xref: /openbmc/linux/drivers/misc/sgi-xp/xpc_main.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8 
9 /*
10  * Cross Partition Communication (XPC) support - standard version.
11  *
12  *	XPC provides a message passing capability that crosses partition
13  *	boundaries. This module is made up of two parts:
14  *
15  *	    partition	This part detects the presence/absence of other
16  *			partitions. It provides a heartbeat and monitors
17  *			the heartbeats of other partitions.
18  *
19  *	    channel	This part manages the channels and sends/receives
20  *			messages across them to/from other partitions.
21  *
22  *	There are a couple of additional functions residing in XP, which
23  *	provide an interface to XPC for its users.
24  *
25  *
26  *	Caveats:
27  *
28  *	  . Currently on sn2, we have no way to determine which nasid an IRQ
29  *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
30  *	    followed by an IPI. The amo indicates where data is to be pulled
31  *	    from, so after the IPI arrives, the remote partition checks the amo
32  *	    word. The IPI can actually arrive before the amo however, so other
33  *	    code must periodically check for this case. Also, remote amo
34  *	    operations do not reliably time out. Thus we do a remote PIO read
35  *	    solely to know whether the remote partition is down and whether we
36  *	    should stop sending IPIs to it. This remote PIO read operation is
37  *	    set up in a special nofault region so SAL knows to ignore (and
38  *	    cleanup) any errors due to the remote amo write, PIO read, and/or
39  *	    PIO write operations.
40  *
41  *	    If/when new hardware solves this IPI problem, we should abandon
42  *	    the current approach.
43  *
44  */
45 
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/sysctl.h>
49 #include <linux/device.h>
50 #include <linux/delay.h>
51 #include <linux/reboot.h>
52 #include <linux/kdebug.h>
53 #include <linux/kthread.h>
54 #include "xpc.h"
55 
56 #ifdef CONFIG_X86_64
57 #include <asm/traps.h>
58 #endif
59 
60 /* define two XPC debug device structures to be used with dev_dbg() et al */
61 
62 struct device_driver xpc_dbg_name = {
63 	.name = "xpc"
64 };
65 
66 struct device xpc_part_dbg_subname = {
67 	.init_name = "",	/* set to "part" at xpc_init() time */
68 	.driver = &xpc_dbg_name
69 };
70 
71 struct device xpc_chan_dbg_subname = {
72 	.init_name = "",	/* set to "chan" at xpc_init() time */
73 	.driver = &xpc_dbg_name
74 };
75 
76 struct device *xpc_part = &xpc_part_dbg_subname;
77 struct device *xpc_chan = &xpc_chan_dbg_subname;
78 
79 static int xpc_kdebug_ignore;
80 
81 /* systune related variables for /proc/sys directories */
82 
83 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
84 static int xpc_hb_min_interval = 1;
85 static int xpc_hb_max_interval = 10;
86 
87 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
88 static int xpc_hb_check_min_interval = 10;
89 static int xpc_hb_check_max_interval = 120;
90 
91 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
92 static int xpc_disengage_min_timelimit;	/* = 0 */
93 static int xpc_disengage_max_timelimit = 120;
94 
95 static struct ctl_table xpc_sys_xpc_hb_dir[] = {
96 	{
97 	 .procname = "hb_interval",
98 	 .data = &xpc_hb_interval,
99 	 .maxlen = sizeof(int),
100 	 .mode = 0644,
101 	 .proc_handler = proc_dointvec_minmax,
102 	 .extra1 = &xpc_hb_min_interval,
103 	 .extra2 = &xpc_hb_max_interval},
104 	{
105 	 .procname = "hb_check_interval",
106 	 .data = &xpc_hb_check_interval,
107 	 .maxlen = sizeof(int),
108 	 .mode = 0644,
109 	 .proc_handler = proc_dointvec_minmax,
110 	 .extra1 = &xpc_hb_check_min_interval,
111 	 .extra2 = &xpc_hb_check_max_interval},
112 	{}
113 };
114 static struct ctl_table xpc_sys_xpc_dir[] = {
115 	{
116 	 .procname = "hb",
117 	 .mode = 0555,
118 	 .child = xpc_sys_xpc_hb_dir},
119 	{
120 	 .procname = "disengage_timelimit",
121 	 .data = &xpc_disengage_timelimit,
122 	 .maxlen = sizeof(int),
123 	 .mode = 0644,
124 	 .proc_handler = proc_dointvec_minmax,
125 	 .extra1 = &xpc_disengage_min_timelimit,
126 	 .extra2 = &xpc_disengage_max_timelimit},
127 	{}
128 };
129 static struct ctl_table xpc_sys_dir[] = {
130 	{
131 	 .procname = "xpc",
132 	 .mode = 0555,
133 	 .child = xpc_sys_xpc_dir},
134 	{}
135 };
136 static struct ctl_table_header *xpc_sysctl;
137 
138 /* non-zero if any remote partition disengage was timed out */
139 int xpc_disengage_timedout;
140 
141 /* #of activate IRQs received and not yet processed */
142 int xpc_activate_IRQ_rcvd;
143 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
144 
145 /* IRQ handler notifies this wait queue on receipt of an IRQ */
146 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
147 
148 static unsigned long xpc_hb_check_timeout;
149 static struct timer_list xpc_hb_timer;
150 
151 /* notification that the xpc_hb_checker thread has exited */
152 static DECLARE_COMPLETION(xpc_hb_checker_exited);
153 
154 /* notification that the xpc_discovery thread has exited */
155 static DECLARE_COMPLETION(xpc_discovery_exited);
156 
157 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
158 
159 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
160 static struct notifier_block xpc_reboot_notifier = {
161 	.notifier_call = xpc_system_reboot,
162 };
163 
164 static int xpc_system_die(struct notifier_block *, unsigned long, void *);
165 static struct notifier_block xpc_die_notifier = {
166 	.notifier_call = xpc_system_die,
167 };
168 
169 struct xpc_arch_operations xpc_arch_ops;
170 
171 /*
172  * Timer function to enforce the timelimit on the partition disengage.
