1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (c) 2004-2009 Silicon Graphics, Inc. All Rights Reserved. 7 */ 8 9 /* 10 * Cross Partition Communication (XPC) support - standard version. 11 * 12 * XPC provides a message passing capability that crosses partition 13 * boundaries. This module is made up of two parts: 14 * 15 * partition This part detects the presence/absence of other 16 * partitions. It provides a heartbeat and monitors 17 * the heartbeats of other partitions. 18 * 19 * channel This part manages the channels and sends/receives 20 * messages across them to/from other partitions. 21 * 22 * There are a couple of additional functions residing in XP, which 23 * provide an interface to XPC for its users. 24 * 25 * 26 * Caveats: 27 * 28 * . Currently on sn2, we have no way to determine which nasid an IRQ 29 * came from. Thus, xpc_send_IRQ_sn2() does a remote amo write 30 * followed by an IPI. The amo indicates where data is to be pulled 31 * from, so after the IPI arrives, the remote partition checks the amo 32 * word. The IPI can actually arrive before the amo however, so other 33 * code must periodically check for this case. Also, remote amo 34 * operations do not reliably time out. Thus we do a remote PIO read 35 * solely to know whether the remote partition is down and whether we 36 * should stop sending IPIs to it. This remote PIO read operation is 37 * set up in a special nofault region so SAL knows to ignore (and 38 * cleanup) any errors due to the remote amo write, PIO read, and/or 39 * PIO write operations. 40 * 41 * If/when new hardware solves this IPI problem, we should abandon 42 * the current approach. 43 * 44 */ 45 46 #include <linux/module.h> 47 #include <linux/sysctl.h> 48 #include <linux/device.h> 49 #include <linux/delay.h> 50 #include <linux/reboot.h> 51 #include <linux/kdebug.h> 52 #include <linux/kthread.h> 53 #include "xpc.h" 54 55 /* define two XPC debug device structures to be used with dev_dbg() et al */ 56 57 struct device_driver xpc_dbg_name = { 58 .name = "xpc" 59 }; 60 61 struct device xpc_part_dbg_subname = { 62 .init_name = "", /* set to "part" at xpc_init() time */ 63 .driver = &xpc_dbg_name 64 }; 65 66 struct device xpc_chan_dbg_subname = { 67 .init_name = "", /* set to "chan" at xpc_init() time */ 68 .driver = &xpc_dbg_name 69 }; 70 71 struct device *xpc_part = &xpc_part_dbg_subname; 72 struct device *xpc_chan = &xpc_chan_dbg_subname; 73 74 static int xpc_kdebug_ignore; 75 76 /* systune related variables for /proc/sys directories */ 77 78 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL; 79 static int xpc_hb_min_interval = 1; 80 static int xpc_hb_max_interval = 10; 81 82 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL; 83 static int xpc_hb_check_min_interval = 10; 84 static int xpc_hb_check_max_interval = 120; 85 86 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT; 87 static int xpc_disengage_min_timelimit; /* = 0 */ 88 static int xpc_disengage_max_timelimit = 120; 89 90 static ctl_table xpc_sys_xpc_hb_dir[] = { 91 { 92 .procname = "hb_interval", 93 .data = &xpc_hb_interval, 94 .maxlen = sizeof(int), 95 .mode = 0644, 96 .proc_handler = proc_dointvec_minmax, 97 .extra1 = &xpc_hb_min_interval, 98 .extra2 = &xpc_hb_max_interval}, 99 { 100 .procname = "hb_check_interval", 101 .data = &xpc_hb_check_interval, 102 .maxlen = sizeof(int), 103 .mode = 0644, 104 .proc_handler = proc_dointvec_minmax, 105 .extra1 = &xpc_hb_check_min_interval, 106 .extra2 = &xpc_hb_check_max_interval}, 107 {} 108 }; 109 static ctl_table xpc_sys_xpc_dir[] = { 110 { 111 .procname = "hb", 112 .mode = 0555, 113 .child = xpc_sys_xpc_hb_dir}, 114 { 115 .procname = "disengage_timelimit", 116 .data = &xpc_disengage_timelimit, 117 .maxlen = sizeof(int), 118 .mode = 0644, 119 .proc_handler = proc_dointvec_minmax, 120 .extra1 = &xpc_disengage_min_timelimit, 121 .extra2 = &xpc_disengage_max_timelimit}, 122 {} 123 }; 124 static ctl_table xpc_sys_dir[] = { 125 { 126 .procname = "xpc", 127 .mode = 0555, 128 .child = xpc_sys_xpc_dir}, 129 {} 130 }; 131 static struct ctl_table_header *xpc_sysctl; 132 133 /* non-zero if any remote partition disengage was timed out */ 134 int xpc_disengage_timedout; 135 136 /* #of activate IRQs received and not yet processed */ 137 int xpc_activate_IRQ_rcvd; 138 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock); 139 140 /* IRQ handler notifies this wait queue on receipt of an IRQ */ 141 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq); 142 143 static unsigned long xpc_hb_check_timeout; 144 static struct timer_list xpc_hb_timer; 145 146 /* notification that the xpc_hb_checker thread has exited */ 147 static DECLARE_COMPLETION(xpc_hb_checker_exited); 148 149 /* notification that the xpc_discovery thread has exited */ 150 static DECLARE_COMPLETION(xpc_discovery_exited); 151 152 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *); 153 154 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *); 155 static struct notifier_block xpc_reboot_notifier = { 156 .notifier_call = xpc_system_reboot, 157 }; 158 159 static int xpc_system_die(struct notifier_block *, unsigned long, void *); 160 static struct notifier_block xpc_die_notifier = { 161 .notifier_call = xpc_system_die, 162 }; 163 164 struct xpc_arch_operations xpc_arch_ops; 165 166 /* 167 * Timer function to enforce the timelimit on the partition disengage. 