xref: /openbmc/linux/drivers/misc/sgi-xp/xpc_main.c (revision 79e790ff)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
7  * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
8  */
9 
10 /*
11  * Cross Partition Communication (XPC) support - standard version.
12  *
13  *	XPC provides a message passing capability that crosses partition
14  *	boundaries. This module is made up of two parts:
15  *
16  *	    partition	This part detects the presence/absence of other
17  *			partitions. It provides a heartbeat and monitors
18  *			the heartbeats of other partitions.
19  *
20  *	    channel	This part manages the channels and sends/receives
21  *			messages across them to/from other partitions.
22  *
23  *	There are a couple of additional functions residing in XP, which
24  *	provide an interface to XPC for its users.
25  *
26  *
27  *	Caveats:
28  *
29  *	  . Currently on sn2, we have no way to determine which nasid an IRQ
30  *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
31  *	    followed by an IPI. The amo indicates where data is to be pulled
32  *	    from, so after the IPI arrives, the remote partition checks the amo
33  *	    word. The IPI can actually arrive before the amo however, so other
34  *	    code must periodically check for this case. Also, remote amo
35  *	    operations do not reliably time out. Thus we do a remote PIO read
36  *	    solely to know whether the remote partition is down and whether we
37  *	    should stop sending IPIs to it. This remote PIO read operation is
38  *	    set up in a special nofault region so SAL knows to ignore (and
39  *	    cleanup) any errors due to the remote amo write, PIO read, and/or
40  *	    PIO write operations.
41  *
42  *	    If/when new hardware solves this IPI problem, we should abandon
43  *	    the current approach.
44  *
45  */
46 
47 #include <linux/module.h>
48 #include <linux/slab.h>
49 #include <linux/sysctl.h>
50 #include <linux/device.h>
51 #include <linux/delay.h>
52 #include <linux/reboot.h>
53 #include <linux/kdebug.h>
54 #include <linux/kthread.h>
55 #include "xpc.h"
56 
57 #ifdef CONFIG_X86_64
58 #include <asm/traps.h>
59 #endif
60 
61 /* define two XPC debug device structures to be used with dev_dbg() et al */
62 
63 static struct device_driver xpc_dbg_name = {
64 	.name = "xpc"
65 };
66 
67 static struct device xpc_part_dbg_subname = {
68 	.init_name = "",	/* set to "part" at xpc_init() time */
69 	.driver = &xpc_dbg_name
70 };
71 
72 static struct device xpc_chan_dbg_subname = {
73 	.init_name = "",	/* set to "chan" at xpc_init() time */
74 	.driver = &xpc_dbg_name
75 };
76 
77 struct device *xpc_part = &xpc_part_dbg_subname;
78 struct device *xpc_chan = &xpc_chan_dbg_subname;
79 
80 static int xpc_kdebug_ignore;
81 
82 /* systune related variables for /proc/sys directories */
83 
84 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
85 static int xpc_hb_min_interval = 1;
86 static int xpc_hb_max_interval = 10;
87 
88 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
89 static int xpc_hb_check_min_interval = 10;
90 static int xpc_hb_check_max_interval = 120;
91 
92 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
93 static int xpc_disengage_min_timelimit;	/* = 0 */
94 static int xpc_disengage_max_timelimit = 120;
95 
96 static struct ctl_table xpc_sys_xpc_hb_dir[] = {
97 	{
98 	 .procname = "hb_interval",
99 	 .data = &xpc_hb_interval,
100 	 .maxlen = sizeof(int),
101 	 .mode = 0644,
102 	 .proc_handler = proc_dointvec_minmax,
103 	 .extra1 = &xpc_hb_min_interval,
104 	 .extra2 = &xpc_hb_max_interval},
105 	{
106 	 .procname = "hb_check_interval",
107 	 .data = &xpc_hb_check_interval,
108 	 .maxlen = sizeof(int),
109 	 .mode = 0644,
110 	 .proc_handler = proc_dointvec_minmax,
111 	 .extra1 = &xpc_hb_check_min_interval,
112 	 .extra2 = &xpc_hb_check_max_interval},
113 	{}
114 };
115 static struct ctl_table xpc_sys_xpc_dir[] = {
116 	{
117 	 .procname = "hb",
118 	 .mode = 0555,
119 	 .child = xpc_sys_xpc_hb_dir},
120 	{
121 	 .procname = "disengage_timelimit",
122 	 .data = &xpc_disengage_timelimit,
123 	 .maxlen = sizeof(int),
124 	 .mode = 0644,
125 	 .proc_handler = proc_dointvec_minmax,
126 	 .extra1 = &xpc_disengage_min_timelimit,
127 	 .extra2 = &xpc_disengage_max_timelimit},
128 	{}
129 };
130 static struct ctl_table xpc_sys_dir[] = {
131 	{
132 	 .procname = "xpc",
133 	 .mode = 0555,
134 	 .child = xpc_sys_xpc_dir},
135 	{}
136 };
137 static struct ctl_table_header *xpc_sysctl;
138 
139 /* non-zero if any remote partition disengage was timed out */
140 int xpc_disengage_timedout;
141 
142 /* #of activate IRQs received and not yet processed */
143 int xpc_activate_IRQ_rcvd;
144 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
145 
146 /* IRQ handler notifies this wait queue on receipt of an IRQ */
147 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
148 
149 static unsigned long xpc_hb_check_timeout;
150 static struct timer_list xpc_hb_timer;
151 
152 /* notification that the xpc_hb_checker thread has exited */
153 static DECLARE_COMPLETION(xpc_hb_checker_exited);
154 
155 /* notification that the xpc_discovery thread has exited */
156 static DECLARE_COMPLETION(xpc_discovery_exited);
157 
158 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
159 
160 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
161 static struct notifier_block xpc_reboot_notifier = {
162 	.notifier_call = xpc_system_reboot,
163 };
164 
165 static int xpc_system_die(struct notifier_block *, unsigned long, void *);
166 static struct notifier_block xpc_die_notifier = {
167 	.notifier_call = xpc_system_die,
168 };
169 
170 struct xpc_arch_operations xpc_arch_ops;
171 
172 /*
173  * Timer function to enforce the timelimit on the partition disengage.