173  */
174 static void
175 xpc_timeout_partition_disengage(struct timer_list *t)
176 {
177 	struct xpc_partition *part = from_timer(part, t, disengage_timer);
178 
179 	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
180 
181 	(void)xpc_partition_disengaged(part);
182 
183 	DBUG_ON(part->disengage_timeout != 0);
184 	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
185 }
186 
187 /*
188  * Timer to produce the heartbeat.  The timer structures function is
189  * already set when this is initially called.  A tunable is used to
190  * specify when the next timeout should occur.
191  */
192 static void
193 xpc_hb_beater(struct timer_list *unused)
194 {
195 	xpc_arch_ops.increment_heartbeat();
196 
197 	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
198 		wake_up_interruptible(&xpc_activate_IRQ_wq);
199 
200 	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
201 	add_timer(&xpc_hb_timer);
202 }
203 
204 static void
205 xpc_start_hb_beater(void)
206 {
207 	xpc_arch_ops.heartbeat_init();
208 	timer_setup(&xpc_hb_timer, xpc_hb_beater, 0);
209 	xpc_hb_beater(0);
210 }
211 
212 static void
213 xpc_stop_hb_beater(void)
214 {
215 	del_timer_sync(&xpc_hb_timer);
216 	xpc_arch_ops.heartbeat_exit();
217 }
218 
219 /*
220  * At periodic intervals, scan through all active partitions and ensure
221  * their heartbeat is still active.  If not, the partition is deactivated.
222  */
223 static void
224 xpc_check_remote_hb(void)
225 {
226 	struct xpc_partition *part;
227 	short partid;
228 	enum xp_retval ret;
229 
230 	for (partid = 0; partid < xp_max_npartitions; partid++) {
231 
232 		if (xpc_exiting)
233 			break;
234 
235 		if (partid == xp_partition_id)
236 			continue;
237 
238 		part = &xpc_partitions[partid];
239 
240 		if (part->act_state == XPC_P_AS_INACTIVE ||
241 		    part->act_state == XPC_P_AS_DEACTIVATING) {
242 			continue;
243 		}
244 
245 		ret = xpc_arch_ops.get_remote_heartbeat(part);
246 		if (ret != xpSuccess)
247 			XPC_DEACTIVATE_PARTITION(part, ret);
248 	}
249 }
250 
251 /*
252  * This thread is responsible for nearly all of the partition
253  * activation/deactivation.
254  */
255 static int
256 xpc_hb_checker(void *ignore)
257 {
258 	int force_IRQ = 0;
259 
260 	/* this thread was marked active by xpc_hb_init() */
261 
262 	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
263 
264 	/* set our heartbeating to other partitions into motion */
265 	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
266 	xpc_start_hb_beater();
267 
268 	while (!xpc_exiting) {
269 
270 		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
271 			"been received\n",
272 			(int)(xpc_hb_check_timeout - jiffies),
273 			xpc_activate_IRQ_rcvd);
274 
275 		/* checking of remote heartbeats is skewed by IRQ handling */
276 		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
277 			xpc_hb_check_timeout = jiffies +
278 			    (xpc_hb_check_interval * HZ);
279 
280 			dev_dbg(xpc_part, "checking remote heartbeats\n");
281 			xpc_check_remote_hb();
282 
283 			/*
284 			 * On sn2 we need to periodically recheck to ensure no
285 			 * IRQ/amo pairs have been missed.
286 			 */
287 			if (is_shub())
288 				force_IRQ = 1;
289 		}
290 
291 		/* check for outstanding IRQs */
292 		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
293 			force_IRQ = 0;
294 			dev_dbg(xpc_part, "processing activate IRQs "
295 				"received\n");
296 			xpc_arch_ops.process_activate_IRQ_rcvd();
297 		}
298 
299 		/* wait for IRQ or timeout */
300 		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
301 					       (time_is_before_eq_jiffies(
302 						xpc_hb_check_timeout) ||
303 						xpc_activate_IRQ_rcvd > 0 ||
304 						xpc_exiting));
305 	}
306 
307 	xpc_stop_hb_beater();
308 
309 	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
310 
311 	/* mark this thread as having exited */
312 	complete(&xpc_hb_checker_exited);
313 	return 0;
314 }
315 
316 /*
317  * This thread will attempt to discover other partitions to activate
318  * based on info provided by SAL. This new thread is short lived and
319  * will exit once discovery is complete.
320  */
321 static int
322 xpc_initiate_discovery(void *ignore)
323 {
324 	xpc_discovery();
325 
326 	dev_dbg(xpc_part, "discovery thread is exiting\n");
327 
328 	/* mark this thread as having exited */
329 	complete(&xpc_discovery_exited);
330 	return 0;
331 }
332 
333 /*
334  * The first kthread assigned to a newly activated partition is the one
335  * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
336  * that kthread until the partition is brought down, at which time that kthread
337  * returns back to XPC HB. (The return of that kthread will signify to XPC HB
338  * that XPC has dismantled all communication infrastructure for the associated
339  * partition.) This kthread becomes the channel manager for that partition.
340  *
341  * Each active partition has a channel manager, who, besides connecting and
342  * disconnecting channels, will ensure that each of the partition's connected
343  * channels has the required number of assigned kthreads to get the work done.
