1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware VMCI Driver
4  *
5  * Copyright (C) 2012 VMware, Inc. All rights reserved.
6  */
7 
8 #include <linux/vmw_vmci_defs.h>
9 #include <linux/vmw_vmci_api.h>
10 #include <linux/highmem.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/pagemap.h>
16 #include <linux/pci.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/uio.h>
20 #include <linux/wait.h>
21 #include <linux/vmalloc.h>
22 #include <linux/skbuff.h>
23 
24 #include "vmci_handle_array.h"
25 #include "vmci_queue_pair.h"
26 #include "vmci_datagram.h"
27 #include "vmci_resource.h"
28 #include "vmci_context.h"
29 #include "vmci_driver.h"
30 #include "vmci_event.h"
31 #include "vmci_route.h"
32 
33 /*
34  * In the following, we will distinguish between two kinds of VMX processes -
35  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
36  * VMCI page files in the VMX and supporting VM to VM communication and the
37  * newer ones that use the guest memory directly. We will in the following
38  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
39  * new-style VMX'en.
40  *
41  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
42  * removed for readability) - see below for more details on the transtions:
43  *
44  *            --------------  NEW  -------------
45  *            |                                |
46  *           \_/                              \_/
47  *     CREATED_NO_MEM <-----------------> CREATED_MEM
48  *            |    |                           |
49  *            |    o-----------------------o   |
50  *            |                            |   |
51  *           \_/                          \_/ \_/
52  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
53  *            |                            |   |
54  *            |     o----------------------o   |
55  *            |     |                          |
56  *           \_/   \_/                        \_/
57  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
58  *            |                                |
59  *            |                                |
60  *            -------------> gone <-------------
61  *
62  * In more detail. When a VMCI queue pair is first created, it will be in the
63  * VMCIQPB_NEW state. It will then move into one of the following states:
64  *
65  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
66  *
67  *     - the created was performed by a host endpoint, in which case there is
68  *       no backing memory yet.
69  *
70  *     - the create was initiated by an old-style VMX, that uses
71  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
72  *       a later point in time. This state can be distinguished from the one
73  *       above by the context ID of the creator. A host side is not allowed to
74  *       attach until the page store has been set.
75  *
76  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
77  *     is created by a VMX using the queue pair device backend that
78  *     sets the UVAs of the queue pair immediately and stores the
79  *     information for later attachers. At this point, it is ready for
80  *     the host side to attach to it.
81  *
82  * Once the queue pair is in one of the created states (with the exception of
83  * the case mentioned for older VMX'en above), it is possible to attach to the
84  * queue pair. Again we have two new states possible:
85  *
86  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
87  *   paths:
88  *
89  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
90  *       pair, and attaches to a queue pair previously created by the host side.
91  *
92  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
93  *       already created by a guest.
94  *
95  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
96  *       vmci_qp_broker_set_page_store (see below).
97  *
98  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
99  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
100  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
101  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
102  *     will be entered.
103  *
104  * From the attached queue pair, the queue pair can enter the shutdown states
105  * when either side of the queue pair detaches. If the guest side detaches
106  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
107  * the content of the queue pair will no longer be available. If the host
108  * side detaches first, the queue pair will either enter the
109  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
110  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
111  * (e.g., the host detaches while a guest is stunned).
112  *
113  * New-style VMX'en will also unmap guest memory, if the guest is
114  * quiesced, e.g., during a snapshot operation. In that case, the guest
115  * memory will no longer be available, and the queue pair will transition from
116  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
117  * in which case the queue pair will transition from the *_NO_MEM state at that
118  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
119  * since the peer may have either attached or detached in the meantime. The
120  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
121  * *_MEM state, and vice versa.
122  */
123 
124 /* The Kernel specific component of the struct vmci_queue structure. */
125 struct vmci_queue_kern_if {
126 	struct mutex __mutex;	/* Protects the queue. */
127 	struct mutex *mutex;	/* Shared by producer and consumer queues. */
128 	size_t num_pages;	/* Number of pages incl. header. */
129 	bool host;		/* Host or guest? */
130 	union {
131 		struct {
132 			dma_addr_t *pas;
133 			void **vas;
134 		} g;		/* Used by the guest. */
135 		struct {
136 			struct page **page;
137 			struct page **header_page;
138 		} h;		/* Used by the host. */
139 	} u;
140 };
141 
142 /*
143  * This structure is opaque to the clients.
144  */
145 struct vmci_qp {
146 	struct vmci_handle handle;
147 	struct vmci_queue *produce_q;
148 	struct vmci_queue *consume_q;
149 	u64 produce_q_size;
150 	u64 consume_q_size;
151 	u32 peer;
152 	u32 flags;
153 	u32 priv_flags;
154 	bool guest_endpoint;
155 	unsigned int blocked;
156 	unsigned int generation;
157 	wait_queue_head_t event;
158 };
159 
160 enum qp_broker_state {
161 	VMCIQPB_NEW,
162 	VMCIQPB_CREATED_NO_MEM,
163 	VMCIQPB_CREATED_MEM,
164 	VMCIQPB_ATTACHED_NO_MEM,
165 	VMCIQPB_ATTACHED_MEM,
166 	VMCIQPB_SHUTDOWN_NO_MEM,
167 	VMCIQPB_SHUTDOWN_MEM,
168 	VMCIQPB_GONE
169 };
170 
171 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
172 				     _qpb->state == VMCIQPB_ATTACHED_MEM || \
173 				     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
174 
175 /*
176  * In the queue pair broker, we always use the guest point of view for
177  * the produce and consume queue values and references, e.g., the
178  * produce queue size stored is the guests produce queue size. The
179  * host endpoint will need to swap these around. The only exception is
180  * the local queue pairs on the host, in which case the host endpoint
181  * that creates the queue pair will have the right orientation, and
182  * the attaching host endpoint will need to swap.
183  */
184 struct qp_entry {
185 	struct list_head list_item;
186 	struct vmci_handle handle;
187 	u32 peer;
188 	u32 flags;
189 	u64 produce_size;
190 	u64 consume_size;
191 	u32 ref_count;
192 };
193 
194 struct qp_broker_entry {
195 	struct vmci_resource resource;
196 	struct qp_entry qp;
197 	u32 create_id;
198 	u32 attach_id;
199 	enum qp_broker_state state;
200 	bool require_trusted_attach;
201 	bool created_by_trusted;
202 	bool vmci_page_files;	/* Created by VMX using VMCI page files */
203 	struct vmci_queue *produce_q;
204 	struct vmci_queue *consume_q;
205 	struct vmci_queue_header saved_produce_q;
206 	struct vmci_queue_header saved_consume_q;
207 	vmci_event_release_cb wakeup_cb;
208 	void *client_data;
209 	void *local_mem;	/* Kernel memory for local queue pair */
210 };
211 
212 struct qp_guest_endpoint {
213 	struct vmci_resource resource;
214 	struct qp_entry qp;
215 	u64 num_ppns;
216 	void *produce_q;
217 	void *consume_q;
218 	struct ppn_set ppn_set;
219 };
220 
221 struct qp_list {
222 	struct list_head head;
223 	struct mutex mutex;	/* Protect queue list. */
224 };
225 
226 static struct qp_list qp_broker_list = {
227 	.head = LIST_HEAD_INIT(qp_broker_list.head),
228 	.mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
229 };
230 
231 static struct qp_list qp_guest_endpoints = {
232 	.head = LIST_HEAD_INIT(qp_guest_endpoints.head),
233 	.mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
234 };
235 
236 #define INVALID_VMCI_GUEST_MEM_ID  0
237 #define QPE_NUM_PAGES(_QPE) ((u32) \
238 			     (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
239 			      DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
240 
241 
242 /*
243  * Frees kernel VA space for a given queue and its queue header, and
244  * frees physical data pages.
245  */
246 static void qp_free_queue(void *q, u64 size)
247 {
248 	struct vmci_queue *queue = q;
249 
250 	if (queue) {
251 		u64 i;
252 
253 		/* Given size does not include header, so add in a page here. */
254 		for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
255 			dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
256 					  queue->kernel_if->u.g.vas[i],
257 					  queue->kernel_if->u.g.pas[i]);
258 		}
259 
260 		vfree(queue);
261 	}
262 }
263 
264 /*
265  * Allocates kernel queue pages of specified size with IOMMU mappings,
266  * plus space for the queue structure/kernel interface and the queue
267  * header.
268  */
269 static void *qp_alloc_queue(u64 size, u32 flags)
270 {
271 	u64 i;
272 	struct vmci_queue *queue;
273 	size_t pas_size;
274 	size_t vas_size;
275 	size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
276 	u64 num_pages;
277 
278 	if (size > SIZE_MAX - PAGE_SIZE)
279 		return NULL;
280 	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
281 	if (num_pages >
282 		 (SIZE_MAX - queue_size) /
283 		 (sizeof(*queue->kernel_if->u.g.pas) +
284 		  sizeof(*queue->kernel_if->u.g.vas)))
285 		return NULL;
286 
287 	pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
288 	vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
289 	queue_size += pas_size + vas_size;
290 
291 	queue = vmalloc(queue_size);
292 	if (!queue)
293 		return NULL;
294 
295 	queue->q_header = NULL;
296 	queue->saved_header = NULL;
297 	queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
298 	queue->kernel_if->mutex = NULL;
299 	queue->kernel_if->num_pages = num_pages;
300 	queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
301 	queue->kernel_if->u.g.vas =
302 		(void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
303 	queue->kernel_if->host = false;
304 
305 	for (i = 0; i < num_pages; i++) {
306 		queue->kernel_if->u.g.vas[i] =
307 			dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
308 					   &queue->kernel_if->u.g.pas[i],
309 					   GFP_KERNEL);
310 		if (!queue->kernel_if->u.g.vas[i]) {
311 			/* Size excl. the header. */
312 			qp_free_queue(queue, i * PAGE_SIZE);
313 			return NULL;
314 		}
315 	}
316 
317 	/* Queue header is the first page. */
318 	queue->q_header = queue->kernel_if->u.g.vas[0];
319 
320 	return queue;
321 }
322 
323 /*
324  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
325  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
326  * by traversing the offset -> page translation structure for the queue.
327  * Assumes that offset + size does not wrap around in the queue.
328  */
329 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
330 				  u64 queue_offset,
331 				  struct iov_iter *from,
332 				  size_t size)
333 {
334 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
335 	size_t bytes_copied = 0;
336 
337 	while (bytes_copied < size) {
338 		const u64 page_index =
339 			(queue_offset + bytes_copied) / PAGE_SIZE;
340 		const size_t page_offset =
341 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
342 		void *va;
343 		size_t to_copy;
344 
345 		if (kernel_if->host)
346 			va = kmap(kernel_if->u.h.page[page_index]);
347 		else
348 			va = kernel_if->u.g.vas[page_index + 1];
349 			/* Skip header. */
350 
351 		if (size - bytes_copied > PAGE_SIZE - page_offset)
352 			/* Enough payload to fill up from this page. */
353 			to_copy = PAGE_SIZE - page_offset;
354 		else
355 			to_copy = size - bytes_copied;
356 
357 		if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
358 					 from)) {
359 			if (kernel_if->host)
360 				kunmap(kernel_if->u.h.page[page_index]);
361 			return VMCI_ERROR_INVALID_ARGS;
362 		}
363 		bytes_copied += to_copy;
364 		if (kernel_if->host)
365 			kunmap(kernel_if->u.h.page[page_index]);
366 	}
367 
368 	return VMCI_SUCCESS;
369 }
370 
371 /*
372  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
373  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
374  * by traversing the offset -> page translation structure for the queue.
375  * Assumes that offset + size does not wrap around in the queue.
376  */
377 static int qp_memcpy_from_queue_iter(struct iov_iter *to,
378 				    const struct vmci_queue *queue,
379 				    u64 queue_offset, size_t size)
380 {
381 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
382 	size_t bytes_copied = 0;
383 
384 	while (bytes_copied < size) {
385 		const u64 page_index =
386 			(queue_offset + bytes_copied) / PAGE_SIZE;
387 		const size_t page_offset =
388 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
389 		void *va;
390 		size_t to_copy;
391 		int err;
392 
393 		if (kernel_if->host)
394 			va = kmap(kernel_if->u.h.page[page_index]);
395 		else
396 			va = kernel_if->u.g.vas[page_index + 1];
397 			/* Skip header. */
398 
399 		if (size - bytes_copied > PAGE_SIZE - page_offset)
400 			/* Enough payload to fill up this page. */
401 			to_copy = PAGE_SIZE - page_offset;
402 		else
403 			to_copy = size - bytes_copied;
404 
405 		err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
406 		if (err != to_copy) {
407 			if (kernel_if->host)
408 				kunmap(kernel_if->u.h.page[page_index]);
409 			return VMCI_ERROR_INVALID_ARGS;
410 		}
411 		bytes_copied += to_copy;
412 		if (kernel_if->host)
413 			kunmap(kernel_if->u.h.page[page_index]);
414 	}
415 
416 	return VMCI_SUCCESS;
417 }
418 
419 /*
420  * Allocates two list of PPNs --- one for the pages in the produce queue,
421  * and the other for the pages in the consume queue. Intializes the list
422  * of PPNs with the page frame numbers of the KVA for the two queues (and
423  * the queue headers).