174  */
175 static void
176 xpc_timeout_partition_disengage(struct timer_list *t)
177 {
178 	struct xpc_partition *part = from_timer(part, t, disengage_timer);
179 
180 	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
181 
182 	xpc_partition_disengaged_from_timer(part);
183 
184 	DBUG_ON(part->disengage_timeout != 0);
185 	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
186 }
187 
188 /*
189  * Timer to produce the heartbeat.  The timer structures function is
190  * already set when this is initially called.  A tunable is used to
191  * specify when the next timeout should occur.
192  */
193 static void
194 xpc_hb_beater(struct timer_list *unused)
195 {
196 	xpc_arch_ops.increment_heartbeat();
197 
198 	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
199 		wake_up_interruptible(&xpc_activate_IRQ_wq);
200 
201 	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
202 	add_timer(&xpc_hb_timer);
203 }
204 
205 static void
206 xpc_start_hb_beater(void)
207 {
208 	xpc_arch_ops.heartbeat_init();
209 	timer_setup(&xpc_hb_timer, xpc_hb_beater, 0);
210 	xpc_hb_beater(NULL);
211 }
212 
213 static void
214 xpc_stop_hb_beater(void)
215 {
216 	del_timer_sync(&xpc_hb_timer);
217 	xpc_arch_ops.heartbeat_exit();
218 }
219 
220 /*
221  * At periodic intervals, scan through all active partitions and ensure
222  * their heartbeat is still active.  If not, the partition is deactivated.
223  */
224 static void
225 xpc_check_remote_hb(void)
226 {
227 	struct xpc_partition *part;
228 	short partid;
229 	enum xp_retval ret;
230 
231 	for (partid = 0; partid < xp_max_npartitions; partid++) {
232 
233 		if (xpc_exiting)
234 			break;
235 
236 		if (partid == xp_partition_id)
237 			continue;
238 
239 		part = &xpc_partitions[partid];
240 
241 		if (part->act_state == XPC_P_AS_INACTIVE ||
242 		    part->act_state == XPC_P_AS_DEACTIVATING) {
243 			continue;
244 		}
245 
246 		ret = xpc_arch_ops.get_remote_heartbeat(part);
247 		if (ret != xpSuccess)
248 			XPC_DEACTIVATE_PARTITION(part, ret);
249 	}
250 }
251 
252 /*
253  * This thread is responsible for nearly all of the partition
254  * activation/deactivation.
255  */
256 static int
257 xpc_hb_checker(void *ignore)
258 {
259 	int force_IRQ = 0;
260 
261 	/* this thread was marked active by xpc_hb_init() */
262 
263 	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
264 
265 	/* set our heartbeating to other partitions into motion */
266 	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
267 	xpc_start_hb_beater();
268 
269 	while (!xpc_exiting) {
270 
271 		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
272 			"been received\n",
273 			(int)(xpc_hb_check_timeout - jiffies),
274 			xpc_activate_IRQ_rcvd);
275 
276 		/* checking of remote heartbeats is skewed by IRQ handling */
277 		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
278 			xpc_hb_check_timeout = jiffies +
279 			    (xpc_hb_check_interval * HZ);
280 
281 			dev_dbg(xpc_part, "checking remote heartbeats\n");
282 			xpc_check_remote_hb();
283 		}
284 
285 		/* check for outstanding IRQs */
286 		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
287 			force_IRQ = 0;
288 			dev_dbg(xpc_part, "processing activate IRQs "
289 				"received\n");
290 			xpc_arch_ops.process_activate_IRQ_rcvd();
291 		}
292 
293 		/* wait for IRQ or timeout */
294 		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
295 					       (time_is_before_eq_jiffies(
296 						xpc_hb_check_timeout) ||
297 						xpc_activate_IRQ_rcvd > 0 ||
298 						xpc_exiting));
299 	}
300 
301 	xpc_stop_hb_beater();
302 
303 	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
304 
305 	/* mark this thread as having exited */
306 	complete(&xpc_hb_checker_exited);
307 	return 0;
308 }
309 
310 /*
311  * This thread will attempt to discover other partitions to activate
312  * based on info provided by SAL. This new thread is short lived and
313  * will exit once discovery is complete.
314  */
315 static int
316 xpc_initiate_discovery(void *ignore)
317 {
318 	xpc_discovery();
319 
320 	dev_dbg(xpc_part, "discovery thread is exiting\n");
321 
322 	/* mark this thread as having exited */
323 	complete(&xpc_discovery_exited);
324 	return 0;
325 }
326 
327 /*
328  * The first kthread assigned to a newly activated partition is the one
329  * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
330  * that kthread until the partition is brought down, at which time that kthread
331  * returns back to XPC HB. (The return of that kthread will signify to XPC HB
332  * that XPC has dismantled all communication infrastructure for the associated
333  * partition.) This kthread becomes the channel manager for that partition.
334  *
335  * Each active partition has a channel manager, who, besides connecting and
336  * disconnecting channels, will ensure that each of the partition's connected
337  * channels has the required number of assigned kthreads to get the work done.