344  */
345 static void
346 xpc_channel_mgr(struct xpc_partition *part)
347 {
348 	while (part->act_state != XPC_P_AS_DEACTIVATING ||
349 	       atomic_read(&part->nchannels_active) > 0 ||
350 	       !xpc_partition_disengaged(part)) {
351 
352 		xpc_process_sent_chctl_flags(part);
353 
354 		/*
355 		 * Wait until we've been requested to activate kthreads or
356 		 * all of the channel's message queues have been torn down or
357 		 * a signal is pending.
358 		 *
359 		 * The channel_mgr_requests is set to 1 after being awakened,
360 		 * This is done to prevent the channel mgr from making one pass
361 		 * through the loop for each request, since he will
362 		 * be servicing all the requests in one pass. The reason it's
363 		 * set to 1 instead of 0 is so that other kthreads will know
364 		 * that the channel mgr is running and won't bother trying to
365 		 * wake him up.
366 		 */
367 		atomic_dec(&part->channel_mgr_requests);
368 		(void)wait_event_interruptible(part->channel_mgr_wq,
369 				(atomic_read(&part->channel_mgr_requests) > 0 ||
370 				 part->chctl.all_flags != 0 ||
371 				 (part->act_state == XPC_P_AS_DEACTIVATING &&
372 				 atomic_read(&part->nchannels_active) == 0 &&
373 				 xpc_partition_disengaged(part))));
374 		atomic_set(&part->channel_mgr_requests, 1);
375 	}
376 }
377 
378 /*
379  * Guarantee that the kzalloc'd memory is cacheline aligned.
380  */
381 void *
382 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
383 {
384 	/* see if kzalloc will give us cachline aligned memory by default */
385 	*base = kzalloc(size, flags);
386 	if (*base == NULL)
387 		return NULL;
388 
389 	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
390 		return *base;
391 
392 	kfree(*base);
393 
394 	/* nope, we'll have to do it ourselves */
395 	*base = kzalloc(size + L1_CACHE_BYTES, flags);
396 	if (*base == NULL)
397 		return NULL;
398 
399 	return (void *)L1_CACHE_ALIGN((u64)*base);
400 }
401 
402 /*
403  * Setup the channel structures necessary to support XPartition Communication
404  * between the specified remote partition and the local one.
405  */
406 static enum xp_retval
407 xpc_setup_ch_structures(struct xpc_partition *part)
408 {
409 	enum xp_retval ret;
410 	int ch_number;
411 	struct xpc_channel *ch;
412 	short partid = XPC_PARTID(part);
413 
414 	/*
415 	 * Allocate all of the channel structures as a contiguous chunk of
416 	 * memory.
417 	 */
418 	DBUG_ON(part->channels != NULL);
419 	part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
420 				 GFP_KERNEL);
421 	if (part->channels == NULL) {
422 		dev_err(xpc_chan, "can't get memory for channels\n");
423 		return xpNoMemory;
424 	}
425 
426 	/* allocate the remote open and close args */
427 
428 	part->remote_openclose_args =
429 	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
430 					  GFP_KERNEL, &part->
431 					  remote_openclose_args_base);
432 	if (part->remote_openclose_args == NULL) {
433 		dev_err(xpc_chan, "can't get memory for remote connect args\n");
434 		ret = xpNoMemory;
435 		goto out_1;
436 	}
437 
438 	part->chctl.all_flags = 0;
439 	spin_lock_init(&part->chctl_lock);
440 
441 	atomic_set(&part->channel_mgr_requests, 1);
442 	init_waitqueue_head(&part->channel_mgr_wq);
443 
444 	part->nchannels = XPC_MAX_NCHANNELS;
445 
446 	atomic_set(&part->nchannels_active, 0);
447 	atomic_set(&part->nchannels_engaged, 0);
448 
449 	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
450 		ch = &part->channels[ch_number];
451 
452 		ch->partid = partid;
453 		ch->number = ch_number;
454 		ch->flags = XPC_C_DISCONNECTED;
455 
456 		atomic_set(&ch->kthreads_assigned, 0);
457 		atomic_set(&ch->kthreads_idle, 0);
458 		atomic_set(&ch->kthreads_active, 0);
459 
460 		atomic_set(&ch->references, 0);
461 		atomic_set(&ch->n_to_notify, 0);
462 
463 		spin_lock_init(&ch->lock);
464 		init_completion(&ch->wdisconnect_wait);
465 
466 		atomic_set(&ch->n_on_msg_allocate_wq, 0);
467 		init_waitqueue_head(&ch->msg_allocate_wq);
468 		init_waitqueue_head(&ch->idle_wq);
469 	}
470 
471 	ret = xpc_arch_ops.setup_ch_structures(part);
472 	if (ret != xpSuccess)
473 		goto out_2;
474 
475 	/*
476 	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
477 	 * we're declaring that this partition is ready to go.
478 	 */
479 	part->setup_state = XPC_P_SS_SETUP;
480 
481 	return xpSuccess;
482 
483 	/* setup of ch structures failed */
484 out_2:
485 	kfree(part->remote_openclose_args_base);
486 	part->remote_openclose_args = NULL;
487 out_1:
488 	kfree(part->channels);
489 	part->channels = NULL;
490 	return ret;
491 }
492 
493 /*
494  * Teardown the channel structures necessary to support XPartition Communication
495  * between the specified remote partition and the local one.
496  */
497 static void
498 xpc_teardown_ch_structures(struct xpc_partition *part)
499 {
500 	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
501 	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
502 
503 	/*
504 	 * Make this partition inaccessible to local processes by marking it
505 	 * as no longer setup. Then wait before proceeding with the teardown
506 	 * until all existing references cease.
