xref: /openbmc/linux/drivers/misc/sgi-xp/xpc_main.c (revision b6dcefde)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8 
9 /*
10  * Cross Partition Communication (XPC) support - standard version.
11  *
12  *	XPC provides a message passing capability that crosses partition
13  *	boundaries. This module is made up of two parts:
14  *
15  *	    partition	This part detects the presence/absence of other
16  *			partitions. It provides a heartbeat and monitors
17  *			the heartbeats of other partitions.
18  *
19  *	    channel	This part manages the channels and sends/receives
20  *			messages across them to/from other partitions.
21  *
22  *	There are a couple of additional functions residing in XP, which
23  *	provide an interface to XPC for its users.
24  *
25  *
26  *	Caveats:
27  *
28  *	  . Currently on sn2, we have no way to determine which nasid an IRQ
29  *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
30  *	    followed by an IPI. The amo indicates where data is to be pulled
31  *	    from, so after the IPI arrives, the remote partition checks the amo
32  *	    word. The IPI can actually arrive before the amo however, so other
33  *	    code must periodically check for this case. Also, remote amo
34  *	    operations do not reliably time out. Thus we do a remote PIO read
35  *	    solely to know whether the remote partition is down and whether we
36  *	    should stop sending IPIs to it. This remote PIO read operation is
37  *	    set up in a special nofault region so SAL knows to ignore (and
38  *	    cleanup) any errors due to the remote amo write, PIO read, and/or
39  *	    PIO write operations.
40  *
41  *	    If/when new hardware solves this IPI problem, we should abandon
42  *	    the current approach.
43  *
44  */
45 
46 #include <linux/module.h>
47 #include <linux/sysctl.h>
48 #include <linux/device.h>
49 #include <linux/delay.h>
50 #include <linux/reboot.h>
51 #include <linux/kdebug.h>
52 #include <linux/kthread.h>
53 #include "xpc.h"
54 
55 /* define two XPC debug device structures to be used with dev_dbg() et al */
56 
57 struct device_driver xpc_dbg_name = {
58 	.name = "xpc"
59 };
60 
61 struct device xpc_part_dbg_subname = {
62 	.init_name = "",	/* set to "part" at xpc_init() time */
63 	.driver = &xpc_dbg_name
64 };
65 
66 struct device xpc_chan_dbg_subname = {
67 	.init_name = "",	/* set to "chan" at xpc_init() time */
68 	.driver = &xpc_dbg_name
69 };
70 
71 struct device *xpc_part = &xpc_part_dbg_subname;
72 struct device *xpc_chan = &xpc_chan_dbg_subname;
73 
74 static int xpc_kdebug_ignore;
75 
76 /* systune related variables for /proc/sys directories */
77 
78 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
79 static int xpc_hb_min_interval = 1;
80 static int xpc_hb_max_interval = 10;
81 
82 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
83 static int xpc_hb_check_min_interval = 10;
84 static int xpc_hb_check_max_interval = 120;
85 
86 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
87 static int xpc_disengage_min_timelimit;	/* = 0 */
88 static int xpc_disengage_max_timelimit = 120;
89 
90 static ctl_table xpc_sys_xpc_hb_dir[] = {
91 	{
92 	 .procname = "hb_interval",
93 	 .data = &xpc_hb_interval,
94 	 .maxlen = sizeof(int),
95 	 .mode = 0644,
96 	 .proc_handler = proc_dointvec_minmax,
97 	 .extra1 = &xpc_hb_min_interval,
98 	 .extra2 = &xpc_hb_max_interval},
99 	{
100 	 .procname = "hb_check_interval",
101 	 .data = &xpc_hb_check_interval,
102 	 .maxlen = sizeof(int),
103 	 .mode = 0644,
104 	 .proc_handler = proc_dointvec_minmax,
105 	 .extra1 = &xpc_hb_check_min_interval,
106 	 .extra2 = &xpc_hb_check_max_interval},
107 	{}
108 };
109 static ctl_table xpc_sys_xpc_dir[] = {
110 	{
111 	 .procname = "hb",
112 	 .mode = 0555,
113 	 .child = xpc_sys_xpc_hb_dir},
114 	{
115 	 .procname = "disengage_timelimit",
116 	 .data = &xpc_disengage_timelimit,
117 	 .maxlen = sizeof(int),
118 	 .mode = 0644,
119 	 .proc_handler = proc_dointvec_minmax,
120 	 .extra1 = &xpc_disengage_min_timelimit,
121 	 .extra2 = &xpc_disengage_max_timelimit},
122 	{}
123 };
124 static ctl_table xpc_sys_dir[] = {
125 	{
126 	 .procname = "xpc",
127 	 .mode = 0555,
128 	 .child = xpc_sys_xpc_dir},
129 	{}
130 };
131 static struct ctl_table_header *xpc_sysctl;
132 
133 /* non-zero if any remote partition disengage was timed out */
134 int xpc_disengage_timedout;
135 
136 /* #of activate IRQs received and not yet processed */
137 int xpc_activate_IRQ_rcvd;
138 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
139 
140 /* IRQ handler notifies this wait queue on receipt of an IRQ */
141 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
142 
143 static unsigned long xpc_hb_check_timeout;
144 static struct timer_list xpc_hb_timer;
145 
146 /* notification that the xpc_hb_checker thread has exited */
147 static DECLARE_COMPLETION(xpc_hb_checker_exited);
148 
149 /* notification that the xpc_discovery thread has exited */
150 static DECLARE_COMPLETION(xpc_discovery_exited);
151 
152 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
153 
154 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
155 static struct notifier_block xpc_reboot_notifier = {
156 	.notifier_call = xpc_system_reboot,
157 };
158 
159 static int xpc_system_die(struct notifier_block *, unsigned long, void *);
160 static struct notifier_block xpc_die_notifier = {
161 	.notifier_call = xpc_system_die,
162 };
163 
164 struct xpc_arch_operations xpc_arch_ops;
165 
166 /*
167  * Timer function to enforce the timelimit on the partition disengage.
