xref: /openbmc/linux/drivers/misc/sgi-xp/xpc_main.c (revision b627b4ed)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8 
9 /*
10  * Cross Partition Communication (XPC) support - standard version.
11  *
12  *	XPC provides a message passing capability that crosses partition
13  *	boundaries. This module is made up of two parts:
14  *
15  *	    partition	This part detects the presence/absence of other
16  *			partitions. It provides a heartbeat and monitors
17  *			the heartbeats of other partitions.
18  *
19  *	    channel	This part manages the channels and sends/receives
20  *			messages across them to/from other partitions.
21  *
22  *	There are a couple of additional functions residing in XP, which
23  *	provide an interface to XPC for its users.
24  *
25  *
26  *	Caveats:
27  *
28  *	  . Currently on sn2, we have no way to determine which nasid an IRQ
29  *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
30  *	    followed by an IPI. The amo indicates where data is to be pulled
31  *	    from, so after the IPI arrives, the remote partition checks the amo
32  *	    word. The IPI can actually arrive before the amo however, so other
33  *	    code must periodically check for this case. Also, remote amo
34  *	    operations do not reliably time out. Thus we do a remote PIO read
35  *	    solely to know whether the remote partition is down and whether we
36  *	    should stop sending IPIs to it. This remote PIO read operation is
37  *	    set up in a special nofault region so SAL knows to ignore (and
38  *	    cleanup) any errors due to the remote amo write, PIO read, and/or
39  *	    PIO write operations.
40  *
41  *	    If/when new hardware solves this IPI problem, we should abandon
42  *	    the current approach.
43  *
44  */
45 
46 #include <linux/module.h>
47 #include <linux/sysctl.h>
48 #include <linux/device.h>
49 #include <linux/delay.h>
50 #include <linux/reboot.h>
51 #include <linux/kdebug.h>
52 #include <linux/kthread.h>
53 #include "xpc.h"
54 
55 /* define two XPC debug device structures to be used with dev_dbg() et al */
56 
57 struct device_driver xpc_dbg_name = {
58 	.name = "xpc"
59 };
60 
61 struct device xpc_part_dbg_subname = {
62 	.init_name = "",	/* set to "part" at xpc_init() time */
63 	.driver = &xpc_dbg_name
64 };
65 
66 struct device xpc_chan_dbg_subname = {
67 	.init_name = "",	/* set to "chan" at xpc_init() time */
68 	.driver = &xpc_dbg_name
69 };
70 
71 struct device *xpc_part = &xpc_part_dbg_subname;
72 struct device *xpc_chan = &xpc_chan_dbg_subname;
73 
74 static int xpc_kdebug_ignore;
75 
76 /* systune related variables for /proc/sys directories */
77 
78 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
79 static int xpc_hb_min_interval = 1;
80 static int xpc_hb_max_interval = 10;
81 
82 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
83 static int xpc_hb_check_min_interval = 10;
84 static int xpc_hb_check_max_interval = 120;
85 
86 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
87 static int xpc_disengage_min_timelimit;	/* = 0 */
88 static int xpc_disengage_max_timelimit = 120;
89 
90 static ctl_table xpc_sys_xpc_hb_dir[] = {
91 	{
92 	 .ctl_name = CTL_UNNUMBERED,
93 	 .procname = "hb_interval",
94 	 .data = &xpc_hb_interval,
95 	 .maxlen = sizeof(int),
96 	 .mode = 0644,
97 	 .proc_handler = &proc_dointvec_minmax,
98 	 .strategy = &sysctl_intvec,
99 	 .extra1 = &xpc_hb_min_interval,
100 	 .extra2 = &xpc_hb_max_interval},
101 	{
102 	 .ctl_name = CTL_UNNUMBERED,
103 	 .procname = "hb_check_interval",
104 	 .data = &xpc_hb_check_interval,
105 	 .maxlen = sizeof(int),
106 	 .mode = 0644,
107 	 .proc_handler = &proc_dointvec_minmax,
108 	 .strategy = &sysctl_intvec,
109 	 .extra1 = &xpc_hb_check_min_interval,
110 	 .extra2 = &xpc_hb_check_max_interval},
111 	{}
112 };
113 static ctl_table xpc_sys_xpc_dir[] = {
114 	{
115 	 .ctl_name = CTL_UNNUMBERED,
116 	 .procname = "hb",
117 	 .mode = 0555,
118 	 .child = xpc_sys_xpc_hb_dir},
119 	{
120 	 .ctl_name = CTL_UNNUMBERED,
121 	 .procname = "disengage_timelimit",
122 	 .data = &xpc_disengage_timelimit,
123 	 .maxlen = sizeof(int),
124 	 .mode = 0644,
125 	 .proc_handler = &proc_dointvec_minmax,
126 	 .strategy = &sysctl_intvec,
127 	 .extra1 = &xpc_disengage_min_timelimit,
128 	 .extra2 = &xpc_disengage_max_timelimit},
129 	{}
130 };
131 static ctl_table xpc_sys_dir[] = {
132 	{
133 	 .ctl_name = CTL_UNNUMBERED,
134 	 .procname = "xpc",
135 	 .mode = 0555,
136 	 .child = xpc_sys_xpc_dir},
137 	{}
138 };
139 static struct ctl_table_header *xpc_sysctl;
140 
141 /* non-zero if any remote partition disengage was timed out */
142 int xpc_disengage_timedout;
143 
144 /* #of activate IRQs received and not yet processed */
145 int xpc_activate_IRQ_rcvd;
146 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
147 
148 /* IRQ handler notifies this wait queue on receipt of an IRQ */
149 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
150 
151 static unsigned long xpc_hb_check_timeout;
152 static struct timer_list xpc_hb_timer;
153 
154 /* notification that the xpc_hb_checker thread has exited */
155 static DECLARE_COMPLETION(xpc_hb_checker_exited);
156 
157 /* notification that the xpc_discovery thread has exited */
158 static DECLARE_COMPLETION(xpc_discovery_exited);
159 
160 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
161 
162 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
163 static struct notifier_block xpc_reboot_notifier = {
164 	.notifier_call = xpc_system_reboot,
165 };
166 
167 static int xpc_system_die(struct notifier_block *, unsigned long, void *);
168 static struct notifier_block xpc_die_notifier = {
169 	.notifier_call = xpc_system_die,
170 };
171 
172 struct xpc_arch_operations xpc_arch_ops;
173 
174 /*
175  * Timer function to enforce the timelimit on the partition disengage.
