1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (c) 2004-2009 Silicon Graphics, Inc. All Rights Reserved. 7 */ 8 9 /* 10 * Cross Partition Communication (XPC) support - standard version. 11 * 12 * XPC provides a message passing capability that crosses partition 13 * boundaries. This module is made up of two parts: 14 * 15 * partition This part detects the presence/absence of other 16 * partitions. It provides a heartbeat and monitors 17 * the heartbeats of other partitions. 18 * 19 * channel This part manages the channels and sends/receives 20 * messages across them to/from other partitions. 21 * 22 * There are a couple of additional functions residing in XP, which 23 * provide an interface to XPC for its users. 24 * 25 * 26 * Caveats: 27 * 28 * . Currently on sn2, we have no way to determine which nasid an IRQ 29 * came from. Thus, xpc_send_IRQ_sn2() does a remote amo write 30 * followed by an IPI. The amo indicates where data is to be pulled 31 * from, so after the IPI arrives, the remote partition checks the amo 32 * word. The IPI can actually arrive before the amo however, so other 33 * code must periodically check for this case. Also, remote amo 34 * operations do not reliably time out. Thus we do a remote PIO read 35 * solely to know whether the remote partition is down and whether we 36 * should stop sending IPIs to it. This remote PIO read operation is 37 * set up in a special nofault region so SAL knows to ignore (and 38 * cleanup) any errors due to the remote amo write, PIO read, and/or 39 * PIO write operations. 40 * 41 * If/when new hardware solves this IPI problem, we should abandon 42 * the current approach. 43 * 44 */ 45 46 #include <linux/module.h> 47 #include <linux/slab.h> 48 #include <linux/sysctl.h> 49 #include <linux/device.h> 50 #include <linux/delay.h> 51 #include <linux/reboot.h> 52 #include <linux/kdebug.h> 53 #include <linux/kthread.h> 54 #include "xpc.h" 55 56 /* define two XPC debug device structures to be used with dev_dbg() et al */ 57 58 struct device_driver xpc_dbg_name = { 59 .name = "xpc" 60 }; 61 62 struct device xpc_part_dbg_subname = { 63 .init_name = "", /* set to "part" at xpc_init() time */ 64 .driver = &xpc_dbg_name 65 }; 66 67 struct device xpc_chan_dbg_subname = { 68 .init_name = "", /* set to "chan" at xpc_init() time */ 69 .driver = &xpc_dbg_name 70 }; 71 72 struct device *xpc_part = &xpc_part_dbg_subname; 73 struct device *xpc_chan = &xpc_chan_dbg_subname; 74 75 static int xpc_kdebug_ignore; 76 77 /* systune related variables for /proc/sys directories */ 78 79 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL; 80 static int xpc_hb_min_interval = 1; 81 static int xpc_hb_max_interval = 10; 82 83 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL; 84 static int xpc_hb_check_min_interval = 10; 85 static int xpc_hb_check_max_interval = 120; 86 87 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT; 88 static int xpc_disengage_min_timelimit; /* = 0 */ 89 static int xpc_disengage_max_timelimit = 120; 90 91 static ctl_table xpc_sys_xpc_hb_dir[] = { 92 { 93 .procname = "hb_interval", 94 .data = &xpc_hb_interval, 95 .maxlen = sizeof(int), 96 .mode = 0644, 97 .proc_handler = proc_dointvec_minmax, 98 .extra1 = &xpc_hb_min_interval, 99 .extra2 = &xpc_hb_max_interval}, 100 { 101 .procname = "hb_check_interval", 102 .data = &xpc_hb_check_interval, 103 .maxlen = sizeof(int), 104 .mode = 0644, 105 .proc_handler = proc_dointvec_minmax, 106 .extra1 = &xpc_hb_check_min_interval, 107 .extra2 = &xpc_hb_check_max_interval}, 108 {} 109 }; 110 static ctl_table xpc_sys_xpc_dir[] = { 111 { 112 .procname = "hb", 113 .mode = 0555, 114 .child = xpc_sys_xpc_hb_dir}, 115 { 116 .procname = "disengage_timelimit", 117 .data = &xpc_disengage_timelimit, 118 .maxlen = sizeof(int), 119 .mode = 0644, 120 .proc_handler = proc_dointvec_minmax, 121 .extra1 = &xpc_disengage_min_timelimit, 122 .extra2 = &xpc_disengage_max_timelimit}, 123 {} 124 }; 125 static ctl_table xpc_sys_dir[] = { 126 { 127 .procname = "xpc", 128 .mode = 0555, 129 .child = xpc_sys_xpc_dir}, 130 {} 131 }; 132 static struct ctl_table_header *xpc_sysctl; 133 134 /* non-zero if any remote partition disengage was timed out */ 135 int xpc_disengage_timedout; 136 137 /* #of activate IRQs received and not yet processed */ 138 int xpc_activate_IRQ_rcvd; 139 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock); 140 141 /* IRQ handler notifies this wait queue on receipt of an IRQ */ 142 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq); 143 144 static unsigned long xpc_hb_check_timeout; 145 static struct timer_list xpc_hb_timer; 146 147 /* notification that the xpc_hb_checker thread has exited */ 148 static DECLARE_COMPLETION(xpc_hb_checker_exited); 149 150 /* notification that the xpc_discovery thread has exited */ 151 static DECLARE_COMPLETION(xpc_discovery_exited); 152 153 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *); 154 155 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *); 156 static struct notifier_block xpc_reboot_notifier = { 157 .notifier_call = xpc_system_reboot, 158 }; 159 160 static int xpc_system_die(struct notifier_block *, unsigned long, void *); 161 static struct notifier_block xpc_die_notifier = { 162 .notifier_call = xpc_system_die, 163 }; 164 165 struct xpc_arch_operations xpc_arch_ops; 166 167 /* 168 * Timer function to enforce the timelimit on the partition disengage. 