507 	 */
508 	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
509 	part->setup_state = XPC_P_SS_WTEARDOWN;
510 
511 	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
512 
513 	/* now we can begin tearing down the infrastructure */
514 
515 	xpc_arch_ops.teardown_ch_structures(part);
516 
517 	kfree(part->remote_openclose_args_base);
518 	part->remote_openclose_args = NULL;
519 	kfree(part->channels);
520 	part->channels = NULL;
521 
522 	part->setup_state = XPC_P_SS_TORNDOWN;
523 }
524 
525 /*
526  * When XPC HB determines that a partition has come up, it will create a new
527  * kthread and that kthread will call this function to attempt to set up the
528  * basic infrastructure used for Cross Partition Communication with the newly
529  * upped partition.
530  *
531  * The kthread that was created by XPC HB and which setup the XPC
532  * infrastructure will remain assigned to the partition becoming the channel
533  * manager for that partition until the partition is deactivating, at which
534  * time the kthread will teardown the XPC infrastructure and then exit.
535  */
536 static int
537 xpc_activating(void *__partid)
538 {
539 	short partid = (u64)__partid;
540 	struct xpc_partition *part = &xpc_partitions[partid];
541 	unsigned long irq_flags;
542 
543 	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
544 
545 	spin_lock_irqsave(&part->act_lock, irq_flags);
546 
547 	if (part->act_state == XPC_P_AS_DEACTIVATING) {
548 		part->act_state = XPC_P_AS_INACTIVE;
549 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
550 		part->remote_rp_pa = 0;
551 		return 0;
552 	}
553 
554 	/* indicate the thread is activating */
555 	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
556 	part->act_state = XPC_P_AS_ACTIVATING;
557 
558 	XPC_SET_REASON(part, 0, 0);
559 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
560 
561 	dev_dbg(xpc_part, "activating partition %d\n", partid);
562 
563 	xpc_arch_ops.allow_hb(partid);
564 
565 	if (xpc_setup_ch_structures(part) == xpSuccess) {
566 		(void)xpc_part_ref(part);	/* this will always succeed */
567 
568 		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
569 			xpc_mark_partition_active(part);
570 			xpc_channel_mgr(part);
571 			/* won't return until partition is deactivating */
572 		}
573 
574 		xpc_part_deref(part);
575 		xpc_teardown_ch_structures(part);
576 	}
577 
578 	xpc_arch_ops.disallow_hb(partid);
579 	xpc_mark_partition_inactive(part);
580 
581 	if (part->reason == xpReactivating) {
582 		/* interrupting ourselves results in activating partition */
583 		xpc_arch_ops.request_partition_reactivation(part);
584 	}
585 
586 	return 0;
587 }
588 
589 void
590 xpc_activate_partition(struct xpc_partition *part)
591 {
592 	short partid = XPC_PARTID(part);
593 	unsigned long irq_flags;
594 	struct task_struct *kthread;
595 
596 	spin_lock_irqsave(&part->act_lock, irq_flags);
597 
598 	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
599 
600 	part->act_state = XPC_P_AS_ACTIVATION_REQ;
601 	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
602 
603 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
604 
605 	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
606 			      partid);
607 	if (IS_ERR(kthread)) {
608 		spin_lock_irqsave(&part->act_lock, irq_flags);
609 		part->act_state = XPC_P_AS_INACTIVE;
610 		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
611 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
612 	}
613 }
614 
615 void
616 xpc_activate_kthreads(struct xpc_channel *ch, int needed)
617 {
618 	int idle = atomic_read(&ch->kthreads_idle);
619 	int assigned = atomic_read(&ch->kthreads_assigned);
620 	int wakeup;
621 
622 	DBUG_ON(needed <= 0);
623 
624 	if (idle > 0) {
625 		wakeup = (needed > idle) ? idle : needed;
626 		needed -= wakeup;
627 
628 		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
629 			"channel=%d\n", wakeup, ch->partid, ch->number);
630 
631 		/* only wakeup the requested number of kthreads */
632 		wake_up_nr(&ch->idle_wq, wakeup);
633 	}
634 
635 	if (needed <= 0)
636 		return;
637 
638 	if (needed + assigned > ch->kthreads_assigned_limit) {
639 		needed = ch->kthreads_assigned_limit - assigned;
640 		if (needed <= 0)
641 			return;
642 	}
643 
644 	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
645 		needed, ch->partid, ch->number);
646 
647 	xpc_create_kthreads(ch, needed, 0);
648 }
649 
650 /*
651  * This function is where XPC's kthreads wait for messages to deliver.
652  */
653 static void
654 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
655 {
656 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
657 		xpc_arch_ops.n_of_deliverable_payloads;
658 
659 	do {
660 		/* deliver messages to their intended recipients */
661 
662 		while (n_of_deliverable_payloads(ch) > 0 &&
663 		       !(ch->flags & XPC_C_DISCONNECTING)) {
664 			xpc_deliver_payload(ch);
665 		}
666 
667 		if (atomic_inc_return(&ch->kthreads_idle) >
668 		    ch->kthreads_idle_limit) {
669 			/* too many idle kthreads on this channel */
670 			atomic_dec(&ch->kthreads_idle);
671 			break;
672 		}
673 
674 		dev_dbg(xpc_chan, "idle kthread calling "
675 			"wait_event_interruptible_exclusive()\n");
676 
677 		(void)wait_event_interruptible_exclusive(ch->idle_wq,
678 				(n_of_deliverable_payloads(ch) > 0 ||
679 				 (ch->flags & XPC_C_DISCONNECTING)));
680 
681 		atomic_dec(&ch->kthreads_idle);
682 
683 	} while (!(ch->flags & XPC_C_DISCONNECTING));
684 }
685 
686 static int
687 xpc_kthread_start(void *args)
688 {
689 	short partid = XPC_UNPACK_ARG1(args);
690 	u16 ch_number = XPC_UNPACK_ARG2(args);
691 	struct xpc_partition *part = &xpc_partitions[partid];
692 	struct xpc_channel *ch;
693 	int n_needed;
694 	unsigned long irq_flags;
695 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
696 		xpc_arch_ops.n_of_deliverable_payloads;
697 
698 	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
699 		partid, ch_number);
700 
701 	ch = &part->channels[ch_number];
702 
703 	if (!(ch->flags & XPC_C_DISCONNECTING)) {
704 
705 		/* let registerer know that connection has been established */
706 
707 		spin_lock_irqsave(&ch->lock, irq_flags);
708 		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
709 			ch->flags |= XPC_C_CONNECTEDCALLOUT;
710 			spin_unlock_irqrestore(&ch->lock, irq_flags);
711 
712 			xpc_connected_callout(ch);
713 
714 			spin_lock_irqsave(&ch->lock, irq_flags);
715 			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
716 			spin_unlock_irqrestore(&ch->lock, irq_flags);
717 
718 			/*
719 			 * It is possible that while the callout was being
720 			 * made that the remote partition sent some messages.
