1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (c) 2004-2009 Silicon Graphics, Inc. All Rights Reserved. 7 */ 8 9 /* 10 * Cross Partition Communication (XPC) support - standard version. 11 * 12 * XPC provides a message passing capability that crosses partition 13 * boundaries. This module is made up of two parts: 14 * 15 * partition This part detects the presence/absence of other 16 * partitions. It provides a heartbeat and monitors 17 * the heartbeats of other partitions. 18 * 19 * channel This part manages the channels and sends/receives 20 * messages across them to/from other partitions. 21 * 22 * There are a couple of additional functions residing in XP, which 23 * provide an interface to XPC for its users. 24 * 25 * 26 * Caveats: 27 * 28 * . Currently on sn2, we have no way to determine which nasid an IRQ 29 * came from. Thus, xpc_send_IRQ_sn2() does a remote amo write 30 * followed by an IPI. The amo indicates where data is to be pulled 31 * from, so after the IPI arrives, the remote partition checks the amo 32 * word. The IPI can actually arrive before the amo however, so other 33 * code must periodically check for this case. Also, remote amo 34 * operations do not reliably time out. Thus we do a remote PIO read 35 * solely to know whether the remote partition is down and whether we 36 * should stop sending IPIs to it. This remote PIO read operation is 37 * set up in a special nofault region so SAL knows to ignore (and 38 * cleanup) any errors due to the remote amo write, PIO read, and/or 39 * PIO write operations. 40 * 41 * If/when new hardware solves this IPI problem, we should abandon 42 * the current approach. 43 * 44 */ 45 46 #include <linux/module.h> 47 #include <linux/slab.h> 48 #include <linux/sysctl.h> 49 #include <linux/device.h> 50 #include <linux/delay.h> 51 #include <linux/reboot.h> 52 #include <linux/kdebug.h> 53 #include <linux/kthread.h> 54 #include "xpc.h" 55 56 #ifdef CONFIG_X86_64 57 #include <asm/traps.h> 58 #endif 59 60 /* define two XPC debug device structures to be used with dev_dbg() et al */ 61 62 struct device_driver xpc_dbg_name = { 63 .name = "xpc" 64 }; 65 66 struct device xpc_part_dbg_subname = { 67 .init_name = "", /* set to "part" at xpc_init() time */ 68 .driver = &xpc_dbg_name 69 }; 70 71 struct device xpc_chan_dbg_subname = { 72 .init_name = "", /* set to "chan" at xpc_init() time */ 73 .driver = &xpc_dbg_name 74 }; 75 76 struct device *xpc_part = &xpc_part_dbg_subname; 77 struct device *xpc_chan = &xpc_chan_dbg_subname; 78 79 static int xpc_kdebug_ignore; 80 81 /* systune related variables for /proc/sys directories */ 82 83 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL; 84 static int xpc_hb_min_interval = 1; 85 static int xpc_hb_max_interval = 10; 86 87 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL; 88 static int xpc_hb_check_min_interval = 10; 89 static int xpc_hb_check_max_interval = 120; 90 91 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT; 92 static int xpc_disengage_min_timelimit; /* = 0 */ 93 static int xpc_disengage_max_timelimit = 120; 94 95 static struct ctl_table xpc_sys_xpc_hb_dir[] = { 96 { 97 .procname = "hb_interval", 98 .data = &xpc_hb_interval, 99 .maxlen = sizeof(int), 100 .mode = 0644, 101 .proc_handler = proc_dointvec_minmax, 102 .extra1 = &xpc_hb_min_interval, 103 .extra2 = &xpc_hb_max_interval}, 104 { 105 .procname = "hb_check_interval", 106 .data = &xpc_hb_check_interval, 107 .maxlen = sizeof(int), 108 .mode = 0644, 109 .proc_handler = proc_dointvec_minmax, 110 .extra1 = &xpc_hb_check_min_interval, 111 .extra2 = &xpc_hb_check_max_interval}, 112 {} 113 }; 114 static struct ctl_table xpc_sys_xpc_dir[] = { 115 { 116 .procname = "hb", 117 .mode = 0555, 118 .child = xpc_sys_xpc_hb_dir}, 119 { 120 .procname = "disengage_timelimit", 121 .data = &xpc_disengage_timelimit, 122 .maxlen = sizeof(int), 123 .mode = 0644, 124 .proc_handler = proc_dointvec_minmax, 125 .extra1 = &xpc_disengage_min_timelimit, 126 .extra2 = &xpc_disengage_max_timelimit}, 127 {} 128 }; 129 static struct ctl_table xpc_sys_dir[] = { 130 { 131 .procname = "xpc", 132 .mode = 0555, 133 .child = xpc_sys_xpc_dir}, 134 {} 135 }; 136 static struct ctl_table_header *xpc_sysctl; 137 138 /* non-zero if any remote partition disengage was timed out */ 139 int xpc_disengage_timedout; 140 141 /* #of activate IRQs received and not yet processed */ 142 int xpc_activate_IRQ_rcvd; 143 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock); 144 145 /* IRQ handler notifies this wait queue on receipt of an IRQ */ 146 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq); 147 148 static unsigned long xpc_hb_check_timeout; 149 static struct timer_list xpc_hb_timer; 150 151 /* notification that the xpc_hb_checker thread has exited */ 152 static DECLARE_COMPLETION(xpc_hb_checker_exited); 153 154 /* notification that the xpc_discovery thread has exited */ 155 static DECLARE_COMPLETION(xpc_discovery_exited); 156 157 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *); 158 159 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *); 160 static struct notifier_block xpc_reboot_notifier = { 161 .notifier_call = xpc_system_reboot, 162 }; 163 164 static int xpc_system_die(struct notifier_block *, unsigned long, void *); 165 static struct notifier_block xpc_die_notifier = { 166 .notifier_call = xpc_system_die, 167 }; 168 169 struct xpc_arch_operations xpc_arch_ops; 170 171 /* 172 * Timer function to enforce the timelimit on the partition disengage. 