xref: /openbmc/linux/drivers/misc/sgi-xp/xpc_main.c (revision f220d3eb)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8 
9 /*
10  * Cross Partition Communication (XPC) support - standard version.
11  *
12  *	XPC provides a message passing capability that crosses partition
13  *	boundaries. This module is made up of two parts:
14  *
15  *	    partition	This part detects the presence/absence of other
16  *			partitions. It provides a heartbeat and monitors
17  *			the heartbeats of other partitions.
18  *
19  *	    channel	This part manages the channels and sends/receives
20  *			messages across them to/from other partitions.
21  *
22  *	There are a couple of additional functions residing in XP, which
23  *	provide an interface to XPC for its users.
24  *
25  *
26  *	Caveats:
27  *
28  *	  . Currently on sn2, we have no way to determine which nasid an IRQ
29  *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
30  *	    followed by an IPI. The amo indicates where data is to be pulled
31  *	    from, so after the IPI arrives, the remote partition checks the amo
32  *	    word. The IPI can actually arrive before the amo however, so other
33  *	    code must periodically check for this case. Also, remote amo
34  *	    operations do not reliably time out. Thus we do a remote PIO read
35  *	    solely to know whether the remote partition is down and whether we
36  *	    should stop sending IPIs to it. This remote PIO read operation is
37  *	    set up in a special nofault region so SAL knows to ignore (and
38  *	    cleanup) any errors due to the remote amo write, PIO read, and/or
39  *	    PIO write operations.
40  *
41  *	    If/when new hardware solves this IPI problem, we should abandon
42  *	    the current approach.
43  *
44  */
45 
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/sysctl.h>
49 #include <linux/device.h>
50 #include <linux/delay.h>
51 #include <linux/reboot.h>
52 #include <linux/kdebug.h>
53 #include <linux/kthread.h>
54 #include "xpc.h"
55 
56 #ifdef CONFIG_X86_64
57 #include <asm/traps.h>
58 #endif
59 
60 /* define two XPC debug device structures to be used with dev_dbg() et al */
61 
62 struct device_driver xpc_dbg_name = {
63 	.name = "xpc"
64 };
65 
66 struct device xpc_part_dbg_subname = {
67 	.init_name = "",	/* set to "part" at xpc_init() time */
68 	.driver = &xpc_dbg_name
69 };
70 
71 struct device xpc_chan_dbg_subname = {
72 	.init_name = "",	/* set to "chan" at xpc_init() time */
73 	.driver = &xpc_dbg_name
74 };
75 
76 struct device *xpc_part = &xpc_part_dbg_subname;
77 struct device *xpc_chan = &xpc_chan_dbg_subname;
78 
79 static int xpc_kdebug_ignore;
80 
81 /* systune related variables for /proc/sys directories */
82 
83 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
84 static int xpc_hb_min_interval = 1;
85 static int xpc_hb_max_interval = 10;
86 
87 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
88 static int xpc_hb_check_min_interval = 10;
89 static int xpc_hb_check_max_interval = 120;
90 
91 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
92 static int xpc_disengage_min_timelimit;	/* = 0 */
93 static int xpc_disengage_max_timelimit = 120;
94 
95 static struct ctl_table xpc_sys_xpc_hb_dir[] = {
96 	{
97 	 .procname = "hb_interval",
98 	 .data = &xpc_hb_interval,
99 	 .maxlen = sizeof(int),
100 	 .mode = 0644,
101 	 .proc_handler = proc_dointvec_minmax,
102 	 .extra1 = &xpc_hb_min_interval,
103 	 .extra2 = &xpc_hb_max_interval},
104 	{
105 	 .procname = "hb_check_interval",
106 	 .data = &xpc_hb_check_interval,
107 	 .maxlen = sizeof(int),
108 	 .mode = 0644,
109 	 .proc_handler = proc_dointvec_minmax,
110 	 .extra1 = &xpc_hb_check_min_interval,
111 	 .extra2 = &xpc_hb_check_max_interval},
112 	{}
113 };
114 static struct ctl_table xpc_sys_xpc_dir[] = {
115 	{
116 	 .procname = "hb",
117 	 .mode = 0555,
118 	 .child = xpc_sys_xpc_hb_dir},
119 	{
120 	 .procname = "disengage_timelimit",
121 	 .data = &xpc_disengage_timelimit,
122 	 .maxlen = sizeof(int),
123 	 .mode = 0644,
124 	 .proc_handler = proc_dointvec_minmax,
125 	 .extra1 = &xpc_disengage_min_timelimit,
126 	 .extra2 = &xpc_disengage_max_timelimit},
127 	{}
128 };
129 static struct ctl_table xpc_sys_dir[] = {
130 	{
131 	 .procname = "xpc",
132 	 .mode = 0555,
133 	 .child = xpc_sys_xpc_dir},
134 	{}
135 };
136 static struct ctl_table_header *xpc_sysctl;
137 
138 /* non-zero if any remote partition disengage was timed out */
139 int xpc_disengage_timedout;
140 
141 /* #of activate IRQs received and not yet processed */
142 int xpc_activate_IRQ_rcvd;
143 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
144 
145 /* IRQ handler notifies this wait queue on receipt of an IRQ */
146 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
147 
148 static unsigned long xpc_hb_check_timeout;
149 static struct timer_list xpc_hb_timer;
150 
151 /* notification that the xpc_hb_checker thread has exited */
152 static DECLARE_COMPLETION(xpc_hb_checker_exited);
153 
154 /* notification that the xpc_discovery thread has exited */
155 static DECLARE_COMPLETION(xpc_discovery_exited);
156 
157 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
158 
159 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
160 static struct notifier_block xpc_reboot_notifier = {
161 	.notifier_call = xpc_system_reboot,
162 };
163 
164 static int xpc_system_die(struct notifier_block *, unsigned long, void *);
165 static struct notifier_block xpc_die_notifier = {
166 	.notifier_call = xpc_system_die,
167 };
168 
169 struct xpc_arch_operations xpc_arch_ops;
170 
171 /*
172  * Timer function to enforce the timelimit on the partition disengage.