338  */
339 static void
340 xpc_channel_mgr(struct xpc_partition *part)
341 {
342 	while (part->act_state != XPC_P_AS_DEACTIVATING ||
343 	       atomic_read(&part->nchannels_active) > 0 ||
344 	       !xpc_partition_disengaged(part)) {
345 
346 		xpc_process_sent_chctl_flags(part);
347 
348 		/*
349 		 * Wait until we've been requested to activate kthreads or
350 		 * all of the channel's message queues have been torn down or
351 		 * a signal is pending.
352 		 *
353 		 * The channel_mgr_requests is set to 1 after being awakened,
354 		 * This is done to prevent the channel mgr from making one pass
355 		 * through the loop for each request, since he will
356 		 * be servicing all the requests in one pass. The reason it's
357 		 * set to 1 instead of 0 is so that other kthreads will know
358 		 * that the channel mgr is running and won't bother trying to
359 		 * wake him up.
360 		 */
361 		atomic_dec(&part->channel_mgr_requests);
362 		(void)wait_event_interruptible(part->channel_mgr_wq,
363 				(atomic_read(&part->channel_mgr_requests) > 0 ||
364 				 part->chctl.all_flags != 0 ||
365 				 (part->act_state == XPC_P_AS_DEACTIVATING &&
366 				 atomic_read(&part->nchannels_active) == 0 &&
367 				 xpc_partition_disengaged(part))));
368 		atomic_set(&part->channel_mgr_requests, 1);
369 	}
370 }
371 
372 /*
373  * Guarantee that the kzalloc'd memory is cacheline aligned.
374  */
375 void *
376 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
377 {
378 	/* see if kzalloc will give us cachline aligned memory by default */
379 	*base = kzalloc(size, flags);
380 	if (*base == NULL)
381 		return NULL;
382 
383 	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
384 		return *base;
385 
386 	kfree(*base);
387 
388 	/* nope, we'll have to do it ourselves */
389 	*base = kzalloc(size + L1_CACHE_BYTES, flags);
390 	if (*base == NULL)
391 		return NULL;
392 
393 	return (void *)L1_CACHE_ALIGN((u64)*base);
394 }
395 
396 /*
397  * Setup the channel structures necessary to support XPartition Communication
398  * between the specified remote partition and the local one.
399  */
400 static enum xp_retval
401 xpc_setup_ch_structures(struct xpc_partition *part)
402 {
403 	enum xp_retval ret;
404 	int ch_number;
405 	struct xpc_channel *ch;
406 	short partid = XPC_PARTID(part);
407 
408 	/*
409 	 * Allocate all of the channel structures as a contiguous chunk of
410 	 * memory.
411 	 */
412 	DBUG_ON(part->channels != NULL);
413 	part->channels = kcalloc(XPC_MAX_NCHANNELS,
414 				 sizeof(struct xpc_channel),
415 				 GFP_KERNEL);
416 	if (part->channels == NULL) {
417 		dev_err(xpc_chan, "can't get memory for channels\n");
418 		return xpNoMemory;
419 	}
420 
421 	/* allocate the remote open and close args */
422 
423 	part->remote_openclose_args =
424 	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
425 					  GFP_KERNEL, &part->
426 					  remote_openclose_args_base);
427 	if (part->remote_openclose_args == NULL) {
428 		dev_err(xpc_chan, "can't get memory for remote connect args\n");
429 		ret = xpNoMemory;
430 		goto out_1;
431 	}
432 
433 	part->chctl.all_flags = 0;
434 	spin_lock_init(&part->chctl_lock);
435 
436 	atomic_set(&part->channel_mgr_requests, 1);
437 	init_waitqueue_head(&part->channel_mgr_wq);
438 
439 	part->nchannels = XPC_MAX_NCHANNELS;
440 
441 	atomic_set(&part->nchannels_active, 0);
442 	atomic_set(&part->nchannels_engaged, 0);
443 
444 	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
445 		ch = &part->channels[ch_number];
446 
447 		ch->partid = partid;
448 		ch->number = ch_number;
449 		ch->flags = XPC_C_DISCONNECTED;
450 
451 		atomic_set(&ch->kthreads_assigned, 0);
452 		atomic_set(&ch->kthreads_idle, 0);
453 		atomic_set(&ch->kthreads_active, 0);
454 
455 		atomic_set(&ch->references, 0);
456 		atomic_set(&ch->n_to_notify, 0);
457 
458 		spin_lock_init(&ch->lock);
459 		init_completion(&ch->wdisconnect_wait);
460 
461 		atomic_set(&ch->n_on_msg_allocate_wq, 0);
462 		init_waitqueue_head(&ch->msg_allocate_wq);
463 		init_waitqueue_head(&ch->idle_wq);
464 	}
465 
466 	ret = xpc_arch_ops.setup_ch_structures(part);
467 	if (ret != xpSuccess)
468 		goto out_2;
469 
470 	/*
471 	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
472 	 * we're declaring that this partition is ready to go.
473 	 */
474 	part->setup_state = XPC_P_SS_SETUP;
475 
476 	return xpSuccess;
477 
478 	/* setup of ch structures failed */
479 out_2:
480 	kfree(part->remote_openclose_args_base);
481 	part->remote_openclose_args = NULL;
482 out_1:
483 	kfree(part->channels);
484 	part->channels = NULL;
485 	return ret;
486 }
487 
488 /*
489  * Teardown the channel structures necessary to support XPartition Communication
490  * between the specified remote partition and the local one.
491  */
492 static void
493 xpc_teardown_ch_structures(struct xpc_partition *part)
494 {
495 	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
496 	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
497 
498 	/*
499 	 * Make this partition inaccessible to local processes by marking it
500 	 * as no longer setup. Then wait before proceeding with the teardown
501 	 * until all existing references cease.