173 */ 174 static void 175 xpc_timeout_partition_disengage(struct timer_list *t) 176 { 177 struct xpc_partition *part = from_timer(part, t, disengage_timer); 178 179 DBUG_ON(time_is_after_jiffies(part->disengage_timeout)); 180 181 (void)xpc_partition_disengaged(part); 182 183 DBUG_ON(part->disengage_timeout != 0); 184 DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part))); 185 } 186 187 /* 188 * Timer to produce the heartbeat. The timer structures function is 189 * already set when this is initially called. A tunable is used to 190 * specify when the next timeout should occur. 191 */ 192 static void 193 xpc_hb_beater(struct timer_list *unused) 194 { 195 xpc_arch_ops.increment_heartbeat(); 196 197 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) 198 wake_up_interruptible(&xpc_activate_IRQ_wq); 199 200 xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ); 201 add_timer(&xpc_hb_timer); 202 } 203 204 static void 205 xpc_start_hb_beater(void) 206 { 207 xpc_arch_ops.heartbeat_init(); 208 timer_setup(&xpc_hb_timer, xpc_hb_beater, 0); 209 xpc_hb_beater(0); 210 } 211 212 static void 213 xpc_stop_hb_beater(void) 214 { 215 del_timer_sync(&xpc_hb_timer); 216 xpc_arch_ops.heartbeat_exit(); 217 } 218 219 /* 220 * At periodic intervals, scan through all active partitions and ensure 221 * their heartbeat is still active. If not, the partition is deactivated. 222 */ 223 static void 224 xpc_check_remote_hb(void) 225 { 226 struct xpc_partition *part; 227 short partid; 228 enum xp_retval ret; 229 230 for (partid = 0; partid < xp_max_npartitions; partid++) { 231 232 if (xpc_exiting) 233 break; 234 235 if (partid == xp_partition_id) 236 continue; 237 238 part = &xpc_partitions[partid]; 239 240 if (part->act_state == XPC_P_AS_INACTIVE || 241 part->act_state == XPC_P_AS_DEACTIVATING) { 242 continue; 243 } 244 245 ret = xpc_arch_ops.get_remote_heartbeat(part); 246 if (ret != xpSuccess) 247 XPC_DEACTIVATE_PARTITION(part, ret); 248 } 249 } 250 251 /* 252 * This thread is responsible for nearly all of the partition 253 * activation/deactivation. 254 */ 255 static int 256 xpc_hb_checker(void *ignore) 257 { 258 int force_IRQ = 0; 259 260 /* this thread was marked active by xpc_hb_init() */ 261 262 set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU)); 263 264 /* set our heartbeating to other partitions into motion */ 265 xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ); 266 xpc_start_hb_beater(); 267 268 while (!xpc_exiting) { 269 270 dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have " 271 "been received\n", 272 (int)(xpc_hb_check_timeout - jiffies), 273 xpc_activate_IRQ_rcvd); 274 275 /* checking of remote heartbeats is skewed by IRQ handling */ 276 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) { 277 xpc_hb_check_timeout = jiffies + 278 (xpc_hb_check_interval * HZ); 279 280 dev_dbg(xpc_part, "checking remote heartbeats\n"); 281 xpc_check_remote_hb(); 282 283 /* 284 * On sn2 we need to periodically recheck to ensure no 285 * IRQ/amo pairs have been missed. 286 */ 287 if (is_shub()) 288 force_IRQ = 1; 289 } 290 291 /* check for outstanding IRQs */ 292 if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) { 293 force_IRQ = 0; 294 dev_dbg(xpc_part, "processing activate IRQs " 295 "received\n"); 296 xpc_arch_ops.process_activate_IRQ_rcvd(); 297 } 298 299 /* wait for IRQ or timeout */ 300 (void)wait_event_interruptible(xpc_activate_IRQ_wq, 301 (time_is_before_eq_jiffies( 302 xpc_hb_check_timeout) || 303 xpc_activate_IRQ_rcvd > 0 || 304 xpc_exiting)); 305 } 306 307 xpc_stop_hb_beater(); 308 309 dev_dbg(xpc_part, "heartbeat checker is exiting\n"); 310 311 /* mark this thread as having exited */ 312 complete(&xpc_hb_checker_exited); 313 return 0; 314 } 315 316 /* 317 * This thread will attempt to discover other partitions to activate 318 * based on info provided by SAL. This new thread is short lived and 319 * will exit once discovery is complete. 320 */ 321 static int 322 xpc_initiate_discovery(void *ignore) 323 { 324 xpc_discovery(); 325 326 dev_dbg(xpc_part, "discovery thread is exiting\n"); 327 328 /* mark this thread as having exited */ 329 complete(&xpc_discovery_exited); 330 return 0; 331 } 332 333 /* 334 * The first kthread assigned to a newly activated partition is the one 335 * created by XPC HB with which it calls xpc_activating(). XPC hangs on to 336 * that kthread until the partition is brought down, at which time that kthread 337 * returns back to XPC HB. (The return of that kthread will signify to XPC HB 338 * that XPC has dismantled all communication infrastructure for the associated 339 * partition.) This kthread becomes the channel manager for that partition. 