173  */
174 static void
175 xpc_timeout_partition_disengage(struct timer_list *t)
176 {
177 	struct xpc_partition *part = from_timer(part, t, disengage_timer);
178 
179 	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
180 
181 	(void)xpc_partition_disengaged(part);
182 
183 	DBUG_ON(part->disengage_timeout != 0);
184 	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
185 }
186 
187 /*
188  * Timer to produce the heartbeat.  The timer structures function is
189  * already set when this is initially called.  A tunable is used to
190  * specify when the next timeout should occur.
191  */
192 static void
193 xpc_hb_beater(struct timer_list *unused)
194 {
195 	xpc_arch_ops.increment_heartbeat();
196 
197 	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
198 		wake_up_interruptible(&xpc_activate_IRQ_wq);
199 
200 	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
201 	add_timer(&xpc_hb_timer);
202 }
203 
204 static void
205 xpc_start_hb_beater(void)
206 {
207 	xpc_arch_ops.heartbeat_init();
208 	timer_setup(&xpc_hb_timer, xpc_hb_beater, 0);
209 	xpc_hb_beater(0);
210 }
211 
212 static void
213 xpc_stop_hb_beater(void)
214 {
215 	del_timer_sync(&xpc_hb_timer);
216 	xpc_arch_ops.heartbeat_exit();
217 }
218 
219 /*
220  * At periodic intervals, scan through all active partitions and ensure
221  * their heartbeat is still active.  If not, the partition is deactivated.
222  */
223 static void
224 xpc_check_remote_hb(void)
225 {
226 	struct xpc_partition *part;
227 	short partid;
228 	enum xp_retval ret;
229 
230 	for (partid = 0; partid < xp_max_npartitions; partid++) {
231 
232 		if (xpc_exiting)
233 			break;
234 
235 		if (partid == xp_partition_id)
236 			continue;
237 
238 		part = &xpc_partitions[partid];
239 
240 		if (part->act_state == XPC_P_AS_INACTIVE ||
241 		    part->act_state == XPC_P_AS_DEACTIVATING) {
242 			continue;
243 		}
244 
245 		ret = xpc_arch_ops.get_remote_heartbeat(part);
246 		if (ret != xpSuccess)
247 			XPC_DEACTIVATE_PARTITION(part, ret);
248 	}
249 }
250 
251 /*
252  * This thread is responsible for nearly all of the partition
253  * activation/deactivation.
254  */
255 static int
256 xpc_hb_checker(void *ignore)
257 {
258 	int force_IRQ = 0;
259 
260 	/* this thread was marked active by xpc_hb_init() */
261 
262 	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
263 
264 	/* set our heartbeating to other partitions into motion */
265 	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
266 	xpc_start_hb_beater();
267 
268 	while (!xpc_exiting) {
269 
270 		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
271 			"been received\n",
272 			(int)(xpc_hb_check_timeout - jiffies),
273 			xpc_activate_IRQ_rcvd);
274 
275 		/* checking of remote heartbeats is skewed by IRQ handling */
276 		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
277 			xpc_hb_check_timeout = jiffies +
278 			    (xpc_hb_check_interval * HZ);
279 
280 			dev_dbg(xpc_part, "checking remote heartbeats\n");
281 			xpc_check_remote_hb();
282 
283 			/*
284 			 * On sn2 we need to periodically recheck to ensure no
285 			 * IRQ/amo pairs have been missed.
286 			 */
287 			if (is_shub())
288 				force_IRQ = 1;
289 		}
290 
291 		/* check for outstanding IRQs */
292 		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
293 			force_IRQ = 0;
294 			dev_dbg(xpc_part, "processing activate IRQs "
295 				"received\n");
296 			xpc_arch_ops.process_activate_IRQ_rcvd();
297 		}
298 
299 		/* wait for IRQ or timeout */
300 		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
301 					       (time_is_before_eq_jiffies(
302 						xpc_hb_check_timeout) ||
303 						xpc_activate_IRQ_rcvd > 0 ||
304 						xpc_exiting));
305 	}
306 
307 	xpc_stop_hb_beater();
308 
309 	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
310 
311 	/* mark this thread as having exited */
312 	complete(&xpc_hb_checker_exited);
313 	return 0;
314 }
315 
316 /*
317  * This thread will attempt to discover other partitions to activate
318  * based on info provided by SAL. This new thread is short lived and
319  * will exit once discovery is complete.
320  */
321 static int
322 xpc_initiate_discovery(void *ignore)
323 {
324 	xpc_discovery();
325 
326 	dev_dbg(xpc_part, "discovery thread is exiting\n");
327 
328 	/* mark this thread as having exited */
329 	complete(&xpc_discovery_exited);
330 	return 0;
331 }
332 
333 /*
334  * The first kthread assigned to a newly activated partition is the one
335  * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
336  * that kthread until the partition is brought down, at which time that kthread
337  * returns back to XPC HB. (The return of that kthread will signify to XPC HB
338  * that XPC has dismantled all communication infrastructure for the associated
339  * partition.) This kthread becomes the channel manager for that partition.
340  *
341  * Each active partition has a channel manager, who, besides connecting and
342  * disconnecting channels, will ensure that each of the partition's connected
343  * channels has the required number of assigned kthreads to get the work done.