502 	 */
503 	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
504 	part->setup_state = XPC_P_SS_WTEARDOWN;
505 
506 	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
507 
508 	/* now we can begin tearing down the infrastructure */
509 
510 	xpc_arch_ops.teardown_ch_structures(part);
511 
512 	kfree(part->remote_openclose_args_base);
513 	part->remote_openclose_args = NULL;
514 	kfree(part->channels);
515 	part->channels = NULL;
516 
517 	part->setup_state = XPC_P_SS_TORNDOWN;
518 }
519 
520 /*
521  * When XPC HB determines that a partition has come up, it will create a new
522  * kthread and that kthread will call this function to attempt to set up the
523  * basic infrastructure used for Cross Partition Communication with the newly
524  * upped partition.
525  *
526  * The kthread that was created by XPC HB and which setup the XPC
527  * infrastructure will remain assigned to the partition becoming the channel
528  * manager for that partition until the partition is deactivating, at which
529  * time the kthread will teardown the XPC infrastructure and then exit.
530  */
531 static int
532 xpc_activating(void *__partid)
533 {
534 	short partid = (u64)__partid;
535 	struct xpc_partition *part = &xpc_partitions[partid];
536 	unsigned long irq_flags;
537 
538 	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
539 
540 	spin_lock_irqsave(&part->act_lock, irq_flags);
541 
542 	if (part->act_state == XPC_P_AS_DEACTIVATING) {
543 		part->act_state = XPC_P_AS_INACTIVE;
544 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
545 		part->remote_rp_pa = 0;
546 		return 0;
547 	}
548 
549 	/* indicate the thread is activating */
550 	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
551 	part->act_state = XPC_P_AS_ACTIVATING;
552 
553 	XPC_SET_REASON(part, 0, 0);
554 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
555 
556 	dev_dbg(xpc_part, "activating partition %d\n", partid);
557 
558 	xpc_arch_ops.allow_hb(partid);
559 
560 	if (xpc_setup_ch_structures(part) == xpSuccess) {
561 		(void)xpc_part_ref(part);	/* this will always succeed */
562 
563 		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
564 			xpc_mark_partition_active(part);
565 			xpc_channel_mgr(part);
566 			/* won't return until partition is deactivating */
567 		}
568 
569 		xpc_part_deref(part);
570 		xpc_teardown_ch_structures(part);
571 	}
572 
573 	xpc_arch_ops.disallow_hb(partid);
574 	xpc_mark_partition_inactive(part);
575 
576 	if (part->reason == xpReactivating) {
577 		/* interrupting ourselves results in activating partition */
578 		xpc_arch_ops.request_partition_reactivation(part);
579 	}
580 
581 	return 0;
582 }
583 
584 void
585 xpc_activate_partition(struct xpc_partition *part)
586 {
587 	short partid = XPC_PARTID(part);
588 	unsigned long irq_flags;
589 	struct task_struct *kthread;
590 
591 	spin_lock_irqsave(&part->act_lock, irq_flags);
592 
593 	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
594 
595 	part->act_state = XPC_P_AS_ACTIVATION_REQ;
596 	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
597 
598 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
599 
600 	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
601 			      partid);
602 	if (IS_ERR(kthread)) {
603 		spin_lock_irqsave(&part->act_lock, irq_flags);
604 		part->act_state = XPC_P_AS_INACTIVE;
605 		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
606 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
607 	}
608 }
609 
610 void
611 xpc_activate_kthreads(struct xpc_channel *ch, int needed)
612 {
613 	int idle = atomic_read(&ch->kthreads_idle);
614 	int assigned = atomic_read(&ch->kthreads_assigned);
615 	int wakeup;
616 
617 	DBUG_ON(needed <= 0);
618 
619 	if (idle > 0) {
620 		wakeup = (needed > idle) ? idle : needed;
621 		needed -= wakeup;
622 
623 		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
624 			"channel=%d\n", wakeup, ch->partid, ch->number);
625 
626 		/* only wakeup the requested number of kthreads */
627 		wake_up_nr(&ch->idle_wq, wakeup);
628 	}
629 
630 	if (needed <= 0)
631 		return;
632 
633 	if (needed + assigned > ch->kthreads_assigned_limit) {
634 		needed = ch->kthreads_assigned_limit - assigned;
635 		if (needed <= 0)
636 			return;
637 	}
638 
639 	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
640 		needed, ch->partid, ch->number);
641 
642 	xpc_create_kthreads(ch, needed, 0);
643 }
644 
645 /*
646  * This function is where XPC's kthreads wait for messages to deliver.