340 * 341 * Each active partition has a channel manager, who, besides connecting and 342 * disconnecting channels, will ensure that each of the partition's connected 343 * channels has the required number of assigned kthreads to get the work done. 344 */ 345 static void 346 xpc_channel_mgr(struct xpc_partition *part) 347 { 348 while (part->act_state != XPC_P_AS_DEACTIVATING || 349 atomic_read(&part->nchannels_active) > 0 || 350 !xpc_partition_disengaged(part)) { 351 352 xpc_process_sent_chctl_flags(part); 353 354 /* 355 * Wait until we've been requested to activate kthreads or 356 * all of the channel's message queues have been torn down or 357 * a signal is pending. 358 * 359 * The channel_mgr_requests is set to 1 after being awakened, 360 * This is done to prevent the channel mgr from making one pass 361 * through the loop for each request, since he will 362 * be servicing all the requests in one pass. The reason it's 363 * set to 1 instead of 0 is so that other kthreads will know 364 * that the channel mgr is running and won't bother trying to 365 * wake him up. 366 */ 367 atomic_dec(&part->channel_mgr_requests); 368 (void)wait_event_interruptible(part->channel_mgr_wq, 369 (atomic_read(&part->channel_mgr_requests) > 0 || 370 part->chctl.all_flags != 0 || 371 (part->act_state == XPC_P_AS_DEACTIVATING && 372 atomic_read(&part->nchannels_active) == 0 && 373 xpc_partition_disengaged(part)))); 374 atomic_set(&part->channel_mgr_requests, 1); 375 } 376 } 377 378 /* 379 * Guarantee that the kzalloc'd memory is cacheline aligned. 380 */ 381 void * 382 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) 383 { 384 /* see if kzalloc will give us cachline aligned memory by default */ 385 *base = kzalloc(size, flags); 386 if (*base == NULL) 387 return NULL; 388 389 if ((u64)*base == L1_CACHE_ALIGN((u64)*base)) 390 return *base; 391 392 kfree(*base); 393 394 /* nope, we'll have to do it ourselves */ 395 *base = kzalloc(size + L1_CACHE_BYTES, flags); 396 if (*base == NULL) 397 return NULL; 398 399 return (void *)L1_CACHE_ALIGN((u64)*base); 400 } 401 402 /* 403 * Setup the channel structures necessary to support XPartition Communication 404 * between the specified remote partition and the local one. 405 */ 406 static enum xp_retval 407 xpc_setup_ch_structures(struct xpc_partition *part) 408 { 409 enum xp_retval ret; 410 int ch_number; 411 struct xpc_channel *ch; 412 short partid = XPC_PARTID(part); 413 414 /* 415 * Allocate all of the channel structures as a contiguous chunk of 416 * memory. 417 */ 418 DBUG_ON(part->channels != NULL); 419 part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS, 420 GFP_KERNEL); 421 if (part->channels == NULL) { 422 dev_err(xpc_chan, "can't get memory for channels\n"); 423 return xpNoMemory; 424 } 425 426 /* allocate the remote open and close args */ 427 428 part->remote_openclose_args = 429 xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, 430 GFP_KERNEL, &part-> 431 remote_openclose_args_base); 432 if (part->remote_openclose_args == NULL) { 433 dev_err(xpc_chan, "can't get memory for remote connect args\n"); 434 ret = xpNoMemory; 435 goto out_1; 436 } 437 438 part->chctl.all_flags = 0; 439 spin_lock_init(&part->chctl_lock); 440 441 atomic_set(&part->channel_mgr_requests, 1); 442 init_waitqueue_head(&part->channel_mgr_wq); 443 444 part->nchannels = XPC_MAX_NCHANNELS; 445 446 atomic_set(&part->nchannels_active, 0); 447 atomic_set(&part->nchannels_engaged, 0); 448 449 for (ch_number = 0; ch_number < part->nchannels; ch_number++) { 450 ch = &part->channels[ch_number]; 451 452 ch->partid = partid; 453 ch->number = ch_number; 454 ch->flags = XPC_C_DISCONNECTED; 455 456 atomic_set(&ch->kthreads_assigned, 0); 457 atomic_set(&ch->kthreads_idle, 0); 458 atomic_set(&ch->kthreads_active, 0); 459 460 atomic_set(&ch->references, 0); 461 atomic_set(&ch->n_to_notify, 0); 462 463 spin_lock_init(&ch->lock); 464 init_completion(&ch->wdisconnect_wait); 465 466 atomic_set(&ch->n_on_msg_allocate_wq, 0); 467 init_waitqueue_head(&ch->msg_allocate_wq); 468 init_waitqueue_head(&ch->idle_wq); 469 } 470 471 ret = xpc_arch_ops.setup_ch_structures(part); 472 if (ret != xpSuccess) 473 goto out_2; 474 475 /* 476 * With the setting of the partition setup_state to XPC_P_SS_SETUP, 477 * we're declaring that this partition is ready to go. 478 */ 479 part->setup_state = XPC_P_SS_SETUP; 480 481 return xpSuccess; 482 483 /* setup of ch structures failed */ 484 out_2: 485 kfree(part->remote_openclose_args_base); 486 part->remote_openclose_args = NULL; 487 out_1: 488 kfree(part->channels); 489 part->channels = NULL; 490 return ret; 491 } 492 493 /* 494 * Teardown the channel structures necessary to support XPartition Communication 495 * between the specified remote partition and the local one. 496 */ 497 static void 498 xpc_teardown_ch_structures(struct xpc_partition *part) 499 { 500 DBUG_ON(atomic_read(&part->nchannels_engaged) != 0); 501 DBUG_ON(atomic_read(&part->nchannels_active) != 0); 502 503 /* 504 * Make this partition inaccessible to local processes by marking it 505 * as no longer setup. Then wait before proceeding with the teardown 506 * until all existing references cease. 