344  */
345 static void
346 xpc_channel_mgr(struct xpc_partition *part)
347 {
348 	while (part->act_state != XPC_P_AS_DEACTIVATING ||
349 	       atomic_read(&part->nchannels_active) > 0 ||
350 	       !xpc_partition_disengaged(part)) {
351 
352 		xpc_process_sent_chctl_flags(part);
353 
354 		/*
355 		 * Wait until we've been requested to activate kthreads or
356 		 * all of the channel's message queues have been torn down or
357 		 * a signal is pending.
358 		 *
359 		 * The channel_mgr_requests is set to 1 after being awakened,
360 		 * This is done to prevent the channel mgr from making one pass
361 		 * through the loop for each request, since he will
362 		 * be servicing all the requests in one pass. The reason it's
363 		 * set to 1 instead of 0 is so that other kthreads will know
364 		 * that the channel mgr is running and won't bother trying to
365 		 * wake him up.
366 		 */
367 		atomic_dec(&part->channel_mgr_requests);
368 		(void)wait_event_interruptible(part->channel_mgr_wq,
369 				(atomic_read(&part->channel_mgr_requests) > 0 ||
370 				 part->chctl.all_flags != 0 ||
371 				 (part->act_state == XPC_P_AS_DEACTIVATING &&
372 				 atomic_read(&part->nchannels_active) == 0 &&
373 				 xpc_partition_disengaged(part))));
374 		atomic_set(&part->channel_mgr_requests, 1);
375 	}
376 }
377 
378 /*
379  * Guarantee that the kzalloc'd memory is cacheline aligned.
380  */
381 void *
382 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
383 {
384 	/* see if kzalloc will give us cachline aligned memory by default */
385 	*base = kzalloc(size, flags);
386 	if (*base == NULL)
387 		return NULL;
388 
389 	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
390 		return *base;
391 
392 	kfree(*base);
393 
394 	/* nope, we'll have to do it ourselves */
395 	*base = kzalloc(size + L1_CACHE_BYTES, flags);
396 	if (*base == NULL)
397 		return NULL;
398 
399 	return (void *)L1_CACHE_ALIGN((u64)*base);
400 }
401 
402 /*
403  * Setup the channel structures necessary to support XPartition Communication
404  * between the specified remote partition and the local one.
405  */
406 static enum xp_retval
407 xpc_setup_ch_structures(struct xpc_partition *part)
408 {
409 	enum xp_retval ret;
410 	int ch_number;
411 	struct xpc_channel *ch;
412 	short partid = XPC_PARTID(part);
413 
414 	/*
415 	 * Allocate all of the channel structures as a contiguous chunk of
416 	 * memory.
417 	 */
418 	DBUG_ON(part->channels != NULL);
419 	part->channels = kcalloc(XPC_MAX_NCHANNELS,
420 				 sizeof(struct xpc_channel),
421 				 GFP_KERNEL);
422 	if (part->channels == NULL) {
423 		dev_err(xpc_chan, "can't get memory for channels\n");
424 		return xpNoMemory;
425 	}
426 
427 	/* allocate the remote open and close args */
428 
429 	part->remote_openclose_args =
430 	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
431 					  GFP_KERNEL, &part->
432 					  remote_openclose_args_base);
433 	if (part->remote_openclose_args == NULL) {
434 		dev_err(xpc_chan, "can't get memory for remote connect args\n");
435 		ret = xpNoMemory;
436 		goto out_1;
437 	}
438 
439 	part->chctl.all_flags = 0;
440 	spin_lock_init(&part->chctl_lock);
441 
442 	atomic_set(&part->channel_mgr_requests, 1);
443 	init_waitqueue_head(&part->channel_mgr_wq);
444 
445 	part->nchannels = XPC_MAX_NCHANNELS;
446 
447 	atomic_set(&part->nchannels_active, 0);
448 	atomic_set(&part->nchannels_engaged, 0);
449 
450 	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
451 		ch = &part->channels[ch_number];
452 
453 		ch->partid = partid;
454 		ch->number = ch_number;
455 		ch->flags = XPC_C_DISCONNECTED;
456 
457 		atomic_set(&ch->kthreads_assigned, 0);
458 		atomic_set(&ch->kthreads_idle, 0);
459 		atomic_set(&ch->kthreads_active, 0);
460 
461 		atomic_set(&ch->references, 0);
462 		atomic_set(&ch->n_to_notify, 0);
463 
464 		spin_lock_init(&ch->lock);
465 		init_completion(&ch->wdisconnect_wait);
466 
467 		atomic_set(&ch->n_on_msg_allocate_wq, 0);
468 		init_waitqueue_head(&ch->msg_allocate_wq);
469 		init_waitqueue_head(&ch->idle_wq);
470 	}
471 
472 	ret = xpc_arch_ops.setup_ch_structures(part);
473 	if (ret != xpSuccess)
474 		goto out_2;
475 
476 	/*
477 	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
478 	 * we're declaring that this partition is ready to go.
479 	 */
480 	part->setup_state = XPC_P_SS_SETUP;
481 
482 	return xpSuccess;
483 
484 	/* setup of ch structures failed */
485 out_2:
486 	kfree(part->remote_openclose_args_base);
487 	part->remote_openclose_args = NULL;
488 out_1:
489 	kfree(part->channels);
490 	part->channels = NULL;
491 	return ret;
492 }
493 
494 /*
495  * Teardown the channel structures necessary to support XPartition Communication
496  * between the specified remote partition and the local one.
497  */
498 static void
499 xpc_teardown_ch_structures(struct xpc_partition *part)
500 {
501 	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
502 	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
503 
504 	/*
505 	 * Make this partition inaccessible to local processes by marking it
506 	 * as no longer setup. Then wait before proceeding with the teardown
507 	 * until all existing references cease.