424  */
425 static int qp_alloc_ppn_set(void *prod_q,
426 			    u64 num_produce_pages,
427 			    void *cons_q,
428 			    u64 num_consume_pages, struct ppn_set *ppn_set)
429 {
430 	u64 *produce_ppns;
431 	u64 *consume_ppns;
432 	struct vmci_queue *produce_q = prod_q;
433 	struct vmci_queue *consume_q = cons_q;
434 	u64 i;
435 
436 	if (!produce_q || !num_produce_pages || !consume_q ||
437 	    !num_consume_pages || !ppn_set)
438 		return VMCI_ERROR_INVALID_ARGS;
439 
440 	if (ppn_set->initialized)
441 		return VMCI_ERROR_ALREADY_EXISTS;
442 
443 	produce_ppns =
444 	    kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
445 			  GFP_KERNEL);
446 	if (!produce_ppns)
447 		return VMCI_ERROR_NO_MEM;
448 
449 	consume_ppns =
450 	    kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
451 			  GFP_KERNEL);
452 	if (!consume_ppns) {
453 		kfree(produce_ppns);
454 		return VMCI_ERROR_NO_MEM;
455 	}
456 
457 	for (i = 0; i < num_produce_pages; i++)
458 		produce_ppns[i] =
459 			produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
460 
461 	for (i = 0; i < num_consume_pages; i++)
462 		consume_ppns[i] =
463 			consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
464 
465 	ppn_set->num_produce_pages = num_produce_pages;
466 	ppn_set->num_consume_pages = num_consume_pages;
467 	ppn_set->produce_ppns = produce_ppns;
468 	ppn_set->consume_ppns = consume_ppns;
469 	ppn_set->initialized = true;
470 	return VMCI_SUCCESS;
471 }
472 
473 /*
474  * Frees the two list of PPNs for a queue pair.
475  */
476 static void qp_free_ppn_set(struct ppn_set *ppn_set)
477 {
478 	if (ppn_set->initialized) {
479 		/* Do not call these functions on NULL inputs. */
480 		kfree(ppn_set->produce_ppns);
481 		kfree(ppn_set->consume_ppns);
482 	}
483 	memset(ppn_set, 0, sizeof(*ppn_set));
484 }
485 
486 /*
487  * Populates the list of PPNs in the hypercall structure with the PPNS
488  * of the produce queue and the consume queue.
489  */
490 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
491 {
492 	if (vmci_use_ppn64()) {
493 		memcpy(call_buf, ppn_set->produce_ppns,
494 		       ppn_set->num_produce_pages *
495 		       sizeof(*ppn_set->produce_ppns));
496 		memcpy(call_buf +
497 		       ppn_set->num_produce_pages *
498 		       sizeof(*ppn_set->produce_ppns),
499 		       ppn_set->consume_ppns,
500 		       ppn_set->num_consume_pages *
501 		       sizeof(*ppn_set->consume_ppns));
502 	} else {
503 		int i;
504 		u32 *ppns = (u32 *) call_buf;
505 
506 		for (i = 0; i < ppn_set->num_produce_pages; i++)
507 			ppns[i] = (u32) ppn_set->produce_ppns[i];
508 
509 		ppns = &ppns[ppn_set->num_produce_pages];
510 
511 		for (i = 0; i < ppn_set->num_consume_pages; i++)
512 			ppns[i] = (u32) ppn_set->consume_ppns[i];
513 	}
514 
515 	return VMCI_SUCCESS;
516 }
517 
518 /*
519  * Allocates kernel VA space of specified size plus space for the queue
520  * and kernel interface.  This is different from the guest queue allocator,
521  * because we do not allocate our own queue header/data pages here but
522  * share those of the guest.
523  */
524 static struct vmci_queue *qp_host_alloc_queue(u64 size)
525 {
526 	struct vmci_queue *queue;
527 	size_t queue_page_size;
528 	u64 num_pages;
529 	const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
530 
531 	if (size > SIZE_MAX - PAGE_SIZE)
532 		return NULL;
533 	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
534 	if (num_pages > (SIZE_MAX - queue_size) /
535 		 sizeof(*queue->kernel_if->u.h.page))
536 		return NULL;
537 
538 	queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
539 
540 	queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
541 	if (queue) {
542 		queue->q_header = NULL;
543 		queue->saved_header = NULL;
544 		queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
545 		queue->kernel_if->host = true;
546 		queue->kernel_if->mutex = NULL;
547 		queue->kernel_if->num_pages = num_pages;
548 		queue->kernel_if->u.h.header_page =
549 		    (struct page **)((u8 *)queue + queue_size);
550 		queue->kernel_if->u.h.page =
551 			&queue->kernel_if->u.h.header_page[1];
552 	}
553 
554 	return queue;
555 }
556 
557 /*
558  * Frees kernel memory for a given queue (header plus translation
559  * structure).
560  */
561 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
562 {
563 	kfree(queue);
564 }
565 
566 /*
567  * Initialize the mutex for the pair of queues.  This mutex is used to
568  * protect the q_header and the buffer from changing out from under any
569  * users of either queue.  Of course, it's only any good if the mutexes
570  * are actually acquired.  Queue structure must lie on non-paged memory
571  * or we cannot guarantee access to the mutex.
572  */
573 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
574 				struct vmci_queue *consume_q)
575 {
576 	/*
577 	 * Only the host queue has shared state - the guest queues do not
578 	 * need to synchronize access using a queue mutex.
579 	 */
580 
581 	if (produce_q->kernel_if->host) {
582 		produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
583 		consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
584 		mutex_init(produce_q->kernel_if->mutex);
585 	}
586 }
587 
588 /*
589  * Cleans up the mutex for the pair of queues.
590  */
591 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
592 				   struct vmci_queue *consume_q)
593 {
594 	if (produce_q->kernel_if->host) {
595 		produce_q->kernel_if->mutex = NULL;
596 		consume_q->kernel_if->mutex = NULL;
597 	}
598 }
599 
600 /*
601  * Acquire the mutex for the queue.  Note that the produce_q and
602  * the consume_q share a mutex.  So, only one of the two need to
603  * be passed in to this routine.  Either will work just fine.
604  */
605 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
606 {
607 	if (queue->kernel_if->host)
608 		mutex_lock(queue->kernel_if->mutex);
609 }
610 
611 /*
612  * Release the mutex for the queue.  Note that the produce_q and
613  * the consume_q share a mutex.  So, only one of the two need to
614  * be passed in to this routine.  Either will work just fine.
615  */
616 static void qp_release_queue_mutex(struct vmci_queue *queue)
617 {
618 	if (queue->kernel_if->host)
619 		mutex_unlock(queue->kernel_if->mutex);
620 }
621 
622 /*
623  * Helper function to release pages in the PageStoreAttachInfo
624  * previously obtained using get_user_pages.
625  */
626 static void qp_release_pages(struct page **pages,
627 			     u64 num_pages, bool dirty)
628 {
629 	int i;
630 
631 	for (i = 0; i < num_pages; i++) {
632 		if (dirty)
633 			set_page_dirty(pages[i]);
634 
635 		put_page(pages[i]);
636 		pages[i] = NULL;
637 	}
638 }
639 
640 /*
641  * Lock the user pages referenced by the {produce,consume}Buffer
642  * struct into memory and populate the {produce,consume}Pages
643  * arrays in the attach structure with them.
644  */
645 static int qp_host_get_user_memory(u64 produce_uva,
646 				   u64 consume_uva,
647 				   struct vmci_queue *produce_q,
648 				   struct vmci_queue *consume_q)
649 {
650 	int retval;
651 	int err = VMCI_SUCCESS;
652 
653 	retval = get_user_pages_fast((uintptr_t) produce_uva,
654 				     produce_q->kernel_if->num_pages,
655 				     FOLL_WRITE,
656 				     produce_q->kernel_if->u.h.header_page);
657 	if (retval < (int)produce_q->kernel_if->num_pages) {
658 		pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
659 			retval);
660 		qp_release_pages(produce_q->kernel_if->u.h.header_page,
661 				 retval, false);
662 		err = VMCI_ERROR_NO_MEM;
663 		goto out;
664 	}
665 
666 	retval = get_user_pages_fast((uintptr_t) consume_uva,
667 				     consume_q->kernel_if->num_pages,
668 				     FOLL_WRITE,
669 				     consume_q->kernel_if->u.h.header_page);
670 	if (retval < (int)consume_q->kernel_if->num_pages) {
671 		pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
672 			retval);
673 		qp_release_pages(consume_q->kernel_if->u.h.header_page,
674 				 retval, false);
675 		qp_release_pages(produce_q->kernel_if->u.h.header_page,
676 				 produce_q->kernel_if->num_pages, false);
677 		err = VMCI_ERROR_NO_MEM;
678 	}
679 
680  out:
681 	return err;
682 }
683 
684 /*
685  * Registers the specification of the user pages used for backing a queue
686  * pair. Enough information to map in pages is stored in the OS specific
687  * part of the struct vmci_queue structure.
688  */
689 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
690 					struct vmci_queue *produce_q,
691 					struct vmci_queue *consume_q)
692 {
693 	u64 produce_uva;
694 	u64 consume_uva;
695 
696 	/*
697 	 * The new style and the old style mapping only differs in
698 	 * that we either get a single or two UVAs, so we split the
699 	 * single UVA range at the appropriate spot.
700 	 */
701 	produce_uva = page_store->pages;
702 	consume_uva = page_store->pages +
703 	    produce_q->kernel_if->num_pages * PAGE_SIZE;
704 	return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
705 				       consume_q);
706 }
707 
708 /*
709  * Releases and removes the references to user pages stored in the attach
710  * struct.  Pages are released from the page cache and may become
711  * swappable again.
712  */
713 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
714 					   struct vmci_queue *consume_q)
715 {
716 	qp_release_pages(produce_q->kernel_if->u.h.header_page,
717 			 produce_q->kernel_if->num_pages, true);
718 	memset(produce_q->kernel_if->u.h.header_page, 0,
719 	       sizeof(*produce_q->kernel_if->u.h.header_page) *
720 	       produce_q->kernel_if->num_pages);
721 	qp_release_pages(consume_q->kernel_if->u.h.header_page,
722 			 consume_q->kernel_if->num_pages, true);
723 	memset(consume_q->kernel_if->u.h.header_page, 0,
724 	       sizeof(*consume_q->kernel_if->u.h.header_page) *
725 	       consume_q->kernel_if->num_pages);
726 }
727 
728 /*
729  * Once qp_host_register_user_memory has been performed on a
730  * queue, the queue pair headers can be mapped into the
731  * kernel. Once mapped, they must be unmapped with
732  * qp_host_unmap_queues prior to calling
733  * qp_host_unregister_user_memory.
734  * Pages are pinned.
735  */
736 static int qp_host_map_queues(struct vmci_queue *produce_q,
737 			      struct vmci_queue *consume_q)
738 {
739 	int result;
740 
741 	if (!produce_q->q_header || !consume_q->q_header) {
742 		struct page *headers[2];
743 
744 		if (produce_q->q_header != consume_q->q_header)
745 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
746 
747 		if (produce_q->kernel_if->u.h.header_page == NULL ||
748 		    *produce_q->kernel_if->u.h.header_page == NULL)
749 			return VMCI_ERROR_UNAVAILABLE;
750 
751 		headers[0] = *produce_q->kernel_if->u.h.header_page;
752 		headers[1] = *consume_q->kernel_if->u.h.header_page;
753 
754 		produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
755 		if (produce_q->q_header != NULL) {
756 			consume_q->q_header =
757 			    (struct vmci_queue_header *)((u8 *)
758 							 produce_q->q_header +
759 							 PAGE_SIZE);
760 			result = VMCI_SUCCESS;
761 		} else {
762 			pr_warn("vmap failed\n");
763 			result = VMCI_ERROR_NO_MEM;
764 		}
765 	} else {
766 		result = VMCI_SUCCESS;
767 	}
768 
769 	return result;
770 }
771 
772 /*
773  * Unmaps previously mapped queue pair headers from the kernel.
774  * Pages are unpinned.
775  */
776 static int qp_host_unmap_queues(u32 gid,
777 				struct vmci_queue *produce_q,
778 				struct vmci_queue *consume_q)
779 {
780 	if (produce_q->q_header) {
781 		if (produce_q->q_header < consume_q->q_header)
782 			vunmap(produce_q->q_header);
783 		else
784 			vunmap(consume_q->q_header);
785 
786 		produce_q->q_header = NULL;
787 		consume_q->q_header = NULL;
788 	}
789 
790 	return VMCI_SUCCESS;
791 }
792 
793 /*
794  * Finds the entry in the list corresponding to a given handle. Assumes
795  * that the list is locked.
796  */
797 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
798 				     struct vmci_handle handle)
799 {
800 	struct qp_entry *entry;
801 
802 	if (vmci_handle_is_invalid(handle))
803 		return NULL;
804 
805 	list_for_each_entry(entry, &qp_list->head, list_item) {
806 		if (vmci_handle_is_equal(entry->handle, handle))
807 			return entry;
808 	}
809 
810 	return NULL;
811 }
812 
813 /*
814  * Finds the entry in the list corresponding to a given handle.
815  */
816 static struct qp_guest_endpoint *
817 qp_guest_handle_to_entry(struct vmci_handle handle)
818 {
819 	struct qp_guest_endpoint *entry;
820 	struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
821 
822 	entry = qp ? container_of(
823 		qp, struct qp_guest_endpoint, qp) : NULL;
824 	return entry;
825 }
826 
827 /*
828  * Finds the entry in the list corresponding to a given handle.
829  */
830 static struct qp_broker_entry *
831 qp_broker_handle_to_entry(struct vmci_handle handle)
832 {
833 	struct qp_broker_entry *entry;
834 	struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
835 
836 	entry = qp ? container_of(
837 		qp, struct qp_broker_entry, qp) : NULL;
838 	return entry;
839 }
840 
841 /*
842  * Dispatches a queue pair event message directly into the local event
843  * queue.