721 			 * If that is the case, we may need to activate
722 			 * additional kthreads to help deliver them. We only
723 			 * need one less than total #of messages to deliver.
724 			 */
725 			n_needed = n_of_deliverable_payloads(ch) - 1;
726 			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
727 				xpc_activate_kthreads(ch, n_needed);
728 
729 		} else {
730 			spin_unlock_irqrestore(&ch->lock, irq_flags);
731 		}
732 
733 		xpc_kthread_waitmsgs(part, ch);
734 	}
735 
736 	/* let registerer know that connection is disconnecting */
737 
738 	spin_lock_irqsave(&ch->lock, irq_flags);
739 	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
740 	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
741 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
742 		spin_unlock_irqrestore(&ch->lock, irq_flags);
743 
744 		xpc_disconnect_callout(ch, xpDisconnecting);
745 
746 		spin_lock_irqsave(&ch->lock, irq_flags);
747 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
748 	}
749 	spin_unlock_irqrestore(&ch->lock, irq_flags);
750 
751 	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
752 	    atomic_dec_return(&part->nchannels_engaged) == 0) {
753 		xpc_arch_ops.indicate_partition_disengaged(part);
754 	}
755 
756 	xpc_msgqueue_deref(ch);
757 
758 	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
759 		partid, ch_number);
760 
761 	xpc_part_deref(part);
762 	return 0;
763 }
764 
765 /*
766  * For each partition that XPC has established communications with, there is
767  * a minimum of one kernel thread assigned to perform any operation that
768  * may potentially sleep or block (basically the callouts to the asynchronous
769  * functions registered via xpc_connect()).
770  *
771  * Additional kthreads are created and destroyed by XPC as the workload
772  * demands.
773  *
774  * A kthread is assigned to one of the active channels that exists for a given
775  * partition.
776  */
777 void
778 xpc_create_kthreads(struct xpc_channel *ch, int needed,
779 		    int ignore_disconnecting)
780 {
781 	unsigned long irq_flags;
782 	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
783 	struct xpc_partition *part = &xpc_partitions[ch->partid];
784 	struct task_struct *kthread;
785 	void (*indicate_partition_disengaged) (struct xpc_partition *) =
786 		xpc_arch_ops.indicate_partition_disengaged;
787 
788 	while (needed-- > 0) {
789 
790 		/*
791 		 * The following is done on behalf of the newly created
792 		 * kthread. That kthread is responsible for doing the
793 		 * counterpart to the following before it exits.
794 		 */
795 		if (ignore_disconnecting) {
796 			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
797 				/* kthreads assigned had gone to zero */
798 				BUG_ON(!(ch->flags &
799 					 XPC_C_DISCONNECTINGCALLOUT_MADE));
800 				break;
801 			}
802 
803 		} else if (ch->flags & XPC_C_DISCONNECTING) {
804 			break;
805 
806 		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
807 			   atomic_inc_return(&part->nchannels_engaged) == 1) {
808 			xpc_arch_ops.indicate_partition_engaged(part);
809 		}
810 		(void)xpc_part_ref(part);
811 		xpc_msgqueue_ref(ch);
812 
813 		kthread = kthread_run(xpc_kthread_start, (void *)args,
814 				      "xpc%02dc%d", ch->partid, ch->number);
815 		if (IS_ERR(kthread)) {
816 			/* the fork failed */
817 
818 			/*
819 			 * NOTE: if (ignore_disconnecting &&
820 			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
821 			 * then we'll deadlock if all other kthreads assigned
822 			 * to this channel are blocked in the channel's
823 			 * registerer, because the only thing that will unblock
824 			 * them is the xpDisconnecting callout that this
825 			 * failed kthread_run() would have made.
826 			 */
827 
828 			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
829 			    atomic_dec_return(&part->nchannels_engaged) == 0) {
830 				indicate_partition_disengaged(part);
831 			}
832 			xpc_msgqueue_deref(ch);
833 			xpc_part_deref(part);
834 
835 			if (atomic_read(&ch->kthreads_assigned) <
836 			    ch->kthreads_idle_limit) {
837 				/*
838 				 * Flag this as an error only if we have an
839 				 * insufficient #of kthreads for the channel
840 				 * to function.