507 */ 508 DBUG_ON(part->setup_state != XPC_P_SS_SETUP); 509 part->setup_state = XPC_P_SS_WTEARDOWN; 510 511 wait_event(part->teardown_wq, (atomic_read(&part->references) == 0)); 512 513 /* now we can begin tearing down the infrastructure */ 514 515 xpc_arch_ops.teardown_ch_structures(part); 516 517 kfree(part->remote_openclose_args_base); 518 part->remote_openclose_args = NULL; 519 kfree(part->channels); 520 part->channels = NULL; 521 522 part->setup_state = XPC_P_SS_TORNDOWN; 523 } 524 525 /* 526 * When XPC HB determines that a partition has come up, it will create a new 527 * kthread and that kthread will call this function to attempt to set up the 528 * basic infrastructure used for Cross Partition Communication with the newly 529 * upped partition. 530 * 531 * The kthread that was created by XPC HB and which setup the XPC 532 * infrastructure will remain assigned to the partition becoming the channel 533 * manager for that partition until the partition is deactivating, at which 534 * time the kthread will teardown the XPC infrastructure and then exit. 535 */ 536 static int 537 xpc_activating(void *__partid) 538 { 539 short partid = (u64)__partid; 540 struct xpc_partition *part = &xpc_partitions[partid]; 541 unsigned long irq_flags; 542 543 DBUG_ON(partid < 0 || partid >= xp_max_npartitions); 544 545 spin_lock_irqsave(&part->act_lock, irq_flags); 546 547 if (part->act_state == XPC_P_AS_DEACTIVATING) { 548 part->act_state = XPC_P_AS_INACTIVE; 549 spin_unlock_irqrestore(&part->act_lock, irq_flags); 550 part->remote_rp_pa = 0; 551 return 0; 552 } 553 554 /* indicate the thread is activating */ 555 DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ); 556 part->act_state = XPC_P_AS_ACTIVATING; 557 558 XPC_SET_REASON(part, 0, 0); 559 spin_unlock_irqrestore(&part->act_lock, irq_flags); 560 561 dev_dbg(xpc_part, "activating partition %d\n", partid); 562 563 xpc_arch_ops.allow_hb(partid); 564 565 if (xpc_setup_ch_structures(part) == xpSuccess) { 566 (void)xpc_part_ref(part); /* this will always succeed */ 567 568 if (xpc_arch_ops.make_first_contact(part) == xpSuccess) { 569 xpc_mark_partition_active(part); 570 xpc_channel_mgr(part); 571 /* won't return until partition is deactivating */ 572 } 573 574 xpc_part_deref(part); 575 xpc_teardown_ch_structures(part); 576 } 577 578 xpc_arch_ops.disallow_hb(partid); 579 xpc_mark_partition_inactive(part); 580 581 if (part->reason == xpReactivating) { 582 /* interrupting ourselves results in activating partition */ 583 xpc_arch_ops.request_partition_reactivation(part); 584 } 585 586 return 0; 587 } 588 589 void 590 xpc_activate_partition(struct xpc_partition *part) 591 { 592 short partid = XPC_PARTID(part); 593 unsigned long irq_flags; 594 struct task_struct *kthread; 595 596 spin_lock_irqsave(&part->act_lock, irq_flags); 597 598 DBUG_ON(part->act_state != XPC_P_AS_INACTIVE); 599 600 part->act_state = XPC_P_AS_ACTIVATION_REQ; 601 XPC_SET_REASON(part, xpCloneKThread, __LINE__); 602 603 spin_unlock_irqrestore(&part->act_lock, irq_flags); 604 605 kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d", 606 partid); 607 if (IS_ERR(kthread)) { 608 spin_lock_irqsave(&part->act_lock, irq_flags); 609 part->act_state = XPC_P_AS_INACTIVE; 610 XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__); 611 spin_unlock_irqrestore(&part->act_lock, irq_flags); 612 } 613 } 614 615 void 616 xpc_activate_kthreads(struct xpc_channel *ch, int needed) 617 { 618 int idle = atomic_read(&ch->kthreads_idle); 619 int assigned = atomic_read(&ch->kthreads_assigned); 620 int wakeup; 621 622 DBUG_ON(needed <= 0); 623 624 if (idle > 0) { 625 wakeup = (needed > idle) ? idle : needed; 626 needed -= wakeup; 627 628 dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, " 629 "channel=%d\n", wakeup, ch->partid, ch->number); 630 631 /* only wakeup the requested number of kthreads */ 632 wake_up_nr(&ch->idle_wq, wakeup); 633 } 634 635 if (needed <= 0) 636 return; 637 638 if (needed + assigned > ch->kthreads_assigned_limit) { 639 needed = ch->kthreads_assigned_limit - assigned; 640 if (needed <= 0) 641 return; 642 } 643 644 dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n", 645 needed, ch->partid, ch->number); 646 647 xpc_create_kthreads(ch, needed, 0); 648 } 649 650 /* 651 * This function is where XPC's kthreads wait for messages to deliver. 652 */ 653 static void 654 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch) 655 { 656 int (*n_of_deliverable_payloads) (struct xpc_channel *) = 657 xpc_arch_ops.n_of_deliverable_payloads; 658 659 do { 660 /* deliver messages to their intended recipients */ 661 662 while (n_of_deliverable_payloads(ch) > 0 && 663 !