844  */
845 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
846 {
847 	u32 context_id = vmci_get_context_id();
848 	struct vmci_event_qp ev;
849 
850 	ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
851 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
852 					  VMCI_CONTEXT_RESOURCE_ID);
853 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
854 	ev.msg.event_data.event =
855 	    attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
856 	ev.payload.peer_id = context_id;
857 	ev.payload.handle = handle;
858 
859 	return vmci_event_dispatch(&ev.msg.hdr);
860 }
861 
862 /*
863  * Allocates and initializes a qp_guest_endpoint structure.
864  * Allocates a queue_pair rid (and handle) iff the given entry has
865  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
866  * are reserved handles.  Assumes that the QP list mutex is held
867  * by the caller.
868  */
869 static struct qp_guest_endpoint *
870 qp_guest_endpoint_create(struct vmci_handle handle,
871 			 u32 peer,
872 			 u32 flags,
873 			 u64 produce_size,
874 			 u64 consume_size,
875 			 void *produce_q,
876 			 void *consume_q)
877 {
878 	int result;
879 	struct qp_guest_endpoint *entry;
880 	/* One page each for the queue headers. */
881 	const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
882 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
883 
884 	if (vmci_handle_is_invalid(handle)) {
885 		u32 context_id = vmci_get_context_id();
886 
887 		handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
888 	}
889 
890 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
891 	if (entry) {
892 		entry->qp.peer = peer;
893 		entry->qp.flags = flags;
894 		entry->qp.produce_size = produce_size;
895 		entry->qp.consume_size = consume_size;
896 		entry->qp.ref_count = 0;
897 		entry->num_ppns = num_ppns;
898 		entry->produce_q = produce_q;
899 		entry->consume_q = consume_q;
900 		INIT_LIST_HEAD(&entry->qp.list_item);
901 
902 		/* Add resource obj */
903 		result = vmci_resource_add(&entry->resource,
904 					   VMCI_RESOURCE_TYPE_QPAIR_GUEST,
905 					   handle);
906 		entry->qp.handle = vmci_resource_handle(&entry->resource);
907 		if ((result != VMCI_SUCCESS) ||
908 		    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
909 			pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
910 				handle.context, handle.resource, result);
911 			kfree(entry);
912 			entry = NULL;
913 		}
914 	}
915 	return entry;
916 }
917 
918 /*
919  * Frees a qp_guest_endpoint structure.
920  */
921 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
922 {
923 	qp_free_ppn_set(&entry->ppn_set);
924 	qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
925 	qp_free_queue(entry->produce_q, entry->qp.produce_size);
926 	qp_free_queue(entry->consume_q, entry->qp.consume_size);
927 	/* Unlink from resource hash table and free callback */
928 	vmci_resource_remove(&entry->resource);
929 
930 	kfree(entry);
931 }
932 
933 /*
934  * Helper to make a queue_pairAlloc hypercall when the driver is
935  * supporting a guest device.
936  */
937 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
938 {
939 	struct vmci_qp_alloc_msg *alloc_msg;
940 	size_t msg_size;
941 	size_t ppn_size;
942 	int result;
943 
944 	if (!entry || entry->num_ppns <= 2)
945 		return VMCI_ERROR_INVALID_ARGS;
946 
947 	ppn_size = vmci_use_ppn64() ? sizeof(u64) : sizeof(u32);
948 	msg_size = sizeof(*alloc_msg) +
949 	    (size_t) entry->num_ppns * ppn_size;
950 	alloc_msg = kmalloc(msg_size, GFP_KERNEL);
951 	if (!alloc_msg)
952 		return VMCI_ERROR_NO_MEM;
953 
954 	alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
955 					      VMCI_QUEUEPAIR_ALLOC);
956 	alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
957 	alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
958 	alloc_msg->handle = entry->qp.handle;
959 	alloc_msg->peer = entry->qp.peer;
960 	alloc_msg->flags = entry->qp.flags;
961 	alloc_msg->produce_size = entry->qp.produce_size;
962 	alloc_msg->consume_size = entry->qp.consume_size;
963 	alloc_msg->num_ppns = entry->num_ppns;
964 
965 	result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
966 				     &entry->ppn_set);
967 	if (result == VMCI_SUCCESS)
968 		result = vmci_send_datagram(&alloc_msg->hdr);
969 
970 	kfree(alloc_msg);
971 
972 	return result;
973 }
974 
975 /*
976  * Helper to make a queue_pairDetach hypercall when the driver is
977  * supporting a guest device.
978  */
979 static int qp_detatch_hypercall(struct vmci_handle handle)
980 {
981 	struct vmci_qp_detach_msg detach_msg;
982 
983 	detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
984 					      VMCI_QUEUEPAIR_DETACH);
985 	detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
986 	detach_msg.hdr.payload_size = sizeof(handle);
987 	detach_msg.handle = handle;
988 
989 	return vmci_send_datagram(&detach_msg.hdr);
990 }
991 
992 /*
993  * Adds the given entry to the list. Assumes that the list is locked.
994  */
995 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
996 {
997 	if (entry)
998 		list_add(&entry->list_item, &qp_list->head);
999 }
1000 
1001 /*
1002  * Removes the given entry from the list. Assumes that the list is locked.
1003  */
1004 static void qp_list_remove_entry(struct qp_list *qp_list,
1005 				 struct qp_entry *entry)
1006 {
1007 	if (entry)
1008 		list_del(&entry->list_item);
1009 }
1010 
1011 /*
1012  * Helper for VMCI queue_pair detach interface. Frees the physical
1013  * pages for the queue pair.
1014  */
1015 static int qp_detatch_guest_work(struct vmci_handle handle)
1016 {
1017 	int result;
1018 	struct qp_guest_endpoint *entry;
1019 	u32 ref_count = ~0;	/* To avoid compiler warning below */
1020 
1021 	mutex_lock(&qp_guest_endpoints.mutex);
1022 
1023 	entry = qp_guest_handle_to_entry(handle);
1024 	if (!entry) {
1025 		mutex_unlock(&qp_guest_endpoints.mutex);
1026 		return VMCI_ERROR_NOT_FOUND;
1027 	}
1028 
1029 	if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1030 		result = VMCI_SUCCESS;
1031 
1032 		if (entry->qp.ref_count > 1) {
1033 			result = qp_notify_peer_local(false, handle);
1034 			/*
1035 			 * We can fail to notify a local queuepair
1036 			 * because we can't allocate.  We still want
1037 			 * to release the entry if that happens, so
1038 			 * don't bail out yet.
1039 			 */
1040 		}
1041 	} else {
1042 		result = qp_detatch_hypercall(handle);
1043 		if (result < VMCI_SUCCESS) {
1044 			/*
1045 			 * We failed to notify a non-local queuepair.
1046 			 * That other queuepair might still be
1047 			 * accessing the shared memory, so don't
1048 			 * release the entry yet.  It will get cleaned
1049 			 * up by VMCIqueue_pair_Exit() if necessary
1050 			 * (assuming we are going away, otherwise why
1051 			 * did this fail?).
1052 			 */
1053 
1054 			mutex_unlock(&qp_guest_endpoints.mutex);
1055 			return result;
1056 		}
1057 	}
1058 
1059 	/*
1060 	 * If we get here then we either failed to notify a local queuepair, or
1061 	 * we succeeded in all cases.  Release the entry if required.
1062 	 */
1063 
1064 	entry->qp.ref_count--;
1065 	if (entry->qp.ref_count == 0)
1066 		qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1067 
1068 	/* If we didn't remove the entry, this could change once we unlock. */
1069 	if (entry)
1070 		ref_count = entry->qp.ref_count;
1071 
1072 	mutex_unlock(&qp_guest_endpoints.mutex);
1073 
1074 	if (ref_count == 0)
1075 		qp_guest_endpoint_destroy(entry);
1076 
1077 	return result;
1078 }
1079 
1080 /*
1081  * This functions handles the actual allocation of a VMCI queue
1082  * pair guest endpoint. Allocates physical pages for the queue
1083  * pair. It makes OS dependent calls through generic wrappers.
1084  */
1085 static int qp_alloc_guest_work(struct vmci_handle *handle,
1086 			       struct vmci_queue **produce_q,
1087 			       u64 produce_size,
1088 			       struct vmci_queue **consume_q,
1089 			       u64 consume_size,
1090 			       u32 peer,
1091 			       u32 flags,
1092 			       u32 priv_flags)
1093 {
1094 	const u64 num_produce_pages =
1095 	    DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1096 	const u64 num_consume_pages =
1097 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1098 	void *my_produce_q = NULL;
1099 	void *my_consume_q = NULL;
1100 	int result;
1101 	struct qp_guest_endpoint *queue_pair_entry = NULL;
1102 
1103 	if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1104 		return VMCI_ERROR_NO_ACCESS;
1105 
1106 	mutex_lock(&qp_guest_endpoints.mutex);
1107 
1108 	queue_pair_entry = qp_guest_handle_to_entry(*handle);
1109 	if (queue_pair_entry) {
1110 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1111 			/* Local attach case. */
1112 			if (queue_pair_entry->qp.ref_count > 1) {
1113 				pr_devel("Error attempting to attach more than once\n");
1114 				result = VMCI_ERROR_UNAVAILABLE;
1115 				goto error_keep_entry;
1116 			}
1117 
1118 			if (queue_pair_entry->qp.produce_size != consume_size ||
1119 			    queue_pair_entry->qp.consume_size !=
1120 			    produce_size ||
1121 			    queue_pair_entry->qp.flags !=
1122 			    (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1123 				pr_devel("Error mismatched queue pair in local attach\n");
1124 				result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1125 				goto error_keep_entry;
1126 			}
1127 
1128 			/*
1129 			 * Do a local attach.  We swap the consume and
1130 			 * produce queues for the attacher and deliver
1131 			 * an attach event.
1132 			 */
1133 			result = qp_notify_peer_local(true, *handle);
1134 			if (result < VMCI_SUCCESS)
1135 				goto error_keep_entry;
1136 
1137 			my_produce_q = queue_pair_entry->consume_q;
1138 			my_consume_q = queue_pair_entry->produce_q;
1139 			goto out;
1140 		}
1141 
1142 		result = VMCI_ERROR_ALREADY_EXISTS;
1143 		goto error_keep_entry;
1144 	}
1145 
1146 	my_produce_q = qp_alloc_queue(produce_size, flags);
1147 	if (!my_produce_q) {
1148 		pr_warn("Error allocating pages for produce queue\n");
1149 		result = VMCI_ERROR_NO_MEM;
1150 		goto error;
1151 	}
1152 
1153 	my_consume_q = qp_alloc_queue(consume_size, flags);
1154 	if (!my_consume_q) {
1155 		pr_warn("Error allocating pages for consume queue\n");
1156 		result = VMCI_ERROR_NO_MEM;
1157 		goto error;
1158 	}
1159 
1160 	queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1161 						    produce_size, consume_size,
1162 						    my_produce_q, my_consume_q);
1163 	if (!queue_pair_entry) {
1164 		pr_warn("Error allocating memory in %s\n", __func__);
1165 		result = VMCI_ERROR_NO_MEM;
1166 		goto error;
1167 	}
1168 
1169 	result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1170 				  num_consume_pages,
1171 				  &queue_pair_entry->ppn_set);
1172 	if (result < VMCI_SUCCESS) {
1173 		pr_warn("qp_alloc_ppn_set failed\n");
1174 		goto error;
1175 	}
1176 
1177 	/*
1178 	 * It's only necessary to notify the host if this queue pair will be
1179 	 * attached to from another context.
1180 	 */
1181 	if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1182 		/* Local create case. */
1183 		u32 context_id = vmci_get_context_id();
1184 
1185 		/*
1186 		 * Enforce similar checks on local queue pairs as we
1187 		 * do for regular ones.  The handle's context must
1188 		 * match the creator or attacher context id (here they
1189 		 * are both the current context id) and the
1190 		 * attach-only flag cannot exist during create.  We
1191 		 * also ensure specified peer is this context or an
1192 		 * invalid one.
1193 		 */
1194 		if (queue_pair_entry->qp.handle.context != context_id ||
1195 		    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1196 		     queue_pair_entry->qp.peer != context_id)) {
1197 			result = VMCI_ERROR_NO_ACCESS;
1198 			goto error;
1199 		}
1200 
1201 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1202 			result = VMCI_ERROR_NOT_FOUND;
1203 			goto error;
1204 		}
1205 	} else {
1206 		result = qp_alloc_hypercall(queue_pair_entry);
1207 		if (result < VMCI_SUCCESS) {
1208 			pr_warn("qp_alloc_hypercall result = %d\n", result);
1209 			goto error;
1210 		}
1211 	}
1212 
1213 	qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1214 			    (struct vmci_queue *)my_consume_q);
1215 
1216 	qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1217 
1218  out:
1219 	queue_pair_entry->qp.ref_count++;
1220 	*handle = queue_pair_entry->qp.handle;
1221 	*produce_q = (struct vmci_queue *)my_produce_q;
1222 	*consume_q = (struct vmci_queue *)my_consume_q;
1223 
1224 	/*
1225 	 * We should initialize the queue pair header pages on a local
1226 	 * queue pair create.  For non-local queue pairs, the
1227 	 * hypervisor initializes the header pages in the create step.