841 				 */
842 				spin_lock_irqsave(&ch->lock, irq_flags);
843 				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
844 						       &irq_flags);
845 				spin_unlock_irqrestore(&ch->lock, irq_flags);
846 			}
847 			break;
848 		}
849 	}
850 }
851 
852 void
853 xpc_disconnect_wait(int ch_number)
854 {
855 	unsigned long irq_flags;
856 	short partid;
857 	struct xpc_partition *part;
858 	struct xpc_channel *ch;
859 	int wakeup_channel_mgr;
860 
861 	/* now wait for all callouts to the caller's function to cease */
862 	for (partid = 0; partid < xp_max_npartitions; partid++) {
863 		part = &xpc_partitions[partid];
864 
865 		if (!xpc_part_ref(part))
866 			continue;
867 
868 		ch = &part->channels[ch_number];
869 
870 		if (!(ch->flags & XPC_C_WDISCONNECT)) {
871 			xpc_part_deref(part);
872 			continue;
873 		}
874 
875 		wait_for_completion(&ch->wdisconnect_wait);
876 
877 		spin_lock_irqsave(&ch->lock, irq_flags);
878 		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
879 		wakeup_channel_mgr = 0;
880 
881 		if (ch->delayed_chctl_flags) {
882 			if (part->act_state != XPC_P_AS_DEACTIVATING) {
883 				spin_lock(&part->chctl_lock);
884 				part->chctl.flags[ch->number] |=
885 				    ch->delayed_chctl_flags;
886 				spin_unlock(&part->chctl_lock);
887 				wakeup_channel_mgr = 1;
888 			}
889 			ch->delayed_chctl_flags = 0;
890 		}
891 
892 		ch->flags &= ~XPC_C_WDISCONNECT;
893 		spin_unlock_irqrestore(&ch->lock, irq_flags);
894 
895 		if (wakeup_channel_mgr)
896 			xpc_wakeup_channel_mgr(part);
897 
898 		xpc_part_deref(part);
899 	}
900 }
901 
902 static int
903 xpc_setup_partitions(void)
904 {
905 	short partid;
906 	struct xpc_partition *part;
907 
908 	xpc_partitions = kzalloc(sizeof(struct xpc_partition) *
909 				 xp_max_npartitions, GFP_KERNEL);
910 	if (xpc_partitions == NULL) {
911 		dev_err(xpc_part, "can't get memory for partition structure\n");
912 		return -ENOMEM;
913 	}
914 
915 	/*
916 	 * The first few fields of each entry of xpc_partitions[] need to
917 	 * be initialized now so that calls to xpc_connect() and
918 	 * xpc_disconnect() can be made prior to the activation of any remote
919 	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
920 	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
921 	 * PARTITION HAS BEEN ACTIVATED.
922 	 */
923 	for (partid = 0; partid < xp_max_npartitions; partid++) {
924 		part = &xpc_partitions[partid];
925 
926 		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
927 
928 		part->activate_IRQ_rcvd = 0;
929 		spin_lock_init(&part->act_lock);
930 		part->act_state = XPC_P_AS_INACTIVE;
931 		XPC_SET_REASON(part, 0, 0);
932 
933 		timer_setup(&part->disengage_timer,
934 			    xpc_timeout_partition_disengage, 0);
935 
936 		part->setup_state = XPC_P_SS_UNSET;
937 		init_waitqueue_head(&part->teardown_wq);
938 		atomic_set(&part->references, 0);
939 	}
940 
941 	return xpc_arch_ops.setup_partitions();
942 }
943 
944 static void
945 xpc_teardown_partitions(void)
946 {
947 	xpc_arch_ops.teardown_partitions();
948 	kfree(xpc_partitions);
949 }
950 
951 static void
952 xpc_do_exit(enum xp_retval reason)
953 {
954 	short partid;
955 	int active_part_count, printed_waiting_msg = 0;
956 	struct xpc_partition *part;
957 	unsigned long printmsg_time, disengage_timeout = 0;
958 
959 	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
960 	DBUG_ON(xpc_exiting == 1);
961 
962 	/*
963 	 * Let the heartbeat checker thread and the discovery thread
964 	 * (if one is running) know that they should exit. Also wake up
965 	 * the heartbeat checker thread in case it's sleeping.
966 	 */
967 	xpc_exiting = 1;
968 	wake_up_interruptible(&xpc_activate_IRQ_wq);
969 
970 	/* wait for the discovery thread to exit */
971 	wait_for_completion(&xpc_discovery_exited);
972 
973 	/* wait for the heartbeat checker thread to exit */
974 	wait_for_completion(&xpc_hb_checker_exited);
975 
976 	/* sleep for a 1/3 of a second or so */
977 	(void)msleep_interruptible(300);
978 
979 	/* wait for all partitions to become inactive */
980 
981 	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
982 	xpc_disengage_timedout = 0;
983 
984 	do {
985 		active_part_count = 0;
986 
987 		for (partid = 0; partid < xp_max_npartitions; partid++) {
988 			part = &xpc_partitions[partid];
989 
990 			if (xpc_partition_disengaged(part) &&
991 			    part->act_state == XPC_P_AS_INACTIVE) {
992 				continue;
993 			}
994 
995 			active_part_count++;
996 
997 			XPC_DEACTIVATE_PARTITION(part, reason);
998 
999 			if (part->disengage_timeout > disengage_timeout)
1000 				disengage_timeout = part->disengage_timeout;
1001 		}
1002 
1003 		if (xpc_arch_ops.any_partition_engaged()) {
1004 			if (time_is_before_jiffies(printmsg_time)) {
1005 				dev_info(xpc_part, "waiting for remote "
1006 					 "partitions to deactivate, timeout in "
1007 					 "%ld seconds\n", (disengage_timeout -
1008 					 jiffies) / HZ);
1009 				printmsg_time = jiffies +
1010 				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
1011 				printed_waiting_msg = 1;
1012 			}
1013 
1014 		} else if (active_part_count > 0) {
1015 			if (printed_waiting_msg) {
1016 				dev_info(xpc_part, "waiting for local partition"
1017 					 " to deactivate\n");
1018 				printed_waiting_msg = 0;
1019 			}
1020 
1021 		} else {
1022 			if (!xpc_disengage_timedout) {
1023 				dev_info(xpc_part, "all partitions have "
1024 					 "deactivated\n");
1025 			}
1026 			break;
1027 		}
1028 
1029 		/* sleep for a 1/3 of a second or so */
1030 		(void)msleep_interruptible(300);
1031 
1032 	} while (1);
1033 
1034 	DBUG_ON(xpc_arch_ops.any_partition_engaged());
1035 
1036 	xpc_teardown_rsvd_page();
1037 
1038 	if (reason == xpUnloading) {
1039 		(void)unregister_die_notifier(&xpc_die_notifier);
1040 		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1041 	}
1042 
1043 	/* clear the interface to XPC's functions */
1044 	xpc_clear_interface();
1045 
1046 	if (xpc_sysctl)
1047 		unregister_sysctl_table(xpc_sysctl);
1048 
1049 	xpc_teardown_partitions();
1050 
1051 	if (is_shub())
1052 		xpc_exit_sn2();
1053 	else if (is_uv())
1054 		xpc_exit_uv();
1055 }
1056 
1057 /*
1058  * This function is called when the system is being rebooted.