647  */
648 static void
649 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
650 {
651 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
652 		xpc_arch_ops.n_of_deliverable_payloads;
653 
654 	do {
655 		/* deliver messages to their intended recipients */
656 
657 		while (n_of_deliverable_payloads(ch) > 0 &&
658 		       !(ch->flags & XPC_C_DISCONNECTING)) {
659 			xpc_deliver_payload(ch);
660 		}
661 
662 		if (atomic_inc_return(&ch->kthreads_idle) >
663 		    ch->kthreads_idle_limit) {
664 			/* too many idle kthreads on this channel */
665 			atomic_dec(&ch->kthreads_idle);
666 			break;
667 		}
668 
669 		dev_dbg(xpc_chan, "idle kthread calling "
670 			"wait_event_interruptible_exclusive()\n");
671 
672 		(void)wait_event_interruptible_exclusive(ch->idle_wq,
673 				(n_of_deliverable_payloads(ch) > 0 ||
674 				 (ch->flags & XPC_C_DISCONNECTING)));
675 
676 		atomic_dec(&ch->kthreads_idle);
677 
678 	} while (!(ch->flags & XPC_C_DISCONNECTING));
679 }
680 
681 static int
682 xpc_kthread_start(void *args)
683 {
684 	short partid = XPC_UNPACK_ARG1(args);
685 	u16 ch_number = XPC_UNPACK_ARG2(args);
686 	struct xpc_partition *part = &xpc_partitions[partid];
687 	struct xpc_channel *ch;
688 	int n_needed;
689 	unsigned long irq_flags;
690 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
691 		xpc_arch_ops.n_of_deliverable_payloads;
692 
693 	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
694 		partid, ch_number);
695 
696 	ch = &part->channels[ch_number];
697 
698 	if (!(ch->flags & XPC_C_DISCONNECTING)) {
699 
700 		/* let registerer know that connection has been established */
701 
702 		spin_lock_irqsave(&ch->lock, irq_flags);
703 		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
704 			ch->flags |= XPC_C_CONNECTEDCALLOUT;
705 			spin_unlock_irqrestore(&ch->lock, irq_flags);
706 
707 			xpc_connected_callout(ch);
708 
709 			spin_lock_irqsave(&ch->lock, irq_flags);
710 			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
711 			spin_unlock_irqrestore(&ch->lock, irq_flags);
712 
713 			/*
714 			 * It is possible that while the callout was being
715 			 * made that the remote partition sent some messages.
716 			 * If that is the case, we may need to activate
717 			 * additional kthreads to help deliver them. We only
718 			 * need one less than total #of messages to deliver.
719 			 */
720 			n_needed = n_of_deliverable_payloads(ch) - 1;
721 			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
722 				xpc_activate_kthreads(ch, n_needed);
723 
724 		} else {
725 			spin_unlock_irqrestore(&ch->lock, irq_flags);
726 		}
727 
728 		xpc_kthread_waitmsgs(part, ch);
729 	}
730 
731 	/* let registerer know that connection is disconnecting */
732 
733 	spin_lock_irqsave(&ch->lock, irq_flags);
734 	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
735 	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
736 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
737 		spin_unlock_irqrestore(&ch->lock, irq_flags);
738 
739 		xpc_disconnect_callout(ch, xpDisconnecting);
740 
741 		spin_lock_irqsave(&ch->lock, irq_flags);
742 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
743 	}
744 	spin_unlock_irqrestore(&ch->lock, irq_flags);
745 
746 	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
747 	    atomic_dec_return(&part->nchannels_engaged) == 0) {
748 		xpc_arch_ops.indicate_partition_disengaged(part);
749 	}
750 
751 	xpc_msgqueue_deref(ch);
752 
753 	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
754 		partid, ch_number);
755 
756 	xpc_part_deref(part);
757 	return 0;
758 }
759 
760 /*
761  * For each partition that XPC has established communications with, there is
762  * a minimum of one kernel thread assigned to perform any operation that
763  * may potentially sleep or block (basically the callouts to the asynchronous
764  * functions registered via xpc_connect()).
765  *
766  * Additional kthreads are created and destroyed by XPC as the workload
767  * demands.
768  *
769  * A kthread is assigned to one of the active channels that exists for a given
770  * partition.
771  */
772 void
773 xpc_create_kthreads(struct xpc_channel *ch, int needed,
774 		    int ignore_disconnecting)
775 {
776 	unsigned long irq_flags;
777 	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
778 	struct xpc_partition *part = &xpc_partitions[ch->partid];
779 	struct task_struct *kthread;
780 	void (*indicate_partition_disengaged) (struct xpc_partition *) =
781 		xpc_arch_ops.indicate_partition_disengaged;
782 
783 	while (needed-- > 0) {
784 
785 		/*
786 		 * The following is done on behalf of the newly created
787 		 * kthread. That kthread is responsible for doing the
788 		 * counterpart to the following before it exits.
789 		 */
790 		if (ignore_disconnecting) {
791 			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
792 				/* kthreads assigned had gone to zero */
793 				BUG_ON(!(ch->flags &
794 					 XPC_C_DISCONNECTINGCALLOUT_MADE));
795 				break;
796 			}
797 
798 		} else if (ch->flags & XPC_C_DISCONNECTING) {
799 			break;
800 
801 		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
802 			   atomic_inc_return(&part->nchannels_engaged) == 1) {
803 			xpc_arch_ops.indicate_partition_engaged(part);
804 		}
805 		(void)xpc_part_ref(part);
806 		xpc_msgqueue_ref(ch);
807 
808 		kthread = kthread_run(xpc_kthread_start, (void *)args,
809 				      "xpc%02dc%d", ch->partid, ch->number);
810 		if (IS_ERR(kthread)) {
811 			/* the fork failed */
812 
813 			/*
814 			 * NOTE: if (ignore_disconnecting &&
815 			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
816 			 * then we'll deadlock if all other kthreads assigned
817 			 * to this channel are blocked in the channel's
818 			 * registerer, because the only thing that will unblock
819 			 * them is the xpDisconnecting callout that this
820 			 * failed kthread_run() would have made.
821 			 */
822 
823 			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
824 			    atomic_dec_return(&part->nchannels_engaged) == 0) {
825 				indicate_partition_disengaged(part);
826 			}
827 			xpc_msgqueue_deref(ch);
828 			xpc_part_deref(part);
829 
830 			if (atomic_read(&ch->kthreads_assigned) <
831 			    ch->kthreads_idle_limit) {
832 				/*
833 				 * Flag this as an error only if we have an
834 				 * insufficient #of kthreads for the channel
835 				 * to function.
