1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. 7 */ 8 9 /* 10 * Cross Partition Communication (XPC) support - standard version. 11 * 12 * XPC provides a message passing capability that crosses partition 13 * boundaries. This module is made up of two parts: 14 * 15 * partition This part detects the presence/absence of other 16 * partitions. It provides a heartbeat and monitors 17 * the heartbeats of other partitions. 18 * 19 * channel This part manages the channels and sends/receives 20 * messages across them to/from other partitions. 21 * 22 * There are a couple of additional functions residing in XP, which 23 * provide an interface to XPC for its users. 24 * 25 * 26 * Caveats: 27 * 28 * . We currently have no way to determine which nasid an IPI came 29 * from. Thus, xpc_IPI_send() does a remote AMO write followed by 30 * an IPI. The AMO indicates where data is to be pulled from, so 31 * after the IPI arrives, the remote partition checks the AMO word. 32 * The IPI can actually arrive before the AMO however, so other code 33 * must periodically check for this case. Also, remote AMO operations 34 * do not reliably time out. Thus we do a remote PIO read solely to 35 * know whether the remote partition is down and whether we should 36 * stop sending IPIs to it. This remote PIO read operation is set up 37 * in a special nofault region so SAL knows to ignore (and cleanup) 38 * any errors due to the remote AMO write, PIO read, and/or PIO 39 * write operations. 40 * 41 * If/when new hardware solves this IPI problem, we should abandon 42 * the current approach. 43 * 44 */ 45 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/init.h> 49 #include <linux/cache.h> 50 #include <linux/interrupt.h> 51 #include <linux/delay.h> 52 #include <linux/reboot.h> 53 #include <linux/completion.h> 54 #include <linux/kdebug.h> 55 #include <linux/kthread.h> 56 #include <linux/uaccess.h> 57 #include <asm/sn/intr.h> 58 #include <asm/sn/sn_sal.h> 59 #include "xpc.h" 60 61 /* define two XPC debug device structures to be used with dev_dbg() et al */ 62 63 struct device_driver xpc_dbg_name = { 64 .name = "xpc" 65 }; 66 67 struct device xpc_part_dbg_subname = { 68 .bus_id = {0}, /* set to "part" at xpc_init() time */ 69 .driver = &xpc_dbg_name 70 }; 71 72 struct device xpc_chan_dbg_subname = { 73 .bus_id = {0}, /* set to "chan" at xpc_init() time */ 74 .driver = &xpc_dbg_name 75 }; 76 77 struct device *xpc_part = &xpc_part_dbg_subname; 78 struct device *xpc_chan = &xpc_chan_dbg_subname; 79 80 static int xpc_kdebug_ignore; 81 82 /* systune related variables for /proc/sys directories */ 83 84 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL; 85 static int xpc_hb_min_interval = 1; 86 static int xpc_hb_max_interval = 10; 87 88 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL; 89 static int xpc_hb_check_min_interval = 10; 90 static int xpc_hb_check_max_interval = 120; 91 92 int xpc_disengage_request_timelimit = XPC_DISENGAGE_REQUEST_DEFAULT_TIMELIMIT; 93 static int xpc_disengage_request_min_timelimit; /* = 0 */ 94 static int xpc_disengage_request_max_timelimit = 120; 95 96 static ctl_table xpc_sys_xpc_hb_dir[] = { 97 { 98 .ctl_name = CTL_UNNUMBERED, 99 .procname = "hb_interval", 100 .data = &xpc_hb_interval, 101 .maxlen = sizeof(int), 102 .mode = 0644, 103 .proc_handler = &proc_dointvec_minmax, 104 .strategy = &sysctl_intvec, 105 .extra1 = &xpc_hb_min_interval, 106 .extra2 = &xpc_hb_max_interval}, 107 { 108 .ctl_name = CTL_UNNUMBERED, 109 .procname = "hb_check_interval", 110 .data = &xpc_hb_check_interval, 111 .maxlen = sizeof(int), 112 .mode = 0644, 113 .proc_handler = &proc_dointvec_minmax, 114 .strategy = &sysctl_intvec, 115 .extra1 = &xpc_hb_check_min_interval, 116 .extra2 = &xpc_hb_check_max_interval}, 117 {} 118 }; 119 static ctl_table xpc_sys_xpc_dir[] = { 120 { 121 .ctl_name = CTL_UNNUMBERED, 122 .procname = "hb", 123 .mode = 0555, 124 .child = xpc_sys_xpc_hb_dir}, 125 { 126 .ctl_name = CTL_UNNUMBERED, 127 .procname = "disengage_request_timelimit", 128 .data = &xpc_disengage_request_timelimit, 129 .maxlen = sizeof(int), 130 .mode = 0644, 131 .proc_handler = &proc_dointvec_minmax, 132 .strategy = &sysctl_intvec, 133 .extra1 = &xpc_disengage_request_min_timelimit, 134 .extra2 = &xpc_disengage_request_max_timelimit}, 135 {} 136 }; 137 static ctl_table xpc_sys_dir[] = { 138 { 139 .ctl_name = CTL_UNNUMBERED, 140 .procname = "xpc", 141 .mode = 0555, 142 .child = xpc_sys_xpc_dir}, 143 {} 144 }; 145 static struct ctl_table_header *xpc_sysctl; 146 147 /* non-zero if any remote partition disengage request was timed out */ 148 int xpc_disengage_request_timedout; 149 150 /* #of IRQs received */ 151 static atomic_t xpc_act_IRQ_rcvd; 152 153 /* IRQ handler notifies this wait queue on receipt of an IRQ */ 154 static DECLARE_WAIT_QUEUE_HEAD(xpc_act_IRQ_wq); 155 156 static unsigned long xpc_hb_check_timeout; 157 158 /* notification that the xpc_hb_checker thread has exited */ 159 static DECLARE_COMPLETION(xpc_hb_checker_exited); 160 161 /* notification that the xpc_discovery thread has exited */ 162 static DECLARE_COMPLETION(xpc_discovery_exited); 163 164 static struct timer_list xpc_hb_timer; 165 166 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *); 167 168 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *); 169 static struct notifier_block xpc_reboot_notifier = { 170 .notifier_call = xpc_system_reboot, 171 }; 172 173 static int xpc_system_die(struct notifier_block *, unsigned long, void *); 174 static struct notifier_block xpc_die_notifier = { 175 .notifier_call = xpc_system_die, 176 }; 177 178 /* 179 * Timer function to enforce the timelimit on the partition disengage request. 