176  */
177 static void
178 xpc_timeout_partition_disengage(unsigned long data)
179 {
180 	struct xpc_partition *part = (struct xpc_partition *)data;
181 
182 	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
183 
184 	(void)xpc_partition_disengaged(part);
185 
186 	DBUG_ON(part->disengage_timeout != 0);
187 	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
188 }
189 
190 /*
191  * Timer to produce the heartbeat.  The timer structures function is
192  * already set when this is initially called.  A tunable is used to
193  * specify when the next timeout should occur.
194  */
195 static void
196 xpc_hb_beater(unsigned long dummy)
197 {
198 	xpc_arch_ops.increment_heartbeat();
199 
200 	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
201 		wake_up_interruptible(&xpc_activate_IRQ_wq);
202 
203 	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
204 	add_timer(&xpc_hb_timer);
205 }
206 
207 static void
208 xpc_start_hb_beater(void)
209 {
210 	xpc_arch_ops.heartbeat_init();
211 	init_timer(&xpc_hb_timer);
212 	xpc_hb_timer.function = xpc_hb_beater;
213 	xpc_hb_beater(0);
214 }
215 
216 static void
217 xpc_stop_hb_beater(void)
218 {
219 	del_timer_sync(&xpc_hb_timer);
220 	xpc_arch_ops.heartbeat_exit();
221 }
222 
223 /*
224  * At periodic intervals, scan through all active partitions and ensure
225  * their heartbeat is still active.  If not, the partition is deactivated.
226  */
227 static void
228 xpc_check_remote_hb(void)
229 {
230 	struct xpc_partition *part;
231 	short partid;
232 	enum xp_retval ret;
233 
234 	for (partid = 0; partid < xp_max_npartitions; partid++) {
235 
236 		if (xpc_exiting)
237 			break;
238 
239 		if (partid == xp_partition_id)
240 			continue;
241 
242 		part = &xpc_partitions[partid];
243 
244 		if (part->act_state == XPC_P_AS_INACTIVE ||
245 		    part->act_state == XPC_P_AS_DEACTIVATING) {
246 			continue;
247 		}
248 
249 		ret = xpc_arch_ops.get_remote_heartbeat(part);
250 		if (ret != xpSuccess)
251 			XPC_DEACTIVATE_PARTITION(part, ret);
252 	}
253 }
254 
255 /*
256  * This thread is responsible for nearly all of the partition
257  * activation/deactivation.
258  */
259 static int
260 xpc_hb_checker(void *ignore)
261 {
262 	int force_IRQ = 0;
263 
264 	/* this thread was marked active by xpc_hb_init() */
265 
266 	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
267 
268 	/* set our heartbeating to other partitions into motion */
269 	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
270 	xpc_start_hb_beater();
271 
272 	while (!xpc_exiting) {
273 
274 		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
275 			"been received\n",
276 			(int)(xpc_hb_check_timeout - jiffies),
277 			xpc_activate_IRQ_rcvd);
278 
279 		/* checking of remote heartbeats is skewed by IRQ handling */
280 		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
281 			xpc_hb_check_timeout = jiffies +
282 			    (xpc_hb_check_interval * HZ);
283 
284 			dev_dbg(xpc_part, "checking remote heartbeats\n");
285 			xpc_check_remote_hb();
286 
287 			/*
288 			 * On sn2 we need to periodically recheck to ensure no
289 			 * IRQ/amo pairs have been missed.
290 			 */
291 			if (is_shub())
292 				force_IRQ = 1;
293 		}
294 
295 		/* check for outstanding IRQs */
296 		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
297 			force_IRQ = 0;
298 			dev_dbg(xpc_part, "processing activate IRQs "
299 				"received\n");
300 			xpc_arch_ops.process_activate_IRQ_rcvd();
301 		}
302 
303 		/* wait for IRQ or timeout */
304 		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
305 					       (time_is_before_eq_jiffies(
306 						xpc_hb_check_timeout) ||
307 						xpc_activate_IRQ_rcvd > 0 ||
308 						xpc_exiting));
309 	}
310 
311 	xpc_stop_hb_beater();
312 
313 	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
314 
315 	/* mark this thread as having exited */
316 	complete(&xpc_hb_checker_exited);
317 	return 0;
318 }
319 
320 /*
321  * This thread will attempt to discover other partitions to activate
322  * based on info provided by SAL. This new thread is short lived and
323  * will exit once discovery is complete.
324  */
325 static int
326 xpc_initiate_discovery(void *ignore)
327 {
328 	xpc_discovery();
329 
330 	dev_dbg(xpc_part, "discovery thread is exiting\n");
331 
332 	/* mark this thread as having exited */
333 	complete(&xpc_discovery_exited);
334 	return 0;
335 }
336 
337 /*
338  * The first kthread assigned to a newly activated partition is the one
339  * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
340  * that kthread until the partition is brought down, at which time that kthread
341  * returns back to XPC HB. (The return of that kthread will signify to XPC HB
342  * that XPC has dismantled all communication infrastructure for the associated
343  * partition.) This kthread becomes the channel manager for that partition.