508 	 */
509 	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
510 	part->setup_state = XPC_P_SS_WTEARDOWN;
511 
512 	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
513 
514 	/* now we can begin tearing down the infrastructure */
515 
516 	xpc_arch_ops.teardown_ch_structures(part);
517 
518 	kfree(part->remote_openclose_args_base);
519 	part->remote_openclose_args = NULL;
520 	kfree(part->channels);
521 	part->channels = NULL;
522 
523 	part->setup_state = XPC_P_SS_TORNDOWN;
524 }
525 
526 /*
527  * When XPC HB determines that a partition has come up, it will create a new
528  * kthread and that kthread will call this function to attempt to set up the
529  * basic infrastructure used for Cross Partition Communication with the newly
530  * upped partition.
531  *
532  * The kthread that was created by XPC HB and which setup the XPC
533  * infrastructure will remain assigned to the partition becoming the channel
534  * manager for that partition until the partition is deactivating, at which
535  * time the kthread will teardown the XPC infrastructure and then exit.
536  */
537 static int
538 xpc_activating(void *__partid)
539 {
540 	short partid = (u64)__partid;
541 	struct xpc_partition *part = &xpc_partitions[partid];
542 	unsigned long irq_flags;
543 
544 	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
545 
546 	spin_lock_irqsave(&part->act_lock, irq_flags);
547 
548 	if (part->act_state == XPC_P_AS_DEACTIVATING) {
549 		part->act_state = XPC_P_AS_INACTIVE;
550 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
551 		part->remote_rp_pa = 0;
552 		return 0;
553 	}
554 
555 	/* indicate the thread is activating */
556 	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
557 	part->act_state = XPC_P_AS_ACTIVATING;
558 
559 	XPC_SET_REASON(part, 0, 0);
560 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
561 
562 	dev_dbg(xpc_part, "activating partition %d\n", partid);
563 
564 	xpc_arch_ops.allow_hb(partid);
565 
566 	if (xpc_setup_ch_structures(part) == xpSuccess) {
567 		(void)xpc_part_ref(part);	/* this will always succeed */
568 
569 		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
570 			xpc_mark_partition_active(part);
571 			xpc_channel_mgr(part);
572 			/* won't return until partition is deactivating */
573 		}
574 
575 		xpc_part_deref(part);
576 		xpc_teardown_ch_structures(part);
577 	}
578 
579 	xpc_arch_ops.disallow_hb(partid);
580 	xpc_mark_partition_inactive(part);
581 
582 	if (part->reason == xpReactivating) {
583 		/* interrupting ourselves results in activating partition */
584 		xpc_arch_ops.request_partition_reactivation(part);
585 	}
586 
587 	return 0;
588 }
589 
590 void
591 xpc_activate_partition(struct xpc_partition *part)
592 {
593 	short partid = XPC_PARTID(part);
594 	unsigned long irq_flags;
595 	struct task_struct *kthread;
596 
597 	spin_lock_irqsave(&part->act_lock, irq_flags);
598 
599 	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
600 
601 	part->act_state = XPC_P_AS_ACTIVATION_REQ;
602 	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
603 
604 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
605 
606 	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
607 			      partid);
608 	if (IS_ERR(kthread)) {
609 		spin_lock_irqsave(&part->act_lock, irq_flags);
610 		part->act_state = XPC_P_AS_INACTIVE;
611 		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
612 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
613 	}
614 }
615 
616 void
617 xpc_activate_kthreads(struct xpc_channel *ch, int needed)
618 {
619 	int idle = atomic_read(&ch->kthreads_idle);
620 	int assigned = atomic_read(&ch->kthreads_assigned);
621 	int wakeup;
622 
623 	DBUG_ON(needed <= 0);
624 
625 	if (idle > 0) {
626 		wakeup = (needed > idle) ? idle : needed;
627 		needed -= wakeup;
628 
629 		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
630 			"channel=%d\n", wakeup, ch->partid, ch->number);
631 
632 		/* only wakeup the requested number of kthreads */
633 		wake_up_nr(&ch->idle_wq, wakeup);
634 	}
635 
636 	if (needed <= 0)
637 		return;
638 
639 	if (needed + assigned > ch->kthreads_assigned_limit) {
640 		needed = ch->kthreads_assigned_limit - assigned;
641 		if (needed <= 0)
642 			return;
643 	}
644 
645 	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
646 		needed, ch->partid, ch->number);
647 
648 	xpc_create_kthreads(ch, needed, 0);
649 }
650 
651 /*
652  * This function is where XPC's kthreads wait for messages to deliver.
653  */
654 static void
655 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
656 {
657 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
658 		xpc_arch_ops.n_of_deliverable_payloads;
659 
660 	do {
661 		/* deliver messages to their intended recipients */
662 
663 		while (n_of_deliverable_payloads(ch) > 0 &&
664 		       !(ch->flags & XPC_C_DISCONNECTING)) {
665 			xpc_deliver_payload(ch);
666 		}
667 
668 		if (atomic_inc_return(&ch->kthreads_idle) >
669 		    ch->kthreads_idle_limit) {
670 			/* too many idle kthreads on this channel */
671 			atomic_dec(&ch->kthreads_idle);
672 			break;
673 		}
674 
675 		dev_dbg(xpc_chan, "idle kthread calling "
676 			"wait_event_interruptible_exclusive()\n");
677 
678 		(void)wait_event_interruptible_exclusive(ch->idle_wq,
679 				(n_of_deliverable_payloads(ch) > 0 ||
680 				 (ch->flags & XPC_C_DISCONNECTING)));
681 
682 		atomic_dec(&ch->kthreads_idle);
683 
684 	} while (!(ch->flags & XPC_C_DISCONNECTING));
685 }
686 
687 static int
688 xpc_kthread_start(void *args)
689 {
690 	short partid = XPC_UNPACK_ARG1(args);
691 	u16 ch_number = XPC_UNPACK_ARG2(args);
692 	struct xpc_partition *part = &xpc_partitions[partid];
693 	struct xpc_channel *ch;
694 	int n_needed;
695 	unsigned long irq_flags;
696 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
697 		xpc_arch_ops.n_of_deliverable_payloads;
698 
699 	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
700 		partid, ch_number);
701 
702 	ch = &part->channels[ch_number];
703 
704 	if (!(ch->flags & XPC_C_DISCONNECTING)) {
705 
706 		/* let registerer know that connection has been established */
707 
708 		spin_lock_irqsave(&ch->lock, irq_flags);
709 		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
710 			ch->flags |= XPC_C_CONNECTEDCALLOUT;
711 			spin_unlock_irqrestore(&ch->lock, irq_flags);
712 
713 			xpc_connected_callout(ch);
714 
715 			spin_lock_irqsave(&ch->lock, irq_flags);
716 			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
717 			spin_unlock_irqrestore(&ch->lock, irq_flags);
718 
719 			/*
720 			 * It is possible that while the callout was being
721 			 * made that the remote partition sent some messages.