180 */ 181 static void 182 xpc_timeout_partition_disengage_request(unsigned long data) 183 { 184 struct xpc_partition *part = (struct xpc_partition *)data; 185 186 DBUG_ON(time_before(jiffies, part->disengage_request_timeout)); 187 188 (void)xpc_partition_disengaged(part); 189 190 DBUG_ON(part->disengage_request_timeout != 0); 191 DBUG_ON(xpc_partition_engaged(1UL << XPC_PARTID(part)) != 0); 192 } 193 194 /* 195 * Notify the heartbeat check thread that an IRQ has been received. 196 */ 197 static irqreturn_t 198 xpc_act_IRQ_handler(int irq, void *dev_id) 199 { 200 atomic_inc(&xpc_act_IRQ_rcvd); 201 wake_up_interruptible(&xpc_act_IRQ_wq); 202 return IRQ_HANDLED; 203 } 204 205 /* 206 * Timer to produce the heartbeat. The timer structures function is 207 * already set when this is initially called. A tunable is used to 208 * specify when the next timeout should occur. 209 */ 210 static void 211 xpc_hb_beater(unsigned long dummy) 212 { 213 xpc_vars->heartbeat++; 214 215 if (time_after_eq(jiffies, xpc_hb_check_timeout)) 216 wake_up_interruptible(&xpc_act_IRQ_wq); 217 218 xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ); 219 add_timer(&xpc_hb_timer); 220 } 221 222 /* 223 * This thread is responsible for nearly all of the partition 224 * activation/deactivation. 225 */ 226 static int 227 xpc_hb_checker(void *ignore) 228 { 229 int last_IRQ_count = 0; 230 int new_IRQ_count; 231 int force_IRQ = 0; 232 cpumask_of_cpu_ptr(cpumask, XPC_HB_CHECK_CPU); 233 234 /* this thread was marked active by xpc_hb_init() */ 235 236 set_cpus_allowed_ptr(current, cpumask); 237 238 /* set our heartbeating to other partitions into motion */ 239 xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ); 240 xpc_hb_beater(0); 241 242 while (!xpc_exiting) { 243 244 dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have " 245 "been received\n", 246 (int)(xpc_hb_check_timeout - jiffies), 247 atomic_read(&xpc_act_IRQ_rcvd) - last_IRQ_count); 248 249 /* checking of remote heartbeats is skewed by IRQ handling */ 250 if (time_after_eq(jiffies, xpc_hb_check_timeout)) { 251 dev_dbg(xpc_part, "checking remote heartbeats\n"); 252 xpc_check_remote_hb(); 253 254 /* 255 * We need to periodically recheck to ensure no 256 * IPI/AMO pairs have been missed. That check 257 * must always reset xpc_hb_check_timeout. 258 */ 259 force_IRQ = 1; 260 } 261 262 /* check for outstanding IRQs */ 263 new_IRQ_count = atomic_read(&xpc_act_IRQ_rcvd); 264 if (last_IRQ_count < new_IRQ_count || force_IRQ != 0) { 265 force_IRQ = 0; 266 267 dev_dbg(xpc_part, "found an IRQ to process; will be " 268 "resetting xpc_hb_check_timeout\n"); 269 270 last_IRQ_count += xpc_identify_act_IRQ_sender(); 271 if (last_IRQ_count < new_IRQ_count) { 272 /* retry once to help avoid missing AMO */ 273 (void)xpc_identify_act_IRQ_sender(); 274 } 275 last_IRQ_count = new_IRQ_count; 276 277 xpc_hb_check_timeout = jiffies + 278 (xpc_hb_check_interval * HZ); 279 } 280 281 /* wait for IRQ or timeout */ 282 (void)wait_event_interruptible(xpc_act_IRQ_wq, 283 (last_IRQ_count < 284 atomic_read(&xpc_act_IRQ_rcvd) 285 || time_after_eq(jiffies, 286 xpc_hb_check_timeout) || 287 xpc_exiting)); 288 } 289 290 dev_dbg(xpc_part, "heartbeat checker is exiting\n"); 291 292 /* mark this thread as having exited */ 293 complete(&xpc_hb_checker_exited); 294 return 0; 295 } 296 297 /* 298 * This thread will attempt to discover other partitions to activate 299 * based on info provided by SAL. This new thread is short lived and 300 * will exit once discovery is complete. 301 */ 302 static int 303 xpc_initiate_discovery(void *ignore) 304 { 305 xpc_discovery(); 306 307 dev_dbg(xpc_part, "discovery thread is exiting\n"); 308 309 /* mark this thread as having exited */ 310 complete(&xpc_discovery_exited); 311 return 0; 312 } 313 314 /* 315 * Establish first contact with the remote partititon. This involves pulling 316 * the XPC per partition variables from the remote partition and waiting for 317 * the remote partition to pull ours. 318 */ 319 static enum xp_retval 320 xpc_make_first_contact(struct xpc_partition *part) 321 { 322 enum xp_retval ret; 323 324 while ((ret = xpc_pull_remote_vars_part(part)) != xpSuccess) { 325 if (ret != xpRetry) { 326 XPC_DEACTIVATE_PARTITION(part, ret); 327 return ret; 328 } 329 330 dev_dbg(xpc_chan, "waiting to make first contact with " 331 "partition %d\n", XPC_PARTID(part)); 332 333 /* wait a 1/4 of a second or so */ 334 (void)msleep_interruptible(250); 335 336 if (part->act_state == XPC_P_DEACTIVATING) 337 return part->reason; 338 } 339 340 return xpc_mark_partition_active(part); 341 } 342 343 /* 344 * The first kthread assigned to a newly activated partition is the one 345 * created by XPC HB with which it calls xpc_partition_up(). XPC hangs on to 346 * that kthread until the partition is brought down, at which time that kthread 347 * returns back to XPC HB. (The return of that kthread will signify to XPC HB 348 * that XPC has dismantled all communication infrastructure for the associated 349 * partition.) This kthread becomes the channel manager for that partition. 