344  *
345  * Each active partition has a channel manager, who, besides connecting and
346  * disconnecting channels, will ensure that each of the partition's connected
347  * channels has the required number of assigned kthreads to get the work done.
348  */
349 static void
350 xpc_channel_mgr(struct xpc_partition *part)
351 {
352 	while (part->act_state != XPC_P_AS_DEACTIVATING ||
353 	       atomic_read(&part->nchannels_active) > 0 ||
354 	       !xpc_partition_disengaged(part)) {
355 
356 		xpc_process_sent_chctl_flags(part);
357 
358 		/*
359 		 * Wait until we've been requested to activate kthreads or
360 		 * all of the channel's message queues have been torn down or
361 		 * a signal is pending.
362 		 *
363 		 * The channel_mgr_requests is set to 1 after being awakened,
364 		 * This is done to prevent the channel mgr from making one pass
365 		 * through the loop for each request, since he will
366 		 * be servicing all the requests in one pass. The reason it's
367 		 * set to 1 instead of 0 is so that other kthreads will know
368 		 * that the channel mgr is running and won't bother trying to
369 		 * wake him up.
370 		 */
371 		atomic_dec(&part->channel_mgr_requests);
372 		(void)wait_event_interruptible(part->channel_mgr_wq,
373 				(atomic_read(&part->channel_mgr_requests) > 0 ||
374 				 part->chctl.all_flags != 0 ||
375 				 (part->act_state == XPC_P_AS_DEACTIVATING &&
376 				 atomic_read(&part->nchannels_active) == 0 &&
377 				 xpc_partition_disengaged(part))));
378 		atomic_set(&part->channel_mgr_requests, 1);
379 	}
380 }
381 
382 /*
383  * Guarantee that the kzalloc'd memory is cacheline aligned.
384  */
385 void *
386 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
387 {
388 	/* see if kzalloc will give us cachline aligned memory by default */
389 	*base = kzalloc(size, flags);
390 	if (*base == NULL)
391 		return NULL;
392 
393 	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
394 		return *base;
395 
396 	kfree(*base);
397 
398 	/* nope, we'll have to do it ourselves */
399 	*base = kzalloc(size + L1_CACHE_BYTES, flags);
400 	if (*base == NULL)
401 		return NULL;
402 
403 	return (void *)L1_CACHE_ALIGN((u64)*base);
404 }
405 
406 /*
407  * Setup the channel structures necessary to support XPartition Communication
408  * between the specified remote partition and the local one.
409  */
410 static enum xp_retval
411 xpc_setup_ch_structures(struct xpc_partition *part)
412 {
413 	enum xp_retval ret;
414 	int ch_number;
415 	struct xpc_channel *ch;
416 	short partid = XPC_PARTID(part);
417 
418 	/*
419 	 * Allocate all of the channel structures as a contiguous chunk of
420 	 * memory.
421 	 */
422 	DBUG_ON(part->channels != NULL);
423 	part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
424 				 GFP_KERNEL);
425 	if (part->channels == NULL) {
426 		dev_err(xpc_chan, "can't get memory for channels\n");
427 		return xpNoMemory;
428 	}
429 
430 	/* allocate the remote open and close args */
431 
432 	part->remote_openclose_args =
433 	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
434 					  GFP_KERNEL, &part->
435 					  remote_openclose_args_base);
436 	if (part->remote_openclose_args == NULL) {
437 		dev_err(xpc_chan, "can't get memory for remote connect args\n");
438 		ret = xpNoMemory;
439 		goto out_1;
440 	}
441 
442 	part->chctl.all_flags = 0;
443 	spin_lock_init(&part->chctl_lock);
444 
445 	atomic_set(&part->channel_mgr_requests, 1);
446 	init_waitqueue_head(&part->channel_mgr_wq);
447 
448 	part->nchannels = XPC_MAX_NCHANNELS;
449 
450 	atomic_set(&part->nchannels_active, 0);
451 	atomic_set(&part->nchannels_engaged, 0);
452 
453 	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
454 		ch = &part->channels[ch_number];
455 
456 		ch->partid = partid;
457 		ch->number = ch_number;
458 		ch->flags = XPC_C_DISCONNECTED;
459 
460 		atomic_set(&ch->kthreads_assigned, 0);
461 		atomic_set(&ch->kthreads_idle, 0);
462 		atomic_set(&ch->kthreads_active, 0);
463 
464 		atomic_set(&ch->references, 0);
465 		atomic_set(&ch->n_to_notify, 0);
466 
467 		spin_lock_init(&ch->lock);
468 		init_completion(&ch->wdisconnect_wait);
469 
470 		atomic_set(&ch->n_on_msg_allocate_wq, 0);
471 		init_waitqueue_head(&ch->msg_allocate_wq);
472 		init_waitqueue_head(&ch->idle_wq);
473 	}
474 
475 	ret = xpc_arch_ops.setup_ch_structures(part);
476 	if (ret != xpSuccess)
477 		goto out_2;
478 
479 	/*
480 	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
481 	 * we're declaring that this partition is ready to go.
482 	 */
483 	part->setup_state = XPC_P_SS_SETUP;
484 
485 	return xpSuccess;
486 
487 	/* setup of ch structures failed */
488 out_2:
489 	kfree(part->remote_openclose_args_base);
490 	part->remote_openclose_args = NULL;
491 out_1:
492 	kfree(part->channels);
493 	part->channels = NULL;
494 	return ret;
495 }
496 
497 /*
498  * Teardown the channel structures necessary to support XPartition Communication
499  * between the specified remote partition and the local one.
