xref: /openbmc/linux/drivers/misc/uacce/uacce.c (revision b755c25fbcd568821a3bb0e0d5c2daa5fcb00bba)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 #include <linux/compat.h>
3 #include <linux/dma-mapping.h>
4 #include <linux/iommu.h>
5 #include <linux/module.h>
6 #include <linux/poll.h>
7 #include <linux/slab.h>
8 #include <linux/uacce.h>
9 
10 static struct class *uacce_class;
11 static dev_t uacce_devt;
12 static DEFINE_XARRAY_ALLOC(uacce_xa);
13 
14 /*
15  * If the parent driver or the device disappears, the queue state is invalid and
16  * ops are not usable anymore.
17  */
18 static bool uacce_queue_is_valid(struct uacce_queue *q)
19 {
20 	return q->state == UACCE_Q_INIT || q->state == UACCE_Q_STARTED;
21 }
22 
23 static int uacce_start_queue(struct uacce_queue *q)
24 {
25 	int ret;
26 
27 	if (q->state != UACCE_Q_INIT)
28 		return -EINVAL;
29 
30 	if (q->uacce->ops->start_queue) {
31 		ret = q->uacce->ops->start_queue(q);
32 		if (ret < 0)
33 			return ret;
34 	}
35 
36 	q->state = UACCE_Q_STARTED;
37 	return 0;
38 }
39 
40 static int uacce_put_queue(struct uacce_queue *q)
41 {
42 	struct uacce_device *uacce = q->uacce;
43 
44 	if ((q->state == UACCE_Q_STARTED) && uacce->ops->stop_queue)
45 		uacce->ops->stop_queue(q);
46 
47 	if ((q->state == UACCE_Q_INIT || q->state == UACCE_Q_STARTED) &&
48 	     uacce->ops->put_queue)
49 		uacce->ops->put_queue(q);
50 
51 	q->state = UACCE_Q_ZOMBIE;
52 
53 	return 0;
54 }
55 
56 static long uacce_fops_unl_ioctl(struct file *filep,
57 				 unsigned int cmd, unsigned long arg)
58 {
59 	struct uacce_queue *q = filep->private_data;
60 	struct uacce_device *uacce = q->uacce;
61 	long ret = -ENXIO;
62 
63 	/*
64 	 * uacce->ops->ioctl() may take the mmap_lock when copying arg to/from
65 	 * user. Avoid a circular lock dependency with uacce_fops_mmap(), which
66 	 * gets called with mmap_lock held, by taking uacce->mutex instead of
67 	 * q->mutex. Doing this in uacce_fops_mmap() is not possible because
68 	 * uacce_fops_open() calls iommu_sva_bind_device(), which takes
69 	 * mmap_lock, while holding uacce->mutex.
70 	 */
71 	mutex_lock(&uacce->mutex);
72 	if (!uacce_queue_is_valid(q))
73 		goto out_unlock;
74 
75 	switch (cmd) {
76 	case UACCE_CMD_START_Q:
77 		ret = uacce_start_queue(q);
78 		break;
79 	case UACCE_CMD_PUT_Q:
80 		ret = uacce_put_queue(q);
81 		break;
82 	default:
83 		if (uacce->ops->ioctl)
84 			ret = uacce->ops->ioctl(q, cmd, arg);
85 		else
86 			ret = -EINVAL;
87 	}
88 out_unlock:
89 	mutex_unlock(&uacce->mutex);
90 	return ret;
91 }
92 
93 #ifdef CONFIG_COMPAT
94 static long uacce_fops_compat_ioctl(struct file *filep,
95 				   unsigned int cmd, unsigned long arg)
96 {
97 	arg = (unsigned long)compat_ptr(arg);
98 
99 	return uacce_fops_unl_ioctl(filep, cmd, arg);
100 }
101 #endif
102 
103 static int uacce_bind_queue(struct uacce_device *uacce, struct uacce_queue *q)
104 {
105 	u32 pasid;
106 	struct iommu_sva *handle;
107 
108 	if (!(uacce->flags & UACCE_DEV_SVA))
