1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (c) 2004-2009 Silicon Graphics, Inc. All Rights Reserved. 7 */ 8 9 /* 10 * Cross Partition Communication (XPC) support - standard version. 11 * 12 * XPC provides a message passing capability that crosses partition 13 * boundaries. This module is made up of two parts: 14 * 15 * partition This part detects the presence/absence of other 16 * partitions. It provides a heartbeat and monitors 17 * the heartbeats of other partitions. 18 * 19 * channel This part manages the channels and sends/receives 20 * messages across them to/from other partitions. 21 * 22 * There are a couple of additional functions residing in XP, which 23 * provide an interface to XPC for its users. 24 * 25 * 26 * Caveats: 27 * 28 * . Currently on sn2, we have no way to determine which nasid an IRQ 29 * came from. Thus, xpc_send_IRQ_sn2() does a remote amo write 30 * followed by an IPI. The amo indicates where data is to be pulled 31 * from, so after the IPI arrives, the remote partition checks the amo 32 * word. The IPI can actually arrive before the amo however, so other 33 * code must periodically check for this case. Also, remote amo 34 * operations do not reliably time out. Thus we do a remote PIO read 35 * solely to know whether the remote partition is down and whether we 36 * should stop sending IPIs to it. This remote PIO read operation is 37 * set up in a special nofault region so SAL knows to ignore (and 38 * cleanup) any errors due to the remote amo write, PIO read, and/or 39 * PIO write operations. 40 * 41 * If/when new hardware solves this IPI problem, we should abandon 42 * the current approach. 43 * 44 */ 45 46 #include <linux/module.h> 47 #include <linux/sysctl.h> 48 #include <linux/device.h> 49 #include <linux/delay.h> 50 #include <linux/reboot.h> 51 #include <linux/kdebug.h> 52 #include <linux/kthread.h> 53 #include "xpc.h" 54 55 /* define two XPC debug device structures to be used with dev_dbg() et al */ 56 57 struct device_driver xpc_dbg_name = { 58 .name = "xpc" 59 }; 60 61 struct device xpc_part_dbg_subname = { 62 .init_name = "", /* set to "part" at xpc_init() time */ 63 .driver = &xpc_dbg_name 64 }; 65 66 struct device xpc_chan_dbg_subname = { 67 .init_name = "", /* set to "chan" at xpc_init() time */ 68 .driver = &xpc_dbg_name 69 }; 70 71 struct device *xpc_part = &xpc_part_dbg_subname; 72 struct device *xpc_chan = &xpc_chan_dbg_subname; 73 74 static int xpc_kdebug_ignore; 75 76 /* systune related variables for /proc/sys directories */ 77 78 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL; 79 static int xpc_hb_min_interval = 1; 80 static int xpc_hb_max_interval = 10; 81 82 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL; 83 static int xpc_hb_check_min_interval = 10; 84 static int xpc_hb_check_max_interval = 120; 85 86 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT; 87 static int xpc_disengage_min_timelimit; /* = 0 */ 88 static int xpc_disengage_max_timelimit = 120; 89 90 static ctl_table xpc_sys_xpc_hb_dir[] = { 91 { 92 .ctl_name = CTL_UNNUMBERED, 93 .procname = "hb_interval", 94 .data = &xpc_hb_interval, 95 .maxlen = sizeof(int), 96 .mode = 0644, 97 .proc_handler = &proc_dointvec_minmax, 98 .strategy = &sysctl_intvec, 99 .extra1 = &xpc_hb_min_interval, 100 .extra2 = &xpc_hb_max_interval}, 101 { 102 .ctl_name = CTL_UNNUMBERED, 103 .procname = "hb_check_interval", 104 .data = &xpc_hb_check_interval, 105 .maxlen = sizeof(int), 106 .mode = 0644, 107 .proc_handler = &proc_dointvec_minmax, 108 .strategy = &sysctl_intvec, 109 .extra1 = &xpc_hb_check_min_interval, 110 .extra2 = &xpc_hb_check_max_interval}, 111 {} 112 }; 113 static ctl_table xpc_sys_xpc_dir[] = { 114 { 115 .ctl_name = CTL_UNNUMBERED, 116 .procname = "hb", 117 .mode = 0555, 118 .child = xpc_sys_xpc_hb_dir}, 119 { 120 .ctl_name = CTL_UNNUMBERED, 121 .procname = "disengage_timelimit", 122 .data = &xpc_disengage_timelimit, 123 .maxlen = sizeof(int), 124 .mode = 0644, 125 .proc_handler = &proc_dointvec_minmax, 126 .strategy = &sysctl_intvec, 127 .extra1 = &xpc_disengage_min_timelimit, 128 .extra2 = &xpc_disengage_max_timelimit}, 129 {} 130 }; 131 static ctl_table xpc_sys_dir[] = { 132 { 133 .ctl_name = CTL_UNNUMBERED, 134 .procname = "xpc", 135 .mode = 0555, 136 .child = xpc_sys_xpc_dir}, 137 {} 138 }; 139 static struct ctl_table_header *xpc_sysctl; 140 141 /* non-zero if any remote partition disengage was timed out */ 142 int xpc_disengage_timedout; 143 144 /* #of activate IRQs received and not yet processed */ 145 int xpc_activate_IRQ_rcvd; 146 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock); 147 148 /* IRQ handler notifies this wait queue on receipt of an IRQ */ 149 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq); 150 151 static unsigned long xpc_hb_check_timeout; 152 static struct timer_list xpc_hb_timer; 153 154 /* notification that the xpc_hb_checker thread has exited */ 155 static DECLARE_COMPLETION(xpc_hb_checker_exited); 156 157 /* notification that the xpc_discovery thread has exited */ 158 static DECLARE_COMPLETION(xpc_discovery_exited); 159 160 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *); 161 162 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *); 163 static struct notifier_block xpc_reboot_notifier = { 164 .notifier_call = xpc_system_reboot, 165 }; 166 167 static int xpc_system_die(struct notifier_block *, unsigned long, void *); 168 static struct notifier_block xpc_die_notifier = { 169 .notifier_call = xpc_system_die, 170 }; 171 172 struct xpc_arch_operations xpc_arch_ops; 173 174 /* 175 * Timer function to enforce the timelimit on the partition disengage. 