xref: /openbmc/linux/drivers/misc/sgi-xp/xpc_main.c (revision 745b7908)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
7  * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
8  */
9 
10 /*
11  * Cross Partition Communication (XPC) support - standard version.
12  *
13  *	XPC provides a message passing capability that crosses partition
14  *	boundaries. This module is made up of two parts:
15  *
16  *	    partition	This part detects the presence/absence of other
17  *			partitions. It provides a heartbeat and monitors
18  *			the heartbeats of other partitions.
19  *
20  *	    channel	This part manages the channels and sends/receives
21  *			messages across them to/from other partitions.
22  *
23  *	There are a couple of additional functions residing in XP, which
24  *	provide an interface to XPC for its users.
25  *
26  *
27  *	Caveats:
28  *
29  *	  . Currently on sn2, we have no way to determine which nasid an IRQ
30  *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
31  *	    followed by an IPI. The amo indicates where data is to be pulled
32  *	    from, so after the IPI arrives, the remote partition checks the amo
33  *	    word. The IPI can actually arrive before the amo however, so other
34  *	    code must periodically check for this case. Also, remote amo
35  *	    operations do not reliably time out. Thus we do a remote PIO read
36  *	    solely to know whether the remote partition is down and whether we
37  *	    should stop sending IPIs to it. This remote PIO read operation is
38  *	    set up in a special nofault region so SAL knows to ignore (and
39  *	    cleanup) any errors due to the remote amo write, PIO read, and/or
40  *	    PIO write operations.
41  *
42  *	    If/when new hardware solves this IPI problem, we should abandon
43  *	    the current approach.
44  *
45  */
46 
47 #include <linux/module.h>
48 #include <linux/slab.h>
49 #include <linux/sysctl.h>
50 #include <linux/device.h>
51 #include <linux/delay.h>
52 #include <linux/reboot.h>
53 #include <linux/kdebug.h>
54 #include <linux/kthread.h>
55 #include "xpc.h"
56 
57 #ifdef CONFIG_X86_64
58 #include <asm/traps.h>
59 #endif
60 
61 /* define two XPC debug device structures to be used with dev_dbg() et al */
62 
63 static struct device_driver xpc_dbg_name = {
64 	.name = "xpc"
65 };
66 
67 static struct device xpc_part_dbg_subname = {
68 	.init_name = "",	/* set to "part" at xpc_init() time */
69 	.driver = &xpc_dbg_name
70 };
71 
72 static struct device xpc_chan_dbg_subname = {
73 	.init_name = "",	/* set to "chan" at xpc_init() time */
74 	.driver = &xpc_dbg_name
75 };
76 
77 struct device *xpc_part = &xpc_part_dbg_subname;
78 struct device *xpc_chan = &xpc_chan_dbg_subname;
79 
80 static int xpc_kdebug_ignore;
81 
82 /* systune related variables for /proc/sys directories */
83 
84 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
85 static int xpc_hb_min_interval = 1;
86 static int xpc_hb_max_interval = 10;
87 
88 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
89 static int xpc_hb_check_min_interval = 10;
90 static int xpc_hb_check_max_interval = 120;
91 
92 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
93 static int xpc_disengage_min_timelimit;	/* = 0 */
94 static int xpc_disengage_max_timelimit = 120;
95 
96 static struct ctl_table xpc_sys_xpc_hb[] = {
97 	{
98 	 .procname = "hb_interval",
99 	 .data = &xpc_hb_interval,
100 	 .maxlen = sizeof(int),
101 	 .mode = 0644,
102 	 .proc_handler = proc_dointvec_minmax,
103 	 .extra1 = &xpc_hb_min_interval,
104 	 .extra2 = &xpc_hb_max_interval},
105 	{
106 	 .procname = "hb_check_interval",
107 	 .data = &xpc_hb_check_interval,
108 	 .maxlen = sizeof(int),
109 	 .mode = 0644,
110 	 .proc_handler = proc_dointvec_minmax,
111 	 .extra1 = &xpc_hb_check_min_interval,
112 	 .extra2 = &xpc_hb_check_max_interval},
113 	{}
114 };
115 static struct ctl_table xpc_sys_xpc[] = {
116 	{
117 	 .procname = "disengage_timelimit",
118 	 .data = &xpc_disengage_timelimit,
119 	 .maxlen = sizeof(int),
120 	 .mode = 0644,
121 	 .proc_handler = proc_dointvec_minmax,
122 	 .extra1 = &xpc_disengage_min_timelimit,
123 	 .extra2 = &xpc_disengage_max_timelimit},
124 	{}
125 };
126 
127 static struct ctl_table_header *xpc_sysctl;
128 static struct ctl_table_header *xpc_sysctl_hb;
129 
130 /* non-zero if any remote partition disengage was timed out */
131 int xpc_disengage_timedout;
132 
133 /* #of activate IRQs received and not yet processed */
134 int xpc_activate_IRQ_rcvd;
135 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
136 
137 /* IRQ handler notifies this wait queue on receipt of an IRQ */
138 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
139 
140 static unsigned long xpc_hb_check_timeout;
141 static struct timer_list xpc_hb_timer;
142 
143 /* notification that the xpc_hb_checker thread has exited */
144 static DECLARE_COMPLETION(xpc_hb_checker_exited);
145 
146 /* notification that the xpc_discovery thread has exited */
147 static DECLARE_COMPLETION(xpc_discovery_exited);
148 
149 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
150 
151 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
152 static struct notifier_block xpc_reboot_notifier = {
153 	.notifier_call = xpc_system_reboot,
154 };
155 
156 static int xpc_system_die(struct notifier_block *, unsigned long, void *);
157 static struct notifier_block xpc_die_notifier = {
158 	.notifier_call = xpc_system_die,
159 };
160 
161 struct xpc_arch_operations xpc_arch_ops;
162 
163 /*
164  * Timer function to enforce the timelimit on the partition disengage.