350 * 351 * Each active partition has a channel manager, who, besides connecting and 352 * disconnecting channels, will ensure that each of the partition's connected 353 * channels has the required number of assigned kthreads to get the work done. 354 */ 355 static void 356 xpc_channel_mgr(struct xpc_partition *part) 357 { 358 while (part->act_state != XPC_P_DEACTIVATING || 359 atomic_read(&part->nchannels_active) > 0 || 360 !xpc_partition_disengaged(part)) { 361 362 xpc_process_channel_activity(part); 363 364 /* 365 * Wait until we've been requested to activate kthreads or 366 * all of the channel's message queues have been torn down or 367 * a signal is pending. 368 * 369 * The channel_mgr_requests is set to 1 after being awakened, 370 * This is done to prevent the channel mgr from making one pass 371 * through the loop for each request, since he will 372 * be servicing all the requests in one pass. The reason it's 373 * set to 1 instead of 0 is so that other kthreads will know 374 * that the channel mgr is running and won't bother trying to 375 * wake him up. 376 */ 377 atomic_dec(&part->channel_mgr_requests); 378 (void)wait_event_interruptible(part->channel_mgr_wq, 379 (atomic_read(&part->channel_mgr_requests) > 0 || 380 part->local_IPI_amo != 0 || 381 (part->act_state == XPC_P_DEACTIVATING && 382 atomic_read(&part->nchannels_active) == 0 && 383 xpc_partition_disengaged(part)))); 384 atomic_set(&part->channel_mgr_requests, 1); 385 } 386 } 387 388 /* 389 * When XPC HB determines that a partition has come up, it will create a new 390 * kthread and that kthread will call this function to attempt to set up the 391 * basic infrastructure used for Cross Partition Communication with the newly 392 * upped partition. 393 * 394 * The kthread that was created by XPC HB and which setup the XPC 395 * infrastructure will remain assigned to the partition until the partition 396 * goes down. At which time the kthread will teardown the XPC infrastructure 397 * and then exit. 398 * 399 * XPC HB will put the remote partition's XPC per partition specific variables 400 * physical address into xpc_partitions[partid].remote_vars_part_pa prior to 401 * calling xpc_partition_up(). 402 */ 403 static void 404 xpc_partition_up(struct xpc_partition *part) 405 { 406 DBUG_ON(part->channels != NULL); 407 408 dev_dbg(xpc_chan, "activating partition %d\n", XPC_PARTID(part)); 409 410 if (xpc_setup_infrastructure(part) != xpSuccess) 411 return; 412 413 /* 414 * The kthread that XPC HB called us with will become the 415 * channel manager for this partition. It will not return 416 * back to XPC HB until the partition's XPC infrastructure 417 * has been dismantled. 418 */ 419 420 (void)xpc_part_ref(part); /* this will always succeed */ 421 422 if (xpc_make_first_contact(part) == xpSuccess) 423 xpc_channel_mgr(part); 424 425 xpc_part_deref(part); 426 427 xpc_teardown_infrastructure(part); 428 } 429 430 static int 431 xpc_activating(void *__partid) 432 { 433 short partid = (u64)__partid; 434 struct xpc_partition *part = &xpc_partitions[partid]; 435 unsigned long irq_flags; 436 437 DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); 438 439 spin_lock_irqsave(&part->act_lock, irq_flags); 440 441 if (part->act_state == XPC_P_DEACTIVATING) { 442 part->act_state = XPC_P_INACTIVE; 443 spin_unlock_irqrestore(&part->act_lock, irq_flags); 444 part->remote_rp_pa = 0; 445 return 0; 446 } 447 448 /* indicate the thread is activating */ 449 DBUG_ON(part->act_state != XPC_P_ACTIVATION_REQ); 450 part->act_state = XPC_P_ACTIVATING; 451 452 XPC_SET_REASON(part, 0, 0); 453 spin_unlock_irqrestore(&part->act_lock, irq_flags); 454 455 dev_dbg(xpc_part, "bringing partition %d up\n", partid); 456 457 /* 458 * Register the remote partition's AMOs with SAL so it can handle 459 * and cleanup errors within that address range should the remote 460 * partition go down. We don't unregister this range because it is 461 * difficult to tell when outstanding writes to the remote partition 462 * are finished and thus when it is safe to unregister. This should 463 * not result in wasted space in the SAL xp_addr_region table because 464 * we should get the same page for remote_amos_page_pa after module 465 * reloads and system reboots. 