168  */
169 static void
170 xpc_timeout_partition_disengage(unsigned long data)
171 {
172 	struct xpc_partition *part = (struct xpc_partition *)data;
173 
174 	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
175 
176 	(void)xpc_partition_disengaged(part);
177 
178 	DBUG_ON(part->disengage_timeout != 0);
179 	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
180 }
181 
182 /*
183  * Timer to produce the heartbeat.  The timer structures function is
184  * already set when this is initially called.  A tunable is used to
185  * specify when the next timeout should occur.
186  */
187 static void
188 xpc_hb_beater(unsigned long dummy)
189 {
190 	xpc_arch_ops.increment_heartbeat();
191 
192 	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
193 		wake_up_interruptible(&xpc_activate_IRQ_wq);
194 
195 	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
196 	add_timer(&xpc_hb_timer);
197 }
198 
199 static void
200 xpc_start_hb_beater(void)
201 {
202 	xpc_arch_ops.heartbeat_init();
203 	init_timer(&xpc_hb_timer);
204 	xpc_hb_timer.function = xpc_hb_beater;
205 	xpc_hb_beater(0);
206 }
207 
208 static void
209 xpc_stop_hb_beater(void)
210 {
211 	del_timer_sync(&xpc_hb_timer);
212 	xpc_arch_ops.heartbeat_exit();
213 }
214 
215 /*
216  * At periodic intervals, scan through all active partitions and ensure
217  * their heartbeat is still active.  If not, the partition is deactivated.
218  */
219 static void
220 xpc_check_remote_hb(void)
221 {
222 	struct xpc_partition *part;
223 	short partid;
224 	enum xp_retval ret;
225 
226 	for (partid = 0; partid < xp_max_npartitions; partid++) {
227 
228 		if (xpc_exiting)
229 			break;
230 
231 		if (partid == xp_partition_id)
232 			continue;
233 
234 		part = &xpc_partitions[partid];
235 
236 		if (part->act_state == XPC_P_AS_INACTIVE ||
237 		    part->act_state == XPC_P_AS_DEACTIVATING) {
238 			continue;
239 		}
240 
241 		ret = xpc_arch_ops.get_remote_heartbeat(part);
242 		if (ret != xpSuccess)
243 			XPC_DEACTIVATE_PARTITION(part, ret);
244 	}
245 }
246 
247 /*
248  * This thread is responsible for nearly all of the partition
249  * activation/deactivation.
250  */
251 static int
252 xpc_hb_checker(void *ignore)
253 {
254 	int force_IRQ = 0;
255 
256 	/* this thread was marked active by xpc_hb_init() */
257 
258 	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
259 
260 	/* set our heartbeating to other partitions into motion */
261 	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
262 	xpc_start_hb_beater();
263 
264 	while (!xpc_exiting) {
265 
266 		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
267 			"been received\n",
268 			(int)(xpc_hb_check_timeout - jiffies),
269 			xpc_activate_IRQ_rcvd);
270 
271 		/* checking of remote heartbeats is skewed by IRQ handling */
272 		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
273 			xpc_hb_check_timeout = jiffies +
274 			    (xpc_hb_check_interval * HZ);
275 
276 			dev_dbg(xpc_part, "checking remote heartbeats\n");
277 			xpc_check_remote_hb();
278 
279 			/*
280 			 * On sn2 we need to periodically recheck to ensure no
281 			 * IRQ/amo pairs have been missed.
282 			 */
283 			if (is_shub())
284 				force_IRQ = 1;
285 		}
286 
287 		/* check for outstanding IRQs */
288 		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
289 			force_IRQ = 0;
290 			dev_dbg(xpc_part, "processing activate IRQs "
291 				"received\n");
292 			xpc_arch_ops.process_activate_IRQ_rcvd();
293 		}
294 
295 		/* wait for IRQ or timeout */
296 		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
297 					       (time_is_before_eq_jiffies(
298 						xpc_hb_check_timeout) ||
299 						xpc_activate_IRQ_rcvd > 0 ||
300 						xpc_exiting));
301 	}
302 
303 	xpc_stop_hb_beater();
304 
305 	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
306 
307 	/* mark this thread as having exited */
308 	complete(&xpc_hb_checker_exited);
309 	return 0;
310 }
311 
312 /*
313  * This thread will attempt to discover other partitions to activate
314  * based on info provided by SAL. This new thread is short lived and
315  * will exit once discovery is complete.
316  */
317 static int
318 xpc_initiate_discovery(void *ignore)
319 {
320 	xpc_discovery();
321 
322 	dev_dbg(xpc_part, "discovery thread is exiting\n");
323 
324 	/* mark this thread as having exited */
325 	complete(&xpc_discovery_exited);
326 	return 0;
327 }
328 
329 /*
330  * The first kthread assigned to a newly activated partition is the one
331  * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
332  * that kthread until the partition is brought down, at which time that kthread
333  * returns back to XPC HB. (The return of that kthread will signify to XPC HB
334  * that XPC has dismantled all communication infrastructure for the associated
335  * partition.) This kthread becomes the channel manager for that partition.
336  *
337  * Each active partition has a channel manager, who, besides connecting and
338  * disconnecting channels, will ensure that each of the partition's connected
339  * channels has the required number of assigned kthreads to get the work done.