169 */ 170 static void 171 xpc_timeout_partition_disengage(unsigned long data) 172 { 173 struct xpc_partition *part = (struct xpc_partition *)data; 174 175 DBUG_ON(time_is_after_jiffies(part->disengage_timeout)); 176 177 (void)xpc_partition_disengaged(part); 178 179 DBUG_ON(part->disengage_timeout != 0); 180 DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part))); 181 } 182 183 /* 184 * Timer to produce the heartbeat. The timer structures function is 185 * already set when this is initially called. A tunable is used to 186 * specify when the next timeout should occur. 187 */ 188 static void 189 xpc_hb_beater(unsigned long dummy) 190 { 191 xpc_arch_ops.increment_heartbeat(); 192 193 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) 194 wake_up_interruptible(&xpc_activate_IRQ_wq); 195 196 xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ); 197 add_timer(&xpc_hb_timer); 198 } 199 200 static void 201 xpc_start_hb_beater(void) 202 { 203 xpc_arch_ops.heartbeat_init(); 204 init_timer(&xpc_hb_timer); 205 xpc_hb_timer.function = xpc_hb_beater; 206 xpc_hb_beater(0); 207 } 208 209 static void 210 xpc_stop_hb_beater(void) 211 { 212 del_timer_sync(&xpc_hb_timer); 213 xpc_arch_ops.heartbeat_exit(); 214 } 215 216 /* 217 * At periodic intervals, scan through all active partitions and ensure 218 * their heartbeat is still active. If not, the partition is deactivated. 219 */ 220 static void 221 xpc_check_remote_hb(void) 222 { 223 struct xpc_partition *part; 224 short partid; 225 enum xp_retval ret; 226 227 for (partid = 0; partid < xp_max_npartitions; partid++) { 228 229 if (xpc_exiting) 230 break; 231 232 if (partid == xp_partition_id) 233 continue; 234 235 part = &xpc_partitions[partid]; 236 237 if (part->act_state == XPC_P_AS_INACTIVE || 238 part->act_state == XPC_P_AS_DEACTIVATING) { 239 continue; 240 } 241 242 ret = xpc_arch_ops.get_remote_heartbeat(part); 243 if (ret != xpSuccess) 244 XPC_DEACTIVATE_PARTITION(part, ret); 245 } 246 } 247 248 /* 249 * This thread is responsible for nearly all of the partition 250 * activation/deactivation. 251 */ 252 static int 253 xpc_hb_checker(void *ignore) 254 { 255 int force_IRQ = 0; 256 257 /* this thread was marked active by xpc_hb_init() */ 258 259 set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU)); 260 261 /* set our heartbeating to other partitions into motion */ 262 xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ); 263 xpc_start_hb_beater(); 264 265 while (!xpc_exiting) { 266 267 dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have " 268 "been received\n", 269 (int)(xpc_hb_check_timeout - jiffies), 270 xpc_activate_IRQ_rcvd); 271 272 /* checking of remote heartbeats is skewed by IRQ handling */ 273 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) { 274 xpc_hb_check_timeout = jiffies + 275 (xpc_hb_check_interval * HZ); 276 277 dev_dbg(xpc_part, "checking remote heartbeats\n"); 278 xpc_check_remote_hb(); 279 280 /* 281 * On sn2 we need to periodically recheck to ensure no 282 * IRQ/amo pairs have been missed. 283 */ 284 if (is_shub()) 285 force_IRQ = 1; 286 } 287 288 /* check for outstanding IRQs */ 289 if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) { 290 force_IRQ = 0; 291 dev_dbg(xpc_part, "processing activate IRQs " 292 "received\n"); 293 xpc_arch_ops.process_activate_IRQ_rcvd(); 294 } 295 296 /* wait for IRQ or timeout */ 297 (void)wait_event_interruptible(xpc_activate_IRQ_wq, 298 (time_is_before_eq_jiffies( 299 xpc_hb_check_timeout) || 300 xpc_activate_IRQ_rcvd > 0 || 301 xpc_exiting)); 302 } 303 304 xpc_stop_hb_beater(); 305 306 dev_dbg(xpc_part, "heartbeat checker is exiting\n"); 307 308 /* mark this thread as having exited */ 309 complete(&xpc_hb_checker_exited); 310 return 0; 311 } 312 313 /* 314 * This thread will attempt to discover other partitions to activate 315 * based on info provided by SAL. This new thread is short lived and 316 * will exit once discovery is complete. 317 */ 318 static int 319 xpc_initiate_discovery(void *ignore) 320 { 321 xpc_discovery(); 322 323 dev_dbg(xpc_part, "discovery thread is exiting\n"); 324 325 /* mark this thread as having exited */ 326 complete(&xpc_discovery_exited); 327 return 0; 328 } 329 330 /* 331 * The first kthread assigned to a newly activated partition is the one 332 * created by XPC HB with which it calls xpc_activating(). XPC hangs on to 333 * that kthread until the partition is brought down, at which time that kthread 334 * returns back to XPC HB. (The return of that kthread will signify to XPC HB 335 * that XPC has dismantled all communication infrastructure for the associated 336 * partition.) This kthread becomes the channel manager for that partition. 