466 */ 467 if (sn_register_xp_addr_region(part->remote_amos_page_pa, 468 PAGE_SIZE, 1) < 0) { 469 dev_warn(xpc_part, "xpc_partition_up(%d) failed to register " 470 "xp_addr region\n", partid); 471 472 spin_lock_irqsave(&part->act_lock, irq_flags); 473 part->act_state = XPC_P_INACTIVE; 474 XPC_SET_REASON(part, xpPhysAddrRegFailed, __LINE__); 475 spin_unlock_irqrestore(&part->act_lock, irq_flags); 476 part->remote_rp_pa = 0; 477 return 0; 478 } 479 480 xpc_allow_hb(partid, xpc_vars); 481 xpc_IPI_send_activated(part); 482 483 /* 484 * xpc_partition_up() holds this thread and marks this partition as 485 * XPC_P_ACTIVE by calling xpc_hb_mark_active(). 486 */ 487 (void)xpc_partition_up(part); 488 489 xpc_disallow_hb(partid, xpc_vars); 490 xpc_mark_partition_inactive(part); 491 492 if (part->reason == xpReactivating) { 493 /* interrupting ourselves results in activating partition */ 494 xpc_IPI_send_reactivate(part); 495 } 496 497 return 0; 498 } 499 500 void 501 xpc_activate_partition(struct xpc_partition *part) 502 { 503 short partid = XPC_PARTID(part); 504 unsigned long irq_flags; 505 struct task_struct *kthread; 506 507 spin_lock_irqsave(&part->act_lock, irq_flags); 508 509 DBUG_ON(part->act_state != XPC_P_INACTIVE); 510 511 part->act_state = XPC_P_ACTIVATION_REQ; 512 XPC_SET_REASON(part, xpCloneKThread, __LINE__); 513 514 spin_unlock_irqrestore(&part->act_lock, irq_flags); 515 516 kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d", 517 partid); 518 if (IS_ERR(kthread)) { 519 spin_lock_irqsave(&part->act_lock, irq_flags); 520 part->act_state = XPC_P_INACTIVE; 521 XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__); 522 spin_unlock_irqrestore(&part->act_lock, irq_flags); 523 } 524 } 525 526 /* 527 * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified 528 * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more 529 * than one partition, we use an AMO_t structure per partition to indicate 530 * whether a partition has sent an IPI or not. If it has, then wake up the 531 * associated kthread to handle it. 532 * 533 * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IPIs sent by XPC 534 * running on other partitions. 535 * 536 * Noteworthy Arguments: 537 * 538 * irq - Interrupt ReQuest number. NOT USED. 539 * 540 * dev_id - partid of IPI's potential sender. 541 */ 542 irqreturn_t 543 xpc_notify_IRQ_handler(int irq, void *dev_id) 544 { 545 short partid = (short)(u64)dev_id; 546 struct xpc_partition *part = &xpc_partitions[partid]; 547 548 DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); 549 550 if (xpc_part_ref(part)) { 551 xpc_check_for_channel_activity(part); 552 553 xpc_part_deref(part); 554 } 555 return IRQ_HANDLED; 556 } 557 558 /* 559 * Check to see if xpc_notify_IRQ_handler() dropped any IPIs on the floor 560 * because the write to their associated IPI amo completed after the IRQ/IPI 561 * was received. 562 */ 563 void 564 xpc_dropped_IPI_check(struct xpc_partition *part) 565 { 566 if (xpc_part_ref(part)) { 567 xpc_check_for_channel_activity(part); 568 569 part->dropped_IPI_timer.expires = jiffies + 570 XPC_P_DROPPED_IPI_WAIT; 571 add_timer(&part->dropped_IPI_timer); 572 xpc_part_deref(part); 573 } 574 } 575 576 void 577 xpc_activate_kthreads(struct xpc_channel *ch, int needed) 578 { 579 int idle = atomic_read(&ch->kthreads_idle); 580 int assigned = atomic_read(&ch->kthreads_assigned); 581 int wakeup; 582 583 DBUG_ON(needed <= 0); 584 585 if (idle > 0) { 586 wakeup = (needed > idle) ? idle : needed; 587 needed -= wakeup; 588 589 dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, " 590 "channel=%d\n", wakeup, ch->partid, ch->number); 591 592 /* only wakeup the requested number of kthreads */ 593 wake_up_nr(&ch->idle_wq, wakeup); 594 } 595 596 if (needed <= 0) 597 return; 598 599 if (needed + assigned > ch->kthreads_assigned_limit) { 600 needed = ch->kthreads_assigned_limit - assigned; 601 if (needed <= 0) 602 return; 603 } 604 605 dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n", 606 needed, ch->partid, ch->number); 607 608 xpc_create_kthreads(ch, needed, 0); 609 } 610 611 /* 612 * This function is where XPC's kthreads wait for messages to deliver. 613 */ 614 static void 615 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch) 616 { 617 do { 618 /* deliver messages to their intended recipients */ 619 620 while (ch->w_local_GP.get < ch->w_remote_GP.put && 621 !(ch->flags & XPC_C_DISCONNECTING)) { 622 xpc_deliver_msg(ch); 623 } 624 625 if (atomic_inc_return(&ch->kthreads_idle) > 626 ch->kthreads_idle_limit) { 627 /* too many idle kthreads on this channel */ 628 atomic_dec(&ch->kthreads_idle); 629 break; 630 } 631 632 dev_dbg(xpc_chan, "idle kthread calling " 633 "wait_event_interruptible_exclusive()\n"); 634 635 (void)wait_event_interruptible_exclusive(ch->idle_wq, 636 (ch->w_local_GP.get < ch->w_remote_GP.put || 637 (ch->flags & XPC_C_DISCONNECTING))); 638 639 atomic_dec(&ch->kthreads_idle); 640 641 } while (!