(ch->flags & XPC_C_DISCONNECTING)) { 664 xpc_deliver_payload(ch); 665 } 666 667 if (atomic_inc_return(&ch->kthreads_idle) > 668 ch->kthreads_idle_limit) { 669 /* too many idle kthreads on this channel */ 670 atomic_dec(&ch->kthreads_idle); 671 break; 672 } 673 674 dev_dbg(xpc_chan, "idle kthread calling " 675 "wait_event_interruptible_exclusive()\n"); 676 677 (void)wait_event_interruptible_exclusive(ch->idle_wq, 678 (n_of_deliverable_payloads(ch) > 0 || 679 (ch->flags & XPC_C_DISCONNECTING))); 680 681 atomic_dec(&ch->kthreads_idle); 682 683 } while (!(ch->flags & XPC_C_DISCONNECTING)); 684 } 685 686 static int 687 xpc_kthread_start(void *args) 688 { 689 short partid = XPC_UNPACK_ARG1(args); 690 u16 ch_number = XPC_UNPACK_ARG2(args); 691 struct xpc_partition *part = &xpc_partitions[partid]; 692 struct xpc_channel *ch; 693 int n_needed; 694 unsigned long irq_flags; 695 int (*n_of_deliverable_payloads) (struct xpc_channel *) = 696 xpc_arch_ops.n_of_deliverable_payloads; 697 698 dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n", 699 partid, ch_number); 700 701 ch = &part->channels[ch_number]; 702 703 if (!(ch->flags & XPC_C_DISCONNECTING)) { 704 705 /* let registerer know that connection has been established */ 706 707 spin_lock_irqsave(&ch->lock, irq_flags); 708 if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) { 709 ch->flags |= XPC_C_CONNECTEDCALLOUT; 710 spin_unlock_irqrestore(&ch->lock, irq_flags); 711 712 xpc_connected_callout(ch); 713 714 spin_lock_irqsave(&ch->lock, irq_flags); 715 ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE; 716 spin_unlock_irqrestore(&ch->lock, irq_flags); 717 718 /* 719 * It is possible that while the callout was being 720 * made that the remote partition sent some messages. 721 * If that is the case, we may need to activate 722 * additional kthreads to help deliver them. We only 723 * need one less than total #of messages to deliver. 724 */ 725 n_needed = n_of_deliverable_payloads(ch) - 1; 726 if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING)) 727 xpc_activate_kthreads(ch, n_needed); 728 729 } else { 730 spin_unlock_irqrestore(&ch->lock, irq_flags); 731 } 732 733 xpc_kthread_waitmsgs(part, ch); 734 } 735 736 /* let registerer know that connection is disconnecting */ 737 738 spin_lock_irqsave(&ch->lock, irq_flags); 739 if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && 740 !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) { 741 ch->flags |= XPC_C_DISCONNECTINGCALLOUT; 742 spin_unlock_irqrestore(&ch->lock, irq_flags); 743 744 xpc_disconnect_callout(ch, xpDisconnecting); 745 746 spin_lock_irqsave(&ch->lock, irq_flags); 747 ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE; 748 } 749 spin_unlock_irqrestore(&ch->lock, irq_flags); 750 751 if (atomic_dec_return(&ch->kthreads_assigned) == 0 && 752 atomic_dec_return(&part->nchannels_engaged) == 0) { 753 xpc_arch_ops.indicate_partition_disengaged(part); 754 } 755 756 xpc_msgqueue_deref(ch); 757 758 dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n", 759 partid, ch_number); 760 761 xpc_part_deref(part); 762 return 0; 763 } 764 765 /* 766 * For each partition that XPC has established communications with, there is 767 * a minimum of one kernel thread assigned to perform any operation that 768 * may potentially sleep or block (basically the callouts to the asynchronous 769 * functions registered via xpc_connect()). 770 * 771 * Additional kthreads are created and destroyed by XPC as the workload 772 * demands. 773 * 774 * A kthread is assigned to one of the active channels that exists for a given 775 * partition. 776 */ 777 void 778 xpc_create_kthreads(struct xpc_channel *ch, int needed, 779 int ignore_disconnecting) 780 { 781 unsigned long irq_flags; 782 u64 args = XPC_PACK_ARGS(ch->partid, ch->number); 783 struct xpc_partition *part = &xpc_partitions[ch->partid]; 784 struct task_struct *kthread; 785 void (*indicate_partition_disengaged) (struct xpc_partition *) = 786 xpc_arch_ops.indicate_partition_disengaged; 787 788 while (needed-- > 0) { 789 790 /* 791 * The following is done on behalf of the newly created 792 * kthread. That kthread is responsible for doing the 793 * counterpart to the following before it exits. 794 */ 795 if (ignore_disconnecting) { 796 if (!atomic_inc_not_zero(&ch->kthreads_assigned)) { 797 /* kthreads assigned had gone to zero */ 798 BUG_ON(!(ch->flags & 799 XPC_C_DISCONNECTINGCALLOUT_MADE)); 800 break; 801 } 802 803 } else if (ch->flags & XPC_C_DISCONNECTING) { 804 break; 805 806 } else if (atomic_inc_return(&ch->kthreads_assigned) == 1 && 807 atomic_inc_return(&part->nchannels_engaged) == 1) { 808 xpc_arch_ops.indicate_partition_engaged(part); 809 } 810 (void)xpc_part_ref(part); 811 xpc_msgqueue_ref(ch); 812 813 kthread = kthread_run(xpc_kthread_start, (void *)args, 814 "xpc%02dc%d", ch->partid, ch->number); 815 if (IS_ERR(kthread)) { 816 /* the fork failed */ 817 818 /* 819 * NOTE: if (ignore_disconnecting && 820 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true, 821 * then we'll deadlock if all other kthreads assigned 822 * to this channel are blocked in the channel's 823 * registerer, because the only thing that will unblock 824 * them is the xpDisconnecting callout that this 825 * failed kthread_run() would have made. 826 */ 827 828 if (atomic_dec_return(&ch->kthreads_assigned) == 0 && 829 atomic_dec_return(&part->nchannels_engaged) == 0) { 830 indicate_partition_disengaged(part); 831 } 832 xpc_msgqueue_deref(ch); 833 xpc_part_deref(part); 834 835 if (atomic_read(&ch->kthreads_assigned) < 836 ch->kthreads_idle_limit) { 837 /* 838 * Flag this as an error only if we have an 839 * insufficient #of kthreads for the channel 840 * to function. 