176 */ 177 static void 178 xpc_timeout_partition_disengage(unsigned long data) 179 { 180 struct xpc_partition *part = (struct xpc_partition *)data; 181 182 DBUG_ON(time_is_after_jiffies(part->disengage_timeout)); 183 184 (void)xpc_partition_disengaged(part); 185 186 DBUG_ON(part->disengage_timeout != 0); 187 DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part))); 188 } 189 190 /* 191 * Timer to produce the heartbeat. The timer structures function is 192 * already set when this is initially called. A tunable is used to 193 * specify when the next timeout should occur. 194 */ 195 static void 196 xpc_hb_beater(unsigned long dummy) 197 { 198 xpc_arch_ops.increment_heartbeat(); 199 200 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) 201 wake_up_interruptible(&xpc_activate_IRQ_wq); 202 203 xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ); 204 add_timer(&xpc_hb_timer); 205 } 206 207 static void 208 xpc_start_hb_beater(void) 209 { 210 xpc_arch_ops.heartbeat_init(); 211 init_timer(&xpc_hb_timer); 212 xpc_hb_timer.function = xpc_hb_beater; 213 xpc_hb_beater(0); 214 } 215 216 static void 217 xpc_stop_hb_beater(void) 218 { 219 del_timer_sync(&xpc_hb_timer); 220 xpc_arch_ops.heartbeat_exit(); 221 } 222 223 /* 224 * At periodic intervals, scan through all active partitions and ensure 225 * their heartbeat is still active. If not, the partition is deactivated. 226 */ 227 static void 228 xpc_check_remote_hb(void) 229 { 230 struct xpc_partition *part; 231 short partid; 232 enum xp_retval ret; 233 234 for (partid = 0; partid < xp_max_npartitions; partid++) { 235 236 if (xpc_exiting) 237 break; 238 239 if (partid == xp_partition_id) 240 continue; 241 242 part = &xpc_partitions[partid]; 243 244 if (part->act_state == XPC_P_AS_INACTIVE || 245 part->act_state == XPC_P_AS_DEACTIVATING) { 246 continue; 247 } 248 249 ret = xpc_arch_ops.get_remote_heartbeat(part); 250 if (ret != xpSuccess) 251 XPC_DEACTIVATE_PARTITION(part, ret); 252 } 253 } 254 255 /* 256 * This thread is responsible for nearly all of the partition 257 * activation/deactivation. 258 */ 259 static int 260 xpc_hb_checker(void *ignore) 261 { 262 int force_IRQ = 0; 263 264 /* this thread was marked active by xpc_hb_init() */ 265 266 set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU)); 267 268 /* set our heartbeating to other partitions into motion */ 269 xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ); 270 xpc_start_hb_beater(); 271 272 while (!xpc_exiting) { 273 274 dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have " 275 "been received\n", 276 (int)(xpc_hb_check_timeout - jiffies), 277 xpc_activate_IRQ_rcvd); 278 279 /* checking of remote heartbeats is skewed by IRQ handling */ 280 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) { 281 xpc_hb_check_timeout = jiffies + 282 (xpc_hb_check_interval * HZ); 283 284 dev_dbg(xpc_part, "checking remote heartbeats\n"); 285 xpc_check_remote_hb(); 286 287 /* 288 * On sn2 we need to periodically recheck to ensure no 289 * IRQ/amo pairs have been missed. 290 */ 291 if (is_shub()) 292 force_IRQ = 1; 293 } 294 295 /* check for outstanding IRQs */ 296 if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) { 297 force_IRQ = 0; 298 dev_dbg(xpc_part, "processing activate IRQs " 299 "received\n"); 300 xpc_arch_ops.process_activate_IRQ_rcvd(); 301 } 302 303 /* wait for IRQ or timeout */ 304 (void)wait_event_interruptible(xpc_activate_IRQ_wq, 305 (time_is_before_eq_jiffies( 306 xpc_hb_check_timeout) || 307 xpc_activate_IRQ_rcvd > 0 || 308 xpc_exiting)); 309 } 310 311 xpc_stop_hb_beater(); 312 313 dev_dbg(xpc_part, "heartbeat checker is exiting\n"); 314 315 /* mark this thread as having exited */ 316 complete(&xpc_hb_checker_exited); 317 return 0; 318 } 319 320 /* 321 * This thread will attempt to discover other partitions to activate 322 * based on info provided by SAL. This new thread is short lived and 323 * will exit once discovery is complete. 324 */ 325 static int 326 xpc_initiate_discovery(void *ignore) 327 { 328 xpc_discovery(); 329 330 dev_dbg(xpc_part, "discovery thread is exiting\n"); 331 332 /* mark this thread as having exited */ 333 complete(&xpc_discovery_exited); 334 return 0; 335 } 336 337 /* 338 * The first kthread assigned to a newly activated partition is the one 339 * created by XPC HB with which it calls xpc_activating(). XPC hangs on to 340 * that kthread until the partition is brought down, at which time that kthread 341 * returns back to XPC HB. (The return of that kthread will signify to XPC HB 342 * that XPC has dismantled all communication infrastructure for the associated 343 * partition.) This kthread becomes the channel manager for that partition. 