340  */
341 static void
342 xpc_channel_mgr(struct xpc_partition *part)
343 {
344 	while (part->act_state != XPC_P_AS_DEACTIVATING ||
345 	       atomic_read(&part->nchannels_active) > 0 ||
346 	       !xpc_partition_disengaged(part)) {
347 
348 		xpc_process_sent_chctl_flags(part);
349 
350 		/*
351 		 * Wait until we've been requested to activate kthreads or
352 		 * all of the channel's message queues have been torn down or
353 		 * a signal is pending.
354 		 *
355 		 * The channel_mgr_requests is set to 1 after being awakened,
356 		 * This is done to prevent the channel mgr from making one pass
357 		 * through the loop for each request, since he will
358 		 * be servicing all the requests in one pass. The reason it's
359 		 * set to 1 instead of 0 is so that other kthreads will know
360 		 * that the channel mgr is running and won't bother trying to
361 		 * wake him up.
362 		 */
363 		atomic_dec(&part->channel_mgr_requests);
364 		(void)wait_event_interruptible(part->channel_mgr_wq,
365 				(atomic_read(&part->channel_mgr_requests) > 0 ||
366 				 part->chctl.all_flags != 0 ||
367 				 (part->act_state == XPC_P_AS_DEACTIVATING &&
368 				 atomic_read(&part->nchannels_active) == 0 &&
369 				 xpc_partition_disengaged(part))));
370 		atomic_set(&part->channel_mgr_requests, 1);
371 	}
372 }
373 
374 /*
375  * Guarantee that the kzalloc'd memory is cacheline aligned.
376  */
377 void *
378 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
379 {
380 	/* see if kzalloc will give us cachline aligned memory by default */
381 	*base = kzalloc(size, flags);
382 	if (*base == NULL)
383 		return NULL;
384 
385 	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
386 		return *base;
387 
388 	kfree(*base);
389 
390 	/* nope, we'll have to do it ourselves */
391 	*base = kzalloc(size + L1_CACHE_BYTES, flags);
392 	if (*base == NULL)
393 		return NULL;
394 
395 	return (void *)L1_CACHE_ALIGN((u64)*base);
396 }
397 
398 /*
399  * Setup the channel structures necessary to support XPartition Communication
400  * between the specified remote partition and the local one.
401  */
402 static enum xp_retval
403 xpc_setup_ch_structures(struct xpc_partition *part)
404 {
405 	enum xp_retval ret;
406 	int ch_number;
407 	struct xpc_channel *ch;
408 	short partid = XPC_PARTID(part);
409 
410 	/*
411 	 * Allocate all of the channel structures as a contiguous chunk of
412 	 * memory.
413 	 */
414 	DBUG_ON(part->channels != NULL);
415 	part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
416 				 GFP_KERNEL);
417 	if (part->channels == NULL) {
418 		dev_err(xpc_chan, "can't get memory for channels\n");
419 		return xpNoMemory;
420 	}
421 
422 	/* allocate the remote open and close args */
423 
424 	part->remote_openclose_args =
425 	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
426 					  GFP_KERNEL, &part->
427 					  remote_openclose_args_base);
428 	if (part->remote_openclose_args == NULL) {
429 		dev_err(xpc_chan, "can't get memory for remote connect args\n");
430 		ret = xpNoMemory;
431 		goto out_1;
432 	}
433 
434 	part->chctl.all_flags = 0;
435 	spin_lock_init(&part->chctl_lock);
436 
437 	atomic_set(&part->channel_mgr_requests, 1);
438 	init_waitqueue_head(&part->channel_mgr_wq);
439 
440 	part->nchannels = XPC_MAX_NCHANNELS;
441 
442 	atomic_set(&part->nchannels_active, 0);
443 	atomic_set(&part->nchannels_engaged, 0);
444 
445 	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
446 		ch = &part->channels[ch_number];
447 
448 		ch->partid = partid;
449 		ch->number = ch_number;
450 		ch->flags = XPC_C_DISCONNECTED;
451 
452 		atomic_set(&ch->kthreads_assigned, 0);
453 		atomic_set(&ch->kthreads_idle, 0);
454 		atomic_set(&ch->kthreads_active, 0);
455 
456 		atomic_set(&ch->references, 0);
457 		atomic_set(&ch->n_to_notify, 0);
458 
459 		spin_lock_init(&ch->lock);
460 		init_completion(&ch->wdisconnect_wait);
461 
462 		atomic_set(&ch->n_on_msg_allocate_wq, 0);
463 		init_waitqueue_head(&ch->msg_allocate_wq);
464 		init_waitqueue_head(&ch->idle_wq);
465 	}
466 
467 	ret = xpc_arch_ops.setup_ch_structures(part);
468 	if (ret != xpSuccess)
469 		goto out_2;
470 
471 	/*
472 	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
473 	 * we're declaring that this partition is ready to go.
474 	 */
475 	part->setup_state = XPC_P_SS_SETUP;
476 
477 	return xpSuccess;
478 
479 	/* setup of ch structures failed */
480 out_2:
481 	kfree(part->remote_openclose_args_base);
482 	part->remote_openclose_args = NULL;
483 out_1:
484 	kfree(part->channels);
485 	part->channels = NULL;
486 	return ret;
487 }
488 
489 /*
490  * Teardown the channel structures necessary to support XPartition Communication
491  * between the specified remote partition and the local one.
492  */
493 static void
494 xpc_teardown_ch_structures(struct xpc_partition *part)
495 {
496 	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
497 	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
498 
499 	/*
500 	 * Make this partition inaccessible to local processes by marking it
501 	 * as no longer setup. Then wait before proceeding with the teardown
502 	 * until all existing references cease.