109 		return 0;
110 
111 	handle = iommu_sva_bind_device(uacce->parent, current->mm);
112 	if (IS_ERR(handle))
113 		return PTR_ERR(handle);
114 
115 	pasid = iommu_sva_get_pasid(handle);
116 	if (pasid == IOMMU_PASID_INVALID) {
117 		iommu_sva_unbind_device(handle);
118 		return -ENODEV;
119 	}
120 
121 	q->handle = handle;
122 	q->pasid = pasid;
123 	return 0;
124 }
125 
126 static void uacce_unbind_queue(struct uacce_queue *q)
127 {
128 	if (!q->handle)
129 		return;
130 	iommu_sva_unbind_device(q->handle);
131 	q->handle = NULL;
132 }
133 
134 static int uacce_fops_open(struct inode *inode, struct file *filep)
135 {
136 	struct uacce_device *uacce;
137 	struct uacce_queue *q;
138 	int ret;
139 
140 	uacce = xa_load(&uacce_xa, iminor(inode));
141 	if (!uacce)
142 		return -ENODEV;
143 
144 	q = kzalloc(sizeof(struct uacce_queue), GFP_KERNEL);
145 	if (!q)
146 		return -ENOMEM;
147 
148 	mutex_lock(&uacce->mutex);
149 
150 	if (!uacce->parent) {
151 		ret = -EINVAL;
152 		goto out_with_mem;
153 	}
154 
155 	ret = uacce_bind_queue(uacce, q);
156 	if (ret)
157 		goto out_with_mem;
158 
159 	q->uacce = uacce;
160 
161 	if (uacce->ops->get_queue) {
162 		ret = uacce->ops->get_queue(uacce, q->pasid, q);
163 		if (ret < 0)
164 			goto out_with_bond;
165 	}
166 
167 	init_waitqueue_head(&q->wait);
168 	filep->private_data = q;
169 	q->state = UACCE_Q_INIT;
170 	q->mapping = filep->f_mapping;
171 	mutex_init(&q->mutex);
172 	list_add(&q->list, &uacce->queues);
173 	mutex_unlock(&uacce->mutex);
174 
175 	return 0;
176 
177 out_with_bond:
178 	uacce_unbind_queue(q);
179 out_with_mem:
180 	kfree(q);
181 	mutex_unlock(&uacce->mutex);
182 	return ret;
183 }
184 
185 static int uacce_fops_release(struct inode *inode, struct file *filep)
186 {
187 	struct uacce_queue *q = filep->private_data;
188 	struct uacce_device *uacce = q->uacce;
189 
190 	mutex_lock(&uacce->mutex);
191 	uacce_put_queue(q);
192 	uacce_unbind_queue(q);
193 	list_del(&q->list);
194 	mutex_unlock(&uacce->mutex);
195 	kfree(q);
196 
197 	return 0;
198 }
199 
200 static void uacce_vma_close(struct vm_area_struct *vma)
201 {
202 	struct uacce_queue *q = vma->vm_private_data;
203 
204 	if (vma->vm_pgoff < UACCE_MAX_REGION) {
205 		struct uacce_qfile_region *qfr = q->qfrs[vma->vm_pgoff];
206 
207 		mutex_lock(&q->mutex);
208 		q->qfrs[vma->vm_pgoff] = NULL;
209 		mutex_unlock(&q->mutex);
210 		kfree(qfr);
211 	}
212 }
213 
214 static const struct vm_operations_struct uacce_vm_ops = {
215 	.close = uacce_vma_close,
216 };
217 
218 static int uacce_fops_mmap(struct file *filep, struct vm_area_struct *vma)
219 {
220 	struct uacce_queue *q = filep->private_data;
221 	struct uacce_device *uacce = q->uacce;
222 	struct uacce_qfile_region *qfr;
223 	enum uacce_qfrt type = UACCE_MAX_REGION;
224 	int ret = 0;
225 
226 	if (vma->vm_pgoff < UACCE_MAX_REGION)
227 		type = vma->vm_pgoff;
228 	else
229 		return -EINVAL;
230 
231 	qfr = kzalloc(sizeof(*qfr), GFP_KERNEL);
232 	if (!qfr)