344 * 345 * Each active partition has a channel manager, who, besides connecting and 346 * disconnecting channels, will ensure that each of the partition's connected 347 * channels has the required number of assigned kthreads to get the work done. 348 */ 349 static void 350 xpc_channel_mgr(struct xpc_partition *part) 351 { 352 while (part->act_state != XPC_P_AS_DEACTIVATING || 353 atomic_read(&part->nchannels_active) > 0 || 354 !xpc_partition_disengaged(part)) { 355 356 xpc_process_sent_chctl_flags(part); 357 358 /* 359 * Wait until we've been requested to activate kthreads or 360 * all of the channel's message queues have been torn down or 361 * a signal is pending. 362 * 363 * The channel_mgr_requests is set to 1 after being awakened, 364 * This is done to prevent the channel mgr from making one pass 365 * through the loop for each request, since he will 366 * be servicing all the requests in one pass. The reason it's 367 * set to 1 instead of 0 is so that other kthreads will know 368 * that the channel mgr is running and won't bother trying to 369 * wake him up. 370 */ 371 atomic_dec(&part->channel_mgr_requests); 372 (void)wait_event_interruptible(part->channel_mgr_wq, 373 (atomic_read(&part->channel_mgr_requests) > 0 || 374 part->chctl.all_flags != 0 || 375 (part->act_state == XPC_P_AS_DEACTIVATING && 376 atomic_read(&part->nchannels_active) == 0 && 377 xpc_partition_disengaged(part)))); 378 atomic_set(&part->channel_mgr_requests, 1); 379 } 380 } 381 382 /* 383 * Guarantee that the kzalloc'd memory is cacheline aligned. 384 */ 385 void * 386 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) 387 { 388 /* see if kzalloc will give us cachline aligned memory by default */ 389 *base = kzalloc(size, flags); 390 if (*base == NULL) 391 return NULL; 392 393 if ((u64)*base == L1_CACHE_ALIGN((u64)*base)) 394 return *base; 395 396 kfree(*base); 397 398 /* nope, we'll have to do it ourselves */ 399 *base = kzalloc(size + L1_CACHE_BYTES, flags); 400 if (*base == NULL) 401 return NULL; 402 403 return (void *)L1_CACHE_ALIGN((u64)*base); 404 } 405 406 /* 407 * Setup the channel structures necessary to support XPartition Communication 408 * between the specified remote partition and the local one. 409 */ 410 static enum xp_retval 411 xpc_setup_ch_structures(struct xpc_partition *part) 412 { 413 enum xp_retval ret; 414 int ch_number; 415 struct xpc_channel *ch; 416 short partid = XPC_PARTID(part); 417 418 /* 419 * Allocate all of the channel structures as a contiguous chunk of 420 * memory. 421 */ 422 DBUG_ON(part->channels != NULL); 423 part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS, 424 GFP_KERNEL); 425 if (part->channels == NULL) { 426 dev_err(xpc_chan, "can't get memory for channels\n"); 427 return xpNoMemory; 428 } 429 430 /* allocate the remote open and close args */ 431 432 part->remote_openclose_args = 433 xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, 434 GFP_KERNEL, &part-> 435 remote_openclose_args_base); 436 if (part->remote_openclose_args == NULL) { 437 dev_err(xpc_chan, "can't get memory for remote connect args\n"); 438 ret = xpNoMemory; 439 goto out_1; 440 } 441 442 part->chctl.all_flags = 0; 443 spin_lock_init(&part->chctl_lock); 444 445 atomic_set(&part->channel_mgr_requests, 1); 446 init_waitqueue_head(&part->channel_mgr_wq); 447 448 part->nchannels = XPC_MAX_NCHANNELS; 449 450 atomic_set(&part->nchannels_active, 0); 451 atomic_set(&part->nchannels_engaged, 0); 452 453 for (ch_number = 0; ch_number < part->nchannels; ch_number++) { 454 ch = &part->channels[ch_number]; 455 456 ch->partid = partid; 457 ch->number = ch_number; 458 ch->flags = XPC_C_DISCONNECTED; 459 460 atomic_set(&ch->kthreads_assigned, 0); 461 atomic_set(&ch->kthreads_idle, 0); 462 atomic_set(&ch->kthreads_active, 0); 463 464 atomic_set(&ch->references, 0); 465 atomic_set(&ch->n_to_notify, 0); 466 467 spin_lock_init(&ch->lock); 468 init_completion(&ch->wdisconnect_wait); 469 470 atomic_set(&ch->n_on_msg_allocate_wq, 0); 471 init_waitqueue_head(&ch->msg_allocate_wq); 472 init_waitqueue_head(&ch->idle_wq); 473 } 474 475 ret = xpc_arch_ops.setup_ch_structures(part); 476 if (ret != xpSuccess) 477 goto out_2; 478 479 /* 480 * With the setting of the partition setup_state to XPC_P_SS_SETUP, 481 * we're declaring that this partition is ready to go. 482 */ 483 part->setup_state = XPC_P_SS_SETUP; 484 485 return xpSuccess; 486 487 /* setup of ch structures failed */ 488 out_2: 489 kfree(part->remote_openclose_args_base); 490 part->remote_openclose_args = NULL; 491 out_1: 492 kfree(part->channels); 493 part->channels = NULL; 494 return ret; 495 } 496 497 /* 498 * Teardown the channel structures necessary to support XPartition Communication 499 * between the specified remote partition and the local one. 500 */ 501 static void 502 xpc_teardown_ch_structures(struct xpc_partition *part) 503 { 504 DBUG_ON(atomic_read(&part->nchannels_engaged) != 0); 505 DBUG_ON(atomic_read(&part->nchannels_active) != 0); 506 507 /* 508 * Make this partition inaccessible to local processes by marking it 509 * as no longer setup. Then wait before proceeding with the teardown 510 * until all existing references cease. 