168 */ 169 static void 170 xpc_timeout_partition_disengage(unsigned long data) 171 { 172 struct xpc_partition *part = (struct xpc_partition *)data; 173 174 DBUG_ON(time_is_after_jiffies(part->disengage_timeout)); 175 176 (void)xpc_partition_disengaged(part); 177 178 DBUG_ON(part->disengage_timeout != 0); 179 DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part))); 180 } 181 182 /* 183 * Timer to produce the heartbeat. The timer structures function is 184 * already set when this is initially called. A tunable is used to 185 * specify when the next timeout should occur. 186 */ 187 static void 188 xpc_hb_beater(unsigned long dummy) 189 { 190 xpc_arch_ops.increment_heartbeat(); 191 192 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) 193 wake_up_interruptible(&xpc_activate_IRQ_wq); 194 195 xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ); 196 add_timer(&xpc_hb_timer); 197 } 198 199 static void 200 xpc_start_hb_beater(void) 201 { 202 xpc_arch_ops.heartbeat_init(); 203 init_timer(&xpc_hb_timer); 204 xpc_hb_timer.function = xpc_hb_beater; 205 xpc_hb_beater(0); 206 } 207 208 static void 209 xpc_stop_hb_beater(void) 210 { 211 del_timer_sync(&xpc_hb_timer); 212 xpc_arch_ops.heartbeat_exit(); 213 } 214 215 /* 216 * At periodic intervals, scan through all active partitions and ensure 217 * their heartbeat is still active. If not, the partition is deactivated. 218 */ 219 static void 220 xpc_check_remote_hb(void) 221 { 222 struct xpc_partition *part; 223 short partid; 224 enum xp_retval ret; 225 226 for (partid = 0; partid < xp_max_npartitions; partid++) { 227 228 if (xpc_exiting) 229 break; 230 231 if (partid == xp_partition_id) 232 continue; 233 234 part = &xpc_partitions[partid]; 235 236 if (part->act_state == XPC_P_AS_INACTIVE || 237 part->act_state == XPC_P_AS_DEACTIVATING) { 238 continue; 239 } 240 241 ret = xpc_arch_ops.get_remote_heartbeat(part); 242 if (ret != xpSuccess) 243 XPC_DEACTIVATE_PARTITION(part, ret); 244 } 245 } 246 247 /* 248 * This thread is responsible for nearly all of the partition 249 * activation/deactivation. 250 */ 251 static int 252 xpc_hb_checker(void *ignore) 253 { 254 int force_IRQ = 0; 255 256 /* this thread was marked active by xpc_hb_init() */ 257 258 set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU)); 259 260 /* set our heartbeating to other partitions into motion */ 261 xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ); 262 xpc_start_hb_beater(); 263 264 while (!xpc_exiting) { 265 266 dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have " 267 "been received\n", 268 (int)(xpc_hb_check_timeout - jiffies), 269 xpc_activate_IRQ_rcvd); 270 271 /* checking of remote heartbeats is skewed by IRQ handling */ 272 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) { 273 xpc_hb_check_timeout = jiffies + 274 (xpc_hb_check_interval * HZ); 275 276 dev_dbg(xpc_part, "checking remote heartbeats\n"); 277 xpc_check_remote_hb(); 278 279 /* 280 * On sn2 we need to periodically recheck to ensure no 281 * IRQ/amo pairs have been missed. 282 */ 283 if (is_shub()) 284 force_IRQ = 1; 285 } 286 287 /* check for outstanding IRQs */ 288 if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) { 289 force_IRQ = 0; 290 dev_dbg(xpc_part, "processing activate IRQs " 291 "received\n"); 292 xpc_arch_ops.process_activate_IRQ_rcvd(); 293 } 294 295 /* wait for IRQ or timeout */ 296 (void)wait_event_interruptible(xpc_activate_IRQ_wq, 297 (time_is_before_eq_jiffies( 298 xpc_hb_check_timeout) || 299 xpc_activate_IRQ_rcvd > 0 || 300 xpc_exiting)); 301 } 302 303 xpc_stop_hb_beater(); 304 305 dev_dbg(xpc_part, "heartbeat checker is exiting\n"); 306 307 /* mark this thread as having exited */ 308 complete(&xpc_hb_checker_exited); 309 return 0; 310 } 311 312 /* 313 * This thread will attempt to discover other partitions to activate 314 * based on info provided by SAL. This new thread is short lived and 315 * will exit once discovery is complete. 316 */ 317 static int 318 xpc_initiate_discovery(void *ignore) 319 { 320 xpc_discovery(); 321 322 dev_dbg(xpc_part, "discovery thread is exiting\n"); 323 324 /* mark this thread as having exited */ 325 complete(&xpc_discovery_exited); 326 return 0; 327 } 328 329 /* 330 * The first kthread assigned to a newly activated partition is the one 331 * created by XPC HB with which it calls xpc_activating(). XPC hangs on to 332 * that kthread until the partition is brought down, at which time that kthread 333 * returns back to XPC HB. (The return of that kthread will signify to XPC HB 334 * that XPC has dismantled all communication infrastructure for the associated 335 * partition.) This kthread becomes the channel manager for that partition. 