1228 	 */
1229 	if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1230 	    queue_pair_entry->qp.ref_count == 1) {
1231 		vmci_q_header_init((*produce_q)->q_header, *handle);
1232 		vmci_q_header_init((*consume_q)->q_header, *handle);
1233 	}
1234 
1235 	mutex_unlock(&qp_guest_endpoints.mutex);
1236 
1237 	return VMCI_SUCCESS;
1238 
1239  error:
1240 	mutex_unlock(&qp_guest_endpoints.mutex);
1241 	if (queue_pair_entry) {
1242 		/* The queues will be freed inside the destroy routine. */
1243 		qp_guest_endpoint_destroy(queue_pair_entry);
1244 	} else {
1245 		qp_free_queue(my_produce_q, produce_size);
1246 		qp_free_queue(my_consume_q, consume_size);
1247 	}
1248 	return result;
1249 
1250  error_keep_entry:
1251 	/* This path should only be used when an existing entry was found. */
1252 	mutex_unlock(&qp_guest_endpoints.mutex);
1253 	return result;
1254 }
1255 
1256 /*
1257  * The first endpoint issuing a queue pair allocation will create the state
1258  * of the queue pair in the queue pair broker.
1259  *
1260  * If the creator is a guest, it will associate a VMX virtual address range
1261  * with the queue pair as specified by the page_store. For compatibility with
1262  * older VMX'en, that would use a separate step to set the VMX virtual
1263  * address range, the virtual address range can be registered later using
1264  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1265  * used.
1266  *
1267  * If the creator is the host, a page_store of NULL should be used as well,
1268  * since the host is not able to supply a page store for the queue pair.
1269  *
1270  * For older VMX and host callers, the queue pair will be created in the
1271  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1272  * created in VMCOQPB_CREATED_MEM state.
1273  */
1274 static int qp_broker_create(struct vmci_handle handle,
1275 			    u32 peer,
1276 			    u32 flags,
1277 			    u32 priv_flags,
1278 			    u64 produce_size,
1279 			    u64 consume_size,
1280 			    struct vmci_qp_page_store *page_store,
1281 			    struct vmci_ctx *context,
1282 			    vmci_event_release_cb wakeup_cb,
1283 			    void *client_data, struct qp_broker_entry **ent)
1284 {
1285 	struct qp_broker_entry *entry = NULL;
1286 	const u32 context_id = vmci_ctx_get_id(context);
1287 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1288 	int result;
1289 	u64 guest_produce_size;
1290 	u64 guest_consume_size;
1291 
1292 	/* Do not create if the caller asked not to. */
1293 	if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1294 		return VMCI_ERROR_NOT_FOUND;
1295 
1296 	/*
1297 	 * Creator's context ID should match handle's context ID or the creator
1298 	 * must allow the context in handle's context ID as the "peer".
1299 	 */
1300 	if (handle.context != context_id && handle.context != peer)
1301 		return VMCI_ERROR_NO_ACCESS;
1302 
1303 	if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1304 		return VMCI_ERROR_DST_UNREACHABLE;
1305 
1306 	/*
1307 	 * Creator's context ID for local queue pairs should match the
1308 	 * peer, if a peer is specified.
1309 	 */
1310 	if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1311 		return VMCI_ERROR_NO_ACCESS;
1312 
1313 	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1314 	if (!entry)
1315 		return VMCI_ERROR_NO_MEM;
1316 
1317 	if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1318 		/*
1319 		 * The queue pair broker entry stores values from the guest
1320 		 * point of view, so a creating host side endpoint should swap
1321 		 * produce and consume values -- unless it is a local queue
1322 		 * pair, in which case no swapping is necessary, since the local
1323 		 * attacher will swap queues.
1324 		 */
1325 
1326 		guest_produce_size = consume_size;
1327 		guest_consume_size = produce_size;
1328 	} else {
1329 		guest_produce_size = produce_size;
1330 		guest_consume_size = consume_size;
1331 	}
1332 
1333 	entry->qp.handle = handle;
1334 	entry->qp.peer = peer;
1335 	entry->qp.flags = flags;
1336 	entry->qp.produce_size = guest_produce_size;
1337 	entry->qp.consume_size = guest_consume_size;
1338 	entry->qp.ref_count = 1;
1339 	entry->create_id = context_id;
1340 	entry->attach_id = VMCI_INVALID_ID;
1341 	entry->state = VMCIQPB_NEW;
1342 	entry->require_trusted_attach =
1343 	    !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1344 	entry->created_by_trusted =
1345 	    !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1346 	entry->vmci_page_files = false;
1347 	entry->wakeup_cb = wakeup_cb;
1348 	entry->client_data = client_data;
1349 	entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1350 	if (entry->produce_q == NULL) {
1351 		result = VMCI_ERROR_NO_MEM;
1352 		goto error;
1353 	}
1354 	entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1355 	if (entry->consume_q == NULL) {
1356 		result = VMCI_ERROR_NO_MEM;
1357 		goto error;
1358 	}
1359 
1360 	qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1361 
1362 	INIT_LIST_HEAD(&entry->qp.list_item);
1363 
1364 	if (is_local) {
1365 		u8 *tmp;
1366 
1367 		entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1368 					   PAGE_SIZE, GFP_KERNEL);
1369 		if (entry->local_mem == NULL) {
1370 			result = VMCI_ERROR_NO_MEM;
1371 			goto error;
1372 		}
1373 		entry->state = VMCIQPB_CREATED_MEM;
1374 		entry->produce_q->q_header = entry->local_mem;
1375 		tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1376 		    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1377 		entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1378 	} else if (page_store) {
1379 		/*
1380 		 * The VMX already initialized the queue pair headers, so no
1381 		 * need for the kernel side to do that.
1382 		 */
1383 		result = qp_host_register_user_memory(page_store,
1384 						      entry->produce_q,
1385 						      entry->consume_q);
1386 		if (result < VMCI_SUCCESS)
1387 			goto error;
1388 
1389 		entry->state = VMCIQPB_CREATED_MEM;
1390 	} else {
1391 		/*
1392 		 * A create without a page_store may be either a host
1393 		 * side create (in which case we are waiting for the
1394 		 * guest side to supply the memory) or an old style
1395 		 * queue pair create (in which case we will expect a
1396 		 * set page store call as the next step).
1397 		 */
1398 		entry->state = VMCIQPB_CREATED_NO_MEM;
1399 	}
1400 
1401 	qp_list_add_entry(&qp_broker_list, &entry->qp);
1402 	if (ent != NULL)
1403 		*ent = entry;
1404 
1405 	/* Add to resource obj */
1406 	result = vmci_resource_add(&entry->resource,
1407 				   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1408 				   handle);
1409 	if (result != VMCI_SUCCESS) {
1410 		pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1411 			handle.context, handle.resource, result);
1412 		goto error;
1413 	}
1414 
1415 	entry->qp.handle = vmci_resource_handle(&entry->resource);
1416 	if (is_local) {
1417 		vmci_q_header_init(entry->produce_q->q_header,
1418 				   entry->qp.handle);
1419 		vmci_q_header_init(entry->consume_q->q_header,
1420 				   entry->qp.handle);
1421 	}
1422 
1423 	vmci_ctx_qp_create(context, entry->qp.handle);
1424 
1425 	return VMCI_SUCCESS;
1426 
1427  error:
1428 	if (entry != NULL) {
1429 		qp_host_free_queue(entry->produce_q, guest_produce_size);
1430 		qp_host_free_queue(entry->consume_q, guest_consume_size);
1431 		kfree(entry);
1432 	}
1433 
1434 	return result;
1435 }
1436 
1437 /*
1438  * Enqueues an event datagram to notify the peer VM attached to
1439  * the given queue pair handle about attach/detach event by the
1440  * given VM.  Returns Payload size of datagram enqueued on
1441  * success, error code otherwise.
1442  */
1443 static int qp_notify_peer(bool attach,
1444 			  struct vmci_handle handle,
1445 			  u32 my_id,
1446 			  u32 peer_id)
1447 {
1448 	int rv;
1449 	struct vmci_event_qp ev;
1450 
1451 	if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1452 	    peer_id == VMCI_INVALID_ID)
1453 		return VMCI_ERROR_INVALID_ARGS;
1454 
1455 	/*
1456 	 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1457 	 * number of pending events from the hypervisor to a given VM
1458 	 * otherwise a rogue VM could do an arbitrary number of attach
1459 	 * and detach operations causing memory pressure in the host
1460 	 * kernel.
1461 	 */
1462 
1463 	ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1464 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1465 					  VMCI_CONTEXT_RESOURCE_ID);
1466 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1467 	ev.msg.event_data.event = attach ?
1468 	    VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1469 	ev.payload.handle = handle;
1470 	ev.payload.peer_id = my_id;
1471 
1472 	rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1473 				    &ev.msg.hdr, false);
1474 	if (rv < VMCI_SUCCESS)
1475 		pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1476 			attach ? "ATTACH" : "DETACH", peer_id);
1477 
1478 	return rv;
1479 }
1480 
1481 /*
1482  * The second endpoint issuing a queue pair allocation will attach to
1483  * the queue pair registered with the queue pair broker.
1484  *
1485  * If the attacher is a guest, it will associate a VMX virtual address
1486  * range with the queue pair as specified by the page_store. At this
1487  * point, the already attach host endpoint may start using the queue
1488  * pair, and an attach event is sent to it. For compatibility with
1489  * older VMX'en, that used a separate step to set the VMX virtual
1490  * address range, the virtual address range can be registered later
1491  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1492  * NULL should be used, and the attach event will be generated once
1493  * the actual page store has been set.
1494  *
1495  * If the attacher is the host, a page_store of NULL should be used as
1496  * well, since the page store information is already set by the guest.
1497  *
1498  * For new VMX and host callers, the queue pair will be moved to the
1499  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1500  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1501  */
1502 static int qp_broker_attach(struct qp_broker_entry *entry,
1503 			    u32 peer,
1504 			    u32 flags,
1505 			    u32 priv_flags,
1506 			    u64 produce_size,
1507 			    u64 consume_size,
1508 			    struct vmci_qp_page_store *page_store,
1509 			    struct vmci_ctx *context,
1510 			    vmci_event_release_cb wakeup_cb,
1511 			    void *client_data,
1512 			    struct qp_broker_entry **ent)
1513 {
1514 	const u32 context_id = vmci_ctx_get_id(context);
1515 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1516 	int result;
1517 
1518 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1519 	    entry->state != VMCIQPB_CREATED_MEM)
1520 		return VMCI_ERROR_UNAVAILABLE;
1521 
1522 	if (is_local) {
1523 		if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1524 		    context_id != entry->create_id) {
1525 			return VMCI_ERROR_INVALID_ARGS;
1526 		}
1527 	} else if (context_id == entry->create_id ||
1528 		   context_id == entry->attach_id) {
1529 		return VMCI_ERROR_ALREADY_EXISTS;
1530 	}
1531 
1532 	if (VMCI_CONTEXT_IS_VM(context_id) &&
1533 	    VMCI_CONTEXT_IS_VM(entry->create_id))
1534 		return VMCI_ERROR_DST_UNREACHABLE;
1535 
1536 	/*
1537 	 * If we are attaching from a restricted context then the queuepair
1538 	 * must have been created by a trusted endpoint.
1539 	 */
1540 	if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1541 	    !entry->created_by_trusted)
1542 		return VMCI_ERROR_NO_ACCESS;
1543 
1544 	/*
1545 	 * If we are attaching to a queuepair that was created by a restricted
1546 	 * context then we must be trusted.
1547 	 */
1548 	if (entry->require_trusted_attach &&
1549 	    (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1550 		return VMCI_ERROR_NO_ACCESS;
1551 
1552 	/*
1553 	 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1554 	 * control check is not performed.
1555 	 */
1556 	if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1557 		return VMCI_ERROR_NO_ACCESS;
1558 
1559 	if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1560 		/*
1561 		 * Do not attach if the caller doesn't support Host Queue Pairs
1562 		 * and a host created this queue pair.
1563 		 */
1564 
1565 		if (!vmci_ctx_supports_host_qp(context))
1566 			return VMCI_ERROR_INVALID_RESOURCE;
1567 
1568 	} else if (context_id == VMCI_HOST_CONTEXT_ID) {
1569 		struct vmci_ctx *create_context;
1570 		bool supports_host_qp;
1571 
1572 		/*
1573 		 * Do not attach a host to a user created queue pair if that
1574 		 * user doesn't support host queue pair end points.
1575 		 */
1576 
1577 		create_context = vmci_ctx_get(entry->create_id);
1578 		supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1579 		vmci_ctx_put(create_context);
1580 
1581 		if (!supports_host_qp)
1582 			return VMCI_ERROR_INVALID_RESOURCE;
1583 	}
1584 
1585 	if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1586 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1587 
1588 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1589 		/*
1590 		 * The queue pair broker entry stores values from the guest
1591 		 * point of view, so an attaching guest should match the values
1592 		 * stored in the entry.
1593 		 */
1594 
1595 		if (entry->qp.produce_size != produce_size ||
1596 		    entry->qp.consume_size != consume_size) {
1597 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1598 		}
1599 	} else if (entry->qp.produce_size != consume_size ||
1600 		   entry->qp.consume_size != produce_size) {
1601 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1602 	}
1603 
1604 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1605 		/*
1606 		 * If a guest attached to a queue pair, it will supply
1607 		 * the backing memory.  If this is a pre NOVMVM vmx,
1608 		 * the backing memory will be supplied by calling
1609 		 * vmci_qp_broker_set_page_store() following the
1610 		 * return of the vmci_qp_broker_alloc() call. If it is
1611 		 * a vmx of version NOVMVM or later, the page store
1612 		 * must be supplied as part of the
1613 		 * vmci_qp_broker_alloc call.  Under all circumstances
1614 		 * must the initially created queue pair not have any
1615 		 * memory associated with it already.
1616 		 */
1617 
1618 		if (entry->state != VMCIQPB_CREATED_NO_MEM)
1619 			return VMCI_ERROR_INVALID_ARGS;
1620 
1621 		if (page_store != NULL) {
1622 			/*
1623 			 * Patch up host state to point to guest
1624 			 * supplied memory. The VMX already
1625 			 * initialized the queue pair headers, so no
1626 			 * need for the kernel side to do that.