(ch->flags & XPC_C_DISCONNECTING)); 642 } 643 644 static int 645 xpc_kthread_start(void *args) 646 { 647 short partid = XPC_UNPACK_ARG1(args); 648 u16 ch_number = XPC_UNPACK_ARG2(args); 649 struct xpc_partition *part = &xpc_partitions[partid]; 650 struct xpc_channel *ch; 651 int n_needed; 652 unsigned long irq_flags; 653 654 dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n", 655 partid, ch_number); 656 657 ch = &part->channels[ch_number]; 658 659 if (!(ch->flags & XPC_C_DISCONNECTING)) { 660 661 /* let registerer know that connection has been established */ 662 663 spin_lock_irqsave(&ch->lock, irq_flags); 664 if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) { 665 ch->flags |= XPC_C_CONNECTEDCALLOUT; 666 spin_unlock_irqrestore(&ch->lock, irq_flags); 667 668 xpc_connected_callout(ch); 669 670 spin_lock_irqsave(&ch->lock, irq_flags); 671 ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE; 672 spin_unlock_irqrestore(&ch->lock, irq_flags); 673 674 /* 675 * It is possible that while the callout was being 676 * made that the remote partition sent some messages. 677 * If that is the case, we may need to activate 678 * additional kthreads to help deliver them. We only 679 * need one less than total #of messages to deliver. 680 */ 681 n_needed = ch->w_remote_GP.put - ch->w_local_GP.get - 1; 682 if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING)) 683 xpc_activate_kthreads(ch, n_needed); 684 685 } else { 686 spin_unlock_irqrestore(&ch->lock, irq_flags); 687 } 688 689 xpc_kthread_waitmsgs(part, ch); 690 } 691 692 /* let registerer know that connection is disconnecting */ 693 694 spin_lock_irqsave(&ch->lock, irq_flags); 695 if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && 696 !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) { 697 ch->flags |= XPC_C_DISCONNECTINGCALLOUT; 698 spin_unlock_irqrestore(&ch->lock, irq_flags); 699 700 xpc_disconnect_callout(ch, xpDisconnecting); 701 702 spin_lock_irqsave(&ch->lock, irq_flags); 703 ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE; 704 } 705 spin_unlock_irqrestore(&ch->lock, irq_flags); 706 707 if (atomic_dec_return(&ch->kthreads_assigned) == 0) { 708 if (atomic_dec_return(&part->nchannels_engaged) == 0) { 709 xpc_mark_partition_disengaged(part); 710 xpc_IPI_send_disengage(part); 711 } 712 } 713 714 xpc_msgqueue_deref(ch); 715 716 dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n", 717 partid, ch_number); 718 719 xpc_part_deref(part); 720 return 0; 721 } 722 723 /* 724 * For each partition that XPC has established communications with, there is 725 * a minimum of one kernel thread assigned to perform any operation that 726 * may potentially sleep or block (basically the callouts to the asynchronous 727 * functions registered via xpc_connect()). 728 * 729 * Additional kthreads are created and destroyed by XPC as the workload 730 * demands. 731 * 732 * A kthread is assigned to one of the active channels that exists for a given 733 * partition. 734 */ 735 void 736 xpc_create_kthreads(struct xpc_channel *ch, int needed, 737 int ignore_disconnecting) 738 { 739 unsigned long irq_flags; 740 u64 args = XPC_PACK_ARGS(ch->partid, ch->number); 741 struct xpc_partition *part = &xpc_partitions[ch->partid]; 742 struct task_struct *kthread; 743 744 while (needed-- > 0) { 745 746 /* 747 * The following is done on behalf of the newly created 748 * kthread. That kthread is responsible for doing the 749 * counterpart to the following before it exits. 750 */ 751 if (ignore_disconnecting) { 752 if (!atomic_inc_not_zero(&ch->kthreads_assigned)) { 753 /* kthreads assigned had gone to zero */ 754 BUG_ON(!(ch->flags & 755 XPC_C_DISCONNECTINGCALLOUT_MADE)); 756 break; 757 } 758 759 } else if (ch->flags & XPC_C_DISCONNECTING) { 760 break; 761 762 } else if (atomic_inc_return(&ch->kthreads_assigned) == 1) { 763 if (atomic_inc_return(&part->nchannels_engaged) == 1) 764 xpc_mark_partition_engaged(part); 765 } 766 (void)xpc_part_ref(part); 767 xpc_msgqueue_ref(ch); 768 769 kthread = kthread_run(xpc_kthread_start, (void *)args, 770 "xpc%02dc%d", ch->partid, ch->number); 771 if (IS_ERR(kthread)) { 772 /* the fork failed */ 773 774 /* 775 * NOTE: if (ignore_disconnecting && 776 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true, 777 * then we'll deadlock if all other kthreads assigned 778 * to this channel are blocked in the channel's 779 * registerer, because the only thing that will unblock 780 * them is the xpDisconnecting callout that this 781 * failed kthread_run() would have made. 782 */ 783 784 if (atomic_dec_return(&ch->kthreads_assigned) == 0 && 785 atomic_dec_return(&part->nchannels_engaged) == 0) { 786 xpc_mark_partition_disengaged(part); 787 xpc_IPI_send_disengage(part); 788 } 789 xpc_msgqueue_deref(ch); 790 xpc_part_deref(part); 791 792 if (atomic_read(&ch->kthreads_assigned) < 793 ch->kthreads_idle_limit) { 794 /* 795 * Flag this as an error only if we have an 796 * insufficient #of kthreads for the channel 797 * to function. 