336 * 337 * Each active partition has a channel manager, who, besides connecting and 338 * disconnecting channels, will ensure that each of the partition's connected 339 * channels has the required number of assigned kthreads to get the work done. 340 */ 341 static void 342 xpc_channel_mgr(struct xpc_partition *part) 343 { 344 while (part->act_state != XPC_P_AS_DEACTIVATING || 345 atomic_read(&part->nchannels_active) > 0 || 346 !xpc_partition_disengaged(part)) { 347 348 xpc_process_sent_chctl_flags(part); 349 350 /* 351 * Wait until we've been requested to activate kthreads or 352 * all of the channel's message queues have been torn down or 353 * a signal is pending. 354 * 355 * The channel_mgr_requests is set to 1 after being awakened, 356 * This is done to prevent the channel mgr from making one pass 357 * through the loop for each request, since he will 358 * be servicing all the requests in one pass. The reason it's 359 * set to 1 instead of 0 is so that other kthreads will know 360 * that the channel mgr is running and won't bother trying to 361 * wake him up. 362 */ 363 atomic_dec(&part->channel_mgr_requests); 364 (void)wait_event_interruptible(part->channel_mgr_wq, 365 (atomic_read(&part->channel_mgr_requests) > 0 || 366 part->chctl.all_flags != 0 || 367 (part->act_state == XPC_P_AS_DEACTIVATING && 368 atomic_read(&part->nchannels_active) == 0 && 369 xpc_partition_disengaged(part)))); 370 atomic_set(&part->channel_mgr_requests, 1); 371 } 372 } 373 374 /* 375 * Guarantee that the kzalloc'd memory is cacheline aligned. 376 */ 377 void * 378 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) 379 { 380 /* see if kzalloc will give us cachline aligned memory by default */ 381 *base = kzalloc(size, flags); 382 if (*base == NULL) 383 return NULL; 384 385 if ((u64)*base == L1_CACHE_ALIGN((u64)*base)) 386 return *base; 387 388 kfree(*base); 389 390 /* nope, we'll have to do it ourselves */ 391 *base = kzalloc(size + L1_CACHE_BYTES, flags); 392 if (*base == NULL) 393 return NULL; 394 395 return (void *)L1_CACHE_ALIGN((u64)*base); 396 } 397 398 /* 399 * Setup the channel structures necessary to support XPartition Communication 400 * between the specified remote partition and the local one. 401 */ 402 static enum xp_retval 403 xpc_setup_ch_structures(struct xpc_partition *part) 404 { 405 enum xp_retval ret; 406 int ch_number; 407 struct xpc_channel *ch; 408 short partid = XPC_PARTID(part); 409 410 /* 411 * Allocate all of the channel structures as a contiguous chunk of 412 * memory. 413 */ 414 DBUG_ON(part->channels != NULL); 415 part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS, 416 GFP_KERNEL); 417 if (part->channels == NULL) { 418 dev_err(xpc_chan, "can't get memory for channels\n"); 419 return xpNoMemory; 420 } 421 422 /* allocate the remote open and close args */ 423 424 part->remote_openclose_args = 425 xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, 426 GFP_KERNEL, &part-> 427 remote_openclose_args_base); 428 if (part->remote_openclose_args == NULL) { 429 dev_err(xpc_chan, "can't get memory for remote connect args\n"); 430 ret = xpNoMemory; 431 goto out_1; 432 } 433 434 part->chctl.all_flags = 0; 435 spin_lock_init(&part->chctl_lock); 436 437 atomic_set(&part->channel_mgr_requests, 1); 438 init_waitqueue_head(&part->channel_mgr_wq); 439 440 part->nchannels = XPC_MAX_NCHANNELS; 441 442 atomic_set(&part->nchannels_active, 0); 443 atomic_set(&part->nchannels_engaged, 0); 444 445 for (ch_number = 0; ch_number < part->nchannels; ch_number++) { 446 ch = &part->channels[ch_number]; 447 448 ch->partid = partid; 449 ch->number = ch_number; 450 ch->flags = XPC_C_DISCONNECTED; 451 452 atomic_set(&ch->kthreads_assigned, 0); 453 atomic_set(&ch->kthreads_idle, 0); 454 atomic_set(&ch->kthreads_active, 0); 455 456 atomic_set(&ch->references, 0); 457 atomic_set(&ch->n_to_notify, 0); 458 459 spin_lock_init(&ch->lock); 460 init_completion(&ch->wdisconnect_wait); 461 462 atomic_set(&ch->n_on_msg_allocate_wq, 0); 463 init_waitqueue_head(&ch->msg_allocate_wq); 464 init_waitqueue_head(&ch->idle_wq); 465 } 466 467 ret = xpc_arch_ops.setup_ch_structures(part); 468 if (ret != xpSuccess) 469 goto out_2; 470 471 /* 472 * With the setting of the partition setup_state to XPC_P_SS_SETUP, 473 * we're declaring that this partition is ready to go. 474 */ 475 part->setup_state = XPC_P_SS_SETUP; 476 477 return xpSuccess; 478 479 /* setup of ch structures failed */ 480 out_2: 481 kfree(part->remote_openclose_args_base); 482 part->remote_openclose_args = NULL; 483 out_1: 484 kfree(part->channels); 485 part->channels = NULL; 486 return ret; 487 } 488 489 /* 490 * Teardown the channel structures necessary to support XPartition Communication 491 * between the specified remote partition and the local one. 492 */ 493 static void 494 xpc_teardown_ch_structures(struct xpc_partition *part) 495 { 496 DBUG_ON(atomic_read(&part->nchannels_engaged) != 0); 497 DBUG_ON(atomic_read(&part->nchannels_active) != 0); 498 499 /* 500 * Make this partition inaccessible to local processes by marking it 501 * as no longer setup. Then wait before proceeding with the teardown 502 * until all existing references cease. 