503 	 */
504 	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
505 	part->setup_state = XPC_P_SS_WTEARDOWN;
506 
507 	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
508 
509 	/* now we can begin tearing down the infrastructure */
510 
511 	xpc_arch_ops.teardown_ch_structures(part);
512 
513 	kfree(part->remote_openclose_args_base);
514 	part->remote_openclose_args = NULL;
515 	kfree(part->channels);
516 	part->channels = NULL;
517 
518 	part->setup_state = XPC_P_SS_TORNDOWN;
519 }
520 
521 /*
522  * When XPC HB determines that a partition has come up, it will create a new
523  * kthread and that kthread will call this function to attempt to set up the
524  * basic infrastructure used for Cross Partition Communication with the newly
525  * upped partition.
526  *
527  * The kthread that was created by XPC HB and which setup the XPC
528  * infrastructure will remain assigned to the partition becoming the channel
529  * manager for that partition until the partition is deactivating, at which
530  * time the kthread will teardown the XPC infrastructure and then exit.
531  */
532 static int
533 xpc_activating(void *__partid)
534 {
535 	short partid = (u64)__partid;
536 	struct xpc_partition *part = &xpc_partitions[partid];
537 	unsigned long irq_flags;
538 
539 	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
540 
541 	spin_lock_irqsave(&part->act_lock, irq_flags);
542 
543 	if (part->act_state == XPC_P_AS_DEACTIVATING) {
544 		part->act_state = XPC_P_AS_INACTIVE;
545 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
546 		part->remote_rp_pa = 0;
547 		return 0;
548 	}
549 
550 	/* indicate the thread is activating */
551 	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
552 	part->act_state = XPC_P_AS_ACTIVATING;
553 
554 	XPC_SET_REASON(part, 0, 0);
555 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
556 
557 	dev_dbg(xpc_part, "activating partition %d\n", partid);
558 
559 	xpc_arch_ops.allow_hb(partid);
560 
561 	if (xpc_setup_ch_structures(part) == xpSuccess) {
562 		(void)xpc_part_ref(part);	/* this will always succeed */
563 
564 		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
565 			xpc_mark_partition_active(part);
566 			xpc_channel_mgr(part);
567 			/* won't return until partition is deactivating */
568 		}
569 
570 		xpc_part_deref(part);
571 		xpc_teardown_ch_structures(part);
572 	}
573 
574 	xpc_arch_ops.disallow_hb(partid);
575 	xpc_mark_partition_inactive(part);
576 
577 	if (part->reason == xpReactivating) {
578 		/* interrupting ourselves results in activating partition */
579 		xpc_arch_ops.request_partition_reactivation(part);
580 	}
581 
582 	return 0;
583 }
584 
585 void
586 xpc_activate_partition(struct xpc_partition *part)
587 {
588 	short partid = XPC_PARTID(part);
589 	unsigned long irq_flags;
590 	struct task_struct *kthread;
591 
592 	spin_lock_irqsave(&part->act_lock, irq_flags);
593 
594 	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
595 
596 	part->act_state = XPC_P_AS_ACTIVATION_REQ;
597 	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
598 
599 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
600 
601 	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
602 			      partid);
603 	if (IS_ERR(kthread)) {
604 		spin_lock_irqsave(&part->act_lock, irq_flags);
605 		part->act_state = XPC_P_AS_INACTIVE;
606 		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
607 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
608 	}
609 }
610 
611 void
612 xpc_activate_kthreads(struct xpc_channel *ch, int needed)
613 {
614 	int idle = atomic_read(&ch->kthreads_idle);
615 	int assigned = atomic_read(&ch->kthreads_assigned);
616 	int wakeup;
617 
618 	DBUG_ON(needed <= 0);
619 
620 	if (idle > 0) {
621 		wakeup = (needed > idle) ? idle : needed;
622 		needed -= wakeup;
623 
624 		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
625 			"channel=%d\n", wakeup, ch->partid, ch->number);
626 
627 		/* only wakeup the requested number of kthreads */
628 		wake_up_nr(&ch->idle_wq, wakeup);
629 	}
630 
631 	if (needed <= 0)
632 		return;
633 
634 	if (needed + assigned > ch->kthreads_assigned_limit) {
635 		needed = ch->kthreads_assigned_limit - assigned;
636 		if (needed <= 0)
637 			return;
638 	}
639 
640 	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
641 		needed, ch->partid, ch->number);
642 
643 	xpc_create_kthreads(ch, needed, 0);
644 }
645 
646 /*
647  * This function is where XPC's kthreads wait for messages to deliver.