511 */ 512 DBUG_ON(part->setup_state != XPC_P_SS_SETUP); 513 part->setup_state = XPC_P_SS_WTEARDOWN; 514 515 wait_event(part->teardown_wq, (atomic_read(&part->references) == 0)); 516 517 /* now we can begin tearing down the infrastructure */ 518 519 xpc_arch_ops.teardown_ch_structures(part); 520 521 kfree(part->remote_openclose_args_base); 522 part->remote_openclose_args = NULL; 523 kfree(part->channels); 524 part->channels = NULL; 525 526 part->setup_state = XPC_P_SS_TORNDOWN; 527 } 528 529 /* 530 * When XPC HB determines that a partition has come up, it will create a new 531 * kthread and that kthread will call this function to attempt to set up the 532 * basic infrastructure used for Cross Partition Communication with the newly 533 * upped partition. 534 * 535 * The kthread that was created by XPC HB and which setup the XPC 536 * infrastructure will remain assigned to the partition becoming the channel 537 * manager for that partition until the partition is deactivating, at which 538 * time the kthread will teardown the XPC infrastructure and then exit. 539 */ 540 static int 541 xpc_activating(void *__partid) 542 { 543 short partid = (u64)__partid; 544 struct xpc_partition *part = &xpc_partitions[partid]; 545 unsigned long irq_flags; 546 547 DBUG_ON(partid < 0 || partid >= xp_max_npartitions); 548 549 spin_lock_irqsave(&part->act_lock, irq_flags); 550 551 if (part->act_state == XPC_P_AS_DEACTIVATING) { 552 part->act_state = XPC_P_AS_INACTIVE; 553 spin_unlock_irqrestore(&part->act_lock, irq_flags); 554 part->remote_rp_pa = 0; 555 return 0; 556 } 557 558 /* indicate the thread is activating */ 559 DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ); 560 part->act_state = XPC_P_AS_ACTIVATING; 561 562 XPC_SET_REASON(part, 0, 0); 563 spin_unlock_irqrestore(&part->act_lock, irq_flags); 564 565 dev_dbg(xpc_part, "activating partition %d\n", partid); 566 567 xpc_arch_ops.allow_hb(partid); 568 569 if (xpc_setup_ch_structures(part) == xpSuccess) { 570 (void)xpc_part_ref(part); /* this will always succeed */ 571 572 if (xpc_arch_ops.make_first_contact(part) == xpSuccess) { 573 xpc_mark_partition_active(part); 574 xpc_channel_mgr(part); 575 /* won't return until partition is deactivating */ 576 } 577 578 xpc_part_deref(part); 579 xpc_teardown_ch_structures(part); 580 } 581 582 xpc_arch_ops.disallow_hb(partid); 583 xpc_mark_partition_inactive(part); 584 585 if (part->reason == xpReactivating) { 586 /* interrupting ourselves results in activating partition */ 587 xpc_arch_ops.request_partition_reactivation(part); 588 } 589 590 return 0; 591 } 592 593 void 594 xpc_activate_partition(struct xpc_partition *part) 595 { 596 short partid = XPC_PARTID(part); 597 unsigned long irq_flags; 598 struct task_struct *kthread; 599 600 spin_lock_irqsave(&part->act_lock, irq_flags); 601 602 DBUG_ON(part->act_state != XPC_P_AS_INACTIVE); 603 604 part->act_state = XPC_P_AS_ACTIVATION_REQ; 605 XPC_SET_REASON(part, xpCloneKThread, __LINE__); 606 607 spin_unlock_irqrestore(&part->act_lock, irq_flags); 608 609 kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d", 610 partid); 611 if (IS_ERR(kthread)) { 612 spin_lock_irqsave(&part->act_lock, irq_flags); 613 part->act_state = XPC_P_AS_INACTIVE; 614 XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__); 615 spin_unlock_irqrestore(&part->act_lock, irq_flags); 616 } 617 } 618 619 void 620 xpc_activate_kthreads(struct xpc_channel *ch, int needed) 621 { 622 int idle = atomic_read(&ch->kthreads_idle); 623 int assigned = atomic_read(&ch->kthreads_assigned); 624 int wakeup; 625 626 DBUG_ON(needed <= 0); 627 628 if (idle > 0) { 629 wakeup = (needed > idle) ? idle : needed; 630 needed -= wakeup; 631 632 dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, " 633 "channel=%d\n", wakeup, ch->partid, ch->number); 634 635 /* only wakeup the requested number of kthreads */ 636 wake_up_nr(&ch->idle_wq, wakeup); 637 } 638 639 if (needed <= 0) 640 return; 641 642 if (needed + assigned > ch->kthreads_assigned_limit) { 643 needed = ch->kthreads_assigned_limit - assigned; 644 if (needed <= 0) 645 return; 646 } 647 648 dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n", 649 needed, ch->partid, ch->number); 650 651 xpc_create_kthreads(ch, needed, 0); 652 } 653 654 /* 655 * This function is where XPC's kthreads wait for messages to deliver. 