503 */ 504 DBUG_ON(part->setup_state != XPC_P_SS_SETUP); 505 part->setup_state = XPC_P_SS_WTEARDOWN; 506 507 wait_event(part->teardown_wq, (atomic_read(&part->references) == 0)); 508 509 /* now we can begin tearing down the infrastructure */ 510 511 xpc_arch_ops.teardown_ch_structures(part); 512 513 kfree(part->remote_openclose_args_base); 514 part->remote_openclose_args = NULL; 515 kfree(part->channels); 516 part->channels = NULL; 517 518 part->setup_state = XPC_P_SS_TORNDOWN; 519 } 520 521 /* 522 * When XPC HB determines that a partition has come up, it will create a new 523 * kthread and that kthread will call this function to attempt to set up the 524 * basic infrastructure used for Cross Partition Communication with the newly 525 * upped partition. 526 * 527 * The kthread that was created by XPC HB and which setup the XPC 528 * infrastructure will remain assigned to the partition becoming the channel 529 * manager for that partition until the partition is deactivating, at which 530 * time the kthread will teardown the XPC infrastructure and then exit. 531 */ 532 static int 533 xpc_activating(void *__partid) 534 { 535 short partid = (u64)__partid; 536 struct xpc_partition *part = &xpc_partitions[partid]; 537 unsigned long irq_flags; 538 539 DBUG_ON(partid < 0 || partid >= xp_max_npartitions); 540 541 spin_lock_irqsave(&part->act_lock, irq_flags); 542 543 if (part->act_state == XPC_P_AS_DEACTIVATING) { 544 part->act_state = XPC_P_AS_INACTIVE; 545 spin_unlock_irqrestore(&part->act_lock, irq_flags); 546 part->remote_rp_pa = 0; 547 return 0; 548 } 549 550 /* indicate the thread is activating */ 551 DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ); 552 part->act_state = XPC_P_AS_ACTIVATING; 553 554 XPC_SET_REASON(part, 0, 0); 555 spin_unlock_irqrestore(&part->act_lock, irq_flags); 556 557 dev_dbg(xpc_part, "activating partition %d\n", partid); 558 559 xpc_arch_ops.allow_hb(partid); 560 561 if (xpc_setup_ch_structures(part) == xpSuccess) { 562 (void)xpc_part_ref(part); /* this will always succeed */ 563 564 if (xpc_arch_ops.make_first_contact(part) == xpSuccess) { 565 xpc_mark_partition_active(part); 566 xpc_channel_mgr(part); 567 /* won't return until partition is deactivating */ 568 } 569 570 xpc_part_deref(part); 571 xpc_teardown_ch_structures(part); 572 } 573 574 xpc_arch_ops.disallow_hb(partid); 575 xpc_mark_partition_inactive(part); 576 577 if (part->reason == xpReactivating) { 578 /* interrupting ourselves results in activating partition */ 579 xpc_arch_ops.request_partition_reactivation(part); 580 } 581 582 return 0; 583 } 584 585 void 586 xpc_activate_partition(struct xpc_partition *part) 587 { 588 short partid = XPC_PARTID(part); 589 unsigned long irq_flags; 590 struct task_struct *kthread; 591 592 spin_lock_irqsave(&part->act_lock, irq_flags); 593 594 DBUG_ON(part->act_state != XPC_P_AS_INACTIVE); 595 596 part->act_state = XPC_P_AS_ACTIVATION_REQ; 597 XPC_SET_REASON(part, xpCloneKThread, __LINE__); 598 599 spin_unlock_irqrestore(&part->act_lock, irq_flags); 600 601 kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d", 602 partid); 603 if (IS_ERR(kthread)) { 604 spin_lock_irqsave(&part->act_lock, irq_flags); 605 part->act_state = XPC_P_AS_INACTIVE; 606 XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__); 607 spin_unlock_irqrestore(&part->act_lock, irq_flags); 608 } 609 } 610 611 void 612 xpc_activate_kthreads(struct xpc_channel *ch, int needed) 613 { 614 int idle = atomic_read(&ch->kthreads_idle); 615 int assigned = atomic_read(&ch->kthreads_assigned); 616 int wakeup; 617 618 DBUG_ON(needed <= 0); 619 620 if (idle > 0) { 621 wakeup = (needed > idle) ? idle : needed; 622 needed -= wakeup; 623 624 dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, " 625 "channel=%d\n", wakeup, ch->partid, ch->number); 626 627 /* only wakeup the requested number of kthreads */ 628 wake_up_nr(&ch->idle_wq, wakeup); 629 } 630 631 if (needed <= 0) 632 return; 633 634 if (needed + assigned > ch->kthreads_assigned_limit) { 635 needed = ch->kthreads_assigned_limit - assigned; 636 if (needed <= 0) 637 return; 638 } 639 640 dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n", 641 needed, ch->partid, ch->number); 642 643 xpc_create_kthreads(ch, needed, 0); 644 } 645 646 /* 647 * This function is where XPC's kthreads wait for messages to deliver. 648 */ 649 static void 650 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch) 651 { 652 int (*n_of_deliverable_payloads) (struct xpc_channel *) = 653 xpc_arch_ops.n_of_deliverable_payloads; 654 655 do { 656 /* deliver messages to their intended recipients */ 657 658 while (n_of_deliverable_payloads(ch) > 0 && 659 !