1627 			 */
1628 
1629 			result = qp_host_register_user_memory(page_store,
1630 							      entry->produce_q,
1631 							      entry->consume_q);
1632 			if (result < VMCI_SUCCESS)
1633 				return result;
1634 
1635 			entry->state = VMCIQPB_ATTACHED_MEM;
1636 		} else {
1637 			entry->state = VMCIQPB_ATTACHED_NO_MEM;
1638 		}
1639 	} else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1640 		/*
1641 		 * The host side is attempting to attach to a queue
1642 		 * pair that doesn't have any memory associated with
1643 		 * it. This must be a pre NOVMVM vmx that hasn't set
1644 		 * the page store information yet, or a quiesced VM.
1645 		 */
1646 
1647 		return VMCI_ERROR_UNAVAILABLE;
1648 	} else {
1649 		/* The host side has successfully attached to a queue pair. */
1650 		entry->state = VMCIQPB_ATTACHED_MEM;
1651 	}
1652 
1653 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
1654 		result =
1655 		    qp_notify_peer(true, entry->qp.handle, context_id,
1656 				   entry->create_id);
1657 		if (result < VMCI_SUCCESS)
1658 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1659 				entry->create_id, entry->qp.handle.context,
1660 				entry->qp.handle.resource);
1661 	}
1662 
1663 	entry->attach_id = context_id;
1664 	entry->qp.ref_count++;
1665 	if (wakeup_cb) {
1666 		entry->wakeup_cb = wakeup_cb;
1667 		entry->client_data = client_data;
1668 	}
1669 
1670 	/*
1671 	 * When attaching to local queue pairs, the context already has
1672 	 * an entry tracking the queue pair, so don't add another one.
1673 	 */
1674 	if (!is_local)
1675 		vmci_ctx_qp_create(context, entry->qp.handle);
1676 
1677 	if (ent != NULL)
1678 		*ent = entry;
1679 
1680 	return VMCI_SUCCESS;
1681 }
1682 
1683 /*
1684  * queue_pair_Alloc for use when setting up queue pair endpoints
1685  * on the host.
1686  */
1687 static int qp_broker_alloc(struct vmci_handle handle,
1688 			   u32 peer,
1689 			   u32 flags,
1690 			   u32 priv_flags,
1691 			   u64 produce_size,
1692 			   u64 consume_size,
1693 			   struct vmci_qp_page_store *page_store,
1694 			   struct vmci_ctx *context,
1695 			   vmci_event_release_cb wakeup_cb,
1696 			   void *client_data,
1697 			   struct qp_broker_entry **ent,
1698 			   bool *swap)
1699 {
1700 	const u32 context_id = vmci_ctx_get_id(context);
1701 	bool create;
1702 	struct qp_broker_entry *entry = NULL;
1703 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1704 	int result;
1705 
1706 	if (vmci_handle_is_invalid(handle) ||
1707 	    (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1708 	    !(produce_size || consume_size) ||
1709 	    !context || context_id == VMCI_INVALID_ID ||
1710 	    handle.context == VMCI_INVALID_ID) {
1711 		return VMCI_ERROR_INVALID_ARGS;
1712 	}
1713 
1714 	if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1715 		return VMCI_ERROR_INVALID_ARGS;
1716 
1717 	/*
1718 	 * In the initial argument check, we ensure that non-vmkernel hosts
1719 	 * are not allowed to create local queue pairs.
1720 	 */
1721 
1722 	mutex_lock(&qp_broker_list.mutex);
1723 
1724 	if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1725 		pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1726 			 context_id, handle.context, handle.resource);
1727 		mutex_unlock(&qp_broker_list.mutex);
1728 		return VMCI_ERROR_ALREADY_EXISTS;
1729 	}
1730 
1731 	if (handle.resource != VMCI_INVALID_ID)
1732 		entry = qp_broker_handle_to_entry(handle);
1733 
1734 	if (!entry) {
1735 		create = true;
1736 		result =
1737 		    qp_broker_create(handle, peer, flags, priv_flags,
1738 				     produce_size, consume_size, page_store,
1739 				     context, wakeup_cb, client_data, ent);
1740 	} else {
1741 		create = false;
1742 		result =
1743 		    qp_broker_attach(entry, peer, flags, priv_flags,
1744 				     produce_size, consume_size, page_store,
1745 				     context, wakeup_cb, client_data, ent);
1746 	}
1747 
1748 	mutex_unlock(&qp_broker_list.mutex);
1749 
1750 	if (swap)
1751 		*swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1752 		    !(create && is_local);
1753 
1754 	return result;
1755 }
1756 
1757 /*
1758  * This function implements the kernel API for allocating a queue
1759  * pair.
1760  */
1761 static int qp_alloc_host_work(struct vmci_handle *handle,
1762 			      struct vmci_queue **produce_q,
1763 			      u64 produce_size,
1764 			      struct vmci_queue **consume_q,
1765 			      u64 consume_size,
1766 			      u32 peer,
1767 			      u32 flags,
1768 			      u32 priv_flags,
1769 			      vmci_event_release_cb wakeup_cb,
1770 			      void *client_data)
1771 {
1772 	struct vmci_handle new_handle;
1773 	struct vmci_ctx *context;
1774 	struct qp_broker_entry *entry;
1775 	int result;
1776 	bool swap;
1777 
1778 	if (vmci_handle_is_invalid(*handle)) {
1779 		new_handle = vmci_make_handle(
1780 			VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1781 	} else
1782 		new_handle = *handle;
1783 
1784 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1785 	entry = NULL;
1786 	result =
1787 	    qp_broker_alloc(new_handle, peer, flags, priv_flags,
1788 			    produce_size, consume_size, NULL, context,
1789 			    wakeup_cb, client_data, &entry, &swap);
1790 	if (result == VMCI_SUCCESS) {
1791 		if (swap) {
1792 			/*
1793 			 * If this is a local queue pair, the attacher
1794 			 * will swap around produce and consume
1795 			 * queues.
1796 			 */
1797 
1798 			*produce_q = entry->consume_q;
1799 			*consume_q = entry->produce_q;
1800 		} else {
1801 			*produce_q = entry->produce_q;
1802 			*consume_q = entry->consume_q;
1803 		}
1804 
1805 		*handle = vmci_resource_handle(&entry->resource);
1806 	} else {
1807 		*handle = VMCI_INVALID_HANDLE;
1808 		pr_devel("queue pair broker failed to alloc (result=%d)\n",
1809 			 result);
1810 	}
1811 	vmci_ctx_put(context);
1812 	return result;
1813 }
1814 
1815 /*
1816  * Allocates a VMCI queue_pair. Only checks validity of input
1817  * arguments. The real work is done in the host or guest
1818  * specific function.
1819  */
1820 int vmci_qp_alloc(struct vmci_handle *handle,
1821 		  struct vmci_queue **produce_q,
1822 		  u64 produce_size,
1823 		  struct vmci_queue **consume_q,
1824 		  u64 consume_size,
1825 		  u32 peer,
1826 		  u32 flags,
1827 		  u32 priv_flags,
1828 		  bool guest_endpoint,
1829 		  vmci_event_release_cb wakeup_cb,
1830 		  void *client_data)
1831 {
1832 	if (!handle || !produce_q || !consume_q ||
1833 	    (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1834 		return VMCI_ERROR_INVALID_ARGS;
1835 
1836 	if (guest_endpoint) {
1837 		return qp_alloc_guest_work(handle, produce_q,
1838 					   produce_size, consume_q,
1839 					   consume_size, peer,
1840 					   flags, priv_flags);
1841 	} else {
1842 		return qp_alloc_host_work(handle, produce_q,
1843 					  produce_size, consume_q,
1844 					  consume_size, peer, flags,
1845 					  priv_flags, wakeup_cb, client_data);
1846 	}
1847 }
1848 
1849 /*
1850  * This function implements the host kernel API for detaching from
1851  * a queue pair.
1852  */
1853 static int qp_detatch_host_work(struct vmci_handle handle)
1854 {
1855 	int result;
1856 	struct vmci_ctx *context;
1857 
1858 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1859 
1860 	result = vmci_qp_broker_detach(handle, context);
1861 
1862 	vmci_ctx_put(context);
1863 	return result;
1864 }
1865 
1866 /*
1867  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1868  * Real work is done in the host or guest specific function.
1869  */
1870 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1871 {
1872 	if (vmci_handle_is_invalid(handle))
1873 		return VMCI_ERROR_INVALID_ARGS;
1874 
1875 	if (guest_endpoint)
1876 		return qp_detatch_guest_work(handle);
1877 	else
1878 		return qp_detatch_host_work(handle);
1879 }
1880 
1881 /*
1882  * Returns the entry from the head of the list. Assumes that the list is
1883  * locked.
1884  */
1885 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1886 {
1887 	if (!list_empty(&qp_list->head)) {
1888 		struct qp_entry *entry =
1889 		    list_first_entry(&qp_list->head, struct qp_entry,
1890 				     list_item);
1891 		return entry;
1892 	}
1893 
1894 	return NULL;
1895 }
1896 
1897 void vmci_qp_broker_exit(void)
1898 {
1899 	struct qp_entry *entry;
1900 	struct qp_broker_entry *be;
1901 
1902 	mutex_lock(&qp_broker_list.mutex);
1903 
1904 	while ((entry = qp_list_get_head(&qp_broker_list))) {
1905 		be = (struct qp_broker_entry *)entry;
1906 
1907 		qp_list_remove_entry(&qp_broker_list, entry);
1908 		kfree(be);
1909 	}
1910 
1911 	mutex_unlock(&qp_broker_list.mutex);
1912 }
1913 
1914 /*
1915  * Requests that a queue pair be allocated with the VMCI queue
1916  * pair broker. Allocates a queue pair entry if one does not
1917  * exist. Attaches to one if it exists, and retrieves the page
1918  * files backing that queue_pair.  Assumes that the queue pair
1919  * broker lock is held.
1920  */
1921 int vmci_qp_broker_alloc(struct vmci_handle handle,
1922 			 u32 peer,
1923 			 u32 flags,
1924 			 u32 priv_flags,
1925 			 u64 produce_size,
1926 			 u64 consume_size,
1927 			 struct vmci_qp_page_store *page_store,
1928 			 struct vmci_ctx *context)
1929 {
1930 	return qp_broker_alloc(handle, peer, flags, priv_flags,
1931 			       produce_size, consume_size,
1932 			       page_store, context, NULL, NULL, NULL, NULL);
1933 }
1934 
1935 /*
1936  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1937  * step to add the UVAs of the VMX mapping of the queue pair. This function
1938  * provides backwards compatibility with such VMX'en, and takes care of
1939  * registering the page store for a queue pair previously allocated by the
1940  * VMX during create or attach. This function will move the queue pair state
1941  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1942  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1943  * attached state with memory, the queue pair is ready to be used by the
1944  * host peer, and an attached event will be generated.
1945  *
1946  * Assumes that the queue pair broker lock is held.
1947  *
1948  * This function is only used by the hosted platform, since there is no
1949  * issue with backwards compatibility for vmkernel.
1950  */
1951 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1952 				  u64 produce_uva,
1953 				  u64 consume_uva,
1954 				  struct vmci_ctx *context)
1955 {
1956 	struct qp_broker_entry *entry;
1957 	int result;
1958 	const u32 context_id = vmci_ctx_get_id(context);
1959 
1960 	if (vmci_handle_is_invalid(handle) || !context ||
1961 	    context_id == VMCI_INVALID_ID)
1962 		return VMCI_ERROR_INVALID_ARGS;
1963 
1964 	/*
1965 	 * We only support guest to host queue pairs, so the VMX must
1966 	 * supply UVAs for the mapped page files.
1967 	 */
1968 
1969 	if (produce_uva == 0 || consume_uva == 0)
1970 		return VMCI_ERROR_INVALID_ARGS;
1971 
1972 	mutex_lock(&qp_broker_list.mutex);
1973 
1974 	if (!vmci_ctx_qp_exists(context, handle)) {
1975 		pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1976 			context_id, handle.context, handle.resource);
1977 		result = VMCI_ERROR_NOT_FOUND;
1978 		goto out;
1979 	}
1980 
1981 	entry = qp_broker_handle_to_entry(handle);
1982 	if (!entry) {
1983 		result = VMCI_ERROR_NOT_FOUND;
1984 		goto out;
1985 	}
1986 
1987 	/*
1988 	 * If I'm the owner then I can set the page store.
1989 	 *
1990 	 * Or, if a host created the queue_pair and I'm the attached peer
1991 	 * then I can set the page store.
1992 	 */
1993 	if (entry->create_id != context_id &&
1994 	    (entry->create_id != VMCI_HOST_CONTEXT_ID ||
1995 	     entry->attach_id != context_id)) {
1996 		result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
1997 		goto out;
1998 	}
1999 
2000 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2001 	    entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2002 		result = VMCI_ERROR_UNAVAILABLE;
2003 		goto out;
2004 	}
2005 
2006 	result = qp_host_get_user_memory(produce_uva, consume_uva,
2007 					 entry->produce_q, entry->consume_q);
2008 	if (result < VMCI_SUCCESS)
2009 		goto out;
2010 
2011 	result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2012 	if (result < VMCI_SUCCESS) {
2013 		qp_host_unregister_user_memory(entry->produce_q,
2014 					       entry->consume_q);
2015 		goto out;
2016 	}
2017 
2018 	if (entry->state == VMCIQPB_CREATED_NO_MEM)
2019 		entry->state = VMCIQPB_CREATED_MEM;
2020 	else
2021 		entry->state = VMCIQPB_ATTACHED_MEM;
2022 
2023 	entry->vmci_page_files = true;
2024 
2025 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
2026 		result =
2027 		    qp_notify_peer(true, handle, context_id, entry->create_id);
2028 		if (result < VMCI_SUCCESS) {
2029 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2030 				entry->create_id, entry->qp.handle.context,
2031 				entry->qp.handle.resource);
2032 		}
2033 	}
2034 
2035 	result = VMCI_SUCCESS;
2036  out:
2037 	mutex_unlock(&qp_broker_list.mutex);
2038 	return result;
2039 }
2040 
2041 /*
2042  * Resets saved queue headers for the given QP broker
2043  * entry. Should be used when guest memory becomes available
2044  * again, or the guest detaches.