337 * 338 * Each active partition has a channel manager, who, besides connecting and 339 * disconnecting channels, will ensure that each of the partition's connected 340 * channels has the required number of assigned kthreads to get the work done. 341 */ 342 static void 343 xpc_channel_mgr(struct xpc_partition *part) 344 { 345 while (part->act_state != XPC_P_AS_DEACTIVATING || 346 atomic_read(&part->nchannels_active) > 0 || 347 !xpc_partition_disengaged(part)) { 348 349 xpc_process_sent_chctl_flags(part); 350 351 /* 352 * Wait until we've been requested to activate kthreads or 353 * all of the channel's message queues have been torn down or 354 * a signal is pending. 355 * 356 * The channel_mgr_requests is set to 1 after being awakened, 357 * This is done to prevent the channel mgr from making one pass 358 * through the loop for each request, since he will 359 * be servicing all the requests in one pass. The reason it's 360 * set to 1 instead of 0 is so that other kthreads will know 361 * that the channel mgr is running and won't bother trying to 362 * wake him up. 363 */ 364 atomic_dec(&part->channel_mgr_requests); 365 (void)wait_event_interruptible(part->channel_mgr_wq, 366 (atomic_read(&part->channel_mgr_requests) > 0 || 367 part->chctl.all_flags != 0 || 368 (part->act_state == XPC_P_AS_DEACTIVATING && 369 atomic_read(&part->nchannels_active) == 0 && 370 xpc_partition_disengaged(part)))); 371 atomic_set(&part->channel_mgr_requests, 1); 372 } 373 } 374 375 /* 376 * Guarantee that the kzalloc'd memory is cacheline aligned. 377 */ 378 void * 379 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) 380 { 381 /* see if kzalloc will give us cachline aligned memory by default */ 382 *base = kzalloc(size, flags); 383 if (*base == NULL) 384 return NULL; 385 386 if ((u64)*base == L1_CACHE_ALIGN((u64)*base)) 387 return *base; 388 389 kfree(*base); 390 391 /* nope, we'll have to do it ourselves */ 392 *base = kzalloc(size + L1_CACHE_BYTES, flags); 393 if (*base == NULL) 394 return NULL; 395 396 return (void *)L1_CACHE_ALIGN((u64)*base); 397 } 398 399 /* 400 * Setup the channel structures necessary to support XPartition Communication 401 * between the specified remote partition and the local one. 402 */ 403 static enum xp_retval 404 xpc_setup_ch_structures(struct xpc_partition *part) 405 { 406 enum xp_retval ret; 407 int ch_number; 408 struct xpc_channel *ch; 409 short partid = XPC_PARTID(part); 410 411 /* 412 * Allocate all of the channel structures as a contiguous chunk of 413 * memory. 414 */ 415 DBUG_ON(part->channels != NULL); 416 part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS, 417 GFP_KERNEL); 418 if (part->channels == NULL) { 419 dev_err(xpc_chan, "can't get memory for channels\n"); 420 return xpNoMemory; 421 } 422 423 /* allocate the remote open and close args */ 424 425 part->remote_openclose_args = 426 xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, 427 GFP_KERNEL, &part-> 428 remote_openclose_args_base); 429 if (part->remote_openclose_args == NULL) { 430 dev_err(xpc_chan, "can't get memory for remote connect args\n"); 431 ret = xpNoMemory; 432 goto out_1; 433 } 434 435 part->chctl.all_flags = 0; 436 spin_lock_init(&part->chctl_lock); 437 438 atomic_set(&part->channel_mgr_requests, 1); 439 init_waitqueue_head(&part->channel_mgr_wq); 440 441 part->nchannels = XPC_MAX_NCHANNELS; 442 443 atomic_set(&part->nchannels_active, 0); 444 atomic_set(&part->nchannels_engaged, 0); 445 446 for (ch_number = 0; ch_number < part->nchannels; ch_number++) { 447 ch = &part->channels[ch_number]; 448 449 ch->partid = partid; 450 ch->number = ch_number; 451 ch->flags = XPC_C_DISCONNECTED; 452 453 atomic_set(&ch->kthreads_assigned, 0); 454 atomic_set(&ch->kthreads_idle, 0); 455 atomic_set(&ch->kthreads_active, 0); 456 457 atomic_set(&ch->references, 0); 458 atomic_set(&ch->n_to_notify, 0); 459 460 spin_lock_init(&ch->lock); 461 init_completion(&ch->wdisconnect_wait); 462 463 atomic_set(&ch->n_on_msg_allocate_wq, 0); 464 init_waitqueue_head(&ch->msg_allocate_wq); 465 init_waitqueue_head(&ch->idle_wq); 466 } 467 468 ret = xpc_arch_ops.setup_ch_structures(part); 469 if (ret != xpSuccess) 470 goto out_2; 471 472 /* 473 * With the setting of the partition setup_state to XPC_P_SS_SETUP, 474 * we're declaring that this partition is ready to go. 475 */ 476 part->setup_state = XPC_P_SS_SETUP; 477 478 return xpSuccess; 479 480 /* setup of ch structures failed */ 481 out_2: 482 kfree(part->remote_openclose_args_base); 483 part->remote_openclose_args = NULL; 484 out_1: 485 kfree(part->channels); 486 part->channels = NULL; 487 return ret; 488 } 489 490 /* 491 * Teardown the channel structures necessary to support XPartition Communication 492 * between the specified remote partition and the local one. 493 */ 494 static void 495 xpc_teardown_ch_structures(struct xpc_partition *part) 496 { 497 DBUG_ON(atomic_read(&part->nchannels_engaged) != 0); 498 DBUG_ON(atomic_read(&part->nchannels_active) != 0); 499 500 /* 501 * Make this partition inaccessible to local processes by marking it 502 * as no longer setup. Then wait before proceeding with the teardown 503 * until all existing references cease. 