648  */
649 static void
650 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
651 {
652 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
653 		xpc_arch_ops.n_of_deliverable_payloads;
654 
655 	do {
656 		/* deliver messages to their intended recipients */
657 
658 		while (n_of_deliverable_payloads(ch) > 0 &&
659 		       !(ch->flags & XPC_C_DISCONNECTING)) {
660 			xpc_deliver_payload(ch);
661 		}
662 
663 		if (atomic_inc_return(&ch->kthreads_idle) >
664 		    ch->kthreads_idle_limit) {
665 			/* too many idle kthreads on this channel */
666 			atomic_dec(&ch->kthreads_idle);
667 			break;
668 		}
669 
670 		dev_dbg(xpc_chan, "idle kthread calling "
671 			"wait_event_interruptible_exclusive()\n");
672 
673 		(void)wait_event_interruptible_exclusive(ch->idle_wq,
674 				(n_of_deliverable_payloads(ch) > 0 ||
675 				 (ch->flags & XPC_C_DISCONNECTING)));
676 
677 		atomic_dec(&ch->kthreads_idle);
678 
679 	} while (!(ch->flags & XPC_C_DISCONNECTING));
680 }
681 
682 static int
683 xpc_kthread_start(void *args)
684 {
685 	short partid = XPC_UNPACK_ARG1(args);
686 	u16 ch_number = XPC_UNPACK_ARG2(args);
687 	struct xpc_partition *part = &xpc_partitions[partid];
688 	struct xpc_channel *ch;
689 	int n_needed;
690 	unsigned long irq_flags;
691 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
692 		xpc_arch_ops.n_of_deliverable_payloads;
693 
694 	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
695 		partid, ch_number);
696 
697 	ch = &part->channels[ch_number];
698 
699 	if (!(ch->flags & XPC_C_DISCONNECTING)) {
700 
701 		/* let registerer know that connection has been established */
702 
703 		spin_lock_irqsave(&ch->lock, irq_flags);
704 		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
705 			ch->flags |= XPC_C_CONNECTEDCALLOUT;
706 			spin_unlock_irqrestore(&ch->lock, irq_flags);
707 
708 			xpc_connected_callout(ch);
709 
710 			spin_lock_irqsave(&ch->lock, irq_flags);
711 			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
712 			spin_unlock_irqrestore(&ch->lock, irq_flags);
713 
714 			/*
715 			 * It is possible that while the callout was being
716 			 * made that the remote partition sent some messages.
717 			 * If that is the case, we may need to activate
718 			 * additional kthreads to help deliver them. We only
719 			 * need one less than total #of messages to deliver.
720 			 */
721 			n_needed = n_of_deliverable_payloads(ch) - 1;
722 			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
723 				xpc_activate_kthreads(ch, n_needed);
724 
725 		} else {
726 			spin_unlock_irqrestore(&ch->lock, irq_flags);
727 		}
728 
729 		xpc_kthread_waitmsgs(part, ch);
730 	}
731 
732 	/* let registerer know that connection is disconnecting */
733 
734 	spin_lock_irqsave(&ch->lock, irq_flags);
735 	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
736 	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
737 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
738 		spin_unlock_irqrestore(&ch->lock, irq_flags);
739 
740 		xpc_disconnect_callout(ch, xpDisconnecting);
741 
742 		spin_lock_irqsave(&ch->lock, irq_flags);
743 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
744 	}
745 	spin_unlock_irqrestore(&ch->lock, irq_flags);
746 
747 	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
748 	    atomic_dec_return(&part->nchannels_engaged) == 0) {
749 		xpc_arch_ops.indicate_partition_disengaged(part);
750 	}
751 
752 	xpc_msgqueue_deref(ch);
753 
754 	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
755 		partid, ch_number);
756 
757 	xpc_part_deref(part);
758 	return 0;
759 }
760 
761 /*
762  * For each partition that XPC has established communications with, there is
763  * a minimum of one kernel thread assigned to perform any operation that
764  * may potentially sleep or block (basically the callouts to the asynchronous
765  * functions registered via xpc_connect()).
766  *
767  * Additional kthreads are created and destroyed by XPC as the workload
768  * demands.
769  *
770  * A kthread is assigned to one of the active channels that exists for a given
771  * partition.
772  */
773 void
774 xpc_create_kthreads(struct xpc_channel *ch, int needed,
775 		    int ignore_disconnecting)
776 {
777 	unsigned long irq_flags;
778 	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
779 	struct xpc_partition *part = &xpc_partitions[ch->partid];
780 	struct task_struct *kthread;
781 	void (*indicate_partition_disengaged) (struct xpc_partition *) =
782 		xpc_arch_ops.indicate_partition_disengaged;
783 
784 	while (needed-- > 0) {
785 
786 		/*
787 		 * The following is done on behalf of the newly created
788 		 * kthread. That kthread is responsible for doing the
789 		 * counterpart to the following before it exits.
790 		 */
791 		if (ignore_disconnecting) {
792 			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
793 				/* kthreads assigned had gone to zero */
794 				BUG_ON(!(ch->flags &
795 					 XPC_C_DISCONNECTINGCALLOUT_MADE));
796 				break;
797 			}
798 
799 		} else if (ch->flags & XPC_C_DISCONNECTING) {
800 			break;
801 
802 		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
803 			   atomic_inc_return(&part->nchannels_engaged) == 1) {
804 			xpc_arch_ops.indicate_partition_engaged(part);
805 		}
806 		(void)xpc_part_ref(part);
807 		xpc_msgqueue_ref(ch);
808 
809 		kthread = kthread_run(xpc_kthread_start, (void *)args,
810 				      "xpc%02dc%d", ch->partid, ch->number);
811 		if (IS_ERR(kthread)) {
812 			/* the fork failed */
813 
814 			/*
815 			 * NOTE: if (ignore_disconnecting &&
816 			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
817 			 * then we'll deadlock if all other kthreads assigned
818 			 * to this channel are blocked in the channel's
819 			 * registerer, because the only thing that will unblock
820 			 * them is the xpDisconnecting callout that this
821 			 * failed kthread_run() would have made.
822 			 */
823 
824 			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
825 			    atomic_dec_return(&part->nchannels_engaged) == 0) {
826 				indicate_partition_disengaged(part);
827 			}
828 			xpc_msgqueue_deref(ch);
829 			xpc_part_deref(part);
830 
831 			if (atomic_read(&ch->kthreads_assigned) <
832 			    ch->kthreads_idle_limit) {
833 				/*
834 				 * Flag this as an error only if we have an
835 				 * insufficient #of kthreads for the channel
836 				 * to function.