(ch->flags & XPC_C_DISCONNECTING)) { 660 xpc_deliver_payload(ch); 661 } 662 663 if (atomic_inc_return(&ch->kthreads_idle) > 664 ch->kthreads_idle_limit) { 665 /* too many idle kthreads on this channel */ 666 atomic_dec(&ch->kthreads_idle); 667 break; 668 } 669 670 dev_dbg(xpc_chan, "idle kthread calling " 671 "wait_event_interruptible_exclusive()\n"); 672 673 (void)wait_event_interruptible_exclusive(ch->idle_wq, 674 (n_of_deliverable_payloads(ch) > 0 || 675 (ch->flags & XPC_C_DISCONNECTING))); 676 677 atomic_dec(&ch->kthreads_idle); 678 679 } while (!(ch->flags & XPC_C_DISCONNECTING)); 680 } 681 682 static int 683 xpc_kthread_start(void *args) 684 { 685 short partid = XPC_UNPACK_ARG1(args); 686 u16 ch_number = XPC_UNPACK_ARG2(args); 687 struct xpc_partition *part = &xpc_partitions[partid]; 688 struct xpc_channel *ch; 689 int n_needed; 690 unsigned long irq_flags; 691 int (*n_of_deliverable_payloads) (struct xpc_channel *) = 692 xpc_arch_ops.n_of_deliverable_payloads; 693 694 dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n", 695 partid, ch_number); 696 697 ch = &part->channels[ch_number]; 698 699 if (!(ch->flags & XPC_C_DISCONNECTING)) { 700 701 /* let registerer know that connection has been established */ 702 703 spin_lock_irqsave(&ch->lock, irq_flags); 704 if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) { 705 ch->flags |= XPC_C_CONNECTEDCALLOUT; 706 spin_unlock_irqrestore(&ch->lock, irq_flags); 707 708 xpc_connected_callout(ch); 709 710 spin_lock_irqsave(&ch->lock, irq_flags); 711 ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE; 712 spin_unlock_irqrestore(&ch->lock, irq_flags); 713 714 /* 715 * It is possible that while the callout was being 716 * made that the remote partition sent some messages. 717 * If that is the case, we may need to activate 718 * additional kthreads to help deliver them. We only 719 * need one less than total #of messages to deliver. 720 */ 721 n_needed = n_of_deliverable_payloads(ch) - 1; 722 if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING)) 723 xpc_activate_kthreads(ch, n_needed); 724 725 } else { 726 spin_unlock_irqrestore(&ch->lock, irq_flags); 727 } 728 729 xpc_kthread_waitmsgs(part, ch); 730 } 731 732 /* let registerer know that connection is disconnecting */ 733 734 spin_lock_irqsave(&ch->lock, irq_flags); 735 if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && 736 !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) { 737 ch->flags |= XPC_C_DISCONNECTINGCALLOUT; 738 spin_unlock_irqrestore(&ch->lock, irq_flags); 739 740 xpc_disconnect_callout(ch, xpDisconnecting); 741 742 spin_lock_irqsave(&ch->lock, irq_flags); 743 ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE; 744 } 745 spin_unlock_irqrestore(&ch->lock, irq_flags); 746 747 if (atomic_dec_return(&ch->kthreads_assigned) == 0 && 748 atomic_dec_return(&part->nchannels_engaged) == 0) { 749 xpc_arch_ops.indicate_partition_disengaged(part); 750 } 751 752 xpc_msgqueue_deref(ch); 753 754 dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n", 755 partid, ch_number); 756 757 xpc_part_deref(part); 758 return 0; 759 } 760 761 /* 762 * For each partition that XPC has established communications with, there is 763 * a minimum of one kernel thread assigned to perform any operation that 764 * may potentially sleep or block (basically the callouts to the asynchronous 765 * functions registered via xpc_connect()). 766 * 767 * Additional kthreads are created and destroyed by XPC as the workload 768 * demands. 769 * 770 * A kthread is assigned to one of the active channels that exists for a given 771 * partition. 772 */ 773 void 774 xpc_create_kthreads(struct xpc_channel *ch, int needed, 775 int ignore_disconnecting) 776 { 777 unsigned long irq_flags; 778 u64 args = XPC_PACK_ARGS(ch->partid, ch->number); 779 struct xpc_partition *part = &xpc_partitions[ch->partid]; 780 struct task_struct *kthread; 781 void (*indicate_partition_disengaged) (struct xpc_partition *) = 782 xpc_arch_ops.indicate_partition_disengaged; 783 784 while (needed-- > 0) { 785 786 /* 787 * The following is done on behalf of the newly created 788 * kthread. That kthread is responsible for doing the 789 * counterpart to the following before it exits. 790 */ 791 if (ignore_disconnecting) { 792 if (!atomic_inc_not_zero(&ch->kthreads_assigned)) { 793 /* kthreads assigned had gone to zero */ 794 BUG_ON(!