233 		return -ENOMEM;
234 
235 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_WIPEONFORK);
236 	vma->vm_ops = &uacce_vm_ops;
237 	vma->vm_private_data = q;
238 	qfr->type = type;
239 
240 	mutex_lock(&q->mutex);
241 	if (!uacce_queue_is_valid(q)) {
242 		ret = -ENXIO;
243 		goto out_with_lock;
244 	}
245 
246 	if (q->qfrs[type]) {
247 		ret = -EEXIST;
248 		goto out_with_lock;
249 	}
250 
251 	switch (type) {
252 	case UACCE_QFRT_MMIO:
253 	case UACCE_QFRT_DUS:
254 		if (!uacce->ops->mmap) {
255 			ret = -EINVAL;
256 			goto out_with_lock;
257 		}
258 
259 		ret = uacce->ops->mmap(q, vma, qfr);
260 		if (ret)
261 			goto out_with_lock;
262 		break;
263 
264 	default:
265 		ret = -EINVAL;
266 		goto out_with_lock;
267 	}
268 
269 	q->qfrs[type] = qfr;
270 	mutex_unlock(&q->mutex);
271 
272 	return ret;
273 
274 out_with_lock:
275 	mutex_unlock(&q->mutex);
276 	kfree(qfr);
277 	return ret;
278 }
279 
280 static __poll_t uacce_fops_poll(struct file *file, poll_table *wait)
281 {
282 	struct uacce_queue *q = file->private_data;
283 	struct uacce_device *uacce = q->uacce;
284 	__poll_t ret = 0;
285 
286 	mutex_lock(&q->mutex);
287 	if (!uacce_queue_is_valid(q))
288 		goto out_unlock;
289 
290 	poll_wait(file, &q->wait, wait);
291 
292 	if (uacce->ops->is_q_updated && uacce->ops->is_q_updated(q))
293 		ret = EPOLLIN | EPOLLRDNORM;
294 
295 out_unlock:
296 	mutex_unlock(&q->mutex);
297 	return ret;
298 }
299 
300 static const struct file_operations uacce_fops = {
301 	.owner		= THIS_MODULE,
302 	.open		= uacce_fops_open,
303 	.release	= uacce_fops_release,
304 	.unlocked_ioctl	= uacce_fops_unl_ioctl,
305 #ifdef CONFIG_COMPAT
306 	.compat_ioctl	= uacce_fops_compat_ioctl,
307 #endif
308 	.mmap		= uacce_fops_mmap,
309 	.poll		= uacce_fops_poll,
310 };
311 
312 #define to_uacce_device(dev) container_of(dev, struct uacce_device, dev)
313 
314 static ssize_t api_show(struct device *dev,
315 			struct device_attribute *attr, char *buf)
316 {
317 	struct uacce_device *uacce = to_uacce_device(dev);
318 
319 	return sysfs_emit(buf, "%s\n", uacce->api_ver);
320 }
321 
322 static ssize_t flags_show(struct device *dev,
323 			  struct device_attribute *attr, char *buf)
324 {
325 	struct uacce_device *uacce = to_uacce_device(dev);
326 
327 	return sysfs_emit(buf, "%u\n", uacce->flags);
328 }
329 
330 static ssize_t available_instances_show(struct device *dev,
331 					struct device_attribute *attr,
332 					char *buf)
333 {
334 	struct uacce_device *uacce = to_uacce_device(dev);
335 
336 	if (!uacce->ops->get_available_instances)
337 		return -ENODEV;
338 
339 	return sysfs_emit(buf, "%d\n",
340 		       uacce->ops->get_available_instances(uacce));
341 }
342 
343 static ssize_t algorithms_show(struct device *dev,
344 			       struct device_attribute *attr, char *buf)
345 {
346 	struct uacce_device *uacce = to_uacce_device(dev);
347 
348 	return sysfs_emit(buf, "%s\n", uacce->algs);
349 }
350 
351 static ssize_t region_mmio_size_show(struct device *dev,