2045  */
2046 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2047 {
2048 	entry->produce_q->saved_header = NULL;
2049 	entry->consume_q->saved_header = NULL;
2050 }
2051 
2052 /*
2053  * The main entry point for detaching from a queue pair registered with the
2054  * queue pair broker. If more than one endpoint is attached to the queue
2055  * pair, the first endpoint will mainly decrement a reference count and
2056  * generate a notification to its peer. The last endpoint will clean up
2057  * the queue pair state registered with the broker.
2058  *
2059  * When a guest endpoint detaches, it will unmap and unregister the guest
2060  * memory backing the queue pair. If the host is still attached, it will
2061  * no longer be able to access the queue pair content.
2062  *
2063  * If the queue pair is already in a state where there is no memory
2064  * registered for the queue pair (any *_NO_MEM state), it will transition to
2065  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2066  * endpoint is the first of two endpoints to detach. If the host endpoint is
2067  * the first out of two to detach, the queue pair will move to the
2068  * VMCIQPB_SHUTDOWN_MEM state.
2069  */
2070 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2071 {
2072 	struct qp_broker_entry *entry;
2073 	const u32 context_id = vmci_ctx_get_id(context);
2074 	u32 peer_id;
2075 	bool is_local = false;
2076 	int result;
2077 
2078 	if (vmci_handle_is_invalid(handle) || !context ||
2079 	    context_id == VMCI_INVALID_ID) {
2080 		return VMCI_ERROR_INVALID_ARGS;
2081 	}
2082 
2083 	mutex_lock(&qp_broker_list.mutex);
2084 
2085 	if (!vmci_ctx_qp_exists(context, handle)) {
2086 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2087 			 context_id, handle.context, handle.resource);
2088 		result = VMCI_ERROR_NOT_FOUND;
2089 		goto out;
2090 	}
2091 
2092 	entry = qp_broker_handle_to_entry(handle);
2093 	if (!entry) {
2094 		pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2095 			 context_id, handle.context, handle.resource);
2096 		result = VMCI_ERROR_NOT_FOUND;
2097 		goto out;
2098 	}
2099 
2100 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2101 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2102 		goto out;
2103 	}
2104 
2105 	if (context_id == entry->create_id) {
2106 		peer_id = entry->attach_id;
2107 		entry->create_id = VMCI_INVALID_ID;
2108 	} else {
2109 		peer_id = entry->create_id;
2110 		entry->attach_id = VMCI_INVALID_ID;
2111 	}
2112 	entry->qp.ref_count--;
2113 
2114 	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2115 
2116 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2117 		bool headers_mapped;
2118 
2119 		/*
2120 		 * Pre NOVMVM vmx'en may detach from a queue pair
2121 		 * before setting the page store, and in that case
2122 		 * there is no user memory to detach from. Also, more
2123 		 * recent VMX'en may detach from a queue pair in the
2124 		 * quiesced state.
2125 		 */
2126 
2127 		qp_acquire_queue_mutex(entry->produce_q);
2128 		headers_mapped = entry->produce_q->q_header ||
2129 		    entry->consume_q->q_header;
2130 		if (QPBROKERSTATE_HAS_MEM(entry)) {
2131 			result =
2132 			    qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2133 						 entry->produce_q,
2134 						 entry->consume_q);
2135 			if (result < VMCI_SUCCESS)
2136 				pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2137 					handle.context, handle.resource,
2138 					result);
2139 
2140 			qp_host_unregister_user_memory(entry->produce_q,
2141 						       entry->consume_q);
2142 
2143 		}
2144 
2145 		if (!headers_mapped)
2146 			qp_reset_saved_headers(entry);
2147 
2148 		qp_release_queue_mutex(entry->produce_q);
2149 
2150 		if (!headers_mapped && entry->wakeup_cb)
2151 			entry->wakeup_cb(entry->client_data);
2152 
2153 	} else {
2154 		if (entry->wakeup_cb) {
2155 			entry->wakeup_cb = NULL;
2156 			entry->client_data = NULL;
2157 		}
2158 	}
2159 
2160 	if (entry->qp.ref_count == 0) {
2161 		qp_list_remove_entry(&qp_broker_list, &entry->qp);
2162 
2163 		if (is_local)
2164 			kfree(entry->local_mem);
2165 
2166 		qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2167 		qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2168 		qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2169 		/* Unlink from resource hash table and free callback */
2170 		vmci_resource_remove(&entry->resource);
2171 
2172 		kfree(entry);
2173 
2174 		vmci_ctx_qp_destroy(context, handle);
2175 	} else {
2176 		qp_notify_peer(false, handle, context_id, peer_id);
2177 		if (context_id == VMCI_HOST_CONTEXT_ID &&
2178 		    QPBROKERSTATE_HAS_MEM(entry)) {
2179 			entry->state = VMCIQPB_SHUTDOWN_MEM;
2180 		} else {
2181 			entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2182 		}
2183 
2184 		if (!is_local)
2185 			vmci_ctx_qp_destroy(context, handle);
2186 
2187 	}
2188 	result = VMCI_SUCCESS;
2189  out:
2190 	mutex_unlock(&qp_broker_list.mutex);
2191 	return result;
2192 }
2193 
2194 /*
2195  * Establishes the necessary mappings for a queue pair given a
2196  * reference to the queue pair guest memory. This is usually
2197  * called when a guest is unquiesced and the VMX is allowed to
2198  * map guest memory once again.
2199  */
2200 int vmci_qp_broker_map(struct vmci_handle handle,
2201 		       struct vmci_ctx *context,
2202 		       u64 guest_mem)
2203 {
2204 	struct qp_broker_entry *entry;
2205 	const u32 context_id = vmci_ctx_get_id(context);
2206 	int result;
2207 
2208 	if (vmci_handle_is_invalid(handle) || !context ||
2209 	    context_id == VMCI_INVALID_ID)
2210 		return VMCI_ERROR_INVALID_ARGS;
2211 
2212 	mutex_lock(&qp_broker_list.mutex);
2213 
2214 	if (!vmci_ctx_qp_exists(context, handle)) {
2215 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2216 			 context_id, handle.context, handle.resource);
2217 		result = VMCI_ERROR_NOT_FOUND;
2218 		goto out;
2219 	}
2220 
2221 	entry = qp_broker_handle_to_entry(handle);
2222 	if (!entry) {
2223 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2224 			 context_id, handle.context, handle.resource);
2225 		result = VMCI_ERROR_NOT_FOUND;
2226 		goto out;
2227 	}
2228 
2229 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2230 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2231 		goto out;
2232 	}
2233 
2234 	result = VMCI_SUCCESS;
2235 
2236 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2237 		struct vmci_qp_page_store page_store;
2238 
2239 		page_store.pages = guest_mem;
2240 		page_store.len = QPE_NUM_PAGES(entry->qp);
2241 
2242 		qp_acquire_queue_mutex(entry->produce_q);
2243 		qp_reset_saved_headers(entry);
2244 		result =
2245 		    qp_host_register_user_memory(&page_store,
2246 						 entry->produce_q,
2247 						 entry->consume_q);
2248 		qp_release_queue_mutex(entry->produce_q);
2249 		if (result == VMCI_SUCCESS) {
2250 			/* Move state from *_NO_MEM to *_MEM */
2251 
2252 			entry->state++;
2253 
2254 			if (entry->wakeup_cb)
2255 				entry->wakeup_cb(entry->client_data);
2256 		}
2257 	}
2258 
2259  out:
2260 	mutex_unlock(&qp_broker_list.mutex);
2261 	return result;
2262 }
2263 
2264 /*
2265  * Saves a snapshot of the queue headers for the given QP broker
2266  * entry. Should be used when guest memory is unmapped.
2267  * Results:
2268  * VMCI_SUCCESS on success, appropriate error code if guest memory
2269  * can't be accessed..
2270  */
2271 static int qp_save_headers(struct qp_broker_entry *entry)
2272 {
2273 	int result;
2274 
2275 	if (entry->produce_q->saved_header != NULL &&
2276 	    entry->consume_q->saved_header != NULL) {
2277 		/*
2278 		 *  If the headers have already been saved, we don't need to do
2279 		 *  it again, and we don't want to map in the headers
2280 		 *  unnecessarily.
2281 		 */
2282 
2283 		return VMCI_SUCCESS;
2284 	}
2285 
2286 	if (NULL == entry->produce_q->q_header ||
2287 	    NULL == entry->consume_q->q_header) {
2288 		result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2289 		if (result < VMCI_SUCCESS)
2290 			return result;
2291 	}
2292 
2293 	memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2294 	       sizeof(entry->saved_produce_q));
2295 	entry->produce_q->saved_header = &entry->saved_produce_q;
2296 	memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2297 	       sizeof(entry->saved_consume_q));
2298 	entry->consume_q->saved_header = &entry->saved_consume_q;
2299 
2300 	return VMCI_SUCCESS;
2301 }
2302 
2303 /*
2304  * Removes all references to the guest memory of a given queue pair, and
2305  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2306  * called when a VM is being quiesced where access to guest memory should
2307  * avoided.
2308  */
2309 int vmci_qp_broker_unmap(struct vmci_handle handle,
2310 			 struct vmci_ctx *context,
2311 			 u32 gid)
2312 {
2313 	struct qp_broker_entry *entry;
2314 	const u32 context_id = vmci_ctx_get_id(context);
2315 	int result;
2316 
2317 	if (vmci_handle_is_invalid(handle) || !context ||
2318 	    context_id == VMCI_INVALID_ID)
2319 		return VMCI_ERROR_INVALID_ARGS;
2320 
2321 	mutex_lock(&qp_broker_list.mutex);
2322 
2323 	if (!vmci_ctx_qp_exists(context, handle)) {
2324 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2325 			 context_id, handle.context, handle.resource);
2326 		result = VMCI_ERROR_NOT_FOUND;
2327 		goto out;
2328 	}
2329 
2330 	entry = qp_broker_handle_to_entry(handle);
2331 	if (!entry) {
2332 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2333 			 context_id, handle.context, handle.resource);
2334 		result = VMCI_ERROR_NOT_FOUND;
2335 		goto out;
2336 	}
2337 
2338 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2339 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2340 		goto out;
2341 	}
2342 
2343 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2344 		qp_acquire_queue_mutex(entry->produce_q);
2345 		result = qp_save_headers(entry);
2346 		if (result < VMCI_SUCCESS)
2347 			pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2348 				handle.context, handle.resource, result);
2349 
2350 		qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2351 
2352 		/*
2353 		 * On hosted, when we unmap queue pairs, the VMX will also
2354 		 * unmap the guest memory, so we invalidate the previously
2355 		 * registered memory. If the queue pair is mapped again at a
2356 		 * later point in time, we will need to reregister the user
2357 		 * memory with a possibly new user VA.
2358 		 */
2359 		qp_host_unregister_user_memory(entry->produce_q,
2360 					       entry->consume_q);
2361 
2362 		/*
2363 		 * Move state from *_MEM to *_NO_MEM.
2364 		 */
2365 		entry->state--;
2366 
2367 		qp_release_queue_mutex(entry->produce_q);
2368 	}
2369 
2370 	result = VMCI_SUCCESS;
2371 
2372  out:
2373 	mutex_unlock(&qp_broker_list.mutex);
2374 	return result;
2375 }
2376 
2377 /*
2378  * Destroys all guest queue pair endpoints. If active guest queue
2379  * pairs still exist, hypercalls to attempt detach from these
2380  * queue pairs will be made. Any failure to detach is silently
2381  * ignored.
2382  */
2383 void vmci_qp_guest_endpoints_exit(void)
2384 {
2385 	struct qp_entry *entry;
2386 	struct qp_guest_endpoint *ep;
2387 
2388 	mutex_lock(&qp_guest_endpoints.mutex);
2389 
2390 	while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2391 		ep = (struct qp_guest_endpoint *)entry;
2392 
2393 		/* Don't make a hypercall for local queue_pairs. */
2394 		if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2395 			qp_detatch_hypercall(entry->handle);
2396 
2397 		/* We cannot fail the exit, so let's reset ref_count. */
2398 		entry->ref_count = 0;
2399 		qp_list_remove_entry(&qp_guest_endpoints, entry);
2400 
2401 		qp_guest_endpoint_destroy(ep);
2402 	}
2403 
2404 	mutex_unlock(&qp_guest_endpoints.mutex);
2405 }
2406 
2407 /*
2408  * Helper routine that will lock the queue pair before subsequent
2409  * operations.
2410  * Note: Non-blocking on the host side is currently only implemented in ESX.
2411  * Since non-blocking isn't yet implemented on the host personality we
2412  * have no reason to acquire a spin lock.  So to avoid the use of an
2413  * unnecessary lock only acquire the mutex if we can block.