500  */
501 static void
502 xpc_teardown_ch_structures(struct xpc_partition *part)
503 {
504 	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
505 	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
506 
507 	/*
508 	 * Make this partition inaccessible to local processes by marking it
509 	 * as no longer setup. Then wait before proceeding with the teardown
510 	 * until all existing references cease.
511 	 */
512 	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
513 	part->setup_state = XPC_P_SS_WTEARDOWN;
514 
515 	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
516 
517 	/* now we can begin tearing down the infrastructure */
518 
519 	xpc_arch_ops.teardown_ch_structures(part);
520 
521 	kfree(part->remote_openclose_args_base);
522 	part->remote_openclose_args = NULL;
523 	kfree(part->channels);
524 	part->channels = NULL;
525 
526 	part->setup_state = XPC_P_SS_TORNDOWN;
527 }
528 
529 /*
530  * When XPC HB determines that a partition has come up, it will create a new
531  * kthread and that kthread will call this function to attempt to set up the
532  * basic infrastructure used for Cross Partition Communication with the newly
533  * upped partition.
534  *
535  * The kthread that was created by XPC HB and which setup the XPC
536  * infrastructure will remain assigned to the partition becoming the channel
537  * manager for that partition until the partition is deactivating, at which
538  * time the kthread will teardown the XPC infrastructure and then exit.
539  */
540 static int
541 xpc_activating(void *__partid)
542 {
543 	short partid = (u64)__partid;
544 	struct xpc_partition *part = &xpc_partitions[partid];
545 	unsigned long irq_flags;
546 
547 	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
548 
549 	spin_lock_irqsave(&part->act_lock, irq_flags);
550 
551 	if (part->act_state == XPC_P_AS_DEACTIVATING) {
552 		part->act_state = XPC_P_AS_INACTIVE;
553 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
554 		part->remote_rp_pa = 0;
555 		return 0;
556 	}
557 
558 	/* indicate the thread is activating */
559 	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
560 	part->act_state = XPC_P_AS_ACTIVATING;
561 
562 	XPC_SET_REASON(part, 0, 0);
563 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
564 
565 	dev_dbg(xpc_part, "activating partition %d\n", partid);
566 
567 	xpc_arch_ops.allow_hb(partid);
568 
569 	if (xpc_setup_ch_structures(part) == xpSuccess) {
570 		(void)xpc_part_ref(part);	/* this will always succeed */
571 
572 		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
573 			xpc_mark_partition_active(part);
574 			xpc_channel_mgr(part);
575 			/* won't return until partition is deactivating */
576 		}
577 
578 		xpc_part_deref(part);
579 		xpc_teardown_ch_structures(part);
580 	}
581 
582 	xpc_arch_ops.disallow_hb(partid);
583 	xpc_mark_partition_inactive(part);
584 
585 	if (part->reason == xpReactivating) {
586 		/* interrupting ourselves results in activating partition */
587 		xpc_arch_ops.request_partition_reactivation(part);
588 	}
589 
590 	return 0;
591 }
592 
593 void
594 xpc_activate_partition(struct xpc_partition *part)
595 {
596 	short partid = XPC_PARTID(part);
597 	unsigned long irq_flags;
598 	struct task_struct *kthread;
599 
600 	spin_lock_irqsave(&part->act_lock, irq_flags);
601 
602 	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
603 
604 	part->act_state = XPC_P_AS_ACTIVATION_REQ;
605 	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
606 
607 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
608 
609 	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
610 			      partid);
611 	if (IS_ERR(kthread)) {
612 		spin_lock_irqsave(&part->act_lock, irq_flags);
613 		part->act_state = XPC_P_AS_INACTIVE;
614 		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
615 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
616 	}
617 }
618 
619 void
620 xpc_activate_kthreads(struct xpc_channel *ch, int needed)
621 {
622 	int idle = atomic_read(&ch->kthreads_idle);
623 	int assigned = atomic_read(&ch->kthreads_assigned);
624 	int wakeup;
625 
626 	DBUG_ON(needed <= 0);
627 
628 	if (idle > 0) {
629 		wakeup = (needed > idle) ? idle : needed;
630 		needed -= wakeup;
631 
632 		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
633 			"channel=%d\n", wakeup, ch->partid, ch->number);
634 
635 		/* only wakeup the requested number of kthreads */
636 		wake_up_nr(&ch->idle_wq, wakeup);
637 	}
638 
639 	if (needed <= 0)
640 		return;
641 
642 	if (needed + assigned > ch->kthreads_assigned_limit) {
643 		needed = ch->kthreads_assigned_limit - assigned;
644 		if (needed <= 0)
645 			return;
646 	}
647 
648 	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
649 		needed, ch->partid, ch->number);
650 
651 	xpc_create_kthreads(ch, needed, 0);
652 }
653 
654 /*
655  * This function is where XPC's kthreads wait for messages to deliver.