837 				 */
838 				spin_lock_irqsave(&ch->lock, irq_flags);
839 				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
840 						       &irq_flags);
841 				spin_unlock_irqrestore(&ch->lock, irq_flags);
842 			}
843 			break;
844 		}
845 	}
846 }
847 
848 void
849 xpc_disconnect_wait(int ch_number)
850 {
851 	unsigned long irq_flags;
852 	short partid;
853 	struct xpc_partition *part;
854 	struct xpc_channel *ch;
855 	int wakeup_channel_mgr;
856 
857 	/* now wait for all callouts to the caller's function to cease */
858 	for (partid = 0; partid < xp_max_npartitions; partid++) {
859 		part = &xpc_partitions[partid];
860 
861 		if (!xpc_part_ref(part))
862 			continue;
863 
864 		ch = &part->channels[ch_number];
865 
866 		if (!(ch->flags & XPC_C_WDISCONNECT)) {
867 			xpc_part_deref(part);
868 			continue;
869 		}
870 
871 		wait_for_completion(&ch->wdisconnect_wait);
872 
873 		spin_lock_irqsave(&ch->lock, irq_flags);
874 		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
875 		wakeup_channel_mgr = 0;
876 
877 		if (ch->delayed_chctl_flags) {
878 			if (part->act_state != XPC_P_AS_DEACTIVATING) {
879 				spin_lock(&part->chctl_lock);
880 				part->chctl.flags[ch->number] |=
881 				    ch->delayed_chctl_flags;
882 				spin_unlock(&part->chctl_lock);
883 				wakeup_channel_mgr = 1;
884 			}
885 			ch->delayed_chctl_flags = 0;
886 		}
887 
888 		ch->flags &= ~XPC_C_WDISCONNECT;
889 		spin_unlock_irqrestore(&ch->lock, irq_flags);
890 
891 		if (wakeup_channel_mgr)
892 			xpc_wakeup_channel_mgr(part);
893 
894 		xpc_part_deref(part);
895 	}
896 }
897 
898 static int
899 xpc_setup_partitions(void)
900 {
901 	short partid;
902 	struct xpc_partition *part;
903 
904 	xpc_partitions = kzalloc(sizeof(struct xpc_partition) *
905 				 xp_max_npartitions, GFP_KERNEL);
906 	if (xpc_partitions == NULL) {
907 		dev_err(xpc_part, "can't get memory for partition structure\n");
908 		return -ENOMEM;
909 	}
910 
911 	/*
912 	 * The first few fields of each entry of xpc_partitions[] need to
913 	 * be initialized now so that calls to xpc_connect() and
914 	 * xpc_disconnect() can be made prior to the activation of any remote
915 	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
916 	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
917 	 * PARTITION HAS BEEN ACTIVATED.
918 	 */
919 	for (partid = 0; partid < xp_max_npartitions; partid++) {
920 		part = &xpc_partitions[partid];
921 
922 		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
923 
924 		part->activate_IRQ_rcvd = 0;
925 		spin_lock_init(&part->act_lock);
926 		part->act_state = XPC_P_AS_INACTIVE;
927 		XPC_SET_REASON(part, 0, 0);
928 
929 		init_timer(&part->disengage_timer);
930 		part->disengage_timer.function =
931 		    xpc_timeout_partition_disengage;
932 		part->disengage_timer.data = (unsigned long)part;
933 
934 		part->setup_state = XPC_P_SS_UNSET;
935 		init_waitqueue_head(&part->teardown_wq);
936 		atomic_set(&part->references, 0);
937 	}
938 
939 	return xpc_arch_ops.setup_partitions();
940 }
941 
942 static void
943 xpc_teardown_partitions(void)
944 {
945 	xpc_arch_ops.teardown_partitions();
946 	kfree(xpc_partitions);
947 }
948 
949 static void
950 xpc_do_exit(enum xp_retval reason)
951 {
952 	short partid;
953 	int active_part_count, printed_waiting_msg = 0;
954 	struct xpc_partition *part;
955 	unsigned long printmsg_time, disengage_timeout = 0;
956 
957 	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
958 	DBUG_ON(xpc_exiting == 1);
959 
960 	/*
961 	 * Let the heartbeat checker thread and the discovery thread
962 	 * (if one is running) know that they should exit. Also wake up
963 	 * the heartbeat checker thread in case it's sleeping.