836 				 */
837 				spin_lock_irqsave(&ch->lock, irq_flags);
838 				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
839 						       &irq_flags);
840 				spin_unlock_irqrestore(&ch->lock, irq_flags);
841 			}
842 			break;
843 		}
844 	}
845 }
846 
847 void
848 xpc_disconnect_wait(int ch_number)
849 {
850 	unsigned long irq_flags;
851 	short partid;
852 	struct xpc_partition *part;
853 	struct xpc_channel *ch;
854 	int wakeup_channel_mgr;
855 
856 	/* now wait for all callouts to the caller's function to cease */
857 	for (partid = 0; partid < xp_max_npartitions; partid++) {
858 		part = &xpc_partitions[partid];
859 
860 		if (!xpc_part_ref(part))
861 			continue;
862 
863 		ch = &part->channels[ch_number];
864 
865 		if (!(ch->flags & XPC_C_WDISCONNECT)) {
866 			xpc_part_deref(part);
867 			continue;
868 		}
869 
870 		wait_for_completion(&ch->wdisconnect_wait);
871 
872 		spin_lock_irqsave(&ch->lock, irq_flags);
873 		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
874 		wakeup_channel_mgr = 0;
875 
876 		if (ch->delayed_chctl_flags) {
877 			if (part->act_state != XPC_P_AS_DEACTIVATING) {
878 				spin_lock(&part->chctl_lock);
879 				part->chctl.flags[ch->number] |=
880 				    ch->delayed_chctl_flags;
881 				spin_unlock(&part->chctl_lock);
882 				wakeup_channel_mgr = 1;
883 			}
884 			ch->delayed_chctl_flags = 0;
885 		}
886 
887 		ch->flags &= ~XPC_C_WDISCONNECT;
888 		spin_unlock_irqrestore(&ch->lock, irq_flags);
889 
890 		if (wakeup_channel_mgr)
891 			xpc_wakeup_channel_mgr(part);
892 
893 		xpc_part_deref(part);
894 	}
895 }
896 
897 static int
898 xpc_setup_partitions(void)
899 {
900 	short partid;
901 	struct xpc_partition *part;
902 
903 	xpc_partitions = kcalloc(xp_max_npartitions,
904 				 sizeof(struct xpc_partition),
905 				 GFP_KERNEL);
906 	if (xpc_partitions == NULL) {
907 		dev_err(xpc_part, "can't get memory for partition structure\n");
908 		return -ENOMEM;
909 	}
910 
911 	/*
912 	 * The first few fields of each entry of xpc_partitions[] need to
913 	 * be initialized now so that calls to xpc_connect() and
914 	 * xpc_disconnect() can be made prior to the activation of any remote
915 	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
916 	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
917 	 * PARTITION HAS BEEN ACTIVATED.
918 	 */
919 	for (partid = 0; partid < xp_max_npartitions; partid++) {
920 		part = &xpc_partitions[partid];
921 
922 		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
923 
924 		part->activate_IRQ_rcvd = 0;
925 		spin_lock_init(&part->act_lock);
926 		part->act_state = XPC_P_AS_INACTIVE;
927 		XPC_SET_REASON(part, 0, 0);
928 
929 		timer_setup(&part->disengage_timer,
930 			    xpc_timeout_partition_disengage, 0);
931 
932 		part->setup_state = XPC_P_SS_UNSET;
933 		init_waitqueue_head(&part->teardown_wq);
934 		atomic_set(&part->references, 0);
935 	}
936 
937 	return xpc_arch_ops.setup_partitions();
938 }
939 
940 static void
941 xpc_teardown_partitions(void)
942 {
943 	xpc_arch_ops.teardown_partitions();
944 	kfree(xpc_partitions);
945 }
946 
947 static void
948 xpc_do_exit(enum xp_retval reason)
949 {
950 	short partid;
951 	int active_part_count, printed_waiting_msg = 0;
952 	struct xpc_partition *part;
953 	unsigned long printmsg_time, disengage_timeout = 0;
954 
955 	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
956 	DBUG_ON(xpc_exiting == 1);
957 
958 	/*
959 	 * Let the heartbeat checker thread and the discovery thread
960 	 * (if one is running) know that they should exit. Also wake up
961 	 * the heartbeat checker thread in case it's sleeping.
962 	 */
963 	xpc_exiting = 1;
964 	wake_up_interruptible(&xpc_activate_IRQ_wq);
965 
966 	/* wait for the discovery thread to exit */
967 	wait_for_completion(&xpc_discovery_exited);
968 
969 	/* wait for the heartbeat checker thread to exit */
970 	wait_for_completion(&xpc_hb_checker_exited);
971 
972 	/* sleep for a 1/3 of a second or so */
973 	(void)msleep_interruptible(300);
974 
975 	/* wait for all partitions to become inactive */
976 
977 	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
978 	xpc_disengage_timedout = 0;
979 
980 	do {
981 		active_part_count = 0;
982 
983 		for (partid = 0; partid < xp_max_npartitions; partid++) {
984 			part = &xpc_partitions[partid];
985 
986 			if (xpc_partition_disengaged(part) &&
987 			    part->act_state == XPC_P_AS_INACTIVE) {
988 				continue;
989 			}
990 
991 			active_part_count++;
992 
993 			XPC_DEACTIVATE_PARTITION(part, reason);
994 
995 			if (part->disengage_timeout > disengage_timeout)
996 				disengage_timeout = part->disengage_timeout;
997 		}
998 
999 		if (xpc_arch_ops.any_partition_engaged()) {
1000 			if (time_is_before_jiffies(printmsg_time)) {
1001 				dev_info(xpc_part, "waiting for remote "
1002 					 "partitions to deactivate, timeout in "
1003 					 "%ld seconds\n", (disengage_timeout -
1004 					 jiffies) / HZ);
1005 				printmsg_time = jiffies +
1006 				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
1007 				printed_waiting_msg = 1;
1008 			}
1009 
1010 		} else if (active_part_count > 0) {
1011 			if (printed_waiting_msg) {
1012 				dev_info(xpc_part, "waiting for local partition"
1013 					 " to deactivate\n");
1014 				printed_waiting_msg = 0;
1015 			}
1016 
1017 		} else {
1018 			if (!xpc_disengage_timedout) {
1019 				dev_info(xpc_part, "all partitions have "
1020 					 "deactivated\n");
1021 			}
1022 			break;
1023 		}
1024 
1025 		/* sleep for a 1/3 of a second or so */
1026 		(void)msleep_interruptible(300);
1027 
1028 	} while (1);
1029 
1030 	DBUG_ON(xpc_arch_ops.any_partition_engaged());
1031 
1032 	xpc_teardown_rsvd_page();
1033 
1034 	if (reason == xpUnloading) {
1035 		(void)unregister_die_notifier(&xpc_die_notifier);
1036 		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1037 	}
1038 
1039 	/* clear the interface to XPC's functions */
1040 	xpc_clear_interface();
1041 
1042 	if (xpc_sysctl)
1043 		unregister_sysctl_table(xpc_sysctl);
1044 
1045 	xpc_teardown_partitions();
1046 
1047 	if (is_uv_system())
1048 		xpc_exit_uv();
1049 }
1050 
1051 /*
1052  * This function is called when the system is being rebooted.