656  */
657 static void
658 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
659 {
660 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
661 		xpc_arch_ops.n_of_deliverable_payloads;
662 
663 	do {
664 		/* deliver messages to their intended recipients */
665 
666 		while (n_of_deliverable_payloads(ch) > 0 &&
667 		       !(ch->flags & XPC_C_DISCONNECTING)) {
668 			xpc_deliver_payload(ch);
669 		}
670 
671 		if (atomic_inc_return(&ch->kthreads_idle) >
672 		    ch->kthreads_idle_limit) {
673 			/* too many idle kthreads on this channel */
674 			atomic_dec(&ch->kthreads_idle);
675 			break;
676 		}
677 
678 		dev_dbg(xpc_chan, "idle kthread calling "
679 			"wait_event_interruptible_exclusive()\n");
680 
681 		(void)wait_event_interruptible_exclusive(ch->idle_wq,
682 				(n_of_deliverable_payloads(ch) > 0 ||
683 				 (ch->flags & XPC_C_DISCONNECTING)));
684 
685 		atomic_dec(&ch->kthreads_idle);
686 
687 	} while (!(ch->flags & XPC_C_DISCONNECTING));
688 }
689 
690 static int
691 xpc_kthread_start(void *args)
692 {
693 	short partid = XPC_UNPACK_ARG1(args);
694 	u16 ch_number = XPC_UNPACK_ARG2(args);
695 	struct xpc_partition *part = &xpc_partitions[partid];
696 	struct xpc_channel *ch;
697 	int n_needed;
698 	unsigned long irq_flags;
699 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
700 		xpc_arch_ops.n_of_deliverable_payloads;
701 
702 	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
703 		partid, ch_number);
704 
705 	ch = &part->channels[ch_number];
706 
707 	if (!(ch->flags & XPC_C_DISCONNECTING)) {
708 
709 		/* let registerer know that connection has been established */
710 
711 		spin_lock_irqsave(&ch->lock, irq_flags);
712 		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
713 			ch->flags |= XPC_C_CONNECTEDCALLOUT;
714 			spin_unlock_irqrestore(&ch->lock, irq_flags);
715 
716 			xpc_connected_callout(ch);
717 
718 			spin_lock_irqsave(&ch->lock, irq_flags);
719 			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
720 			spin_unlock_irqrestore(&ch->lock, irq_flags);
721 
722 			/*
723 			 * It is possible that while the callout was being
724 			 * made that the remote partition sent some messages.
725 			 * If that is the case, we may need to activate
726 			 * additional kthreads to help deliver them. We only
727 			 * need one less than total #of messages to deliver.
728 			 */
729 			n_needed = n_of_deliverable_payloads(ch) - 1;
730 			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
731 				xpc_activate_kthreads(ch, n_needed);
732 
733 		} else {
734 			spin_unlock_irqrestore(&ch->lock, irq_flags);
735 		}
736 
737 		xpc_kthread_waitmsgs(part, ch);
738 	}
739 
740 	/* let registerer know that connection is disconnecting */
741 
742 	spin_lock_irqsave(&ch->lock, irq_flags);
743 	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
744 	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
745 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
746 		spin_unlock_irqrestore(&ch->lock, irq_flags);
747 
748 		xpc_disconnect_callout(ch, xpDisconnecting);
749 
750 		spin_lock_irqsave(&ch->lock, irq_flags);
751 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
752 	}
753 	spin_unlock_irqrestore(&ch->lock, irq_flags);
754 
755 	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
756 	    atomic_dec_return(&part->nchannels_engaged) == 0) {
757 		xpc_arch_ops.indicate_partition_disengaged(part);
758 	}
759 
760 	xpc_msgqueue_deref(ch);
761 
762 	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
763 		partid, ch_number);
764 
765 	xpc_part_deref(part);
766 	return 0;
767 }
768 
769 /*
770  * For each partition that XPC has established communications with, there is
771  * a minimum of one kernel thread assigned to perform any operation that
772  * may potentially sleep or block (basically the callouts to the asynchronous
773  * functions registered via xpc_connect()).
774  *
775  * Additional kthreads are created and destroyed by XPC as the workload
776  * demands.
777  *
778  * A kthread is assigned to one of the active channels that exists for a given
779  * partition.
780  */
781 void
782 xpc_create_kthreads(struct xpc_channel *ch, int needed,
783 		    int ignore_disconnecting)
784 {
785 	unsigned long irq_flags;
786 	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
787 	struct xpc_partition *part = &xpc_partitions[ch->partid];
788 	struct task_struct *kthread;
789 	void (*indicate_partition_disengaged) (struct xpc_partition *) =
790 		xpc_arch_ops.indicate_partition_disengaged;
791 
792 	while (needed-- > 0) {
793 
794 		/*
795 		 * The following is done on behalf of the newly created
796 		 * kthread. That kthread is responsible for doing the
797 		 * counterpart to the following before it exits.
798 		 */
799 		if (ignore_disconnecting) {
800 			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
801 				/* kthreads assigned had gone to zero */
802 				BUG_ON(!(ch->flags &
803 					 XPC_C_DISCONNECTINGCALLOUT_MADE));
804 				break;
805 			}
806 
807 		} else if (ch->flags & XPC_C_DISCONNECTING) {
808 			break;
809 
810 		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
811 			   atomic_inc_return(&part->nchannels_engaged) == 1) {
812 			xpc_arch_ops.indicate_partition_engaged(part);
813 		}
814 		(void)xpc_part_ref(part);
815 		xpc_msgqueue_ref(ch);
816 
817 		kthread = kthread_run(xpc_kthread_start, (void *)args,
818 				      "xpc%02dc%d", ch->partid, ch->number);
819 		if (IS_ERR(kthread)) {
820 			/* the fork failed */
821 
822 			/*
823 			 * NOTE: if (ignore_disconnecting &&
824 			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
825 			 * then we'll deadlock if all other kthreads assigned
826 			 * to this channel are blocked in the channel's
827 			 * registerer, because the only thing that will unblock
828 			 * them is the xpDisconnecting callout that this
829 			 * failed kthread_run() would have made.
830 			 */
831 
832 			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
833 			    atomic_dec_return(&part->nchannels_engaged) == 0) {
834 				indicate_partition_disengaged(part);
835 			}
836 			xpc_msgqueue_deref(ch);
837 			xpc_part_deref(part);
838 
839 			if (atomic_read(&ch->kthreads_assigned) <
840 			    ch->kthreads_idle_limit) {
841 				/*
842 				 * Flag this as an error only if we have an
843 				 * insufficient #of kthreads for the channel
844 				 * to function.