964 	 */
965 	xpc_exiting = 1;
966 	wake_up_interruptible(&xpc_activate_IRQ_wq);
967 
968 	/* wait for the discovery thread to exit */
969 	wait_for_completion(&xpc_discovery_exited);
970 
971 	/* wait for the heartbeat checker thread to exit */
972 	wait_for_completion(&xpc_hb_checker_exited);
973 
974 	/* sleep for a 1/3 of a second or so */
975 	(void)msleep_interruptible(300);
976 
977 	/* wait for all partitions to become inactive */
978 
979 	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
980 	xpc_disengage_timedout = 0;
981 
982 	do {
983 		active_part_count = 0;
984 
985 		for (partid = 0; partid < xp_max_npartitions; partid++) {
986 			part = &xpc_partitions[partid];
987 
988 			if (xpc_partition_disengaged(part) &&
989 			    part->act_state == XPC_P_AS_INACTIVE) {
990 				continue;
991 			}
992 
993 			active_part_count++;
994 
995 			XPC_DEACTIVATE_PARTITION(part, reason);
996 
997 			if (part->disengage_timeout > disengage_timeout)
998 				disengage_timeout = part->disengage_timeout;
999 		}
1000 
1001 		if (xpc_arch_ops.any_partition_engaged()) {
1002 			if (time_is_before_jiffies(printmsg_time)) {
1003 				dev_info(xpc_part, "waiting for remote "
1004 					 "partitions to deactivate, timeout in "
1005 					 "%ld seconds\n", (disengage_timeout -
1006 					 jiffies) / HZ);
1007 				printmsg_time = jiffies +
1008 				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
1009 				printed_waiting_msg = 1;
1010 			}
1011 
1012 		} else if (active_part_count > 0) {
1013 			if (printed_waiting_msg) {
1014 				dev_info(xpc_part, "waiting for local partition"
1015 					 " to deactivate\n");
1016 				printed_waiting_msg = 0;
1017 			}
1018 
1019 		} else {
1020 			if (!xpc_disengage_timedout) {
1021 				dev_info(xpc_part, "all partitions have "
1022 					 "deactivated\n");
1023 			}
1024 			break;
1025 		}
1026 
1027 		/* sleep for a 1/3 of a second or so */
1028 		(void)msleep_interruptible(300);
1029 
1030 	} while (1);
1031 
1032 	DBUG_ON(xpc_arch_ops.any_partition_engaged());
1033 
1034 	xpc_teardown_rsvd_page();
1035 
1036 	if (reason == xpUnloading) {
1037 		(void)unregister_die_notifier(&xpc_die_notifier);
1038 		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1039 	}
1040 
1041 	/* clear the interface to XPC's functions */
1042 	xpc_clear_interface();
1043 
1044 	if (xpc_sysctl)
1045 		unregister_sysctl_table(xpc_sysctl);
1046 
1047 	xpc_teardown_partitions();
1048 
1049 	if (is_shub())
1050 		xpc_exit_sn2();
1051 	else if (is_uv())
1052 		xpc_exit_uv();
1053 }
1054 
1055 /*
1056  * This function is called when the system is being rebooted.
1057  */
1058 static int
1059 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1060 {
1061 	enum xp_retval reason;
1062 
1063 	switch (event) {
1064 	case SYS_RESTART:
1065 		reason = xpSystemReboot;
1066 		break;
1067 	case SYS_HALT:
1068 		reason = xpSystemHalt;
1069 		break;
1070 	case SYS_POWER_OFF:
1071 		reason = xpSystemPoweroff;
1072 		break;
1073 	default:
1074 		reason = xpSystemGoingDown;
1075 	}
1076 
1077 	xpc_do_exit(reason);
1078 	return NOTIFY_DONE;
1079 }
1080 
1081 /*
1082  * Notify other partitions to deactivate from us by first disengaging from all
1083  * references to our memory.
1084  */
1085 static void
1086 xpc_die_deactivate(void)
1087 {
1088 	struct xpc_partition *part;
1089 	short partid;
1090 	int any_engaged;
1091 	long keep_waiting;
1092 	long wait_to_print;
1093 
1094 	/* keep xpc_hb_checker thread from doing anything (just in case) */
1095 	xpc_exiting = 1;
1096 
1097 	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1098 
1099 	for (partid = 0; partid < xp_max_npartitions; partid++) {
1100 		part = &xpc_partitions[partid];
1101 
1102 		if (xpc_arch_ops.partition_engaged(partid) ||
1103 		    part->act_state != XPC_P_AS_INACTIVE) {
1104 			xpc_arch_ops.request_partition_deactivation(part);
1105 			xpc_arch_ops.indicate_partition_disengaged(part);
1106 		}
1107 	}
1108 
1109 	/*
1110 	 * Though we requested that all other partitions deactivate from us,
1111 	 * we only wait until they've all disengaged or we've reached the
1112 	 * defined timelimit.
1113 	 *
1114 	 * Given that one iteration through the following while-loop takes
1115 	 * approximately 200 microseconds, calculate the #of loops to take
1116 	 * before bailing and the #of loops before printing a waiting message.
1117 	 */
1118 	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1119 	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1120 
1121 	while (1) {
1122 		any_engaged = xpc_arch_ops.any_partition_engaged();
1123 		if (!any_engaged) {
1124 			dev_info(xpc_part, "all partitions have deactivated\n");
1125 			break;
1126 		}
1127 
1128 		if (!keep_waiting--) {
1129 			for (partid = 0; partid < xp_max_npartitions;
1130 			     partid++) {
1131 				if (xpc_arch_ops.partition_engaged(partid)) {
1132 					dev_info(xpc_part, "deactivate from "
1133 						 "remote partition %d timed "
1134 						 "out\n", partid);
1135 				}
1136 			}
1137 			break;
1138 		}
1139 
1140 		if (!wait_to_print--) {
1141 			dev_info(xpc_part, "waiting for remote partitions to "
1142 				 "deactivate, timeout in %ld seconds\n",
1143 				 keep_waiting / (1000 * 5));
1144 			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1145 			    1000 * 5;
1146 		}
1147 
1148 		udelay(200);
1149 	}
1150 }
1151 
1152 /*
1153  * This function is called when the system is being restarted or halted due
1154  * to some sort of system failure. If this is the case we need to notify the
1155  * other partitions to disengage from all references to our memory.
1156  * This function can also be called when our heartbeater could be offlined
1157  * for a time. In this case we need to notify other partitions to not worry
1158  * about the lack of a heartbeat.