1059  */
1060 static int
1061 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1062 {
1063 	enum xp_retval reason;
1064 
1065 	switch (event) {
1066 	case SYS_RESTART:
1067 		reason = xpSystemReboot;
1068 		break;
1069 	case SYS_HALT:
1070 		reason = xpSystemHalt;
1071 		break;
1072 	case SYS_POWER_OFF:
1073 		reason = xpSystemPoweroff;
1074 		break;
1075 	default:
1076 		reason = xpSystemGoingDown;
1077 	}
1078 
1079 	xpc_do_exit(reason);
1080 	return NOTIFY_DONE;
1081 }
1082 
1083 /* Used to only allow one cpu to complete disconnect */
1084 static unsigned int xpc_die_disconnecting;
1085 
1086 /*
1087  * Notify other partitions to deactivate from us by first disengaging from all
1088  * references to our memory.
1089  */
1090 static void
1091 xpc_die_deactivate(void)
1092 {
1093 	struct xpc_partition *part;
1094 	short partid;
1095 	int any_engaged;
1096 	long keep_waiting;
1097 	long wait_to_print;
1098 
1099 	if (cmpxchg(&xpc_die_disconnecting, 0, 1))
1100 		return;
1101 
1102 	/* keep xpc_hb_checker thread from doing anything (just in case) */
1103 	xpc_exiting = 1;
1104 
1105 	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1106 
1107 	for (partid = 0; partid < xp_max_npartitions; partid++) {
1108 		part = &xpc_partitions[partid];
1109 
1110 		if (xpc_arch_ops.partition_engaged(partid) ||
1111 		    part->act_state != XPC_P_AS_INACTIVE) {
1112 			xpc_arch_ops.request_partition_deactivation(part);
1113 			xpc_arch_ops.indicate_partition_disengaged(part);
1114 		}
1115 	}
1116 
1117 	/*
1118 	 * Though we requested that all other partitions deactivate from us,
1119 	 * we only wait until they've all disengaged or we've reached the
1120 	 * defined timelimit.
1121 	 *
1122 	 * Given that one iteration through the following while-loop takes
1123 	 * approximately 200 microseconds, calculate the #of loops to take
1124 	 * before bailing and the #of loops before printing a waiting message.
1125 	 */
1126 	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1127 	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1128 
1129 	while (1) {
1130 		any_engaged = xpc_arch_ops.any_partition_engaged();
1131 		if (!any_engaged) {
1132 			dev_info(xpc_part, "all partitions have deactivated\n");
1133 			break;
1134 		}
1135 
1136 		if (!keep_waiting--) {
1137 			for (partid = 0; partid < xp_max_npartitions;
1138 			     partid++) {
1139 				if (xpc_arch_ops.partition_engaged(partid)) {
1140 					dev_info(xpc_part, "deactivate from "
1141 						 "remote partition %d timed "
1142 						 "out\n", partid);
1143 				}
1144 			}
1145 			break;
1146 		}
1147 
1148 		if (!wait_to_print--) {
1149 			dev_info(xpc_part, "waiting for remote partitions to "
1150 				 "deactivate, timeout in %ld seconds\n",
1151 				 keep_waiting / (1000 * 5));
1152 			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1153 			    1000 * 5;
1154 		}
1155 
1156 		udelay(200);
1157 	}
1158 }
1159 
1160 /*
1161  * This function is called when the system is being restarted or halted due
1162  * to some sort of system failure. If this is the case we need to notify the
1163  * other partitions to disengage from all references to our memory.
1164  * This function can also be called when our heartbeater could be offlined
1165  * for a time. In this case we need to notify other partitions to not worry
1166  * about the lack of a heartbeat.
1167  */
1168 static int
1169 xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args)
1170 {
1171 #ifdef CONFIG_IA64		/* !!! temporary kludge */
1172 	switch (event) {
1173 	case DIE_MACHINE_RESTART:
1174 	case DIE_MACHINE_HALT:
1175 		xpc_die_deactivate();
1176 		break;
1177 
1178 	case DIE_KDEBUG_ENTER:
1179 		/* Should lack of heartbeat be ignored by other partitions? */
1180 		if (!xpc_kdebug_ignore)
1181 			break;
1182 
1183 		/* fall through */
1184 	case DIE_MCA_MONARCH_ENTER:
1185 	case DIE_INIT_MONARCH_ENTER:
1186 		xpc_arch_ops.offline_heartbeat();
1187 		break;
1188 
1189 	case DIE_KDEBUG_LEAVE:
1190 		/* Is lack of heartbeat being ignored by other partitions? */
1191 		if (!xpc_kdebug_ignore)
1192 			break;
1193 
1194 		/* fall through */
1195 	case DIE_MCA_MONARCH_LEAVE:
1196 	case DIE_INIT_MONARCH_LEAVE:
1197 		xpc_arch_ops.online_heartbeat();
1198 		break;
1199 	}
1200 #else
1201 	struct die_args *die_args = _die_args;
1202 
1203 	switch (event) {
1204 	case DIE_TRAP:
1205 		if (die_args->trapnr == X86_TRAP_DF)
1206 			xpc_die_deactivate();
1207 
1208 		if (((die_args->trapnr == X86_TRAP_MF) ||
1209 		     (die_args->trapnr == X86_TRAP_XF)) &&
1210 		    !user_mode(die_args->regs))
1211 			xpc_die_deactivate();
1212 
1213 		break;
1214 	case DIE_INT3:
1215 	case DIE_DEBUG:
1216 		break;
1217 	case DIE_OOPS:
1218 	case DIE_GPF:
1219 	default:
1220 		xpc_die_deactivate();
1221 	}
1222 #endif
1223 
1224 	return NOTIFY_DONE;
1225 }
1226 
1227 int __init
1228 xpc_init(void)
1229 {
1230 	int ret;
1231 	struct task_struct *kthread;
1232 
1233 	dev_set_name(xpc_part, "part");
1234 	dev_set_name(xpc_chan, "chan");
1235 
1236 	if (is_shub()) {
1237 		/*
1238 		 * The ia64-sn2 architecture supports at most 64 partitions.