165  */
166 static void
167 xpc_timeout_partition_disengage(struct timer_list *t)
168 {
169 	struct xpc_partition *part = from_timer(part, t, disengage_timer);
170 
171 	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
172 
173 	xpc_partition_disengaged_from_timer(part);
174 
175 	DBUG_ON(part->disengage_timeout != 0);
176 	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
177 }
178 
179 /*
180  * Timer to produce the heartbeat.  The timer structures function is
181  * already set when this is initially called.  A tunable is used to
182  * specify when the next timeout should occur.
183  */
184 static void
185 xpc_hb_beater(struct timer_list *unused)
186 {
187 	xpc_arch_ops.increment_heartbeat();
188 
189 	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
190 		wake_up_interruptible(&xpc_activate_IRQ_wq);
191 
192 	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
193 	add_timer(&xpc_hb_timer);
194 }
195 
196 static void
197 xpc_start_hb_beater(void)
198 {
199 	xpc_arch_ops.heartbeat_init();
200 	timer_setup(&xpc_hb_timer, xpc_hb_beater, 0);
201 	xpc_hb_beater(NULL);
202 }
203 
204 static void
205 xpc_stop_hb_beater(void)
206 {
207 	del_timer_sync(&xpc_hb_timer);
208 	xpc_arch_ops.heartbeat_exit();
209 }
210 
211 /*
212  * At periodic intervals, scan through all active partitions and ensure
213  * their heartbeat is still active.  If not, the partition is deactivated.
214  */
215 static void
216 xpc_check_remote_hb(void)
217 {
218 	struct xpc_partition *part;
219 	short partid;
220 	enum xp_retval ret;
221 
222 	for (partid = 0; partid < xp_max_npartitions; partid++) {
223 
224 		if (xpc_exiting)
225 			break;
226 
227 		if (partid == xp_partition_id)
228 			continue;
229 
230 		part = &xpc_partitions[partid];
231 
232 		if (part->act_state == XPC_P_AS_INACTIVE ||
233 		    part->act_state == XPC_P_AS_DEACTIVATING) {
234 			continue;
235 		}
236 
237 		ret = xpc_arch_ops.get_remote_heartbeat(part);
238 		if (ret != xpSuccess)
239 			XPC_DEACTIVATE_PARTITION(part, ret);
240 	}
241 }
242 
243 /*
244  * This thread is responsible for nearly all of the partition
245  * activation/deactivation.
246  */
247 static int
248 xpc_hb_checker(void *ignore)
249 {
250 	int force_IRQ = 0;
251 
252 	/* this thread was marked active by xpc_hb_init() */
253 
254 	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
255 
256 	/* set our heartbeating to other partitions into motion */
257 	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
258 	xpc_start_hb_beater();
259 
260 	while (!xpc_exiting) {
261 
262 		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
263 			"been received\n",
264 			(int)(xpc_hb_check_timeout - jiffies),
265 			xpc_activate_IRQ_rcvd);
266 
267 		/* checking of remote heartbeats is skewed by IRQ handling */
268 		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
269 			xpc_hb_check_timeout = jiffies +
270 			    (xpc_hb_check_interval * HZ);
271 
272 			dev_dbg(xpc_part, "checking remote heartbeats\n");
273 			xpc_check_remote_hb();
274 		}
275 
276 		/* check for outstanding IRQs */
277 		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
278 			force_IRQ = 0;
279 			dev_dbg(xpc_part, "processing activate IRQs "
280 				"received\n");
281 			xpc_arch_ops.process_activate_IRQ_rcvd();
282 		}
283 
284 		/* wait for IRQ or timeout */
285 		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
286 					       (time_is_before_eq_jiffies(
287 						xpc_hb_check_timeout) ||
288 						xpc_activate_IRQ_rcvd > 0 ||
289 						xpc_exiting));
290 	}
291 
292 	xpc_stop_hb_beater();
293 
294 	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
295 
296 	/* mark this thread as having exited */
297 	complete(&xpc_hb_checker_exited);
298 	return 0;
299 }
300 
301 /*
302  * This thread will attempt to discover other partitions to activate
303  * based on info provided by SAL. This new thread is short lived and
304  * will exit once discovery is complete.
305  */
306 static int
307 xpc_initiate_discovery(void *ignore)
308 {
309 	xpc_discovery();
310 
311 	dev_dbg(xpc_part, "discovery thread is exiting\n");
312 
313 	/* mark this thread as having exited */
314 	complete(&xpc_discovery_exited);
315 	return 0;
316 }
317 
318 /*
319  * The first kthread assigned to a newly activated partition is the one
320  * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
321  * that kthread until the partition is brought down, at which time that kthread
322  * returns back to XPC HB. (The return of that kthread will signify to XPC HB
323  * that XPC has dismantled all communication infrastructure for the associated
324  * partition.) This kthread becomes the channel manager for that partition.
325  *
326  * Each active partition has a channel manager, who, besides connecting and
327  * disconnecting channels, will ensure that each of the partition's connected
328  * channels has the required number of assigned kthreads to get the work done.
329  */
330 static void
331 xpc_channel_mgr(struct xpc_partition *part)
332 {
333 	while (part->act_state != XPC_P_AS_DEACTIVATING ||
334 	       atomic_read(&part->nchannels_active) > 0 ||
335 	       !xpc_partition_disengaged(part)) {
336 
337 		xpc_process_sent_chctl_flags(part);
338 
339 		/*
340 		 * Wait until we've been requested to activate kthreads or
341 		 * all of the channel's message queues have been torn down or
342 		 * a signal is pending.