722 			 * If that is the case, we may need to activate
723 			 * additional kthreads to help deliver them. We only
724 			 * need one less than total #of messages to deliver.
725 			 */
726 			n_needed = n_of_deliverable_payloads(ch) - 1;
727 			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
728 				xpc_activate_kthreads(ch, n_needed);
729 
730 		} else {
731 			spin_unlock_irqrestore(&ch->lock, irq_flags);
732 		}
733 
734 		xpc_kthread_waitmsgs(part, ch);
735 	}
736 
737 	/* let registerer know that connection is disconnecting */
738 
739 	spin_lock_irqsave(&ch->lock, irq_flags);
740 	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
741 	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
742 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
743 		spin_unlock_irqrestore(&ch->lock, irq_flags);
744 
745 		xpc_disconnect_callout(ch, xpDisconnecting);
746 
747 		spin_lock_irqsave(&ch->lock, irq_flags);
748 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
749 	}
750 	spin_unlock_irqrestore(&ch->lock, irq_flags);
751 
752 	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
753 	    atomic_dec_return(&part->nchannels_engaged) == 0) {
754 		xpc_arch_ops.indicate_partition_disengaged(part);
755 	}
756 
757 	xpc_msgqueue_deref(ch);
758 
759 	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
760 		partid, ch_number);
761 
762 	xpc_part_deref(part);
763 	return 0;
764 }
765 
766 /*
767  * For each partition that XPC has established communications with, there is
768  * a minimum of one kernel thread assigned to perform any operation that
769  * may potentially sleep or block (basically the callouts to the asynchronous
770  * functions registered via xpc_connect()).
771  *
772  * Additional kthreads are created and destroyed by XPC as the workload
773  * demands.
774  *
775  * A kthread is assigned to one of the active channels that exists for a given
776  * partition.
777  */
778 void
779 xpc_create_kthreads(struct xpc_channel *ch, int needed,
780 		    int ignore_disconnecting)
781 {
782 	unsigned long irq_flags;
783 	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
784 	struct xpc_partition *part = &xpc_partitions[ch->partid];
785 	struct task_struct *kthread;
786 	void (*indicate_partition_disengaged) (struct xpc_partition *) =
787 		xpc_arch_ops.indicate_partition_disengaged;
788 
789 	while (needed-- > 0) {
790 
791 		/*
792 		 * The following is done on behalf of the newly created
793 		 * kthread. That kthread is responsible for doing the
794 		 * counterpart to the following before it exits.
795 		 */
796 		if (ignore_disconnecting) {
797 			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
798 				/* kthreads assigned had gone to zero */
799 				BUG_ON(!(ch->flags &
800 					 XPC_C_DISCONNECTINGCALLOUT_MADE));
801 				break;
802 			}
803 
804 		} else if (ch->flags & XPC_C_DISCONNECTING) {
805 			break;
806 
807 		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
808 			   atomic_inc_return(&part->nchannels_engaged) == 1) {
809 			xpc_arch_ops.indicate_partition_engaged(part);
810 		}
811 		(void)xpc_part_ref(part);
812 		xpc_msgqueue_ref(ch);
813 
814 		kthread = kthread_run(xpc_kthread_start, (void *)args,
815 				      "xpc%02dc%d", ch->partid, ch->number);
816 		if (IS_ERR(kthread)) {
817 			/* the fork failed */
818 
819 			/*
820 			 * NOTE: if (ignore_disconnecting &&
821 			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
822 			 * then we'll deadlock if all other kthreads assigned
823 			 * to this channel are blocked in the channel's
824 			 * registerer, because the only thing that will unblock
825 			 * them is the xpDisconnecting callout that this
826 			 * failed kthread_run() would have made.
827 			 */
828 
829 			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
830 			    atomic_dec_return(&part->nchannels_engaged) == 0) {
831 				indicate_partition_disengaged(part);
832 			}
833 			xpc_msgqueue_deref(ch);
834 			xpc_part_deref(part);
835 
836 			if (atomic_read(&ch->kthreads_assigned) <
837 			    ch->kthreads_idle_limit) {
838 				/*
839 				 * Flag this as an error only if we have an
840 				 * insufficient #of kthreads for the channel
841 				 * to function.