656 */ 657 static void 658 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch) 659 { 660 int (*n_of_deliverable_payloads) (struct xpc_channel *) = 661 xpc_arch_ops.n_of_deliverable_payloads; 662 663 do { 664 /* deliver messages to their intended recipients */ 665 666 while (n_of_deliverable_payloads(ch) > 0 && 667 !(ch->flags & XPC_C_DISCONNECTING)) { 668 xpc_deliver_payload(ch); 669 } 670 671 if (atomic_inc_return(&ch->kthreads_idle) > 672 ch->kthreads_idle_limit) { 673 /* too many idle kthreads on this channel */ 674 atomic_dec(&ch->kthreads_idle); 675 break; 676 } 677 678 dev_dbg(xpc_chan, "idle kthread calling " 679 "wait_event_interruptible_exclusive()\n"); 680 681 (void)wait_event_interruptible_exclusive(ch->idle_wq, 682 (n_of_deliverable_payloads(ch) > 0 || 683 (ch->flags & XPC_C_DISCONNECTING))); 684 685 atomic_dec(&ch->kthreads_idle); 686 687 } while (!(ch->flags & XPC_C_DISCONNECTING)); 688 } 689 690 static int 691 xpc_kthread_start(void *args) 692 { 693 short partid = XPC_UNPACK_ARG1(args); 694 u16 ch_number = XPC_UNPACK_ARG2(args); 695 struct xpc_partition *part = &xpc_partitions[partid]; 696 struct xpc_channel *ch; 697 int n_needed; 698 unsigned long irq_flags; 699 int (*n_of_deliverable_payloads) (struct xpc_channel *) = 700 xpc_arch_ops.n_of_deliverable_payloads; 701 702 dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n", 703 partid, ch_number); 704 705 ch = &part->channels[ch_number]; 706 707 if (!(ch->flags & XPC_C_DISCONNECTING)) { 708 709 /* let registerer know that connection has been established */ 710 711 spin_lock_irqsave(&ch->lock, irq_flags); 712 if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) { 713 ch->flags |= XPC_C_CONNECTEDCALLOUT; 714 spin_unlock_irqrestore(&ch->lock, irq_flags); 715 716 xpc_connected_callout(ch); 717 718 spin_lock_irqsave(&ch->lock, irq_flags); 719 ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE; 720 spin_unlock_irqrestore(&ch->lock, irq_flags); 721 722 /* 723 * It is possible that while the callout was being 724 * made that the remote partition sent some messages. 725 * If that is the case, we may need to activate 726 * additional kthreads to help deliver them. We only 727 * need one less than total #of messages to deliver. 728 */ 729 n_needed = n_of_deliverable_payloads(ch) - 1; 730 if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING)) 731 xpc_activate_kthreads(ch, n_needed); 732 733 } else { 734 spin_unlock_irqrestore(&ch->lock, irq_flags); 735 } 736 737 xpc_kthread_waitmsgs(part, ch); 738 } 739 740 /* let registerer know that connection is disconnecting */ 741 742 spin_lock_irqsave(&ch->lock, irq_flags); 743 if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && 744 !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) { 745 ch->flags |= XPC_C_DISCONNECTINGCALLOUT; 746 spin_unlock_irqrestore(&ch->lock, irq_flags); 747 748 xpc_disconnect_callout(ch, xpDisconnecting); 749 750 spin_lock_irqsave(&ch->lock, irq_flags); 751 ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE; 752 } 753 spin_unlock_irqrestore(&ch->lock, irq_flags); 754 755 if (atomic_dec_return(&ch->kthreads_assigned) == 0 && 756 atomic_dec_return(&part->nchannels_engaged) == 0) { 757 xpc_arch_ops.indicate_partition_disengaged(part); 758 } 759 760 xpc_msgqueue_deref(ch); 761 762 dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n", 763 partid, ch_number); 764 765 xpc_part_deref(part); 766 return 0; 767 } 768 769 /* 770 * For each partition that XPC has established communications with, there is 771 * a minimum of one kernel thread assigned to perform any operation that 772 * may potentially sleep or block (basically the callouts to the asynchronous 773 * functions registered via xpc_connect()). 774 * 775 * Additional kthreads are created and destroyed by XPC as the workload 776 * demands. 777 * 778 * A kthread is assigned to one of the active channels that exists for a given 779 * partition. 780 */ 781 void 782 xpc_create_kthreads(struct xpc_channel *ch, int needed, 783 int ignore_disconnecting) 784 { 785 unsigned long irq_flags; 786 u64 args = XPC_PACK_ARGS(ch->partid, ch->number); 787 struct xpc_partition *part = &xpc_partitions[ch->partid]; 788 struct task_struct *kthread; 789 void (*indicate_partition_disengaged) (struct xpc_partition *) = 790 xpc_arch_ops.indicate_partition_disengaged; 791 792 while (needed-- > 0) { 793 794 /* 795 * The following is done on behalf of the newly created 796 * kthread. That kthread is responsible for doing the 797 * counterpart to the following before it exits. 798 */ 799 if (ignore_disconnecting) { 800 if (!atomic_inc_not_zero(&ch->kthreads_assigned)) { 801 /* kthreads assigned had gone to zero */ 802 BUG_ON(!