352 				     struct device_attribute *attr, char *buf)
353 {
354 	struct uacce_device *uacce = to_uacce_device(dev);
355 
356 	return sysfs_emit(buf, "%lu\n",
357 		       uacce->qf_pg_num[UACCE_QFRT_MMIO] << PAGE_SHIFT);
358 }
359 
360 static ssize_t region_dus_size_show(struct device *dev,
361 				    struct device_attribute *attr, char *buf)
362 {
363 	struct uacce_device *uacce = to_uacce_device(dev);
364 
365 	return sysfs_emit(buf, "%lu\n",
366 		       uacce->qf_pg_num[UACCE_QFRT_DUS] << PAGE_SHIFT);
367 }
368 
369 static ssize_t isolate_show(struct device *dev,
370 			    struct device_attribute *attr, char *buf)
371 {
372 	struct uacce_device *uacce = to_uacce_device(dev);
373 
374 	return sysfs_emit(buf, "%d\n", uacce->ops->get_isolate_state(uacce));
375 }
376 
377 static ssize_t isolate_strategy_show(struct device *dev, struct device_attribute *attr, char *buf)
378 {
379 	struct uacce_device *uacce = to_uacce_device(dev);
380 	u32 val;
381 
382 	val = uacce->ops->isolate_err_threshold_read(uacce);
383 
384 	return sysfs_emit(buf, "%u\n", val);
385 }
386 
387 static ssize_t isolate_strategy_store(struct device *dev, struct device_attribute *attr,
388 				   const char *buf, size_t count)
389 {
390 	struct uacce_device *uacce = to_uacce_device(dev);
391 	unsigned long val;
392 	int ret;
393 
394 	if (kstrtoul(buf, 0, &val) < 0)
395 		return -EINVAL;
396 
397 	if (val > UACCE_MAX_ERR_THRESHOLD)
398 		return -EINVAL;
399 
400 	ret = uacce->ops->isolate_err_threshold_write(uacce, val);
401 	if (ret)
402 		return ret;
403 
404 	return count;
405 }
406 
407 static DEVICE_ATTR_RO(api);
408 static DEVICE_ATTR_RO(flags);
409 static DEVICE_ATTR_RO(available_instances);
410 static DEVICE_ATTR_RO(algorithms);
411 static DEVICE_ATTR_RO(region_mmio_size);
412 static DEVICE_ATTR_RO(region_dus_size);
413 static DEVICE_ATTR_RO(isolate);
414 static DEVICE_ATTR_RW(isolate_strategy);
415 
416 static struct attribute *uacce_dev_attrs[] = {
417 	&dev_attr_api.attr,
418 	&dev_attr_flags.attr,
419 	&dev_attr_available_instances.attr,
420 	&dev_attr_algorithms.attr,
421 	&dev_attr_region_mmio_size.attr,
422 	&dev_attr_region_dus_size.attr,
423 	&dev_attr_isolate.attr,
424 	&dev_attr_isolate_strategy.attr,
425 	NULL,
426 };
427 
428 static umode_t uacce_dev_is_visible(struct kobject *kobj,
429 				    struct attribute *attr, int n)
430 {
431 	struct device *dev = kobj_to_dev(kobj);
432 	struct uacce_device *uacce = to_uacce_device(dev);
433 
434 	if (((attr == &dev_attr_region_mmio_size.attr) &&
435 	    (!uacce->qf_pg_num[UACCE_QFRT_MMIO])) ||
436 	    ((attr == &dev_attr_region_dus_size.attr) &&
437 	    (!uacce->qf_pg_num[UACCE_QFRT_DUS])))
438 		return 0;
439 
440 	if (attr == &dev_attr_isolate_strategy.attr &&
441 	    (!uacce->ops->isolate_err_threshold_read &&
442 	     !uacce->ops->isolate_err_threshold_write))
443 		return 0;
444 
445 	if (attr == &dev_attr_isolate.attr && !uacce->ops->get_isolate_state)
446 		return 0;
447 
448 	return attr->mode;