842 				 */
843 				spin_lock_irqsave(&ch->lock, irq_flags);
844 				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
845 						       &irq_flags);
846 				spin_unlock_irqrestore(&ch->lock, irq_flags);
847 			}
848 			break;
849 		}
850 	}
851 }
852 
853 void
854 xpc_disconnect_wait(int ch_number)
855 {
856 	unsigned long irq_flags;
857 	short partid;
858 	struct xpc_partition *part;
859 	struct xpc_channel *ch;
860 	int wakeup_channel_mgr;
861 
862 	/* now wait for all callouts to the caller's function to cease */
863 	for (partid = 0; partid < xp_max_npartitions; partid++) {
864 		part = &xpc_partitions[partid];
865 
866 		if (!xpc_part_ref(part))
867 			continue;
868 
869 		ch = &part->channels[ch_number];
870 
871 		if (!(ch->flags & XPC_C_WDISCONNECT)) {
872 			xpc_part_deref(part);
873 			continue;
874 		}
875 
876 		wait_for_completion(&ch->wdisconnect_wait);
877 
878 		spin_lock_irqsave(&ch->lock, irq_flags);
879 		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
880 		wakeup_channel_mgr = 0;
881 
882 		if (ch->delayed_chctl_flags) {
883 			if (part->act_state != XPC_P_AS_DEACTIVATING) {
884 				spin_lock(&part->chctl_lock);
885 				part->chctl.flags[ch->number] |=
886 				    ch->delayed_chctl_flags;
887 				spin_unlock(&part->chctl_lock);
888 				wakeup_channel_mgr = 1;
889 			}
890 			ch->delayed_chctl_flags = 0;
891 		}
892 
893 		ch->flags &= ~XPC_C_WDISCONNECT;
894 		spin_unlock_irqrestore(&ch->lock, irq_flags);
895 
896 		if (wakeup_channel_mgr)
897 			xpc_wakeup_channel_mgr(part);
898 
899 		xpc_part_deref(part);
900 	}
901 }
902 
903 static int
904 xpc_setup_partitions(void)
905 {
906 	short partid;
907 	struct xpc_partition *part;
908 
909 	xpc_partitions = kcalloc(xp_max_npartitions,
910 				 sizeof(struct xpc_partition),
911 				 GFP_KERNEL);
912 	if (xpc_partitions == NULL) {
913 		dev_err(xpc_part, "can't get memory for partition structure\n");
914 		return -ENOMEM;
915 	}
916 
917 	/*
918 	 * The first few fields of each entry of xpc_partitions[] need to
919 	 * be initialized now so that calls to xpc_connect() and
920 	 * xpc_disconnect() can be made prior to the activation of any remote
921 	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
922 	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
923 	 * PARTITION HAS BEEN ACTIVATED.
924 	 */
925 	for (partid = 0; partid < xp_max_npartitions; partid++) {
926 		part = &xpc_partitions[partid];
927 
928 		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
929 
930 		part->activate_IRQ_rcvd = 0;
931 		spin_lock_init(&part->act_lock);
932 		part->act_state = XPC_P_AS_INACTIVE;
933 		XPC_SET_REASON(part, 0, 0);
934 
935 		timer_setup(&part->disengage_timer,
936 			    xpc_timeout_partition_disengage, 0);
937 
938 		part->setup_state = XPC_P_SS_UNSET;
939 		init_waitqueue_head(&part->teardown_wq);
940 		atomic_set(&part->references, 0);
941 	}
942 
943 	return xpc_arch_ops.setup_partitions();
944 }
945 
946 static void
947 xpc_teardown_partitions(void)
948 {
949 	xpc_arch_ops.teardown_partitions();
950 	kfree(xpc_partitions);
951 }
952 
953 static void
954 xpc_do_exit(enum xp_retval reason)
955 {
956 	short partid;
957 	int active_part_count, printed_waiting_msg = 0;
958 	struct xpc_partition *part;
959 	unsigned long printmsg_time, disengage_timeout = 0;
960 
961 	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
962 	DBUG_ON(xpc_exiting == 1);
963 
964 	/*
965 	 * Let the heartbeat checker thread and the discovery thread
966 	 * (if one is running) know that they should exit. Also wake up
967 	 * the heartbeat checker thread in case it's sleeping.
968 	 */
969 	xpc_exiting = 1;
970 	wake_up_interruptible(&xpc_activate_IRQ_wq);
971 
972 	/* wait for the discovery thread to exit */
973 	wait_for_completion(&xpc_discovery_exited);
974 
975 	/* wait for the heartbeat checker thread to exit */
976 	wait_for_completion(&xpc_hb_checker_exited);
977 
978 	/* sleep for a 1/3 of a second or so */
979 	(void)msleep_interruptible(300);
980 
981 	/* wait for all partitions to become inactive */
982 
983 	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
984 	xpc_disengage_timedout = 0;
985 
986 	do {
987 		active_part_count = 0;
988 
989 		for (partid = 0; partid < xp_max_npartitions; partid++) {
990 			part = &xpc_partitions[partid];
991 
992 			if (xpc_partition_disengaged(part) &&
993 			    part->act_state == XPC_P_AS_INACTIVE) {
994 				continue;
995 			}
996 
997 			active_part_count++;
998 
999 			XPC_DEACTIVATE_PARTITION(part, reason);
1000 
1001 			if (part->disengage_timeout > disengage_timeout)
1002 				disengage_timeout = part->disengage_timeout;
1003 		}
1004 
1005 		if (xpc_arch_ops.any_partition_engaged()) {
1006 			if (time_is_before_jiffies(printmsg_time)) {
1007 				dev_info(xpc_part, "waiting for remote "
1008 					 "partitions to deactivate, timeout in "
1009 					 "%ld seconds\n", (disengage_timeout -
1010 					 jiffies) / HZ);
1011 				printmsg_time = jiffies +
1012 				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
1013 				printed_waiting_msg = 1;
1014 			}
1015 
1016 		} else if (active_part_count > 0) {
1017 			if (printed_waiting_msg) {
1018 				dev_info(xpc_part, "waiting for local partition"
1019 					 " to deactivate\n");
1020 				printed_waiting_msg = 0;
1021 			}
1022 
1023 		} else {
1024 			if (!xpc_disengage_timedout) {
1025 				dev_info(xpc_part, "all partitions have "
1026 					 "deactivated\n");
1027 			}
1028 			break;
1029 		}
1030 
1031 		/* sleep for a 1/3 of a second or so */
1032 		(void)msleep_interruptible(300);
1033 
1034 	} while (1);
1035 
1036 	DBUG_ON(xpc_arch_ops.any_partition_engaged());
1037 
1038 	xpc_teardown_rsvd_page();
1039 
1040 	if (reason == xpUnloading) {
1041 		(void)unregister_die_notifier(&xpc_die_notifier);
1042 		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1043 	}
1044 
1045 	/* clear the interface to XPC's functions */
1046 	xpc_clear_interface();
1047 
1048 	if (xpc_sysctl)
1049 		unregister_sysctl_table(xpc_sysctl);
1050 
1051 	xpc_teardown_partitions();
1052 
1053 	if (is_shub())
1054 		xpc_exit_sn2();
1055 	else if (is_uv())
1056 		xpc_exit_uv();
1057 }
1058 
1059 /*
1060  * This function is called when the system is being rebooted.