845 				 */
846 				spin_lock_irqsave(&ch->lock, irq_flags);
847 				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
848 						       &irq_flags);
849 				spin_unlock_irqrestore(&ch->lock, irq_flags);
850 			}
851 			break;
852 		}
853 	}
854 }
855 
856 void
857 xpc_disconnect_wait(int ch_number)
858 {
859 	unsigned long irq_flags;
860 	short partid;
861 	struct xpc_partition *part;
862 	struct xpc_channel *ch;
863 	int wakeup_channel_mgr;
864 
865 	/* now wait for all callouts to the caller's function to cease */
866 	for (partid = 0; partid < xp_max_npartitions; partid++) {
867 		part = &xpc_partitions[partid];
868 
869 		if (!xpc_part_ref(part))
870 			continue;
871 
872 		ch = &part->channels[ch_number];
873 
874 		if (!(ch->flags & XPC_C_WDISCONNECT)) {
875 			xpc_part_deref(part);
876 			continue;
877 		}
878 
879 		wait_for_completion(&ch->wdisconnect_wait);
880 
881 		spin_lock_irqsave(&ch->lock, irq_flags);
882 		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
883 		wakeup_channel_mgr = 0;
884 
885 		if (ch->delayed_chctl_flags) {
886 			if (part->act_state != XPC_P_AS_DEACTIVATING) {
887 				spin_lock(&part->chctl_lock);
888 				part->chctl.flags[ch->number] |=
889 				    ch->delayed_chctl_flags;
890 				spin_unlock(&part->chctl_lock);
891 				wakeup_channel_mgr = 1;
892 			}
893 			ch->delayed_chctl_flags = 0;
894 		}
895 
896 		ch->flags &= ~XPC_C_WDISCONNECT;
897 		spin_unlock_irqrestore(&ch->lock, irq_flags);
898 
899 		if (wakeup_channel_mgr)
900 			xpc_wakeup_channel_mgr(part);
901 
902 		xpc_part_deref(part);
903 	}
904 }
905 
906 static int
907 xpc_setup_partitions(void)
908 {
909 	short partid;
910 	struct xpc_partition *part;
911 
912 	xpc_partitions = kzalloc(sizeof(struct xpc_partition) *
913 				 xp_max_npartitions, GFP_KERNEL);
914 	if (xpc_partitions == NULL) {
915 		dev_err(xpc_part, "can't get memory for partition structure\n");
916 		return -ENOMEM;
917 	}
918 
919 	/*
920 	 * The first few fields of each entry of xpc_partitions[] need to
921 	 * be initialized now so that calls to xpc_connect() and
922 	 * xpc_disconnect() can be made prior to the activation of any remote
923 	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
924 	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
925 	 * PARTITION HAS BEEN ACTIVATED.
926 	 */
927 	for (partid = 0; partid < xp_max_npartitions; partid++) {
928 		part = &xpc_partitions[partid];
929 
930 		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
931 
932 		part->activate_IRQ_rcvd = 0;
933 		spin_lock_init(&part->act_lock);
934 		part->act_state = XPC_P_AS_INACTIVE;
935 		XPC_SET_REASON(part, 0, 0);
936 
937 		init_timer(&part->disengage_timer);
938 		part->disengage_timer.function =
939 		    xpc_timeout_partition_disengage;
940 		part->disengage_timer.data = (unsigned long)part;
941 
942 		part->setup_state = XPC_P_SS_UNSET;
943 		init_waitqueue_head(&part->teardown_wq);
944 		atomic_set(&part->references, 0);
945 	}
946 
947 	return xpc_arch_ops.setup_partitions();
948 }
949 
950 static void
951 xpc_teardown_partitions(void)
952 {
953 	xpc_arch_ops.teardown_partitions();
954 	kfree(xpc_partitions);
955 }
956 
957 static void
958 xpc_do_exit(enum xp_retval reason)
959 {
960 	short partid;
961 	int active_part_count, printed_waiting_msg = 0;
962 	struct xpc_partition *part;
963 	unsigned long printmsg_time, disengage_timeout = 0;
964 
965 	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
966 	DBUG_ON(xpc_exiting == 1);
967 
968 	/*
969 	 * Let the heartbeat checker thread and the discovery thread
970 	 * (if one is running) know that they should exit. Also wake up
971 	 * the heartbeat checker thread in case it's sleeping.