1159  */
1160 static int
1161 xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused)
1162 {
1163 #ifdef CONFIG_IA64		/* !!! temporary kludge */
1164 	switch (event) {
1165 	case DIE_MACHINE_RESTART:
1166 	case DIE_MACHINE_HALT:
1167 		xpc_die_deactivate();
1168 		break;
1169 
1170 	case DIE_KDEBUG_ENTER:
1171 		/* Should lack of heartbeat be ignored by other partitions? */
1172 		if (!xpc_kdebug_ignore)
1173 			break;
1174 
1175 		/* fall through */
1176 	case DIE_MCA_MONARCH_ENTER:
1177 	case DIE_INIT_MONARCH_ENTER:
1178 		xpc_arch_ops.offline_heartbeat();
1179 		break;
1180 
1181 	case DIE_KDEBUG_LEAVE:
1182 		/* Is lack of heartbeat being ignored by other partitions? */
1183 		if (!xpc_kdebug_ignore)
1184 			break;
1185 
1186 		/* fall through */
1187 	case DIE_MCA_MONARCH_LEAVE:
1188 	case DIE_INIT_MONARCH_LEAVE:
1189 		xpc_arch_ops.online_heartbeat();
1190 		break;
1191 	}
1192 #else
1193 	xpc_die_deactivate();
1194 #endif
1195 
1196 	return NOTIFY_DONE;
1197 }
1198 
1199 int __init
1200 xpc_init(void)
1201 {
1202 	int ret;
1203 	struct task_struct *kthread;
1204 
1205 	dev_set_name(xpc_part, "part");
1206 	dev_set_name(xpc_chan, "chan");
1207 
1208 	if (is_shub()) {
1209 		/*
1210 		 * The ia64-sn2 architecture supports at most 64 partitions.
1211 		 * And the inability to unregister remote amos restricts us
1212 		 * further to only support exactly 64 partitions on this
1213 		 * architecture, no less.
1214 		 */
1215 		if (xp_max_npartitions != 64) {
1216 			dev_err(xpc_part, "max #of partitions not set to 64\n");
1217 			ret = -EINVAL;
1218 		} else {
1219 			ret = xpc_init_sn2();
1220 		}
1221 
1222 	} else if (is_uv()) {
1223 		ret = xpc_init_uv();
1224 
1225 	} else {
1226 		ret = -ENODEV;
1227 	}
1228 
1229 	if (ret != 0)
1230 		return ret;
1231 
1232 	ret = xpc_setup_partitions();
1233 	if (ret != 0) {
1234 		dev_err(xpc_part, "can't get memory for partition structure\n");
1235 		goto out_1;
1236 	}
1237 
1238 	xpc_sysctl = register_sysctl_table(xpc_sys_dir);
1239 
1240 	/*
1241 	 * Fill the partition reserved page with the information needed by
1242 	 * other partitions to discover we are alive and establish initial
1243 	 * communications.
1244 	 */
1245 	ret = xpc_setup_rsvd_page();
1246 	if (ret != 0) {
1247 		dev_err(xpc_part, "can't setup our reserved page\n");
1248 		goto out_2;
1249 	}
1250 
1251 	/* add ourselves to the reboot_notifier_list */
1252 	ret = register_reboot_notifier(&xpc_reboot_notifier);
1253 	if (ret != 0)
1254 		dev_warn(xpc_part, "can't register reboot notifier\n");
1255 
1256 	/* add ourselves to the die_notifier list */
1257 	ret = register_die_notifier(&xpc_die_notifier);
1258 	if (ret != 0)
1259 		dev_warn(xpc_part, "can't register die notifier\n");
1260 
1261 	/*
1262 	 * The real work-horse behind xpc.  This processes incoming
1263 	 * interrupts and monitors remote heartbeats.
1264 	 */
1265 	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1266 	if (IS_ERR(kthread)) {
1267 		dev_err(xpc_part, "failed while forking hb check thread\n");
1268 		ret = -EBUSY;
1269 		goto out_3;
1270 	}
1271 
1272 	/*
1273 	 * Startup a thread that will attempt to discover other partitions to
1274 	 * activate based on info provided by SAL. This new thread is short
1275 	 * lived and will exit once discovery is complete.
1276 	 */
1277 	kthread = kthread_run(xpc_initiate_discovery, NULL,
1278 			      XPC_DISCOVERY_THREAD_NAME);
1279 	if (IS_ERR(kthread)) {
1280 		dev_err(xpc_part, "failed while forking discovery thread\n");
1281 
1282 		/* mark this new thread as a non-starter */
1283 		complete(&xpc_discovery_exited);
1284 
1285 		xpc_do_exit(xpUnloading);
1286 		return -EBUSY;
1287 	}
1288 
1289 	/* set the interface to point at XPC's functions */
1290 	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1291 			  xpc_initiate_send, xpc_initiate_send_notify,
1292 			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
1293 
1294 	return 0;
1295 
1296 	/* initialization was not successful */
1297 out_3:
1298 	xpc_teardown_rsvd_page();
1299 
1300 	(void)unregister_die_notifier(&xpc_die_notifier);
1301 	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1302 out_2:
1303 	if (xpc_sysctl)
1304 		unregister_sysctl_table(xpc_sysctl);
1305 
1306 	xpc_teardown_partitions();
1307 out_1:
1308 	if (is_shub())
1309 		xpc_exit_sn2();
1310 	else if (is_uv())
1311 		xpc_exit_uv();
1312 	return ret;
1313 }
1314 
1315 module_init(xpc_init);
1316 
1317 void __exit
1318 xpc_exit(void)
1319 {
1320 	xpc_do_exit(xpUnloading);
1321 }
1322 
1323 module_exit(xpc_exit);
1324 
1325 MODULE_AUTHOR("Silicon Graphics, Inc.");
1326 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1327 MODULE_LICENSE("GPL");
1328 
1329 module_param(xpc_hb_interval, int, 0);
1330 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1331 		 "heartbeat increments.");
1332 
1333 module_param(xpc_hb_check_interval, int, 0);
1334 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1335 		 "heartbeat checks.");
1336 
1337 module_param(xpc_disengage_timelimit, int, 0);
1338 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1339 		 "for disengage to complete.");
1340 
1341 module_param(xpc_kdebug_ignore, int, 0);
1342 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1343 		 "other partitions when dropping into kdebug.");
1344