504 */ 505 DBUG_ON(part->setup_state != XPC_P_SS_SETUP); 506 part->setup_state = XPC_P_SS_WTEARDOWN; 507 508 wait_event(part->teardown_wq, (atomic_read(&part->references) == 0)); 509 510 /* now we can begin tearing down the infrastructure */ 511 512 xpc_arch_ops.teardown_ch_structures(part); 513 514 kfree(part->remote_openclose_args_base); 515 part->remote_openclose_args = NULL; 516 kfree(part->channels); 517 part->channels = NULL; 518 519 part->setup_state = XPC_P_SS_TORNDOWN; 520 } 521 522 /* 523 * When XPC HB determines that a partition has come up, it will create a new 524 * kthread and that kthread will call this function to attempt to set up the 525 * basic infrastructure used for Cross Partition Communication with the newly 526 * upped partition. 527 * 528 * The kthread that was created by XPC HB and which setup the XPC 529 * infrastructure will remain assigned to the partition becoming the channel 530 * manager for that partition until the partition is deactivating, at which 531 * time the kthread will teardown the XPC infrastructure and then exit. 532 */ 533 static int 534 xpc_activating(void *__partid) 535 { 536 short partid = (u64)__partid; 537 struct xpc_partition *part = &xpc_partitions[partid]; 538 unsigned long irq_flags; 539 540 DBUG_ON(partid < 0 || partid >= xp_max_npartitions); 541 542 spin_lock_irqsave(&part->act_lock, irq_flags); 543 544 if (part->act_state == XPC_P_AS_DEACTIVATING) { 545 part->act_state = XPC_P_AS_INACTIVE; 546 spin_unlock_irqrestore(&part->act_lock, irq_flags); 547 part->remote_rp_pa = 0; 548 return 0; 549 } 550 551 /* indicate the thread is activating */ 552 DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ); 553 part->act_state = XPC_P_AS_ACTIVATING; 554 555 XPC_SET_REASON(part, 0, 0); 556 spin_unlock_irqrestore(&part->act_lock, irq_flags); 557 558 dev_dbg(xpc_part, "activating partition %d\n", partid); 559 560 xpc_arch_ops.allow_hb(partid); 561 562 if (xpc_setup_ch_structures(part) == xpSuccess) { 563 (void)xpc_part_ref(part); /* this will always succeed */ 564 565 if (xpc_arch_ops.make_first_contact(part) == xpSuccess) { 566 xpc_mark_partition_active(part); 567 xpc_channel_mgr(part); 568 /* won't return until partition is deactivating */ 569 } 570 571 xpc_part_deref(part); 572 xpc_teardown_ch_structures(part); 573 } 574 575 xpc_arch_ops.disallow_hb(partid); 576 xpc_mark_partition_inactive(part); 577 578 if (part->reason == xpReactivating) { 579 /* interrupting ourselves results in activating partition */ 580 xpc_arch_ops.request_partition_reactivation(part); 581 } 582 583 return 0; 584 } 585 586 void 587 xpc_activate_partition(struct xpc_partition *part) 588 { 589 short partid = XPC_PARTID(part); 590 unsigned long irq_flags; 591 struct task_struct *kthread; 592 593 spin_lock_irqsave(&part->act_lock, irq_flags); 594 595 DBUG_ON(part->act_state != XPC_P_AS_INACTIVE); 596 597 part->act_state = XPC_P_AS_ACTIVATION_REQ; 598 XPC_SET_REASON(part, xpCloneKThread, __LINE__); 599 600 spin_unlock_irqrestore(&part->act_lock, irq_flags); 601 602 kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d", 603 partid); 604 if (IS_ERR(kthread)) { 605 spin_lock_irqsave(&part->act_lock, irq_flags); 606 part->act_state = XPC_P_AS_INACTIVE; 607 XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__); 608 spin_unlock_irqrestore(&part->act_lock, irq_flags); 609 } 610 } 611 612 void 613 xpc_activate_kthreads(struct xpc_channel *ch, int needed) 614 { 615 int idle = atomic_read(&ch->kthreads_idle); 616 int assigned = atomic_read(&ch->kthreads_assigned); 617 int wakeup; 618 619 DBUG_ON(needed <= 0); 620 621 if (idle > 0) { 622 wakeup = (needed > idle) ? idle : needed; 623 needed -= wakeup; 624 625 dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, " 626 "channel=%d\n", wakeup, ch->partid, ch->number); 627 628 /* only wakeup the requested number of kthreads */ 629 wake_up_nr(&ch->idle_wq, wakeup); 630 } 631 632 if (needed <= 0) 633 return; 634 635 if (needed + assigned > ch->kthreads_assigned_limit) { 636 needed = ch->kthreads_assigned_limit - assigned; 637 if (needed <= 0) 638 return; 639 } 640 641 dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n", 642 needed, ch->partid, ch->number); 643 644 xpc_create_kthreads(ch, needed, 0); 645 } 646 647 /* 648 * This function is where XPC's kthreads wait for messages to deliver. 649 */ 650 static void 651 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch) 652 { 653 int (*n_of_deliverable_payloads) (struct xpc_channel *) = 654 xpc_arch_ops.n_of_deliverable_payloads; 655 656 do { 657 /* deliver messages to their intended recipients */ 658 659 while (n_of_deliverable_payloads(ch) > 0 && 660 !