972 	 */
973 	xpc_exiting = 1;
974 	wake_up_interruptible(&xpc_activate_IRQ_wq);
975 
976 	/* wait for the discovery thread to exit */
977 	wait_for_completion(&xpc_discovery_exited);
978 
979 	/* wait for the heartbeat checker thread to exit */
980 	wait_for_completion(&xpc_hb_checker_exited);
981 
982 	/* sleep for a 1/3 of a second or so */
983 	(void)msleep_interruptible(300);
984 
985 	/* wait for all partitions to become inactive */
986 
987 	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
988 	xpc_disengage_timedout = 0;
989 
990 	do {
991 		active_part_count = 0;
992 
993 		for (partid = 0; partid < xp_max_npartitions; partid++) {
994 			part = &xpc_partitions[partid];
995 
996 			if (xpc_partition_disengaged(part) &&
997 			    part->act_state == XPC_P_AS_INACTIVE) {
998 				continue;
999 			}
1000 
1001 			active_part_count++;
1002 
1003 			XPC_DEACTIVATE_PARTITION(part, reason);
1004 
1005 			if (part->disengage_timeout > disengage_timeout)
1006 				disengage_timeout = part->disengage_timeout;
1007 		}
1008 
1009 		if (xpc_arch_ops.any_partition_engaged()) {
1010 			if (time_is_before_jiffies(printmsg_time)) {
1011 				dev_info(xpc_part, "waiting for remote "
1012 					 "partitions to deactivate, timeout in "
1013 					 "%ld seconds\n", (disengage_timeout -
1014 					 jiffies) / HZ);
1015 				printmsg_time = jiffies +
1016 				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
1017 				printed_waiting_msg = 1;
1018 			}
1019 
1020 		} else if (active_part_count > 0) {
1021 			if (printed_waiting_msg) {
1022 				dev_info(xpc_part, "waiting for local partition"
1023 					 " to deactivate\n");
1024 				printed_waiting_msg = 0;
1025 			}
1026 
1027 		} else {
1028 			if (!xpc_disengage_timedout) {
1029 				dev_info(xpc_part, "all partitions have "
1030 					 "deactivated\n");
1031 			}
1032 			break;
1033 		}
1034 
1035 		/* sleep for a 1/3 of a second or so */
1036 		(void)msleep_interruptible(300);
1037 
1038 	} while (1);
1039 
1040 	DBUG_ON(xpc_arch_ops.any_partition_engaged());
1041 
1042 	xpc_teardown_rsvd_page();
1043 
1044 	if (reason == xpUnloading) {
1045 		(void)unregister_die_notifier(&xpc_die_notifier);
1046 		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1047 	}
1048 
1049 	/* clear the interface to XPC's functions */
1050 	xpc_clear_interface();
1051 
1052 	if (xpc_sysctl)
1053 		unregister_sysctl_table(xpc_sysctl);
1054 
1055 	xpc_teardown_partitions();
1056 
1057 	if (is_shub())
1058 		xpc_exit_sn2();
1059 	else if (is_uv())
1060 		xpc_exit_uv();
1061 }
1062 
1063 /*
1064  * This function is called when the system is being rebooted.
1065  */
1066 static int
1067 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1068 {
1069 	enum xp_retval reason;
1070 
1071 	switch (event) {
1072 	case SYS_RESTART:
1073 		reason = xpSystemReboot;
1074 		break;
1075 	case SYS_HALT:
1076 		reason = xpSystemHalt;
1077 		break;
1078 	case SYS_POWER_OFF:
1079 		reason = xpSystemPoweroff;
1080 		break;
1081 	default:
1082 		reason = xpSystemGoingDown;
1083 	}
1084 
1085 	xpc_do_exit(reason);
1086 	return NOTIFY_DONE;
1087 }
1088 
1089 /*
1090  * Notify other partitions to deactivate from us by first disengaging from all
1091  * references to our memory.
1092  */
1093 static void
1094 xpc_die_deactivate(void)
1095 {
1096 	struct xpc_partition *part;
1097 	short partid;
1098 	int any_engaged;
1099 	long keep_waiting;
1100 	long wait_to_print;
1101 
1102 	/* keep xpc_hb_checker thread from doing anything (just in case) */
1103 	xpc_exiting = 1;
1104 
1105 	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1106 
1107 	for (partid = 0; partid < xp_max_npartitions; partid++) {
1108 		part = &xpc_partitions[partid];
1109 
1110 		if (xpc_arch_ops.partition_engaged(partid) ||
1111 		    part->act_state != XPC_P_AS_INACTIVE) {
1112 			xpc_arch_ops.request_partition_deactivation(part);
1113 			xpc_arch_ops.indicate_partition_disengaged(part);
1114 		}
1115 	}
1116 
1117 	/*
1118 	 * Though we requested that all other partitions deactivate from us,
1119 	 * we only wait until they've all disengaged or we've reached the
1120 	 * defined timelimit.
1121 	 *
1122 	 * Given that one iteration through the following while-loop takes
1123 	 * approximately 200 microseconds, calculate the #of loops to take
1124 	 * before bailing and the #of loops before printing a waiting message.
1125 	 */
1126 	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1127 	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1128 
1129 	while (1) {
1130 		any_engaged = xpc_arch_ops.any_partition_engaged();
1131 		if (!any_engaged) {
1132 			dev_info(xpc_part, "all partitions have deactivated\n");
1133 			break;
1134 		}
1135 
1136 		if (!keep_waiting--) {
1137 			for (partid = 0; partid < xp_max_npartitions;
1138 			     partid++) {
1139 				if (xpc_arch_ops.partition_engaged(partid)) {
1140 					dev_info(xpc_part, "deactivate from "
1141 						 "remote partition %d timed "
1142 						 "out\n", partid);
1143 				}
1144 			}
1145 			break;
1146 		}
1147 
1148 		if (!wait_to_print--) {
1149 			dev_info(xpc_part, "waiting for remote partitions to "
1150 				 "deactivate, timeout in %ld seconds\n",
1151 				 keep_waiting / (1000 * 5));
1152 			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1153 			    1000 * 5;
1154 		}
1155 
1156 		udelay(200);
1157 	}
1158 }
1159 
1160 /*
1161  * This function is called when the system is being restarted or halted due
1162  * to some sort of system failure. If this is the case we need to notify the
1163  * other partitions to disengage from all references to our memory.
1164  * This function can also be called when our heartbeater could be offlined
1165  * for a time. In this case we need to notify other partitions to not worry
1166  * about the lack of a heartbeat.