798 */ 799 spin_lock_irqsave(&ch->lock, irq_flags); 800 XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources, 801 &irq_flags); 802 spin_unlock_irqrestore(&ch->lock, irq_flags); 803 } 804 break; 805 } 806 } 807 } 808 809 void 810 xpc_disconnect_wait(int ch_number) 811 { 812 unsigned long irq_flags; 813 short partid; 814 struct xpc_partition *part; 815 struct xpc_channel *ch; 816 int wakeup_channel_mgr; 817 818 /* now wait for all callouts to the caller's function to cease */ 819 for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { 820 part = &xpc_partitions[partid]; 821 822 if (!xpc_part_ref(part)) 823 continue; 824 825 ch = &part->channels[ch_number]; 826 827 if (!(ch->flags & XPC_C_WDISCONNECT)) { 828 xpc_part_deref(part); 829 continue; 830 } 831 832 wait_for_completion(&ch->wdisconnect_wait); 833 834 spin_lock_irqsave(&ch->lock, irq_flags); 835 DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED)); 836 wakeup_channel_mgr = 0; 837 838 if (ch->delayed_IPI_flags) { 839 if (part->act_state != XPC_P_DEACTIVATING) { 840 spin_lock(&part->IPI_lock); 841 XPC_SET_IPI_FLAGS(part->local_IPI_amo, 842 ch->number, 843 ch->delayed_IPI_flags); 844 spin_unlock(&part->IPI_lock); 845 wakeup_channel_mgr = 1; 846 } 847 ch->delayed_IPI_flags = 0; 848 } 849 850 ch->flags &= ~XPC_C_WDISCONNECT; 851 spin_unlock_irqrestore(&ch->lock, irq_flags); 852 853 if (wakeup_channel_mgr) 854 xpc_wakeup_channel_mgr(part); 855 856 xpc_part_deref(part); 857 } 858 } 859 860 static void 861 xpc_do_exit(enum xp_retval reason) 862 { 863 short partid; 864 int active_part_count, printed_waiting_msg = 0; 865 struct xpc_partition *part; 866 unsigned long printmsg_time, disengage_request_timeout = 0; 867 868 /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */ 869 DBUG_ON(xpc_exiting == 1); 870 871 /* 872 * Let the heartbeat checker thread and the discovery thread 873 * (if one is running) know that they should exit. Also wake up 874 * the heartbeat checker thread in case it's sleeping. 875 */ 876 xpc_exiting = 1; 877 wake_up_interruptible(&xpc_act_IRQ_wq); 878 879 /* ignore all incoming interrupts */ 880 free_irq(SGI_XPC_ACTIVATE, NULL); 881 882 /* wait for the discovery thread to exit */ 883 wait_for_completion(&xpc_discovery_exited); 884 885 /* wait for the heartbeat checker thread to exit */ 886 wait_for_completion(&xpc_hb_checker_exited); 887 888 /* sleep for a 1/3 of a second or so */ 889 (void)msleep_interruptible(300); 890 891 /* wait for all partitions to become inactive */ 892 893 printmsg_time = jiffies + (XPC_DISENGAGE_PRINTMSG_INTERVAL * HZ); 894 xpc_disengage_request_timedout = 0; 895 896 do { 897 active_part_count = 0; 898 899 for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { 900 part = &xpc_partitions[partid]; 901 902 if (xpc_partition_disengaged(part) && 903 part->act_state == XPC_P_INACTIVE) { 904 continue; 905 } 906 907 active_part_count++; 908 909 XPC_DEACTIVATE_PARTITION(part, reason); 910 911 if (part->disengage_request_timeout > 912 disengage_request_timeout) { 913 disengage_request_timeout = 914 part->disengage_request_timeout; 915 } 916 } 917 918 if (xpc_partition_engaged(-1UL)) { 919 if (time_after(jiffies, printmsg_time)) { 920 dev_info(xpc_part, "waiting for remote " 921 "partitions to disengage, timeout in " 922 "%ld seconds\n", 923 (disengage_request_timeout - jiffies) 924 / HZ); 925 printmsg_time = jiffies + 926 (XPC_DISENGAGE_PRINTMSG_INTERVAL * HZ); 927 printed_waiting_msg = 1; 928 } 929 930 } else if (active_part_count > 0) { 931 if (printed_waiting_msg) { 932 dev_info(xpc_part, "waiting for local partition" 933 " to disengage\n"); 934 printed_waiting_msg = 0; 935 } 936 937 } else { 938 if (!xpc_disengage_request_timedout) { 939 dev_info(xpc_part, "all partitions have " 940 "disengaged\n"); 941 } 942 break; 943 } 944 945 /* sleep for a 1/3 of a second or so */ 946 (void)msleep_interruptible(300); 947 948 } while (1); 949 950 DBUG_ON(xpc_partition_engaged(-1UL)); 951 952 /* indicate to others that our reserved page is uninitialized */ 953 xpc_rsvd_page->vars_pa = 0; 954 955 /* now it's time to eliminate our heartbeat */ 956 del_timer_sync(&xpc_hb_timer); 957 DBUG_ON(xpc_vars->heartbeating_to_mask != 0); 958 959 if (reason == xpUnloading) { 960 /* take ourselves off of the reboot_notifier_list */ 961 (void)unregister_reboot_notifier(&xpc_reboot_notifier); 962 963 /* take ourselves off of the die_notifier list */ 964 (void)unregister_die_notifier(&xpc_die_notifier); 965 } 966 967 /* close down protections for IPI operations */ 968 xpc_restrict_IPI_ops(); 969 970 /* clear the interface to XPC's functions */ 971 xpc_clear_interface(); 972 973 if (xpc_sysctl) 974 unregister_sysctl_table(xpc_sysctl); 975 976 kfree(xpc_remote_copy_buffer_base); 977 } 978 979 /* 980 * This function is called when the system is being rebooted. 981 */ 982 static int 983 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused) 984 { 985 enum xp_retval reason; 986 987 switch (event) { 988 case SYS_RESTART: 989 reason = xpSystemReboot; 990 break; 991 case SYS_HALT: 992 reason = xpSystemHalt; 993 break; 994 case SYS_POWER_OFF: 995 reason = xpSystemPoweroff; 996 break; 997 default: 998 reason = xpSystemGoingDown; 999 } 1000 1001 xpc_do_exit(reason); 1002 return NOTIFY_DONE; 1003 } 1004 1005 /* 1006 * Notify other partitions to disengage from all references to our memory. 