1053  */
1054 static int
1055 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1056 {
1057 	enum xp_retval reason;
1058 
1059 	switch (event) {
1060 	case SYS_RESTART:
1061 		reason = xpSystemReboot;
1062 		break;
1063 	case SYS_HALT:
1064 		reason = xpSystemHalt;
1065 		break;
1066 	case SYS_POWER_OFF:
1067 		reason = xpSystemPoweroff;
1068 		break;
1069 	default:
1070 		reason = xpSystemGoingDown;
1071 	}
1072 
1073 	xpc_do_exit(reason);
1074 	return NOTIFY_DONE;
1075 }
1076 
1077 /* Used to only allow one cpu to complete disconnect */
1078 static unsigned int xpc_die_disconnecting;
1079 
1080 /*
1081  * Notify other partitions to deactivate from us by first disengaging from all
1082  * references to our memory.
1083  */
1084 static void
1085 xpc_die_deactivate(void)
1086 {
1087 	struct xpc_partition *part;
1088 	short partid;
1089 	int any_engaged;
1090 	long keep_waiting;
1091 	long wait_to_print;
1092 
1093 	if (cmpxchg(&xpc_die_disconnecting, 0, 1))
1094 		return;
1095 
1096 	/* keep xpc_hb_checker thread from doing anything (just in case) */
1097 	xpc_exiting = 1;
1098 
1099 	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1100 
1101 	for (partid = 0; partid < xp_max_npartitions; partid++) {
1102 		part = &xpc_partitions[partid];
1103 
1104 		if (xpc_arch_ops.partition_engaged(partid) ||
1105 		    part->act_state != XPC_P_AS_INACTIVE) {
1106 			xpc_arch_ops.request_partition_deactivation(part);
1107 			xpc_arch_ops.indicate_partition_disengaged(part);
1108 		}
1109 	}
1110 
1111 	/*
1112 	 * Though we requested that all other partitions deactivate from us,
1113 	 * we only wait until they've all disengaged or we've reached the
1114 	 * defined timelimit.
1115 	 *
1116 	 * Given that one iteration through the following while-loop takes
1117 	 * approximately 200 microseconds, calculate the #of loops to take
1118 	 * before bailing and the #of loops before printing a waiting message.
1119 	 */
1120 	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1121 	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1122 
1123 	while (1) {
1124 		any_engaged = xpc_arch_ops.any_partition_engaged();
1125 		if (!any_engaged) {
1126 			dev_info(xpc_part, "all partitions have deactivated\n");
1127 			break;
1128 		}
1129 
1130 		if (!keep_waiting--) {
1131 			for (partid = 0; partid < xp_max_npartitions;
1132 			     partid++) {
1133 				if (xpc_arch_ops.partition_engaged(partid)) {
1134 					dev_info(xpc_part, "deactivate from "
1135 						 "remote partition %d timed "
1136 						 "out\n", partid);
1137 				}
1138 			}
1139 			break;
1140 		}
1141 
1142 		if (!wait_to_print--) {
1143 			dev_info(xpc_part, "waiting for remote partitions to "
1144 				 "deactivate, timeout in %ld seconds\n",
1145 				 keep_waiting / (1000 * 5));
1146 			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1147 			    1000 * 5;
1148 		}
1149 
1150 		udelay(200);
1151 	}
1152 }
1153 
1154 /*
1155  * This function is called when the system is being restarted or halted due
1156  * to some sort of system failure. If this is the case we need to notify the
1157  * other partitions to disengage from all references to our memory.
1158  * This function can also be called when our heartbeater could be offlined
1159  * for a time. In this case we need to notify other partitions to not worry
1160  * about the lack of a heartbeat.