(ch->flags & XPC_C_DISCONNECTING)) { 661 xpc_deliver_payload(ch); 662 } 663 664 if (atomic_inc_return(&ch->kthreads_idle) > 665 ch->kthreads_idle_limit) { 666 /* too many idle kthreads on this channel */ 667 atomic_dec(&ch->kthreads_idle); 668 break; 669 } 670 671 dev_dbg(xpc_chan, "idle kthread calling " 672 "wait_event_interruptible_exclusive()\n"); 673 674 (void)wait_event_interruptible_exclusive(ch->idle_wq, 675 (n_of_deliverable_payloads(ch) > 0 || 676 (ch->flags & XPC_C_DISCONNECTING))); 677 678 atomic_dec(&ch->kthreads_idle); 679 680 } while (!(ch->flags & XPC_C_DISCONNECTING)); 681 } 682 683 static int 684 xpc_kthread_start(void *args) 685 { 686 short partid = XPC_UNPACK_ARG1(args); 687 u16 ch_number = XPC_UNPACK_ARG2(args); 688 struct xpc_partition *part = &xpc_partitions[partid]; 689 struct xpc_channel *ch; 690 int n_needed; 691 unsigned long irq_flags; 692 int (*n_of_deliverable_payloads) (struct xpc_channel *) = 693 xpc_arch_ops.n_of_deliverable_payloads; 694 695 dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n", 696 partid, ch_number); 697 698 ch = &part->channels[ch_number]; 699 700 if (!(ch->flags & XPC_C_DISCONNECTING)) { 701 702 /* let registerer know that connection has been established */ 703 704 spin_lock_irqsave(&ch->lock, irq_flags); 705 if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) { 706 ch->flags |= XPC_C_CONNECTEDCALLOUT; 707 spin_unlock_irqrestore(&ch->lock, irq_flags); 708 709 xpc_connected_callout(ch); 710 711 spin_lock_irqsave(&ch->lock, irq_flags); 712 ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE; 713 spin_unlock_irqrestore(&ch->lock, irq_flags); 714 715 /* 716 * It is possible that while the callout was being 717 * made that the remote partition sent some messages. 718 * If that is the case, we may need to activate 719 * additional kthreads to help deliver them. We only 720 * need one less than total #of messages to deliver. 721 */ 722 n_needed = n_of_deliverable_payloads(ch) - 1; 723 if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING)) 724 xpc_activate_kthreads(ch, n_needed); 725 726 } else { 727 spin_unlock_irqrestore(&ch->lock, irq_flags); 728 } 729 730 xpc_kthread_waitmsgs(part, ch); 731 } 732 733 /* let registerer know that connection is disconnecting */ 734 735 spin_lock_irqsave(&ch->lock, irq_flags); 736 if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && 737 !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) { 738 ch->flags |= XPC_C_DISCONNECTINGCALLOUT; 739 spin_unlock_irqrestore(&ch->lock, irq_flags); 740 741 xpc_disconnect_callout(ch, xpDisconnecting); 742 743 spin_lock_irqsave(&ch->lock, irq_flags); 744 ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE; 745 } 746 spin_unlock_irqrestore(&ch->lock, irq_flags); 747 748 if (atomic_dec_return(&ch->kthreads_assigned) == 0 && 749 atomic_dec_return(&part->nchannels_engaged) == 0) { 750 xpc_arch_ops.indicate_partition_disengaged(part); 751 } 752 753 xpc_msgqueue_deref(ch); 754 755 dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n", 756 partid, ch_number); 757 758 xpc_part_deref(part); 759 return 0; 760 } 761 762 /* 763 * For each partition that XPC has established communications with, there is 764 * a minimum of one kernel thread assigned to perform any operation that 765 * may potentially sleep or block (basically the callouts to the asynchronous 766 * functions registered via xpc_connect()). 767 * 768 * Additional kthreads are created and destroyed by XPC as the workload 769 * demands. 770 * 771 * A kthread is assigned to one of the active channels that exists for a given 772 * partition. 773 */ 774 void 775 xpc_create_kthreads(struct xpc_channel *ch, int needed, 776 int ignore_disconnecting) 777 { 778 unsigned long irq_flags; 779 u64 args = XPC_PACK_ARGS(ch->partid, ch->number); 780 struct xpc_partition *part = &xpc_partitions[ch->partid]; 781 struct task_struct *kthread; 782 void (*indicate_partition_disengaged) (struct xpc_partition *) = 783 xpc_arch_ops.indicate_partition_disengaged; 784 785 while (needed-- > 0) { 786 787 /* 788 * The following is done on behalf of the newly created 789 * kthread. That kthread is responsible for doing the 790 * counterpart to the following before it exits. 791 */ 792 if (ignore_disconnecting) { 793 if (!atomic_inc_not_zero(&ch->kthreads_assigned)) { 794 /* kthreads assigned had gone to zero */ 795 BUG_ON(!