2414  */
2415 static void qp_lock(const struct vmci_qp *qpair)
2416 {
2417 	qp_acquire_queue_mutex(qpair->produce_q);
2418 }
2419 
2420 /*
2421  * Helper routine that unlocks the queue pair after calling
2422  * qp_lock.
2423  */
2424 static void qp_unlock(const struct vmci_qp *qpair)
2425 {
2426 	qp_release_queue_mutex(qpair->produce_q);
2427 }
2428 
2429 /*
2430  * The queue headers may not be mapped at all times. If a queue is
2431  * currently not mapped, it will be attempted to do so.
2432  */
2433 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2434 				struct vmci_queue *consume_q)
2435 {
2436 	int result;
2437 
2438 	if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2439 		result = qp_host_map_queues(produce_q, consume_q);
2440 		if (result < VMCI_SUCCESS)
2441 			return (produce_q->saved_header &&
2442 				consume_q->saved_header) ?
2443 			    VMCI_ERROR_QUEUEPAIR_NOT_READY :
2444 			    VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2445 	}
2446 
2447 	return VMCI_SUCCESS;
2448 }
2449 
2450 /*
2451  * Helper routine that will retrieve the produce and consume
2452  * headers of a given queue pair. If the guest memory of the
2453  * queue pair is currently not available, the saved queue headers
2454  * will be returned, if these are available.
2455  */
2456 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2457 				struct vmci_queue_header **produce_q_header,
2458 				struct vmci_queue_header **consume_q_header)
2459 {
2460 	int result;
2461 
2462 	result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2463 	if (result == VMCI_SUCCESS) {
2464 		*produce_q_header = qpair->produce_q->q_header;
2465 		*consume_q_header = qpair->consume_q->q_header;
2466 	} else if (qpair->produce_q->saved_header &&
2467 		   qpair->consume_q->saved_header) {
2468 		*produce_q_header = qpair->produce_q->saved_header;
2469 		*consume_q_header = qpair->consume_q->saved_header;
2470 		result = VMCI_SUCCESS;
2471 	}
2472 
2473 	return result;
2474 }
2475 
2476 /*
2477  * Callback from VMCI queue pair broker indicating that a queue
2478  * pair that was previously not ready, now either is ready or
2479  * gone forever.
2480  */
2481 static int qp_wakeup_cb(void *client_data)
2482 {
2483 	struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2484 
2485 	qp_lock(qpair);
2486 	while (qpair->blocked > 0) {
2487 		qpair->blocked--;
2488 		qpair->generation++;
2489 		wake_up(&qpair->event);
2490 	}
2491 	qp_unlock(qpair);
2492 
2493 	return VMCI_SUCCESS;
2494 }
2495 
2496 /*
2497  * Makes the calling thread wait for the queue pair to become
2498  * ready for host side access.  Returns true when thread is
2499  * woken up after queue pair state change, false otherwise.
2500  */
2501 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2502 {
2503 	unsigned int generation;
2504 
2505 	qpair->blocked++;
2506 	generation = qpair->generation;
2507 	qp_unlock(qpair);
2508 	wait_event(qpair->event, generation != qpair->generation);
2509 	qp_lock(qpair);
2510 
2511 	return true;
2512 }
2513 
2514 /*
2515  * Enqueues a given buffer to the produce queue using the provided
2516  * function. As many bytes as possible (space available in the queue)
2517  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2518  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2519  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2520  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2521  * an error occured when accessing the buffer,
2522  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2523  * available.  Otherwise, the number of bytes written to the queue is
2524  * returned.  Updates the tail pointer of the produce queue.
2525  */
2526 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2527 				 struct vmci_queue *consume_q,
2528 				 const u64 produce_q_size,
2529 				 struct iov_iter *from)
2530 {
2531 	s64 free_space;
2532 	u64 tail;
2533 	size_t buf_size = iov_iter_count(from);
2534 	size_t written;
2535 	ssize_t result;
2536 
2537 	result = qp_map_queue_headers(produce_q, consume_q);
2538 	if (unlikely(result != VMCI_SUCCESS))
2539 		return result;
2540 
2541 	free_space = vmci_q_header_free_space(produce_q->q_header,
2542 					      consume_q->q_header,
2543 					      produce_q_size);
2544 	if (free_space == 0)
2545 		return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2546 
2547 	if (free_space < VMCI_SUCCESS)
2548 		return (ssize_t) free_space;
2549 
2550 	written = (size_t) (free_space > buf_size ? buf_size : free_space);
2551 	tail = vmci_q_header_producer_tail(produce_q->q_header);
2552 	if (likely(tail + written < produce_q_size)) {
2553 		result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2554 	} else {
2555 		/* Tail pointer wraps around. */
2556 
2557 		const size_t tmp = (size_t) (produce_q_size - tail);
2558 
2559 		result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2560 		if (result >= VMCI_SUCCESS)
2561 			result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2562 						 written - tmp);
2563 	}
2564 
2565 	if (result < VMCI_SUCCESS)
2566 		return result;
2567 
2568 	vmci_q_header_add_producer_tail(produce_q->q_header, written,
2569 					produce_q_size);
2570 	return written;
2571 }
2572 
2573 /*
2574  * Dequeues data (if available) from the given consume queue. Writes data
2575  * to the user provided buffer using the provided function.
2576  * Assumes the queue->mutex has been acquired.
2577  * Results:
2578  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2579  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2580  * (as defined by the queue size).
2581  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2582  * Otherwise the number of bytes dequeued is returned.
2583  * Side effects:
2584  * Updates the head pointer of the consume queue.
2585  */
2586 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2587 				 struct vmci_queue *consume_q,
2588 				 const u64 consume_q_size,
2589 				 struct iov_iter *to,
2590 				 bool update_consumer)
2591 {
2592 	size_t buf_size = iov_iter_count(to);
2593 	s64 buf_ready;
2594 	u64 head;
2595 	size_t read;
2596 	ssize_t result;
2597 
2598 	result = qp_map_queue_headers(produce_q, consume_q);
2599 	if (unlikely(result != VMCI_SUCCESS))
2600 		return result;
2601 
2602 	buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2603 					    produce_q->q_header,
2604 					    consume_q_size);
2605 	if (buf_ready == 0)
2606 		return VMCI_ERROR_QUEUEPAIR_NODATA;
2607 
2608 	if (buf_ready < VMCI_SUCCESS)
2609 		return (ssize_t) buf_ready;
2610 
2611 	read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2612 	head = vmci_q_header_consumer_head(produce_q->q_header);
2613 	if (likely(head + read < consume_q_size)) {
2614 		result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2615 	} else {
2616 		/* Head pointer wraps around. */
2617 
2618 		const size_t tmp = (size_t) (consume_q_size - head);
2619 
2620 		result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2621 		if (result >= VMCI_SUCCESS)
2622 			result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2623 						   read - tmp);
2624 
2625 	}
2626 
2627 	if (result < VMCI_SUCCESS)
2628 		return result;
2629 
2630 	if (update_consumer)
2631 		vmci_q_header_add_consumer_head(produce_q->q_header,
2632 						read, consume_q_size);
2633 
2634 	return read;
2635 }
2636 
2637 /*
2638  * vmci_qpair_alloc() - Allocates a queue pair.
2639  * @qpair:      Pointer for the new vmci_qp struct.
2640  * @handle:     Handle to track the resource.
2641  * @produce_qsize:      Desired size of the producer queue.
2642  * @consume_qsize:      Desired size of the consumer queue.
2643  * @peer:       ContextID of the peer.
2644  * @flags:      VMCI flags.
2645  * @priv_flags: VMCI priviledge flags.
2646  *
2647  * This is the client interface for allocating the memory for a
2648  * vmci_qp structure and then attaching to the underlying
2649  * queue.  If an error occurs allocating the memory for the
2650  * vmci_qp structure no attempt is made to attach.  If an
2651  * error occurs attaching, then the structure is freed.
2652  */
2653 int vmci_qpair_alloc(struct vmci_qp **qpair,
2654 		     struct vmci_handle *handle,
2655 		     u64 produce_qsize,
2656 		     u64 consume_qsize,
2657 		     u32 peer,
2658 		     u32 flags,
2659 		     u32 priv_flags)
2660 {
2661 	struct vmci_qp *my_qpair;
2662 	int retval;
2663 	struct vmci_handle src = VMCI_INVALID_HANDLE;
2664 	struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2665 	enum vmci_route route;
2666 	vmci_event_release_cb wakeup_cb;
2667 	void *client_data;
2668 
2669 	/*
2670 	 * Restrict the size of a queuepair.  The device already
2671 	 * enforces a limit on the total amount of memory that can be
2672 	 * allocated to queuepairs for a guest.  However, we try to
2673 	 * allocate this memory before we make the queuepair
2674 	 * allocation hypercall.  On Linux, we allocate each page
2675 	 * separately, which means rather than fail, the guest will
2676 	 * thrash while it tries to allocate, and will become
2677 	 * increasingly unresponsive to the point where it appears to
2678 	 * be hung.  So we place a limit on the size of an individual
2679 	 * queuepair here, and leave the device to enforce the
2680 	 * restriction on total queuepair memory.  (Note that this
2681 	 * doesn't prevent all cases; a user with only this much
2682 	 * physical memory could still get into trouble.)  The error
2683 	 * used by the device is NO_RESOURCES, so use that here too.
2684 	 */
2685 
2686 	if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2687 	    produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2688 		return VMCI_ERROR_NO_RESOURCES;
2689 
2690 	retval = vmci_route(&src, &dst, false, &route);
2691 	if (retval < VMCI_SUCCESS)
2692 		route = vmci_guest_code_active() ?
2693 		    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2694 
2695 	if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2696 		pr_devel("NONBLOCK OR PINNED set");
2697 		return VMCI_ERROR_INVALID_ARGS;
2698 	}
2699 
2700 	my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2701 	if (!my_qpair)
2702 		return VMCI_ERROR_NO_MEM;
2703 
2704 	my_qpair->produce_q_size = produce_qsize;
2705 	my_qpair->consume_q_size = consume_qsize;
2706 	my_qpair->peer = peer;
2707 	my_qpair->flags = flags;
2708 	my_qpair->priv_flags = priv_flags;
2709 
2710 	wakeup_cb = NULL;
2711 	client_data = NULL;
2712 
2713 	if (VMCI_ROUTE_AS_HOST == route) {
2714 		my_qpair->guest_endpoint = false;
2715 		if (!(flags & VMCI_QPFLAG_LOCAL)) {
2716 			my_qpair->blocked = 0;
2717 			my_qpair->generation = 0;
2718 			init_waitqueue_head(&my_qpair->event);
2719 			wakeup_cb = qp_wakeup_cb;
2720 			client_data = (void *)my_qpair;
2721 		}
2722 	} else {
2723 		my_qpair->guest_endpoint = true;
2724 	}
2725 
2726 	retval = vmci_qp_alloc(handle,
2727 			       &my_qpair->produce_q,
2728 			       my_qpair->produce_q_size,
2729 			       &my_qpair->consume_q,
2730 			       my_qpair->consume_q_size,
2731 			       my_qpair->peer,
2732 			       my_qpair->flags,
2733 			       my_qpair->priv_flags,
2734 			       my_qpair->guest_endpoint,
2735 			       wakeup_cb, client_data);
2736 
2737 	if (retval < VMCI_SUCCESS) {
2738 		kfree(my_qpair);
2739 		return retval;
2740 	}
2741 
2742 	*qpair = my_qpair;
2743 	my_qpair->handle = *handle;
2744 
2745 	return retval;
2746 }
2747 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2748 
2749 /*
2750  * vmci_qpair_detach() - Detatches the client from a queue pair.
2751  * @qpair:      Reference of a pointer to the qpair struct.
2752  *
2753  * This is the client interface for detaching from a VMCIQPair.
2754  * Note that this routine will free the memory allocated for the
2755  * vmci_qp structure too.
2756  */
2757 int vmci_qpair_detach(struct vmci_qp **qpair)
2758 {
2759 	int result;
2760 	struct vmci_qp *old_qpair;
2761 
2762 	if (!qpair || !(*qpair))
2763 		return VMCI_ERROR_INVALID_ARGS;
2764 
2765 	old_qpair = *qpair;
2766 	result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2767 
2768 	/*
2769 	 * The guest can fail to detach for a number of reasons, and
2770 	 * if it does so, it will cleanup the entry (if there is one).
2771 	 * The host can fail too, but it won't cleanup the entry
2772 	 * immediately, it will do that later when the context is
2773 	 * freed.  Either way, we need to release the qpair struct
2774 	 * here; there isn't much the caller can do, and we don't want
2775 	 * to leak.
2776 	 */
2777 
2778 	memset(old_qpair, 0, sizeof(*old_qpair));
2779 	old_qpair->handle = VMCI_INVALID_HANDLE;
2780 	old_qpair->peer = VMCI_INVALID_ID;
2781 	kfree(old_qpair);
2782 	*qpair = NULL;
2783 
2784 	return result;
2785 }
2786 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2787 
2788 /*
2789  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2790  * @qpair:      Pointer to the queue pair struct.
2791  * @producer_tail:      Reference used for storing producer tail index.
2792  * @consumer_head:      Reference used for storing the consumer head index.
2793  *
2794  * This is the client interface for getting the current indexes of the
2795  * QPair from the point of the view of the caller as the producer.