(ch->flags & 795 XPC_C_DISCONNECTINGCALLOUT_MADE)); 796 break; 797 } 798 799 } else if (ch->flags & XPC_C_DISCONNECTING) { 800 break; 801 802 } else if (atomic_inc_return(&ch->kthreads_assigned) == 1 && 803 atomic_inc_return(&part->nchannels_engaged) == 1) { 804 xpc_arch_ops.indicate_partition_engaged(part); 805 } 806 (void)xpc_part_ref(part); 807 xpc_msgqueue_ref(ch); 808 809 kthread = kthread_run(xpc_kthread_start, (void *)args, 810 "xpc%02dc%d", ch->partid, ch->number); 811 if (IS_ERR(kthread)) { 812 /* the fork failed */ 813 814 /* 815 * NOTE: if (ignore_disconnecting && 816 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true, 817 * then we'll deadlock if all other kthreads assigned 818 * to this channel are blocked in the channel's 819 * registerer, because the only thing that will unblock 820 * them is the xpDisconnecting callout that this 821 * failed kthread_run() would have made. 822 */ 823 824 if (atomic_dec_return(&ch->kthreads_assigned) == 0 && 825 atomic_dec_return(&part->nchannels_engaged) == 0) { 826 indicate_partition_disengaged(part); 827 } 828 xpc_msgqueue_deref(ch); 829 xpc_part_deref(part); 830 831 if (atomic_read(&ch->kthreads_assigned) < 832 ch->kthreads_idle_limit) { 833 /* 834 * Flag this as an error only if we have an 835 * insufficient #of kthreads for the channel 836 * to function. 837 */ 838 spin_lock_irqsave(&ch->lock, irq_flags); 839 XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources, 840 &irq_flags); 841 spin_unlock_irqrestore(&ch->lock, irq_flags); 842 } 843 break; 844 } 845 } 846 } 847 848 void 849 xpc_disconnect_wait(int ch_number) 850 { 851 unsigned long irq_flags; 852 short partid; 853 struct xpc_partition *part; 854 struct xpc_channel *ch; 855 int wakeup_channel_mgr; 856 857 /* now wait for all callouts to the caller's function to cease */ 858 for (partid = 0; partid < xp_max_npartitions; partid++) { 859 part = &xpc_partitions[partid]; 860 861 if (!xpc_part_ref(part)) 862 continue; 863 864 ch = &part->channels[ch_number]; 865 866 if (!(ch->flags & XPC_C_WDISCONNECT)) { 867 xpc_part_deref(part); 868 continue; 869 } 870 871 wait_for_completion(&ch->wdisconnect_wait); 872 873 spin_lock_irqsave(&ch->lock, irq_flags); 874 DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED)); 875 wakeup_channel_mgr = 0; 876 877 if (ch->delayed_chctl_flags) { 878 if (part->act_state != XPC_P_AS_DEACTIVATING) { 879 spin_lock(&part->chctl_lock); 880 part->chctl.flags[ch->number] |= 881 ch->delayed_chctl_flags; 882 spin_unlock(&part->chctl_lock); 883 wakeup_channel_mgr = 1; 884 } 885 ch->delayed_chctl_flags = 0; 886 } 887 888 ch->flags &= ~XPC_C_WDISCONNECT; 889 spin_unlock_irqrestore(&ch->lock, irq_flags); 890 891 if (wakeup_channel_mgr) 892 xpc_wakeup_channel_mgr(part); 893 894 xpc_part_deref(part); 895 } 896 } 897 898 static int 899 xpc_setup_partitions(void) 900 { 901 short partid; 902 struct xpc_partition *part; 903 904 xpc_partitions = kzalloc(sizeof(struct xpc_partition) * 905 xp_max_npartitions, GFP_KERNEL); 906 if (xpc_partitions == NULL) { 907 dev_err(xpc_part, "can't get memory for partition structure\n"); 908 return -ENOMEM; 909 } 910 911 /* 912 * The first few fields of each entry of xpc_partitions[] need to 913 * be initialized now so that calls to xpc_connect() and 914 * xpc_disconnect() can be made prior to the activation of any remote 915 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE 916 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING 917 * PARTITION HAS BEEN ACTIVATED. 918 */ 919 for (partid = 0; partid < xp_max_npartitions; partid++) { 920 part = &xpc_partitions[partid]; 921 922 DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part)); 923 924 part->activate_IRQ_rcvd = 0; 925 spin_lock_init(&part->act_lock); 926 part->act_state = XPC_P_AS_INACTIVE; 927 XPC_SET_REASON(part, 0, 0); 928 929 init_timer(&part->disengage_timer); 930 part->disengage_timer.function = 931 xpc_timeout_partition_disengage; 932 part->disengage_timer.data = (unsigned long)part; 933 934 part->setup_state = XPC_P_SS_UNSET; 935 init_waitqueue_head(&part->teardown_wq); 936 atomic_set(&part->references, 0); 937 } 938 939 return xpc_arch_ops.setup_partitions(); 940 } 941 942 static void 943 xpc_teardown_partitions(void) 944 { 945 xpc_arch_ops.teardown_partitions(); 946 kfree(xpc_partitions); 947 } 948 949 static void 950 xpc_do_exit(enum xp_retval reason) 951 { 952 short partid; 953 int active_part_count, printed_waiting_msg = 0; 954 struct xpc_partition *part; 955 unsigned long printmsg_time, disengage_timeout = 0; 956 957 /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */ 958 DBUG_ON(xpc_exiting == 1); 959 960 /* 961 * Let the heartbeat checker thread and the discovery thread 962 * (if one is running) know that they should exit. Also wake up 963 * the heartbeat checker thread in case it's sleeping. 