1061  */
1062 static int
1063 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1064 {
1065 	enum xp_retval reason;
1066 
1067 	switch (event) {
1068 	case SYS_RESTART:
1069 		reason = xpSystemReboot;
1070 		break;
1071 	case SYS_HALT:
1072 		reason = xpSystemHalt;
1073 		break;
1074 	case SYS_POWER_OFF:
1075 		reason = xpSystemPoweroff;
1076 		break;
1077 	default:
1078 		reason = xpSystemGoingDown;
1079 	}
1080 
1081 	xpc_do_exit(reason);
1082 	return NOTIFY_DONE;
1083 }
1084 
1085 /* Used to only allow one cpu to complete disconnect */
1086 static unsigned int xpc_die_disconnecting;
1087 
1088 /*
1089  * Notify other partitions to deactivate from us by first disengaging from all
1090  * references to our memory.
1091  */
1092 static void
1093 xpc_die_deactivate(void)
1094 {
1095 	struct xpc_partition *part;
1096 	short partid;
1097 	int any_engaged;
1098 	long keep_waiting;
1099 	long wait_to_print;
1100 
1101 	if (cmpxchg(&xpc_die_disconnecting, 0, 1))
1102 		return;
1103 
1104 	/* keep xpc_hb_checker thread from doing anything (just in case) */
1105 	xpc_exiting = 1;
1106 
1107 	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1108 
1109 	for (partid = 0; partid < xp_max_npartitions; partid++) {
1110 		part = &xpc_partitions[partid];
1111 
1112 		if (xpc_arch_ops.partition_engaged(partid) ||
1113 		    part->act_state != XPC_P_AS_INACTIVE) {
1114 			xpc_arch_ops.request_partition_deactivation(part);
1115 			xpc_arch_ops.indicate_partition_disengaged(part);
1116 		}
1117 	}
1118 
1119 	/*
1120 	 * Though we requested that all other partitions deactivate from us,
1121 	 * we only wait until they've all disengaged or we've reached the
1122 	 * defined timelimit.
1123 	 *
1124 	 * Given that one iteration through the following while-loop takes
1125 	 * approximately 200 microseconds, calculate the #of loops to take
1126 	 * before bailing and the #of loops before printing a waiting message.
1127 	 */
1128 	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1129 	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1130 
1131 	while (1) {
1132 		any_engaged = xpc_arch_ops.any_partition_engaged();
1133 		if (!any_engaged) {
1134 			dev_info(xpc_part, "all partitions have deactivated\n");
1135 			break;
1136 		}
1137 
1138 		if (!keep_waiting--) {
1139 			for (partid = 0; partid < xp_max_npartitions;
1140 			     partid++) {
1141 				if (xpc_arch_ops.partition_engaged(partid)) {
1142 					dev_info(xpc_part, "deactivate from "
1143 						 "remote partition %d timed "
1144 						 "out\n", partid);
1145 				}
1146 			}
1147 			break;
1148 		}
1149 
1150 		if (!wait_to_print--) {
1151 			dev_info(xpc_part, "waiting for remote partitions to "
1152 				 "deactivate, timeout in %ld seconds\n",
1153 				 keep_waiting / (1000 * 5));
1154 			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1155 			    1000 * 5;
1156 		}
1157 
1158 		udelay(200);
1159 	}
1160 }
1161 
1162 /*
1163  * This function is called when the system is being restarted or halted due
1164  * to some sort of system failure. If this is the case we need to notify the
1165  * other partitions to disengage from all references to our memory.
1166  * This function can also be called when our heartbeater could be offlined
1167  * for a time. In this case we need to notify other partitions to not worry
1168  * about the lack of a heartbeat.
1169  */
1170 static int
1171 xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args)
1172 {
1173 #ifdef CONFIG_IA64		/* !!! temporary kludge */
1174 	switch (event) {
1175 	case DIE_MACHINE_RESTART:
1176 	case DIE_MACHINE_HALT:
1177 		xpc_die_deactivate();
1178 		break;
1179 
1180 	case DIE_KDEBUG_ENTER:
1181 		/* Should lack of heartbeat be ignored by other partitions? */
1182 		if (!xpc_kdebug_ignore)
1183 			break;
1184 
1185 		/* fall through */
1186 	case DIE_MCA_MONARCH_ENTER:
1187 	case DIE_INIT_MONARCH_ENTER:
1188 		xpc_arch_ops.offline_heartbeat();
1189 		break;
1190 
1191 	case DIE_KDEBUG_LEAVE:
1192 		/* Is lack of heartbeat being ignored by other partitions? */
1193 		if (!xpc_kdebug_ignore)
1194 			break;
1195 
1196 		/* fall through */
1197 	case DIE_MCA_MONARCH_LEAVE:
1198 	case DIE_INIT_MONARCH_LEAVE:
1199 		xpc_arch_ops.online_heartbeat();
1200 		break;
1201 	}
1202 #else
1203 	struct die_args *die_args = _die_args;
1204 
1205 	switch (event) {
1206 	case DIE_TRAP:
1207 		if (die_args->trapnr == X86_TRAP_DF)
1208 			xpc_die_deactivate();
1209 
1210 		if (((die_args->trapnr == X86_TRAP_MF) ||
1211 		     (die_args->trapnr == X86_TRAP_XF)) &&
1212 		    !user_mode(die_args->regs))
1213 			xpc_die_deactivate();
1214 
1215 		break;
1216 	case DIE_INT3:
1217 	case DIE_DEBUG:
1218 		break;
1219 	case DIE_OOPS:
1220 	case DIE_GPF:
1221 	default:
1222 		xpc_die_deactivate();
1223 	}
1224 #endif
1225 
1226 	return NOTIFY_DONE;
1227 }
1228 
1229 int __init
1230 xpc_init(void)
1231 {
1232 	int ret;
1233 	struct task_struct *kthread;
1234 
1235 	dev_set_name(xpc_part, "part");
1236 	dev_set_name(xpc_chan, "chan");
1237 
1238 	if (is_shub()) {
1239 		/*
1240 		 * The ia64-sn2 architecture supports at most 64 partitions.