841 */ 842 spin_lock_irqsave(&ch->lock, irq_flags); 843 XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources, 844 &irq_flags); 845 spin_unlock_irqrestore(&ch->lock, irq_flags); 846 } 847 break; 848 } 849 } 850 } 851 852 void 853 xpc_disconnect_wait(int ch_number) 854 { 855 unsigned long irq_flags; 856 short partid; 857 struct xpc_partition *part; 858 struct xpc_channel *ch; 859 int wakeup_channel_mgr; 860 861 /* now wait for all callouts to the caller's function to cease */ 862 for (partid = 0; partid < xp_max_npartitions; partid++) { 863 part = &xpc_partitions[partid]; 864 865 if (!xpc_part_ref(part)) 866 continue; 867 868 ch = &part->channels[ch_number]; 869 870 if (!(ch->flags & XPC_C_WDISCONNECT)) { 871 xpc_part_deref(part); 872 continue; 873 } 874 875 wait_for_completion(&ch->wdisconnect_wait); 876 877 spin_lock_irqsave(&ch->lock, irq_flags); 878 DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED)); 879 wakeup_channel_mgr = 0; 880 881 if (ch->delayed_chctl_flags) { 882 if (part->act_state != XPC_P_AS_DEACTIVATING) { 883 spin_lock(&part->chctl_lock); 884 part->chctl.flags[ch->number] |= 885 ch->delayed_chctl_flags; 886 spin_unlock(&part->chctl_lock); 887 wakeup_channel_mgr = 1; 888 } 889 ch->delayed_chctl_flags = 0; 890 } 891 892 ch->flags &= ~XPC_C_WDISCONNECT; 893 spin_unlock_irqrestore(&ch->lock, irq_flags); 894 895 if (wakeup_channel_mgr) 896 xpc_wakeup_channel_mgr(part); 897 898 xpc_part_deref(part); 899 } 900 } 901 902 static int 903 xpc_setup_partitions(void) 904 { 905 short partid; 906 struct xpc_partition *part; 907 908 xpc_partitions = kzalloc(sizeof(struct xpc_partition) * 909 xp_max_npartitions, GFP_KERNEL); 910 if (xpc_partitions == NULL) { 911 dev_err(xpc_part, "can't get memory for partition structure\n"); 912 return -ENOMEM; 913 } 914 915 /* 916 * The first few fields of each entry of xpc_partitions[] need to 917 * be initialized now so that calls to xpc_connect() and 918 * xpc_disconnect() can be made prior to the activation of any remote 919 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE 920 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING 921 * PARTITION HAS BEEN ACTIVATED. 922 */ 923 for (partid = 0; partid < xp_max_npartitions; partid++) { 924 part = &xpc_partitions[partid]; 925 926 DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part)); 927 928 part->activate_IRQ_rcvd = 0; 929 spin_lock_init(&part->act_lock); 930 part->act_state = XPC_P_AS_INACTIVE; 931 XPC_SET_REASON(part, 0, 0); 932 933 timer_setup(&part->disengage_timer, 934 xpc_timeout_partition_disengage, 0); 935 936 part->setup_state = XPC_P_SS_UNSET; 937 init_waitqueue_head(&part->teardown_wq); 938 atomic_set(&part->references, 0); 939 } 940 941 return xpc_arch_ops.setup_partitions(); 942 } 943 944 static void 945 xpc_teardown_partitions(void) 946 { 947 xpc_arch_ops.teardown_partitions(); 948 kfree(xpc_partitions); 949 } 950 951 static void 952 xpc_do_exit(enum xp_retval reason) 953 { 954 short partid; 955 int active_part_count, printed_waiting_msg = 0; 956 struct xpc_partition *part; 957 unsigned long printmsg_time, disengage_timeout = 0; 958 959 /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */ 960 DBUG_ON(xpc_exiting == 1); 961 962 /* 963 * Let the heartbeat checker thread and the discovery thread 964 * (if one is running) know that they should exit. Also wake up 965 * the heartbeat checker thread in case it's sleeping. 966 */ 967 xpc_exiting = 1; 968 wake_up_interruptible(&xpc_activate_IRQ_wq); 969 970 /* wait for the discovery thread to exit */ 971 wait_for_completion(&xpc_discovery_exited); 972 973 /* wait for the heartbeat checker thread to exit */ 974 wait_for_completion(&xpc_hb_checker_exited); 975 976 /* sleep for a 1/3 of a second or so */ 977 (void)msleep_interruptible(300); 978 979 /* wait for all partitions to become inactive */ 980 981 printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); 982 xpc_disengage_timedout = 0; 983 984 do { 985 active_part_count = 0; 986 987 for (partid = 0; partid < xp_max_npartitions; partid++) { 988 part = &xpc_partitions[partid]; 989 990 if (xpc_partition_disengaged(part) && 991 part->act_state == XPC_P_AS_INACTIVE) { 992 continue; 993 } 994 995 active_part_count++; 996 997 XPC_DEACTIVATE_PARTITION(part, reason); 998 999 if (part->disengage_timeout > disengage_timeout) 1000 disengage_timeout = part->disengage_timeout; 1001 } 1002 1003 if (xpc_arch_ops.any_partition_engaged()) { 1004 if (time_is_before_jiffies(printmsg_time)) { 1005 dev_info(xpc_part, "waiting for remote " 1006 "partitions to deactivate, timeout in " 1007 "%ld seconds\n", (disengage_timeout - 1008 jiffies) / HZ); 1009 printmsg_time = jiffies + 1010 (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); 1011 printed_waiting_msg = 1; 1012 } 1013 1014 } else if (active_part_count > 0) { 1015 if (printed_waiting_msg) { 1016 dev_info(xpc_part, "waiting for local partition" 1017 " to deactivate\n"); 1018 printed_waiting_msg = 0; 1019 } 1020 1021 } else { 1022 if (!xpc_disengage_timedout) { 1023 dev_info(xpc_part, "all partitions have " 1024 "deactivated\n"); 1025 } 1026 break; 1027 } 1028 1029 /* sleep for a 1/3 of a second or so */ 1030 (void)msleep_interruptible(300); 1031 1032 } while (1); 1033 1034 DBUG_ON(xpc_arch_ops.any_partition_engaged()); 1035 1036 xpc_teardown_rsvd_page(); 1037 1038 if (reason == xpUnloading) { 1039 (void)unregister_die_notifier(&xpc_die_notifier); 1040 (void)unregister_reboot_notifier(&xpc_reboot_notifier); 1041 } 1042 1043 /* clear the interface to XPC's functions */ 1044 xpc_clear_interface(); 1045 1046 if (xpc_sysctl) 1047 unregister_sysctl_table(xpc_sysctl); 1048 1049 xpc_teardown_partitions(); 1050 1051 if (is_shub()) 1052 xpc_exit_sn2(); 1053 else if (is_uv()) 1054 xpc_exit_uv(); 1055 } 1056 1057 /* 1058 * This function is called when the system is being rebooted. 1059 */ 1060 static int 1061 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused) 1062 { 1063 enum xp_retval reason; 1064 1065 switch (event) { 1066 case SYS_RESTART: 1067 reason = xpSystemReboot; 1068 break; 1069 case SYS_HALT: 1070 reason = xpSystemHalt; 1071 break; 1072 case SYS_POWER_OFF: 1073 reason = xpSystemPoweroff; 1074 break; 1075 default: 1076 reason = xpSystemGoingDown; 1077 } 1078 1079 xpc_do_exit(reason); 1080 return NOTIFY_DONE; 1081 } 1082 1083 /* Used to only allow one cpu to complete disconnect */ 1084 static unsigned int xpc_die_disconnecting; 1085 1086 /* 1087 * Notify other partitions to deactivate from us by first disengaging from all 1088 * references to our memory. 1089 */ 1090 static void 1091 xpc_die_deactivate(void) 1092 { 1093 struct xpc_partition *part; 1094 short partid; 1095 int any_engaged; 1096 long keep_waiting; 1097 long wait_to_print; 1098 1099 if (cmpxchg(&xpc_die_disconnecting, 0, 1)) 1100 return; 1101 1102 /* keep xpc_hb_checker thread from doing anything (just in case) */ 1103 xpc_exiting = 1; 1104 1105 xpc_arch_ops.disallow_all_hbs(); /*indicate we're deactivated */ 1106 1107 for (partid = 0; partid < xp_max_npartitions; partid++) { 1108 part = &xpc_partitions[partid]; 1109 1110 if (xpc_arch_ops.partition_engaged(partid) || 1111 part->act_state != XPC_P_AS_INACTIVE) { 1112 xpc_arch_ops.request_partition_deactivation(part); 1113 xpc_arch_ops.indicate_partition_disengaged(part); 1114 } 1115 } 1116 1117 /* 1118 * Though we requested that all other partitions deactivate from us, 1119 * we only wait until they've all disengaged or we've reached the 1120 * defined timelimit. 1121 * 1122 * Given that one iteration through the following while-loop takes 1123 * approximately 200 microseconds, calculate the #of loops to take 1124 * before bailing and the #of loops before printing a waiting message. 1125 */ 1126 keep_waiting = xpc_disengage_timelimit * 1000 * 5; 1127 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5; 1128 1129 while (1) { 1130 any_engaged = xpc_arch_ops.any_partition_engaged(); 1131 if (!any_engaged) { 1132 dev_info(xpc_part, "all partitions have deactivated\n"); 1133 break; 1134 } 1135 1136 if (!keep_waiting--) { 1137 for (partid = 0; partid < xp_max_npartitions; 1138 partid++) { 1139 if (xpc_arch_ops.partition_engaged(partid)) { 1140 dev_info(xpc_part, "deactivate from " 1141 "remote partition %d timed " 1142 "out\n", partid); 1143 } 1144 } 1145 break; 1146 } 1147 1148 if (!wait_to_print--) { 1149 dev_info(xpc_part, "waiting for remote partitions to " 1150 "deactivate, timeout in %ld seconds\n", 1151 keep_waiting / (1000 * 5)); 1152 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1153 1000 * 5; 1154 } 1155 1156 udelay(200); 1157 } 1158 } 1159 1160 /* 1161 * This function is called when the system is being restarted or halted due 1162 * to some sort of system failure. If this is the case we need to notify the 1163 * other partitions to disengage from all references to our memory. 1164 * This function can also be called when our heartbeater could be offlined 1165 * for a time. In this case we need to notify other partitions to not worry 1166 * about the lack of a heartbeat. 