(ch->flags & 796 XPC_C_DISCONNECTINGCALLOUT_MADE)); 797 break; 798 } 799 800 } else if (ch->flags & XPC_C_DISCONNECTING) { 801 break; 802 803 } else if (atomic_inc_return(&ch->kthreads_assigned) == 1 && 804 atomic_inc_return(&part->nchannels_engaged) == 1) { 805 xpc_arch_ops.indicate_partition_engaged(part); 806 } 807 (void)xpc_part_ref(part); 808 xpc_msgqueue_ref(ch); 809 810 kthread = kthread_run(xpc_kthread_start, (void *)args, 811 "xpc%02dc%d", ch->partid, ch->number); 812 if (IS_ERR(kthread)) { 813 /* the fork failed */ 814 815 /* 816 * NOTE: if (ignore_disconnecting && 817 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true, 818 * then we'll deadlock if all other kthreads assigned 819 * to this channel are blocked in the channel's 820 * registerer, because the only thing that will unblock 821 * them is the xpDisconnecting callout that this 822 * failed kthread_run() would have made. 823 */ 824 825 if (atomic_dec_return(&ch->kthreads_assigned) == 0 && 826 atomic_dec_return(&part->nchannels_engaged) == 0) { 827 indicate_partition_disengaged(part); 828 } 829 xpc_msgqueue_deref(ch); 830 xpc_part_deref(part); 831 832 if (atomic_read(&ch->kthreads_assigned) < 833 ch->kthreads_idle_limit) { 834 /* 835 * Flag this as an error only if we have an 836 * insufficient #of kthreads for the channel 837 * to function. 838 */ 839 spin_lock_irqsave(&ch->lock, irq_flags); 840 XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources, 841 &irq_flags); 842 spin_unlock_irqrestore(&ch->lock, irq_flags); 843 } 844 break; 845 } 846 } 847 } 848 849 void 850 xpc_disconnect_wait(int ch_number) 851 { 852 unsigned long irq_flags; 853 short partid; 854 struct xpc_partition *part; 855 struct xpc_channel *ch; 856 int wakeup_channel_mgr; 857 858 /* now wait for all callouts to the caller's function to cease */ 859 for (partid = 0; partid < xp_max_npartitions; partid++) { 860 part = &xpc_partitions[partid]; 861 862 if (!xpc_part_ref(part)) 863 continue; 864 865 ch = &part->channels[ch_number]; 866 867 if (!(ch->flags & XPC_C_WDISCONNECT)) { 868 xpc_part_deref(part); 869 continue; 870 } 871 872 wait_for_completion(&ch->wdisconnect_wait); 873 874 spin_lock_irqsave(&ch->lock, irq_flags); 875 DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED)); 876 wakeup_channel_mgr = 0; 877 878 if (ch->delayed_chctl_flags) { 879 if (part->act_state != XPC_P_AS_DEACTIVATING) { 880 spin_lock(&part->chctl_lock); 881 part->chctl.flags[ch->number] |= 882 ch->delayed_chctl_flags; 883 spin_unlock(&part->chctl_lock); 884 wakeup_channel_mgr = 1; 885 } 886 ch->delayed_chctl_flags = 0; 887 } 888 889 ch->flags &= ~XPC_C_WDISCONNECT; 890 spin_unlock_irqrestore(&ch->lock, irq_flags); 891 892 if (wakeup_channel_mgr) 893 xpc_wakeup_channel_mgr(part); 894 895 xpc_part_deref(part); 896 } 897 } 898 899 static int 900 xpc_setup_partitions(void) 901 { 902 short partid; 903 struct xpc_partition *part; 904 905 xpc_partitions = kzalloc(sizeof(struct xpc_partition) * 906 xp_max_npartitions, GFP_KERNEL); 907 if (xpc_partitions == NULL) { 908 dev_err(xpc_part, "can't get memory for partition structure\n"); 909 return -ENOMEM; 910 } 911 912 /* 913 * The first few fields of each entry of xpc_partitions[] need to 914 * be initialized now so that calls to xpc_connect() and 915 * xpc_disconnect() can be made prior to the activation of any remote 916 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE 917 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING 918 * PARTITION HAS BEEN ACTIVATED. 919 */ 920 for (partid = 0; partid < xp_max_npartitions; partid++) { 921 part = &xpc_partitions[partid]; 922 923 DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part)); 924 925 part->activate_IRQ_rcvd = 0; 926 spin_lock_init(&part->act_lock); 927 part->act_state = XPC_P_AS_INACTIVE; 928 XPC_SET_REASON(part, 0, 0); 929 930 init_timer(&part->disengage_timer); 931 part->disengage_timer.function = 932 xpc_timeout_partition_disengage; 933 part->disengage_timer.data = (unsigned long)part; 934 935 part->setup_state = XPC_P_SS_UNSET; 936 init_waitqueue_head(&part->teardown_wq); 937 atomic_set(&part->references, 0); 938 } 939 940 return xpc_arch_ops.setup_partitions(); 941 } 942 943 static void 944 xpc_teardown_partitions(void) 945 { 946 xpc_arch_ops.teardown_partitions(); 947 kfree(xpc_partitions); 948 } 949 950 static void 951 xpc_do_exit(enum xp_retval reason) 952 { 953 short partid; 954 int active_part_count, printed_waiting_msg = 0; 955 struct xpc_partition *part; 956 unsigned long printmsg_time, disengage_timeout = 0; 957 958 /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */ 959 DBUG_ON(xpc_exiting == 1); 960 961 /* 962 * Let the heartbeat checker thread and the discovery thread 963 * (if one is running) know that they should exit. Also wake up 964 * the heartbeat checker thread in case it's sleeping. 