964 */ 965 xpc_exiting = 1; 966 wake_up_interruptible(&xpc_activate_IRQ_wq); 967 968 /* wait for the discovery thread to exit */ 969 wait_for_completion(&xpc_discovery_exited); 970 971 /* wait for the heartbeat checker thread to exit */ 972 wait_for_completion(&xpc_hb_checker_exited); 973 974 /* sleep for a 1/3 of a second or so */ 975 (void)msleep_interruptible(300); 976 977 /* wait for all partitions to become inactive */ 978 979 printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); 980 xpc_disengage_timedout = 0; 981 982 do { 983 active_part_count = 0; 984 985 for (partid = 0; partid < xp_max_npartitions; partid++) { 986 part = &xpc_partitions[partid]; 987 988 if (xpc_partition_disengaged(part) && 989 part->act_state == XPC_P_AS_INACTIVE) { 990 continue; 991 } 992 993 active_part_count++; 994 995 XPC_DEACTIVATE_PARTITION(part, reason); 996 997 if (part->disengage_timeout > disengage_timeout) 998 disengage_timeout = part->disengage_timeout; 999 } 1000 1001 if (xpc_arch_ops.any_partition_engaged()) { 1002 if (time_is_before_jiffies(printmsg_time)) { 1003 dev_info(xpc_part, "waiting for remote " 1004 "partitions to deactivate, timeout in " 1005 "%ld seconds\n", (disengage_timeout - 1006 jiffies) / HZ); 1007 printmsg_time = jiffies + 1008 (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); 1009 printed_waiting_msg = 1; 1010 } 1011 1012 } else if (active_part_count > 0) { 1013 if (printed_waiting_msg) { 1014 dev_info(xpc_part, "waiting for local partition" 1015 " to deactivate\n"); 1016 printed_waiting_msg = 0; 1017 } 1018 1019 } else { 1020 if (!xpc_disengage_timedout) { 1021 dev_info(xpc_part, "all partitions have " 1022 "deactivated\n"); 1023 } 1024 break; 1025 } 1026 1027 /* sleep for a 1/3 of a second or so */ 1028 (void)msleep_interruptible(300); 1029 1030 } while (1); 1031 1032 DBUG_ON(xpc_arch_ops.any_partition_engaged()); 1033 1034 xpc_teardown_rsvd_page(); 1035 1036 if (reason == xpUnloading) { 1037 (void)unregister_die_notifier(&xpc_die_notifier); 1038 (void)unregister_reboot_notifier(&xpc_reboot_notifier); 1039 } 1040 1041 /* clear the interface to XPC's functions */ 1042 xpc_clear_interface(); 1043 1044 if (xpc_sysctl) 1045 unregister_sysctl_table(xpc_sysctl); 1046 1047 xpc_teardown_partitions(); 1048 1049 if (is_shub()) 1050 xpc_exit_sn2(); 1051 else if (is_uv()) 1052 xpc_exit_uv(); 1053 } 1054 1055 /* 1056 * This function is called when the system is being rebooted. 1057 */ 1058 static int 1059 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused) 1060 { 1061 enum xp_retval reason; 1062 1063 switch (event) { 1064 case SYS_RESTART: 1065 reason = xpSystemReboot; 1066 break; 1067 case SYS_HALT: 1068 reason = xpSystemHalt; 1069 break; 1070 case SYS_POWER_OFF: 1071 reason = xpSystemPoweroff; 1072 break; 1073 default: 1074 reason = xpSystemGoingDown; 1075 } 1076 1077 xpc_do_exit(reason); 1078 return NOTIFY_DONE; 1079 } 1080 1081 /* 1082 * Notify other partitions to deactivate from us by first disengaging from all 1083 * references to our memory. 1084 */ 1085 static void 1086 xpc_die_deactivate(void) 1087 { 1088 struct xpc_partition *part; 1089 short partid; 1090 int any_engaged; 1091 long keep_waiting; 1092 long wait_to_print; 1093 1094 /* keep xpc_hb_checker thread from doing anything (just in case) */ 1095 xpc_exiting = 1; 1096 1097 xpc_arch_ops.disallow_all_hbs(); /*indicate we're deactivated */ 1098 1099 for (partid = 0; partid < xp_max_npartitions; partid++) { 1100 part = &xpc_partitions[partid]; 1101 1102 if (xpc_arch_ops.partition_engaged(partid) || 1103 part->act_state != XPC_P_AS_INACTIVE) { 1104 xpc_arch_ops.request_partition_deactivation(part); 1105 xpc_arch_ops.indicate_partition_disengaged(part); 1106 } 1107 } 1108 1109 /* 1110 * Though we requested that all other partitions deactivate from us, 1111 * we only wait until they've all disengaged or we've reached the 1112 * defined timelimit. 1113 * 1114 * Given that one iteration through the following while-loop takes 1115 * approximately 200 microseconds, calculate the #of loops to take 1116 * before bailing and the #of loops before printing a waiting message. 1117 */ 1118 keep_waiting = xpc_disengage_timelimit * 1000 * 5; 1119 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5; 1120 1121 while (1) { 1122 any_engaged = xpc_arch_ops.any_partition_engaged(); 1123 if (!any_engaged) { 1124 dev_info(xpc_part, "all partitions have deactivated\n"); 1125 break; 1126 } 1127 1128 if (!keep_waiting--) { 1129 for (partid = 0; partid < xp_max_npartitions; 1130 partid++) { 1131 if (xpc_arch_ops.partition_engaged(partid)) { 1132 dev_info(xpc_part, "deactivate from " 1133 "remote partition %d timed " 1134 "out\n", partid); 1135 } 1136 } 1137 break; 1138 } 1139 1140 if (!wait_to_print--) { 1141 dev_info(xpc_part, "waiting for remote partitions to " 1142 "deactivate, timeout in %ld seconds\n", 1143 keep_waiting / (1000 * 5)); 1144 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1145 1000 * 5; 1146 } 1147 1148 udelay(200); 1149 } 1150 } 1151 1152 /* 1153 * This function is called when the system is being restarted or halted due 1154 * to some sort of system failure. If this is the case we need to notify the 1155 * other partitions to disengage from all references to our memory. 1156 * This function can also be called when our heartbeater could be offlined 1157 * for a time. In this case we need to notify other partitions to not worry 1158 * about the lack of a heartbeat. 