343 		 *
344 		 * The channel_mgr_requests is set to 1 after being awakened,
345 		 * This is done to prevent the channel mgr from making one pass
346 		 * through the loop for each request, since he will
347 		 * be servicing all the requests in one pass. The reason it's
348 		 * set to 1 instead of 0 is so that other kthreads will know
349 		 * that the channel mgr is running and won't bother trying to
350 		 * wake him up.
351 		 */
352 		atomic_dec(&part->channel_mgr_requests);
353 		(void)wait_event_interruptible(part->channel_mgr_wq,
354 				(atomic_read(&part->channel_mgr_requests) > 0 ||
355 				 part->chctl.all_flags != 0 ||
356 				 (part->act_state == XPC_P_AS_DEACTIVATING &&
357 				 atomic_read(&part->nchannels_active) == 0 &&
358 				 xpc_partition_disengaged(part))));
359 		atomic_set(&part->channel_mgr_requests, 1);
360 	}
361 }
362 
363 /*
364  * Guarantee that the kzalloc'd memory is cacheline aligned.
365  */
366 void *
367 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
368 {
369 	/* see if kzalloc will give us cachline aligned memory by default */
370 	*base = kzalloc(size, flags);
371 	if (*base == NULL)
372 		return NULL;
373 
374 	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
375 		return *base;
376 
377 	kfree(*base);
378 
379 	/* nope, we'll have to do it ourselves */
380 	*base = kzalloc(size + L1_CACHE_BYTES, flags);
381 	if (*base == NULL)
382 		return NULL;
383 
384 	return (void *)L1_CACHE_ALIGN((u64)*base);
385 }
386 
387 /*
388  * Setup the channel structures necessary to support XPartition Communication
389  * between the specified remote partition and the local one.
390  */
391 static enum xp_retval
392 xpc_setup_ch_structures(struct xpc_partition *part)
393 {
394 	enum xp_retval ret;
395 	int ch_number;
396 	struct xpc_channel *ch;
397 	short partid = XPC_PARTID(part);
398 
399 	/*
400 	 * Allocate all of the channel structures as a contiguous chunk of
401 	 * memory.
402 	 */
403 	DBUG_ON(part->channels != NULL);
404 	part->channels = kcalloc(XPC_MAX_NCHANNELS,
405 				 sizeof(struct xpc_channel),
406 				 GFP_KERNEL);
407 	if (part->channels == NULL) {
408 		dev_err(xpc_chan, "can't get memory for channels\n");
409 		return xpNoMemory;
410 	}
411 
412 	/* allocate the remote open and close args */
413 
414 	part->remote_openclose_args =
415 	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
416 					  GFP_KERNEL, &part->
417 					  remote_openclose_args_base);
418 	if (part->remote_openclose_args == NULL) {
419 		dev_err(xpc_chan, "can't get memory for remote connect args\n");
420 		ret = xpNoMemory;
421 		goto out_1;
422 	}
423 
424 	part->chctl.all_flags = 0;
425 	spin_lock_init(&part->chctl_lock);
426 
427 	atomic_set(&part->channel_mgr_requests, 1);
428 	init_waitqueue_head(&part->channel_mgr_wq);
429 
430 	part->nchannels = XPC_MAX_NCHANNELS;
431 
432 	atomic_set(&part->nchannels_active, 0);
433 	atomic_set(&part->nchannels_engaged, 0);
434 
435 	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
436 		ch = &part->channels[ch_number];
437 
438 		ch->partid = partid;
439 		ch->number = ch_number;
440 		ch->flags = XPC_C_DISCONNECTED;
441 
442 		atomic_set(&ch->kthreads_assigned, 0);
443 		atomic_set(&ch->kthreads_idle, 0);
444 		atomic_set(&ch->kthreads_active, 0);
445 
446 		atomic_set(&ch->references, 0);
447 		atomic_set(&ch->n_to_notify, 0);
448 
449 		spin_lock_init(&ch->lock);
450 		init_completion(&ch->wdisconnect_wait);
451 
452 		atomic_set(&ch->n_on_msg_allocate_wq, 0);
453 		init_waitqueue_head(&ch->msg_allocate_wq);
454 		init_waitqueue_head(&ch->idle_wq);
455 	}
456 
457 	ret = xpc_arch_ops.setup_ch_structures(part);
458 	if (ret != xpSuccess)
459 		goto out_2;
460 
461 	/*
462 	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
463 	 * we're declaring that this partition is ready to go.
464 	 */
465 	part->setup_state = XPC_P_SS_SETUP;
466 
467 	return xpSuccess;
468 
469 	/* setup of ch structures failed */
470 out_2:
471 	kfree(part->remote_openclose_args_base);
472 	part->remote_openclose_args = NULL;
473 out_1:
474 	kfree(part->channels);
475 	part->channels = NULL;
476 	return ret;
477 }
478 
479 /*
480  * Teardown the channel structures necessary to support XPartition Communication
481  * between the specified remote partition and the local one.
482  */
483 static void
484 xpc_teardown_ch_structures(struct xpc_partition *part)
485 {
486 	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
487 	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
488 
489 	/*
490 	 * Make this partition inaccessible to local processes by marking it
491 	 * as no longer setup. Then wait before proceeding with the teardown
492 	 * until all existing references cease.
493 	 */
494 	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
495 	part->setup_state = XPC_P_SS_WTEARDOWN;
496 
497 	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
498 
499 	/* now we can begin tearing down the infrastructure */
500 
501 	xpc_arch_ops.teardown_ch_structures(part);
502 
503 	kfree(part->remote_openclose_args_base);
504 	part->remote_openclose_args = NULL;
505 	kfree(part->channels);
506 	part->channels = NULL;
507 
508 	part->setup_state = XPC_P_SS_TORNDOWN;
509 }
510 
511 /*
512  * When XPC HB determines that a partition has come up, it will create a new
513  * kthread and that kthread will call this function to attempt to set up the
514  * basic infrastructure used for Cross Partition Communication with the newly
515  * upped partition.