965 */ 966 xpc_exiting = 1; 967 wake_up_interruptible(&xpc_activate_IRQ_wq); 968 969 /* wait for the discovery thread to exit */ 970 wait_for_completion(&xpc_discovery_exited); 971 972 /* wait for the heartbeat checker thread to exit */ 973 wait_for_completion(&xpc_hb_checker_exited); 974 975 /* sleep for a 1/3 of a second or so */ 976 (void)msleep_interruptible(300); 977 978 /* wait for all partitions to become inactive */ 979 980 printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); 981 xpc_disengage_timedout = 0; 982 983 do { 984 active_part_count = 0; 985 986 for (partid = 0; partid < xp_max_npartitions; partid++) { 987 part = &xpc_partitions[partid]; 988 989 if (xpc_partition_disengaged(part) && 990 part->act_state == XPC_P_AS_INACTIVE) { 991 continue; 992 } 993 994 active_part_count++; 995 996 XPC_DEACTIVATE_PARTITION(part, reason); 997 998 if (part->disengage_timeout > disengage_timeout) 999 disengage_timeout = part->disengage_timeout; 1000 } 1001 1002 if (xpc_arch_ops.any_partition_engaged()) { 1003 if (time_is_before_jiffies(printmsg_time)) { 1004 dev_info(xpc_part, "waiting for remote " 1005 "partitions to deactivate, timeout in " 1006 "%ld seconds\n", (disengage_timeout - 1007 jiffies) / HZ); 1008 printmsg_time = jiffies + 1009 (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); 1010 printed_waiting_msg = 1; 1011 } 1012 1013 } else if (active_part_count > 0) { 1014 if (printed_waiting_msg) { 1015 dev_info(xpc_part, "waiting for local partition" 1016 " to deactivate\n"); 1017 printed_waiting_msg = 0; 1018 } 1019 1020 } else { 1021 if (!xpc_disengage_timedout) { 1022 dev_info(xpc_part, "all partitions have " 1023 "deactivated\n"); 1024 } 1025 break; 1026 } 1027 1028 /* sleep for a 1/3 of a second or so */ 1029 (void)msleep_interruptible(300); 1030 1031 } while (1); 1032 1033 DBUG_ON(xpc_arch_ops.any_partition_engaged()); 1034 1035 xpc_teardown_rsvd_page(); 1036 1037 if (reason == xpUnloading) { 1038 (void)unregister_die_notifier(&xpc_die_notifier); 1039 (void)unregister_reboot_notifier(&xpc_reboot_notifier); 1040 } 1041 1042 /* clear the interface to XPC's functions */ 1043 xpc_clear_interface(); 1044 1045 if (xpc_sysctl) 1046 unregister_sysctl_table(xpc_sysctl); 1047 1048 xpc_teardown_partitions(); 1049 1050 if (is_shub()) 1051 xpc_exit_sn2(); 1052 else if (is_uv()) 1053 xpc_exit_uv(); 1054 } 1055 1056 /* 1057 * This function is called when the system is being rebooted. 1058 */ 1059 static int 1060 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused) 1061 { 1062 enum xp_retval reason; 1063 1064 switch (event) { 1065 case SYS_RESTART: 1066 reason = xpSystemReboot; 1067 break; 1068 case SYS_HALT: 1069 reason = xpSystemHalt; 1070 break; 1071 case SYS_POWER_OFF: 1072 reason = xpSystemPoweroff; 1073 break; 1074 default: 1075 reason = xpSystemGoingDown; 1076 } 1077 1078 xpc_do_exit(reason); 1079 return NOTIFY_DONE; 1080 } 1081 1082 /* 1083 * Notify other partitions to deactivate from us by first disengaging from all 1084 * references to our memory. 1085 */ 1086 static void 1087 xpc_die_deactivate(void) 1088 { 1089 struct xpc_partition *part; 1090 short partid; 1091 int any_engaged; 1092 long keep_waiting; 1093 long wait_to_print; 1094 1095 /* keep xpc_hb_checker thread from doing anything (just in case) */ 1096 xpc_exiting = 1; 1097 1098 xpc_arch_ops.disallow_all_hbs(); /*indicate we're deactivated */ 1099 1100 for (partid = 0; partid < xp_max_npartitions; partid++) { 1101 part = &xpc_partitions[partid]; 1102 1103 if (xpc_arch_ops.partition_engaged(partid) || 1104 part->act_state != XPC_P_AS_INACTIVE) { 1105 xpc_arch_ops.request_partition_deactivation(part); 1106 xpc_arch_ops.indicate_partition_disengaged(part); 1107 } 1108 } 1109 1110 /* 1111 * Though we requested that all other partitions deactivate from us, 1112 * we only wait until they've all disengaged or we've reached the 1113 * defined timelimit. 1114 * 1115 * Given that one iteration through the following while-loop takes 1116 * approximately 200 microseconds, calculate the #of loops to take 1117 * before bailing and the #of loops before printing a waiting message. 1118 */ 1119 keep_waiting = xpc_disengage_timelimit * 1000 * 5; 1120 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5; 1121 1122 while (1) { 1123 any_engaged = xpc_arch_ops.any_partition_engaged(); 1124 if (!any_engaged) { 1125 dev_info(xpc_part, "all partitions have deactivated\n"); 1126 break; 1127 } 1128 1129 if (!keep_waiting--) { 1130 for (partid = 0; partid < xp_max_npartitions; 1131 partid++) { 1132 if (xpc_arch_ops.partition_engaged(partid)) { 1133 dev_info(xpc_part, "deactivate from " 1134 "remote partition %d timed " 1135 "out\n", partid); 1136 } 1137 } 1138 break; 1139 } 1140 1141 if (!wait_to_print--) { 1142 dev_info(xpc_part, "waiting for remote partitions to " 1143 "deactivate, timeout in %ld seconds\n", 1144 keep_waiting / (1000 * 5)); 1145 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1146 1000 * 5; 1147 } 1148 1149 udelay(200); 1150 } 1151 } 1152 1153 /* 1154 * This function is called when the system is being restarted or halted due 1155 * to some sort of system failure. If this is the case we need to notify the 1156 * other partitions to disengage from all references to our memory. 1157 * This function can also be called when our heartbeater could be offlined 1158 * for a time. In this case we need to notify other partitions to not worry 1159 * about the lack of a heartbeat. 