1159 */ 1160 static int 1161 xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused) 1162 { 1163 #ifdef CONFIG_IA64 /* !!! temporary kludge */ 1164 switch (event) { 1165 case DIE_MACHINE_RESTART: 1166 case DIE_MACHINE_HALT: 1167 xpc_die_deactivate(); 1168 break; 1169 1170 case DIE_KDEBUG_ENTER: 1171 /* Should lack of heartbeat be ignored by other partitions? */ 1172 if (!xpc_kdebug_ignore) 1173 break; 1174 1175 /* fall through */ 1176 case DIE_MCA_MONARCH_ENTER: 1177 case DIE_INIT_MONARCH_ENTER: 1178 xpc_arch_ops.offline_heartbeat(); 1179 break; 1180 1181 case DIE_KDEBUG_LEAVE: 1182 /* Is lack of heartbeat being ignored by other partitions? */ 1183 if (!xpc_kdebug_ignore) 1184 break; 1185 1186 /* fall through */ 1187 case DIE_MCA_MONARCH_LEAVE: 1188 case DIE_INIT_MONARCH_LEAVE: 1189 xpc_arch_ops.online_heartbeat(); 1190 break; 1191 } 1192 #else 1193 xpc_die_deactivate(); 1194 #endif 1195 1196 return NOTIFY_DONE; 1197 } 1198 1199 int __init 1200 xpc_init(void) 1201 { 1202 int ret; 1203 struct task_struct *kthread; 1204 1205 dev_set_name(xpc_part, "part"); 1206 dev_set_name(xpc_chan, "chan"); 1207 1208 if (is_shub()) { 1209 /* 1210 * The ia64-sn2 architecture supports at most 64 partitions. 1211 * And the inability to unregister remote amos restricts us 1212 * further to only support exactly 64 partitions on this 1213 * architecture, no less. 1214 */ 1215 if (xp_max_npartitions != 64) { 1216 dev_err(xpc_part, "max #of partitions not set to 64\n"); 1217 ret = -EINVAL; 1218 } else { 1219 ret = xpc_init_sn2(); 1220 } 1221 1222 } else if (is_uv()) { 1223 ret = xpc_init_uv(); 1224 1225 } else { 1226 ret = -ENODEV; 1227 } 1228 1229 if (ret != 0) 1230 return ret; 1231 1232 ret = xpc_setup_partitions(); 1233 if (ret != 0) { 1234 dev_err(xpc_part, "can't get memory for partition structure\n"); 1235 goto out_1; 1236 } 1237 1238 xpc_sysctl = register_sysctl_table(xpc_sys_dir); 1239 1240 /* 1241 * Fill the partition reserved page with the information needed by 1242 * other partitions to discover we are alive and establish initial 1243 * communications. 1244 */ 1245 ret = xpc_setup_rsvd_page(); 1246 if (ret != 0) { 1247 dev_err(xpc_part, "can't setup our reserved page\n"); 1248 goto out_2; 1249 } 1250 1251 /* add ourselves to the reboot_notifier_list */ 1252 ret = register_reboot_notifier(&xpc_reboot_notifier); 1253 if (ret != 0) 1254 dev_warn(xpc_part, "can't register reboot notifier\n"); 1255 1256 /* add ourselves to the die_notifier list */ 1257 ret = register_die_notifier(&xpc_die_notifier); 1258 if (ret != 0) 1259 dev_warn(xpc_part, "can't register die notifier\n"); 1260 1261 /* 1262 * The real work-horse behind xpc. This processes incoming 1263 * interrupts and monitors remote heartbeats. 1264 */ 1265 kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME); 1266 if (IS_ERR(kthread)) { 1267 dev_err(xpc_part, "failed while forking hb check thread\n"); 1268 ret = -EBUSY; 1269 goto out_3; 1270 } 1271 1272 /* 1273 * Startup a thread that will attempt to discover other partitions to 1274 * activate based on info provided by SAL. This new thread is short 1275 * lived and will exit once discovery is complete. 1276 */ 1277 kthread = kthread_run(xpc_initiate_discovery, NULL, 1278 XPC_DISCOVERY_THREAD_NAME); 1279 if (IS_ERR(kthread)) { 1280 dev_err(xpc_part, "failed while forking discovery thread\n"); 1281 1282 /* mark this new thread as a non-starter */ 1283 complete(&xpc_discovery_exited); 1284 1285 xpc_do_exit(xpUnloading); 1286 return -EBUSY; 1287 } 1288 1289 /* set the interface to point at XPC's functions */ 1290 xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect, 1291 xpc_initiate_send, xpc_initiate_send_notify, 1292 xpc_initiate_received, xpc_initiate_partid_to_nasids); 1293 1294 return 0; 1295 1296 /* initialization was not successful */ 1297 out_3: 1298 xpc_teardown_rsvd_page(); 1299 1300 (void)unregister_die_notifier(&xpc_die_notifier); 1301 (void)unregister_reboot_notifier(&xpc_reboot_notifier); 1302 out_2: 1303 if (xpc_sysctl) 1304 unregister_sysctl_table(xpc_sysctl); 1305 1306 xpc_teardown_partitions(); 1307 out_1: 1308 if (is_shub()) 1309 xpc_exit_sn2(); 1310 else if (is_uv()) 1311 xpc_exit_uv(); 1312 return ret; 1313 } 1314 1315 module_init(xpc_init); 1316 1317 void __exit 1318 xpc_exit(void) 1319 { 1320 xpc_do_exit(xpUnloading); 1321 } 1322 1323 module_exit(xpc_exit); 1324 1325 MODULE_AUTHOR("Silicon Graphics, Inc."); 1326 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support"); 1327 MODULE_LICENSE("GPL"); 1328 1329 module_param(xpc_hb_interval, int, 0); 1330 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between " 1331 "heartbeat increments."); 1332 1333 module_param(xpc_hb_check_interval, int, 0); 1334 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between " 1335 "heartbeat checks."); 1336 1337 module_param(xpc_disengage_timelimit, int, 0); 1338 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait " 1339 "for disengage to complete."); 1340 1341 module_param(xpc_kdebug_ignore, int, 0); 1342 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by " 1343 "other partitions when dropping into kdebug."); 1344