1239 		 * And the inability to unregister remote amos restricts us
1240 		 * further to only support exactly 64 partitions on this
1241 		 * architecture, no less.
1242 		 */
1243 		if (xp_max_npartitions != 64) {
1244 			dev_err(xpc_part, "max #of partitions not set to 64\n");
1245 			ret = -EINVAL;
1246 		} else {
1247 			ret = xpc_init_sn2();
1248 		}
1249 
1250 	} else if (is_uv()) {
1251 		ret = xpc_init_uv();
1252 
1253 	} else {
1254 		ret = -ENODEV;
1255 	}
1256 
1257 	if (ret != 0)
1258 		return ret;
1259 
1260 	ret = xpc_setup_partitions();
1261 	if (ret != 0) {
1262 		dev_err(xpc_part, "can't get memory for partition structure\n");
1263 		goto out_1;
1264 	}
1265 
1266 	xpc_sysctl = register_sysctl_table(xpc_sys_dir);
1267 
1268 	/*
1269 	 * Fill the partition reserved page with the information needed by
1270 	 * other partitions to discover we are alive and establish initial
1271 	 * communications.
1272 	 */
1273 	ret = xpc_setup_rsvd_page();
1274 	if (ret != 0) {
1275 		dev_err(xpc_part, "can't setup our reserved page\n");
1276 		goto out_2;
1277 	}
1278 
1279 	/* add ourselves to the reboot_notifier_list */
1280 	ret = register_reboot_notifier(&xpc_reboot_notifier);
1281 	if (ret != 0)
1282 		dev_warn(xpc_part, "can't register reboot notifier\n");
1283 
1284 	/* add ourselves to the die_notifier list */
1285 	ret = register_die_notifier(&xpc_die_notifier);
1286 	if (ret != 0)
1287 		dev_warn(xpc_part, "can't register die notifier\n");
1288 
1289 	/*
1290 	 * The real work-horse behind xpc.  This processes incoming
1291 	 * interrupts and monitors remote heartbeats.
1292 	 */
1293 	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1294 	if (IS_ERR(kthread)) {
1295 		dev_err(xpc_part, "failed while forking hb check thread\n");
1296 		ret = -EBUSY;
1297 		goto out_3;
1298 	}
1299 
1300 	/*
1301 	 * Startup a thread that will attempt to discover other partitions to
1302 	 * activate based on info provided by SAL. This new thread is short
1303 	 * lived and will exit once discovery is complete.
1304 	 */
1305 	kthread = kthread_run(xpc_initiate_discovery, NULL,
1306 			      XPC_DISCOVERY_THREAD_NAME);
1307 	if (IS_ERR(kthread)) {
1308 		dev_err(xpc_part, "failed while forking discovery thread\n");
1309 
1310 		/* mark this new thread as a non-starter */
1311 		complete(&xpc_discovery_exited);
1312 
1313 		xpc_do_exit(xpUnloading);
1314 		return -EBUSY;
1315 	}
1316 
1317 	/* set the interface to point at XPC's functions */
1318 	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1319 			  xpc_initiate_send, xpc_initiate_send_notify,
1320 			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
1321 
1322 	return 0;
1323 
1324 	/* initialization was not successful */
1325 out_3:
1326 	xpc_teardown_rsvd_page();
1327 
1328 	(void)unregister_die_notifier(&xpc_die_notifier);
1329 	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1330 out_2:
1331 	if (xpc_sysctl)
1332 		unregister_sysctl_table(xpc_sysctl);
1333 
1334 	xpc_teardown_partitions();
1335 out_1:
1336 	if (is_shub())
1337 		xpc_exit_sn2();
1338 	else if (is_uv())
1339 		xpc_exit_uv();
1340 	return ret;
1341 }
1342 
1343 module_init(xpc_init);
1344 
1345 void __exit
1346 xpc_exit(void)
1347 {
1348 	xpc_do_exit(xpUnloading);
1349 }
1350 
1351 module_exit(xpc_exit);
1352 
1353 MODULE_AUTHOR("Silicon Graphics, Inc.");
1354 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1355 MODULE_LICENSE("GPL");
1356 
1357 module_param(xpc_hb_interval, int, 0);
1358 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1359 		 "heartbeat increments.");
1360 
1361 module_param(xpc_hb_check_interval, int, 0);
1362 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1363 		 "heartbeat checks.");
1364 
1365 module_param(xpc_disengage_timelimit, int, 0);
1366 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1367 		 "for disengage to complete.");
1368 
1369 module_param(xpc_kdebug_ignore, int, 0);
1370 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1371 		 "other partitions when dropping into kdebug.");
1372