516  *
517  * The kthread that was created by XPC HB and which setup the XPC
518  * infrastructure will remain assigned to the partition becoming the channel
519  * manager for that partition until the partition is deactivating, at which
520  * time the kthread will teardown the XPC infrastructure and then exit.
521  */
522 static int
523 xpc_activating(void *__partid)
524 {
525 	short partid = (u64)__partid;
526 	struct xpc_partition *part = &xpc_partitions[partid];
527 	unsigned long irq_flags;
528 
529 	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
530 
531 	spin_lock_irqsave(&part->act_lock, irq_flags);
532 
533 	if (part->act_state == XPC_P_AS_DEACTIVATING) {
534 		part->act_state = XPC_P_AS_INACTIVE;
535 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
536 		part->remote_rp_pa = 0;
537 		return 0;
538 	}
539 
540 	/* indicate the thread is activating */
541 	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
542 	part->act_state = XPC_P_AS_ACTIVATING;
543 
544 	XPC_SET_REASON(part, 0, 0);
545 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
546 
547 	dev_dbg(xpc_part, "activating partition %d\n", partid);
548 
549 	xpc_arch_ops.allow_hb(partid);
550 
551 	if (xpc_setup_ch_structures(part) == xpSuccess) {
552 		(void)xpc_part_ref(part);	/* this will always succeed */
553 
554 		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
555 			xpc_mark_partition_active(part);
556 			xpc_channel_mgr(part);
557 			/* won't return until partition is deactivating */
558 		}
559 
560 		xpc_part_deref(part);
561 		xpc_teardown_ch_structures(part);
562 	}
563 
564 	xpc_arch_ops.disallow_hb(partid);
565 	xpc_mark_partition_inactive(part);
566 
567 	if (part->reason == xpReactivating) {
568 		/* interrupting ourselves results in activating partition */
569 		xpc_arch_ops.request_partition_reactivation(part);
570 	}
571 
572 	return 0;
573 }
574 
575 void
576 xpc_activate_partition(struct xpc_partition *part)
577 {
578 	short partid = XPC_PARTID(part);
579 	unsigned long irq_flags;
580 	struct task_struct *kthread;
581 
582 	spin_lock_irqsave(&part->act_lock, irq_flags);
583 
584 	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
585 
586 	part->act_state = XPC_P_AS_ACTIVATION_REQ;
587 	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
588 
589 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
590 
591 	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
592 			      partid);
593 	if (IS_ERR(kthread)) {
594 		spin_lock_irqsave(&part->act_lock, irq_flags);
595 		part->act_state = XPC_P_AS_INACTIVE;
596 		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
597 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
598 	}
599 }
600 
601 void
602 xpc_activate_kthreads(struct xpc_channel *ch, int needed)
603 {
604 	int idle = atomic_read(&ch->kthreads_idle);
605 	int assigned = atomic_read(&ch->kthreads_assigned);
606 	int wakeup;
607 
608 	DBUG_ON(needed <= 0);
609 
610 	if (idle > 0) {
611 		wakeup = (needed > idle) ? idle : needed;
612 		needed -= wakeup;
613 
614 		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
615 			"channel=%d\n", wakeup, ch->partid, ch->number);
616 
617 		/* only wakeup the requested number of kthreads */
618 		wake_up_nr(&ch->idle_wq, wakeup);
619 	}
620 
621 	if (needed <= 0)
622 		return;
623 
624 	if (needed + assigned > ch->kthreads_assigned_limit) {
625 		needed = ch->kthreads_assigned_limit - assigned;
626 		if (needed <= 0)
627 			return;
628 	}
629 
630 	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
631 		needed, ch->partid, ch->number);
632 
633 	xpc_create_kthreads(ch, needed, 0);
634 }
635 
636 /*
637  * This function is where XPC's kthreads wait for messages to deliver.
638  */
639 static void
640 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
641 {
642 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
643 		xpc_arch_ops.n_of_deliverable_payloads;
644 
645 	do {
646 		/* deliver messages to their intended recipients */
647 
648 		while (n_of_deliverable_payloads(ch) > 0 &&
649 		       !(ch->flags & XPC_C_DISCONNECTING)) {
650 			xpc_deliver_payload(ch);
651 		}
652 
653 		if (atomic_inc_return(&ch->kthreads_idle) >
654 		    ch->kthreads_idle_limit) {
655 			/* too many idle kthreads on this channel */
656 			atomic_dec(&ch->kthreads_idle);
657 			break;
658 		}
659 
660 		dev_dbg(xpc_chan, "idle kthread calling "
661 			"wait_event_interruptible_exclusive()\n");
662 
663 		(void)wait_event_interruptible_exclusive(ch->idle_wq,
664 				(n_of_deliverable_payloads(ch) > 0 ||
665 				 (ch->flags & XPC_C_DISCONNECTING)));
666 
667 		atomic_dec(&ch->kthreads_idle);
668 
669 	} while (!(ch->flags & XPC_C_DISCONNECTING));
670 }
671 
672 static int
673 xpc_kthread_start(void *args)
674 {
675 	short partid = XPC_UNPACK_ARG1(args);
676 	u16 ch_number = XPC_UNPACK_ARG2(args);
677 	struct xpc_partition *part = &xpc_partitions[partid];
678 	struct xpc_channel *ch;
679 	int n_needed;
680 	unsigned long irq_flags;
681 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
682 		xpc_arch_ops.n_of_deliverable_payloads;
683 
684 	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
685 		partid, ch_number);
686 
687 	ch = &part->channels[ch_number];
688 
689 	if (!(ch->flags & XPC_C_DISCONNECTING)) {
690 
691 		/* let registerer know that connection has been established */
692 
693 		spin_lock_irqsave(&ch->lock, irq_flags);
694 		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
695 			ch->flags |= XPC_C_CONNECTEDCALLOUT;
696 			spin_unlock_irqrestore(&ch->lock, irq_flags);
697 
698 			xpc_connected_callout(ch);
699 
700 			spin_lock_irqsave(&ch->lock, irq_flags);
701 			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
702 			spin_unlock_irqrestore(&ch->lock, irq_flags);
703 
704 			/*
705 			 * It is possible that while the callout was being
706 			 * made that the remote partition sent some messages.
