->consume_q, 3184 qpair->produce_q_size, 3185 &msg->msg_iter); 3186 3187 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY && 3188 !qp_wait_for_ready_queue(qpair)) 3189 result = VMCI_ERROR_WOULD_BLOCK; 3190 3191 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY); 3192 3193 qp_unlock(qpair); 3194 3195 return result; 3196 } 3197 EXPORT_SYMBOL_GPL(vmci_qpair_enquev); 3198 3199 /* 3200 * vmci_qpair_dequev() - Get data from the queue using iov. 3201 * @qpair: Pointer to the queue pair struct. 3202 * @iov: Pointer to buffer for the data 3203 * @iov_size: Length of buffer. 3204 * @buf_type: Buffer type (Unused). 3205 * 3206 * This is the client interface for dequeueing data from the queue. 3207 * This function uses IO vectors to handle the work. Returns number 3208 * of bytes dequeued or < 0 on error. 3209 */ 3210 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair, 3211 struct msghdr *msg, 3212 size_t iov_size, 3213 int buf_type) 3214 { 3215 ssize_t result; 3216 3217 if (!qpair) 3218 return VMCI_ERROR_INVALID_ARGS; 3219 3220 qp_lock(qpair); 3221 3222 do { 3223 result = qp_dequeue_locked(qpair->produce_q, 3224 qpair->consume_q, 3225 qpair->consume_q_size, 3226 &msg->msg_iter, true); 3227 3228 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY && 3229 !qp_wait_for_ready_queue(qpair)) 3230 result = VMCI_ERROR_WOULD_BLOCK; 3231 3232 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY); 3233 3234 qp_unlock(qpair); 3235 3236 return result; 3237 } 3238 EXPORT_SYMBOL_GPL(vmci_qpair_dequev); 3239 3240 /* 3241 * vmci_qpair_peekv() - Peek at the data in the queue using iov. 3242 * @qpair: Pointer to the queue pair struct. 3243 * @iov: Pointer to buffer for the data 3244 * @iov_size: Length of buffer. 3245 * @buf_type: Buffer type (Unused on Linux). 3246 * 3247 * This is the client interface for peeking into a queue. (I.e., 3248 * copy data from the queue without updating the head pointer.) 3249 * This function uses IO vectors to handle the work. Returns number 3250 * of bytes peeked or < 0 on error. 3251 */ 3252 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair, 3253 struct msghdr *msg, 3254 size_t iov_size, 3255 int buf_type) 3256 { 3257 ssize_t result; 3258 3259 if (!qpair) 3260 return VMCI_ERROR_INVALID_ARGS; 3261 3262 qp_lock(qpair); 3263 3264 do { 3265 result = qp_dequeue_locked(qpair->produce_q, 3266 qpair->consume_q, 3267 qpair->consume_q_size, 3268 &msg->msg_iter, false); 3269 3270 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY && 3271 !qp_wait_for_ready_queue(qpair)) 3272 result = VMCI_ERROR_WOULD_BLOCK; 3273 3274 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY); 3275 3276 qp_unlock(qpair); 3277 return result; 3278 } 3279 EXPORT_SYMBOL_GPL(vmci_qpair_peekv); 3280