449 }
450 
451 static struct attribute_group uacce_dev_group = {
452 	.is_visible	= uacce_dev_is_visible,
453 	.attrs		= uacce_dev_attrs,
454 };
455 
456 __ATTRIBUTE_GROUPS(uacce_dev);
457 
458 static void uacce_release(struct device *dev)
459 {
460 	struct uacce_device *uacce = to_uacce_device(dev);
461 
462 	kfree(uacce);
463 }
464 
465 static unsigned int uacce_enable_sva(struct device *parent, unsigned int flags)
466 {
467 	int ret;
468 
469 	if (!(flags & UACCE_DEV_SVA))
470 		return flags;
471 
472 	flags &= ~UACCE_DEV_SVA;
473 
474 	ret = iommu_dev_enable_feature(parent, IOMMU_DEV_FEAT_IOPF);
475 	if (ret) {
476 		dev_err(parent, "failed to enable IOPF feature! ret = %pe\n", ERR_PTR(ret));
477 		return flags;
478 	}
479 
480 	ret = iommu_dev_enable_feature(parent, IOMMU_DEV_FEAT_SVA);
481 	if (ret) {
482 		dev_err(parent, "failed to enable SVA feature! ret = %pe\n", ERR_PTR(ret));
483 		iommu_dev_disable_feature(parent, IOMMU_DEV_FEAT_IOPF);
484 		return flags;
485 	}
486 
487 	return flags | UACCE_DEV_SVA;
488 }
489 
490 static void uacce_disable_sva(struct uacce_device *uacce)
491 {
492 	if (!(uacce->flags & UACCE_DEV_SVA))
493 		return;
494 
495 	iommu_dev_disable_feature(uacce->parent, IOMMU_DEV_FEAT_SVA);
496 	iommu_dev_disable_feature(uacce->parent, IOMMU_DEV_FEAT_IOPF);
497 }
498 
499 /**
500  * uacce_alloc() - alloc an accelerator
501  * @parent: pointer of uacce parent device
502  * @interface: pointer of uacce_interface for register
503  *
504  * Returns uacce pointer if success and ERR_PTR if not
505  * Need check returned negotiated uacce->flags
506  */
507 struct uacce_device *uacce_alloc(struct device *parent,
508 				 struct uacce_interface *interface)
509 {
510 	unsigned int flags = interface->flags;
511 	struct uacce_device *uacce;
512 	int ret;
513 
514 	uacce = kzalloc(sizeof(struct uacce_device), GFP_KERNEL);
515 	if (!uacce)
516 		return ERR_PTR(-ENOMEM);
517 
518 	flags = uacce_enable_sva(parent, flags);
519 
520 	uacce->parent = parent;
521 	uacce->flags = flags;
522 	uacce->ops = interface->ops;
523 
524 	ret = xa_alloc(&uacce_xa, &uacce->dev_id, uacce, xa_limit_32b,
525 		       GFP_KERNEL);
526 	if (ret < 0)
527 		goto err_with_uacce;
528 
529 	INIT_LIST_HEAD(&uacce->queues);
530 	mutex_init(&uacce->mutex);
531 	device_initialize(&uacce->dev);
532 	uacce->dev.devt = MKDEV(MAJOR(uacce_devt), uacce->dev_id);
533 	uacce->dev.class = uacce_class;
534 	uacce->dev.groups = uacce_dev_groups;
535 	uacce->dev.parent = uacce->parent;
536 	uacce->dev.release = uacce_release;
537 	dev_set_name(&uacce->dev, "%s-%d", interface->name, uacce->dev_id);
538 
539 	return uacce;
540 
541 err_with_uacce:
542 	uacce_disable_sva(uacce);
543 	kfree(uacce);
544 	return ERR_PTR(ret);
545 }
546 EXPORT_SYMBOL_GPL(uacce_alloc);
547 
548 /**
549  * uacce_register() - add the accelerator to cdev and export to user space
550  * @uacce: The initialized uacce device
551  *
552  * Return 0 if register succeeded, or an error.