1167 */ 1168 static int 1169 xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args) 1170 { 1171 #ifdef CONFIG_IA64 /* !!! temporary kludge */ 1172 switch (event) { 1173 case DIE_MACHINE_RESTART: 1174 case DIE_MACHINE_HALT: 1175 xpc_die_deactivate(); 1176 break; 1177 1178 case DIE_KDEBUG_ENTER: 1179 /* Should lack of heartbeat be ignored by other partitions? */ 1180 if (!xpc_kdebug_ignore) 1181 break; 1182 1183 /* fall through */ 1184 case DIE_MCA_MONARCH_ENTER: 1185 case DIE_INIT_MONARCH_ENTER: 1186 xpc_arch_ops.offline_heartbeat(); 1187 break; 1188 1189 case DIE_KDEBUG_LEAVE: 1190 /* Is lack of heartbeat being ignored by other partitions? */ 1191 if (!xpc_kdebug_ignore) 1192 break; 1193 1194 /* fall through */ 1195 case DIE_MCA_MONARCH_LEAVE: 1196 case DIE_INIT_MONARCH_LEAVE: 1197 xpc_arch_ops.online_heartbeat(); 1198 break; 1199 } 1200 #else 1201 struct die_args *die_args = _die_args; 1202 1203 switch (event) { 1204 case DIE_TRAP: 1205 if (die_args->trapnr == X86_TRAP_DF) 1206 xpc_die_deactivate(); 1207 1208 if (((die_args->trapnr == X86_TRAP_MF) || 1209 (die_args->trapnr == X86_TRAP_XF)) && 1210 !user_mode(die_args->regs)) 1211 xpc_die_deactivate(); 1212 1213 break; 1214 case DIE_INT3: 1215 case DIE_DEBUG: 1216 break; 1217 case DIE_OOPS: 1218 case DIE_GPF: 1219 default: 1220 xpc_die_deactivate(); 1221 } 1222 #endif 1223 1224 return NOTIFY_DONE; 1225 } 1226 1227 int __init 1228 xpc_init(void) 1229 { 1230 int ret; 1231 struct task_struct *kthread; 1232 1233 dev_set_name(xpc_part, "part"); 1234 dev_set_name(xpc_chan, "chan"); 1235 1236 if (is_shub()) { 1237 /* 1238 * The ia64-sn2 architecture supports at most 64 partitions. 1239 * And the inability to unregister remote amos restricts us 1240 * further to only support exactly 64 partitions on this 1241 * architecture, no less. 1242 */ 1243 if (xp_max_npartitions != 64) { 1244 dev_err(xpc_part, "max #of partitions not set to 64\n"); 1245 ret = -EINVAL; 1246 } else { 1247 ret = xpc_init_sn2(); 1248 } 1249 1250 } else if (is_uv()) { 1251 ret = xpc_init_uv(); 1252 1253 } else { 1254 ret = -ENODEV; 1255 } 1256 1257 if (ret != 0) 1258 return ret; 1259 1260 ret = xpc_setup_partitions(); 1261 if (ret != 0) { 1262 dev_err(xpc_part, "can't get memory for partition structure\n"); 1263 goto out_1; 1264 } 1265 1266 xpc_sysctl = register_sysctl_table(xpc_sys_dir); 1267 1268 /* 1269 * Fill the partition reserved page with the information needed by 1270 * other partitions to discover we are alive and establish initial 1271 * communications. 1272 */ 1273 ret = xpc_setup_rsvd_page(); 1274 if (ret != 0) { 1275 dev_err(xpc_part, "can't setup our reserved page\n"); 1276 goto out_2; 1277 } 1278 1279 /* add ourselves to the reboot_notifier_list */ 1280 ret = register_reboot_notifier(&xpc_reboot_notifier); 1281 if (ret != 0) 1282 dev_warn(xpc_part, "can't register reboot notifier\n"); 1283 1284 /* add ourselves to the die_notifier list */ 1285 ret = register_die_notifier(&xpc_die_notifier); 1286 if (ret != 0) 1287 dev_warn(xpc_part, "can't register die notifier\n"); 1288 1289 /* 1290 * The real work-horse behind xpc. This processes incoming 1291 * interrupts and monitors remote heartbeats. 1292 */ 1293 kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME); 1294 if (IS_ERR(kthread)) { 1295 dev_err(xpc_part, "failed while forking hb check thread\n"); 1296 ret = -EBUSY; 1297 goto out_3; 1298 } 1299 1300 /* 1301 * Startup a thread that will attempt to discover other partitions to 1302 * activate based on info provided by SAL. This new thread is short 1303 * lived and will exit once discovery is complete. 1304 */ 1305 kthread = kthread_run(xpc_initiate_discovery, NULL, 1306 XPC_DISCOVERY_THREAD_NAME); 1307 if (IS_ERR(kthread)) { 1308 dev_err(xpc_part, "failed while forking discovery thread\n"); 1309 1310 /* mark this new thread as a non-starter */ 1311 complete(&xpc_discovery_exited); 1312 1313 xpc_do_exit(xpUnloading); 1314 return -EBUSY; 1315 } 1316 1317 /* set the interface to point at XPC's functions */ 1318 xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect, 1319 xpc_initiate_send, xpc_initiate_send_notify, 1320 xpc_initiate_received, xpc_initiate_partid_to_nasids); 1321 1322 return 0; 1323 1324 /* initialization was not successful */ 1325 out_3: 1326 xpc_teardown_rsvd_page(); 1327 1328 (void)unregister_die_notifier(&xpc_die_notifier); 1329 (void)unregister_reboot_notifier(&xpc_reboot_notifier); 1330 out_2: 1331 if (xpc_sysctl) 1332 unregister_sysctl_table(xpc_sysctl); 1333 1334 xpc_teardown_partitions(); 1335 out_1: 1336 if (is_shub()) 1337 xpc_exit_sn2(); 1338 else if (is_uv()) 1339 xpc_exit_uv(); 1340 return ret; 1341 } 1342 1343 module_init(xpc_init); 1344 1345 void __exit 1346 xpc_exit(void) 1347 { 1348 xpc_do_exit(xpUnloading); 1349 } 1350 1351 module_exit(xpc_exit); 1352 1353 MODULE_AUTHOR("Silicon Graphics, Inc."); 1354 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support"); 1355 MODULE_LICENSE("GPL"); 1356 1357 module_param(xpc_hb_interval, int, 0); 1358 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between " 1359 "heartbeat increments."); 1360 1361 module_param(xpc_hb_check_interval, int, 0); 1362 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between " 1363 "heartbeat checks."); 1364 1365 module_param(xpc_disengage_timelimit, int, 0); 1366 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait " 1367 "for disengage to complete."); 1368 1369 module_param(xpc_kdebug_ignore, int, 0); 1370 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by " 1371 "other partitions when dropping into kdebug."); 1372