1007 */ 1008 static void 1009 xpc_die_disengage(void) 1010 { 1011 struct xpc_partition *part; 1012 short partid; 1013 unsigned long engaged; 1014 long time, printmsg_time, disengage_request_timeout; 1015 1016 /* keep xpc_hb_checker thread from doing anything (just in case) */ 1017 xpc_exiting = 1; 1018 1019 xpc_vars->heartbeating_to_mask = 0; /* indicate we're deactivated */ 1020 1021 for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { 1022 part = &xpc_partitions[partid]; 1023 1024 if (!XPC_SUPPORTS_DISENGAGE_REQUEST(part-> 1025 remote_vars_version)) { 1026 1027 /* just in case it was left set by an earlier XPC */ 1028 xpc_clear_partition_engaged(1UL << partid); 1029 continue; 1030 } 1031 1032 if (xpc_partition_engaged(1UL << partid) || 1033 part->act_state != XPC_P_INACTIVE) { 1034 xpc_request_partition_disengage(part); 1035 xpc_mark_partition_disengaged(part); 1036 xpc_IPI_send_disengage(part); 1037 } 1038 } 1039 1040 time = rtc_time(); 1041 printmsg_time = time + 1042 (XPC_DISENGAGE_PRINTMSG_INTERVAL * sn_rtc_cycles_per_second); 1043 disengage_request_timeout = time + 1044 (xpc_disengage_request_timelimit * sn_rtc_cycles_per_second); 1045 1046 /* wait for all other partitions to disengage from us */ 1047 1048 while (1) { 1049 engaged = xpc_partition_engaged(-1UL); 1050 if (!engaged) { 1051 dev_info(xpc_part, "all partitions have disengaged\n"); 1052 break; 1053 } 1054 1055 time = rtc_time(); 1056 if (time >= disengage_request_timeout) { 1057 for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { 1058 if (engaged & (1UL << partid)) { 1059 dev_info(xpc_part, "disengage from " 1060 "remote partition %d timed " 1061 "out\n", partid); 1062 } 1063 } 1064 break; 1065 } 1066 1067 if (time >= printmsg_time) { 1068 dev_info(xpc_part, "waiting for remote partitions to " 1069 "disengage, timeout in %ld seconds\n", 1070 (disengage_request_timeout - time) / 1071 sn_rtc_cycles_per_second); 1072 printmsg_time = time + 1073 (XPC_DISENGAGE_PRINTMSG_INTERVAL * 1074 sn_rtc_cycles_per_second); 1075 } 1076 } 1077 } 1078 1079 /* 1080 * This function is called when the system is being restarted or halted due 1081 * to some sort of system failure. If this is the case we need to notify the 1082 * other partitions to disengage from all references to our memory. 1083 * This function can also be called when our heartbeater could be offlined 1084 * for a time. In this case we need to notify other partitions to not worry 1085 * about the lack of a heartbeat. 1086 */ 1087 static int 1088 xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused) 1089 { 1090 switch (event) { 1091 case DIE_MACHINE_RESTART: 1092 case DIE_MACHINE_HALT: 1093 xpc_die_disengage(); 1094 break; 1095 1096 case DIE_KDEBUG_ENTER: 1097 /* Should lack of heartbeat be ignored by other partitions? */ 1098 if (!xpc_kdebug_ignore) 1099 break; 1100 1101 /* fall through */ 1102 case DIE_MCA_MONARCH_ENTER: 1103 case DIE_INIT_MONARCH_ENTER: 1104 xpc_vars->heartbeat++; 1105 xpc_vars->heartbeat_offline = 1; 1106 break; 1107 1108 case DIE_KDEBUG_LEAVE: 1109 /* Is lack of heartbeat being ignored by other partitions? */ 1110 if (!xpc_kdebug_ignore) 1111 break; 1112 1113 /* fall through */ 1114 case DIE_MCA_MONARCH_LEAVE: 1115 case DIE_INIT_MONARCH_LEAVE: 1116 xpc_vars->heartbeat++; 1117 xpc_vars->heartbeat_offline = 0; 1118 break; 1119 } 1120 1121 return NOTIFY_DONE; 1122 } 1123 1124 int __init 1125 xpc_init(void) 1126 { 1127 int ret; 1128 short partid; 1129 struct xpc_partition *part; 1130 struct task_struct *kthread; 1131 size_t buf_size; 1132 1133 if (!ia64_platform_is("sn2")) 1134 return -ENODEV; 1135 1136 buf_size = max(XPC_RP_VARS_SIZE, 1137 XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES); 1138 xpc_remote_copy_buffer = xpc_kmalloc_cacheline_aligned(buf_size, 1139 GFP_KERNEL, 1140 &xpc_remote_copy_buffer_base); 1141 if (xpc_remote_copy_buffer == NULL) 1142 return -ENOMEM; 1143 1144 snprintf(xpc_part->bus_id, BUS_ID_SIZE, "part"); 1145 snprintf(xpc_chan->bus_id, BUS_ID_SIZE, "chan"); 1146 1147 xpc_sysctl = register_sysctl_table(xpc_sys_dir); 1148 1149 /* 1150 * The first few fields of each entry of xpc_partitions[] need to 1151 * be initialized now so that calls to xpc_connect() and 1152 * xpc_disconnect() can be made prior to the activation of any remote 1153 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE 1154 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING 1155 * PARTITION HAS BEEN ACTIVATED. 