707 			 * If that is the case, we may need to activate
708 			 * additional kthreads to help deliver them. We only
709 			 * need one less than total #of messages to deliver.
710 			 */
711 			n_needed = n_of_deliverable_payloads(ch) - 1;
712 			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
713 				xpc_activate_kthreads(ch, n_needed);
714 
715 		} else {
716 			spin_unlock_irqrestore(&ch->lock, irq_flags);
717 		}
718 
719 		xpc_kthread_waitmsgs(part, ch);
720 	}
721 
722 	/* let registerer know that connection is disconnecting */
723 
724 	spin_lock_irqsave(&ch->lock, irq_flags);
725 	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
726 	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
727 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
728 		spin_unlock_irqrestore(&ch->lock, irq_flags);
729 
730 		xpc_disconnect_callout(ch, xpDisconnecting);
731 
732 		spin_lock_irqsave(&ch->lock, irq_flags);
733 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
734 	}
735 	spin_unlock_irqrestore(&ch->lock, irq_flags);
736 
737 	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
738 	    atomic_dec_return(&part->nchannels_engaged) == 0) {
739 		xpc_arch_ops.indicate_partition_disengaged(part);
740 	}
741 
742 	xpc_msgqueue_deref(ch);
743 
744 	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
745 		partid, ch_number);
746 
747 	xpc_part_deref(part);
748 	return 0;
749 }
750 
751 /*
752  * For each partition that XPC has established communications with, there is
753  * a minimum of one kernel thread assigned to perform any operation that
754  * may potentially sleep or block (basically the callouts to the asynchronous
755  * functions registered via xpc_connect()).
756  *
757  * Additional kthreads are created and destroyed by XPC as the workload
758  * demands.
759  *
760  * A kthread is assigned to one of the active channels that exists for a given
761  * partition.
762  */
763 void
764 xpc_create_kthreads(struct xpc_channel *ch, int needed,
765 		    int ignore_disconnecting)
766 {
767 	unsigned long irq_flags;
768 	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
769 	struct xpc_partition *part = &xpc_partitions[ch->partid];
770 	struct task_struct *kthread;
771 	void (*indicate_partition_disengaged) (struct xpc_partition *) =
772 		xpc_arch_ops.indicate_partition_disengaged;
773 
774 	while (needed-- > 0) {
775 
776 		/*
777 		 * The following is done on behalf of the newly created
778 		 * kthread. That kthread is responsible for doing the
779 		 * counterpart to the following before it exits.
780 		 */
781 		if (ignore_disconnecting) {
782 			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
783 				/* kthreads assigned had gone to zero */
784 				BUG_ON(!(ch->flags &
785 					 XPC_C_DISCONNECTINGCALLOUT_MADE));
786 				break;
787 			}
788 
789 		} else if (ch->flags & XPC_C_DISCONNECTING) {
790 			break;
791 
792 		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
793 			   atomic_inc_return(&part->nchannels_engaged) == 1) {
794 			xpc_arch_ops.indicate_partition_engaged(part);
795 		}
796 		(void)xpc_part_ref(part);
797 		xpc_msgqueue_ref(ch);
798 
799 		kthread = kthread_run(xpc_kthread_start, (void *)args,
800 				      "xpc%02dc%d", ch->partid, ch->number);
801 		if (IS_ERR(kthread)) {
802 			/* the fork failed */
803 
804 			/*
805 			 * NOTE: if (ignore_disconnecting &&
806 			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
807 			 * then we'll deadlock if all other kthreads assigned
808 			 * to this channel are blocked in the channel's
809 			 * registerer, because the only thing that will unblock
810 			 * them is the xpDisconnecting callout that this
811 			 * failed kthread_run() would have made.
812 			 */
813 
814 			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
815 			    atomic_dec_return(&part->nchannels_engaged) == 0) {
816 				indicate_partition_disengaged(part);
817 			}
818 			xpc_msgqueue_deref(ch);
819 			xpc_part_deref(part);
820 
821 			if (atomic_read(&ch->kthreads_assigned) <
822 			    ch->kthreads_idle_limit) {
823 				/*
824 				 * Flag this as an error only if we have an
825 				 * insufficient #of kthreads for the channel
826 				 * to function.