1161  */
1162 static int
1163 xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args)
1164 {
1165 #ifdef CONFIG_IA64		/* !!! temporary kludge */
1166 	switch (event) {
1167 	case DIE_MACHINE_RESTART:
1168 	case DIE_MACHINE_HALT:
1169 		xpc_die_deactivate();
1170 		break;
1171 
1172 	case DIE_KDEBUG_ENTER:
1173 		/* Should lack of heartbeat be ignored by other partitions? */
1174 		if (!xpc_kdebug_ignore)
1175 			break;
1176 
1177 		fallthrough;
1178 	case DIE_MCA_MONARCH_ENTER:
1179 	case DIE_INIT_MONARCH_ENTER:
1180 		xpc_arch_ops.offline_heartbeat();
1181 		break;
1182 
1183 	case DIE_KDEBUG_LEAVE:
1184 		/* Is lack of heartbeat being ignored by other partitions? */
1185 		if (!xpc_kdebug_ignore)
1186 			break;
1187 
1188 		fallthrough;
1189 	case DIE_MCA_MONARCH_LEAVE:
1190 	case DIE_INIT_MONARCH_LEAVE:
1191 		xpc_arch_ops.online_heartbeat();
1192 		break;
1193 	}
1194 #else
1195 	struct die_args *die_args = _die_args;
1196 
1197 	switch (event) {
1198 	case DIE_TRAP:
1199 		if (die_args->trapnr == X86_TRAP_DF)
1200 			xpc_die_deactivate();
1201 
1202 		if (((die_args->trapnr == X86_TRAP_MF) ||
1203 		     (die_args->trapnr == X86_TRAP_XF)) &&
1204 		    !user_mode(die_args->regs))
1205 			xpc_die_deactivate();
1206 
1207 		break;
1208 	case DIE_INT3:
1209 	case DIE_DEBUG:
1210 		break;
1211 	case DIE_OOPS:
1212 	case DIE_GPF:
1213 	default:
1214 		xpc_die_deactivate();
1215 	}
1216 #endif
1217 
1218 	return NOTIFY_DONE;
1219 }
1220 
1221 static int __init
1222 xpc_init(void)
1223 {
1224 	int ret;
1225 	struct task_struct *kthread;
1226 
1227 	dev_set_name(xpc_part, "part");
1228 	dev_set_name(xpc_chan, "chan");
1229 
1230 	if (is_uv_system()) {
1231 		ret = xpc_init_uv();
1232 
1233 	} else {
1234 		ret = -ENODEV;
1235 	}
1236 
1237 	if (ret != 0)
1238 		return ret;
1239 
1240 	ret = xpc_setup_partitions();
1241 	if (ret != 0) {
1242 		dev_err(xpc_part, "can't get memory for partition structure\n");
1243 		goto out_1;
1244 	}
1245 
1246 	xpc_sysctl = register_sysctl_table(xpc_sys_dir);
1247 
1248 	/*
1249 	 * Fill the partition reserved page with the information needed by
1250 	 * other partitions to discover we are alive and establish initial
1251 	 * communications.
1252 	 */
1253 	ret = xpc_setup_rsvd_page();
1254 	if (ret != 0) {
1255 		dev_err(xpc_part, "can't setup our reserved page\n");
1256 		goto out_2;
1257 	}
1258 
1259 	/* add ourselves to the reboot_notifier_list */
1260 	ret = register_reboot_notifier(&xpc_reboot_notifier);
1261 	if (ret != 0)
1262 		dev_warn(xpc_part, "can't register reboot notifier\n");
1263 
1264 	/* add ourselves to the die_notifier list */
1265 	ret = register_die_notifier(&xpc_die_notifier);
1266 	if (ret != 0)
1267 		dev_warn(xpc_part, "can't register die notifier\n");
1268 
1269 	/*
1270 	 * The real work-horse behind xpc.  This processes incoming
1271 	 * interrupts and monitors remote heartbeats.
1272 	 */
1273 	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1274 	if (IS_ERR(kthread)) {
1275 		dev_err(xpc_part, "failed while forking hb check thread\n");
1276 		ret = -EBUSY;
1277 		goto out_3;
1278 	}
1279 
1280 	/*
1281 	 * Startup a thread that will attempt to discover other partitions to
1282 	 * activate based on info provided by SAL. This new thread is short
1283 	 * lived and will exit once discovery is complete.
1284 	 */
1285 	kthread = kthread_run(xpc_initiate_discovery, NULL,
1286 			      XPC_DISCOVERY_THREAD_NAME);
1287 	if (IS_ERR(kthread)) {
1288 		dev_err(xpc_part, "failed while forking discovery thread\n");
1289 
1290 		/* mark this new thread as a non-starter */
1291 		complete(&xpc_discovery_exited);
1292 
1293 		xpc_do_exit(xpUnloading);
1294 		return -EBUSY;
1295 	}
1296 
1297 	/* set the interface to point at XPC's functions */
1298 	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1299 			  xpc_initiate_send, xpc_initiate_send_notify,
1300 			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
1301 
1302 	return 0;
1303 
1304 	/* initialization was not successful */
1305 out_3:
1306 	xpc_teardown_rsvd_page();
1307 
1308 	(void)unregister_die_notifier(&xpc_die_notifier);
1309 	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1310 out_2:
1311 	if (xpc_sysctl)
1312 		unregister_sysctl_table(xpc_sysctl);
1313 
1314 	xpc_teardown_partitions();
1315 out_1:
1316 	if (is_uv_system())
1317 		xpc_exit_uv();
1318 	return ret;
1319 }
1320 
1321 module_init(xpc_init);
1322 
1323 static void __exit
1324 xpc_exit(void)
1325 {
1326 	xpc_do_exit(xpUnloading);
1327 }
1328 
1329 module_exit(xpc_exit);
1330 
1331 MODULE_AUTHOR("Silicon Graphics, Inc.");
1332 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1333 MODULE_LICENSE("GPL");
1334 
1335 module_param(xpc_hb_interval, int, 0);
1336 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1337 		 "heartbeat increments.");
1338 
1339 module_param(xpc_hb_check_interval, int, 0);
1340 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1341 		 "heartbeat checks.");
1342 
1343 module_param(xpc_disengage_timelimit, int, 0);
1344 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1345 		 "for disengage to complete.");
1346 
1347 module_param(xpc_kdebug_ignore, int, 0);
1348 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1349 		 "other partitions when dropping into kdebug.");
1350