(ch->flags & 803 XPC_C_DISCONNECTINGCALLOUT_MADE)); 804 break; 805 } 806 807 } else if (ch->flags & XPC_C_DISCONNECTING) { 808 break; 809 810 } else if (atomic_inc_return(&ch->kthreads_assigned) == 1 && 811 atomic_inc_return(&part->nchannels_engaged) == 1) { 812 xpc_arch_ops.indicate_partition_engaged(part); 813 } 814 (void)xpc_part_ref(part); 815 xpc_msgqueue_ref(ch); 816 817 kthread = kthread_run(xpc_kthread_start, (void *)args, 818 "xpc%02dc%d", ch->partid, ch->number); 819 if (IS_ERR(kthread)) { 820 /* the fork failed */ 821 822 /* 823 * NOTE: if (ignore_disconnecting && 824 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true, 825 * then we'll deadlock if all other kthreads assigned 826 * to this channel are blocked in the channel's 827 * registerer, because the only thing that will unblock 828 * them is the xpDisconnecting callout that this 829 * failed kthread_run() would have made. 830 */ 831 832 if (atomic_dec_return(&ch->kthreads_assigned) == 0 && 833 atomic_dec_return(&part->nchannels_engaged) == 0) { 834 indicate_partition_disengaged(part); 835 } 836 xpc_msgqueue_deref(ch); 837 xpc_part_deref(part); 838 839 if (atomic_read(&ch->kthreads_assigned) < 840 ch->kthreads_idle_limit) { 841 /* 842 * Flag this as an error only if we have an 843 * insufficient #of kthreads for the channel 844 * to function. 845 */ 846 spin_lock_irqsave(&ch->lock, irq_flags); 847 XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources, 848 &irq_flags); 849 spin_unlock_irqrestore(&ch->lock, irq_flags); 850 } 851 break; 852 } 853 } 854 } 855 856 void 857 xpc_disconnect_wait(int ch_number) 858 { 859 unsigned long irq_flags; 860 short partid; 861 struct xpc_partition *part; 862 struct xpc_channel *ch; 863 int wakeup_channel_mgr; 864 865 /* now wait for all callouts to the caller's function to cease */ 866 for (partid = 0; partid < xp_max_npartitions; partid++) { 867 part = &xpc_partitions[partid]; 868 869 if (!xpc_part_ref(part)) 870 continue; 871 872 ch = &part->channels[ch_number]; 873 874 if (!(ch->flags & XPC_C_WDISCONNECT)) { 875 xpc_part_deref(part); 876 continue; 877 } 878 879 wait_for_completion(&ch->wdisconnect_wait); 880 881 spin_lock_irqsave(&ch->lock, irq_flags); 882 DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED)); 883 wakeup_channel_mgr = 0; 884 885 if (ch->delayed_chctl_flags) { 886 if (part->act_state != XPC_P_AS_DEACTIVATING) { 887 spin_lock(&part->chctl_lock); 888 part->chctl.flags[ch->number] |= 889 ch->delayed_chctl_flags; 890 spin_unlock(&part->chctl_lock); 891 wakeup_channel_mgr = 1; 892 } 893 ch->delayed_chctl_flags = 0; 894 } 895 896 ch->flags &= ~XPC_C_WDISCONNECT; 897 spin_unlock_irqrestore(&ch->lock, irq_flags); 898 899 if (wakeup_channel_mgr) 900 xpc_wakeup_channel_mgr(part); 901 902 xpc_part_deref(part); 903 } 904 } 905 906 static int 907 xpc_setup_partitions(void) 908 { 909 short partid; 910 struct xpc_partition *part; 911 912 xpc_partitions = kzalloc(sizeof(struct xpc_partition) * 913 xp_max_npartitions, GFP_KERNEL); 914 if (xpc_partitions == NULL) { 915 dev_err(xpc_part, "can't get memory for partition structure\n"); 916 return -ENOMEM; 917 } 918 919 /* 920 * The first few fields of each entry of xpc_partitions[] need to 921 * be initialized now so that calls to xpc_connect() and 922 * xpc_disconnect() can be made prior to the activation of any remote 923 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE 924 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING 925 * PARTITION HAS BEEN ACTIVATED. 926 */ 927 for (partid = 0; partid < xp_max_npartitions; partid++) { 928 part = &xpc_partitions[partid]; 929 930 DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part)); 931 932 part->activate_IRQ_rcvd = 0; 933 spin_lock_init(&part->act_lock); 934 part->act_state = XPC_P_AS_INACTIVE; 935 XPC_SET_REASON(part, 0, 0); 936 937 init_timer(&part->disengage_timer); 938 part->disengage_timer.function = 939 xpc_timeout_partition_disengage; 940 part->disengage_timer.data = (unsigned long)part; 941 942 part->setup_state = XPC_P_SS_UNSET; 943 init_waitqueue_head(&part->teardown_wq); 944 atomic_set(&part->references, 0); 945 } 946 947 return xpc_arch_ops.setup_partitions(); 948 } 949 950 static void 951 xpc_teardown_partitions(void) 952 { 953 xpc_arch_ops.teardown_partitions(); 954 kfree(xpc_partitions); 955 } 956 957 static void 958 xpc_do_exit(enum xp_retval reason) 959 { 960 short partid; 961 int active_part_count, printed_waiting_msg = 0; 962 struct xpc_partition *part; 963 unsigned long printmsg_time, disengage_timeout = 0; 964 965 /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */ 966 DBUG_ON(xpc_exiting == 1); 967 968 /* 969 * Let the heartbeat checker thread and the discovery thread 970 * (if one is running) know that they should exit. Also wake up 971 * the heartbeat checker thread in case it's sleeping. 