827 				 */
828 				spin_lock_irqsave(&ch->lock, irq_flags);
829 				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
830 						       &irq_flags);
831 				spin_unlock_irqrestore(&ch->lock, irq_flags);
832 			}
833 			break;
834 		}
835 	}
836 }
837 
838 void
839 xpc_disconnect_wait(int ch_number)
840 {
841 	unsigned long irq_flags;
842 	short partid;
843 	struct xpc_partition *part;
844 	struct xpc_channel *ch;
845 	int wakeup_channel_mgr;
846 
847 	/* now wait for all callouts to the caller's function to cease */
848 	for (partid = 0; partid < xp_max_npartitions; partid++) {
849 		part = &xpc_partitions[partid];
850 
851 		if (!xpc_part_ref(part))
852 			continue;
853 
854 		ch = &part->channels[ch_number];
855 
856 		if (!(ch->flags & XPC_C_WDISCONNECT)) {
857 			xpc_part_deref(part);
858 			continue;
859 		}
860 
861 		wait_for_completion(&ch->wdisconnect_wait);
862 
863 		spin_lock_irqsave(&ch->lock, irq_flags);
864 		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
865 		wakeup_channel_mgr = 0;
866 
867 		if (ch->delayed_chctl_flags) {
868 			if (part->act_state != XPC_P_AS_DEACTIVATING) {
869 				spin_lock(&part->chctl_lock);
870 				part->chctl.flags[ch->number] |=
871 				    ch->delayed_chctl_flags;
872 				spin_unlock(&part->chctl_lock);
873 				wakeup_channel_mgr = 1;
874 			}
875 			ch->delayed_chctl_flags = 0;
876 		}
877 
878 		ch->flags &= ~XPC_C_WDISCONNECT;
879 		spin_unlock_irqrestore(&ch->lock, irq_flags);
880 
881 		if (wakeup_channel_mgr)
882 			xpc_wakeup_channel_mgr(part);
883 
884 		xpc_part_deref(part);
885 	}
886 }
887 
888 static int
889 xpc_setup_partitions(void)
890 {
891 	short partid;
892 	struct xpc_partition *part;
893 
894 	xpc_partitions = kcalloc(xp_max_npartitions,
895 				 sizeof(struct xpc_partition),
896 				 GFP_KERNEL);
897 	if (xpc_partitions == NULL) {
898 		dev_err(xpc_part, "can't get memory for partition structure\n");
899 		return -ENOMEM;
900 	}
901 
902 	/*
903 	 * The first few fields of each entry of xpc_partitions[] need to
904 	 * be initialized now so that calls to xpc_connect() and
905 	 * xpc_disconnect() can be made prior to the activation of any remote
906 	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
907 	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
908 	 * PARTITION HAS BEEN ACTIVATED.
909 	 */
910 	for (partid = 0; partid < xp_max_npartitions; partid++) {
911 		part = &xpc_partitions[partid];
912 
913 		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
914 
915 		part->activate_IRQ_rcvd = 0;
916 		spin_lock_init(&part->act_lock);
917 		part->act_state = XPC_P_AS_INACTIVE;
918 		XPC_SET_REASON(part, 0, 0);
919 
920 		timer_setup(&part->disengage_timer,
921 			    xpc_timeout_partition_disengage, 0);
922 
923 		part->setup_state = XPC_P_SS_UNSET;
924 		init_waitqueue_head(&part->teardown_wq);
925 		atomic_set(&part->references, 0);
926 	}
927 
928 	return xpc_arch_ops.setup_partitions();
929 }
930 
931 static void
932 xpc_teardown_partitions(void)
933 {
934 	xpc_arch_ops.teardown_partitions();
935 	kfree(xpc_partitions);
936 }
937 
938 static void
939 xpc_do_exit(enum xp_retval reason)
940 {
941 	short partid;
942 	int active_part_count, printed_waiting_msg = 0;
943 	struct xpc_partition *part;
944 	unsigned long printmsg_time, disengage_timeout = 0;
945 
946 	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
947 	DBUG_ON(xpc_exiting == 1);
948 
949 	/*
950 	 * Let the heartbeat checker thread and the discovery thread
951 	 * (if one is running) know that they should exit. Also wake up
952 	 * the heartbeat checker thread in case it's sleeping.
953 	 */
954 	xpc_exiting = 1;
955 	wake_up_interruptible(&xpc_activate_IRQ_wq);
956 
957 	/* wait for the discovery thread to exit */
958 	wait_for_completion(&xpc_discovery_exited);
959 
960 	/* wait for the heartbeat checker thread to exit */
961 	wait_for_completion(&xpc_hb_checker_exited);
962 
963 	/* sleep for a 1/3 of a second or so */
964 	(void)msleep_interruptible(300);
965 
966 	/* wait for all partitions to become inactive */
967 
968 	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
969 	xpc_disengage_timedout = 0;
970 
971 	do {
972 		active_part_count = 0;
973 
974 		for (partid = 0; partid < xp_max_npartitions; partid++) {
975 			part = &xpc_partitions[partid];
976 
977 			if (xpc_partition_disengaged(part) &&
978 			    part->act_state == XPC_P_AS_INACTIVE) {
979 				continue;
980 			}
981 
982 			active_part_count++;
983 
984 			XPC_DEACTIVATE_PARTITION(part, reason);
985 
986 			if (part->disengage_timeout > disengage_timeout)
987 				disengage_timeout = part->disengage_timeout;
988 		}
989 
990 		if (xpc_arch_ops.any_partition_engaged()) {
991 			if (time_is_before_jiffies(printmsg_time)) {
992 				dev_info(xpc_part, "waiting for remote "
993 					 "partitions to deactivate, timeout in "
994 					 "%ld seconds\n", (disengage_timeout -
995 					 jiffies) / HZ);
996 				printmsg_time = jiffies +
997 				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
998 				printed_waiting_msg = 1;
999 			}
1000 
1001 		} else if (active_part_count > 0) {
1002 			if (printed_waiting_msg) {
1003 				dev_info(xpc_part, "waiting for local partition"
1004 					 " to deactivate\n");
1005 				printed_waiting_msg = 0;
1006 			}
1007 
1008 		} else {
1009 			if (!xpc_disengage_timedout) {
1010 				dev_info(xpc_part, "all partitions have "
1011 					 "deactivated\n");
1012 			}
1013 			break;
1014 		}
1015 
1016 		/* sleep for a 1/3 of a second or so */
1017 		(void)msleep_interruptible(300);
1018 
1019 	} while (1);
1020 
1021 	DBUG_ON(xpc_arch_ops.any_partition_engaged());
1022 
1023 	xpc_teardown_rsvd_page();
1024 
1025 	if (reason == xpUnloading) {
1026 		(void)unregister_die_notifier(&xpc_die_notifier);
1027 		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1028 	}
1029 
1030 	/* clear the interface to XPC's functions */
1031 	xpc_clear_interface();
1032 
1033 	if (xpc_sysctl)
1034 		unregister_sysctl_table(xpc_sysctl);
1035 	if (xpc_sysctl_hb)
1036 		unregister_sysctl_table(xpc_sysctl_hb);
1037 
1038 	xpc_teardown_partitions();
1039 
1040 	if (is_uv_system())
1041 		xpc_exit_uv();
1042 }
1043 
1044 /*
1045  * This function is called when the system is being rebooted.