2796  */
2797 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2798 				   u64 *producer_tail,
2799 				   u64 *consumer_head)
2800 {
2801 	struct vmci_queue_header *produce_q_header;
2802 	struct vmci_queue_header *consume_q_header;
2803 	int result;
2804 
2805 	if (!qpair)
2806 		return VMCI_ERROR_INVALID_ARGS;
2807 
2808 	qp_lock(qpair);
2809 	result =
2810 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2811 	if (result == VMCI_SUCCESS)
2812 		vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2813 					   producer_tail, consumer_head);
2814 	qp_unlock(qpair);
2815 
2816 	if (result == VMCI_SUCCESS &&
2817 	    ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2818 	     (consumer_head && *consumer_head >= qpair->produce_q_size)))
2819 		return VMCI_ERROR_INVALID_SIZE;
2820 
2821 	return result;
2822 }
2823 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2824 
2825 /*
2826  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2827  * @qpair:      Pointer to the queue pair struct.
2828  * @consumer_tail:      Reference used for storing consumer tail index.
2829  * @producer_head:      Reference used for storing the producer head index.
2830  *
2831  * This is the client interface for getting the current indexes of the
2832  * QPair from the point of the view of the caller as the consumer.
2833  */
2834 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2835 				   u64 *consumer_tail,
2836 				   u64 *producer_head)
2837 {
2838 	struct vmci_queue_header *produce_q_header;
2839 	struct vmci_queue_header *consume_q_header;
2840 	int result;
2841 
2842 	if (!qpair)
2843 		return VMCI_ERROR_INVALID_ARGS;
2844 
2845 	qp_lock(qpair);
2846 	result =
2847 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2848 	if (result == VMCI_SUCCESS)
2849 		vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2850 					   consumer_tail, producer_head);
2851 	qp_unlock(qpair);
2852 
2853 	if (result == VMCI_SUCCESS &&
2854 	    ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2855 	     (producer_head && *producer_head >= qpair->consume_q_size)))
2856 		return VMCI_ERROR_INVALID_SIZE;
2857 
2858 	return result;
2859 }
2860 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2861 
2862 /*
2863  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2864  * @qpair:      Pointer to the queue pair struct.
2865  *
2866  * This is the client interface for getting the amount of free
2867  * space in the QPair from the point of the view of the caller as
2868  * the producer which is the common case.  Returns < 0 if err, else
2869  * available bytes into which data can be enqueued if > 0.
2870  */
2871 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2872 {
2873 	struct vmci_queue_header *produce_q_header;
2874 	struct vmci_queue_header *consume_q_header;
2875 	s64 result;
2876 
2877 	if (!qpair)
2878 		return VMCI_ERROR_INVALID_ARGS;
2879 
2880 	qp_lock(qpair);
2881 	result =
2882 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2883 	if (result == VMCI_SUCCESS)
2884 		result = vmci_q_header_free_space(produce_q_header,
2885 						  consume_q_header,
2886 						  qpair->produce_q_size);
2887 	else
2888 		result = 0;
2889 
2890 	qp_unlock(qpair);
2891 
2892 	return result;
2893 }
2894 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2895 
2896 /*
2897  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2898  * @qpair:      Pointer to the queue pair struct.
2899  *
2900  * This is the client interface for getting the amount of free
2901  * space in the QPair from the point of the view of the caller as
2902  * the consumer which is not the common case.  Returns < 0 if err, else
2903  * available bytes into which data can be enqueued if > 0.
2904  */
2905 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2906 {
2907 	struct vmci_queue_header *produce_q_header;
2908 	struct vmci_queue_header *consume_q_header;
2909 	s64 result;
2910 
2911 	if (!qpair)
2912 		return VMCI_ERROR_INVALID_ARGS;
2913 
2914 	qp_lock(qpair);
2915 	result =
2916 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2917 	if (result == VMCI_SUCCESS)
2918 		result = vmci_q_header_free_space(consume_q_header,
2919 						  produce_q_header,
2920 						  qpair->consume_q_size);
2921 	else
2922 		result = 0;
2923 
2924 	qp_unlock(qpair);
2925 
2926 	return result;
2927 }
2928 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2929 
2930 /*
2931  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2932  * producer queue.
2933  * @qpair:      Pointer to the queue pair struct.
2934  *
2935  * This is the client interface for getting the amount of
2936  * enqueued data in the QPair from the point of the view of the
2937  * caller as the producer which is not the common case.  Returns < 0 if err,
2938  * else available bytes that may be read.
2939  */
2940 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2941 {
2942 	struct vmci_queue_header *produce_q_header;
2943 	struct vmci_queue_header *consume_q_header;
2944 	s64 result;
2945 
2946 	if (!qpair)
2947 		return VMCI_ERROR_INVALID_ARGS;
2948 
2949 	qp_lock(qpair);
2950 	result =
2951 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2952 	if (result == VMCI_SUCCESS)
2953 		result = vmci_q_header_buf_ready(produce_q_header,
2954 						 consume_q_header,
2955 						 qpair->produce_q_size);
2956 	else
2957 		result = 0;
2958 
2959 	qp_unlock(qpair);
2960 
2961 	return result;
2962 }
2963 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2964 
2965 /*
2966  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2967  * consumer queue.
2968  * @qpair:      Pointer to the queue pair struct.
2969  *
2970  * This is the client interface for getting the amount of
2971  * enqueued data in the QPair from the point of the view of the
2972  * caller as the consumer which is the normal case.  Returns < 0 if err,
2973  * else available bytes that may be read.
2974  */
2975 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2976 {
2977 	struct vmci_queue_header *produce_q_header;
2978 	struct vmci_queue_header *consume_q_header;
2979 	s64 result;
2980 
2981 	if (!qpair)
2982 		return VMCI_ERROR_INVALID_ARGS;
2983 
2984 	qp_lock(qpair);
2985 	result =
2986 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2987 	if (result == VMCI_SUCCESS)
2988 		result = vmci_q_header_buf_ready(consume_q_header,
2989 						 produce_q_header,
2990 						 qpair->consume_q_size);
2991 	else
2992 		result = 0;
2993 
2994 	qp_unlock(qpair);
2995 
2996 	return result;
2997 }
2998 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
2999 
3000 /*
3001  * vmci_qpair_enqueue() - Throw data on the queue.
3002  * @qpair:      Pointer to the queue pair struct.
3003  * @buf:        Pointer to buffer containing data
3004  * @buf_size:   Length of buffer.
3005  * @buf_type:   Buffer type (Unused).
3006  *
3007  * This is the client interface for enqueueing data into the queue.
3008  * Returns number of bytes enqueued or < 0 on error.
3009  */
3010 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3011 			   const void *buf,
3012 			   size_t buf_size,
3013 			   int buf_type)
3014 {
3015 	ssize_t result;
3016 	struct iov_iter from;
3017 	struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3018 
3019 	if (!qpair || !buf)
3020 		return VMCI_ERROR_INVALID_ARGS;
3021 
3022 	iov_iter_kvec(&from, WRITE, &v, 1, buf_size);
3023 
3024 	qp_lock(qpair);
3025 
3026 	do {
3027 		result = qp_enqueue_locked(qpair->produce_q,
3028 					   qpair->consume_q,
3029 					   qpair->produce_q_size,
3030 					   &from);
3031 
3032 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3033 		    !qp_wait_for_ready_queue(qpair))
3034 			result = VMCI_ERROR_WOULD_BLOCK;
3035 
3036 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3037 
3038 	qp_unlock(qpair);
3039 
3040 	return result;
3041 }
3042 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3043 
3044 /*
3045  * vmci_qpair_dequeue() - Get data from the queue.
3046  * @qpair:      Pointer to the queue pair struct.
3047  * @buf:        Pointer to buffer for the data
3048  * @buf_size:   Length of buffer.
3049  * @buf_type:   Buffer type (Unused).
3050  *
3051  * This is the client interface for dequeueing data from the queue.
3052  * Returns number of bytes dequeued or < 0 on error.
3053  */
3054 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3055 			   void *buf,
3056 			   size_t buf_size,
3057 			   int buf_type)
3058 {
3059 	ssize_t result;
3060 	struct iov_iter to;
3061 	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3062 
3063 	if (!qpair || !buf)
3064 		return VMCI_ERROR_INVALID_ARGS;
3065 
3066 	iov_iter_kvec(&to, READ, &v, 1, buf_size);
3067 
3068 	qp_lock(qpair);
3069 
3070 	do {
3071 		result = qp_dequeue_locked(qpair->produce_q,
3072 					   qpair->consume_q,
3073 					   qpair->consume_q_size,
3074 					   &to, true);
3075 
3076 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3077 		    !qp_wait_for_ready_queue(qpair))
3078 			result = VMCI_ERROR_WOULD_BLOCK;
3079 
3080 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3081 
3082 	qp_unlock(qpair);
3083 
3084 	return result;
3085 }
3086 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3087 
3088 /*
3089  * vmci_qpair_peek() - Peek at the data in the queue.
3090  * @qpair:      Pointer to the queue pair struct.
3091  * @buf:        Pointer to buffer for the data
3092  * @buf_size:   Length of buffer.
3093  * @buf_type:   Buffer type (Unused on Linux).
3094  *
3095  * This is the client interface for peeking into a queue.  (I.e.,
3096  * copy data from the queue without updating the head pointer.)
3097  * Returns number of bytes dequeued or < 0 on error.
3098  */
3099 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3100 			void *buf,
3101 			size_t buf_size,
3102 			int buf_type)
3103 {
3104 	struct iov_iter to;
3105 	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3106 	ssize_t result;
3107 
3108 	if (!qpair || !buf)
3109 		return VMCI_ERROR_INVALID_ARGS;
3110 
3111 	iov_iter_kvec(&to, READ, &v, 1, buf_size);
3112 
3113 	qp_lock(qpair);
3114 
3115 	do {
3116 		result = qp_dequeue_locked(qpair->produce_q,
3117 					   qpair->consume_q,
3118 					   qpair->consume_q_size,
3119 					   &to, false);
3120 
3121 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3122 		    !qp_wait_for_ready_queue(qpair))
3123 			result = VMCI_ERROR_WOULD_BLOCK;
3124 
3125 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3126 
3127 	qp_unlock(qpair);
3128 
3129 	return result;
3130 }
3131 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3132 
3133 /*
3134  * vmci_qpair_enquev() - Throw data on the queue using iov.
3135  * @qpair:      Pointer to the queue pair struct.
3136  * @iov:        Pointer to buffer containing data
3137  * @iov_size:   Length of buffer.
3138  * @buf_type:   Buffer type (Unused).
3139  *
3140  * This is the client interface for enqueueing data into the queue.
3141  * This function uses IO vectors to handle the work. Returns number
3142  * of bytes enqueued or < 0 on error.
3143  */
3144 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3145 			  struct msghdr *msg,
3146 			  size_t iov_size,
3147 			  int buf_type)
3148 {
3149 	ssize_t result;
3150 
3151 	if (!qpair)
3152 		return VMCI_ERROR_INVALID_ARGS;
3153 
3154 	qp_lock(qpair);
3155 
3156 	do {
3157 		result = qp_enqueue_locked(qpair->produce_q,
3158 					   qpair->consume_q,
3159 					   qpair->produce_q_size,
3160 					   &msg->msg_iter);
3161 
3162 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3163 		    !qp_wait_for_ready_queue(qpair))
3164 			result = VMCI_ERROR_WOULD_BLOCK;
3165 
3166 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3167 
3168 	qp_unlock(qpair);
3169 
3170 	return result;
3171 }
3172 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3173 
3174 /*
3175  * vmci_qpair_dequev() - Get data from the queue using iov.
3176  * @qpair:      Pointer to the queue pair struct.
3177  * @iov:        Pointer to buffer for the data
3178  * @iov_size:   Length of buffer.
3179  * @buf_type:   Buffer type (Unused).
3180  *
3181  * This is the client interface for dequeueing data from the queue.
3182  * This function uses IO vectors to handle the work. Returns number
3183  * of bytes dequeued or < 0 on error.
3184  */
3185 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3186 			  struct msghdr *msg,
3187 			  size_t iov_size,
3188 			  int buf_type)
3189 {
3190 	ssize_t result;
3191 
3192 	if (!qpair)
3193 		return VMCI_ERROR_INVALID_ARGS;
3194 
3195 	qp_lock(qpair);
3196 
3197 	do {
3198 		result = qp_dequeue_locked(qpair->produce_q,
3199 					   qpair->consume_q,
3200 					   qpair->consume_q_size,
3201 					   &msg->msg_iter, true);
3202 
3203 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3204 		    !qp_wait_for_ready_queue(qpair))
3205 			result = VMCI_ERROR_WOULD_BLOCK;
3206 
3207 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3208 
3209 	qp_unlock(qpair);
3210 
3211 	return result;
3212 }
3213 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3214 
3215 /*
3216  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3217  * @qpair:      Pointer to the queue pair struct.
3218  * @iov:        Pointer to buffer for the data
3219  * @iov_size:   Length of buffer.
3220  * @buf_type:   Buffer type (Unused on Linux).
3221  *
3222  * This is the client interface for peeking into a queue.  (I.e.,
3223  * copy data from the queue without updating the head pointer.)
3224  * This function uses IO vectors to handle the work. Returns number
3225  * of bytes peeked or < 0 on error.
3226  */
3227 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3228 			 struct msghdr *msg,
3229 			 size_t iov_size,
3230 			 int buf_type)
3231 {
3232 	ssize_t result;
3233 
3234 	if (!qpair)
3235 		return VMCI_ERROR_INVALID_ARGS;
3236 
3237 	qp_lock(qpair);
3238 
3239 	do {
3240 		result = qp_dequeue_locked(qpair->produce_q,
3241 					   qpair->consume_q,
3242 					   qpair->consume_q_size,
3243 					   &msg->msg_iter, false);
3244 
3245 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3246 		    !qp_wait_for_ready_queue(qpair))
3247 			result = VMCI_ERROR_WOULD_BLOCK;
3248 
3249 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3250 
3251 	qp_unlock(qpair);
3252 	return result;
3253 }
3254 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3255