972 */ 973 xpc_exiting = 1; 974 wake_up_interruptible(&xpc_activate_IRQ_wq); 975 976 /* wait for the discovery thread to exit */ 977 wait_for_completion(&xpc_discovery_exited); 978 979 /* wait for the heartbeat checker thread to exit */ 980 wait_for_completion(&xpc_hb_checker_exited); 981 982 /* sleep for a 1/3 of a second or so */ 983 (void)msleep_interruptible(300); 984 985 /* wait for all partitions to become inactive */ 986 987 printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); 988 xpc_disengage_timedout = 0; 989 990 do { 991 active_part_count = 0; 992 993 for (partid = 0; partid < xp_max_npartitions; partid++) { 994 part = &xpc_partitions[partid]; 995 996 if (xpc_partition_disengaged(part) && 997 part->act_state == XPC_P_AS_INACTIVE) { 998 continue; 999 } 1000 1001 active_part_count++; 1002 1003 XPC_DEACTIVATE_PARTITION(part, reason); 1004 1005 if (part->disengage_timeout > disengage_timeout) 1006 disengage_timeout = part->disengage_timeout; 1007 } 1008 1009 if (xpc_arch_ops.any_partition_engaged()) { 1010 if (time_is_before_jiffies(printmsg_time)) { 1011 dev_info(xpc_part, "waiting for remote " 1012 "partitions to deactivate, timeout in " 1013 "%ld seconds\n", (disengage_timeout - 1014 jiffies) / HZ); 1015 printmsg_time = jiffies + 1016 (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); 1017 printed_waiting_msg = 1; 1018 } 1019 1020 } else if (active_part_count > 0) { 1021 if (printed_waiting_msg) { 1022 dev_info(xpc_part, "waiting for local partition" 1023 " to deactivate\n"); 1024 printed_waiting_msg = 0; 1025 } 1026 1027 } else { 1028 if (!xpc_disengage_timedout) { 1029 dev_info(xpc_part, "all partitions have " 1030 "deactivated\n"); 1031 } 1032 break; 1033 } 1034 1035 /* sleep for a 1/3 of a second or so */ 1036 (void)msleep_interruptible(300); 1037 1038 } while (1); 1039 1040 DBUG_ON(xpc_arch_ops.any_partition_engaged()); 1041 1042 xpc_teardown_rsvd_page(); 1043 1044 if (reason == xpUnloading) { 1045 (void)unregister_die_notifier(&xpc_die_notifier); 1046 (void)unregister_reboot_notifier(&xpc_reboot_notifier); 1047 } 1048 1049 /* clear the interface to XPC's functions */ 1050 xpc_clear_interface(); 1051 1052 if (xpc_sysctl) 1053 unregister_sysctl_table(xpc_sysctl); 1054 1055 xpc_teardown_partitions(); 1056 1057 if (is_shub()) 1058 xpc_exit_sn2(); 1059 else if (is_uv()) 1060 xpc_exit_uv(); 1061 } 1062 1063 /* 1064 * This function is called when the system is being rebooted. 1065 */ 1066 static int 1067 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused) 1068 { 1069 enum xp_retval reason; 1070 1071 switch (event) { 1072 case SYS_RESTART: 1073 reason = xpSystemReboot; 1074 break; 1075 case SYS_HALT: 1076 reason = xpSystemHalt; 1077 break; 1078 case SYS_POWER_OFF: 1079 reason = xpSystemPoweroff; 1080 break; 1081 default: 1082 reason = xpSystemGoingDown; 1083 } 1084 1085 xpc_do_exit(reason); 1086 return NOTIFY_DONE; 1087 } 1088 1089 /* 1090 * Notify other partitions to deactivate from us by first disengaging from all 1091 * references to our memory. 1092 */ 1093 static void 1094 xpc_die_deactivate(void) 1095 { 1096 struct xpc_partition *part; 1097 short partid; 1098 int any_engaged; 1099 long keep_waiting; 1100 long wait_to_print; 1101 1102 /* keep xpc_hb_checker thread from doing anything (just in case) */ 1103 xpc_exiting = 1; 1104 1105 xpc_arch_ops.disallow_all_hbs(); /*indicate we're deactivated */ 1106 1107 for (partid = 0; partid < xp_max_npartitions; partid++) { 1108 part = &xpc_partitions[partid]; 1109 1110 if (xpc_arch_ops.partition_engaged(partid) || 1111 part->act_state != XPC_P_AS_INACTIVE) { 1112 xpc_arch_ops.request_partition_deactivation(part); 1113 xpc_arch_ops.indicate_partition_disengaged(part); 1114 } 1115 } 1116 1117 /* 1118 * Though we requested that all other partitions deactivate from us, 1119 * we only wait until they've all disengaged or we've reached the 1120 * defined timelimit. 1121 * 1122 * Given that one iteration through the following while-loop takes 1123 * approximately 200 microseconds, calculate the #of loops to take 1124 * before bailing and the #of loops before printing a waiting message. 1125 */ 1126 keep_waiting = xpc_disengage_timelimit * 1000 * 5; 1127 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5; 1128 1129 while (1) { 1130 any_engaged = xpc_arch_ops.any_partition_engaged(); 1131 if (!any_engaged) { 1132 dev_info(xpc_part, "all partitions have deactivated\n"); 1133 break; 1134 } 1135 1136 if (!keep_waiting--) { 1137 for (partid = 0; partid < xp_max_npartitions; 1138 partid++) { 1139 if (xpc_arch_ops.partition_engaged(partid)) { 1140 dev_info(xpc_part, "deactivate from " 1141 "remote partition %d timed " 1142 "out\n", partid); 1143 } 1144 } 1145 break; 1146 } 1147 1148 if (!wait_to_print--) { 1149 dev_info(xpc_part, "waiting for remote partitions to " 1150 "deactivate, timeout in %ld seconds\n", 1151 keep_waiting / (1000 * 5)); 1152 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1153 1000 * 5; 1154 } 1155 1156 udelay(200); 1157 } 1158 } 1159 1160 /* 1161 * This function is called when the system is being restarted or halted due 1162 * to some sort of system failure. If this is the case we need to notify the 1163 * other partitions to disengage from all references to our memory. 1164 * This function can also be called when our heartbeater could be offlined 1165 * for a time. In this case we need to notify other partitions to not worry 1166 * about the lack of a heartbeat. 