1046  */
1047 static int
1048 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1049 {
1050 	enum xp_retval reason;
1051 
1052 	switch (event) {
1053 	case SYS_RESTART:
1054 		reason = xpSystemReboot;
1055 		break;
1056 	case SYS_HALT:
1057 		reason = xpSystemHalt;
1058 		break;
1059 	case SYS_POWER_OFF:
1060 		reason = xpSystemPoweroff;
1061 		break;
1062 	default:
1063 		reason = xpSystemGoingDown;
1064 	}
1065 
1066 	xpc_do_exit(reason);
1067 	return NOTIFY_DONE;
1068 }
1069 
1070 /* Used to only allow one cpu to complete disconnect */
1071 static unsigned int xpc_die_disconnecting;
1072 
1073 /*
1074  * Notify other partitions to deactivate from us by first disengaging from all
1075  * references to our memory.
1076  */
1077 static void
1078 xpc_die_deactivate(void)
1079 {
1080 	struct xpc_partition *part;
1081 	short partid;
1082 	int any_engaged;
1083 	long keep_waiting;
1084 	long wait_to_print;
1085 
1086 	if (cmpxchg(&xpc_die_disconnecting, 0, 1))
1087 		return;
1088 
1089 	/* keep xpc_hb_checker thread from doing anything (just in case) */
1090 	xpc_exiting = 1;
1091 
1092 	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1093 
1094 	for (partid = 0; partid < xp_max_npartitions; partid++) {
1095 		part = &xpc_partitions[partid];
1096 
1097 		if (xpc_arch_ops.partition_engaged(partid) ||
1098 		    part->act_state != XPC_P_AS_INACTIVE) {
1099 			xpc_arch_ops.request_partition_deactivation(part);
1100 			xpc_arch_ops.indicate_partition_disengaged(part);
1101 		}
1102 	}
1103 
1104 	/*
1105 	 * Though we requested that all other partitions deactivate from us,
1106 	 * we only wait until they've all disengaged or we've reached the
1107 	 * defined timelimit.
1108 	 *
1109 	 * Given that one iteration through the following while-loop takes
1110 	 * approximately 200 microseconds, calculate the #of loops to take
1111 	 * before bailing and the #of loops before printing a waiting message.
1112 	 */
1113 	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1114 	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1115 
1116 	while (1) {
1117 		any_engaged = xpc_arch_ops.any_partition_engaged();
1118 		if (!any_engaged) {
1119 			dev_info(xpc_part, "all partitions have deactivated\n");
1120 			break;
1121 		}
1122 
1123 		if (!keep_waiting--) {
1124 			for (partid = 0; partid < xp_max_npartitions;
1125 			     partid++) {
1126 				if (xpc_arch_ops.partition_engaged(partid)) {
1127 					dev_info(xpc_part, "deactivate from "
1128 						 "remote partition %d timed "
1129 						 "out\n", partid);
1130 				}
1131 			}
1132 			break;
1133 		}
1134 
1135 		if (!wait_to_print--) {
1136 			dev_info(xpc_part, "waiting for remote partitions to "
1137 				 "deactivate, timeout in %ld seconds\n",
1138 				 keep_waiting / (1000 * 5));
1139 			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1140 			    1000 * 5;
1141 		}
1142 
1143 		udelay(200);
1144 	}
1145 }
1146 
1147 /*
1148  * This function is called when the system is being restarted or halted due
1149  * to some sort of system failure. If this is the case we need to notify the
1150  * other partitions to disengage from all references to our memory.
1151  * This function can also be called when our heartbeater could be offlined
1152  * for a time. In this case we need to notify other partitions to not worry
1153  * about the lack of a heartbeat.