1167  */
1168 static int
1169 xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused)
1170 {
1171 #ifdef CONFIG_IA64		/* !!! temporary kludge */
1172 	switch (event) {
1173 	case DIE_MACHINE_RESTART:
1174 	case DIE_MACHINE_HALT:
1175 		xpc_die_deactivate();
1176 		break;
1177 
1178 	case DIE_KDEBUG_ENTER:
1179 		/* Should lack of heartbeat be ignored by other partitions? */
1180 		if (!xpc_kdebug_ignore)
1181 			break;
1182 
1183 		/* fall through */
1184 	case DIE_MCA_MONARCH_ENTER:
1185 	case DIE_INIT_MONARCH_ENTER:
1186 		xpc_arch_ops.offline_heartbeat();
1187 		break;
1188 
1189 	case DIE_KDEBUG_LEAVE:
1190 		/* Is lack of heartbeat being ignored by other partitions? */
1191 		if (!xpc_kdebug_ignore)
1192 			break;
1193 
1194 		/* fall through */
1195 	case DIE_MCA_MONARCH_LEAVE:
1196 	case DIE_INIT_MONARCH_LEAVE:
1197 		xpc_arch_ops.online_heartbeat();
1198 		break;
1199 	}
1200 #else
1201 	xpc_die_deactivate();
1202 #endif
1203 
1204 	return NOTIFY_DONE;
1205 }
1206 
1207 int __init
1208 xpc_init(void)
1209 {
1210 	int ret;
1211 	struct task_struct *kthread;
1212 
1213 	dev_set_name(xpc_part, "part");
1214 	dev_set_name(xpc_chan, "chan");
1215 
1216 	if (is_shub()) {
1217 		/*
1218 		 * The ia64-sn2 architecture supports at most 64 partitions.
1219 		 * And the inability to unregister remote amos restricts us
1220 		 * further to only support exactly 64 partitions on this
1221 		 * architecture, no less.
1222 		 */
1223 		if (xp_max_npartitions != 64) {
1224 			dev_err(xpc_part, "max #of partitions not set to 64\n");
1225 			ret = -EINVAL;
1226 		} else {
1227 			ret = xpc_init_sn2();
1228 		}
1229 
1230 	} else if (is_uv()) {
1231 		ret = xpc_init_uv();
1232 
1233 	} else {
1234 		ret = -ENODEV;
1235 	}
1236 
1237 	if (ret != 0)
1238 		return ret;
1239 
1240 	ret = xpc_setup_partitions();
1241 	if (ret != 0) {
1242 		dev_err(xpc_part, "can't get memory for partition structure\n");
1243 		goto out_1;
1244 	}
1245 
1246 	xpc_sysctl = register_sysctl_table(xpc_sys_dir);
1247 
1248 	/*
1249 	 * Fill the partition reserved page with the information needed by
1250 	 * other partitions to discover we are alive and establish initial
1251 	 * communications.
1252 	 */
1253 	ret = xpc_setup_rsvd_page();
1254 	if (ret != 0) {
1255 		dev_err(xpc_part, "can't setup our reserved page\n");
1256 		goto out_2;
1257 	}
1258 
1259 	/* add ourselves to the reboot_notifier_list */
1260 	ret = register_reboot_notifier(&xpc_reboot_notifier);
1261 	if (ret != 0)
1262 		dev_warn(xpc_part, "can't register reboot notifier\n");
1263 
1264 	/* add ourselves to the die_notifier list */
1265 	ret = register_die_notifier(&xpc_die_notifier);
1266 	if (ret != 0)
1267 		dev_warn(xpc_part, "can't register die notifier\n");
1268 
1269 	/*
1270 	 * The real work-horse behind xpc.  This processes incoming
1271 	 * interrupts and monitors remote heartbeats.
1272 	 */
1273 	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1274 	if (IS_ERR(kthread)) {
1275 		dev_err(xpc_part, "failed while forking hb check thread\n");
1276 		ret = -EBUSY;
1277 		goto out_3;
1278 	}
1279 
1280 	/*
1281 	 * Startup a thread that will attempt to discover other partitions to
1282 	 * activate based on info provided by SAL. This new thread is short
1283 	 * lived and will exit once discovery is complete.
1284 	 */
1285 	kthread = kthread_run(xpc_initiate_discovery, NULL,
1286 			      XPC_DISCOVERY_THREAD_NAME);
1287 	if (IS_ERR(kthread)) {
1288 		dev_err(xpc_part, "failed while forking discovery thread\n");
1289 
1290 		/* mark this new thread as a non-starter */
1291 		complete(&xpc_discovery_exited);
1292 
1293 		xpc_do_exit(xpUnloading);
1294 		return -EBUSY;
1295 	}
1296 
1297 	/* set the interface to point at XPC's functions */
1298 	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1299 			  xpc_initiate_send, xpc_initiate_send_notify,
1300 			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
1301 
1302 	return 0;
1303 
1304 	/* initialization was not successful */
1305 out_3:
1306 	xpc_teardown_rsvd_page();
1307 
1308 	(void)unregister_die_notifier(&xpc_die_notifier);
1309 	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1310 out_2:
1311 	if (xpc_sysctl)
1312 		unregister_sysctl_table(xpc_sysctl);
1313 
1314 	xpc_teardown_partitions();
1315 out_1:
1316 	if (is_shub())
1317 		xpc_exit_sn2();
1318 	else if (is_uv())
1319 		xpc_exit_uv();
1320 	return ret;
1321 }
1322 
1323 module_init(xpc_init);
1324 
1325 void __exit
1326 xpc_exit(void)
1327 {
1328 	xpc_do_exit(xpUnloading);
1329 }
1330 
1331 module_exit(xpc_exit);
1332 
1333 MODULE_AUTHOR("Silicon Graphics, Inc.");
1334 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1335 MODULE_LICENSE("GPL");
1336 
1337 module_param(xpc_hb_interval, int, 0);
1338 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1339 		 "heartbeat increments.");
1340 
1341 module_param(xpc_hb_check_interval, int, 0);
1342 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1343 		 "heartbeat checks.");
1344 
1345 module_param(xpc_disengage_timelimit, int, 0);
1346 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1347 		 "for disengage to complete.");
1348 
1349 module_param(xpc_kdebug_ignore, int, 0);
1350 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1351 		 "other partitions when dropping into kdebug.");
1352