1167 */ 1168 static int 1169 xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused) 1170 { 1171 #ifdef CONFIG_IA64 /* !!! temporary kludge */ 1172 switch (event) { 1173 case DIE_MACHINE_RESTART: 1174 case DIE_MACHINE_HALT: 1175 xpc_die_deactivate(); 1176 break; 1177 1178 case DIE_KDEBUG_ENTER: 1179 /* Should lack of heartbeat be ignored by other partitions? */ 1180 if (!xpc_kdebug_ignore) 1181 break; 1182 1183 /* fall through */ 1184 case DIE_MCA_MONARCH_ENTER: 1185 case DIE_INIT_MONARCH_ENTER: 1186 xpc_arch_ops.offline_heartbeat(); 1187 break; 1188 1189 case DIE_KDEBUG_LEAVE: 1190 /* Is lack of heartbeat being ignored by other partitions? */ 1191 if (!xpc_kdebug_ignore) 1192 break; 1193 1194 /* fall through */ 1195 case DIE_MCA_MONARCH_LEAVE: 1196 case DIE_INIT_MONARCH_LEAVE: 1197 xpc_arch_ops.online_heartbeat(); 1198 break; 1199 } 1200 #else 1201 xpc_die_deactivate(); 1202 #endif 1203 1204 return NOTIFY_DONE; 1205 } 1206 1207 int __init 1208 xpc_init(void) 1209 { 1210 int ret; 1211 struct task_struct *kthread; 1212 1213 dev_set_name(xpc_part, "part"); 1214 dev_set_name(xpc_chan, "chan"); 1215 1216 if (is_shub()) { 1217 /* 1218 * The ia64-sn2 architecture supports at most 64 partitions. 1219 * And the inability to unregister remote amos restricts us 1220 * further to only support exactly 64 partitions on this 1221 * architecture, no less. 1222 */ 1223 if (xp_max_npartitions != 64) { 1224 dev_err(xpc_part, "max #of partitions not set to 64\n"); 1225 ret = -EINVAL; 1226 } else { 1227 ret = xpc_init_sn2(); 1228 } 1229 1230 } else if (is_uv()) { 1231 ret = xpc_init_uv(); 1232 1233 } else { 1234 ret = -ENODEV; 1235 } 1236 1237 if (ret != 0) 1238 return ret; 1239 1240 ret = xpc_setup_partitions(); 1241 if (ret != 0) { 1242 dev_err(xpc_part, "can't get memory for partition structure\n"); 1243 goto out_1; 1244 } 1245 1246 xpc_sysctl = register_sysctl_table(xpc_sys_dir); 1247 1248 /* 1249 * Fill the partition reserved page with the information needed by 1250 * other partitions to discover we are alive and establish initial 1251 * communications. 1252 */ 1253 ret = xpc_setup_rsvd_page(); 1254 if (ret != 0) { 1255 dev_err(xpc_part, "can't setup our reserved page\n"); 1256 goto out_2; 1257 } 1258 1259 /* add ourselves to the reboot_notifier_list */ 1260 ret = register_reboot_notifier(&xpc_reboot_notifier); 1261 if (ret != 0) 1262 dev_warn(xpc_part, "can't register reboot notifier\n"); 1263 1264 /* add ourselves to the die_notifier list */ 1265 ret = register_die_notifier(&xpc_die_notifier); 1266 if (ret != 0) 1267 dev_warn(xpc_part, "can't register die notifier\n"); 1268 1269 /* 1270 * The real work-horse behind xpc. This processes incoming 1271 * interrupts and monitors remote heartbeats. 1272 */ 1273 kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME); 1274 if (IS_ERR(kthread)) { 1275 dev_err(xpc_part, "failed while forking hb check thread\n"); 1276 ret = -EBUSY; 1277 goto out_3; 1278 } 1279 1280 /* 1281 * Startup a thread that will attempt to discover other partitions to 1282 * activate based on info provided by SAL. This new thread is short 1283 * lived and will exit once discovery is complete. 1284 */ 1285 kthread = kthread_run(xpc_initiate_discovery, NULL, 1286 XPC_DISCOVERY_THREAD_NAME); 1287 if (IS_ERR(kthread)) { 1288 dev_err(xpc_part, "failed while forking discovery thread\n"); 1289 1290 /* mark this new thread as a non-starter */ 1291 complete(&xpc_discovery_exited); 1292 1293 xpc_do_exit(xpUnloading); 1294 return -EBUSY; 1295 } 1296 1297 /* set the interface to point at XPC's functions */ 1298 xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect, 1299 xpc_initiate_send, xpc_initiate_send_notify, 1300 xpc_initiate_received, xpc_initiate_partid_to_nasids); 1301 1302 return 0; 1303 1304 /* initialization was not successful */ 1305 out_3: 1306 xpc_teardown_rsvd_page(); 1307 1308 (void)unregister_die_notifier(&xpc_die_notifier); 1309 (void)unregister_reboot_notifier(&xpc_reboot_notifier); 1310 out_2: 1311 if (xpc_sysctl) 1312 unregister_sysctl_table(xpc_sysctl); 1313 1314 xpc_teardown_partitions(); 1315 out_1: 1316 if (is_shub()) 1317 xpc_exit_sn2(); 1318 else if (is_uv()) 1319 xpc_exit_uv(); 1320 return ret; 1321 } 1322 1323 module_init(xpc_init); 1324 1325 void __exit 1326 xpc_exit(void) 1327 { 1328 xpc_do_exit(xpUnloading); 1329 } 1330 1331 module_exit(xpc_exit); 1332 1333 MODULE_AUTHOR("Silicon Graphics, Inc."); 1334 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support"); 1335 MODULE_LICENSE("GPL"); 1336 1337 module_param(xpc_hb_interval, int, 0); 1338 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between " 1339 "heartbeat increments."); 1340 1341 module_param(xpc_hb_check_interval, int, 0); 1342 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between " 1343 "heartbeat checks."); 1344 1345 module_param(xpc_disengage_timelimit, int, 0); 1346 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait " 1347 "for disengage to complete."); 1348 1349 module_param(xpc_kdebug_ignore, int, 0); 1350 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by " 1351 "other partitions when dropping into kdebug."); 1352