553  */
554 int uacce_register(struct uacce_device *uacce)
555 {
556 	if (!uacce)
557 		return -ENODEV;
558 
559 	uacce->cdev = cdev_alloc();
560 	if (!uacce->cdev)
561 		return -ENOMEM;
562 
563 	uacce->cdev->ops = &uacce_fops;
564 	uacce->cdev->owner = THIS_MODULE;
565 
566 	return cdev_device_add(uacce->cdev, &uacce->dev);
567 }
568 EXPORT_SYMBOL_GPL(uacce_register);
569 
570 /**
571  * uacce_remove() - remove the accelerator
572  * @uacce: the accelerator to remove
573  */
574 void uacce_remove(struct uacce_device *uacce)
575 {
576 	struct uacce_queue *q, *next_q;
577 
578 	if (!uacce)
579 		return;
580 
581 	/*
582 	 * uacce_fops_open() may be running concurrently, even after we remove
583 	 * the cdev. Holding uacce->mutex ensures that open() does not obtain a
584 	 * removed uacce device.
585 	 */
586 	mutex_lock(&uacce->mutex);
587 	/* ensure no open queue remains */
588 	list_for_each_entry_safe(q, next_q, &uacce->queues, list) {
589 		/*
590 		 * Taking q->mutex ensures that fops do not use the defunct
591 		 * uacce->ops after the queue is disabled.
592 		 */
593 		mutex_lock(&q->mutex);
594 		uacce_put_queue(q);
595 		mutex_unlock(&q->mutex);
596 		uacce_unbind_queue(q);
597 
598 		/*
599 		 * unmap remaining mapping from user space, preventing user still
600 		 * access the mmaped area while parent device is already removed
601 		 */
602 		unmap_mapping_range(q->mapping, 0, 0, 1);
603 	}
604 
605 	/* disable sva now since no opened queues */
606 	uacce_disable_sva(uacce);
607 
608 	if (uacce->cdev)
609 		cdev_device_del(uacce->cdev, &uacce->dev);
610 	xa_erase(&uacce_xa, uacce->dev_id);
611 	/*
612 	 * uacce exists as long as there are open fds, but ops will be freed
613 	 * now. Ensure that bugs cause NULL deref rather than use-after-free.
614 	 */
615 	uacce->ops = NULL;
616 	uacce->parent = NULL;
617 	mutex_unlock(&uacce->mutex);
618 	put_device(&uacce->dev);
619 }
620 EXPORT_SYMBOL_GPL(uacce_remove);
621 
622 static int __init uacce_init(void)
623 {
624 	int ret;
625 
626 	uacce_class = class_create(UACCE_NAME);
627 	if (IS_ERR(uacce_class))
628 		return PTR_ERR(uacce_class);
629 
630 	ret = alloc_chrdev_region(&uacce_devt, 0, MINORMASK, UACCE_NAME);
631 	if (ret)
632 		class_destroy(uacce_class);
633 
634 	return ret;
635 }
636 
637 static __exit void uacce_exit(void)
638 {
639 	unregister_chrdev_region(uacce_devt, MINORMASK);
640 	class_destroy(uacce_class);
641 }
642 
643 subsys_initcall(uacce_init);
644 module_exit(uacce_exit);
645 
646 MODULE_LICENSE("GPL");
647 MODULE_AUTHOR("HiSilicon Tech. Co., Ltd.");
648 MODULE_DESCRIPTION("Accelerator interface for Userland applications");
649