1154  */
1155 static int
1156 xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args)
1157 {
1158 #ifdef CONFIG_IA64		/* !!! temporary kludge */
1159 	switch (event) {
1160 	case DIE_MACHINE_RESTART:
1161 	case DIE_MACHINE_HALT:
1162 		xpc_die_deactivate();
1163 		break;
1164 
1165 	case DIE_KDEBUG_ENTER:
1166 		/* Should lack of heartbeat be ignored by other partitions? */
1167 		if (!xpc_kdebug_ignore)
1168 			break;
1169 
1170 		fallthrough;
1171 	case DIE_MCA_MONARCH_ENTER:
1172 	case DIE_INIT_MONARCH_ENTER:
1173 		xpc_arch_ops.offline_heartbeat();
1174 		break;
1175 
1176 	case DIE_KDEBUG_LEAVE:
1177 		/* Is lack of heartbeat being ignored by other partitions? */
1178 		if (!xpc_kdebug_ignore)
1179 			break;
1180 
1181 		fallthrough;
1182 	case DIE_MCA_MONARCH_LEAVE:
1183 	case DIE_INIT_MONARCH_LEAVE:
1184 		xpc_arch_ops.online_heartbeat();
1185 		break;
1186 	}
1187 #else
1188 	struct die_args *die_args = _die_args;
1189 
1190 	switch (event) {
1191 	case DIE_TRAP:
1192 		if (die_args->trapnr == X86_TRAP_DF)
1193 			xpc_die_deactivate();
1194 
1195 		if (((die_args->trapnr == X86_TRAP_MF) ||
1196 		     (die_args->trapnr == X86_TRAP_XF)) &&
1197 		    !user_mode(die_args->regs))
1198 			xpc_die_deactivate();
1199 
1200 		break;
1201 	case DIE_INT3:
1202 	case DIE_DEBUG:
1203 		break;
1204 	case DIE_OOPS:
1205 	case DIE_GPF:
1206 	default:
1207 		xpc_die_deactivate();
1208 	}
1209 #endif
1210 
1211 	return NOTIFY_DONE;
1212 }
1213 
1214 static int __init
1215 xpc_init(void)
1216 {
1217 	int ret;
1218 	struct task_struct *kthread;
1219 
1220 	dev_set_name(xpc_part, "part");
1221 	dev_set_name(xpc_chan, "chan");
1222 
1223 	if (is_uv_system()) {
1224 		ret = xpc_init_uv();
1225 
1226 	} else {
1227 		ret = -ENODEV;
1228 	}
1229 
1230 	if (ret != 0)
1231 		return ret;
1232 
1233 	ret = xpc_setup_partitions();
1234 	if (ret != 0) {
1235 		dev_err(xpc_part, "can't get memory for partition structure\n");
1236 		goto out_1;
1237 	}
1238 
1239 	xpc_sysctl = register_sysctl("xpc", xpc_sys_xpc);
1240 	xpc_sysctl_hb = register_sysctl("xpc/hb", xpc_sys_xpc_hb);
1241 
1242 	/*
1243 	 * Fill the partition reserved page with the information needed by
1244 	 * other partitions to discover we are alive and establish initial
1245 	 * communications.
1246 	 */
1247 	ret = xpc_setup_rsvd_page();
1248 	if (ret != 0) {
1249 		dev_err(xpc_part, "can't setup our reserved page\n");
1250 		goto out_2;
1251 	}
1252 
1253 	/* add ourselves to the reboot_notifier_list */
1254 	ret = register_reboot_notifier(&xpc_reboot_notifier);
1255 	if (ret != 0)
1256 		dev_warn(xpc_part, "can't register reboot notifier\n");
1257 
1258 	/* add ourselves to the die_notifier list */
1259 	ret = register_die_notifier(&xpc_die_notifier);
1260 	if (ret != 0)
1261 		dev_warn(xpc_part, "can't register die notifier\n");
1262 
1263 	/*
1264 	 * The real work-horse behind xpc.  This processes incoming
1265 	 * interrupts and monitors remote heartbeats.
1266 	 */
1267 	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1268 	if (IS_ERR(kthread)) {
1269 		dev_err(xpc_part, "failed while forking hb check thread\n");
1270 		ret = -EBUSY;
1271 		goto out_3;
1272 	}
1273 
1274 	/*
1275 	 * Startup a thread that will attempt to discover other partitions to
1276 	 * activate based on info provided by SAL. This new thread is short
1277 	 * lived and will exit once discovery is complete.
1278 	 */
1279 	kthread = kthread_run(xpc_initiate_discovery, NULL,
1280 			      XPC_DISCOVERY_THREAD_NAME);
1281 	if (IS_ERR(kthread)) {
1282 		dev_err(xpc_part, "failed while forking discovery thread\n");
1283 
1284 		/* mark this new thread as a non-starter */
1285 		complete(&xpc_discovery_exited);
1286 
1287 		xpc_do_exit(xpUnloading);
1288 		return -EBUSY;
1289 	}
1290 
1291 	/* set the interface to point at XPC's functions */
1292 	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1293 			  xpc_initiate_send, xpc_initiate_send_notify,
1294 			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
1295 
1296 	return 0;
1297 
1298 	/* initialization was not successful */
1299 out_3:
1300 	xpc_teardown_rsvd_page();
1301 
1302 	(void)unregister_die_notifier(&xpc_die_notifier);
1303 	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1304 out_2:
1305 	if (xpc_sysctl_hb)
1306 		unregister_sysctl_table(xpc_sysctl_hb);
1307 	if (xpc_sysctl)
1308 		unregister_sysctl_table(xpc_sysctl);
1309 
1310 	xpc_teardown_partitions();
1311 out_1:
1312 	if (is_uv_system())
1313 		xpc_exit_uv();
1314 	return ret;
1315 }
1316 
1317 module_init(xpc_init);
1318 
1319 static void __exit
1320 xpc_exit(void)
1321 {
1322 	xpc_do_exit(xpUnloading);
1323 }
1324 
1325 module_exit(xpc_exit);
1326 
1327 MODULE_AUTHOR("Silicon Graphics, Inc.");
1328 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1329 MODULE_LICENSE("GPL");
1330 
1331 module_param(xpc_hb_interval, int, 0);
1332 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1333 		 "heartbeat increments.");
1334 
1335 module_param(xpc_hb_check_interval, int, 0);
1336 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1337 		 "heartbeat checks.");
1338 
1339 module_param(xpc_disengage_timelimit, int, 0);
1340 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1341 		 "for disengage to complete.");
1342 
1343 module_param(xpc_kdebug_ignore, int, 0);
1344 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1345 		 "other partitions when dropping into kdebug.");
1346