1156 */ 1157 for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { 1158 part = &xpc_partitions[partid]; 1159 1160 DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part)); 1161 1162 part->act_IRQ_rcvd = 0; 1163 spin_lock_init(&part->act_lock); 1164 part->act_state = XPC_P_INACTIVE; 1165 XPC_SET_REASON(part, 0, 0); 1166 1167 init_timer(&part->disengage_request_timer); 1168 part->disengage_request_timer.function = 1169 xpc_timeout_partition_disengage_request; 1170 part->disengage_request_timer.data = (unsigned long)part; 1171 1172 part->setup_state = XPC_P_UNSET; 1173 init_waitqueue_head(&part->teardown_wq); 1174 atomic_set(&part->references, 0); 1175 } 1176 1177 /* 1178 * Open up protections for IPI operations (and AMO operations on 1179 * Shub 1.1 systems). 1180 */ 1181 xpc_allow_IPI_ops(); 1182 1183 /* 1184 * Interrupts being processed will increment this atomic variable and 1185 * awaken the heartbeat thread which will process the interrupts. 1186 */ 1187 atomic_set(&xpc_act_IRQ_rcvd, 0); 1188 1189 /* 1190 * This is safe to do before the xpc_hb_checker thread has started 1191 * because the handler releases a wait queue. If an interrupt is 1192 * received before the thread is waiting, it will not go to sleep, 1193 * but rather immediately process the interrupt. 1194 */ 1195 ret = request_irq(SGI_XPC_ACTIVATE, xpc_act_IRQ_handler, 0, 1196 "xpc hb", NULL); 1197 if (ret != 0) { 1198 dev_err(xpc_part, "can't register ACTIVATE IRQ handler, " 1199 "errno=%d\n", -ret); 1200 1201 xpc_restrict_IPI_ops(); 1202 1203 if (xpc_sysctl) 1204 unregister_sysctl_table(xpc_sysctl); 1205 1206 kfree(xpc_remote_copy_buffer_base); 1207 return -EBUSY; 1208 } 1209 1210 /* 1211 * Fill the partition reserved page with the information needed by 1212 * other partitions to discover we are alive and establish initial 1213 * communications. 1214 */ 1215 xpc_rsvd_page = xpc_rsvd_page_init(); 1216 if (xpc_rsvd_page == NULL) { 1217 dev_err(xpc_part, "could not setup our reserved page\n"); 1218 1219 free_irq(SGI_XPC_ACTIVATE, NULL); 1220 xpc_restrict_IPI_ops(); 1221 1222 if (xpc_sysctl) 1223 unregister_sysctl_table(xpc_sysctl); 1224 1225 kfree(xpc_remote_copy_buffer_base); 1226 return -EBUSY; 1227 } 1228 1229 /* add ourselves to the reboot_notifier_list */ 1230 ret = register_reboot_notifier(&xpc_reboot_notifier); 1231 if (ret != 0) 1232 dev_warn(xpc_part, "can't register reboot notifier\n"); 1233 1234 /* add ourselves to the die_notifier list */ 1235 ret = register_die_notifier(&xpc_die_notifier); 1236 if (ret != 0) 1237 dev_warn(xpc_part, "can't register die notifier\n"); 1238 1239 init_timer(&xpc_hb_timer); 1240 xpc_hb_timer.function = xpc_hb_beater; 1241 1242 /* 1243 * The real work-horse behind xpc. This processes incoming 1244 * interrupts and monitors remote heartbeats. 1245 */ 1246 kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME); 1247 if (IS_ERR(kthread)) { 1248 dev_err(xpc_part, "failed while forking hb check thread\n"); 1249 1250 /* indicate to others that our reserved page is uninitialized */ 1251 xpc_rsvd_page->vars_pa = 0; 1252 1253 /* take ourselves off of the reboot_notifier_list */ 1254 (void)unregister_reboot_notifier(&xpc_reboot_notifier); 1255 1256 /* take ourselves off of the die_notifier list */ 1257 (void)unregister_die_notifier(&xpc_die_notifier); 1258 1259 del_timer_sync(&xpc_hb_timer); 1260 free_irq(SGI_XPC_ACTIVATE, NULL); 1261 xpc_restrict_IPI_ops(); 1262 1263 if (xpc_sysctl) 1264 unregister_sysctl_table(xpc_sysctl); 1265 1266 kfree(xpc_remote_copy_buffer_base); 1267 return -EBUSY; 1268 } 1269 1270 /* 1271 * Startup a thread that will attempt to discover other partitions to 1272 * activate based on info provided by SAL. This new thread is short 1273 * lived and will exit once discovery is complete. 1274 */ 1275 kthread = kthread_run(xpc_initiate_discovery, NULL, 1276 XPC_DISCOVERY_THREAD_NAME); 1277 if (IS_ERR(kthread)) { 1278 dev_err(xpc_part, "failed while forking discovery thread\n"); 1279 1280 /* mark this new thread as a non-starter */ 1281 complete(&xpc_discovery_exited); 1282 1283 xpc_do_exit(xpUnloading); 1284 return -EBUSY; 1285 } 1286 1287 /* set the interface to point at XPC's functions */ 1288 xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect, 1289 xpc_initiate_allocate, xpc_initiate_send, 1290 xpc_initiate_send_notify, xpc_initiate_received, 1291 xpc_initiate_partid_to_nasids); 1292 1293 return 0; 1294 } 1295 1296 module_init(xpc_init); 1297 1298 void __exit 1299 xpc_exit(void) 1300 { 1301 xpc_do_exit(xpUnloading); 1302 } 1303 1304 module_exit(xpc_exit); 1305 1306 MODULE_AUTHOR("Silicon Graphics, Inc."); 1307 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support"); 1308 MODULE_LICENSE("GPL"); 1309 1310 module_param(xpc_hb_interval, int, 0); 1311 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between " 1312 "heartbeat increments."); 1313 1314 module_param(xpc_hb_check_interval, int, 0); 1315 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between " 1316 "heartbeat checks."); 1317 1318 module_param(xpc_disengage_request_timelimit, int, 0); 1319 MODULE_PARM_DESC(xpc_disengage_request_timelimit, "Number of seconds to wait " 1320 "for disengage request to complete."); 1321 1322 module_param(xpc_kdebug_ignore, int, 0); 1323 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by " 1324 "other partitions when dropping into kdebug."); 1325