1160 */ 1161 static int 1162 xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused) 1163 { 1164 #ifdef CONFIG_IA64 /* !!! temporary kludge */ 1165 switch (event) { 1166 case DIE_MACHINE_RESTART: 1167 case DIE_MACHINE_HALT: 1168 xpc_die_deactivate(); 1169 break; 1170 1171 case DIE_KDEBUG_ENTER: 1172 /* Should lack of heartbeat be ignored by other partitions? */ 1173 if (!xpc_kdebug_ignore) 1174 break; 1175 1176 /* fall through */ 1177 case DIE_MCA_MONARCH_ENTER: 1178 case DIE_INIT_MONARCH_ENTER: 1179 xpc_arch_ops.offline_heartbeat(); 1180 break; 1181 1182 case DIE_KDEBUG_LEAVE: 1183 /* Is lack of heartbeat being ignored by other partitions? */ 1184 if (!xpc_kdebug_ignore) 1185 break; 1186 1187 /* fall through */ 1188 case DIE_MCA_MONARCH_LEAVE: 1189 case DIE_INIT_MONARCH_LEAVE: 1190 xpc_arch_ops.online_heartbeat(); 1191 break; 1192 } 1193 #else 1194 xpc_die_deactivate(); 1195 #endif 1196 1197 return NOTIFY_DONE; 1198 } 1199 1200 int __init 1201 xpc_init(void) 1202 { 1203 int ret; 1204 struct task_struct *kthread; 1205 1206 dev_set_name(xpc_part, "part"); 1207 dev_set_name(xpc_chan, "chan"); 1208 1209 if (is_shub()) { 1210 /* 1211 * The ia64-sn2 architecture supports at most 64 partitions. 1212 * And the inability to unregister remote amos restricts us 1213 * further to only support exactly 64 partitions on this 1214 * architecture, no less. 1215 */ 1216 if (xp_max_npartitions != 64) { 1217 dev_err(xpc_part, "max #of partitions not set to 64\n"); 1218 ret = -EINVAL; 1219 } else { 1220 ret = xpc_init_sn2(); 1221 } 1222 1223 } else if (is_uv()) { 1224 ret = xpc_init_uv(); 1225 1226 } else { 1227 ret = -ENODEV; 1228 } 1229 1230 if (ret != 0) 1231 return ret; 1232 1233 ret = xpc_setup_partitions(); 1234 if (ret != 0) { 1235 dev_err(xpc_part, "can't get memory for partition structure\n"); 1236 goto out_1; 1237 } 1238 1239 xpc_sysctl = register_sysctl_table(xpc_sys_dir); 1240 1241 /* 1242 * Fill the partition reserved page with the information needed by 1243 * other partitions to discover we are alive and establish initial 1244 * communications. 1245 */ 1246 ret = xpc_setup_rsvd_page(); 1247 if (ret != 0) { 1248 dev_err(xpc_part, "can't setup our reserved page\n"); 1249 goto out_2; 1250 } 1251 1252 /* add ourselves to the reboot_notifier_list */ 1253 ret = register_reboot_notifier(&xpc_reboot_notifier); 1254 if (ret != 0) 1255 dev_warn(xpc_part, "can't register reboot notifier\n"); 1256 1257 /* add ourselves to the die_notifier list */ 1258 ret = register_die_notifier(&xpc_die_notifier); 1259 if (ret != 0) 1260 dev_warn(xpc_part, "can't register die notifier\n"); 1261 1262 /* 1263 * The real work-horse behind xpc. This processes incoming 1264 * interrupts and monitors remote heartbeats. 1265 */ 1266 kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME); 1267 if (IS_ERR(kthread)) { 1268 dev_err(xpc_part, "failed while forking hb check thread\n"); 1269 ret = -EBUSY; 1270 goto out_3; 1271 } 1272 1273 /* 1274 * Startup a thread that will attempt to discover other partitions to 1275 * activate based on info provided by SAL. This new thread is short 1276 * lived and will exit once discovery is complete. 1277 */ 1278 kthread = kthread_run(xpc_initiate_discovery, NULL, 1279 XPC_DISCOVERY_THREAD_NAME); 1280 if (IS_ERR(kthread)) { 1281 dev_err(xpc_part, "failed while forking discovery thread\n"); 1282 1283 /* mark this new thread as a non-starter */ 1284 complete(&xpc_discovery_exited); 1285 1286 xpc_do_exit(xpUnloading); 1287 return -EBUSY; 1288 } 1289 1290 /* set the interface to point at XPC's functions */ 1291 xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect, 1292 xpc_initiate_send, xpc_initiate_send_notify, 1293 xpc_initiate_received, xpc_initiate_partid_to_nasids); 1294 1295 return 0; 1296 1297 /* initialization was not successful */ 1298 out_3: 1299 xpc_teardown_rsvd_page(); 1300 1301 (void)unregister_die_notifier(&xpc_die_notifier); 1302 (void)unregister_reboot_notifier(&xpc_reboot_notifier); 1303 out_2: 1304 if (xpc_sysctl) 1305 unregister_sysctl_table(xpc_sysctl); 1306 1307 xpc_teardown_partitions(); 1308 out_1: 1309 if (is_shub()) 1310 xpc_exit_sn2(); 1311 else if (is_uv()) 1312 xpc_exit_uv(); 1313 return ret; 1314 } 1315 1316 module_init(xpc_init); 1317 1318 void __exit 1319 xpc_exit(void) 1320 { 1321 xpc_do_exit(xpUnloading); 1322 } 1323 1324 module_exit(xpc_exit); 1325 1326 MODULE_AUTHOR("Silicon Graphics, Inc."); 1327 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support"); 1328 MODULE_LICENSE("GPL"); 1329 1330 module_param(xpc_hb_interval, int, 0); 1331 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between " 1332 "heartbeat increments."); 1333 1334 module_param(xpc_hb_check_interval, int, 0); 1335 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between " 1336 "heartbeat checks."); 1337 1338 module_param(xpc_disengage_timelimit, int, 0); 1339 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait " 1340 "for disengage to complete."); 1341 1342 module_param(xpc_kdebug_ignore, int, 0); 1343 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by " 1344 "other partitions when dropping into kdebug."); 1345