1241 		 * And the inability to unregister remote amos restricts us
1242 		 * further to only support exactly 64 partitions on this
1243 		 * architecture, no less.
1244 		 */
1245 		if (xp_max_npartitions != 64) {
1246 			dev_err(xpc_part, "max #of partitions not set to 64\n");
1247 			ret = -EINVAL;
1248 		} else {
1249 			ret = xpc_init_sn2();
1250 		}
1251 
1252 	} else if (is_uv()) {
1253 		ret = xpc_init_uv();
1254 
1255 	} else {
1256 		ret = -ENODEV;
1257 	}
1258 
1259 	if (ret != 0)
1260 		return ret;
1261 
1262 	ret = xpc_setup_partitions();
1263 	if (ret != 0) {
1264 		dev_err(xpc_part, "can't get memory for partition structure\n");
1265 		goto out_1;
1266 	}
1267 
1268 	xpc_sysctl = register_sysctl_table(xpc_sys_dir);
1269 
1270 	/*
1271 	 * Fill the partition reserved page with the information needed by
1272 	 * other partitions to discover we are alive and establish initial
1273 	 * communications.
1274 	 */
1275 	ret = xpc_setup_rsvd_page();
1276 	if (ret != 0) {
1277 		dev_err(xpc_part, "can't setup our reserved page\n");
1278 		goto out_2;
1279 	}
1280 
1281 	/* add ourselves to the reboot_notifier_list */
1282 	ret = register_reboot_notifier(&xpc_reboot_notifier);
1283 	if (ret != 0)
1284 		dev_warn(xpc_part, "can't register reboot notifier\n");
1285 
1286 	/* add ourselves to the die_notifier list */
1287 	ret = register_die_notifier(&xpc_die_notifier);
1288 	if (ret != 0)
1289 		dev_warn(xpc_part, "can't register die notifier\n");
1290 
1291 	/*
1292 	 * The real work-horse behind xpc.  This processes incoming
1293 	 * interrupts and monitors remote heartbeats.
1294 	 */
1295 	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1296 	if (IS_ERR(kthread)) {
1297 		dev_err(xpc_part, "failed while forking hb check thread\n");
1298 		ret = -EBUSY;
1299 		goto out_3;
1300 	}
1301 
1302 	/*
1303 	 * Startup a thread that will attempt to discover other partitions to
1304 	 * activate based on info provided by SAL. This new thread is short
1305 	 * lived and will exit once discovery is complete.
1306 	 */
1307 	kthread = kthread_run(xpc_initiate_discovery, NULL,
1308 			      XPC_DISCOVERY_THREAD_NAME);
1309 	if (IS_ERR(kthread)) {
1310 		dev_err(xpc_part, "failed while forking discovery thread\n");
1311 
1312 		/* mark this new thread as a non-starter */
1313 		complete(&xpc_discovery_exited);
1314 
1315 		xpc_do_exit(xpUnloading);
1316 		return -EBUSY;
1317 	}
1318 
1319 	/* set the interface to point at XPC's functions */
1320 	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1321 			  xpc_initiate_send, xpc_initiate_send_notify,
1322 			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
1323 
1324 	return 0;
1325 
1326 	/* initialization was not successful */
1327 out_3:
1328 	xpc_teardown_rsvd_page();
1329 
1330 	(void)unregister_die_notifier(&xpc_die_notifier);
1331 	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1332 out_2:
1333 	if (xpc_sysctl)
1334 		unregister_sysctl_table(xpc_sysctl);
1335 
1336 	xpc_teardown_partitions();
1337 out_1:
1338 	if (is_shub())
1339 		xpc_exit_sn2();
1340 	else if (is_uv())
1341 		xpc_exit_uv();
1342 	return ret;
1343 }
1344 
1345 module_init(xpc_init);
1346 
1347 void __exit
1348 xpc_exit(void)
1349 {
1350 	xpc_do_exit(xpUnloading);
1351 }
1352 
1353 module_exit(xpc_exit);
1354 
1355 MODULE_AUTHOR("Silicon Graphics, Inc.");
1356 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1357 MODULE_LICENSE("GPL");
1358 
1359 module_param(xpc_hb_interval, int, 0);
1360 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1361 		 "heartbeat increments.");
1362 
1363 module_param(xpc_hb_check_interval, int, 0);
1364 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1365 		 "heartbeat checks.");
1366 
1367 module_param(xpc_disengage_timelimit, int, 0);
1368 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1369 		 "for disengage to complete.");
1370 
1371 module_param(xpc_kdebug_ignore, int, 0);
1372 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1373 		 "other partitions when dropping into kdebug.");
1374